WO2014091529A1 - Contact lens - Google Patents

Contact lens Download PDF

Info

Publication number
WO2014091529A1
WO2014091529A1 PCT/JP2012/008032 JP2012008032W WO2014091529A1 WO 2014091529 A1 WO2014091529 A1 WO 2014091529A1 JP 2012008032 W JP2012008032 W JP 2012008032W WO 2014091529 A1 WO2014091529 A1 WO 2014091529A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
lens
region
contact lens
pair
Prior art date
Application number
PCT/JP2012/008032
Other languages
French (fr)
Japanese (ja)
Inventor
山口 博之
後藤 裕二
充彦 中田
優子 木村
Original Assignee
株式会社メニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコン filed Critical 株式会社メニコン
Priority to JP2013557974A priority Critical patent/JP5525115B1/en
Priority to PCT/JP2012/008032 priority patent/WO2014091529A1/en
Publication of WO2014091529A1 publication Critical patent/WO2014091529A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal

Definitions

  • the present invention relates to a contact lens, and more particularly, to a contact lens provided with a first power region and a second power region in which different lens powers are set in the optical region.
  • a contact lens one having a plurality of power regions in which different lens powers are set in the optical region is known.
  • the lens power required for near vision differs from the lens power required for far vision.
  • a distance lens in which the distance power is set is prescribed for presbyopia correction.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-272717
  • the pupil center located on the central axis of the eye optical system often deviates from the geometric center of the contact lens.
  • the reason is that the curvature distribution on the corneal surface of the human eye is not uniform, so that the contact lens is easily shifted to the ear side, and the pupil center is eccentric to the nose side relative to the geometric center of the cornea. This is considered to be due to such reasons.
  • Patent Document 2 Japanese Patent Laid-Open No. 6-289329
  • the optical region is asymmetrical, so it is necessary to standardize, manufacture, manage, and provide the left eye and right eye separately. Since the user also has to use the right and left separately, there is a problem that not only the manufacture and management of the contact lens manufacturer / manufacturer becomes complicated, but also the handling at the time of use by the user becomes troublesome. In particular, if the left eye and the right eye are worn oppositely, the optical area is biased to the opposite side with respect to the pupil center of the worn eye, so that the QOV is greatly reduced, and the user is anxious. And there was a risk of distrust.
  • the present invention has been made in the background as described above, and the solution is to improve the QOV by providing the optical center deviating from the lens geometric center.
  • a contact lens having a novel structure that can be manufactured and handled without distinction for the left eye and right eye, and that does not require a mark or the like indicating the deviation direction of the optical center. There is.
  • the feature of the first aspect of the present invention is that the optical region located in the center portion of the lens is provided with a first power region and a second power region in which different lens powers are set.
  • a pair of the first power regions are provided symmetrically with respect to a symmetrical radial line that is one lens radial direction line, and the second power region is disposed on the outer peripheral side of the pair of first power regions.
  • a power region is provided, and the optical region as a whole has a line-symmetric shape with respect to the symmetrical radial line, and the symmetrical radial line extends in the vertical direction of the wearing eye in the wearing state, and
  • the contact lens is provided with circumferential positioning means for providing a stable position in the lens circumferential direction so that either one of the power regions is aligned with the pupil center of the wearing eye.
  • the first and second power regions are provided symmetrically on both the left and right sides with respect to the radial line extending in the substantially vertical direction under wearing conditions. Therefore, even when the contact lens is worn in either the left eye or the right eye and the geometric center of the contact lens is deviated to either the left or right side with respect to the pupil center, a substantially similar appearance quality can be exhibited. As a result, it is not necessary to standardize and manufacture and manage the left eye and right eye separately, thereby reducing the burden on the contact lens manufacturer and user.
  • the left and right separate standards are not required, so even when lenses are provided by prospective production, for example, the inventory amount can be halved compared to the conventional, for manufacturing and management. It is possible to greatly reduce the necessary cost.
  • the first power region has a vision correction power for near vision, while the second power region is for distance vision. It has a vision correction power.
  • the first power region has a vision correction power for distance vision while the second power region is near vision. It has a vision correction power for use.
  • the contact lens according to the second and third aspects for example, reading under a work lamp or input operation with a computer monitor under a wearing state in which the lens geometric center is biased to the ear side with respect to the pupil center. Even when the pupil diameter is reduced and reduced in near vision, the one of the pair of first power areas or the second power area provided symmetrically with respect to the lens geometric center is in the pupil. It can be positioned stably. On the other hand, for example, when viewing from a distance during night vehicle driving, the pupil diameter increases and the diameter increases, so that the first power region and the second power region can be positioned with sufficient area in the pupil. Thus, the correction effect by the first power region and the second power region can be effectively exhibited as a simultaneous vision type contact lens.
  • the first power region has a vision correction power for photopic vision while the second power region is for dark vision. It has a visual acuity correction frequency of.
  • the contact lens of this aspect even if the pupil diameter is reduced and reduced in the photopic vision in a wearing state where the lens geometric center is biased to the ear side with respect to the pupil center, One of the pair of first power regions provided symmetrically can be stably positioned in the pupil.
  • the second power region in addition to the first power region can be positioned with a sufficient area in the pupil.
  • the correction effect by the second power region can be effectively exhibited.
  • the photopic state is, for example, outdoors in the daytime, and generally has a pupil diameter of about 2 to 3 mm, although it depends on the race and individual differences.
  • the first power region has an added power of +0.25 to +4.0 diopters relative to the second power region. It is set.
  • +0.25 to +4.0 diopters are added to the second power region relative to the first power region.
  • the frequency is set.
  • a simultaneous vision type contact lens for example, for presbyopia correction, in which the first power region is for near vision and the second power region is for distance vision is effective.
  • the first frequency region is set within a range of ⁇ 2.75D to + 1.0D.
  • the contact lens of the sixth aspect there is a simultaneous vision type contact lens, for example, for presbyopia correction, in which the first power region is for far vision and the second power region is for near vision. It can be realized effectively. Specifically, for example, when the first frequency region is ⁇ 3.0D, the second frequency region is set within a range of ⁇ 2.75D to + 1.0D.
  • the entire lens is axisymmetric with respect to the symmetrical radial line.
  • the overall shape including not only the optical region but also the peripheral part is axisymmetric with respect to the symmetrical radial line extending in the vertical direction in the worn state.
  • the same characteristics are exhibited.
  • the optical region is axisymmetric with respect to an orthogonal radial line orthogonal to the symmetrical radial line. is there.
  • the contact lens of this aspect optical characteristics that are line symmetric not only in the left-right direction but also in the up-down direction in the worn state are exhibited, so that handling at the time of wearing by the user becomes even easier. Further, since it is not necessary to specify the vertical direction at the time of wearing, it is possible to adopt a configuration capable of positioning without distinguishing the vertical direction as the circumferential positioning means, and the degree of freedom in design is increased.
  • the contact lens according to the eighth aspect wherein the circumferential positioning means is arranged in an up-and-down direction regardless of which of the ends in the symmetric radial direction is positioned upward in a worn state.
  • a stable position in the lens circumferential direction is given in each of two directions on the circumference as the reversal position.
  • the circumferential positioning means is configured such that a specific end in the symmetric radial direction is positioned upward in a worn state.
  • a stable position in the circumferential direction of the lens is provided in one direction on the circumference.
  • the contact lens of this aspect since a stable position is given in one direction on the circumference, for example, in the optical region and / or the peripheral portion, even when a vertically asymmetric shape is adopted with respect to an orthogonal diameter line orthogonal to the symmetry diameter line, The user can wear without being aware of up and down, and can stably obtain a desired visual acuity correction effect, a feeling of wearing, and the like.
  • An eleventh aspect of the present invention is the contact lens according to any one of the first to seventh aspects, wherein one side of both side regions partitioned by an orthogonal diameter line orthogonal to the symmetry diameter line
  • the pair of first power regions are provided in a biased manner so that the optical region is asymmetric with respect to the orthogonal radial line, and the circumferential positioning means is in the symmetrical radial direction in a worn state.
  • It is a contact lens that gives a stable position in the circumferential direction of the lens in one direction on the circumference so that a specific end is positioned upward.
  • the first in the contact lens is not only in the left and right direction but also in the vertical direction in the worn state. It becomes possible to set the center position of the frequency region more appropriately. Specifically, for near vision work such as desk work and reading, for example, the near center of the pupil is likely to be biased downward in the nose side with respect to the geometric center of the contact lens in the worn state. It is possible to set the first power region in which the optical characteristics are set by deviating downward in a worn state with respect to the orthogonal diameter line, thereby enabling a more appropriate visual acuity correction effect or the like in near vision work It becomes possible to provide.
  • the pair of first power regions are provided apart from each other.
  • the pupil center is located on any first power region Even in this case, it is possible to set the second frequency region or the transition region from the first frequency region to the second frequency region over the entire circumference of the first frequency region. Therefore, not only the first power region but also the second power region, or the optical characteristics by the transition region in which the lens power between the first power region and the second power region is set are more effective. To be able to get to.
  • a thirteenth aspect of the present invention is the contact lens according to the twelfth aspect, wherein the pair of first power regions provided apart from each other is placed on the pupil center in a worn state. Depending on the amount of deviation of the center of the pupil with respect to the lens stable position in the wearing state so that the influence of the other first power region is substantially avoided with respect to the first power region that is positioned Thus, a separation distance between the pair of first power regions is set.
  • the distance L between the pair of first power regions is preferably 0.10 mm or more, and more preferably 0.30 mm or more.
  • the geometric center point in the pair of first power regions is 0. 0 with respect to the symmetrical radial line. They are biased to the opposite sides with respect to the symmetrical diameter line with a deflection amount of 30 mm to 4.0 mm.
  • the amount of deviation of the contact lens from the corneal center due to the corneal shape, etc. and the amount of deviation of the visual axis with respect to the optics in the human eye are considered.
  • the first power region has an outer diameter of 1.0 to 2.5 mm. It is.
  • the optical action by the first power region can be stably and more effectively enjoyed.
  • a sixteenth aspect of the present invention is the contact lens according to any one of the first to fifteenth aspects, wherein the pair of first power regions are circular regions.
  • the first power region has a circular outer peripheral shape, which corresponds to a substantially circular pupil outer peripheral shape.
  • the pair of first power regions are elliptical regions.
  • the outer diameter size in each direction during wearing can be made relatively different in the first power region. Therefore, for example, by increasing the outer diameter dimension of the first power region in the left-right direction rather than the up-down direction, even if there is a large individual difference in the amount of lateral deviation of the pupil center relative to the lens geometric center during wearing It becomes possible to make it possible to cope.
  • An eighteenth aspect of the present invention is the contact lens according to any one of the first to seventeenth aspects, wherein the first power region and the second power region are between the first power region and the first power region.
  • a transition region in which the lens power between the lens power in the power region and the lens power in the second power region is set is provided.
  • the quality of appearance in the intermediate region of the viewing distance targeted for tuning in the first power region and the second power region can be improved by the optical characteristics of the transition region. Further, by providing the transition region, it is possible to reduce the deterioration in the quality of the appearance caused by the optical adverse effect at the boundary portion between the first power region and the second power region.
  • the intermediate lens power between the first power area and the second power area is preferably set, for example, in any of the following nineteenth to twenty-first aspects.
  • a nineteenth aspect of the present invention is the contact lens according to the eighteenth aspect, wherein in the transition region, the lens power in the first power region is changed to the lens power in the second power region.
  • the lens power that gradually changes is set to have a progressive structure.
  • a twentieth aspect of the present invention is the contact lens according to the eighteenth aspect, wherein in the transition region, the lens power in the first power region is changed to the lens power in the second power region.
  • a multi-focal structure is formed by setting a plurality of lens power levels that change step by step.
  • a twenty-first aspect of the present invention is the contact lens according to the eighteenth aspect, wherein a constant lens power is set throughout the transition region.
  • a mode in which at least one of the lens powers set in the first power region and the second power region gradually changes is also adopted. That is, according to a twenty-second aspect of the present invention, in the contact lens according to any one of the first to twenty-first aspects, the lens power in the first power region and the lens power in the second power region. In at least one of the above, a lens power that gradually changes is set, and the optical region has a progressive structure.
  • the transition region is provided, and the pair of first power regions are positioned in a connected state via the transition region.
  • the transition region is provided over the entire circumference on the outer peripheral side of the first power region, the effect of improving the appearance quality as described above due to the optical characteristics of the transition region is further advantageous. To be able to get to.
  • the pair of first power regions has the second power over the entire circumference.
  • the second power region is also provided between the pair of first power regions that are surrounded by a region and are spaced apart from each other.
  • the second power region is provided over the entire circumference on the outer periphery side of the first power region, not only the first power region but also the optical characteristics of the second power region. It is possible to further improve the quality of the appearance.
  • a lens power for correcting astigmatism is provided to form a toric lens.
  • the contact lens in the present invention is not limited to a contact lens that corrects only presbyopia, and may be employed as, for example, a toric lens for presbyopia provided with a lens power for correcting astigmatism.
  • any of the first power regions can be set at substantially the same position as the pupil center. Therefore, it is not necessary to distinguish between left and right when setting the first power region to be deviated from the lens geometric center in consideration of the deviation of the lens geometric center from the pupil center in the wearing state. As a result, it is not necessary to separately manufacture and manage the left eye and right eye separately, and there is no need for a mark or the like indicating the direction of deviation of the optical center. It is possible to effectively enjoy the excellent optical characteristics exhibited by the first power region deviated and set with respect to the lens geometric center in advance and the second power region on the outer periphery thereof. .
  • Front explanatory drawing which shows the contact lens as 4th embodiment of this invention.
  • Front explanatory drawing which shows the contact lens as 5th embodiment of this invention.
  • Front explanatory drawing which shows the contact lens as 6th embodiment of this invention.
  • Front explanatory drawing which shows the contact lens as 7th embodiment of this invention.
  • Front explanatory drawing which shows the contact lens as 8th embodiment of this invention.
  • Front explanatory drawing which shows the contact lens as 9th embodiment of this invention.
  • FIGS. 1 and 2 show a contact lens 10 as a first embodiment of the present invention.
  • This contact lens 10 has a circular outer periphery around the central axis passing through the lens geometric center 12 in the front view shown in FIG. 1, and has a substantially spherical crown shape as a whole.
  • the lens rear surface of the curved concave surface is worn on the surface of the cornea of the eyeball.
  • the contact lens 10 of this embodiment may be any of a hard type, a soft type, and a composite type, and the material is not limited at all.
  • the hard type can be applied to a contact lens made of an oxygen permeable material (RGP) made of a polymer material of a copolymer component such as a silicone-containing component and a lens forming monomer.
  • RGP oxygen permeable material
  • a soft type for example, it can be applied to a contact lens made of a non-hydrous material such as acrylic rubber or silicone in addition to a hydrous material such as PHEMA (polyhydroxyethyl methacrylate) or PVP (polyvinylpyrrolidone).
  • the present invention can be applied to a composite type contact lens in which the hard type material and the soft type material are selectively used in the central portion and the outer peripheral portion, for example.
  • the optical region 14 is provided with a first power region 20 and a second power region 22 in which different lens powers are set.
  • the optical region 14 exhibits a simultaneous vision type correction action on the eye optical system by the first power region 20 and the second power region 22.
  • a contact lens for correcting presbyopia is provided by providing optical characteristics corresponding to both vision and distance vision.
  • first power regions 20 that are circular in the front view of the lens shown in FIG. 1 are provided.
  • the pair of first power regions 20 are formed with the same optical characteristics and shape.
  • a pair of first power regions 20 and 20 are provided in line symmetry with respect to a symmetrical radial line 24 extending in the vertical direction in FIG. 1 through the lens geometric central axis 12.
  • the pair of first power regions 20 and 20 are set such that their outer centers 26 and 26 are separated from each other on both sides of the lens geometric center 12 by a deviation amount ⁇ .
  • the outer diameter dimension ⁇ R1 of the first power region 20 is 2 ⁇ ⁇ R1, and in the present embodiment, 2 ⁇ > R1.
  • a transition portion 28 as a transition region is provided on the outer peripheral side of each first frequency region 20.
  • an intermediate lens power between the lens power in the first power area 20 and the lens power in the second power area 22 is set.
  • the outer peripheral region that extends so as to surround the pair of first power regions 20, 20 and the respective transition portions 28, 28 is the second power region 22.
  • the external centers 26 and 26 of the pair of first power regions 20 and 20 are set on an orthogonal radial line 30 that passes through the lens geometric center 12 and is orthogonal to the symmetrical radial line 24.
  • the optical characteristics set in the optical region 14 are line symmetric with respect to the symmetric diameter line 24 and are also line symmetric with respect to the orthogonal diameter line 30.
  • the transition part 28 is made into the annular
  • the pair of first power regions 20, 20 positioned with the symmetrical diameter line 24 interposed therebetween are provided apart from each other, and the separation distance L 1 is , L1> (2 ⁇ B1).
  • the transition portions 28, 28 and 28 provided on the respective outer circumferences are located, and the second portion is located between the transition portions 28 and 28.
  • a frequency region 22 is provided.
  • the transition portions 28, 28 and the second power region 22 are provided so as to surround the entire circumference on the outer periphery of each first power region 20, 20. , 28 and the second power region 22, the first power regions 20, 20 are located in a connected state.
  • the outer diameter dimension ⁇ R1 of the first power region 20, the deviation amount ⁇ of the outer center 26 with respect to the symmetric diameter line 24, the radial width dimension B1 of the transition portion 28, and the like take into account the wearing state of the contact lens 10. Is set. That is, under the wearing state, the contact lens 10 is biased toward the ear side on the cornea according to the surface shape of the cornea and the like, and the pupil center located on the optical center axis of the eye optical system is located in the cornea.
  • the pupil center 32 is located with a deviation from the lens geometric center 12 of the contact lens 10, for example, by being biased to the nose side relative to the center.
  • FIG. 1 when FIG. 1 is viewed from the front side of the lens in the wearing state, when the right side is the nose side and the left side is the ear side, the center 32 of the pupil 34 is shifted to the right side with respect to the lens geometric center 12.
  • the distance corresponding to the shift amount of the pupil center 32 to the right side with respect to the lens geometric center 12 in this wearing state is the deviation amount of the first power region 20 with respect to the lens geometric center 12. It is set to ⁇ . Therefore, the pair of first power regions 20 and 20 are biased to the opposite sides with respect to the symmetrical radial line 24 with such a deviation amount ⁇ .
  • FIG. 1 is set so that the deviation amount X between the pupil center 32 and the outer shape center 26 of the first power region 20 is substantially zero in the direction of the orthogonal diameter line 30 that is the left-right direction as viewed from the front in the wearing state. Is done.
  • the illustration of the pupil 34, the pupil center 32, and the deviation amount X is omitted.
  • the deviation amount of the pupil center 32 in the wearing state in the direction of the orthogonal diameter line 30 from the lens geometric center 12 can be obtained, for example, statistically although there is a slight individual difference.
  • the deviation amount ⁇ of the first power region 20 with respect to the lens geometric center 12 is generally about 1 mm to 1.5 mm. Therefore, in the present embodiment, the value of ⁇ is preferably set in the range of 0.3 mm ⁇ ⁇ ⁇ 4.0 mm, and more preferably in the range of 0.8 mm ⁇ ⁇ ⁇ 2.0 mm. Is done.
  • the contact lens 10 in the photopic vision in which the diameter dimension (pupil diameter) ⁇ A of the pupil 34 becomes small, many areas in the pupil 34 are occupied by one first frequency area 20. It is desirable.
  • the correction lens power for photopic vision in the first power region 20 it is possible to stably enjoy the visual acuity correction effect due to the optical characteristics of the first power region 20 in photopic vision.
  • 50% or more of the photopic pupil 34 is occupied by the first power region 20, and more preferably 70% or more of the pupil 34 is occupied by the first power region 20. Become.
  • the entire first power region 20 is included in the pupil 34, and the transition portion 28 and the first
  • the second power region 22 also occupies a predetermined region in the pupil 34.
  • the correction lens power for scotopic vision in the second power region 22 it is possible to stably enjoy the visual acuity correction effect due to the optical characteristics of the second power region 22 in scotopic vision.
  • more than 40% of the dark-sighted pupil 34 is represented by the second power region 22, and more preferably, 60% or more of the pupil 34 is occupied by the second power region 22. Become.
  • the other first power region 20 does not substantially affect the first power region 20 even in dark places where the pupil diameter ⁇ A increases. Specifically, it is desirable that the size of the other first power region 20 included in the pupil 34 is 20% or less of the pupil 34 even in a dark place environment, and more preferably the pupil. 34% or less of 34.
  • the outer diameter size ⁇ R1 of the first power region 20 is 1 in the general use environment based on the statistical information of the pupil diameter ⁇ A. It is desirable to determine within the range of 0.0 mm ⁇ R1 ⁇ 2.5 mm, and more preferably within the range of 1.2 mm ⁇ R1 ⁇ 2.0 mm. Further, the separation distance L (L1 in FIG. 1) of the pair of first power regions 20 and 20 in the direction of the orthogonal diameter line 30 is preferably 0.10 mm or more, and more preferably 0.30 mm or more. It is said.
  • the separation distance L1 is desirably set according to the amount of deviation ⁇ of the first power region 20 with respect to the lens geometric center 12 at the lens stable position in the wearing state. Specifically, when the other first frequency region 20 is not included in the pupil 34 even in dark place vision, the maximum value of the pupil diameter is set to ⁇ A ′ so that L1 + 2 ⁇ ⁇ ⁇ A ′.
  • the intermediate lens power is set in the transition portion 28 provided between the first power region 20 and the second power region 22.
  • a near lens power ⁇ (diopter) that is a vision correction power for near vision is set in the first power area 20, and a far distance in the second power area 22.
  • the distance lens power ⁇ (diopter) which is the visual acuity correction power
  • the intermediate lens power ⁇ (diopter) of the transition unit 28 is ⁇ ⁇ ⁇ .
  • the intermediate lens power ⁇ changes linearly and continuously from the near lens power ⁇ to the far lens power ⁇ .
  • the setting mode of the lens power in the transition unit 28 is not limited.
  • the entire transition portion 28 continuously connects the first power region 20 and the second power region 22 and substantially includes the first and second power regions 20 and 22.
  • the bifocal contact lens 10 having the transition portion 28 it is possible to set the lens power as shown in FIG. 4 or FIG.
  • a constant intermediate lens power ⁇ is set for the entire transition portion 28.
  • the lens powers ⁇ , ⁇ , and ⁇ that are constant in the respective regions are set in the first power region 20, the transition portion 28, and the second power region 22 in the contact lens 10.
  • the lens power ⁇ of the first power area 20 is + 1.0D
  • the lens power ⁇ of the second power area 22 is ⁇ 3.0D
  • the lens power ⁇ of the transition unit 28 is ⁇ 3.
  • the lens power ⁇ is set to ⁇ 1.5D.
  • the contact lens 10 is a contact lens having a multifocal structure including the transition portion 28 having a constant lens power.
  • the transition power of the transition section 28 is as follows.
  • the lens power ⁇ is set so as to gradually change from the first power area 20 toward the second power area 22.
  • the intermediate lens power ⁇ of the transition portion 28 differs from ⁇ 1, ⁇ 2,... By a predetermined width from the first power region 20 toward the second power region 22, and ⁇ ⁇ 1 ⁇ 2 ⁇ . ⁇ ⁇ .
  • the transition portion 28 having different lens powers in a plurality of steps from the near lens power ⁇ provided in the first power area 20 to the distance lens power ⁇ provided in the second power area 22 is provided.
  • the contact lens 10 having a multifocal structure is realized.
  • the lens power range of the first power region 20 to the lens power ⁇ of the second power region 22 is changed.
  • the lens power ⁇ is set so as to gradually and continuously change from the first power area 20 toward the second power area 22.
  • the intermediate lens power ⁇ of the transition portion 28 continuously changes from the first power region 20 toward the second power region 22.
  • the lens power is gradually changed steplessly from the near lens power ⁇ provided in the first power area 20 to the distance lens power ⁇ provided in the second power area 22.
  • a contact lens 10 with a structural transition 28 is realized.
  • the lens power set in at least one of the first power region 20 and the second power region 22 has a spherical aberration of the lens power. It may be provided in consideration. That is, as shown in FIG. 5B, the lens power provided in the first power region 20 is set so as to gradually change from ⁇ ′ to ⁇ in a stepless manner, while the second power region. The lens power provided at 22 may be changed steplessly from ⁇ to ⁇ ′. Further, in the transition section 28, the intermediate lens power ⁇ is gradually changed steplessly from the lens power ⁇ to ⁇ . From this, the contact lens 10 of FIG.
  • the lens power ⁇ ′ is a numerical value larger than ⁇ by a predetermined amount
  • the lens power ⁇ ′ is a numerical value smaller than ⁇ by a predetermined amount.
  • the lens power ⁇ set in the first power region 20 and the lens power ⁇ provided in the second power region do not need to be constant in each of these regions.
  • the lens power is set to the second power region 22 from the lens power ⁇ set to the first power region 20.
  • the contact lens 10 may gradually change at least one of the lens powers set in the first power region 20 and the second power region 22 steplessly, and the transition portion 28 has a progressive structure.
  • the optical region 14 may have a progressive structure. As shown in FIGS. 5B and 5C, when the optical region 14 has a progressive structure, since the lens power changes smoothly and continuously, the boundary of the transition portion 28 is not clearly formed.
  • the difference between the lens power ⁇ of the first power area 20 and the lens power ⁇ of the second power area 22, that is, the added power to the second power area 22 provided in the first power area 20 is preferable. Is set in the range of +0.25 to +4.0 diopter, and more preferably in the range of +1.0 to +2.5 diopter. If it is covered and smaller than +0.25 diopter, the difference in appearance between the first power region 20 and the second power region 22 becomes excessively small.
  • the contact lens 10 of the present invention is used for presbyopia correction. When used as a contact lens, there is a possibility that the effect of correcting near vision or far vision or both cannot be sufficiently obtained. Further, if it is larger than +4.0 diopter, the difference in appearance between the first power region 20 and the second power region 22 becomes excessively large. For example, it is used when shifting from near vision to far vision. This is because the person may feel uncomfortable.
  • the contact lens 10 as described above employs circumferential positioning means 36 for positioning in the circumferential direction so that the symmetric diameter line 24 is substantially vertically up and down in the worn state.
  • a conventionally known contact lens of the present invention is preferably used.
  • Specific examples include the “truncation method” described in Japanese Utility Model Laid-Open No. 48-13048, the “prism ballast method” disclosed in Japanese Patent Application Laid-Open No. 11-258553, etc., and Japanese Patent Application Laid-Open No. 8-304745.
  • the contact lens is positioned in the circumferential direction by using the lower end outer periphery of the lens as a contact edge extending linearly or in a curved shape with a small curvature in the chord direction, and supporting the contact edge with the lower eyelid To do.
  • the truncation method by setting the outer periphery of the upper and lower ends of the lens as contact edges, stable positions in the lens circumferential direction can be given in two directions on the circumference that are the upside down positions.
  • the “prism ballast method” is a method of positioning the contact lens in the circumferential direction using the gravitational action by setting a prism on the entire lens and gradually increasing the thickness downward from the upper end.
  • a thin portion that is gradually thinned from an intermediate portion in the vertical direction toward the upper and lower sides in the peripheral portion located on the outer peripheral side of the optical region of the lens is provided, and the upper and lower portions of the lens are eroded by the eyelids.
  • the contact lens is positioned in the circumferential direction by using the engraving action and the eyelid pressure action on the inclined surfaces of the upper and lower parts of the lens.
  • the “periballast method” is a method of forming a pair of thick parts with the positions of the centers of gravity slightly deviated downward on the left and right sides of the lens peripheral part, and using the weight balance of these pair of thick parts, Positioning in the circumferential direction.
  • a pair of the peripheral portion 16 is located in a region positioned in the vertical direction in the worn state.
  • the “slab-off method” in which the thin wall portions 38 and 38 are provided is employed.
  • Each of the thin-walled portions 38 and 38 gives the peripheral portion 16 a shape that gradually reduces the lens thickness toward the outer sides on both sides in the vertical direction that is the direction of the symmetrical radial line 24.
  • each thin-walled portion 38, 38 has a line-symmetric shape with respect to the symmetric diameter line 24 and the orthogonal diameter line 30, that is, the peripheral portion 16 has a line-symmetric shape with respect to the symmetric diameter line 24 and the orthogonal diameter line 30.
  • the entire contact lens 10 has a line-symmetric shape with respect to the symmetrical diameter line 24 and the orthogonal diameter line 30.
  • the contact lens 10 can be stably positioned in the circumferential direction by providing the pair of thin portions 38, 38. That is, in addition to the balancing action due to the weight distribution in the circumferential direction of the contact lens 10, the contact lens 10 has a symmetrical radial line 24 that rises and falls in the wearing state due to the gripping action of the eyelids and the pushing action due to eyelid pressure.
  • the pair of thin portions 38, 38 which are the circumferential positioning means 36 of the present embodiment, are line symmetric with respect to the orthogonal diameter line 30, in other words, vertical line symmetry, and the symmetrical diameter line 24 of the contact lens 10 in the worn state.
  • the pair of thin portions 38 and 38 provide the contact lens 10 with a stable position in the lens circumferential direction in two directions on the circumference that is the upside down position.
  • either one of the pair of first power regions 20, 20 becomes the contact lens 10. It is aligned with the pupil center 32 of the wearing eye to be worn.
  • the contact lens 10 of the present invention having such a structure can exhibit the following effects. That is, since the optical region 14 composed of the pair of first power regions 20, 20, the second power region 22, and the transition portion 28 as a whole has a line symmetrical shape with respect to the symmetrical radial line 24, the contact lens 10 does not need to distinguish between left and right, and can be worn on either the left or right eye of the user. Thereby, the increase in the number of standards of the contact lens 10 can be suppressed, and the labor and cost of manufacture by the manufacturer and management by the seller can be significantly reduced. Further, the management of the contact lens 10 by the user is facilitated, and the storage space for the contact lens 10 can be reduced.
  • the outer shape centers 26 and 26 of the pair of first power regions 20 and 20 are also deviated from the lens geometric center 12 in accordance with the deviation amount of the pupil center 32 deviated from the corneal center.
  • the outer shape center 26 of one first power region 20 is made to substantially coincide with the pupil center 32, and a good quality of view (QOV) is effectively ensured. obtain.
  • the contact lens 10 is provided with a circumferential positioning means 36, and for example, rotation of the contact lens 10 can be suppressed under the wearing state. Thereby, it is possible to prevent the outer shape center 26 of the first power region 20 from deviating from the pupil center 32, and it is possible to suppress a decrease in QOV and to maintain a good QOV.
  • the contact lens 10 of this embodiment can exhibit the following effects. That is, in this embodiment, the slab-off method is adopted as the circumferential direction positioning means 36.
  • the contact lens 10 according to the present embodiment has a symmetrical shape with respect to the symmetric diameter line 24 and the orthogonal diameter line 30 as a whole, and therefore the contact lens 10 does not need to be distinguished not only on the right and left but also on the top and bottom. In addition, the increase in the number of standards can be suppressed more effectively. Further, the contact lens 10 can be easily manufactured without requiring the user to add printing or marking marks for determining the circumferential direction of the contact lens.
  • the first power region 20 has a circular shape, which corresponds to the shape of the substantially circular pupil 34.
  • each of the transition portions 28 is formed over the entire circumference on the outer circumference of the first frequency region 20.
  • the pair of transition portions 28 and 28 are spaced apart from each other, and the second frequency region 22 is also provided between the pair of transition portions 28 and 28. Therefore, in the transition portion 28, a region overlapping with the pupil 34 can be sufficiently secured to improve the QOV, and at the time of transition between the first power region 20 and the second power region 22 Can be effectively reduced.
  • FIG. 6 shows a contact lens 40 as a second embodiment of the present invention.
  • the contact lens 40 according to the present embodiment has a shape in which the pair of transition portions 28 are not provided as compared with the contact lens 10 according to the first embodiment.
  • parts that are substantially the same as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
  • the contact lens 40 has a shape in which the outer periphery of the pair of first power regions 42 and 42 and the second power region 22 are directly connected by not providing the transition portion 28. Therefore, the diameter size of the first frequency region 42 of the present embodiment can be, for example, the outer diameter size of the transition portion 28 of the first embodiment, that is, ⁇ (R1 + 2 ⁇ B1). In the form, it is possible to secure a first frequency area larger than that in the first embodiment. Alternatively, the area of the second power region 22 can be set large while maintaining the diameter of the first power region 42 at the same diameter as the first power region 20 in the first embodiment. .
  • the lens power as shown in FIGS. 7A and 7B is shown, for example. That is, in FIG. 7A, the lens power ⁇ ′′ is set in the first power area 42 and the lens power ⁇ ′′ is set in the second power area 22, while these lens powers ⁇ ′′, The lens power in the middle of ⁇ ′′ is not set. Thereby, the contact lens 40 of this embodiment can be made into the contact lens of the bifocal structure which does not have a transition part. Note that the lens power change in the case of a contact lens having a bifocal structure that does not include such a transition portion is such that the intermediate lens power set in the transition portion 28 shown in FIG.
  • the lens power is substantially the same as the lens power or the lens power in the second power region.
  • the lens power ⁇ ′′ is set in the first power area 42 and the lens power ⁇ ′′ is set in the second power area 22.
  • the lens power is gradually set steplessly from ⁇ ′′ to ⁇ ′′ over the second power region 22, that is, in the optical region 14.
  • the contact lens 40 of this embodiment can be made into the progressive contact lens which does not have a transition part.
  • the lens power change in the case of a progressive structure contact lens not provided with such a transition portion is substantially substantially the same as the lens power change in the progressive structure contact lens provided with a transition portion shown in FIG. It is said.
  • the contact lens 40 of this embodiment having such a shape can exhibit the same effects as the contact lens 10 of the first embodiment, and can further exhibit the following effects. That is, since the first frequency region or the second frequency region, or both frequency regions can be secured in a larger range compared to the first embodiment, the first frequency region 42 or the second frequency region. 22, or the vision correction effect by both power regions 42 and 22 can be obtained more efficiently.
  • FIG. 8 shows a contact lens 44 as a third embodiment of the present invention.
  • the second power region 22 is between the pair of first power regions 20 and 20 and between the pair of transition portions 28 and 28. Is not provided, and the pair of transition portions 28, 28 are substantially in contact at one point on the outer periphery.
  • a pair of transition portions 28 and 28 each having a substantially circular shape on the lens geometric center 12 where the symmetric diameter line 24 and the orthogonal diameter line 30 intersect each other are substantially in contact with each other at the outer peripheral edge portion. Has been.
  • transition portions 28, 28 provided on the outer circumferences of the first power regions 20, 20 between the pair of first power regions 20, 20 on the orthogonal diameter line 30. Is provided. Therefore, when the separation distance between the pair of first power regions 20 and 20 on the orthogonal diameter line 30 is L2, and the radial width dimension of the transition portion 28 is B2, L2 ⁇ (2 ⁇ B2).
  • the same effect as that of the contact lens 10 of the first embodiment can be exhibited. That is, in the present invention, it is not always necessary to provide the second power region 22 between the pair of first transition portions, in other words, between the pair of first power regions on the orthogonal diameter line 30. Further, the pair of transition portions are not necessarily provided separately as in the first embodiment, and may be in contact with each other at the outer peripheral edge, for example.
  • FIG. 9 shows a contact lens 46 as a fourth embodiment of the present invention.
  • the second power region 22 is provided between the pair of first power regions 20, 20, that is, between the pair of transition portions, as compared with the contact lens 10 of the first embodiment. Only a pair of transition portions 48, 48 are provided. Moreover, the connection part of a pair of transition parts 48 and 48 on the symmetrical diameter line 24 has predetermined length.
  • each transition portion 48 of the present embodiment is a substantially notch circle shape cut into an arcuate shape having a symmetrical radial line 24 as a chord.
  • the chords are in contact with each other on the symmetric diameter line 24, and the pair of transition portions 48, 48 are connected to each other to form a substantially bowl shape. ing. That is, in this embodiment, when the separation distance between the pair of first power regions 20 and 20 on the orthogonal diameter line 30 is L3, and the radial width dimension of the annular portion of the transition portion 48 is B3. , L3 ⁇ (2 ⁇ B3).
  • the pair of transition portions formed in an annular shape do not necessarily need to be separated or contacted at one point, and are formed as an integral transition portion having a continuous structure in which the pair of transition portions are continuous at a predetermined width. It may be.
  • FIG. 10 shows a contact lens 50 as a fifth embodiment of the present invention.
  • the contact lens 50 of the present embodiment has a shape in which the second power region 22 is not provided between the pair of first power regions 42, 42. Yes.
  • the contact lens 50 according to the present embodiment has a shape in which the pair of transition portions 28 are not provided as compared with the contact lens 44 according to the third embodiment.
  • the transition portion 28 and the second power region 22 are not provided between the pair of first power regions 42 and 42 on the orthogonal diameter line 30. That is, each of the pair of first power regions 42 and 42 has a substantially circular shape, and is substantially in contact at one point on each outer periphery.
  • a pair of first power regions 42 and 42 each having a substantially circular shape are substantially in contact with each other on the lens geometric center 12 where the symmetric diameter line 24 and the orthogonal diameter line 30 intersect. ing. That is, in the present embodiment, the separation distance L between the pair of first power regions 42, 42 is set to approximately zero.
  • the same effects as those of the contact lens 40 of the second embodiment and the contact lens 44 of the third embodiment can be exhibited. That is, in the present invention, the pair of first power regions are not necessarily provided separately from each other, and even if the outer peripheries of the pair of first power regions are in direct contact with each other on the symmetrical radial line 24. good.
  • the distance L between the pair of first power regions on the orthogonal diameter line 30 is not limited in any way.
  • the cornea for each user The separation distance L can be set according to the deviation amount of the pupil center with respect to the center. That is, the contact lens of the present invention can set and select the separation distance L according to the characteristics such as the corneal shape and eyelid pressure for each user, thereby further improving the quality of view (QOV). Improvement can be achieved.
  • FIG. 11 shows a contact lens 52 as a sixth embodiment of the present invention.
  • the contact lens 52 compared to the contact lens 10 of the first embodiment, the pair of first power regions 54 and 54 and the transition portions 56 provided on the outer circumferences of the first power regions 54 and 54, respectively.
  • the outer shape is an irregular shape that is not circular, and in this embodiment, the outer shape is an ellipse.
  • each transition portion 56, 56 has a shape corresponding to the first frequency region 54, 54, and therefore the major axis of each transition portion 56, 56 is located on the orthogonal diameter line 30.
  • the minor axis extends in the direction of the symmetrical radial line 24.
  • the contact lens 52 of this embodiment having such a shape can exhibit the following effects in addition to the same effects as the contact lens 10 of the first embodiment. That is, for example, it is particularly advantageously used when the deviation amount ⁇ of the pupil center 32 with respect to the lens geometric center 12 varies or changes for each user or due to a change in usage environment. For example, when providing such a deviation amount ⁇ to different users, in addition to adjusting the separation distance L between the pair of first power regions as described above, the direction of the orthogonal radial line 30 as in this embodiment can be used. By adopting the first frequency region 54 having a larger size, it becomes possible to cope widely with differences in the deviation amount ⁇ . And since the 1st frequency area
  • the dimension in the direction of the orthogonal diameter line 30 is set as in the first power regions 54 and 54 of the present embodiment. It is preferable to enlarge it.
  • FIG. 12 shows a contact lens 58 as a seventh embodiment of the present invention.
  • the short axes of the pair of first power regions 54 and 54 and the pair of transition portions 56 and 56 are orthogonal to each other as compared to the contact lens 52 of the sixth embodiment. While located on the upper side, the long axis extends in the direction of the symmetrical radial line 24.
  • the contact lens 58 of this embodiment having such a shape can exhibit the same effects as the contact lens 52 of the sixth embodiment.
  • a sufficient amount of the separation distance L is required, such as when a transition portion or the second power region 22 is provided between the pair of first power regions 54, 54
  • the first power region A sufficient amount of separation distance L can be ensured by adopting the first power region 54 having a different shape with a reduced size in the direction of the orthogonal diameter line 30 as in the case of the vertically long ellipse of this embodiment. .
  • the symmetric radial line as in the first power regions 54 and 54 having a vertically long ellipse shape. It is desirable to employ irregularly shaped first frequency regions 54, 54 having dimensions in 24 directions increased.
  • FIG. 13 shows a contact lens 60 as an eighth embodiment of the present invention.
  • the contact lens 60 of the present embodiment has a long axis and a short axis of the pair of first power regions 54 and 54 and the pair of transition portions 56 and 56, respectively.
  • the shape is inclined with respect to the symmetric diameter line 24 and the orthogonal diameter line 30.
  • the major axis of the first frequency region 54 and the transition portion 56 on the nose side (right side in the figure) is provided with an inclination angle of approximately 45 degrees with the orthogonal diameter line 30.
  • the optical region 14 of the contact lens 60 of the present embodiment is not line-symmetric with respect to the orthogonal diameter line 30.
  • the contact lens 60 of the present embodiment is provided with a circumferential positioning means 36 that prevents upside down. That is, the circumferential positioning means 36 causes any one end in the direction of the symmetric radial line 24 to be positioned above the contact lens 60 in the worn state.
  • the slab-off method is adopted as the circumferential positioning means 36 in the same manner as in the previous embodiment. However, the region of the thin portion 38 ′ below the wearing state is changed to the thin portion 38 above the wearing state. It is smaller than that.
  • the contact lens 60 of this embodiment having such a shape can exhibit the same effect as the contact lens 52 of the sixth embodiment.
  • the deviation direction of the pupil center 32 with respect to the lens geometric center 12 is inclined with respect to the symmetric diameter line 24 and the orthogonal diameter line 30, the deviation direction and the major axis direction of the first power region 54 are It is preferable that the directions are substantially the same.
  • FIGS. 14 and 15 show a contact lens 62 as a ninth embodiment of the present invention
  • FIG. 16 shows a contact lens 63 as a tenth embodiment of the present invention.
  • the contact lenses 62 and 63 of both embodiments have a pair of first power regions 20 and 20 and a pair of transition portions 28 and 28 with respect to the orthogonal diameter line 30.
  • the shape is biased in the direction of the symmetric radial line 24.
  • the contact lens 63 according to the tenth embodiment is obtained by inverting the optical region 14 of the contact lens 62 according to the ninth embodiment upside down. In the contact lens 62, the biasing direction is the lower side of the wearing state.
  • the deflection direction is set to the upper side of the wearing state.
  • regions 20 and 20 in the orthogonal diameter line 30 direction is made smaller than FIG.
  • the pupil center 32 deviates not only in the orthogonal diameter line 30 direction but also in the symmetric diameter line 24 direction with respect to the contact lens geometric center 12 due to the surface shape of the cornea and the like. There are things to do. In general, the pupil center 32 often deviates obliquely downward on the nose side (lower right direction in FIG. 14) with respect to the lens geometric center 12 and takes a stable position. Therefore, in the ninth embodiment, the pair of first power regions 20 and 20 are arranged with respect to the orthogonal radial line 30 according to the deviation amount ⁇ of the pupil center 32 with respect to the lens geometric center 12 in the direction of the symmetrical radial line 24. And biased downward in the wearing state.
  • the surface shape of the cornea or the like varies greatly between individuals, and there are many users who have a stable contact lens position above the cornea and users who are stable when the contact lens is slightly rotated in the circumferential direction.
  • the contact lens 63 according to the tenth embodiment is preferably employed.
  • the optical region 14 of the contact lens 62 of the ninth embodiment and the contact lens 63 of the tenth embodiment is not line-symmetric with respect to the orthogonal diameter line 30.
  • the contact lenses 62 and 63 of both embodiments are provided with circumferential positioning means 36 for preventing the upside down.
  • the circumferential positioning means 36 causes any one end in the direction of the symmetric radial line 24 to be positioned above the contact lenses 62 and 63 in the worn state.
  • a prism ballast method is adopted as the circumferential positioning means 36.
  • the contact lens 62 of the ninth embodiment as shown in FIG.
  • the contact lens 62 is gradually thickened from the upper wearing state to the lower wearing state.
  • a positioning portion 64 that is relatively thin in the thick region is provided at the lower end of the thick region so that the contact lens 62 can be gripped by the lower eyelid. Due to the difference in the weight distribution of the contact lens 62 and the operation of the lower eyelid in the positioning portion 64, a stable position in the circumferential direction of the lens is given to the contact lens 62 in one direction on the circumference.
  • the contact lens 62 can be circumferentially positioned in the state shown in FIG.
  • the shape of the peripheral part 16 in the contact lens 63 of the tenth embodiment is the same as that of the contact lens 62 of the ninth embodiment, illustration of a sectional view is omitted. That is, in the contact lens 63 of the tenth embodiment, the prism ballast method is adopted as the shape of the peripheral portion 16 like the contact lens 62 of the ninth embodiment, and the positioning portion 64 is provided at the lower end of the thick region. Is provided.
  • the vertical displacement amount ⁇ in the wearing state can also be set according to the user's personal measurement information, and preferably the wearer's pupil center 32 is relative to the center of the first power region 20.
  • the direction of the symmetry diameter line 24 is set so as to substantially match.
  • the amount of deviation between the pupil center 32 and the outer shape center 26 of the first power region 20 is set to be 1 mm or less in the orthogonal radial line 30 direction and the symmetric radial line 24 direction, more preferably It is set to be 0.5 mm or less.
  • the deviation amount of the pupil center 32 in the wearing state in the direction of the symmetric radial line 24 from the lens geometric center 12 can be obtained, for example, statistically although there are slight individual differences. Although there is a slight difference depending on the rear surface shape of the contact lens 10, it is generally desirable that the deviation amount ⁇ of the first power region 20 with respect to the lens geometric center 12 is set to 0.2 mm to 2 mm.
  • the lens power of the optical region 14 can be set in consideration of the living conditions of the contact lens user. That is, for example, a lens power ⁇ for correcting far vision can be set in the first power areas 20, 42, 54, and a lens power ⁇ for correcting near vision can be set in the second power area 22. It is.
  • the lens power ⁇ is preferably set to an additional power in the range of +0.25 to +4.0 diopters with respect to the lens power ⁇ , and more preferably, the additional power is +1.0 to It is set in the range of +2.5 diopters.
  • the lens power ⁇ of the first power region 20, 42, and 54 and the lens power ⁇ of the second power region 22 can be alternately provided in each annular shape in the radial direction. It is. Furthermore, in the transition portions 28, 48, 56, at least one of the lens power ⁇ of the first power region 20, 42, 54 and the lens power ⁇ of the second power region 22, and a lens power ⁇ intermediate between them. It is also possible to provide each in an annular shape alternately in the radial direction. In this way, it is possible to adjust and set the appearance by appropriately tuning the lens powers of the transition portions 28, 48, and 56.
  • the transition portions 48 are formed in an integral shape in which the outer circumferences of the pair of transition portions that are partially annular are continuous with a predetermined length on the symmetrical radial line 24.
  • the second power region 22 extending vertically may be formed with a predetermined width so as to divide the transition portions 48, 48 on the symmetrical radial line 24.
  • the outer shapes of the pair of transition portions are not limited to the circular shape or the elliptical shape as in the above-described embodiment.
  • the pair of first power regions is not limited to the circular shape or the elliptical shape as in the above embodiment.
  • the shape of the outer shape of the pair of first power regions and the pair of transition portions may be, for example, a polygonal shape.
  • the width dimension of the transition portion formed around the first power region may be different in the circumferential direction.
  • one outer shape of the first power region and the transition portion is made circular and the other contour is formed.
  • the contact lens of the embodiment may be employed as a contact lens for correcting presbyopia, for example, but a lens power for correcting astigmatism may be provided in the optical region 14. That is, the contact lens of the present invention can be employed as a toric lens for presbyopia capable of correcting astigmatism in addition to correcting presbyopia.
  • the radius of curvature for imparting desired optical characteristics to the contact lens may be set on both the front surface of the lens, the rear surface of the lens, or the front and rear surfaces of the lens.
  • the lens rear surface is a spherical crown-shaped base curve with a predetermined radius of curvature
  • the radius of curvature that achieves the required lens power in the first power region and the second power region with respect to the lens front surface, respectively. Can be set.
  • the surface shape of either the lens front surface or the lens rear surface is set. It is also possible to realize the required lens power in the first power range by making it different.
  • the cylindrical lens power is in any surface of the lens front surface and the lens rear surface in the optical region 14 in which the lens front and rear surface shapes that achieve the required lens power are set in the first power region and the second power region, respectively. It is also possible to set.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

This contact lens, for which QOV is improved by providing an optical center that is shifted from the geometrical center of the lens, has a novel structure such that the contact lens can be manufactured and handled without distinguishing between a lens for the left eye and for the right eye and also such that a mark or the like showing the shift direction for the optical center is unnecessary. A contact lens (10) is provided with first strength areas (20) and a second strength area (22) in an optical area (14). A pair of first strength areas (20) is provided linearly symmetrical with respect to a radial line of symmetry (24) which is a line in the radial direction of the lens, and also a second strength area (22) is provided on the outer peripheral sides of that pair of first strength areas (20). The optical area (14) has a linear symmetrical shape with respect to the radial line of symmetry (24). Furthermore, a circumferential direction positioning means (36) that imparts a stable position in the circumferential direction of the lens such that the radial line of symmetry (24) extends in the vertical direction of the wearing eye in a worn state and either of the pair of first strength areas (20) is aligned with the center of the pupil (32) of the wearing eye.

Description

コンタクトレンズcontact lens
 本発明は、コンタクトレンズに係り、特に光学領域において互いに異なるレンズ度数を設定した第一の度数領域と第二の度数領域とが設けられたコンタクトレンズに関する。 The present invention relates to a contact lens, and more particularly, to a contact lens provided with a first power region and a second power region in which different lens powers are set in the optical region.
 従来から、コンタクトレンズの一種として、その光学領域に、互いに異なるレンズ度数が設定された複数の度数領域を有するものが知られている。例えば老視矯正用のコンタクトレンズでは、近方視に必要とされるレンズ度数と遠方視に必要とされるレンズ度数とが異なることから、近方視用のレンズ度数が設定された近用領域と遠方視用のレンズ度数が設定された遠用領域とを設けたコンタクトレンズが、老視矯正用に処方される。具体的には、特許文献1(特開昭61-272717号公報)に開示されているように、近用領域と遠用領域とがレンズ幾何中心に対して同心円状に形成された構造のコンタクトレンズが知られている。 Conventionally, as a kind of contact lens, one having a plurality of power regions in which different lens powers are set in the optical region is known. For example, in a contact lens for correcting presbyopia, the lens power required for near vision differs from the lens power required for far vision. And a distance lens in which the distance power is set is prescribed for presbyopia correction. Specifically, as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 61-272717), a contact having a structure in which a near area and a far area are formed concentrically with respect to a lens geometric center. The lens is known.
 ところで、人眼の角膜にコンタクトレンズを重ね合わせた装用状態において、眼光学系の中心軸上に位置する瞳孔中心は、コンタクトレンズの幾何中心からずれることが多い。その理由は、人眼の角膜表面の曲率分布が一様でないためにコンタクトレンズが耳側にずれて安定し易いことや、角膜の幾何中心に対して瞳孔中心が鼻側に偏心位置していること等によると考えられる。 By the way, in the wearing state in which the contact lens is superimposed on the cornea of the human eye, the pupil center located on the central axis of the eye optical system often deviates from the geometric center of the contact lens. The reason is that the curvature distribution on the corneal surface of the human eye is not uniform, so that the contact lens is easily shifted to the ear side, and the pupil center is eccentric to the nose side relative to the geometric center of the cornea. This is considered to be due to such reasons.
 このように、装用状態下で瞳孔中心がコンタクトレンズの幾何中心からずれてしまうと、上記特許文献1に記載の如きレンズ幾何中心と同心的に近用領域と遠用領域を設けた従来構造のコンタクトレンズでは、見え方の質(QOV)が十分に得られ難いという問題があった。そこで、本出願人は、特開平6-289329号公報(特許文献2)において、光学領域の光学中心軸をレンズ幾何中心から鼻側に偏倚させたコンタクトレンズを提案した。この特許文献2に記載のコンタクトレンズでは、装用状態下での瞳孔中心と光学中心軸との隔たりを抑えることが可能となり、QOVの向上が図られ得る。 As described above, when the pupil center deviates from the geometric center of the contact lens under the wearing state, the conventional structure in which the near area and the far area are provided concentrically with the lens geometric center as described in Patent Document 1 above. The contact lens has a problem that it is difficult to obtain a sufficient quality of view (QOV). Therefore, the present applicant has proposed a contact lens in which the optical center axis of the optical region is biased from the lens geometric center to the nose side in Japanese Patent Laid-Open No. 6-289329 (Patent Document 2). In the contact lens described in Patent Document 2, it is possible to suppress the distance between the pupil center and the optical center axis in the worn state, and the QOV can be improved.
 しかしながら、光学領域の光学中心をレンズ幾何中心から偏倚させたコンタクトレンズでは、光学領域が左右非対称となることから、左眼用と右眼用とで各別に規格化して製造、管理、提供する必要があり、ユーザーも左右区別して使用しなければならないことから、コンタクトレンズの製造販売者における製造や管理が煩雑になるだけでなく、ユーザーの使用に際しての取扱いも面倒になるという問題があった。特に、左眼用と右眼用を反対に装用すると、装用眼の瞳孔中心に対して光学領域が反対側に偏倚してしまうことから、QOVが大幅に低下してしまって、使用者に不安や不信感をあたえるおそれがあったのである。 However, in a contact lens in which the optical center of the optical region is deviated from the lens geometric center, the optical region is asymmetrical, so it is necessary to standardize, manufacture, manage, and provide the left eye and right eye separately. Since the user also has to use the right and left separately, there is a problem that not only the manufacture and management of the contact lens manufacturer / manufacturer becomes complicated, but also the handling at the time of use by the user becomes troublesome. In particular, if the left eye and the right eye are worn oppositely, the optical area is biased to the opposite side with respect to the pupil center of the worn eye, so that the QOV is greatly reduced, and the user is anxious. And there was a risk of distrust.
 また、かかる特許文献2に記載のコンタクトレンズでは、レンズ幾何中心に対する光学中心の偏心方向を角膜上で特定の方向に向けて装用する必要がある。それ故、レンズ幾何中心に対する光学中心の偏心方向を目視で確認できるようにマーク等を付さなければならず、印刷や刻印などの特別な製造工程が必要になると共に、ユーザーも小さなマークを確認して、レンズ方向に気をつけながら装用しなければならないという問題もあった。 Further, in the contact lens described in Patent Document 2, it is necessary to wear the optical center with respect to the lens geometric center in a specific direction on the cornea. Therefore, a mark or the like must be attached so that the eccentric direction of the optical center with respect to the lens geometric center can be visually confirmed, and a special manufacturing process such as printing or engraving is required, and the user confirms a small mark. In addition, there is a problem that it is necessary to wear it while paying attention to the lens direction.
特開昭61-272717号公報Japanese Patent Laid-Open No. 61-272717 特開平6-289329号公報JP-A-6-289329
 ここにおいて、本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、光学中心がレンズ幾何中心から偏倚して設けられることによりQOVの向上が図られたコンタクトレンズであって、左眼用と右眼用の区別なく製造して取扱うことが可能であると共に、光学中心の偏倚方向を示すマーク等も不要とされた新規な構造のコンタクトレンズを提供することにある。 Here, the present invention has been made in the background as described above, and the solution is to improve the QOV by providing the optical center deviating from the lens geometric center. Provided is a contact lens having a novel structure that can be manufactured and handled without distinction for the left eye and right eye, and that does not require a mark or the like indicating the deviation direction of the optical center. There is.
 以下、前述の課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。 Hereinafter, embodiments of the present invention made to solve the above-described problems will be described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.
 すなわち、本発明の第一の態様の特徴とするところは、レンズ中央部分に位置する光学領域に、互いに異なるレンズ度数が設定された第一の度数領域と第二の度数領域が設けられたコンタクトレンズであって、前記第一の度数領域が一つのレンズ径方向線である対称径線に関して線対称に一対設けられていると共に、それら一対の第一の度数領域の外周側に前記第二の度数領域が設けられて、前記光学領域が全体として該対称径線に関して線対称形状とされており、更に、装用状態で前記対称径線が装用眼の上下方向にのびて該一対の第一の度数領域の何れか一方が該装用眼の瞳孔中心に対して位置合わせされるようにレンズ周方向の安定位置を与える周方向位置決め手段が設けられているコンタクトレンズにある。 That is, the feature of the first aspect of the present invention is that the optical region located in the center portion of the lens is provided with a first power region and a second power region in which different lens powers are set. A pair of the first power regions are provided symmetrically with respect to a symmetrical radial line that is one lens radial direction line, and the second power region is disposed on the outer peripheral side of the pair of first power regions. A power region is provided, and the optical region as a whole has a line-symmetric shape with respect to the symmetrical radial line, and the symmetrical radial line extends in the vertical direction of the wearing eye in the wearing state, and The contact lens is provided with circumferential positioning means for providing a stable position in the lens circumferential direction so that either one of the power regions is aligned with the pupil center of the wearing eye.
 本発明に従う構造とされたコンタクトレンズにおいては、装用状態下で略鉛直方向にのびる径方向線に関して左右両側で線対称に第一及び第二の度数領域が設けられている。それ故、コンタクトレンズが左右眼の何れに装用されて、コンタクトレンズの幾何中心が瞳孔中心に対して左右の何れの側に偏倚した場合でも、略同様な見え方の質が発揮され得る。その結果、左眼用と右眼用とで各別に規格化して製造、管理等する必要がなくなり、コンタクトレンズのメーカーやユーザーの負担が軽減される。特に、本発明に係るコンタクトレンズでは、左右の別規格が不要とされることから、例えば見込み生産でレンズを提供する場合でも、在庫量を従来の半分にすることが出来て、製造や管理に要する必要コストを大幅に軽減することが可能になる。 In the contact lens having a structure according to the present invention, the first and second power regions are provided symmetrically on both the left and right sides with respect to the radial line extending in the substantially vertical direction under wearing conditions. Therefore, even when the contact lens is worn in either the left eye or the right eye and the geometric center of the contact lens is deviated to either the left or right side with respect to the pupil center, a substantially similar appearance quality can be exhibited. As a result, it is not necessary to standardize and manufacture and manage the left eye and right eye separately, thereby reducing the burden on the contact lens manufacturer and user. In particular, in the contact lens according to the present invention, the left and right separate standards are not required, so even when lenses are provided by prospective production, for example, the inventory amount can be halved compared to the conventional, for manufacturing and management. It is possible to greatly reduce the necessary cost.
 本発明の第二の態様は、前記第一の態様に係るコンタクトレンズにおいて、前記第一の度数領域が近方視用の視力矯正度数を有する一方、前記第二の度数領域が遠方視用の視力矯正度数を有するものである。 According to a second aspect of the present invention, in the contact lens according to the first aspect, the first power region has a vision correction power for near vision, while the second power region is for distance vision. It has a vision correction power.
 また、本発明の第三の態様は、前記第一の態様に係るコンタクトレンズにおいて、前記第一の度数領域が遠方視用の視力矯正度数を有する一方、前記第二の度数領域が近方視用の視力矯正度数を有するものである。 According to a third aspect of the present invention, in the contact lens according to the first aspect, the first power region has a vision correction power for distance vision while the second power region is near vision. It has a vision correction power for use.
 かかる第二、第三の態様のコンタクトレンズでは、レンズ幾何中心が瞳孔中心に対して耳側に偏倚した装用状態下で、例えば作業灯のもとでの読書やコンピューターモニター視での入力作業などに伴う近方視に際して瞳孔径が絞られて小径化しても、レンズ幾何中心に対して左右線対称に設けられた一対の第一の度数領域の一方、或いは第二の度数領域が瞳孔内に安定して位置せしめられ得る。一方、例えば夜間の車両運転などに伴う遠方視に際しては、瞳孔径が開いて大径化することから、第一の度数領域および第二の度数領域が瞳孔内に十分な面積をもって位置せしめられることとなり、同時視型のコンタクトレンズとして、第一の度数領域および第二の度数領域による矯正効果が有効に発揮され得る。 In the contact lens according to the second and third aspects, for example, reading under a work lamp or input operation with a computer monitor under a wearing state in which the lens geometric center is biased to the ear side with respect to the pupil center. Even when the pupil diameter is reduced and reduced in near vision, the one of the pair of first power areas or the second power area provided symmetrically with respect to the lens geometric center is in the pupil. It can be positioned stably. On the other hand, for example, when viewing from a distance during night vehicle driving, the pupil diameter increases and the diameter increases, so that the first power region and the second power region can be positioned with sufficient area in the pupil. Thus, the correction effect by the first power region and the second power region can be effectively exhibited as a simultaneous vision type contact lens.
 本発明の第四の態様は、前記第一の態様に係るコンタクトレンズにおいて、前記第一の度数領域が明所視用の視力矯正度数を有する一方、前記第二の度数領域が暗所視用の視力矯正度数を有するものである。 According to a fourth aspect of the present invention, in the contact lens according to the first aspect, the first power region has a vision correction power for photopic vision while the second power region is for dark vision. It has a visual acuity correction frequency of.
 本態様のコンタクトレンズでは、レンズ幾何中心が瞳孔中心に対して耳側に偏倚した装用状態下で、明所視に際して瞳孔径が絞られて小径化しても、コンタクトレンズ幾何中心に対して左右線対称に設けられた一対の第一の度数領域の一方が瞳孔内に安定して位置せしめられ得る。一方、暗所視に際しては、瞳孔径が開いて大径化することから、第一の度数領域に加えて第二の度数領域も瞳孔内に十分な面積をもって位置せしめられることとなり、同時視型のコンタクトレンズとして、第二の度数領域による矯正効果も有効に発揮され得る。なお、明所視状態は、例えば昼間の屋外等における環境下であり、人種や個人差にもよるが一般に2~3mm程度の瞳孔径となる。 In the contact lens of this aspect, even if the pupil diameter is reduced and reduced in the photopic vision in a wearing state where the lens geometric center is biased to the ear side with respect to the pupil center, One of the pair of first power regions provided symmetrically can be stably positioned in the pupil. On the other hand, in the case of scotopic vision, since the pupil diameter increases and the diameter increases, the second power region in addition to the first power region can be positioned with a sufficient area in the pupil. As a contact lens, the correction effect by the second power region can be effectively exhibited. Note that the photopic state is, for example, outdoors in the daytime, and generally has a pupil diameter of about 2 to 3 mm, although it depends on the race and individual differences.
 本発明の第五の態様は、前記第二の態様に係るコンタクトレンズにおいて、前記第一の度数領域には、前記第二の度数領域に対して+0.25~+4.0ディオプターの付加度数が設定されているものである。 According to a fifth aspect of the present invention, in the contact lens according to the second aspect, the first power region has an added power of +0.25 to +4.0 diopters relative to the second power region. It is set.
 また、本発明の第六の態様は、前記第三の態様に係るコンタクトレンズにおいて、前記第二の度数領域には、前記第一の度数領域に対して+0.25~+4.0ディオプターの付加度数が設定されているものである。 According to a sixth aspect of the present invention, in the contact lens according to the third aspect, +0.25 to +4.0 diopters are added to the second power region relative to the first power region. The frequency is set.
 かかる第五の態様のコンタクトレンズでは、第一の度数領域を近方視用とすると共に第二の度数領域を遠方視用とした、同時視型の例えば老視矯正用のコンタクトレンズが効果的に実現され得る。具体的には、例えば第二の度数領域が-3.0Dの場合、第一の度数領域は-2.75D~+1.0Dの範囲内で設定されることとなる。 In the contact lens of the fifth aspect, a simultaneous vision type contact lens, for example, for presbyopia correction, in which the first power region is for near vision and the second power region is for distance vision is effective. Can be realized. Specifically, for example, when the second frequency region is −3.0D, the first frequency region is set within a range of −2.75D to + 1.0D.
 あるいは、かかる第六の態様のコンタクトレンズでは、第一の度数領域を遠方視用とすると共に第二の度数領域を近方視用とした、同時視型の例えば老視矯正用のコンタクトレンズが効果的に実現され得る。具体的には、例えば第一の度数領域が-3.0Dの場合、第二の度数領域は-2.75D~+1.0Dの範囲内で設定されることとなる。 Alternatively, in the contact lens of the sixth aspect, there is a simultaneous vision type contact lens, for example, for presbyopia correction, in which the first power region is for far vision and the second power region is for near vision. It can be realized effectively. Specifically, for example, when the first frequency region is −3.0D, the second frequency region is set within a range of −2.75D to + 1.0D.
 本発明の第七の態様は、前記第一~六の何れかの態様に係るコンタクトレンズにおいて、前記対称径線に関してレンズ全体が線対称形状とされているものである。 According to a seventh aspect of the present invention, in the contact lens according to any one of the first to sixth aspects, the entire lens is axisymmetric with respect to the symmetrical radial line.
 本態様のコンタクトレンズでは、装用状態で上下方向にのびる対称径線に関して、光学領域だけでなく周辺部を含めた全体形状が線対称とされていることから、光学特性だけでなく装用感等についても、左右眼の何れに装用しても同等の特性を発揮することとなる。 In the contact lens of this aspect, the overall shape including not only the optical region but also the peripheral part is axisymmetric with respect to the symmetrical radial line extending in the vertical direction in the worn state. However, even if it is worn on either the left or right eye, the same characteristics are exhibited.
 本発明の第八の態様は、前記第一~七の何れかの態様に係るコンタクトレンズにおいて、前記光学領域が、前記対称径線に直交する直交径線に関しても線対称とされているものである。 According to an eighth aspect of the present invention, in the contact lens according to any one of the first to seventh aspects, the optical region is axisymmetric with respect to an orthogonal radial line orthogonal to the symmetrical radial line. is there.
 本態様のコンタクトレンズでは、装用状態での左右方向だけでなく上下方向にも線対称な光学特性が発揮されることから、特にユーザーの装用に際しての取扱いが一層容易となる。また、装用時に上下方向を特定する必要がなくなることから、周方向位置決め手段として上下方向の区別なく位置決め可能な構成を採用することも可能となり、設計自由度も大きくなる。 In the contact lens of this aspect, optical characteristics that are line symmetric not only in the left-right direction but also in the up-down direction in the worn state are exhibited, so that handling at the time of wearing by the user becomes even easier. Further, since it is not necessary to specify the vertical direction at the time of wearing, it is possible to adopt a configuration capable of positioning without distinguishing the vertical direction as the circumferential positioning means, and the degree of freedom in design is increased.
 本発明の第九の態様は、前記第八の態様に係るコンタクトレンズにおいて、前記周方向位置決め手段が、装用状態で前記対称径線方向の両端の何れが上方に位置するかの区別なく、上下反転位置となる周上の2方向においてレンズ周方向の安定位置をそれぞれ与えるようにされているものである。 According to a ninth aspect of the present invention, there is provided the contact lens according to the eighth aspect, wherein the circumferential positioning means is arranged in an up-and-down direction regardless of which of the ends in the symmetric radial direction is positioned upward in a worn state. A stable position in the lens circumferential direction is given in each of two directions on the circumference as the reversal position.
 本態様のコンタクトレンズでは、周上の2方向で安定位置が与えられることから、ユーザーが方向を特別に意識することなく眼に装用しても、目的とする安定位置に一層速やかに導かれて目的とする視力補正等の効果が発揮されることとなる。 In the contact lens of this aspect, stable positions are given in two directions on the circumference. Therefore, even if the user wears the eyes without being particularly conscious of the direction, the user is more quickly guided to the target stable position. The intended effects such as eyesight correction will be exhibited.
 本発明の第十の態様は、前記第一~八の何れかの態様に係るコンタクトレンズにおいて、前記周方向位置決め手段が、装用状態で前記対称径線方向における特定の一端が上方に位置するように、周上の1方向においてレンズ周方向の安定位置を与える構成とされているものである。 According to a tenth aspect of the present invention, in the contact lens according to any one of the first to eighth aspects, the circumferential positioning means is configured such that a specific end in the symmetric radial direction is positioned upward in a worn state. In addition, a stable position in the circumferential direction of the lens is provided in one direction on the circumference.
 本態様のコンタクトレンズでは、周上の1方向で安定位置が与えられることから、例えば光学領域及び/又は周辺部分において、対称径線に直交する直交径線に関して上下非対称の形状を採用する場合でも、ユーザーは上下を意識することなく装用して、目的とする視力補正効果や装用感等を安定して得ることが可能になる。 In the contact lens of this aspect, since a stable position is given in one direction on the circumference, for example, in the optical region and / or the peripheral portion, even when a vertically asymmetric shape is adopted with respect to an orthogonal diameter line orthogonal to the symmetry diameter line, The user can wear without being aware of up and down, and can stably obtain a desired visual acuity correction effect, a feeling of wearing, and the like.
 本発明の第十一の態様は、前記第一~七の何れかの態様に係るコンタクトレンズであって、前記対称径線に直交する直交径線によって仕切られた両側領域の何れか一方の側に前記一対の第一の度数領域が偏倚して設けられることにより、前記光学領域が該直交径線に関して非対称とされていると共に、前記周方向位置決め手段が、装用状態で前記対称径線方向における特定の一端が上方に位置するように、周上の1方向においてレンズ周方向の安定位置を与えるものとされているコンタクトレンズである。 An eleventh aspect of the present invention is the contact lens according to any one of the first to seventh aspects, wherein one side of both side regions partitioned by an orthogonal diameter line orthogonal to the symmetry diameter line The pair of first power regions are provided in a biased manner so that the optical region is asymmetric with respect to the orthogonal radial line, and the circumferential positioning means is in the symmetrical radial direction in a worn state. It is a contact lens that gives a stable position in the circumferential direction of the lens in one direction on the circumference so that a specific end is positioned upward.
 本態様のコンタクトレンズでは、装用状態でのコンタクトレンズの幾何中心に対する瞳孔中心の偏倚方向や偏倚量を考慮して、装用状態での左右方向だけでなく上下方向においても、コンタクトレンズにおける第一の度数領域の中心位置を一層適切に設定することが可能になる。具体的には、例えばデスクワークや読書等の近方視作業に際しては、装用状態でのコンタクトレンズの幾何中心に対して瞳孔中心が鼻側下方に偏倚し易いことを考慮して、近方視用の光学特性を設定した第一の度数領域を、直交径線に対して装用状態で下方に偏倚して設定することが可能になり、それによって、近方視作業に際してより適切な視力補正効果等を提供することが可能になる。 In the contact lens of this aspect, in consideration of the deviation direction and the amount of deviation of the pupil center with respect to the geometric center of the contact lens in the worn state, the first in the contact lens is not only in the left and right direction but also in the vertical direction in the worn state. It becomes possible to set the center position of the frequency region more appropriately. Specifically, for near vision work such as desk work and reading, for example, the near center of the pupil is likely to be biased downward in the nose side with respect to the geometric center of the contact lens in the worn state. It is possible to set the first power region in which the optical characteristics are set by deviating downward in a worn state with respect to the orthogonal diameter line, thereby enabling a more appropriate visual acuity correction effect or the like in near vision work It becomes possible to provide.
 本発明の第十二の態様は、前記第一~十一の何れかの態様に係るコンタクトレンズにおいて、前記一対の第一の度数領域が相互に離隔して設けられているものである。 According to a twelfth aspect of the present invention, in the contact lens according to any one of the first to eleventh aspects, the pair of first power regions are provided apart from each other.
 本態様のコンタクトレンズでは、装用状態のコンタクトレンズにおいて左右方向で相互に離隔して一対の第一の度数領域が設けられていることから、何れの第一の度数領域上に瞳孔中心が位置する場合でも、第一の度数領域の外周の全周に亘って第二の度数領域または第一の度数領域から第二の度数領域への移行領域を設定することが可能になる。それ故、第一の度数領域だけでなく第二の度数領域、または、第一の度数領域と第二の度数領域との間のレンズ度数が設定された移行領域による光学特性も、一層効果的に得ることが可能になる。 In the contact lens of this aspect, since the pair of first power regions are provided in the worn contact lens so as to be separated from each other in the left-right direction, the pupil center is located on any first power region Even in this case, it is possible to set the second frequency region or the transition region from the first frequency region to the second frequency region over the entire circumference of the first frequency region. Therefore, not only the first power region but also the second power region, or the optical characteristics by the transition region in which the lens power between the first power region and the second power region is set are more effective. To be able to get to.
 本発明の第十三の態様は、前記第十二の態様に係るコンタクトレンズであって、相互に離隔して設けられた前記一対の第一の度数領域において、装用状態で前記瞳孔中心上に位置せしめられる一方の該第一の度数領域に対して他方の該第一の度数領域による影響が実質的に回避されるように、装用状態でのレンズ安定位置に対する該瞳孔中心のずれ量に応じて該一対の第一の度数領域における相互間の離隔距離が設定されているものである。 A thirteenth aspect of the present invention is the contact lens according to the twelfth aspect, wherein the pair of first power regions provided apart from each other is placed on the pupil center in a worn state. Depending on the amount of deviation of the center of the pupil with respect to the lens stable position in the wearing state so that the influence of the other first power region is substantially avoided with respect to the first power region that is positioned Thus, a separation distance between the pair of first power regions is set.
 本態様のコンタクトレンズでは、装用状態で一方の第一の度数領域上に瞳孔中心が位置する場合に、他方の第一の度数領域による見え方への悪影響が一層効果的に防止されて、一層優れた見え方の質が実現される。なお、コンタクトレンズの直交径線方向において、一対の第一の度数領域における相互間の離隔距離Lは、0.10mm以上とすることが望ましく、より好適には0.30mm以上とされる。 In the contact lens of this aspect, when the pupil center is located on one first power region in the wearing state, the adverse effect on the appearance due to the other first power region is more effectively prevented, and further Excellent visual quality is achieved. In the orthogonal radial direction of the contact lens, the distance L between the pair of first power regions is preferably 0.10 mm or more, and more preferably 0.30 mm or more.
 本発明の第十四の態様は、前記第一~十三の何れかの態様に係るコンタクトレンズにおいて、前記一対の第一の度数領域における幾何中心点が、前記対称径線に対して0.30mm~4.0mmの偏倚量をもって、該対称径線に対して互いに反対側に偏倚せしめられているものである。 According to a fourteenth aspect of the present invention, in the contact lens according to any one of the first to thirteenth aspects, the geometric center point in the pair of first power regions is 0. 0 with respect to the symmetrical radial line. They are biased to the opposite sides with respect to the symmetrical diameter line with a deflection amount of 30 mm to 4.0 mm.
 本態様のコンタクトレンズでは、平均的な人眼において、角膜形状等によるコンタクトレンズの角膜中心からの偏倚量と人眼における光学に対する視軸の偏倚量(角膜中心に対する瞳孔中心の偏倚量)を考慮して、第一の度数領域によって良好なQOVを与え得るコンタクトレンズを提供することができる。なお、かかる偏倚量が0.30mm~4.0mmの領域を外れると、瞳孔径が小さくなった状況下での第一の度数領域による光学作用が十分に発揮され難くなったり、瞳孔径が大きくなった状況下で他方の第一の度数領域による悪影響を受けたりして、見え方の質が低下してしまうおそれがある。 In the contact lens of this aspect, in the average human eye, the amount of deviation of the contact lens from the corneal center due to the corneal shape, etc. and the amount of deviation of the visual axis with respect to the optics in the human eye (deviation amount of the pupil center relative to the corneal center) are considered. Thus, it is possible to provide a contact lens capable of giving a good QOV by the first power region. If the deviation is outside the range of 0.30 mm to 4.0 mm, the optical action due to the first power region under the condition that the pupil diameter is small is not sufficiently exhibited, or the pupil diameter is large. Under such circumstances, the quality of the appearance may be deteriorated due to an adverse effect of the other first frequency region.
 本発明の第十五の態様は、前記第一~十四の何れかの態様に係るコンタクトレンズにおいて、前記第一の度数領域が1.0~2.5mmの外径寸法とされているものである。 According to a fifteenth aspect of the present invention, in the contact lens according to any one of the first to fourteenth aspects, the first power region has an outer diameter of 1.0 to 2.5 mm. It is.
 本態様のコンタクトレンズでは、第一の度数領域による光学的作用を安定して一層効果的に享受することができる。 In the contact lens of this aspect, the optical action by the first power region can be stably and more effectively enjoyed.
 本発明の第十六の態様は、前記第一~十五の何れかの態様に係るコンタクトレンズにおいて、前記一対の第一の度数領域が円形領域とされているものである。 A sixteenth aspect of the present invention is the contact lens according to any one of the first to fifteenth aspects, wherein the pair of first power regions are circular regions.
 本態様のコンタクトレンズでは、第一の度数領域が円形外周形状とされることにより、略円形である瞳孔外周形状と対応することとなる。その結果、瞳孔内の略中央部分における第一の度数領域による光学特性や、瞳孔内の略外周部分における第二の度数領域による光学特性が、各度数領域の有効面積を効率的に確保し得ることにより一層効果的に発揮され得ることとなる。 In the contact lens according to this aspect, the first power region has a circular outer peripheral shape, which corresponds to a substantially circular pupil outer peripheral shape. As a result, the optical characteristics of the first power region in the substantially central portion of the pupil and the optical properties of the second power region in the substantially outer peripheral portion of the pupil can efficiently secure the effective area of each power region. This can be more effectively exhibited.
 本発明の第十七の態様は、前記第一~十五の何れかの態様に係るコンタクトレンズにおいて、前記一対の第一の度数領域が楕円形領域とされているものである。 According to a seventeenth aspect of the present invention, in the contact lens according to any one of the first to fifteenth aspects, the pair of first power regions are elliptical regions.
 本態様のコンタクトレンズでは、例えば第一の度数領域において装用時の各方向の外径寸法を相対的に異ならせることができる。それ故、例えば第一の度数領域の外径寸法を上下方向より左右方向で大きくすることにより、装用時のレンズ幾何中心に対する瞳孔中心の左右方向への偏倚量の個人差が大きい場合でも良好に対応できるようにすること等も可能になる。 In the contact lens of this aspect, for example, the outer diameter size in each direction during wearing can be made relatively different in the first power region. Therefore, for example, by increasing the outer diameter dimension of the first power region in the left-right direction rather than the up-down direction, even if there is a large individual difference in the amount of lateral deviation of the pupil center relative to the lens geometric center during wearing It becomes possible to make it possible to cope.
 本発明の第十八の態様は、前記第一~十七の何れかの態様に係るコンタクトレンズにおいて、前記第一の度数領域と前記第二の度数領域との間には、該第一の度数領域のレンズ度数と該第二の度数領域のレンズ度数との間のレンズ度数が設定された移行領域が設けられているものである。 An eighteenth aspect of the present invention is the contact lens according to any one of the first to seventeenth aspects, wherein the first power region and the second power region are between the first power region and the first power region. A transition region in which the lens power between the lens power in the power region and the lens power in the second power region is set is provided.
 本態様のコンタクトレンズでは、第一の度数領域および第二の度数領域におけるチューニング対象とされた視認距離の中間領域における見え方の質が、移行領域の光学特性によって向上され得る。また、移行領域を設けたことにより、第一の度数領域と第二の度数領域との境界部分の光学的悪影響によって発生する見え方の質の低下も軽減され得る。なお、かかる移行領域における、第一の度数領域と第二の度数領域との中間のレンズ度数は、例えば以下の第十九~二十一の何れかの態様をもって設定されるのが好ましい。 In the contact lens of this aspect, the quality of appearance in the intermediate region of the viewing distance targeted for tuning in the first power region and the second power region can be improved by the optical characteristics of the transition region. Further, by providing the transition region, it is possible to reduce the deterioration in the quality of the appearance caused by the optical adverse effect at the boundary portion between the first power region and the second power region. In this transition area, the intermediate lens power between the first power area and the second power area is preferably set, for example, in any of the following nineteenth to twenty-first aspects.
 本発明の第十九の態様は、前記第十八の態様に係るコンタクトレンズであって、前記移行領域において、前記第一の度数領域のレンズ度数から前記第二の度数領域のレンズ度数に向かって漸次に変化するレンズ度数が設定されてプログレッシブ構造とされているものである。 A nineteenth aspect of the present invention is the contact lens according to the eighteenth aspect, wherein in the transition region, the lens power in the first power region is changed to the lens power in the second power region. The lens power that gradually changes is set to have a progressive structure.
 本発明の第二十の態様は、前記第十八の態様に係るコンタクトレンズであって、前記移行領域において、前記第一の度数領域のレンズ度数から前記第二の度数領域のレンズ度数に向かって段階的に変化する複数段階のレンズ度数が設定されてマルチフォーカル構造とされているものである。 A twentieth aspect of the present invention is the contact lens according to the eighteenth aspect, wherein in the transition region, the lens power in the first power region is changed to the lens power in the second power region. Thus, a multi-focal structure is formed by setting a plurality of lens power levels that change step by step.
 本発明の第二十一の態様は、前記第十八の態様に係るコンタクトレンズであって、前記移行領域において、全体に亘って一定のレンズ度数が設定されているものである。 A twenty-first aspect of the present invention is the contact lens according to the eighteenth aspect, wherein a constant lens power is set throughout the transition region.
 なお、本発明では、第一の度数領域と第二の度数領域に設定されるレンズ度数の少なくとも一方が次第に変化する態様も採用される。即ち、本発明の第二十二の態様は、前記第一~二十一の何れかの態様に係るコンタクトレンズにおいて、前記第一の度数領域のレンズ度数と前記第二の度数領域のレンズ度数の少なくとも一方において、漸次に変化するレンズ度数が設定されて、前記光学領域がプログレッシブ構造とされているものである。 In the present invention, a mode in which at least one of the lens powers set in the first power region and the second power region gradually changes is also adopted. That is, according to a twenty-second aspect of the present invention, in the contact lens according to any one of the first to twenty-first aspects, the lens power in the first power region and the lens power in the second power region. In at least one of the above, a lens power that gradually changes is set, and the optical region has a progressive structure.
 本発明の第二十三の態様は、前記第十八~二十一の何れかの態様に係るコンタクトレンズにおいて、互いに離隔して設けられた前記一対の第一の度数領域の間には、前記移行領域が設けられており、該移行領域を介して該一対の第一の度数領域が接続状態で位置せしめられているものである。 According to a twenty-third aspect of the present invention, in the contact lens according to any one of the eighteenth to twenty-first aspects, between the pair of first power regions provided apart from each other, The transition region is provided, and the pair of first power regions are positioned in a connected state via the transition region.
 本態様のコンタクトレンズでは、第一の度数領域の外周側の全周に亘って移行領域が設けられていることから、移行領域の光学特性による前述の如き見え方の質の向上効果を一層有利に得ることが可能になる。 In the contact lens of this aspect, since the transition region is provided over the entire circumference on the outer peripheral side of the first power region, the effect of improving the appearance quality as described above due to the optical characteristics of the transition region is further advantageous. To be able to get to.
 本発明の第二十四の態様は、前記第一~二十三の何れかの態様に係るコンタクトレンズにおいて、前記一対の第一の度数領域が何れも全周に亘って前記第二の度数領域で取り囲まれており、互いに離隔して設けられた該一対の第一の度数領域の間にも該第二の度数領域が設けられているものである。 According to a twenty-fourth aspect of the present invention, in the contact lens according to any one of the first to twenty-third aspects, the pair of first power regions has the second power over the entire circumference. The second power region is also provided between the pair of first power regions that are surrounded by a region and are spaced apart from each other.
 本態様のコンタクトレンズでは、第一の度数領域の外周側の全周に亘って第二の度数領域が設けられていることから、第一の度数領域だけでなく第二の度数領域の光学特性による見え方の質の更なる向上が図られ得る。 In the contact lens of this aspect, since the second power region is provided over the entire circumference on the outer periphery side of the first power region, not only the first power region but also the optical characteristics of the second power region. It is possible to further improve the quality of the appearance.
 本発明の第二十五の態様は、前記第一~二十四の何れかの態様に係るコンタクトレンズにおいて、乱視矯正用のレンズ度数が設けられてトーリックレンズとされているものでる。 According to a twenty-fifth aspect of the present invention, in the contact lens according to any one of the first to twenty-fourth aspects, a lens power for correcting astigmatism is provided to form a toric lens.
 本発明におけるコンタクトレンズは、老視のみを矯正するコンタクトレンズに限定されず、例えば乱視矯正用のレンズ度数が設けられた老視用トーリックレンズとしても採用され得る。 The contact lens in the present invention is not limited to a contact lens that corrects only presbyopia, and may be employed as, for example, a toric lens for presbyopia provided with a lens power for correcting astigmatism.
 本発明に従う構造とされたコンタクトレンズにおいては、左右眼の何れに装用されてレンズ幾何中心が瞳孔中心に対して左右の何れの側に偏倚した装用状態下でも、左右対称に設けられた一対の第一の度数領域の何れかが、瞳孔中心と略同じ位置に設定され得る。それ故、装用状態下でのレンズ幾何中心の瞳孔中心に対する偏倚を考慮してレンズ幾何中心に対して第一の度数領域を偏倚設定するに際しても、左右を区別する必要がなくなる。その結果、左眼用と右眼用とで各別に規格化して製造、管理等する必要もなく、また、光学中心の偏倚方向を示すマーク等も不要となり、装用時の瞳孔中心に対する偏倚量を予め考慮してレンズ幾何中心に対して偏倚設定された第一の度数領域と、その外周の第二の度数領域によって発揮される優れた光学特性を効果的に享受することが可能になるのである。 In the contact lens having the structure according to the present invention, a pair of symmetrically provided paired lenses even in a wearing state in which the lens geometric center is worn on either of the left and right eyes and the lens geometric center is deviated on either side of the pupil center. Any of the first power regions can be set at substantially the same position as the pupil center. Therefore, it is not necessary to distinguish between left and right when setting the first power region to be deviated from the lens geometric center in consideration of the deviation of the lens geometric center from the pupil center in the wearing state. As a result, it is not necessary to separately manufacture and manage the left eye and right eye separately, and there is no need for a mark or the like indicating the direction of deviation of the optical center. It is possible to effectively enjoy the excellent optical characteristics exhibited by the first power region deviated and set with respect to the lens geometric center in advance and the second power region on the outer periphery thereof. .
本発明の第一の実施形態としてのコンタクトレンズを示す正面説明図。BRIEF DESCRIPTION OF THE DRAWINGS Front explanatory drawing which shows the contact lens as 1st embodiment of this invention. 図1におけるII-II断面図。II-II sectional drawing in FIG. 図1に示されたコンタクトレンズの光学領域に設定されたレンズ度数の一例を示すグラフ。The graph which shows an example of the lens power set to the optical area | region of the contact lens shown by FIG. 図1に示されたコンタクトレンズの光学領域に設定されたレンズ度数の別例を示すグラフであり、(a)では移行部におけるレンズ度数が一定とされており、(b)では移行部におけるレンズ度数が段階的に変化している。It is a graph which shows another example of the lens power set to the optical area | region of the contact lens shown by FIG. 1, (a) WHEREIN: The lens power in a transition part is made constant, (b) WHEREIN: The lens in a transition part The frequency is changing step by step. 図1に示されたコンタクトレンズの光学領域に設定されたレンズ度数の更に別例を示すグラフであり、(a)では第一の度数領域および第二の度数領域のレンズ度数が一定とされており、(b)では第一の度数領域および第二の度数領域におけるレンズ度数の球面収差が考慮されたレンズ度数変化とされており、(c)では光学領域において漸次に無段階にレンズ度数が変化している。It is a graph which shows another example of the lens power set to the optical area | region of the contact lens shown by FIG. 1, In (a), the lens power of the 1st power area and the 2nd power area is made constant. In (b), the lens power is changed in consideration of the spherical aberration of the lens power in the first power region and the second power region. In (c), the lens power is gradually stepless in the optical region. It has changed. 本発明の第二の実施形態としてのコンタクトレンズを示す正面説明図。Front explanatory drawing which shows the contact lens as 2nd embodiment of this invention. 図6に示されたコンタクトレンズの光学領域に設定されたレンズ度数の一例を示すグラフであり、(a)では第一の度数領域および第二の度数領域のレンズ度数が一定とされており、(b)では光学領域において漸次に無段階にレンズ度数が変化している。It is a graph which shows an example of the lens power set to the optical area | region of the contact lens shown by FIG. 6, The lens power of the 1st power area and the 2nd power area is made constant in (a), In (b), the lens power changes in a stepless manner in the optical region. 本発明の第三の実施形態としてのコンタクトレンズを示す正面説明図。Front explanatory drawing which shows the contact lens as 3rd embodiment of this invention. 本発明の第四の実施形態としてのコンタクトレンズを示す正面説明図。Front explanatory drawing which shows the contact lens as 4th embodiment of this invention. 本発明の第五の実施形態としてのコンタクトレンズを示す正面説明図。Front explanatory drawing which shows the contact lens as 5th embodiment of this invention. 本発明の第六の実施形態としてのコンタクトレンズを示す正面説明図。Front explanatory drawing which shows the contact lens as 6th embodiment of this invention. 本発明の第七の実施形態としてのコンタクトレンズを示す正面説明図。Front explanatory drawing which shows the contact lens as 7th embodiment of this invention. 本発明の第八の実施形態としてのコンタクトレンズを示す正面説明図。Front explanatory drawing which shows the contact lens as 8th embodiment of this invention. 本発明の第九の実施形態としてのコンタクトレンズを示す正面説明図。Front explanatory drawing which shows the contact lens as 9th embodiment of this invention. 図14におけるXV-XV断面図。XV-XV sectional drawing in FIG. 本発明の第十の実施形態としてのコンタクトレンズを示す正面説明図。Front explanatory drawing which shows the contact lens as 10th Embodiment of this invention.
 以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。 Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
 先ず、図1~2には、本発明の第一の実施形態としてのコンタクトレンズ10が示されている。このコンタクトレンズ10は、図1に示す正面視においてレンズ幾何中心12を通る中心軸回りの円形外周縁を有しており、全体として略球冠形状とされている。そして、良く知られているように、湾曲凹面形状のレンズ後面において眼球の角膜の表面に重ね合わせて装用されるようになっている。 First, FIGS. 1 and 2 show a contact lens 10 as a first embodiment of the present invention. This contact lens 10 has a circular outer periphery around the central axis passing through the lens geometric center 12 in the front view shown in FIG. 1, and has a substantially spherical crown shape as a whole. As is well known, the lens rear surface of the curved concave surface is worn on the surface of the cornea of the eyeball.
 なお、本実施形態のコンタクトレンズ10は、ハードタイプとソフトタイプ、複合タイプの何れでも良く、その材料は何等限定されるものでない。例えば、ハードタイプとしては、シリコーン含有成分等の共重合成分とレンズ形成用モノマーとの重合体材料からなる酸素透過性材料(RGP)からなるコンタクトレンズ等に適用可能である。また、ソフトタイプとしては、例えば、PHEMA(ポリヒドロキシエチルメタクリレート)やPVP(ポリビニルピロリドン)等の含水性材料の他、アクリルゴムやシリコーン等の非含水性材料からなるコンタクトレンズ等に適用可能である。更に、それらハードタイプの材料とソフトタイプの材料を、例えば中央部分と外周部分とで使い分けた複合タイプのコンタクトレンズ等にも適用可能である。 In addition, the contact lens 10 of this embodiment may be any of a hard type, a soft type, and a composite type, and the material is not limited at all. For example, the hard type can be applied to a contact lens made of an oxygen permeable material (RGP) made of a polymer material of a copolymer component such as a silicone-containing component and a lens forming monomer. Moreover, as a soft type, for example, it can be applied to a contact lens made of a non-hydrous material such as acrylic rubber or silicone in addition to a hydrous material such as PHEMA (polyhydroxyethyl methacrylate) or PVP (polyvinylpyrrolidone). . Further, the present invention can be applied to a composite type contact lens in which the hard type material and the soft type material are selectively used in the central portion and the outer peripheral portion, for example.
 かかるコンタクトレンズ10は、レンズ幾何中心12を中心とする中央部分に略円形状の光学領域14を有しており、光学領域14の外周側には略円環形状の周辺部16が設けられている。また、周辺部16の外周には、レンズ前後面を滑らかに繋ぐエッジ部18が円環形状をもって形成されている。光学領域14は、レンズ装用者の眼光学系に光学作用を及ぼす光学特性を備えており、所定のレンズ度数が設定されている。周辺部16は、眼光学系への光学作用を直接に及ぼすものでないが、角膜上でのレンズ安定性や装用感等を満足させることができるように所定の内外面形状を備えている。 The contact lens 10 has a substantially circular optical region 14 in the central portion centered on the lens geometric center 12, and a substantially annular peripheral portion 16 is provided on the outer peripheral side of the optical region 14. Yes. Further, on the outer periphery of the peripheral portion 16, an edge portion 18 that smoothly connects the front and rear surfaces of the lens is formed in an annular shape. The optical region 14 has optical characteristics that exert an optical action on the eye optical system of the lens wearer, and a predetermined lens power is set. The peripheral portion 16 does not directly exert an optical action on the eye optical system, but has a predetermined inner and outer surface shape so as to satisfy lens stability on the cornea, wearing feeling, and the like.
 光学領域14には、互いに異なるレンズ度数が設定された第一の度数領域20と第二の度数領域22が設けられている。光学領域14は、これら第一の度数領域20と第二の度数領域22とにより、眼光学系に対して、同時視型の矯正作用を発揮するものであり、特に本実施形態では、近方視と遠方視との両方に対応した光学特性を与えることにより老視矯正用のコンタクトレンズを提供するものである。 The optical region 14 is provided with a first power region 20 and a second power region 22 in which different lens powers are set. The optical region 14 exhibits a simultaneous vision type correction action on the eye optical system by the first power region 20 and the second power region 22. A contact lens for correcting presbyopia is provided by providing optical characteristics corresponding to both vision and distance vision.
 具体的には、図1に示されたレンズ正面視において、円形とされた第一の度数領域20が、一対設けられている。これら一対の第一の度数領域20,20は、互いに同一の光学特性および形状をもって形成されている。そして、レンズ幾何中心軸12を通って図1中の上下方向に延びる対称径線24に関して、一対の第一の度数領域20,20が線対称に設けられている。 Specifically, a pair of first power regions 20 that are circular in the front view of the lens shown in FIG. 1 are provided. The pair of first power regions 20 are formed with the same optical characteristics and shape. A pair of first power regions 20 and 20 are provided in line symmetry with respect to a symmetrical radial line 24 extending in the vertical direction in FIG. 1 through the lens geometric central axis 12.
 換言すれば、一対の第一の度数領域20,20は、その外形中心26,26が、レンズ幾何中心12を挟んだ両側にそれぞれ偏倚量δだけ離れて設定されている。また、第一の度数領域20の外径寸法φR1は、2δ≧R1とされており、特に本実施形態では、2δ>R1とされている。 In other words, the pair of first power regions 20 and 20 are set such that their outer centers 26 and 26 are separated from each other on both sides of the lens geometric center 12 by a deviation amount δ. The outer diameter dimension φR1 of the first power region 20 is 2δ ≧ R1, and in the present embodiment, 2δ> R1.
 さらに、各第一の度数領域20の外周側には、移行領域としての移行部28が設けられている。この移行部28には、第一の度数領域20のレンズ度数と第二の度数領域22のレンズ度数との中間のレンズ度数が設定されている。 Furthermore, a transition portion 28 as a transition region is provided on the outer peripheral side of each first frequency region 20. In this transition portion 28, an intermediate lens power between the lens power in the first power area 20 and the lens power in the second power area 22 is set.
 そして、光学領域14において、これら一対の第一の度数領域20,20とそれぞれの移行部28,28とを囲むようにして広がる外周領域が、全体に亘って第二の度数領域22とされている。 In the optical region 14, the outer peripheral region that extends so as to surround the pair of first power regions 20, 20 and the respective transition portions 28, 28 is the second power region 22.
 特に、本実施形態では、一対の第一の度数領域20,20の外形中心26,26が、レンズ幾何中心12を通って且つ対称径線24に直交する直交径線30上に設定されている。これにより、光学領域14に設定された光学特性が、対称径線24に関して線対称とされていると共に、直交径線30に関しても線対称とされている。 In particular, in the present embodiment, the external centers 26 and 26 of the pair of first power regions 20 and 20 are set on an orthogonal radial line 30 that passes through the lens geometric center 12 and is orthogonal to the symmetrical radial line 24. . As a result, the optical characteristics set in the optical region 14 are line symmetric with respect to the symmetric diameter line 24 and are also line symmetric with respect to the orthogonal diameter line 30.
 また、本実施形態では、移行部28が、第一の度数領域20の外周を全周に亘って一定の径方向幅寸法B1で延びる円環形状とされている。更にまた、本実施形態では、直交径線30方向において、対称径線24を挟んで位置する一対の第一の度数領域20,20は相互に離隔して設けられており、かかる離隔距離L1が、L1>(2×B1)とされている。これにより、一対の第一の度数領域20,20の間にはそれぞれの外周に設けられた移行部28,28が位置しており、かかる移行部28,28の間に位置して第二の度数領域22が設けられている。要するに、各第一の度数領域20,20の外周には、各移行部28,28と第二の度数領域22が何れも全周に亘って取り囲むようにして設けられており、各移行部28,28と第二の度数領域22を介してそれぞれの第一の度数領域20,20が接続状態で位置している。 Moreover, in this embodiment, the transition part 28 is made into the annular | circular shape extended by the fixed radial direction width dimension B1 over the outer periphery of the 1st frequency area | region 20 over the perimeter. Furthermore, in the present embodiment, in the direction of the orthogonal diameter line 30, the pair of first power regions 20, 20 positioned with the symmetrical diameter line 24 interposed therebetween are provided apart from each other, and the separation distance L 1 is , L1> (2 × B1). Thereby, between the pair of first frequency regions 20 and 20, the transition portions 28 and 28 provided on the respective outer circumferences are located, and the second portion is located between the transition portions 28 and 28. A frequency region 22 is provided. In short, the transition portions 28, 28 and the second power region 22 are provided so as to surround the entire circumference on the outer periphery of each first power region 20, 20. , 28 and the second power region 22, the first power regions 20, 20 are located in a connected state.
 ここにおいて、第一の度数領域20の外径寸法φR1や対称径線24に対する外形中心26の偏倚量δ、移行部28の径方向幅寸法B1等は、コンタクトレンズ10の装用状態を考慮して設定される。即ち、装用状態下では、角膜等の表面形状などに応じてコンタクトレンズ10が角膜上で耳側に偏倚して安定位置することや、眼光学系の光学中心軸上に位置する瞳孔中心が角膜中心に対して鼻側に偏倚していることなどにより、コンタクトレンズ10のレンズ幾何中心12に対して瞳孔中心32が偏倚して位置する。 Here, the outer diameter dimension φR1 of the first power region 20, the deviation amount δ of the outer center 26 with respect to the symmetric diameter line 24, the radial width dimension B1 of the transition portion 28, and the like take into account the wearing state of the contact lens 10. Is set. That is, under the wearing state, the contact lens 10 is biased toward the ear side on the cornea according to the surface shape of the cornea and the like, and the pupil center located on the optical center axis of the eye optical system is located in the cornea. The pupil center 32 is located with a deviation from the lens geometric center 12 of the contact lens 10, for example, by being biased to the nose side relative to the center.
 具体的には、図1を装用状態におけるレンズ前面側からの正面視として、右側が鼻側で左側が耳側とすると、レンズ幾何中心12に対して瞳孔34の中心32が右側にずれて位置することとなる。そして、本実施形態のコンタクトレンズ10では、この装用状態でのレンズ幾何中心12に対する瞳孔中心32の右側へのずれ量に対応する距離が、レンズ幾何中心12に対する第一の度数領域20の偏倚量δに設定されている。従って、一対の第一の度数領域20,20は、かかる偏倚量δをもって、対称径線24に対して相互に反対側に偏倚されている。 Specifically, when FIG. 1 is viewed from the front side of the lens in the wearing state, when the right side is the nose side and the left side is the ear side, the center 32 of the pupil 34 is shifted to the right side with respect to the lens geometric center 12. Will be. In the contact lens 10 of the present embodiment, the distance corresponding to the shift amount of the pupil center 32 to the right side with respect to the lens geometric center 12 in this wearing state is the deviation amount of the first power region 20 with respect to the lens geometric center 12. It is set to δ. Therefore, the pair of first power regions 20 and 20 are biased to the opposite sides with respect to the symmetrical radial line 24 with such a deviation amount δ.
 要するに、図1が装用状態の正面視として、左右方向となる直交径線30方向において、瞳孔中心32と第一の度数領域20の外形中心26との偏倚量Xが略0となるように設定される。なお、後述する第二の実施形態以降では、瞳孔34および瞳孔中心32、偏倚量Xの図示を省略する。ここで、装用状態における瞳孔中心32のレンズ幾何中心12からの直交径線30方向での偏倚量は、僅かな個人差はあるものの例えば統計的に求めることが可能である。コンタクトレンズ10の後面形状によっても少しの相違はあるが、一般にレンズ幾何中心12に対する第一の度数領域20の偏倚量δは、1mm~1.5mm程度とされる。従って、本実施形態において、好適にはδの値が、0.3mm≦δ≦4.0mmの範囲内に設定されて、更に好適には0.8mm≦δ≦2.0mmの範囲内に設定される。 In short, FIG. 1 is set so that the deviation amount X between the pupil center 32 and the outer shape center 26 of the first power region 20 is substantially zero in the direction of the orthogonal diameter line 30 that is the left-right direction as viewed from the front in the wearing state. Is done. In the second and later embodiments described later, the illustration of the pupil 34, the pupil center 32, and the deviation amount X is omitted. Here, the deviation amount of the pupil center 32 in the wearing state in the direction of the orthogonal diameter line 30 from the lens geometric center 12 can be obtained, for example, statistically although there is a slight individual difference. Although there is a slight difference depending on the rear surface shape of the contact lens 10, the deviation amount δ of the first power region 20 with respect to the lens geometric center 12 is generally about 1 mm to 1.5 mm. Therefore, in the present embodiment, the value of δ is preferably set in the range of 0.3 mm ≦ δ ≦ 4.0 mm, and more preferably in the range of 0.8 mm ≦ δ ≦ 2.0 mm. Is done.
 また、想定されるコンタクトレンズ10の用途範囲において、瞳孔34の径寸法(瞳孔径)φAが小さくなる明所視では、瞳孔34内の多くの領域が一方の第一の度数領域20で占められることが望ましい。かかる第一の度数領域20に明所視用の矯正レンズ度数が設定されることにより、明所視において第一の度数領域20の光学特性による視力矯正効果を安定して享受できる。好適には明所視の瞳孔34内の50%以上が第一の度数領域20で占められることとなり、一層好適には瞳孔34内の70%以上が第一の度数領域20で占められることとなる。 Further, in the assumed range of use of the contact lens 10, in the photopic vision in which the diameter dimension (pupil diameter) φA of the pupil 34 becomes small, many areas in the pupil 34 are occupied by one first frequency area 20. It is desirable. By setting the correction lens power for photopic vision in the first power region 20, it is possible to stably enjoy the visual acuity correction effect due to the optical characteristics of the first power region 20 in photopic vision. Preferably, 50% or more of the photopic pupil 34 is occupied by the first power region 20, and more preferably 70% or more of the pupil 34 is occupied by the first power region 20. Become.
 また一方、想定されるコンタクトレンズ10の用途範囲において、瞳孔径φAが大きくなる暗所視では、一方の第一の度数領域20の略全体が瞳孔34内に含まれると共に、移行部28および第二の度数領域22も、瞳孔34内の所定領域を占めるようにされる。かかる第二の度数領域22に暗所視用の矯正レンズ度数が設定されることにより、暗所視において第二の度数領域22の光学特性による視力矯正効果を安定して享受できる。好適には暗所視の瞳孔34内の40%以上が第二の度数領域22で示されることとなり、一層好適には瞳孔34内の60%以上が第二の度数領域22で占められることとなる。 On the other hand, in the scotopic vision where the pupil diameter φA increases in the assumed application range of the contact lens 10, substantially the entire first power region 20 is included in the pupil 34, and the transition portion 28 and the first The second power region 22 also occupies a predetermined region in the pupil 34. By setting the correction lens power for scotopic vision in the second power region 22, it is possible to stably enjoy the visual acuity correction effect due to the optical characteristics of the second power region 22 in scotopic vision. Preferably, more than 40% of the dark-sighted pupil 34 is represented by the second power region 22, and more preferably, 60% or more of the pupil 34 is occupied by the second power region 22. Become.
 また、瞳孔径φAが大きくなる暗所視でも、他方の第一の度数領域20は一方の第一の度数領域20に実質的に影響を与えないことが望ましい。具体的には、暗所視の環境下でも、瞳孔34内に含まれる他方の第一の度数領域20の大きさが、瞳孔34の20%以下とされることが望ましく、より好適には瞳孔34の10%以下に抑えられる。 Also, it is desirable that the other first power region 20 does not substantially affect the first power region 20 even in dark places where the pupil diameter φA increases. Specifically, it is desirable that the size of the other first power region 20 included in the pupil 34 is 20% or less of the pupil 34 even in a dark place environment, and more preferably the pupil. 34% or less of 34.
 上述の如き明所視および暗所視の光学特性を効果的に得るために、一般的な使用環境下では瞳孔径φAの統計情報により、第一の度数領域20の外径寸法φR1は、1.0mm≦R1≦2.5mmの範囲内に決定されることが望ましく、より好ましくは1.2mm≦R1≦2.0mmの範囲内に決定される。また、直交径線30方向における一対の第一の度数領域20,20の離隔距離L(図1中ではL1)は、好適には0.10mm以上とされて、更に好適には0.30mm以上とされる。これにより、一方の第一の度数領域20が瞳孔34上に位置せしめられ得ると共に、他方の第一の度数領域20による見え方の質(QOV)への影響が実質的に回避され得る。なお、かかる離隔距離L1は、装用状態でのレンズ安定位置におけるレンズ幾何中心12に対する第一の度数領域20の偏倚量δに応じて設定されることが望ましい。具体的には、暗所視においても他方の第一の度数領域20が瞳孔34内に含まれない場合は、瞳孔径の最大値をφA’とすると、L1+2δ≧φA’となるように設定される。 In order to effectively obtain the optical characteristics of photopic and scotopic vision as described above, the outer diameter size φR1 of the first power region 20 is 1 in the general use environment based on the statistical information of the pupil diameter φA. It is desirable to determine within the range of 0.0 mm ≦ R1 ≦ 2.5 mm, and more preferably within the range of 1.2 mm ≦ R1 ≦ 2.0 mm. Further, the separation distance L (L1 in FIG. 1) of the pair of first power regions 20 and 20 in the direction of the orthogonal diameter line 30 is preferably 0.10 mm or more, and more preferably 0.30 mm or more. It is said. Thereby, one first power region 20 can be positioned on the pupil 34, and the influence on the quality of view (QOV) by the other first power region 20 can be substantially avoided. The separation distance L1 is desirably set according to the amount of deviation δ of the first power region 20 with respect to the lens geometric center 12 at the lens stable position in the wearing state. Specifically, when the other first frequency region 20 is not included in the pupil 34 even in dark place vision, the maximum value of the pupil diameter is set to φA ′ so that L1 + 2δ ≧ φA ′. The
 さらに、本実施形態のコンタクトレンズ10では、第一の度数領域20と第二の度数領域22との間に設けられた移行部28において、中間レンズ度数が設定されている。例えば図3に示されているように、第一の度数領域20に近方視用の視力矯正度数である近用レンズ度数α(ディオプター)が設定されており、第二の度数領域22に遠方視用の視力矯正度数である遠用レンズ度数β(ディオプター)が設定されているとすると、移行部28の中間レンズ度数γ(ディオプター)は、β<γ<αとされる。具体的には、中間レンズ度数γは、近用レンズ度数αから遠用レンズ度数βまで直線的に無段階に変化している。 Furthermore, in the contact lens 10 of the present embodiment, the intermediate lens power is set in the transition portion 28 provided between the first power region 20 and the second power region 22. For example, as shown in FIG. 3, a near lens power α (diopter) that is a vision correction power for near vision is set in the first power area 20, and a far distance in the second power area 22. Assuming that the distance lens power β (diopter), which is the visual acuity correction power, is set, the intermediate lens power γ (diopter) of the transition unit 28 is β <γ <α. Specifically, the intermediate lens power γ changes linearly and continuously from the near lens power α to the far lens power β.
 尤も、移行部28におけるレンズ度数の設定態様は限定されるものでない。例えば上述のように移行部28の全体が第一の度数領域20と第二の度数領域22の間を連続的に接続して、実質的に第一及び第二の度数領域20,22からなる、移行部28を有するバイフォーカル構造のコンタクトレンズ10とする他、図4又は図5に示されている如きレンズ度数の設定も可能である。 However, the setting mode of the lens power in the transition unit 28 is not limited. For example, as described above, the entire transition portion 28 continuously connects the first power region 20 and the second power region 22 and substantially includes the first and second power regions 20 and 22. In addition to the bifocal contact lens 10 having the transition portion 28, it is possible to set the lens power as shown in FIG. 4 or FIG.
 すなわち、図4(a)に示されたレンズ度数の設定態様では、移行部28の全体に一定の中間レンズ度数γを設定している。これにより、コンタクトレンズ10における第一の度数領域20、移行部28、第二の度数領域22には、それぞれの領域において一定とされるレンズ度数α、γ、βが設定される。具体的には、第一の度数領域20のレンズ度数αを+1.0D、第二の度数領域22のレンズ度数βを-3.0Dとすると、移行部28のレンズ度数γは、-3.0D≦γ≦+1.0Dの範囲内で、例えばレンズ度数γは-1.5Dに設定される。このように、かかるコンタクトレンズ10は、レンズ度数が一定とされる移行部28を備えたマルチフォーカル構造のコンタクトレンズとされる。 That is, in the lens power setting mode shown in FIG. 4A, a constant intermediate lens power γ is set for the entire transition portion 28. Thereby, the lens powers α, γ, and β that are constant in the respective regions are set in the first power region 20, the transition portion 28, and the second power region 22 in the contact lens 10. Specifically, when the lens power α of the first power area 20 is + 1.0D and the lens power β of the second power area 22 is −3.0D, the lens power γ of the transition unit 28 is −3. Within the range of 0D ≦ γ ≦ + 1.0D, for example, the lens power γ is set to −1.5D. As described above, the contact lens 10 is a contact lens having a multifocal structure including the transition portion 28 having a constant lens power.
 また、図4(b)に示されたレンズ度数の設定態様は、第一の度数領域20のレンズ度数αから第二の度数領域22のレンズ度数βに至るレンズ度数範囲で、移行部28のレンズ度数γを、第一の度数領域20から第二の度数領域22に向かって次第に段階的に変化するように設定したものである。要するに、移行部28の中間レンズ度数γは、第一の度数領域20から第二の度数領域22に向かってγ1、γ2・・・と所定幅で異なっており、β<γ1<γ2<・・・<αとされる。これにより、第一の度数領域20に設けられる近用レンズ度数αから第二の度数領域22に設けられる遠用レンズ度数βに至るまで複数段階的にレンズ度数の異ならされた移行部28を備えたマルチフォーカル構造のコンタクトレンズ10が実現される。 4B is a lens power range from the lens power α in the first power area 20 to the lens power β in the second power area 22, and the transition power of the transition section 28 is as follows. The lens power γ is set so as to gradually change from the first power area 20 toward the second power area 22. In short, the intermediate lens power γ of the transition portion 28 differs from γ1, γ2,... By a predetermined width from the first power region 20 toward the second power region 22, and β <γ1 <γ2 <.・ <Α. Thereby, the transition portion 28 having different lens powers in a plurality of steps from the near lens power α provided in the first power area 20 to the distance lens power β provided in the second power area 22 is provided. In addition, the contact lens 10 having a multifocal structure is realized.
 さらに、図5(a)に示されたレンズ度数の設定態様では、第一の度数領域20のレンズ度数αから第二の度数領域22のレンズ度数βに至るレンズ度数範囲で、移行部28のレンズ度数γを、第一の度数領域20から第二の度数領域22に向かって漸次に無段階に変化するように設定したものである。要するに、移行部28の中間レンズ度数γは、第一の度数領域20から第二の度数領域22に向かって連続的に変化している。これにより、第一の度数領域20に設けられる近用レンズ度数αから第二の度数領域22に設けられる遠用レンズ度数βに至るまで漸次に無段階にレンズ度数が変化せしめられており、プログレッシブ構造の移行部28を備えたコンタクトレンズ10が実現される。 Further, in the lens power setting mode shown in FIG. 5A, the lens power range of the first power region 20 to the lens power β of the second power region 22 is changed. The lens power γ is set so as to gradually and continuously change from the first power area 20 toward the second power area 22. In short, the intermediate lens power γ of the transition portion 28 continuously changes from the first power region 20 toward the second power region 22. As a result, the lens power is gradually changed steplessly from the near lens power α provided in the first power area 20 to the distance lens power β provided in the second power area 22. A contact lens 10 with a structural transition 28 is realized.
 更にまた、かかるプログレッシブ構造の移行部28を備えたコンタクトレンズ10においては、第一の度数領域20と第二の度数領域22の少なくとも一方に設定されるレンズ度数が、かかるレンズ度数の球面収差を考慮して設けられていても良い。即ち、図5(b)に示されるように、第一の度数領域20に設けられるレンズ度数がα’からαまで漸次に無段階に変化するように設定されている一方、第二の度数領域22に設けられるレンズ度数がβからβ’まで漸次に無段階に変化するようにされていても良い。更に、移行部28においても、中間レンズ度数γが、レンズ度数αからβまで漸次に無段階に変化するようにされている。このことから、図5(b)のコンタクトレンズ10は、光学領域14においてレンズ度数α’からβ’まで漸次に無段階に変化するようにされたプログレッシブ構造のコンタクトレンズとされている。なお、レンズ度数α’はαより所定量大きい数値とされていると共に、レンズ度数β’はβより所定量小さい数値とされている。 Furthermore, in the contact lens 10 having the transition portion 28 having such a progressive structure, the lens power set in at least one of the first power region 20 and the second power region 22 has a spherical aberration of the lens power. It may be provided in consideration. That is, as shown in FIG. 5B, the lens power provided in the first power region 20 is set so as to gradually change from α ′ to α in a stepless manner, while the second power region. The lens power provided at 22 may be changed steplessly from β to β ′. Further, in the transition section 28, the intermediate lens power γ is gradually changed steplessly from the lens power α to β. From this, the contact lens 10 of FIG. 5B is a contact lens having a progressive structure that gradually changes in a stepless manner from the lens power α ′ to β ′ in the optical region 14. The lens power α ′ is a numerical value larger than α by a predetermined amount, and the lens power β ′ is a numerical value smaller than β by a predetermined amount.
 即ち、第一の度数領域20に設定されるレンズ度数αおよび第二の度数領域に設けられるレンズ度数βは、それぞれかかる領域において一定とされる必要はない。要するに、図5(c)に示されているように、光学領域14の全体において、レンズ度数が第一の度数領域20に設定されるレンズ度数αから第二の度数領域22に設定されるレンズ度数βまで、一定とされる領域を持たずに漸次に無段階に変化していても良い。このように、コンタクトレンズ10は第一の度数領域20と第二の度数領域22に設定されるレンズ度数の少なくとも一方を漸次に無段階に変化させても良く、移行部28がプログレッシブ構造とされるだけでなく、光学領域14がプログレッシブ構造とされても良い。なお、図5(b),(c)のように、光学領域14がプログレッシブ構造とされる場合、レンズ度数が滑らかに連続して変化するため、移行部28の境界は明確には形成されない。 That is, the lens power α set in the first power region 20 and the lens power β provided in the second power region do not need to be constant in each of these regions. In short, as shown in FIG. 5C, in the entire optical region 14, the lens power is set to the second power region 22 from the lens power α set to the first power region 20. Until the frequency β, it may be gradually changed steplessly without having a constant region. As described above, the contact lens 10 may gradually change at least one of the lens powers set in the first power region 20 and the second power region 22 steplessly, and the transition portion 28 has a progressive structure. In addition, the optical region 14 may have a progressive structure. As shown in FIGS. 5B and 5C, when the optical region 14 has a progressive structure, since the lens power changes smoothly and continuously, the boundary of the transition portion 28 is not clearly formed.
 なお、第一の度数領域20のレンズ度数αと第二の度数領域22のレンズ度数βとの差、即ち、第一の度数領域20に設けられる第二の度数領域22に対する付加度数は、好適には+0.25~+4.0ディオプターの範囲に設定されて、更に好適には+1.0~+2.5ディオプターの範囲に設定される。蓋し、+0.25ディオプターより小さいと、第一の度数領域20と第二の度数領域22における見え方の差が過剰に小さくなってしまい、例えば、本発明のコンタクトレンズ10を老視矯正用のコンタクトレンズとして使用する場合、近方視または遠方視、或いはその両方の矯正効果が十分に得られないおそれがある。また、+4.0ディオプターより大きいと、第一の度数領域20と第二の度数領域22の見え方の差が過剰に大きくなってしまい、例えば、近方視から遠方視に移行する場合、使用者が違和感を感じるおそれがあるからである。 The difference between the lens power α of the first power area 20 and the lens power β of the second power area 22, that is, the added power to the second power area 22 provided in the first power area 20 is preferable. Is set in the range of +0.25 to +4.0 diopter, and more preferably in the range of +1.0 to +2.5 diopter. If it is covered and smaller than +0.25 diopter, the difference in appearance between the first power region 20 and the second power region 22 becomes excessively small. For example, the contact lens 10 of the present invention is used for presbyopia correction. When used as a contact lens, there is a possibility that the effect of correcting near vision or far vision or both cannot be sufficiently obtained. Further, if it is larger than +4.0 diopter, the difference in appearance between the first power region 20 and the second power region 22 becomes excessively large. For example, it is used when shifting from near vision to far vision. This is because the person may feel uncomfortable.
 さらに、上述の如きコンタクトレンズ10では、装用状態下において対称径線24が略鉛直上下方向となるように周方向に位置決めするための周方向位置決め手段36が採用されている。 Furthermore, the contact lens 10 as described above employs circumferential positioning means 36 for positioning in the circumferential direction so that the symmetric diameter line 24 is substantially vertically up and down in the worn state.
 周方向位置決め手段36として、本発明のコンタクトレンズにおいて好適には従来から公知のものが採用される。具体的に例示すると、実開昭48-13048号公報等に記載の「トランケーション法」や、特開平11-258553号公報等に開示の「プリズムバラスト法」、特開平8-304745号公報等に開示の「スラブオフ法(ダブルシン法)」、米国特許第5100225号明細書等に開示の「ペリバラスト法」などが挙げられる。 As the circumferential positioning means 36, a conventionally known contact lens of the present invention is preferably used. Specific examples include the “truncation method” described in Japanese Utility Model Laid-Open No. 48-13048, the “prism ballast method” disclosed in Japanese Patent Application Laid-Open No. 11-258553, etc., and Japanese Patent Application Laid-Open No. 8-304745. The disclosed “slab-off method (double thin method)”, the “periballast method” disclosed in US Pat.
 すなわち、「トランケーション法」は、レンズ下端外周を弦方向に直線又は小さな曲率の湾曲形状でのびる当接端縁として、かかる当接端縁を下眼瞼で支持させることでコンタクトレンズを周方向に位置決めするものである。なお、トランケーション法において、レンズ上下両端外周を何れも当接端縁とすることにより、上下反転位置となる周上の2方向においてレンズ周方向の安定位置をそれぞれ与えることもできる。 In other words, in the “truncation method”, the contact lens is positioned in the circumferential direction by using the lower end outer periphery of the lens as a contact edge extending linearly or in a curved shape with a small curvature in the chord direction, and supporting the contact edge with the lower eyelid To do. In the truncation method, by setting the outer periphery of the upper and lower ends of the lens as contact edges, stable positions in the lens circumferential direction can be given in two directions on the circumference that are the upside down positions.
 「プリズムバラスト法」は、レンズ全体にプリズムを設定して上端から下方に向かって次第に厚肉とさせることで重力作用を利用してコンタクトレンズを周方向に位置決めするものである。 The “prism ballast method” is a method of positioning the contact lens in the circumferential direction using the gravitational action by setting a prism on the entire lens and gradually increasing the thickness downward from the upper end.
 「スラブオフ法」は、レンズの光学領域の外周側に位置する周辺部において、上下方向の中間部分から上下両側に向けて次第に薄肉とされた薄肉部を設けて、レンズ上下部分への眼瞼による食わえ込み作用やレンズ上下部の傾斜面への眼瞼圧作用を利用してコンタクトレンズを周方向に位置決めするものである。 In the slab-off method, a thin portion that is gradually thinned from an intermediate portion in the vertical direction toward the upper and lower sides in the peripheral portion located on the outer peripheral side of the optical region of the lens is provided, and the upper and lower portions of the lens are eroded by the eyelids. The contact lens is positioned in the circumferential direction by using the engraving action and the eyelid pressure action on the inclined surfaces of the upper and lower parts of the lens.
 「ペリバラスト法」は、レンズ周辺部の左右両側においてそれぞれ僅かに下方に偏倚した重心位置をもって、一対の厚肉部を形成して、これら一対の厚肉部による重量バランスを利用してコンタクトレンズを周方向に位置決めするものである。 The “periballast method” is a method of forming a pair of thick parts with the positions of the centers of gravity slightly deviated downward on the left and right sides of the lens peripheral part, and using the weight balance of these pair of thick parts, Positioning in the circumferential direction.
 そして、このような周方向位置決め手段36のうち、本実施形態のコンタクトレンズ10では、図1,2に示されているように、周辺部16において、装用状態で上下方向に位置する領域に一対の薄肉部38,38を設けた「スラブオフ法」が採用されている。各薄肉部38,38は、対称径線24方向となる上下方向の両側外方に向かって次第にレンズ厚さを薄肉にする形状を周辺部16に与えている。本実施形態では、各薄肉部38,38は対称径線24および直交径線30に関して線対称形状とされており、即ち、周辺部16が対称径線24および直交径線30に関して線対称形状とされている。従って、本実施形態では、コンタクトレンズ10全体が対称径線24および直交径線30に関して線対称形状とされている。 Of the circumferential positioning means 36, in the contact lens 10 of the present embodiment, as shown in FIGS. 1 and 2, a pair of the peripheral portion 16 is located in a region positioned in the vertical direction in the worn state. The “slab-off method” in which the thin wall portions 38 and 38 are provided is employed. Each of the thin- walled portions 38 and 38 gives the peripheral portion 16 a shape that gradually reduces the lens thickness toward the outer sides on both sides in the vertical direction that is the direction of the symmetrical radial line 24. In this embodiment, each thin- walled portion 38, 38 has a line-symmetric shape with respect to the symmetric diameter line 24 and the orthogonal diameter line 30, that is, the peripheral portion 16 has a line-symmetric shape with respect to the symmetric diameter line 24 and the orthogonal diameter line 30. Has been. Therefore, in the present embodiment, the entire contact lens 10 has a line-symmetric shape with respect to the symmetrical diameter line 24 and the orthogonal diameter line 30.
 本実施形態では、かかる一対の薄肉部38,38が設けられることにより、コンタクトレンズ10は周方向で安定して位置決めされ得る。即ち、コンタクトレンズ10の周方向での重量分布による釣合作用に加えて、眼瞼の銜え込み作用や眼瞼圧による押し出し作用等により、コンタクトレンズ10は、装用状態下において、対称径線24が上下方向に延びる状態、要するに図1に示された状態で周方向位置決めされる。特に、本実施形態の周方向位置決め手段36である一対の薄肉部38,38は、直交径線30に関して線対称、要するに上下線対称であり、装用状態下において、コンタクトレンズ10の対称径線24方向の両端の何れが上方に位置するかは区別されない。そして、かかる一対の薄肉部38,38により、上下反転位置となる周上の2方向において、レンズ周方向の安定位置がコンタクトレンズ10に与えられる。このような周方向位置決め手段36で装用時に図1に示された周方向位置で安定するように位置決めされることにより、一対の第一の度数領域20,20の何れか一方がコンタクトレンズ10が装用される装用眼の瞳孔中心32に対して位置合わせされる。 In the present embodiment, the contact lens 10 can be stably positioned in the circumferential direction by providing the pair of thin portions 38, 38. That is, in addition to the balancing action due to the weight distribution in the circumferential direction of the contact lens 10, the contact lens 10 has a symmetrical radial line 24 that rises and falls in the wearing state due to the gripping action of the eyelids and the pushing action due to eyelid pressure. In the state extending in the direction, that is, in the state shown in FIG. In particular, the pair of thin portions 38, 38, which are the circumferential positioning means 36 of the present embodiment, are line symmetric with respect to the orthogonal diameter line 30, in other words, vertical line symmetry, and the symmetrical diameter line 24 of the contact lens 10 in the worn state. It is not distinguished which of the two ends of the direction is located above. The pair of thin portions 38 and 38 provide the contact lens 10 with a stable position in the lens circumferential direction in two directions on the circumference that is the upside down position. By such positioning in the circumferential direction so as to be stabilized at the circumferential position shown in FIG. 1 during wearing, either one of the pair of first power regions 20, 20 becomes the contact lens 10. It is aligned with the pupil center 32 of the wearing eye to be worn.
 かかる構造とされた本発明のコンタクトレンズ10は、以下の効果を発揮し得る。即ち、一対の第一の度数領域20,20と第二の度数領域22と移行部28から構成される光学領域14が全体として対称径線24に関して線対称形状とされていることから、コンタクトレンズ10は左右を区別する必要がなく、使用者の左右眼の何れにも装用され得る。これにより、コンタクトレンズ10の規格数の増加を抑えることが出来て、メーカーによる製造や販売者による管理の手間やコストが大幅に削減され得る。また、使用者によるコンタクトレンズ10の管理も容易となり、コンタクトレンズ10の保管スペースも減少させることが出来る。 The contact lens 10 of the present invention having such a structure can exhibit the following effects. That is, since the optical region 14 composed of the pair of first power regions 20, 20, the second power region 22, and the transition portion 28 as a whole has a line symmetrical shape with respect to the symmetrical radial line 24, the contact lens 10 does not need to distinguish between left and right, and can be worn on either the left or right eye of the user. Thereby, the increase in the number of standards of the contact lens 10 can be suppressed, and the labor and cost of manufacture by the manufacturer and management by the seller can be significantly reduced. Further, the management of the contact lens 10 by the user is facilitated, and the storage space for the contact lens 10 can be reduced.
 さらに、角膜中心から偏倚している瞳孔中心32の偏倚量等に応じて、一対の第一の度数領域20,20の各外形中心26,26もレンズ幾何中心12から偏倚している。これにより、装用状態下においては、一方の第一の度数領域20の外形中心26が瞳孔中心32と略一致するようにされており、良好な見え方の質(QOV)が効果的に確保され得る。 Furthermore, the outer shape centers 26 and 26 of the pair of first power regions 20 and 20 are also deviated from the lens geometric center 12 in accordance with the deviation amount of the pupil center 32 deviated from the corneal center. As a result, under the wearing state, the outer shape center 26 of one first power region 20 is made to substantially coincide with the pupil center 32, and a good quality of view (QOV) is effectively ensured. obtain.
 また、コンタクトレンズ10には周方向位置決め手段36が設けられており、装用状態下において、例えば、コンタクトレンズ10が回転すること等が抑止され得る。これにより、第一の度数領域20の外形中心26が瞳孔中心32からずれることが防止され得て、QOVの低下が抑えられ得ると共に、良好なQOVが維持され得る。 Further, the contact lens 10 is provided with a circumferential positioning means 36, and for example, rotation of the contact lens 10 can be suppressed under the wearing state. Thereby, it is possible to prevent the outer shape center 26 of the first power region 20 from deviating from the pupil center 32, and it is possible to suppress a decrease in QOV and to maintain a good QOV.
 特に、本実施形態のコンタクトレンズ10は以下の効果を発揮し得る。即ち、本実施形態では、周方向位置決め手段36としてスラブオフ法が採用されている。そして、本実施形態のコンタクトレンズ10は、レンズ全体が対称径線24および直交径線30に関して線対称形状とされていることから、コンタクトレンズ10は左右だけでなく上下も区別される必要がなく、更に効果的に規格数の増加を抑えることが出来る。また、使用者がコンタクトレンズの周方向を判別するための印刷や刻印されるマーク等を付する必要もなく、コンタクトレンズ10の製造が容易に実施され得る。 In particular, the contact lens 10 of this embodiment can exhibit the following effects. That is, in this embodiment, the slab-off method is adopted as the circumferential direction positioning means 36. The contact lens 10 according to the present embodiment has a symmetrical shape with respect to the symmetric diameter line 24 and the orthogonal diameter line 30 as a whole, and therefore the contact lens 10 does not need to be distinguished not only on the right and left but also on the top and bottom. In addition, the increase in the number of standards can be suppressed more effectively. Further, the contact lens 10 can be easily manufactured without requiring the user to add printing or marking marks for determining the circumferential direction of the contact lens.
 さらに、本実施形態のコンタクトレンズ10では、第一の度数領域20が円形状とされており、略円形状である瞳孔34の形状と対応している。これにより、例えば、明所視の際に、瞳孔径φAが小さくなった場合でも、第一の度数領域20と瞳孔34とが重なる領域を効果的に確保することが出来て、第一の度数領域20による視力矯正効果が十分に発揮され得る。 Furthermore, in the contact lens 10 of the present embodiment, the first power region 20 has a circular shape, which corresponds to the shape of the substantially circular pupil 34. Thereby, for example, even when the pupil diameter φA is reduced during photopic vision, it is possible to effectively secure a region where the first power region 20 and the pupil 34 overlap, and the first power The vision correction effect by the region 20 can be sufficiently exerted.
 また、本実施形態では、一対の移行部28,28が設けられていることから、レンズ度数の急激な変化が抑制されて、良好なQOVを得ることが出来る。特に、本実施形態では、各移行部28,28はそれぞれ第一の度数領域20の外周において、全周に亘って形成されている。そして、かかる一対の移行部28,28は離隔して配置されており、これら一対の移行部28,28間においても第二の度数領域22が設けられている。そのため、移行部28においても瞳孔34と重なる領域を十分に確保することが出来てQOVの向上が図られ得ると共に、第一の度数領域20と第二の度数領域22との間の移行の際の違和感が効果的に軽減され得る。 Further, in the present embodiment, since the pair of transition portions 28 are provided, a rapid change in the lens power is suppressed, and a good QOV can be obtained. In particular, in the present embodiment, each of the transition portions 28 is formed over the entire circumference on the outer circumference of the first frequency region 20. The pair of transition portions 28 and 28 are spaced apart from each other, and the second frequency region 22 is also provided between the pair of transition portions 28 and 28. Therefore, in the transition portion 28, a region overlapping with the pupil 34 can be sufficiently secured to improve the QOV, and at the time of transition between the first power region 20 and the second power region 22 Can be effectively reduced.
 次に、図6には、本発明の第二の実施形態としてのコンタクトレンズ40が示されている。本実施形態のコンタクトレンズ40では、前記第一の実施形態のコンタクトレンズ10と比べて、一対の移行部28,28が設けられていない形状とされている。なお、以下の説明において、前記第一の実施形態と実質的に同一の部位については、前記第一の実施形態と同じ符号を図中に付すことにより、詳細な説明は省略する。 Next, FIG. 6 shows a contact lens 40 as a second embodiment of the present invention. The contact lens 40 according to the present embodiment has a shape in which the pair of transition portions 28 are not provided as compared with the contact lens 10 according to the first embodiment. In the following description, parts that are substantially the same as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof is omitted.
 かかるコンタクトレンズ40は、移行部28を設けないことによって、一対の第一の度数領域42,42の外周と第二の度数領域22が直接接続された形状とされている。従って、本実施形態の第一の度数領域42の径寸法は、例えば、前記第一の実施形態の移行部28の外径寸法、即ち、φ(R1+2×B1)とすることができ、本実施形態では前記第一の実施形態よりも大きな第一の度数領域を確保することが出来る。または、第一の度数領域42の径寸法を前記第一の実施形態における第一の度数領域20と同程度の径寸法に保ちつつ、第二の度数領域22の面積を大きく設定することが出来る。 The contact lens 40 has a shape in which the outer periphery of the pair of first power regions 42 and 42 and the second power region 22 are directly connected by not providing the transition portion 28. Therefore, the diameter size of the first frequency region 42 of the present embodiment can be, for example, the outer diameter size of the transition portion 28 of the first embodiment, that is, φ (R1 + 2 × B1). In the form, it is possible to secure a first frequency area larger than that in the first embodiment. Alternatively, the area of the second power region 22 can be set large while maintaining the diameter of the first power region 42 at the same diameter as the first power region 20 in the first embodiment. .
 本実施形態のコンタクトレンズ40では、移行部を備えていないことから、例えば図7(a),(b)に示されるようなレンズ度数を示す。即ち、図7(a)では、第一の度数領域42にレンズ度数α”が設定されると共に、第二の度数領域22にレンズ度数β”が設定される一方、これらのレンズ度数α”、β”の中間のレンズ度数は設定されていない。これにより、本実施形態のコンタクトレンズ40は移行部を備えないバイフォーカル構造のコンタクトレンズとされ得る。なお、かかる移行部を備えないバイフォーカル構造のコンタクトレンズとされる場合のレンズ度数変化は、図4(a)に示される移行部28に設定される中間レンズ度数が、第一の度数領域のレンズ度数または第二の度数領域のレンズ度数と等しくされる場合と実質的に略同一とされる。或いは、図7(b)では、第一の度数領域42にレンズ度数α”が設定されると共に、第二の度数領域22にレンズ度数β”が設定されており、第一の度数領域42から第二の度数領域22に亘って、即ち光学領域14においてレンズ度数がα”からβ”まで漸次に無段階に設定されている。これにより、本実施形態のコンタクトレンズ40は移行部を備えないプログレッシブ構造のコンタクトレンズとされ得る。なお、かかる移行部を備えないプログレッシブ構造のコンタクトレンズとされる場合のレンズ度数変化は、図5(c)に示される移行部を備えるプログレッシブ構造のコンタクトレンズにおけるレンズ度数変化と実質的に略同一とされる。 Since the contact lens 40 of the present embodiment does not include a transition portion, the lens power as shown in FIGS. 7A and 7B is shown, for example. That is, in FIG. 7A, the lens power α ″ is set in the first power area 42 and the lens power β ″ is set in the second power area 22, while these lens powers α ″, The lens power in the middle of β ″ is not set. Thereby, the contact lens 40 of this embodiment can be made into the contact lens of the bifocal structure which does not have a transition part. Note that the lens power change in the case of a contact lens having a bifocal structure that does not include such a transition portion is such that the intermediate lens power set in the transition portion 28 shown in FIG. The lens power is substantially the same as the lens power or the lens power in the second power region. Alternatively, in FIG. 7B, the lens power α ″ is set in the first power area 42 and the lens power β ″ is set in the second power area 22. The lens power is gradually set steplessly from α ″ to β ″ over the second power region 22, that is, in the optical region 14. Thereby, the contact lens 40 of this embodiment can be made into the progressive contact lens which does not have a transition part. It should be noted that the lens power change in the case of a progressive structure contact lens not provided with such a transition portion is substantially substantially the same as the lens power change in the progressive structure contact lens provided with a transition portion shown in FIG. It is said.
 このような形状とされた本実施形態のコンタクトレンズ40は、前記第一の実施形態のコンタクトレンズ10と同様な効果が発揮され得て、更に以下の効果が発揮され得る。即ち、前記第一の実施形態に比べて第一の度数領域または第二の度数領域、或いは両度数領域をより大きな範囲で確保し得ることから、第一の度数領域42または第二の度数領域22、或いは両度数領域42,22による視力矯正効果を更に効率的に得ることが出来る。 The contact lens 40 of this embodiment having such a shape can exhibit the same effects as the contact lens 10 of the first embodiment, and can further exhibit the following effects. That is, since the first frequency region or the second frequency region, or both frequency regions can be secured in a larger range compared to the first embodiment, the first frequency region 42 or the second frequency region. 22, or the vision correction effect by both power regions 42 and 22 can be obtained more efficiently.
 次に、図8には、本発明の第三の実施形態としてのコンタクトレンズ44が示されている。本実施形態のコンタクトレンズ44では、前記第一の実施形態のコンタクトレンズ10と比べて、一対の第一の度数領域20,20間および一対の移行部28,28間において第二の度数領域22が設けられておらず、更に、一対の移行部28,28が外周上の一点で略接している。特に本実施形態では、対称径線24と直交径線30が交わるレンズ幾何中心12上で、それぞれ略円形とされた一対の移行部28,28が相互に外周縁部で略接している形状とされている。 Next, FIG. 8 shows a contact lens 44 as a third embodiment of the present invention. In the contact lens 44 of the present embodiment, compared to the contact lens 10 of the first embodiment, the second power region 22 is between the pair of first power regions 20 and 20 and between the pair of transition portions 28 and 28. Is not provided, and the pair of transition portions 28, 28 are substantially in contact at one point on the outer periphery. In particular, in the present embodiment, a pair of transition portions 28 and 28 each having a substantially circular shape on the lens geometric center 12 where the symmetric diameter line 24 and the orthogonal diameter line 30 intersect each other are substantially in contact with each other at the outer peripheral edge portion. Has been.
 すなわち、本実施形態では、直交径線30上において一対の第一の度数領域20,20間には、かかる第一の度数領域20,20のそれぞれの外周に設けられた移行部28,28のみが設けられている。従って、直交径線30上の一対の第一の度数領域20,20間の離隔距離をL2、移行部28の径方向幅寸法をB2とすると、L2≒(2×B2)とされている。 That is, in the present embodiment, only the transition portions 28, 28 provided on the outer circumferences of the first power regions 20, 20 between the pair of first power regions 20, 20 on the orthogonal diameter line 30. Is provided. Therefore, when the separation distance between the pair of first power regions 20 and 20 on the orthogonal diameter line 30 is L2, and the radial width dimension of the transition portion 28 is B2, L2≈ (2 × B2).
 このような形状とされた本実施形態のコンタクトレンズ44においても、前記第一の実施形態のコンタクトレンズ10と同様な効果が発揮され得る。即ち、本発明では、直交径線30上において、必ずしも一対の第一の移行部間、要するに一対の第一の度数領域間に第二の度数領域22が設けられる必要はない。また、一対の移行部は必ずしも前記第一の実施形態のように離隔して設けられる必要はなく、例えば相互に外周縁部で接していても良い。 Also in the contact lens 44 of this embodiment having such a shape, the same effect as that of the contact lens 10 of the first embodiment can be exhibited. That is, in the present invention, it is not always necessary to provide the second power region 22 between the pair of first transition portions, in other words, between the pair of first power regions on the orthogonal diameter line 30. Further, the pair of transition portions are not necessarily provided separately as in the first embodiment, and may be in contact with each other at the outer peripheral edge, for example.
 次に、図9には、本発明の第四の実施形態としてのコンタクトレンズ46が示されている。本実施形態のコンタクトレンズ46では、前記第一の実施形態のコンタクトレンズ10と比べて、一対の第一の度数領域20,20間、即ち一対の移行部間において第二の度数領域22が設けられておらず、一対の移行部48,48だけが設けられている。また、対称径線24上で一対の移行部48,48の接続部分は所定長さを有している。 Next, FIG. 9 shows a contact lens 46 as a fourth embodiment of the present invention. In the contact lens 46 of the present embodiment, the second power region 22 is provided between the pair of first power regions 20, 20, that is, between the pair of transition portions, as compared with the contact lens 10 of the first embodiment. Only a pair of transition portions 48, 48 are provided. Moreover, the connection part of a pair of transition parts 48 and 48 on the symmetrical diameter line 24 has predetermined length.
 具体的には、本実施形態の各移行部48の外周形状は、対称径線24を弦とする弓形に切除された略切欠円形状とされている。そして、かかる弦同士が対称径線24上で接して、一対の移行部48,48が連続することで略瓢箪形に連なり、対称径線24に関して線対称形状の外周形状を有する一体形状とされている。即ち、本実施形態では、直交径線30上の一対の第一の度数領域20,20間の離隔距離をL3、移行部48の円環形状とされた部分の径方向幅寸法をB3とすると、L3<(2×B3)とされている。 Specifically, the outer peripheral shape of each transition portion 48 of the present embodiment is a substantially notch circle shape cut into an arcuate shape having a symmetrical radial line 24 as a chord. The chords are in contact with each other on the symmetric diameter line 24, and the pair of transition portions 48, 48 are connected to each other to form a substantially bowl shape. ing. That is, in this embodiment, when the separation distance between the pair of first power regions 20 and 20 on the orthogonal diameter line 30 is L3, and the radial width dimension of the annular portion of the transition portion 48 is B3. , L3 <(2 × B3).
 このような形状とされた本実施形態のコンタクトレンズ46においても、前記第一の実施形態のコンタクトレンズ10と同様な効果が発揮され得る。即ち、本発明では、円環形状とされた一対の移行部は必ずしも離隔或いは一点で接している必要はなく、一対の移行部が所定幅で連続した連設構造を有する一体の移行部とされていてもよい。 Also in the contact lens 46 of this embodiment having such a shape, the same effect as that of the contact lens 10 of the first embodiment can be exhibited. In other words, in the present invention, the pair of transition portions formed in an annular shape do not necessarily need to be separated or contacted at one point, and are formed as an integral transition portion having a continuous structure in which the pair of transition portions are continuous at a predetermined width. It may be.
 次に、図10には、本発明の第五の実施形態としてのコンタクトレンズ50が示されている。本実施形態のコンタクトレンズ50は、前記第二の実施形態のコンタクトレンズ40と比べて、一対の第一の度数領域42,42間において第二の度数領域22が設けられていない形状とされている。また、換言すれば、本実施形態のコンタクトレンズ50は、前記第三の実施形態のコンタクトレンズ44と比べて、一対の移行部28,28が設けられていない形状とされている。 Next, FIG. 10 shows a contact lens 50 as a fifth embodiment of the present invention. Compared with the contact lens 40 of the second embodiment, the contact lens 50 of the present embodiment has a shape in which the second power region 22 is not provided between the pair of first power regions 42, 42. Yes. In other words, the contact lens 50 according to the present embodiment has a shape in which the pair of transition portions 28 are not provided as compared with the contact lens 44 according to the third embodiment.
 具体的には、本実施形態では、直交径線30上における一対の第一の度数領域42,42間には移行部28および第二の度数領域22が設けられていない。即ち、一対の第一の度数領域42,42は、何れも略円形状とされていると共に、各外周上の一点で略接している。特に本実施形態では、対称径線24と直交径線30が交わるレンズ幾何中心12上で、それぞれ略円形とされた一対の第一の度数領域42,42が相互に略接している形状とされている。即ち、本実施形態では、一対の第一の度数領域42,42の離隔距離Lが略0とされている。 Specifically, in this embodiment, the transition portion 28 and the second power region 22 are not provided between the pair of first power regions 42 and 42 on the orthogonal diameter line 30. That is, each of the pair of first power regions 42 and 42 has a substantially circular shape, and is substantially in contact at one point on each outer periphery. In particular, in the present embodiment, a pair of first power regions 42 and 42 each having a substantially circular shape are substantially in contact with each other on the lens geometric center 12 where the symmetric diameter line 24 and the orthogonal diameter line 30 intersect. ing. That is, in the present embodiment, the separation distance L between the pair of first power regions 42, 42 is set to approximately zero.
 このような形状とされた本実施形態のコンタクトレンズ50においては、前記第二の実施形態のコンタクトレンズ40および前記第三の実施形態のコンタクトレンズ44と同様な効果が発揮され得る。即ち、本発明では、一対の第一の度数領域は必ずしも離隔して設けられる必要はなく、対称径線24上において、一対の第一の度数領域の外周が相互に直接に略接していても良い。 In the contact lens 50 of this embodiment having such a shape, the same effects as those of the contact lens 40 of the second embodiment and the contact lens 44 of the third embodiment can be exhibited. That is, in the present invention, the pair of first power regions are not necessarily provided separately from each other, and even if the outer peripheries of the pair of first power regions are in direct contact with each other on the symmetrical radial line 24. good.
 前記第一~第五の実施形態から明らかなように、直交径線30上での一対の第一の度数領域間における離隔距離Lは何等限定されるものではなく、例えば、使用者毎の角膜中心に対する瞳孔中心の偏倚量に応じて離隔距離Lの設定が可能である。即ち、本発明のコンタクトレンズは、使用者毎の角膜形状や眼瞼圧等の特性に応じて離隔距離Lを設定や選択することが可能であり、これにより更なる見え方の質(QOV)の向上が図られ得る。 As is clear from the first to fifth embodiments, the distance L between the pair of first power regions on the orthogonal diameter line 30 is not limited in any way. For example, the cornea for each user The separation distance L can be set according to the deviation amount of the pupil center with respect to the center. That is, the contact lens of the present invention can set and select the separation distance L according to the characteristics such as the corneal shape and eyelid pressure for each user, thereby further improving the quality of view (QOV). Improvement can be achieved.
 次に、図11には、本発明の第六の実施形態としてのコンタクトレンズ52が示されている。かかるコンタクトレンズ52では、前記第一の実施形態のコンタクトレンズ10に比べて、一対の第一の度数領域54,54、および第一の度数領域54,54のそれぞれの外周に設けられる移行部56の外形が円形でない異形状とされており、特に本実施形態では楕円形とされている。 Next, FIG. 11 shows a contact lens 52 as a sixth embodiment of the present invention. In the contact lens 52, compared to the contact lens 10 of the first embodiment, the pair of first power regions 54 and 54 and the transition portions 56 provided on the outer circumferences of the first power regions 54 and 54, respectively. The outer shape is an irregular shape that is not circular, and in this embodiment, the outer shape is an ellipse.
 具体的には、本実施形態では、一対の第一の度数領域54,54の長軸が直交径線30上に位置している一方、短軸が対称径線24方向に延びている。また、各移行部56,56は、第一の度数領域54,54に対応する形状とされており、従って、各移行部56,56の長軸が直交径線30上に位置している一方、短軸が対称径線24方向に延びている。 Specifically, in the present embodiment, the long axis of the pair of first power regions 54 and 54 is located on the orthogonal radial line 30 while the short axis extends in the direction of the symmetric radial line 24. In addition, each transition portion 56, 56 has a shape corresponding to the first frequency region 54, 54, and therefore the major axis of each transition portion 56, 56 is located on the orthogonal diameter line 30. The minor axis extends in the direction of the symmetrical radial line 24.
 このような形状とされた本実施形態のコンタクトレンズ52では、前記第一の実施形態のコンタクトレンズ10と同様の効果に加えて以下の効果を発揮し得る。即ち、例えば、レンズ幾何中心12に対する瞳孔中心32の偏倚量δが使用者毎に又は使用環境の変化等により異なったり変化したりする場合に特に有利に用いられる。例えば、かかる偏倚量δが異なる使用者に提供する場合には、上述のように一対の第一の度数領域間の離隔距離Lを調節するによる他、本実施形態の如き直交径線30方向の寸法を大きくした第一の度数領域54を採用することで偏倚量δの相違に際して広く対応することが可能になる。そして、第一の度数領域54や移行部56が効率的に瞳孔34を覆い得ることから、良好な見え方の質(QOV)も維持され得る。 The contact lens 52 of this embodiment having such a shape can exhibit the following effects in addition to the same effects as the contact lens 10 of the first embodiment. That is, for example, it is particularly advantageously used when the deviation amount δ of the pupil center 32 with respect to the lens geometric center 12 varies or changes for each user or due to a change in usage environment. For example, when providing such a deviation amount δ to different users, in addition to adjusting the separation distance L between the pair of first power regions as described above, the direction of the orthogonal radial line 30 as in this embodiment can be used. By adopting the first frequency region 54 having a larger size, it becomes possible to cope widely with differences in the deviation amount δ. And since the 1st frequency area | region 54 and the transition part 56 can cover the pupil 34 efficiently, the quality (QOV) of a favorable appearance can also be maintained.
 特に、レンズ幾何中心12に対する瞳孔中心32の偏倚方向が直交径線30方向である場合には、本実施形態の各第一の度数領域54,54のように、直交径線30方向の寸法を大きくすることが好ましい。 In particular, when the deviation direction of the pupil center 32 with respect to the lens geometric center 12 is the direction of the orthogonal diameter line 30, the dimension in the direction of the orthogonal diameter line 30 is set as in the first power regions 54 and 54 of the present embodiment. It is preferable to enlarge it.
 次に、図12には、本発明の第七の実施形態としてのコンタクトレンズ58が示されている。本実施形態のコンタクトレンズ58では、前記第六の実施形態のコンタクトレンズ52に比べて、一対の第一の度数領域54,54および一対の移行部56,56の短軸がそれぞれ直交径線30上に位置している一方、長軸が対称径線24方向に延びている。 Next, FIG. 12 shows a contact lens 58 as a seventh embodiment of the present invention. In the contact lens 58 of the present embodiment, the short axes of the pair of first power regions 54 and 54 and the pair of transition portions 56 and 56 are orthogonal to each other as compared to the contact lens 52 of the sixth embodiment. While located on the upper side, the long axis extends in the direction of the symmetrical radial line 24.
 このような形状とされた本実施形態のコンタクトレンズ58では、前記第六の実施形態のコンタクトレンズ52と同様の効果を発揮し得る。特に、例えば、一対の第一の度数領域54,54間に移行部や第二の度数領域22を設ける場合等、十分量の離隔距離Lが必要とされる場合にも、第一の度数領域の形状として本実施形態の縦長の楕円形のように、直交径線30方向の寸法を小さくした異形状の第一の度数領域54を採用することにより、十分量の離隔距離Lが確保され得る。また、レンズ幾何中心12に対する瞳孔中心32の偏倚方向が対称径線24方向においても考慮すべき場合には、縦長の楕円形状とされた第一の度数領域54,54のように、対称径線24方向の寸法を大きくした異形状の第一の度数領域54,54を採用することが望ましい。 The contact lens 58 of this embodiment having such a shape can exhibit the same effects as the contact lens 52 of the sixth embodiment. In particular, even when a sufficient amount of the separation distance L is required, such as when a transition portion or the second power region 22 is provided between the pair of first power regions 54, 54, the first power region A sufficient amount of separation distance L can be ensured by adopting the first power region 54 having a different shape with a reduced size in the direction of the orthogonal diameter line 30 as in the case of the vertically long ellipse of this embodiment. . Further, when the deviation direction of the pupil center 32 with respect to the lens geometric center 12 is to be taken into consideration even in the direction of the symmetric radial line 24, the symmetric radial line as in the first power regions 54 and 54 having a vertically long ellipse shape. It is desirable to employ irregularly shaped first frequency regions 54, 54 having dimensions in 24 directions increased.
 次に、図13には、本発明の第八の実施形態としてのコンタクトレンズ60が示されている。本実施形態のコンタクトレンズ60は、前記第六の実施形態のコンタクトレンズ52に比べて、一対の第一の度数領域54,54と一対の移行部56,56の長軸および短軸が、それぞれ対称径線24および直交径線30に対して傾斜している形状とされている。なお、図13中では、鼻側(図中右側)の第一の度数領域54と移行部56の長軸が直交径線30と略45度の傾斜角度をもって設けられている。 Next, FIG. 13 shows a contact lens 60 as an eighth embodiment of the present invention. Compared with the contact lens 52 of the sixth embodiment, the contact lens 60 of the present embodiment has a long axis and a short axis of the pair of first power regions 54 and 54 and the pair of transition portions 56 and 56, respectively. The shape is inclined with respect to the symmetric diameter line 24 and the orthogonal diameter line 30. In FIG. 13, the major axis of the first frequency region 54 and the transition portion 56 on the nose side (right side in the figure) is provided with an inclination angle of approximately 45 degrees with the orthogonal diameter line 30.
 従って、本実施形態のコンタクトレンズ60の光学領域14は、直交径線30に関して線対称形状とされていない。このため、本実施形態のコンタクトレンズ60では、上下反転を防止するような周方向位置決め手段36が設けられる。即ち、周方向位置決め手段36により、対称径線24方向における何れか一方の端部が、装用状態で、コンタクトレンズ60の上方に位置するようにされる。本実施形態のコンタクトレンズ60ではかかる周方向位置決め手段36として、前記実施形態と同様にスラブオフ法が採用されているが、装用状態下方の薄肉部38’の領域を装用状態上方の薄肉部38に比べて小さくしている。かかる薄肉部38,38’の重量分布の差等の作用により、周上の1方向においてレンズ周方向の安定位置がコンタクトレンズ60に与えられて、本実施形態のコンタクトレンズ60は、図13に示される状態で周方向位置決めされ得る。 Therefore, the optical region 14 of the contact lens 60 of the present embodiment is not line-symmetric with respect to the orthogonal diameter line 30. For this reason, the contact lens 60 of the present embodiment is provided with a circumferential positioning means 36 that prevents upside down. That is, the circumferential positioning means 36 causes any one end in the direction of the symmetric radial line 24 to be positioned above the contact lens 60 in the worn state. In the contact lens 60 of the present embodiment, the slab-off method is adopted as the circumferential positioning means 36 in the same manner as in the previous embodiment. However, the region of the thin portion 38 ′ below the wearing state is changed to the thin portion 38 above the wearing state. It is smaller than that. Due to such effects as the difference in weight distribution between the thin portions 38 and 38 ′, a stable position in the lens circumferential direction is given to the contact lens 60 in one direction on the circumference, and the contact lens 60 of this embodiment is shown in FIG. It can be circumferentially positioned as shown.
 このような形状とされた本実施形態のコンタクトレンズ60では、前記第六の実施形態のコンタクトレンズ52と同様の効果を発揮し得る。特に、レンズ幾何中心12に対する瞳孔中心32の偏倚方向が対称径線24および直交径線30に対して傾斜している場合には、かかる偏倚方向と第一の度数領域54の長軸の方向が略同方向とされることが好ましい。 The contact lens 60 of this embodiment having such a shape can exhibit the same effect as the contact lens 52 of the sixth embodiment. In particular, when the deviation direction of the pupil center 32 with respect to the lens geometric center 12 is inclined with respect to the symmetric diameter line 24 and the orthogonal diameter line 30, the deviation direction and the major axis direction of the first power region 54 are It is preferable that the directions are substantially the same.
 次に、図14,15には、本発明の第九の実施形態としてのコンタクトレンズ62が示されており、図16には、本発明の第十の実施形態としてのコンタクトレンズ63が示されている。両実施形態のコンタクトレンズ62,63は、前記第一の実施形態のコンタクトレンズ10に比べて、一対の第一の度数領域20,20および一対の移行部28,28が直交径線30に対して対称径線24方向に偏倚している形状とされている。なお、第十の実施形態としてのコンタクトレンズ63は第九の実施形態としてのコンタクトレンズ62における光学領域14を上下反転させたものであり、コンタクトレンズ62では、かかる偏倚方向が装用状態下方とされている一方、コンタクトレンズ63では偏倚方向が装用状態上方とされている。また、図14および図16中では、直交径線30方向における一対の第一の度数領域20,20間の離隔距離L4が図1より小さくされている。 Next, FIGS. 14 and 15 show a contact lens 62 as a ninth embodiment of the present invention, and FIG. 16 shows a contact lens 63 as a tenth embodiment of the present invention. ing. Compared with the contact lens 10 of the first embodiment, the contact lenses 62 and 63 of both embodiments have a pair of first power regions 20 and 20 and a pair of transition portions 28 and 28 with respect to the orthogonal diameter line 30. Thus, the shape is biased in the direction of the symmetric radial line 24. The contact lens 63 according to the tenth embodiment is obtained by inverting the optical region 14 of the contact lens 62 according to the ninth embodiment upside down. In the contact lens 62, the biasing direction is the lower side of the wearing state. On the other hand, in the contact lens 63, the deflection direction is set to the upper side of the wearing state. Moreover, in FIG. 14 and FIG. 16, the separation distance L4 between a pair of 1st frequency area | regions 20 and 20 in the orthogonal diameter line 30 direction is made smaller than FIG.
 具体的には、コンタクトレンズの装用状態下において、角膜等の表面形状などにより、瞳孔中心32がコンタクトレンズ幾何中心12に対して直交径線30方向だけでなく、対称径線24方向にも偏倚することがある。一般に、瞳孔中心32は、レンズ幾何中心12に対して、鼻側の斜め下方(図14中、右下方向)に偏倚して安定位置をとることが多い。このことから、第九の実施形態では、対称径線24方向におけるレンズ幾何中心12に対する瞳孔中心32の偏倚量εに応じて、一対の第一の度数領域20,20を直交径線30に対して装用状態下方に偏倚させている。一方、角膜等の表面形状は個人差が大きく、コンタクトレンズの安定位置が角膜上の上方である使用者やコンタクトレンズが周方向で少し耳側に回転した状態で安定する使用者も少なくない。このようなコンタクトレンズ使用者には第十の実施形態としてのコンタクトレンズ63が好適に採用される。 Specifically, with the contact lens worn, the pupil center 32 deviates not only in the orthogonal diameter line 30 direction but also in the symmetric diameter line 24 direction with respect to the contact lens geometric center 12 due to the surface shape of the cornea and the like. There are things to do. In general, the pupil center 32 often deviates obliquely downward on the nose side (lower right direction in FIG. 14) with respect to the lens geometric center 12 and takes a stable position. Therefore, in the ninth embodiment, the pair of first power regions 20 and 20 are arranged with respect to the orthogonal radial line 30 according to the deviation amount ε of the pupil center 32 with respect to the lens geometric center 12 in the direction of the symmetrical radial line 24. And biased downward in the wearing state. On the other hand, the surface shape of the cornea or the like varies greatly between individuals, and there are many users who have a stable contact lens position above the cornea and users who are stable when the contact lens is slightly rotated in the circumferential direction. For such a contact lens user, the contact lens 63 according to the tenth embodiment is preferably employed.
 従って、第九の実施形態のコンタクトレンズ62および第十の実施形態のコンタクトレンズ63の光学領域14は、直交径線30に関して線対称形状とされていない。このため、両実施形態のコンタクトレンズ62,63では、上下反転を防止するような周方向位置決め手段36が設けられる。即ち、周方向位置決め手段36により、対称径線24方向における何れか一方の端部が、装用状態で、コンタクトレンズ62,63の上方に位置するようにされる。両実施形態のコンタクトレンズ62,63ではかかる周方向位置決め手段36として、プリズムバラスト法が採用されている。要するに、第九の実施形態のコンタクトレンズ62では、図15に示されるように、コンタクトレンズ62の装用状態上方から下方に向かって次第に厚肉となるようにされている。そして、かかる厚肉の領域の下端において、下眼瞼によるコンタクトレンズ62の銜え込み作用が発揮されるように、厚肉領域において相対的に薄肉とされた位置決め部64が設けられている。このようなコンタクトレンズ62の重量分布の差や位置決め部64における下眼瞼の銜え込み等の作用により、周上の1方向においてレンズ周方向の安定位置がコンタクトレンズ62に与えられて、本実施形態のコンタクトレンズ62は、図14に示される状態で周方向位置決めされ得る。なお、第十の実施形態のコンタクトレンズ63における周辺部16の形状は第九の実施形態のコンタクトレンズ62と同一であることから、断面図の図示を省略する。即ち、第十の実施形態のコンタクトレンズ63では、第九の実施形態のコンタクトレンズ62と同様に周辺部16の形状としてプリズムバラスト法が採用されており、厚肉領域の下端に位置決め部64が設けられている。 Therefore, the optical region 14 of the contact lens 62 of the ninth embodiment and the contact lens 63 of the tenth embodiment is not line-symmetric with respect to the orthogonal diameter line 30. For this reason, the contact lenses 62 and 63 of both embodiments are provided with circumferential positioning means 36 for preventing the upside down. In other words, the circumferential positioning means 36 causes any one end in the direction of the symmetric radial line 24 to be positioned above the contact lenses 62 and 63 in the worn state. In the contact lenses 62 and 63 of both embodiments, a prism ballast method is adopted as the circumferential positioning means 36. In short, in the contact lens 62 of the ninth embodiment, as shown in FIG. 15, the contact lens 62 is gradually thickened from the upper wearing state to the lower wearing state. A positioning portion 64 that is relatively thin in the thick region is provided at the lower end of the thick region so that the contact lens 62 can be gripped by the lower eyelid. Due to the difference in the weight distribution of the contact lens 62 and the operation of the lower eyelid in the positioning portion 64, a stable position in the circumferential direction of the lens is given to the contact lens 62 in one direction on the circumference. The contact lens 62 can be circumferentially positioned in the state shown in FIG. In addition, since the shape of the peripheral part 16 in the contact lens 63 of the tenth embodiment is the same as that of the contact lens 62 of the ninth embodiment, illustration of a sectional view is omitted. That is, in the contact lens 63 of the tenth embodiment, the prism ballast method is adopted as the shape of the peripheral portion 16 like the contact lens 62 of the ninth embodiment, and the positioning portion 64 is provided at the lower end of the thick region. Is provided.
 これにより、コンタクトレンズ62またはコンタクトレンズ63の装用状態下で、第一の度数領域20の外形中心26を瞳孔中心32に対して一層正確に一致させることが可能になる。その結果、第一の度数領域20による光学特性および第二の度数領域22による光学特性を一層効果的に安定して享受することが可能になる。 This makes it possible to more accurately match the outer shape center 26 of the first power region 20 with the pupil center 32 under the wearing state of the contact lens 62 or the contact lens 63. As a result, it is possible to more effectively and stably enjoy the optical characteristics of the first power region 20 and the optical characteristics of the second power region 22.
 なお、装用状態における上下偏倚量εは、使用者の個人的な測定情報によって設定することも可能であり、好適には装用者の瞳孔中心32が第一の度数領域20の中心に対して、直交径線30方向と同様に対称径線24方向でも略一致するように設定される。好適には、瞳孔中心32と第一の度数領域20の外形中心26との偏倚量が、直交径線30方向および対称径線24方向においても1mm以下となるように設定され、より好適には0.5mm以下となるように設定される。 Note that the vertical displacement amount ε in the wearing state can also be set according to the user's personal measurement information, and preferably the wearer's pupil center 32 is relative to the center of the first power region 20. Similarly to the direction of the orthogonal diameter line 30, the direction of the symmetry diameter line 24 is set so as to substantially match. Preferably, the amount of deviation between the pupil center 32 and the outer shape center 26 of the first power region 20 is set to be 1 mm or less in the orthogonal radial line 30 direction and the symmetric radial line 24 direction, more preferably It is set to be 0.5 mm or less.
 ここで、装用状態における瞳孔中心32のレンズ幾何中心12からの対称径線24方向での偏倚量は、僅かな個人差はあるものの例えば統計的に求めることが可能である。コンタクトレンズ10の後面形状によっても少しの相違はあるが、一般にレンズ幾何中心12に対する第一の度数領域20の偏倚量εは、0.2mm~2mmに設定されることが望ましい。 Here, the deviation amount of the pupil center 32 in the wearing state in the direction of the symmetric radial line 24 from the lens geometric center 12 can be obtained, for example, statistically although there are slight individual differences. Although there is a slight difference depending on the rear surface shape of the contact lens 10, it is generally desirable that the deviation amount ε of the first power region 20 with respect to the lens geometric center 12 is set to 0.2 mm to 2 mm.
 以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、コンタクトレンズ使用者の生活状況などを考慮して、光学領域14のレンズ度数は設定可能である。即ち、例えば、第一の度数領域20,42,54に遠方視力矯正用のレンズ度数βを設定すると共に、第二の度数領域22に近方視力矯正用のレンズ度数αを設定することも可能である。かかる場合には、レンズ度数αは、レンズ度数βに対して+0.25~+4.0ディオプターの範囲の付加度数が設定されることが好ましく、更に好適には、かかる付加度数が+1.0~+2.5ディオプターの範囲に設定される。 As mentioned above, although embodiment of this invention has been explained in full detail, this invention is not limited by the specific description. For example, the lens power of the optical region 14 can be set in consideration of the living conditions of the contact lens user. That is, for example, a lens power β for correcting far vision can be set in the first power areas 20, 42, 54, and a lens power α for correcting near vision can be set in the second power area 22. It is. In such a case, the lens power α is preferably set to an additional power in the range of +0.25 to +4.0 diopters with respect to the lens power β, and more preferably, the additional power is +1.0 to It is set in the range of +2.5 diopters.
 また、移行部28,48,56において、第一の度数領域20,42,54のレンズ度数αと第二の度数領域22のレンズ度数βとを径方向で交互に各環状に設けることも可能である。更にまた、移行部28,48,56において、第一の度数領域20,42,54のレンズ度数αと第二の度数領域22のレンズ度数βの少なくとも何れか一方とそれらの中間のレンズ度数γとを径方向で交互に各環状に設けることも可能である。このように移行部28,48,56のレンズ度数を適宜にチューニングすることにより、見え方を調節して設定することも可能である。 Further, in the transition portions 28, 48, and 56, the lens power α of the first power region 20, 42, and 54 and the lens power β of the second power region 22 can be alternately provided in each annular shape in the radial direction. It is. Furthermore, in the transition portions 28, 48, 56, at least one of the lens power α of the first power region 20, 42, 54 and the lens power β of the second power region 22, and a lens power γ intermediate between them. It is also possible to provide each in an annular shape alternately in the radial direction. In this way, it is possible to adjust and set the appearance by appropriately tuning the lens powers of the transition portions 28, 48, and 56.
 さらに、前記第四の実施形態においては、移行部48,48は、部分的に円環形状とされた一対の移行部の外周が対称径線24上で所定長さをもって連続した一体形状とされていたが、かかる移行部48,48を対称径線24上で分断するように所定幅で上下に延びる第二の度数領域22を形成しても良い。このように一対の移行部が離隔或いは接している場合においても、一対の移行部におけるそれぞれの外形は、前記実施形態のような円形状や楕円形状に限定されない。 Further, in the fourth embodiment, the transition portions 48 are formed in an integral shape in which the outer circumferences of the pair of transition portions that are partially annular are continuous with a predetermined length on the symmetrical radial line 24. However, the second power region 22 extending vertically may be formed with a predetermined width so as to divide the transition portions 48, 48 on the symmetrical radial line 24. As described above, even when the pair of transition portions are separated from or in contact with each other, the outer shapes of the pair of transition portions are not limited to the circular shape or the elliptical shape as in the above-described embodiment.
 更にまた、一対の第一の度数領域も、前記実施形態のような円形状や楕円形状に限定されない。これら一対の第一の度数領域および一対の移行部の外形の形状は、例えば多角形状等であってもよい。更に、第一の度数領域の周囲に形成される移行部の幅寸法を周方向で異ならせても良く、例えば第一の度数領域と移行部との一方の外形を円形にすると共に他方の外形を楕円等の異形状とすることも可能である。 Furthermore, the pair of first power regions is not limited to the circular shape or the elliptical shape as in the above embodiment. The shape of the outer shape of the pair of first power regions and the pair of transition portions may be, for example, a polygonal shape. Further, the width dimension of the transition portion formed around the first power region may be different in the circumferential direction. For example, one outer shape of the first power region and the transition portion is made circular and the other contour is formed. Can be an irregular shape such as an ellipse.
 また、前記実施形態のコンタクトレンズは、例えば老視矯正用コンタクトレンズとして採用され得るが、光学領域14に乱視矯正用のレンズ度数を設けても良い。即ち、本発明のコンタクトレンズは老視矯正に加えて乱視矯正も可能な老視用トーリックレンズとしても採用され得る。 In addition, the contact lens of the embodiment may be employed as a contact lens for correcting presbyopia, for example, but a lens power for correcting astigmatism may be provided in the optical region 14. That is, the contact lens of the present invention can be employed as a toric lens for presbyopia capable of correcting astigmatism in addition to correcting presbyopia.
 なお、光学領域14において、所望の光学特性をコンタクトレンズに付与する曲率半径は、レンズ前面またはレンズ後面、或いはレンズ前後面の両方に設定されても良い。例えば、レンズ後面を所定の曲率半径が設定された球冠形状のベースカーブとする一方、レンズ前面に対して、第一の度数領域および第二の度数領域においてそれぞれ要求レンズ度数を実現する曲率半径を設定することができる。また、光学領域14の全体において第二の度数領域の要求レンズ度数を実現するレンズ前後面を設定したうえで、第一の度数領域においては、レンズ前面とレンズ後面の何れか一方の面形状を異ならせて該第一の度数領域における要求レンズ度数を実現すること等も可能である。更にまた、円柱レンズ度数は、第一の度数領域および第二の度数領域においてそれぞれ要求レンズ度数を実現するレンズ前後面形状が設定された光学領域14において、レンズ前面とレンズ後面の何れの面に設定することも可能である。 In the optical region 14, the radius of curvature for imparting desired optical characteristics to the contact lens may be set on both the front surface of the lens, the rear surface of the lens, or the front and rear surfaces of the lens. For example, while the lens rear surface is a spherical crown-shaped base curve with a predetermined radius of curvature, the radius of curvature that achieves the required lens power in the first power region and the second power region with respect to the lens front surface, respectively. Can be set. In addition, after setting the lens front and back surfaces that achieve the required lens power in the second power region in the entire optical region 14, in the first power region, the surface shape of either the lens front surface or the lens rear surface is set. It is also possible to realize the required lens power in the first power range by making it different. Furthermore, the cylindrical lens power is in any surface of the lens front surface and the lens rear surface in the optical region 14 in which the lens front and rear surface shapes that achieve the required lens power are set in the first power region and the second power region, respectively. It is also possible to set.
10,40,44,46,50,52,58,60,62,63:コンタクトレンズ、14:光学領域、20,42,54:第一の度数領域、22:第二の度数領域、24:対称径線、28,48,56:移行部、30:直交径線、32:瞳孔中心、36:周方向位置決め手段、38:薄肉部、64:位置決め部 10, 40, 44, 46, 50, 52, 58, 60, 62, 63: contact lens, 14: optical region, 20, 42, 54: first power region, 22: second power region, 24: Symmetric diameter line, 28, 48, 56: Transition part, 30: Orthogonal diameter line, 32: Pupil center, 36: Circumferential direction positioning means, 38: Thin part, 64: Positioning part

Claims (25)

  1.  レンズ中央部分に位置する光学領域に、互いに異なるレンズ度数が設定された第一の度数領域と第二の度数領域が設けられたコンタクトレンズにおいて、
     前記第一の度数領域が一つのレンズ径方向線である対称径線に関して線対称に一対設けられていると共に、それら一対の第一の度数領域の外周側に前記第二の度数領域が設けられて、前記光学領域が該対称径線に関して線対称形状とされており、更に、
     装用状態で前記対称径線が装用眼の上下方向にのびて該一対の第一の度数領域の何れか一方が該装用眼の瞳孔中心に対して位置合わせされるようにレンズ周方向の安定位置を与える周方向位置決め手段が設けられていることを特徴とするコンタクトレンズ。
    In the contact lens provided with the first power region and the second power region in which different lens powers are set in the optical region located in the center portion of the lens,
    A pair of the first power regions are provided symmetrically with respect to a symmetrical radial line that is one lens radial direction line, and the second power region is provided on the outer peripheral side of the pair of first power regions. The optical region is axisymmetric with respect to the symmetrical radial line, and
    A stable position in the lens circumferential direction so that the symmetrical diameter line extends in the vertical direction of the wearing eye and one of the pair of first power regions is aligned with the pupil center of the wearing eye in the wearing state. A contact lens, characterized in that it is provided with circumferential positioning means.
  2.  前記第一の度数領域が近方視用の視力矯正度数を有する一方、前記第二の度数領域が遠方視用の視力矯正度数を有する請求項1に記載のコンタクトレンズ。 The contact lens according to claim 1, wherein the first power region has a vision correction power for near vision, while the second power region has a vision correction power for distance vision.
  3.  前記第一の度数領域が遠方視用の視力矯正度数を有する一方、前記第二の度数領域が近方視用の視力矯正度数を有する請求項1に記載のコンタクトレンズ。 The contact lens according to claim 1, wherein the first power region has a vision correction power for distance vision, while the second power region has a power correction power for near vision.
  4.  前記第一の度数領域が明所視用の視力矯正度数を有する一方、前記第二の度数領域が暗所視用の視力矯正度数を有する請求項1に記載のコンタクトレンズ。 The contact lens according to claim 1, wherein the first power region has a vision correction power for photopic vision while the second power region has a power correction power for scotopic vision.
  5.  前記第一の度数領域には、前記第二の度数領域に対して+0.25~+4.0ディオプターの付加度数が設定されている請求項2に記載のコンタクトレンズ。 3. The contact lens according to claim 2, wherein the first power region has an added power of +0.25 to +4.0 diopters with respect to the second power region.
  6.  前記第二の度数領域には、前記第一の度数領域に対して+0.25~+4.0ディオプターの付加度数が設定されている請求項3に記載のコンタクトレンズ。 The contact lens according to claim 3, wherein the second power region has an added power of +0.25 to +4.0 diopters with respect to the first power region.
  7.  前記対称径線に関してレンズ全体が線対称形状とされている請求項1~6の何れか1項に記載のコンタクトレンズ。 The contact lens according to any one of claims 1 to 6, wherein the entire lens has a line-symmetric shape with respect to the symmetrical radial line.
  8.  前記光学領域が、前記対称径線に直交する直交径線に関しても線対称とされている請求項1~7の何れか1項に記載のコンタクトレンズ。 The contact lens according to any one of claims 1 to 7, wherein the optical region is line symmetric with respect to an orthogonal diameter line orthogonal to the symmetry diameter line.
  9.  前記周方向位置決め手段が、装用状態で前記対称径線方向の両端の何れが上方に位置するかの区別なく、上下反転位置となる周上の2方向においてレンズ周方向の安定位置をそれぞれ与えるものである請求項8に記載のコンタクトレンズ。 The circumferential positioning means provides a stable position in the lens circumferential direction in two directions on the circumference, which is the upside down position, regardless of which of the opposite ends of the symmetric radial direction is located in the worn state. The contact lens according to claim 8.
  10.  前記周方向位置決め手段が、装用状態で前記対称径線方向における特定の一端が上方に位置するように、周上の1方向においてレンズ周方向の安定位置を与えるものである請求項1~8の何れか1項に記載のコンタクトレンズ。 The lens according to any one of claims 1 to 8, wherein the circumferential positioning means provides a stable position in the lens circumferential direction in one direction on the circumference so that a specific end in the symmetric radial direction is positioned upward in a worn state. The contact lens of any one of items.
  11.  前記対称径線に直交する直交径線によって仕切られた両側領域の何れか一方の側に前記一対の第一の度数領域が偏倚して設けられることにより、前記光学領域が該直交径線に関して非対称とされていると共に、
     前記周方向位置決め手段が、装用状態で前記対称径線方向における特定の一端が上方に位置するように、周上の1方向においてレンズ周方向の安定位置を与えるものである請求項1~7の何れか1項に記載のコンタクトレンズ。
    The optical region is asymmetric with respect to the orthogonal diameter line by providing the pair of first power areas in a biased manner on either side of the both side areas partitioned by the orthogonal diameter line orthogonal to the symmetrical diameter line. And
    The circumferential positioning means provides a stable position in the circumferential direction of the lens in one circumferential direction so that a specific end in the symmetric radial direction is positioned upward in a worn state. The contact lens of any one of items.
  12.  前記一対の第一の度数領域が相互に離隔して設けられている請求項1~11の何れか1項に記載のコンタクトレンズ。 The contact lens according to any one of claims 1 to 11, wherein the pair of first power regions are provided apart from each other.
  13.  相互に離隔して設けられた前記一対の第一の度数領域において、装用状態で前記瞳孔中心上に位置せしめられる一方の該第一の度数領域に対して他方の該第一の度数領域による影響が実質的に回避されるように、装用状態でのレンズ安定位置に対する該瞳孔中心のずれ量に応じて該一対の第一の度数領域における相互間の離隔距離が設定されている請求項12に記載のコンタクトレンズ。 In the pair of first power regions provided apart from each other, the influence of the other first power region on the first power region positioned on the pupil center in the wearing state The distance between the pair of first power regions is set according to the amount of deviation of the pupil center with respect to the lens stable position in the wearing state so that the lens is substantially avoided. The contact lens described.
  14.  前記一対の第一の度数領域が、前記対称径線に対する0.3~4.0mmの偏倚量をもって、該対称径線に対して互いに反対側に偏倚せしめられている請求項1~13の何れか1項に記載のコンタクトレンズ。 The pair of first power regions are biased to opposite sides with respect to the symmetric diameter line with a deviation amount of 0.3 to 4.0 mm with respect to the symmetric diameter line. The contact lens of Claim 1.
  15.  前記第一の度数領域が1.0~2.5mmの外径寸法とされている請求項1~14の何れか1項に記載のコンタクトレンズ。 The contact lens according to any one of claims 1 to 14, wherein the first power region has an outer diameter of 1.0 to 2.5 mm.
  16.  前記一対の第一の度数領域が円形領域とされている請求項1~15の何れか1項に記載のコンタクトレンズ。 The contact lens according to any one of claims 1 to 15, wherein the pair of first power regions are circular regions.
  17.  前記一対の第一の度数領域が楕円形領域とされている請求項1~15の何れか1項に記載のコンタクトレンズ。 The contact lens according to any one of claims 1 to 15, wherein the pair of first power regions are elliptical regions.
  18.  前記第一の度数領域と前記第二の度数領域との間には、該第一の度数領域のレンズ度数と該第二の度数領域のレンズ度数との間のレンズ度数が設定された移行領域が設けられている請求項1~17の何れか1項に記載のコンタクトレンズ。 A transition region in which a lens power between the lens power of the first power region and the lens power of the second power region is set between the first power region and the second power region. The contact lens according to claim 1, wherein a contact lens is provided.
  19.  前記移行領域において、前記第一の度数領域のレンズ度数から前記第二の度数領域のレンズ度数に向かって漸次に変化するレンズ度数が設定されて、該移行領域がプログレッシブ構造とされている請求項18に記載のコンタクトレンズ。 In the transition region, a lens power that gradually changes from the lens power of the first power region toward the lens power of the second power region is set, and the transition region has a progressive structure. The contact lens according to 18.
  20.  前記移行領域において、前記第一の度数領域のレンズ度数から前記第二の度数領域のレンズ度数に向かって段階的に変化する複数段階のレンズ度数が設定されてマルチフォーカル構造とされている請求項18に記載のコンタクトレンズ。 The multi-focal structure has a multi-focal structure in which, in the transition region, a plurality of lens powers that change stepwise from the lens power in the first power region toward the lens power in the second power region are set. The contact lens according to 18.
  21.  前記移行領域において、全体に亘って一定のレンズ度数が設定されている請求項18に記載のコンタクトレンズ。 The contact lens according to claim 18, wherein a constant lens power is set throughout the transition region.
  22.  前記第一の度数領域のレンズ度数と前記第二の度数領域のレンズ度数の少なくとも一方において、漸次に変化するレンズ度数が設定されて、前記光学領域がプログレッシブ構造とされている請求項1~21の何れか1項に記載のコンタクトレンズ。 A lens power that gradually changes is set in at least one of the lens power in the first power region and the lens power in the second power region, and the optical region has a progressive structure. The contact lens according to any one of the above.
  23.  互いに離隔して設けられた前記一対の第一の度数領域の間には、前記移行領域が設けられており、該移行領域を介して該一対の第一の度数領域が接続状態で位置せしめられている請求項18~21の何れか1項に記載のコンタクトレンズ。 The transition region is provided between the pair of first power regions spaced apart from each other, and the pair of first power regions are positioned in a connected state via the transition region. The contact lens according to any one of claims 18 to 21.
  24.  前記一対の第一の度数領域が何れも全周に亘って前記第二の度数領域で取り囲まれており、互いに離隔して設けられた該一対の第一の度数領域の間にも該第二の度数領域が設けられている請求項1~23の何れか1項に記載のコンタクトレンズ。 Each of the pair of first power regions is surrounded by the second power region over the entire circumference, and the second power region is also provided between the pair of first power regions spaced apart from each other. The contact lens according to any one of claims 1 to 23, wherein a power region is provided.
  25.  乱視矯正用のレンズ度数が設けられてトーリックレンズとされている請求項1~24の何れか1項に記載のコンタクトレンズ。 The contact lens according to any one of claims 1 to 24, wherein a toric lens is provided with a lens power for correcting astigmatism.
PCT/JP2012/008032 2012-12-14 2012-12-14 Contact lens WO2014091529A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013557974A JP5525115B1 (en) 2012-12-14 2012-12-14 contact lens
PCT/JP2012/008032 WO2014091529A1 (en) 2012-12-14 2012-12-14 Contact lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/008032 WO2014091529A1 (en) 2012-12-14 2012-12-14 Contact lens

Publications (1)

Publication Number Publication Date
WO2014091529A1 true WO2014091529A1 (en) 2014-06-19

Family

ID=50933858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008032 WO2014091529A1 (en) 2012-12-14 2012-12-14 Contact lens

Country Status (2)

Country Link
JP (1) JP5525115B1 (en)
WO (1) WO2014091529A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
EP4104008A4 (en) * 2020-02-14 2024-04-03 Nthalmic Holding Pty Ltd Freeform contact lenses for myopia management

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146020A (en) * 1982-10-13 1984-08-21 エヌ・ジ−・トラステイ−ズ・アンド・ノミニ−ズ・リミテイド Double focus contact lens
WO1999004308A1 (en) * 1997-07-14 1999-01-28 Seiko Epson Corporation Contact lens
JPH11295668A (en) * 1998-04-10 1999-10-29 Menicon Co Ltd Toric multifocal lens
WO2009093286A1 (en) * 2008-01-24 2009-07-30 Menicon Co., Ltd. Tilt-wearing type contact lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146020A (en) * 1982-10-13 1984-08-21 エヌ・ジ−・トラステイ−ズ・アンド・ノミニ−ズ・リミテイド Double focus contact lens
WO1999004308A1 (en) * 1997-07-14 1999-01-28 Seiko Epson Corporation Contact lens
JPH11295668A (en) * 1998-04-10 1999-10-29 Menicon Co Ltd Toric multifocal lens
WO2009093286A1 (en) * 2008-01-24 2009-07-30 Menicon Co., Ltd. Tilt-wearing type contact lens

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466507B2 (en) 2012-04-05 2019-11-05 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10838235B2 (en) 2012-04-05 2020-11-17 Brien Holden Vision Institute Limited Lenses, devices, and methods for ocular refractive error
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US11809024B2 (en) 2012-04-05 2023-11-07 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US9575334B2 (en) 2012-04-05 2017-02-21 Brien Holden Vision Institute Lenses, devices and methods of ocular refractive error
US11644688B2 (en) 2012-04-05 2023-05-09 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10203522B2 (en) 2012-04-05 2019-02-12 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10209535B2 (en) 2012-04-05 2019-02-19 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US10948743B2 (en) 2012-04-05 2021-03-16 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US9535263B2 (en) 2012-04-05 2017-01-03 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US11320672B2 (en) 2012-10-07 2022-05-03 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US11333903B2 (en) 2012-10-17 2022-05-17 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US9759930B2 (en) 2012-10-17 2017-09-12 Brien Holden Vision Institute Lenses, devices, systems and methods for refractive error
US10534198B2 (en) 2012-10-17 2020-01-14 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10520754B2 (en) 2012-10-17 2019-12-31 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
EP4104008A4 (en) * 2020-02-14 2024-04-03 Nthalmic Holding Pty Ltd Freeform contact lenses for myopia management

Also Published As

Publication number Publication date
JP5525115B1 (en) 2014-06-18
JPWO2014091529A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP4442927B2 (en) Inclined wear contact lenses
US5760870A (en) Rotationally stabilized contact lens and methods of lens stabilization
US9594258B2 (en) Contact lens having myopia progression suppression capability, and contact lens set having myopia progression suppression capability
EP2278387B1 (en) Contact lens
US8668332B2 (en) Toric contact lens and method for manufacturing the same
RU2570225C2 (en) Translating presbyopia contact lens pair
RU2562697C2 (en) Shiftable presbyopic contact lens
CN109073914B (en) Contact lenses and methods of making the same
US10444542B2 (en) Decentered type contact lens and decentered type contact lens set
US10175504B2 (en) Contact Lens
JP5525115B1 (en) contact lens
RU2605526C2 (en) Shiftable presbyopic contact lens
JP5026291B2 (en) Wear direction selectable contact lens
KR102597109B1 (en) Contact lens with optimized performance and method of design
EP2876486B1 (en) Contact lens and method for manufacturing contact lens
US20120188502A1 (en) Bifocal or multi-focal contact lens
JP3240621U (en) contact lens
MXPA96000978A (en) Rotationalally stabilized contact lens and len stabilization methods

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013557974

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889932

Country of ref document: EP

Kind code of ref document: A1