WO2014091055A1 - Método y sistema para pronosticar la congestión aeroportuaria en una red de tráfico aéreo - Google Patents
Método y sistema para pronosticar la congestión aeroportuaria en una red de tráfico aéreo Download PDFInfo
- Publication number
- WO2014091055A1 WO2014091055A1 PCT/ES2013/070878 ES2013070878W WO2014091055A1 WO 2014091055 A1 WO2014091055 A1 WO 2014091055A1 ES 2013070878 W ES2013070878 W ES 2013070878W WO 2014091055 A1 WO2014091055 A1 WO 2014091055A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- airport
- flight
- aircraft
- delay
- flights
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0043—Traffic management of multiple aircrafts from the ground
Definitions
- the present invention relates to a methodology and set of procedures for the purpose of characterizing and forecasting airport congestion in an air traffic network.
- the model is able to predict, without the need for real-time data input, the delay generated in flights and its impact on the performance of the airports that make up the network.
- US patent document US20091 12645 (LOCKHEED MARTIN CORPORATION) describes an air traffic flow planning and optimization system that includes a simulation module that allows the introduction of initial strategic parameters (plans of flight, weather forecasts, etc.) to obtain data and recommendations to make decisions that lead to efficient management of demand, security and resources in an air traffic network (minimize flight delays or congestion at airports).
- the object of the present invention is to predict delays in an airport network. The object is totally different.
- PCT patent document WO2008061793 A1 presents a system and method for the management of air traffic at an airport.
- the system makes use of forecasts and data in real time to optimally manage the different phases of flights in their approach, landing, stay and takeoff in the airport space, with the aim of avoiding delays and making better use of their capacity .
- This document suffers from a modeling of the entire airport network and not from a single airport.
- US Patent US2010185426 (GANESAN et al.) Describes a "taxi-out" weather prediction system for flights at an airport through the use of a simulation and learning module that acts iteratively and models airport dynamics. for a period of time. This document does not predict the delay of a single flight.
- PCT patent document WO2008103654 (LOCKHEED MARTIN CORPORATION) describes a set of systems and methods for planning and optimizing a variety of flight plans that compete in an airspace over a given period of time. It makes use of a Pareto filter and a multi-objective genetic optimizer to identify the most appropriate solution that leads to a reduction in flight distances and network congestion. To the As in a previous document, it points towards a concept totally different from that of the present invention, not only taking into account the number of aircraft within a sector but also other factors. The object of the present invention is to predict delays in an airport network. The object is totally different.
- the invention also allows the evaluation of the robustness of the daily programming of an airline or of an alliance to the introduction of primary delays in the network for different reasons, from meteorological to labor conflicts.
- the present invention in a first aspect, consists of a method that simulates the propagation dynamics of delays in an air traffic network by combining within said simulation, both an algorithm based on queues, and the relationships between own flights of the planning of each airline. More specifically, the simulation is based on four internal system factors: rotation of each aircraft, connecting flights, airport congestion and random delays; and where a fifth factor simulates external disturbances, such as weather or work (for example, staff strikes).
- a time interval of one minute is used and each simulation is carried out until all the flights have completed their itinerary, in most of the cases, slightly above 1440 minutes.
- This time interval allows the simulation to execute actions on a realistic time scale. In the case of flights between different time zones, all data must be converted to the same time zone.
- the invention allows to evaluate the ability of the programming of an airline or the traffic system as a whole to absorb the delays generated, before being implemented.
- the invention has the flexibility to introduce any type of disturbance to the system to evaluate its robustness to potential impacts of various kinds such as adverse weather conditions and labor conflicts that threaten the normal operation of one or more airlines.
- the invention is able to estimate a priori in a day of operation where the main problems will be generated and to be able to relocate efforts or reschedule flights that may be delayed, both for an airline and for general air traffic.
- FIG 1 Shows a schematic diagram describing the main phases that make up a flight. From the period in which the aircraft is flying, it lands, parks at the door and takes off again.
- FIG. Simplified representation of clusters in congested airports.
- FIG 3.- Shows a descriptive diagram of the aircraft rotation thread.
- FIG 4.- Shows a diagram of the determination of possible flight connections of the same fleet within a certain time advantage ⁇ .
- FIG.- Shows a descriptive diagram of the subprocess of flights in connection.
- FIG 6.- Shows a flow chart of the method object of the present invention.
- FIG 7.- Shows the flow chart with the main decision tree to allow the aircraft to take off.
- the aircraft In the method of the invention a hierarchy of objects must be established for simulation.
- the aircraft aircraft, logically the invention is not limited by the type of aircraft
- Each aircraft is unique and is identified by its registration number ⁇ tail number). This code allows to reconstruct the itinerary of the plane during the day. This sequence can also be subdivided into individual flights, which are considered the basic programming unit.
- Individual flights are defined as the minimum set of information that is used as input to transfer an aircraft from an origin to a destination airport, complying with the planned schedule.
- an aircraft can be in one of the two main flight phases: block-to-block (BtB) or turn-around (TAT).
- BtB block-to-block
- TAT turn-around
- the first is defined as the time elapsed from the door of the airport of origin to the door of the destination airport. This includes the flight time plus the taxi - out and the taxi - in, that is, the take-off and landing taxi.
- the TAT is defined as the time in which the aircraft remains parked at the assigned door (see figure 1).
- each flight is characterized by the registration of the aircraft, the airport of origin, the destination airport, the departure time and the scheduled arrival time.
- the BtB between two airports is calculated as:
- An airline's fleet is another fundamental component of the model, but at a higher level than the aircraft.
- Each aircraft is unique, but being part of a fleet, it interacts directly through the connectivity between flights with the rest of the fleet.
- the airport is an intermediate level entity, where the interaction between aircraft takes place. This interaction occurs through connecting flights or, indirectly, when the airport is congested, forming a queue of planes to be served. Each airport is different from the others because of its programmed capacity and the local aggregation of the programming of the different airlines. Airports are the basic entities that constitute the air traffic network.
- the cluster is a high-level hierarchical entity that represents the interaction between airports.
- the clusters are formed by airports whose average delay in flight departure is greater than a certain threshold ⁇ , and where all They are united by a direct connection.
- the size of a cluster is measured according to the number of airports that belong to it. In the present invention, in order to visualize what is happening in the network (that is, air traffic), the largest cluster is tracked.
- clusters (A and B) are shown, which are formed by airports (1, 1 ') whose average is above ⁇ (1') and are connected to each other.
- cluster A corresponds to the largest according to the number of airports that constitute it.
- TAT protection time
- T s service time
- This service time is related to ground operations carried out on the aircraft, such as refueling, luggage, maintenance, cleaning, loading and unloading, actions that are normally called handling.
- the method object of the invention approximates said data by first defining a time window ⁇ prior to the scheduled departure time of the flight. Secondly, within this window, the potential connections of flights of the same fleet must be distinguished from the rest of the companies (see figure 4, flights B and D). Finally, from these possible connections, those with a probability less than or equal to
- the average connectivity of the airport takes into account the percentage of passengers that stop at the airport, unlike those that begin or end the journey there.
- ⁇ is a parameter that allows modifying the incidence of connections in the model.
- flight D is randomly selected. Through this thread, the next plane is able to take off if and only if its connections have already arrived at the airport. If this is not the case, the next flight must wait until the previous condition is met (see figure 5). It is important to keep in mind that connectivity between flights is the only source of randomness in the model due to a lack of information. For connecting flights, a transfer time from one aircraft to another of the crew and / or passengers is not considered.
- airports are entities that have finite capacity, this must be included in the model. Interactions between aircraft other than those that occur through programming (connecting and rotating flights) occur, in this case, indirectly through the waiting queue that is generated at the airport. This means that aircraft delays of different airlines can delay other aircraft that do not belong to the fleet when congesting the airport. In this case, the propagation is not one to one, as in the previous cases, an aggregate effect of several delayed airplanes is required so that the efficiency of the airport is disturbed and, once this condition is met, the delay is propagated to the rest of aircraft that form the tail.
- a FIFS protocol is used (first to arrive, first to be served) which is the most widespread type of operation protocol in practice and simpler to program.
- each airport will have a capacity that varies throughout the day according to the scheduled airport arrival rate ⁇ Airport Arrival f ⁇ ate, SAAf ⁇ ). This means that for each airport the number of planned flights per hour is counted and this is the nominal capacity of the airport for each hour of the day. Due to the concatenation of delayed flights some airplanes could not arrive on time and the actual rate of arrivals at the airport (fiaal Airport Arrival trust, fAAf ⁇ ) will vary.
- the RAAR> SAAR condition the queue begins to form. Naturally, ground planes that are not in the queue are being served and this service time lasts for T s minutes. It should be noted that after an aircraft is served, it is operation cannot be interrupted by more than the SAAR varies, from one hour to another, below the number of aircraft being served.
- Another control parameter ⁇ is defined in order to modify the nominal capacity of airports. This parameter may be different depending on the airport. For example, if it is desired to use a 20% protection capacity for a given airport, the parameter ⁇ of said airport is set to 1, 2.
- parameter ⁇ it is possible to model external disturbances of the system, such as adverse weather conditions or labor disputes. These events are introduced into the system by modifying ⁇ for the affected area and at a specific time. For example, if a given geographical area is affected by strong winds in the afternoon, it is necessary to establish which airports are within the disturbance zone and decrease ⁇ according to the intensity of the phenomenon for the affected hours. Each type of adverse atmospheric situation is assigned a determined value of ⁇ .
- This value of ⁇ depends on various factors, especially climatic factors, but other unpredictable factors are also included, such as a strike affecting the airport, technical problems, closed tracks, etc. These are factors that are directly related to its capacity. This value may also be related to the operational characteristics and infrastructure at each airport. As an example, the value of ⁇ would be 1 with a normal capacity, 0 with the airport closed and between 0.75 and 0.5 for IFR (Instrument Flight Rules) conditions with adverse weather, cloudy roof below 1000 feet of height and visibility less than 3 nautical miles.
- IFR Instrument Flight Rules
- the robustness of the programming can be evaluated against different external events or, if the task is to predict the air traffic situation for a given day, the weather forecast can be entered locally, modifying said parameter.
- IATA codes Another source of primary delays are grouped into IATA codes that begin with 4 and 5 (breakdowns, delays and defects in the aircraft and their maintenance).
- the way to model the effects of such unforeseen causes in the model is by means of the parameter ⁇ of random cause. For each flight whose probability is less than ⁇ it is delayed following a Gaussian distribution of mean ⁇ and standard deviation ⁇ .
- the initial conditions represent the situation of the first flight of each aircraft.
- two ways to start the simulations are defined: real initial conditions and random initial conditions.
- the actual initial conditions accurately replicate the initial situation of the first flights of each itinerary.
- the forecasting of delays is expected from the first hours of the day.
- Figures 6 and 7 show in detail how the method object of the invention is executed.
- the beginning of the method involves loading the necessary initial data and the flight, aircraft, origin and destination indices.
- the necessary initial data are those related to the programming (Programming) of one or several airlines. As indicated throughout this report, the programming includes:
- random exit delays are used. In case you are using the first hours of the day to see how congestion will develop on the rest of the day you should have the initial delays. In other words, flights delayed the first hours of the day (usually the first 4 hours).
- variable ⁇ is modified locally for the airports affected locally in a certain time slot. Otherwise, parameter ⁇ is set to "1" for all airports in the network.
- the next stage of the method is to generate the class objects, once the programming of one or several airlines is loaded into the data class object, the objects of the remaining classes are created using this data structure.
- These objects are as follows:
- Adjacency list Contains the structure of the air traffic network for the day in question.
- Tail number indexing of all aircraft license plates that operate that day.
- this class object contains the information of initial delay, flight reference, flight status (on land L, on flight F and in service or in queue S), previous flight reference and connections. All flights are initialized with L.
- Tail number situation for each aircraft contains the airport of origin, destination, scheduled and real BtB, as well as the delay in departure (initial, due to late arrival, waiting queue and waiting for connections).
- the delay is computed for each time step. That is, for example, at time t the plane cannot leave for the reason x. In t + 1 the delay will be one more minute (that is, one more time step). In this way, at each time step the aircraft is interrogated if it can depart, since in this way the scheduled departure time plus the delay is equal to t. It is a way for the query to be recurring until the plane is enabled to depart.
- the arrival of the aircraft implies, as indicated, that the flight status is modified from F to S and the queue objects are updated. Subsequently it is analyzed if the probability is less than or equal to ⁇ and if so, the initial delay of the next flight is modified, where the delay due to random cause is assigned to the next flight of the aircraft, modifying its initial delay and modifying the Programming Index as Programming + 1. If, on the other hand, the aircraft is not in BtB, the connecting flights are updated and it is passed directly to the decision-making algorithm (figure 7).
- ⁇ is random. For example, it could be 0.06 which indicates that generally 6% of flights are delayed due to random causes.
- a number N is obtained randomly with a uniform distribution between 0 and 1. If N is less than ⁇ , then the flight is delayed due to a random cause. Once the above happens, the delay in minutes is obtained from a Gaussian distribution as explained above. This is done only once per flight and NOT for each t. In this case, if the initial delay assigned is modified, regardless of whether it is the first flight of the itinerary or not.
- the decision-making starts from the establishment of the flight status, which if S (in queue) and the service time equal to 30 minutes (for example), the flight from the Schedule and the Airport Tail aircraft is deleted number queue, updating the data in the table. On the contrary, if it does not meet the previous condition, it is analyzed if the aircraft can take off. If yes, that is, if the service time Ts is complete and there are no connections to wait, logically it takes off, as long as the previous individual flights are complete.
- the previous flight reference is between the list of expected connections and the status of the flight to L (ground).
- the aircraft is checked if the aircraft is in service that is, it is inspected if the flight status is S and the service time is different from zero or the position of the aircraft in the airport queue is less than the airport capacity. If the aircraft is in service, the indexes are modified by setting the departure delay + 1 minute and the service time + 1 minute.
- the aircraft If the aircraft is not in service, it is established whether or not it is in the queue, that is, that the status is S and the service time is equal to zero. If it is in queue, a delay in the exit of more than one minute and a delay in queue of more than one minute is established.
- the connections are interrogated, so that it is evaluated that the number of connections is non-zero and that the flight status is S. If the connections have arrived the departure delay is updated and the queue delay in one minute. If the connections have not arrived, the exit delay and the connection delay are updated with one minute.
- Clustering occurs separately from the previous one in the sense that for each time step, once the previous steps have been completed - the threads - the algorithm of clustering It can also be applied at the end of the day and complete addition. It is an algorithm to visualize where the delays are concentrated. It can be completely separated from the simulation thread described above.
- Airport management starts from creating a cluster list with all airports in the network labeled -1, that is, unexplored. Subsequently, an empty list (active list) is created to include the airports to be inspected when crossing the adjacency list. While there are unexplored airports in the cluster list, and for each airport on the list:
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
- Processing Or Creating Images (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Método para pronosticar la congestión aeroportuaria en una red de tráfico aéreo que combina tanto un algoritmo basado en colas de espera, como las relaciones entre vuelos propias de la planificación de cada aerolínea y que se caracteriza porque establece una simulación basada en la rotación de cada aeronave, los vuelos en conexión, congestión aeroportuaria y retrasos aleatorios; y donde un quinto factor simula las perturbaciones externas; y donde además se establece un proceso de gestión de los aeropuertos independiente del proceso de simulación.
Description
MÉTODO Y SISTEMA PARA PRONOSTICAR LA CONGESTIÓN AEROPORTUARIA EN UNA RED DE TRÁFICO AÉREO
Objeto de la invención
La presente invención se refiere a una metodología y un conjunto de procedimientos con el fin de caracterizar y pronosticar la congestión aeroportuaria en una red de tráfico aéreo. Concretamente, el modelo es capaz de predecir, sin necesidad de un aporte de datos en tiempo real, el retraso generado en los vuelos y su repercusión en el rendimiento de los aeropuertos que componen la red.
Estado de la técnica
De acuerdo con el informe del año 2008 del "Congress Joint Economic Comitee" de los EEUU [Joint Economic Committee of US Congress, Your flight has been delayed again: Flight delays cost passengers, airlines and the U.S. economy billions. Available at http://www.jec.senate.gov (May 22, 2008)] el retraso en los vuelos generó en el 2007 un impacto económico que asciende a los 40,700 millones de dólares, solamente para los Estados Unidos. Analizando los datos de Eurocontrol, el impacto para el continente europeo es similar [ICCSAI Fact Book on Air Transpon in Europe. Available at http://www.iccsai.eu (2007-201 1); 3. Eurocontrol Annual report. Available at http://www.eurocontrol.int (2008-201 1); Jetzki, M. The propagation of air transport delays in Europe. Thesis in the Department of Airport and Air Transportation Research, RWTH Aachen University (2009)]. De acuerdo con las estimaciones del crecimiento del tráfico aéreo para las próximas décadas, la situación puede volverse todavía peor.
En [Folkes, V.S., Koletsky, S., & Graham, J.L A field study of casual inferences and consumer reaction: The view from the airport. Journal of Consumer Research 13, 534-539 (1987)], los retrasos en los vuelos deterioran la imagen de la compañía para con sus clientes, además de dañar los balances de la compañía por el incremento de los costes operativos de las mismas. Desde el punto de vista del cliente, los retrasos pueden ocasionarle pérdida de oportunidades de trabajo, de tiempo de ocio y actividades económicas, entre otras. De forma adicional, los esfuerzos para recuperar los retrasos generan un fuerte impacto medioambiental por el mayor consumo de combustible.
Todo lo anterior muestra la necesidad de una herramienta que sea capaz de evaluar, a priori, la eficiencia y robustez de una programación de vuelos y/o pronosticar para un día en particular el impacto de los retrasos en una red de tráfico aéreo. En el actual estado de la técnica, son
conocidos sistemas que permiten predecir, dentro de un cierto margen, la situación para las próximas horas utilizando la entrada de datos en tiempo real. Estos son los objetivos, por ejemplo del documento US 6393359 o métodos similares al "delay índex" de flightstats.com.
En el estado de la técnica conocido se describe el documento de patente americana US20091 12645 (LOCKHEED MARTIN CORPORATION) introduce un sistema de planificación y optimización del flujo del tráfico aéreo que incluye un módulo de simulación que permite la introducción de parámetros estratégicos iniciales (planes de vuelo, previsiones meteorológicas, etcétera) para la obtención de datos y recomendaciones que permitan adoptar decisiones que conduzcan a una eficiente gestión de la demanda, seguridad y recursos en una red de tráfico aéreo (minimizar retrasos de los vuelos o la congestión en aeropuertos).
Este documento apunta hacia un concepto totalmente distinto al de la presente invención, no solo teniendo en cuenta la cantidad de aviones dentro de un sector sino también otros factores. El objeto de la presente invención es predecir los retrasos en una red aeroportuaria. El objeto es totalmente distinto.
El documento de patente PCT WO2008061793 A1 (FRAPORT AG) presenta un sistema y método para la gestión del tráfico aéreo de un aeropuerto. El sistema hace uso de pronósticos y datos en tiempo real para gestionar de forma óptima las distintas fases de los vuelos en su aproximación, aterrizaje, estancia y despegue en el espacio aeroportuario, con el objetivo de evitar retrasos y realizar una mejor utilización de su capacidad. Este documento adolece de un modelado de toda la red aeroportuaria y no de un único aeropuerto.
El documento de patente americana US2010185426 (GANESAN et al.) describe un sistema de predicción del tiempo de "taxi-out" para vuelos en un aeropuerto mediante el uso de un módulo de simulación y aprendizaje que actúa de forma iterativa y modela la dinámica aeroportuaria durante un espacio de tiempo. Este documento no predice el retraso de un único vuelo.
El documento de patente PCT WO2008103654 (LOCKHEED MARTIN CORPORATION) describe un conjunto de sistemas y métodos para planificar y optimizar una diversidad de planes de vuelo que compiten en un espacio aéreo en un periodo de tiempo dado. Hace uso de un filtro de Pareto y un optimizador genético multi-objetivo para identificar la solución más adecuada que conduce a una reducción en la distancias de vuelos y congestión de la red. Al
igual que en un documento anterior se apunta hacia un concepto totalmente distinto al de la presente invención, no solo teniendo en cuenta la cantidad de aviones dentro de un sector sino también otros factores. El objeto de la presente invención es predecir los retrasos en una red aeroportuaria. El objeto es totalmente distinto.
En general, ninguno de los documentos citados permite predecir el estado del tráfico aéreo sin necesidad de entrada de datos en tiempo real. Por tanto, se hace necesario un sistema y método que permita pronosticar la evolución de la congestión teniendo simplemente en cuenta las condiciones iniciales.
Descripción de la invención
Es un objeto de la presente invención desarrollar un método, un sistema y un programa informático que permita predecir el estado del tráfico aéreo sin necesidad de entrada de datos en tiempo real. En otras palabras, que no sea necesaria la situación de la ventana horaria anterior para pronosticar las próximas horas, ya que esto no es siempre posible y deteriora el pronóstico, impidiendo su evaluación con mayor antelación. En la presente invención, de hecho, solamente será necesaria la programación de los vuelos y las condiciones iniciales en las primeras horas de la mañana para pronosticar la evolución de la congestión.
La invención, además, permite la evaluación de la robustez de la programación diaria de una aerolínea o de una alianza a la introducción de retrasos primarios en la red por distintas causas, desde meteorológicas hasta conflictos de índole laboral.
Así pues, la presente invención, en un primer aspecto, consiste en un método que simula la dinámica de propagación de los retrasos en una red de tráfico aéreo combinando dentro de dicha simulación, tanto un algoritmo basado en colas de espera, como las relaciones entre vuelos propias de la planificación de cada aerolínea. Más concretamente, la simulación se basa en cuatro factores internos del sistema: rotación de cada aeronave, vuelos en conexión, congestión aeroportuaria y retrasos aleatorios; y donde un quinto factor simula las perturbaciones externas, como las meteorológicas o laborales (por ejemplo, huelgas del personal).
Preferentemente, se utiliza un intervalo de tiempo de un minuto y se procede en cada simulación hasta que todos los vuelos hayan completado su itinerario, en la mayoría de los
casos, ligeramente por encima de los 1440 minutos. Este intervalo de tiempo permite a la simulación ejecutar acciones en una escala de tiempo realista. En el caso de que existan vuelos entre distintas zonas horarias se debe convertir todos los datos a una misma zona horaria.
Las ventajas de la invención son evidentes, puesto que permite evaluar la capacidad de la programación de una aerolínea o del sistema de tráfico en su conjunto de absorber los retrasos generados, antes de ser implementada. Por otro lado, la invención cuenta con la flexibilidad de introducir cualquier tipo de perturbación al sistema para evaluar la robustez del mismo ante potenciales impactos de diversa índole como las condiciones meteorológicas adversas y los conflictos laborales que amenacen la operativa normal de una o varias aerolíneas. Del mismo modo, la invención es capaz de estimar a priori en un día de operación donde se generarán los principales problemas y poder relocalizar esfuerzos o reprogramar vuelos susceptibles de ser retrasados, tanto para una aerolínea como para el tráfico aéreo general.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que restrinjan la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas.
Breve descripción de las figuras
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.
FIG 1 .- Muestra un diagrama esquemático que describe las fases principales que componen un vuelo. Desde el periodo en que la aeronave se encuentra volando, aterriza, aparca en la puerta y vuelve a despegar.
FIG 2.- Representación simplificada de los clústeres en aeropuertos congestionados.
FIG 3.- Muestra un diagrama descriptivo del subproceso de rotación de aeronave.
FIG 4.- Muestra un diagrama de la determinación de las posibles conexiones de vuelos de la misma flota dentro de una cierta ventaja de tiempo ΔΤ.
FIG 5.- Muestra un diagrama descriptivo del subproceso de vuelos en conexión.
FIG 6.- Muestra un diagrama de flujo del método objeto de la presente invención.
FIG 7.- Muestra el diagrama de flujo con el árbol de decisiones principales para permitir el despegue de la aeronave.
Exposición de un modo detallado de realización de la invención
De un modo detallado, en primer lugar es necesario sintetizar los parámetros necesarios para simular la propagación de retrasos en una red de tráfico aéreo. A continuación se muestra una tabla con dichas variables.
En el método de la invención se ha de establecer una jerarquía de objetos para la simulación. Lógicamente, el avión (aeronave, lógicamente la invención no está limitada por el tipo de aeronave) es el agente fundamental de la simulación. Cada avión es único y se identifica por su matrícula {tail number). Este código permite reconstruir el itinerario del avión durante el día.
Esta secuencia, además, se puede subdividir en los vuelos individuales, que se consideran la unidad básica de programación.
Los vuelos individuales se definen como el conjunto mínimo de información que se utiliza como insumo para trasladar una aeronave desde un origen a un aeropuerto de destino, cumpliendo con el calendario previsto. Durante su itinerario una aeronave puede estar en una de las dos fases de vuelo principal: block-to-block (BtB) o turn-around (TAT). El primero se define como el tiempo transcurrido desde la puerta del aeropuerto de origen a la puerta del aeropuerto de destino. Esto incluye el tiempo de vuelo más el taxi - out y el taxi - in, es decir, el carreteo en pista de despegue y aterrizaje. Por otro lado, el TAT se define como el tiempo en que la aeronave permanece aparcada en la puerta asignada (ver figura 1 ).
Como se ha indicado, cada vuelo se caracteriza por la matrícula de la aeronave, el aeropuerto de origen, el aeropuerto de destino, el horario de partida y el de arribo programado. El BtB entre dos aeropuertos se calcula como:
Ύ fJ ψί
1 b 1 a.prog 1 p.prog
Donde j corresponde al aeropuerto de destino, e i corresponde al de origen. Otro tema a tener en cuenta es que en el método de la invención no es posible absorber el retraso en la fase BtB, pero si en la fase TAT aprovechando la diferencia de tiempo entre el arribo real del vuelo y la salida programada del próximo.
La flota de una aerolínea es otro componente fundamental del modelo, pero en un nivel superior al de la aeronave. Cada aeronave es única, pero al ser parte de una flota, interactúa directamente a través de la conectividad entre vuelos con el resto de la flota.
El aeropuerto es una entidad de nivel intermedio, donde la interacción entre las aeronaves tiene lugar. Esta interacción se produce a través de los vuelos en conexión o, indirectamente, cuando el aeropuerto se congestiona, formándose una cola de espera de aviones para ser servidos. Cada aeropuerto es diferente a los demás por su capacidad programada y la agregación local de la programación de las distintas aerolíneas. Los aeropuertos son las entidades básicas que constituyen la red de tráfico aéreo.
Finalmente, el clúster es una entidad de alto nivel jerárquico que representa la interacción entre los aeropuertos. Los clústeres se encuentran formados por aeropuertos cuyo retraso promedio en la salida de los vuelos es superior a un cierto umbral Θ, y donde además todos se
encuentran unidos por una conexión directa. El tamaño de un clúster se mide según la cantidad de aeropuertos que pertenecen al mismo. En la presente invención, para visualizar que es lo que ocurre en la red (esto es, el tráfico aéreo) se realiza un seguimiento del clúster de mayor tamaño.
Así pues, en la figura 2 se muestran dos clústeres (A y B), los cuales se encuentran formados por aeropuertos (1 ,1 ') cuyo promedio está por encima de Θ (1 ') y están conectados entre sí. En este caso concreto, el clúster A corresponde al de mayor tamaño de acuerdo con la cantidad de aeropuertos que lo constituyen.
Para establecer la simulación se han de tener en cuenta los subprocesos empleados. El primero de ellos es la rotación de una aeronave. Durante el transcurso de un día, cada aeronave debe cubrir un itinerario compuesto, en la gran mayoría, por más de un vuelo individual. Naturalmente, para completar un vuelo, los anteriores deben de haber sido completados. Además de esta situación, si un avión llega tarde y este retraso no puede ser absorbido durante el TAT, el siguiente vuelo partirá con retraso (ver figura 3).
Por norma general, se utiliza un tiempo de protección, pero a veces este tiempo no es suficiente. Otra característica de este subproceso es que durante el TAT la aeronave debe cumplir con un tiempo de servicio Ts. Este tiempo de servicio se encuentra relacionado con las operaciones en tierra que se realizan en la aeronave, tales como recarga de combustible, equipaje, mantenimiento, limpieza, carga y descarga, acciones que normalmente se denominan handling.
Además del potencial retraso por rotación, es posible que un vuelo se retrase debido a la necesidad de esperar a pasajeros en conexión y/o tripulación de otra aeronave de la misma flota que se encuentra retrasada.
Si no es posible obtener de la programación de la aerolínea las conexiones entre vuelos, el método objeto de la invención aproxima dichos datos definiendo, en primer lugar, una ventana de tiempo ΔΤ anterior a la hora programada de partida del vuelo. En segundo lugar, dentro de dicha ventana, se deben distinguir las conexiones potenciales de vuelos de una misma flota del resto de compañías (ver figura 4, vuelos B y D). Finalmente, de estas posibles conexiones se seleccionan aleatoriamente aquellas con una probabilidad menor o igual a
α * conectividad promedio del aeropuerto
La conectividad promedio del aeropuerto tiene en cuenta el porcentaje de pasajeros que hacen escala en el aeropuerto, a diferencia de aquellos que comienzan o finalizan el trayecto en el mismo. Por otro lado, α es un parámetro que permite modificar la incidencia de las conexiones en el modelo.
Por ejemplo, en la figura 4 el vuelo D está seleccionado al azar. Por medio de este subproceso, el siguiente avión es capaz de despegar si y sólo si sus conexiones ya han arribado al aeropuerto. Si este no es el caso, el vuelo siguiente debe esperar hasta que se cumpla la condición anterior (ver figura 5). Es importante tener en cuenta que la conectividad entre vuelos es la única fuente de aleatoriedad en el modelo debido a una falta de información. Para vuelos en conexión no se considera un tiempo de transferencia de un avión a otro de la tripulación y/o los pasajeros.
Debido a que los aeropuertos son entidades que tienen capacidad finita, esto debe estar incluido en el modelo. Interacciones entre aeronaves distintas a las que se dan por medio de la programación (vuelos en conexión y rotación) se producen, en este caso, de forma indirecta a través de de la cola de espera que se genera en el aeropuerto. Esto significa que retrasos de aviones de distintas aerolíneas pueden retrasar otras aeronaves que no pertenecen a la flota al congestionar el aeropuerto. En este caso, la propagación no es de uno a uno, como en los casos anteriores, se requiere un efecto agregado de varios aviones retrasados de forma que se perturbe la eficiencia del aeropuerto y, una vez cumplida esta condición, el retraso se propaga al resto de aeronaves que forman la cola. Se utiliza un protocolo FIFS (primero en arribar, primero en ser servido) que es el tipo de protocolo de operaciones más extendido en la práctica y más simple de programar.
En las simulaciones, cada aeropuerto tendrá una capacidad que varía a lo largo del día de acuerdo a la tasa programada de llegadas del aeropuerto {Programación Airport Arrival fíate, SAAfí). Esto significa que para cada aeropuerto se cuentan la cantidad de vuelos planificados por hora y ésta es la capacidad nominal del aeropuerto para cada hora del día. Debido a la concatenación de vuelos retrasados algunos aviones no podrían llegar a tiempo y la tasa real de llegadas al aeropuerto {fíeal Airport Arrival fíate, fíAAfí) variará. Cuando se cumple la condición RAAR > SAAR la cola comienza a formarse. Naturalmente, los aviones en tierra que no se encuentran en la cola están siendo servidos y este tiempo de servicios tiene una duración de Ts minutos. Cabe destacar que después de que una aeronave esté servida, esta
operación no puede ser interrumpida por más que la SAAR varíe, de una hora a otra, por debajo del número de aeronaves que están siendo servidas.
Se define otro parámetro de control β con el fin de modificar la capacidad nominal de los aeropuertos. Este parámetro puede ser distinto dependiendo del aeropuerto. Por ejemplo, si se desea utilizar una capacidad de protección del 20% para un determinado aeropuerto, se ajusta el parámetro β de dicho aeropuerto en 1 ,2.
Gracias al parámetro β es posible modelar perturbaciones externas del sistema, como las condiciones atmosféricas adversas o los conflictos laborales. Estos eventos son introducidos en el sistema modificando β para la zona afectada y en un horario determinado. Por ejemplo, si una determinada zona geográfica es afectada por vientos fuertes en horas de la tarde se debe establecer qué aeropuertos se encuentran dentro de la zona de perturbación y disminuir β de acuerdo a la intensidad del fenómeno para las horas afectadas. Cada tipo de situación atmosférica adversa se le asigna un valor de β determinado.
Este valor de β depende de diversos factores, especialmente los climáticos, pero también están incluidos otros factores imprevisibles, como una huelga que afecte al aeropuerto, problemas técnicos, pistas cerradas, etc. Son factores que se encuentran directamente relacionados con la capacidad del mismo. Este valor también puede estar relacionado con las características operativas y la infraestructura en cada aeropuerto. A modo de ejemplo, el valor de β sería 1 con una capacidad normal, 0 con el aeropuerto cerrado y entre 0,75 y 0,5 para condiciones IFR (Instrument Flight Rules) con clima adverso, techo nuboso por debajo de los 1000 pies de altura y visibilidad menor a 3 millas náuticas.
Por medio de este subproceso se puede evaluar la robustez de la programación frente a diferentes eventos externos o, si el cometido es predecir la situación del tráfico aéreo para un día determinado, se puede introducir el pronóstico del tiempo, localmente, modificando dicho parámetro.
Otra fuente de retrasos primarios se agrupan dentro de los códigos de la IATA que comienzan con 4 y 5 (averías, retrasos y defectos en la aeronave y su mantenimiento). La forma de modelar los efectos de dichas causas imprevistas en el modelo es mediante el parámetro τ de causa aleatoria. Para cada vuelo cuya probabilidad sea menor a τ se lo retrasa siguiendo una distribución gaussiana de media μ y desviación típica σ.
Las condiciones iniciales representan la situación del primer vuelo de cada aeronave. Dependiendo del propósito de la simulación se definen dos maneras de iniciar las simulaciones: condiciones iniciales reales y condiciones iniciales aleatorias.
Las condiciones iniciales reales replican con exactitud la situación inicial de los primeros vuelos de cada itinerario. Por medio de esta condición se busca, por ejemplo, pronosticar la programación de retrasos a partir de las primeras horas del día.
Por otro lado, cuando se inicializa el modelo con condiciones iniciales aleatorias, no es necesario tener datos en tiempo real sobre los primeros retrasos. Para realizar de este modo las simulaciones es necesario fijar, a priori, dos parámetros: el retraso inicial p y el porcentaje de aviones inicialmente retrasados u. Por ejemplo:
p = 20 minutos.
- u = 20%.
Esto significa que en dicho escenario, el 20% de los vuelos partirán con un retraso inicial de 20 minutos. Como la selección es aleatoria, el dónde y el cuándo sucederá el retraso inicial variará. Este parámetro se emplea para evaluar la robustez en la planificación de una aerolínea o un conjunto de aerolíneas.
Ejemplo de implementación de la invención
En las figuras 6 y 7 se muestra en detalle cómo se ejecuta el método objeto de la invención. Así, el inicio del método implicar cargar los datos iniciales necesarios y los índices de vuelo, aeronave, origen y destino.
Los datos iniciales necesarios son aquellos relacionados con la programación (Programación) de una o varias aerolíneas. Como se indica a lo largo de la presente memoria la programación incluye:
índice de aeronave (tail number)
Origen
Destino
Horario programado de salida
Horario programado de llegada
Luego, si se quiere analizar a priori una programación dada antes de implementarla se utilizan retrasos de salida aleatorios. En caso de que se esté utilizando las primeras horas del día para
ver como se desarrollará la congestión en el resto del día se debe contar con los retrasos iniciales. En otras palabras, los vuelos retrasados de las primeras horas del día (generalmente las 4 primeras horas).
Además dependiendo de si se quiere o no introducir perturbaciones externas al modelo, se modifica localmente la variable β para los aeropuertos afectados localmente en una determinada franja horaria. En caso contrario, el parámetro β se fija en "1 " para todos los aeropuertos de la red.
La siguiente etapa del método es generar los objetos de clase, una vez cargada la programación de una o varias aerolíneas en el objeto de clase data, los objetos de las clases restantes son creados utilizando esta estructura de datos. Estos objetos son los siguientes:
- Airport list: Indexación de todos los aeropuertos que se encuentran presentes en la programación para ese día.
- SAAR matrix: Incluye la capacidad de cada aeropuerto de la lista por hora.
- Airport flight connectivity factor: En el caso que no se cuenta con la información de conexión entre vuelos, se cuenta con un estimado del porcentaje de vuelos en conexión para cada aeropuerto.
- Adjacency list: Contiene la estructura de la red de tráfico aéreo para el día en cuestión.
- Tail number: indexación de todas las matrículas de aeronave que operan ese día.
Programación: para cada vuelo individual este objeto de clase contiene la información de retraso inicial, referencia del vuelo, estado del vuelo (en tierra L, en vuelo F y en servicio o en cola S), referencia de vuelo previo y las conexiones. Todos los vuelos son inicializado con L.
- Tail number situation: para cada aeronave contiene el aeropuerto de origen, el de destino, el BtB programado y real, así como el retraso en la salida (inicial, debió a llegada tarde, por cola de espera y por esperar conexiones).
- Airport tail number queue: para cada aeropuerto contiene los aviones ordenados según el protocolo FIFS.
- Airport flight queue: lo mismo que lo anterior pero indexado por medio de la referencia de vuelo.
Tras la generación de objetos de clase, se inicia el temporizador, se carga el Programación y se inicia el índice del Programación, estableciéndose si hay vuelos a completar o no. Para el caso negativo, se finaliza el proceso.
Si hay vuelos a completar, se establece si hay un tiempo de salida programado más un retraso inicial inferior o igual a la variable de tiempo preestablecida t. Hay que tener en cuenta que el retraso inicial es para el primer vuelo del itinerario exclusivamente. En caso negativo, se actualizan los objetos de clase & t+1 minutos de forma síncrona para cada caso de tiempo. En caso positivo se actualizan índices y se interroga sobre el estado de la aeronave. Si se encuentra en BtB, se consulta si el BtB real es igual que el programado y, en caso afirmativo, el estado de vuelo se modifica de F a S y los objetos de cola de espera se actualizan. Si el BtB no es igual al programado, se establece como BtB real el BtB real más un minuto, y se modifica el índice de Programación como Programación + 1 .
Es decir, que tras el vuelo inicial y para el resto de los vuelos, el retraso se va computando para cada paso de tiempo. Es decir, por ejemplo, en el tiempo t el avión no puede partir por la razón x. En t+1 el retraso va a ser un minuto más (esto es, un paso de tiempo más). De esta forma, a cada paso de tiempo se interroga a la aeronave si puede partir, ya que de esta forma el tiempo de salida programado más el retraso es igual a t. Es una forma de que la consulta sea recurrente hasta que el avión esté habilitado para partir.
La llegada de la aeronave implica, como se ha indicado, que el estado de vuelo se modifica de F a S y los objetos de cola de espera se actualizan. Posteriormente se analiza si la probabilidad es inferior o igual a τ y en caso afirmativo se modifica el retraso inicial del siguiente vuelo, donde el retraso por causa aleatoria es asignado al próximo vuelo de la aeronave, modificando su retraso inicial y modificando el índice de Programación como Programación + 1 . Si por el contrario, la aeronave no está en BtB se actualizan los vuelos en conexión y se pasa directamente al algoritmo de toma de decisiones (figura 7).
El valor de τ es aleatorio. Por ejemplo, podría ser 0,06 lo que indica que generalmente el 6% de los vuelos se retrasan por causas aleatorias. De manera aleatoria con una distribución uniforme entre 0 y 1 se obtiene un número N. Si N es menor que τ, entonces el vuelo se retrasa por causa aleatoria. Una vez que sucede lo anterior el retraso en minutos se obtiene de una distribución gaussiana como fue explicado anteriormente. Esto se realiza una sola vez por
vuelo y NO para cada t. En este caso si se modifica el retraso inicial asignado, independientemente de si es el primer vuelo del itinerario o no.
La toma de decisiones (figura 7) parte del establecimiento del estado del vuelo, que si es S (en cola) y el tiempo de servicio igual a 30 minutos (por ejemplo), se borra el vuelo del Programación y la aeronave del Airport Tail number queue, actualizando los datos de la tabla. Por el contrario, si no cumple la condición anterior, se analiza si la aeronave puede despegar. Si es que si, es decir, si el tiempo de servicio Ts está completo y no existen conexiones a esperar, lógicamente despega, siempre y cuando los vuelos individuales anteriores están completos.
El despegue implica que el tail number situation y el airport tail number queue correspondiente al origen son actualizados. Además, el tiempo BtB se resetea a cero y el estado de vuelo se modifica de L (tierra) a F (vuelo).
Si es que no se puede despegar se analiza si los vuelos individuales anteriores han sido completados o no. Para ello se verifica que la referencia de vuelo previo se encuentra entre la lista de conexiones a esperar y el estado del vuelo a L (tierra). Posteriormente, se verifica si la aeronave se encuentra en servicio, es decir, se inspecciona si el estado de vuelo es S y el tiempo de servicio es diferente de cero o la posición de la aeronave en la cola de espera del aeropuerto es menor que la capacidad del aeropuerto. Si la aeronave se encuentra en servicio se modifican los índices estableciendo el retraso en la salida + 1 minuto y el tiempo de servicio + 1 minuto.
Si la aeronave no está en servicio, se establece si está o no en la cola de espera, es decir, que el estado sea S y el tiempo de servicio igual a cero. Si está en cola, se establece un retraso en la salida de más un minuto y un retraso por cola de más un minuto.
Si no está en cola, se interroga sobre las conexiones, de tal forma que se evalúe que el número de conexiones es distinto de cero y que el estado del vuelo es S. Si las conexiones han llegado se actualiza el retraso en la salida y el retraso por cola en un minuto. Si las conexiones no han llegado se actualiza el retraso en la salida y el retraso en la conexión con un minuto.
El clustering ocurre separado del anterior en el sentido de que para cada paso de tiempo, una vez completado los pasos anteriores -los subprocesos- se puede aplicar el algoritmo de
clustering. También se puede aplicar al finalizar el día y realizar el agregado completo. Es un algoritmo para visualizar donde están concentrados los retrasos. Se puede separar completamente del subproceso de simulación descrito con anterioridad.
La gestión de los aeropuertos (subproceso de clúster) parte de crear una lista de clúster con todos los aeropuertos de la red etiquetados como -1 , es decir, sin explorar. Posteriormente, se crea una lista vacía (lista activa) para incluir los aeropuertos a inspeccionar al atravesar la lista de adyacencia. Mientras existan aeropuertos inexplorados en la lista de clúster, y para cada aeropuerto de la lista:
- Comprobar si el aeropuerto está inexplorado y si el retraso promedio del aeropuerto es mayor a Θ.
- Si es así, etiquetar el aeropuerto con su correspondiente índice en la lista de clúster e insertar dicho índice en la lista activa.
De lo contrario, etiquetar el aeropuerto como -2 (no retrasado).
- Mientras la lista activa continúe conteniendo aeropuertos a explorar:
o Para cada aeropuerto de la lista activa:
■ Explorar sus vecinos por medio de la lista de adyacencia.
■ Verificar si se encuentran etiquetados como inexplorados y si su retraso promedio es mayor a Θ.
■ Si es así, etiquetar con el mismo índice anterior e insertar el nuevo índice del aeropuerto en la lista activa.
■ De lo contario, etiquetar el aeropuerto como "no retrasado".
o Eliminar de la lista activa aquellos aeropuertos cuyos vecinos han sido explorados.
Claims
REIVINDICACIONES
1 - Método para pronosticar la congestión aeroportuaria en una red de tráfico aéreo que combina tanto un algoritmo basado en colas de espera, como las relaciones entre vuelos propias de la planificación de cada aerolínea y que se caracteriza porque establece una simulación basada en la rotación de cada aeronave, los vuelos en conexión, congestión aeroportuaria y retrasos aleatorios; y donde un quinto factor simula las perturbaciones externas; y donde además se establece un proceso de gestión de los aeropuertos independiente del proceso de simulación.
2 - Método de acuerdo con la reivindicación 1 donde los datos iniciales de la simulación están relacionados con la programación de una o varias aerolíneas e incluyen el índice de la aeronave, el origen, el destino, el horario programado de salida y el horario programado de llegada.
3 - Método de acuerdo con cualquier de las reivindicaciones 1 a 2 que comprende una etapa de generación de objetos de clase una vez cargada la programación de al menos una aerolínea; y donde dichos objetos de clase comprenden, al menos,
a) un objeto de clase con la indexación de todos los aeropuertos que se encuentran presentes en la programación para ese día;
b) un objeto de clase con la capacidad de cada aeropuerto de la lista por hora;
c) un objeto de clase con la información de conexión entre vuelos o un estimado del porcentaje de vuelos en conexión para cada aeropuerto;
d) un objeto de clase con la estructura de la red de tráfico aéreo para el día en cuestión; e) un objeto de clase con la indexación de todas las matrículas de aeronave que operan ese día;
f) un objeto de clase donde para cada vuelo individual, la información de retraso inicial, referencia del vuelo, estado del vuelo: en tierra L, en vuelo F y en servicio o en cola S, referencia de vuelo previo y las conexiones, donde todos los vuelos son inicializado en tierra;
g) un objeto de clase donde para cada aeronave se describe el aeropuerto de origen, el de destino, el BtB programado y real, así como el retraso en la salida: inicial, debido a llegada tarde, por cola de espera y por esperar conexiones;
h) un objeto de clase donde para cada aeropuerto contiene los aviones ordenados según el protocolo FIFS y un objeto de clase como el anterior pero indexado por medio de la referencia de vuelo.
4 - Método de acuerdo con cualquiera de las reivindicaciones anteriores donde tras la etapa de generación de objetos de clase se inicia el temporizador y los índices asociados a la programación, estableciéndose si hay vuelos a completar o no de tal forma que
- si no hay vuelos a completar se finaliza el proceso;
y si hay vuelos completar se establece si hay un tiempo de salida programado más un retraso inicial inferior o igual a la variable de tiempo preestablecida t; donde:
o en caso negativo, se actualizan los objetos de clase a t+1 minutos de forma síncrona para cada caso de tiempo;
o y en caso positivo se actualizan índices y se interroga sobre el estado de la aeronave:
■ Si se encuentra en BtB, se consulta si el BtB real es igual que el programado y, en caso afirmativo, el estado de vuelo se modifica de vuelo a cola y los objetos de cola de espera se actualizan;
■ Si el BtB no es igual al programado, se establece como BtB real el BtB real más un minuto, y se modifica el índice de programación como programación + 1 .
5 - Método de acuerdo con la reivindicación 4 donde tras establecer si hay un tiempo de salida programado más un retraso inicial inferior o igual a la variable de tiempo preestablecida t se analiza si la probabilidad es inferior o igual a τ y en caso afirmativo se modifica el retraso inicial del siguiente vuelo, donde el retraso por causa aleatoria es asignado al próximo vuelo de la aeronave, modificando su retraso inicial y modificando el índice de Programación como Programación + 1 ; y donde por el contrario, la aeronave no está en BtB se actualizan los vuelos en conexión y se pasa directamente al proceso de toma de decisiones.
6 - Método de acuerdo con la reivindicación 5 donde el proceso de toma de decisiones parte del del establecimiento del estado del vuelo que:
- donde si la aeronave está en cola y el tiempo de servicio igual a periodo determinado, se actualizan los datos;
- si no cumple la condición anterior, se analiza si la aeronave puede despegar donde:
o si es que si, es decir, si el tiempo de servicio Ts está completo y no existen conexiones a esperar, lógicamente despega, siempre y cuando los vuelos individuales anteriores están completos, actualizando los datos relacionados con dicha aeronave, el tiempo BtB se resetea a cero y el estado de vuelo se modifica a en vuelo;
o si es que no se puede despegar se analiza si los vuelos individuales anteriores han sido completados o no; y donde para ello en primer lugar se verifica que la referencia de vuelo previo se encuentra entre la lista de conexiones a esperar y el estado del vuelo en tierra, y en segundo lugar se verifica si el estado de vuelo es en cola y el tiempo de servicio es diferente de cero o la posición de la aeronave en la cola de espera del aeropuerto es menor que la capacidad del aeropuerto; y donde:
■ si la aeronave se encuentra en servicio se modifican los índices estableciendo el retraso en la salida + 1 minuto y el tiempo de servicio + 1 minuto;
■ si la aeronave no está en servicio, se establece si está o no en la cola de espera; y donde si está en cola, se establece un retraso en la salida de más un minuto y un retraso por cola de más un minuto; y donde si no está en cola, se interroga sobre las conexiones, de tal forma que se evalúe que el número de conexiones es distinto de cero y que el estado del vuelo es en cola; si las conexiones han llegado se actualiza el retraso en la salida y el retraso por cola en un minuto; si las conexiones no han llegado se actualiza el retraso en la salida y el retraso en la conexión con un minuto.
7 - Método de acuerdo con la reivindicación 1 donde el proceso de gestión de los aeropuertos parte de crear una lista de clúster con todos los aeropuertos de la red etiquetados como sin explorar; y donde posteriormente se crea una lista activa para incluir los aeropuertos a inspeccionar al atravesar la lista de adyacencia; y donde mientras existan aeropuertos inexplorados en la lista de clúster, y para cada aeropuerto de la lista:
- Comprobar si el aeropuerto está inexplorado y si el retraso promedio del aeropuerto es mayor a Θ;
- Si es así, etiquetar el aeropuerto con su correspondiente índice en la lista de clúster e insertar dicho índice en la lista activa;
De lo contrario, etiquetar el aeropuerto como no retrasado.
- Mientras la lista activa continúe conteniendo aeropuertos a explorar:
o Para cada aeropuerto de la lista activa:
■ Explorar sus vecinos por medio de la lista de adyacencia.
■ Verificar si se encuentran etiquetados como inexplorados y si su retraso promedio es mayor a Θ.
■ Si es así, etiquetar con el mismo índice anterior e insertar el nuevo índice del aeropuerto en la lista activa.
■ De lo contario, etiquetar el aeropuerto como no retrasado.
- y finalmente eliminar de la lista activa aquellos aeropuertos cuyos vecinos han sido explorados.
8 - Sistema para pronosticar la congestión aeroportuaria en una red de tráfico aéreo que se caracteriza porque comprende medios de procesado de datos configurados para implementar el método de la reivindicación 1 .
9 - Programa informático que comprende las instrucciones necesarias para ejecutar el método de la reivindicación 1 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201231942A ES2476566B1 (es) | 2012-12-14 | 2012-12-14 | Método para caracterizar la congestión aeroportuaria en una red de tráfico aéreo |
ESP201231942 | 2012-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014091055A1 true WO2014091055A1 (es) | 2014-06-19 |
Family
ID=50933793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2013/070878 WO2014091055A1 (es) | 2012-12-14 | 2013-12-13 | Método y sistema para pronosticar la congestión aeroportuaria en una red de tráfico aéreo |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2476566B1 (es) |
WO (1) | WO2014091055A1 (es) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109118830A (zh) * | 2017-06-22 | 2019-01-01 | 波音公司 | 飞行调度确定系统和方法 |
EP3557506A1 (en) * | 2018-04-16 | 2019-10-23 | Hitachi, Ltd. | Schedule analysis support device and method |
CN111160770A (zh) * | 2019-12-30 | 2020-05-15 | 南京航空航天大学 | 一种进场航班动态协同排序方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113256975B (zh) * | 2021-05-12 | 2022-04-26 | 中国民航大学 | 基于级联失效的机场陆侧道路交通拥堵影响范围确定方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020138194A1 (en) * | 1999-12-22 | 2002-09-26 | Lorraine Flynn | System and method for estimating aircraft flight delay |
US20070219833A1 (en) * | 2006-03-20 | 2007-09-20 | The Boeing Company | Visualization of airline flight schedules |
US20100063716A1 (en) * | 2006-11-24 | 2010-03-11 | Raimund Brozat | Method and device for the control of air traffic management at an airport |
US20120173131A1 (en) * | 2011-01-05 | 2012-07-05 | Metron Aviation, Inc. | Airport Demand Management Method |
-
2012
- 2012-12-14 ES ES201231942A patent/ES2476566B1/es active Active
-
2013
- 2013-12-13 WO PCT/ES2013/070878 patent/WO2014091055A1/es active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020138194A1 (en) * | 1999-12-22 | 2002-09-26 | Lorraine Flynn | System and method for estimating aircraft flight delay |
US20070219833A1 (en) * | 2006-03-20 | 2007-09-20 | The Boeing Company | Visualization of airline flight schedules |
US20100063716A1 (en) * | 2006-11-24 | 2010-03-11 | Raimund Brozat | Method and device for the control of air traffic management at an airport |
US20120173131A1 (en) * | 2011-01-05 | 2012-07-05 | Metron Aviation, Inc. | Airport Demand Management Method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109118830A (zh) * | 2017-06-22 | 2019-01-01 | 波音公司 | 飞行调度确定系统和方法 |
EP3557506A1 (en) * | 2018-04-16 | 2019-10-23 | Hitachi, Ltd. | Schedule analysis support device and method |
AU2019201656B2 (en) * | 2018-04-16 | 2020-11-05 | Hitachi, Ltd. | Schedule analysis support device and method |
CN111160770A (zh) * | 2019-12-30 | 2020-05-15 | 南京航空航天大学 | 一种进场航班动态协同排序方法 |
Also Published As
Publication number | Publication date |
---|---|
ES2476566A1 (es) | 2014-07-14 |
ES2476566B1 (es) | 2015-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ikli et al. | The aircraft runway scheduling problem: A survey | |
Wu | Airline operations and delay management: Insights from airline economics, networks and strategic schedule planning | |
US10074283B1 (en) | Resilient enhancement of trajectory-based operations in aviation | |
Ball et al. | Air transportation: Irregular operations and control | |
Bubalo et al. | Airport capacity and demand calculations by simulation—the case of Berlin-Brandenburg International Airport | |
Janić | Greening airports: Advanced technology and operations | |
Pyrgiotis | A stochastic and dynamic model of delay propagation within an airport network for policy analysis | |
Bosson et al. | Optimizing integrated arrival, departure and surface operations under uncertainty | |
US20120158441A9 (en) | Air taxi logistics system | |
WO2014091055A1 (es) | Método y sistema para pronosticar la congestión aeroportuaria en una red de tráfico aéreo | |
Serhan et al. | Minimizing airline and passenger delay cost in airport surface and terminal airspace operations | |
Alvarez et al. | Demand and Capacity Modeling for Advanced Air Mobility | |
CN109118830A (zh) | 飞行调度确定系统和方法 | |
Karisch et al. | Operations | |
Lall | Delays in the New York city metroplex | |
Liu et al. | Optimizing airport gate assignment with operational safety constraints | |
Weigert et al. | Development and simulation of priority based control strategies of ground vehicles movements on the aerodrome | |
Smith et al. | Strategic decision support for airside operations at commercial airports | |
Jin et al. | Simulation of integrated approach for aircraft turnaround process | |
Provan et al. | Tactical airport configuration management | |
Zelinski et al. | Assessing tactical scheduling options for time-based surface metering | |
De Falco et al. | Probabilistic prediction of aircraft turnaround time and target off-block time | |
Gelhausen et al. | Clean Sky 2 Technology Evaluator—Results of the First Air Transport System Level Assessments. Aerospace 2022, 9, 204 | |
Wang et al. | Departure scheduling in a multi-airport system | |
Marzuoli et al. | Multimodal, efficient transportation in airports and collaborative decision making |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13862298 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13862298 Country of ref document: EP Kind code of ref document: A1 |