WO2014088316A2 - Video encoding and decoding method, and apparatus using same - Google Patents

Video encoding and decoding method, and apparatus using same Download PDF

Info

Publication number
WO2014088316A2
WO2014088316A2 PCT/KR2013/011165 KR2013011165W WO2014088316A2 WO 2014088316 A2 WO2014088316 A2 WO 2014088316A2 KR 2013011165 W KR2013011165 W KR 2013011165W WO 2014088316 A2 WO2014088316 A2 WO 2014088316A2
Authority
WO
WIPO (PCT)
Prior art keywords
picture
layer
enhancement layer
interpolation
block
Prior art date
Application number
PCT/KR2013/011165
Other languages
French (fr)
Korean (ko)
Other versions
WO2014088316A3 (en
Inventor
심동규
조현호
Original Assignee
인텔렉추얼 디스커버리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인텔렉추얼 디스커버리 주식회사 filed Critical 인텔렉추얼 디스커버리 주식회사
Publication of WO2014088316A2 publication Critical patent/WO2014088316A2/en
Publication of WO2014088316A3 publication Critical patent/WO2014088316A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission

Definitions

  • the present invention relates to an image processing technique, and more particularly, to a method and apparatus for encoding / decoding an enhancement layer by interpolating a picture of a reference layer in a scalable video codec and using the same as a reference picture of the enhancement layer.
  • JCT-VC Joint Collaborative Team on Video Coding
  • HEVC High Efficiency Video Coding
  • This HEVC has a compression efficiency of about 50% or more when compared in terms of subjective picture quality compared to the H.264 / AVC High profile, which is a video standard known to have the highest compression efficiency.
  • HEVC can effectively support 4K-UHD and 8K-UHD resolution video, and since the basic block of encoding is variable, it can support more various resolution video than conventional video compression standard technology.
  • the HEVC standardization for the base layer was established in January 2013 under the name HEVC version 1, and by 2014, the HEVC-based scalable video compression standard technology and the HEVC-based multiview video compression standard technology are planned to be developed. .
  • HEVC is similar in structure to conventional video codecs such as H.264 / AVC, but since new coding techniques are additionally used, the interlayer prediction technique considering the new additions to HEVC in the HEVC-based scalable video compression technique need.
  • the present invention provides a method and apparatus for improving encoding performance of an enhancement layer by interpolating a reconstructed picture of a reference layer according to the resolution of an enhancement layer in an HEVC-based scalable video compression codec, and adding it to a reference picture list of the enhancement layer. It aims to provide.
  • An inter-layer reconstructed picture reference method for solving the above problems includes selecting a picture to be interpolated in a reference layer; Performing interpolation through a plurality of interpolators on the selected picture; Adding the interpolated picture to the reference picture list of the enhancement layer.
  • An inter-layer reconstructed picture reference apparatus includes an apparatus for selecting a picture to be interpolated in a reference layer; An apparatus for performing interpolation through a plurality of interpolation apparatuses on a selected picture; And an apparatus for adding the interpolated picture to the reference picture list of the enhancement layer.
  • the inter-layer reconstructed picture reference method according to the second embodiment of the present invention for solving the above problems comprises the steps of selecting a plurality of interpolation points in the picture of the reference layer; Performing interpolation through an interpolation unit on the input picture of the selected point; Adding the interpolated picture to the reference picture list of the enhancement layer.
  • An inter-layer reconstructed picture reference apparatus includes an apparatus for selecting a plurality of interpolation points in a picture of a reference layer; An apparatus for performing interpolation through an interpolation unit on an input picture of a selected point; And an apparatus for adding the interpolated picture to the reference picture list of the enhancement layer.
  • the inter-layer reconstructed picture reference method according to the third embodiment of the present invention for solving the above problems comprises the steps of selecting a plurality of interpolation points in a picture of a reference layer; Performing interpolation through different interpolators according to the input picture of the selected point; Adding the interpolated picture to the reference picture list of the enhancement layer.
  • An inter-layer reconstructed picture reference apparatus includes an apparatus for selecting a plurality of interpolation points in a picture of a reference layer; An apparatus for performing interpolation through different interpolators in accordance with an input picture of a selected point; And an apparatus for adding the interpolated picture to the reference picture list of the enhancement layer.
  • the inter-layer reconstruction picture reference encoding / decoding apparatus interpolates a plurality of reference pictures having different characteristics by performing interpolation through a plurality of interpolators on an image to which sample adaptive offset is applied in a reference layer.
  • Create A plurality of reference pictures generated through the reference layer may be inserted into a reference picture list of the enhancement layer and used for inter prediction to improve encoding performance of the enhancement layer.
  • the inter-layer reconstructed picture reference encoding / decoding apparatus generates interpolation images having different characteristics by interpolating a reference picture in a reference layer at a plurality of interpolation points, and in the enhancement layer
  • the reference picture lister By using the reference picture lister, encoding performance of an enhancement layer can be improved through various combinations.
  • the inter-layer reconstructed picture reference encoding / decoding apparatus selects a plurality of interpolation points with respect to a reference picture in a reference layer and has a plurality of characteristics having different characteristics in consideration of characteristics of each interpolation point.
  • the interpolation is performed to generate a plurality of reference pictures having different characteristics.
  • the generated plurality of reference pictures may be inserted into the reference picture list of the enhancement layer and used for inter prediction to improve encoding performance of the enhancement layer.
  • FIG. 1 is a block diagram illustrating a configuration of a scalable video encoder.
  • FIG. 2 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a configuration of a video decoding apparatus according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram for describing adding pictures interpolated in a reference layer to a reference picture list of an enhancement layer in an image encoding / decoding apparatus according to the present invention.
  • FIG. 6 is a conceptual diagram for describing adding pictures interpolated in a reference layer to a reference picture list of an enhancement layer when decoding an arbitrary access picture in the image encoding / decoding apparatus according to the present invention.
  • FIG. 7 is a conceptual diagram illustrating an example of performing inter-layer intra prediction in an enhancement layer, deriving a difference coefficient from an enhancement layer, and encoding the same by using pictures interpolated in a reference layer in an image encoding apparatus to which the present invention is applied.
  • FIG. 8 is a conceptual diagram illustrating an example of performing inter-layer intra prediction in an enhancement layer using pictures interpolated in a reference layer and decoding a block using reconstructed difference coefficients of an enhancement layer in an image decoding apparatus to which the present invention is applied. to be.
  • FIG. 9 is a flowchart schematically illustrating a method of constructing a reference picture list of an enhancement layer and performing inter-layer prediction in the enhancement layer according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • each component shown in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that each component is made of separate hardware or one software component unit.
  • each component is included in each component for convenience of description, and at least two of the components may be combined into one component, or one component may be divided into a plurality of components to perform a function.
  • Integrated and separate embodiments of the components are also included within the scope of the present invention without departing from the spirit of the invention.
  • the components may not be essential components for performing essential functions in the present invention, but may be optional components for improving performance.
  • the present invention can be implemented including only the components essential for implementing the essentials of the present invention except for the components used for improving performance, and the structure including only the essential components except for the optional components used for improving performance. Also included in the scope of the present invention.
  • FIG. 1 is a block diagram illustrating a configuration of a scalable video encoder.
  • a scalable video encoder provides spatial scalability, temporal scalability, and SNR scalability.
  • spatial scalability multi-layers using upsampling are used, and temporal scalability uses Hierarchical B picture structure.
  • quality scalability only the quantization coefficient is changed or a gradual encoding method for quantization error is used in the same manner as the technique for spatial scalability.
  • Input video 110 is down sampled through spatial decimation 115.
  • the down-sampled image 120 is used as an input of the reference layer, and the intra-prediction technique through the intra predictor 135 or the inter-screen through the motion compensator 130 for effectively coding the coding blocks in the picture of the reference layer.
  • the difference coefficient which is a difference value between the original block to be encoded and the prediction block generated by the motion compensation unit 130 or the intra prediction unit 135, is discrete cosine transformed or integer transformed through the transform unit 140.
  • the transform difference coefficient is quantized while passing through the quantization unit 145, and the transform difference coefficient is entropy coded by the entropy encoder 150.
  • the quantized transform difference coefficients are reconstructed back into differential coefficients through the inverse quantizer 152 and the inverse transform unit 154 to generate predicted values for use in adjacent blocks or adjacent pictures.
  • the difference coefficient value restored due to an error occurring in the quantization unit 145 may not be the same as the difference coefficient value used as an input of the converter 140.
  • the reconstructed difference coefficient value is added to a prediction block previously generated by the motion compensator 130 or the intra predictor 135 to reconstruct the pixel value of the block currently encoded.
  • the reconstructed block passes through the in-loop filter 156. When all blocks in the picture are reconstructed, the reconstructed picture is input to the reconstructed picture buffer 158 and used for inter prediction in the reference layer.
  • the input video 110 is used as an input value and encoded.
  • the interlayer prediction is performed by the motion compensator 172 or the intra predictor 170 in order to effectively encode the coding block in the picture as in the reference layer.
  • an intra prediction is performed and an optimal prediction block is generated.
  • the block to be encoded in the enhancement layer is predicted in the prediction block generated by the motion compensator 172 or the intra predictor 170, and as a result, a difference coefficient is generated in the enhancement layer.
  • the difference coefficients of the enhancement layer are encoded through the transform unit, the quantization unit, and the entropy encoding unit similarly to the reference layer.
  • encoded bits are generated in each layer.
  • the multiplexer 192 serves to configure one single bitstream 194.
  • each of the multiple layers may be independently encoded in FIG. 1, since the input video of the lower layer is down-sampled from the video of the upper layer, it has very similar characteristics. Therefore, when the reconstructed pixel values, motion vectors, and residual signals of the lower layer video are used in the enhancement layer, encoding efficiency may be increased.
  • the inter-layer intra prediction 162 reconstructs an image of a reference layer and interpolates the reconstructed image 180 according to an image size of an enhancement layer and uses the image as a reference image.
  • a method of decoding the reference image in units of frames and a method of decoding in units of blocks may be used in consideration of complexity reduction.
  • inter-layer prediction is allowed only when the reference layer is encoded in the intra prediction mode.
  • the image 180 reconstructed in the reference layer is input to the intra prediction unit 170 of the enhancement layer, thereby improving coding efficiency than using neighboring pixel values in the picture in the enhancement layer.
  • inter-layer motion prediction 160 refers to motion information 185 such as a motion vector or a reference frame index in the reference layer in the enhancement layer.
  • motion information 185 such as a motion vector or a reference frame index in the reference layer in the enhancement layer.
  • the inter-layer difference coefficient prediction 164 predicts the difference coefficient of the enhancement layer as the value of the difference coefficient 190 decoded in the reference layer.
  • the difference coefficient value of the enhancement layer can be encoded more effectively.
  • the difference coefficient 190 decoded in the reference layer is input to the motion compensation unit 172 of the enhancement layer to predict the motion of the enhancement layer. From the process, an optimal motion vector may be derived by considering the decoded difference coefficient value 190 of the reference layer.
  • FIG. 2 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
  • the apparatus for decoding an image includes a portion for decoding a reference layer and a portion for decoding an enhancement layer.
  • the portion 205 for decoding the reference layer includes an entropy decoder 210, an inverse quantizer 211, an inverse transformer 212, a motion compensator 213, an intra predictor 214, and a deblocking filter 215. ), A sample adaptive offset unit 216, a reconstructed picture buffer 217, and the like.
  • a bitstream of a reference layer and an enhancement layer is composed of a single bitstream.
  • the demultiplexer 200 extracts only the bitstream of the reference layer from the received bitstream and inputs it to the video decoder of the reference layer.
  • the input bitstream is decoded by the syntax elements encoded by CABAC or VLC through the entropy decoding unit 210.
  • the entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 211, and the inverse quantized coefficients are inversely transformed through the inverse transformer 212 to restore a differential coefficient value.
  • the prediction block is generated from the reference picture stored in the reconstructed picture buffer 217 through the motion compensation unit 213.
  • the intra prediction unit 214 When the block to be decoded is encoded in the intra prediction mode, the intra prediction unit 214 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block.
  • Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 215.
  • the deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary.
  • the decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 216, and a process of compensating an offset value in units of pixels according to each class is performed.
  • the reconstructed picture that has passed through the deblocking filter unit 215 and the sample adaptive offset unit 216 is stored in the reconstructed picture buffer 217 for the inter prediction mode of the next picture.
  • the picture 220 that has passed through the sample adaptive offset unit 216 is copied to the video output buffer and then output as video.
  • the decoding apparatus interpolates the reconstructed picture 220 of the reference layer and then uses it as a reference picture of the enhancement layer in order to effectively encode the picture of the enhancement layer.
  • An image decoding apparatus for an enhancement layer is similar to an image decoding apparatus of a reference layer, such as an entropy decoding unit 250, an inverse quantization unit 251, an inverse transform unit 252, a motion compensator 253, and an intra predictor 254. , A deblocking filter unit 255, a sample adaptive offset unit 256, and a reconstructed picture buffer 257.
  • the image decoding apparatus further includes interpolation unit A 240 and interpolation unit B 230 having different characteristics in order to interpolate the reconstructed picture of the reference layer.
  • the enhancement layer refers to the reference layer
  • decoding on the reference layer must be preceded.
  • the syntax elements of the enhancement layer encoded by CABAC or VLC are decoded through the entropy decoder 250 through the bitstream of the enhancement layer extracted through the demultiplexer 200.
  • the entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 251, and the inverse quantized coefficients are inversely changed through the inverse transformation unit 252 to restore a differential coefficient value.
  • the prediction block is generated from the picture stored in the reconstructed picture buffer 257 through the motion compensation unit 253.
  • the intra prediction unit 254 When the block of the enhancement layer to be decoded is encoded in the intra prediction mode, the intra prediction unit 254 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block.
  • Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 255.
  • the deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary.
  • the decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 256, and a process of compensating an offset value in units of pixels according to each class is performed.
  • the image decoding apparatus decodes a picture of a reference layer and interpolates it according to the resolution of the enhancement layer, and uses the interpolated picture as a prediction value in inter-screen or intra-picture prediction of the enhancement layer.
  • a plurality of interpolation filters are used by the image decoding apparatus to interpolate the decoded picture 220 in the reference layer.
  • the interpolator A 240 performs interpolation on the picture to which the in-loop filter such as the deblocking filter 215 and the sample adaptive offset 216 is applied after being decoded in the reference layer to be equal to the resolution of the enhancement layer.
  • the filter coefficient of the interpolator A 240 may be a DCT-IF based interpolation filter, an adaptive filter coefficient based interpolation filter, or a fixed coefficient based interpolation filter.
  • the interpolator B 230 also receives the same picture as the input of the interpolator A 240 and performs interpolation in consideration of the resolution of the enhancement layer.
  • the interpolator B 230 is a DCT-IF based interpolation filter using fewer filter tap coefficients than the interpolator A 240, an adaptive filter coefficient based interpolation filter, and a fixed coefficient based interpolation filter. Can be used.
  • the image decoding apparatus uses the interpolation unit A 240 having high efficiency and the interpolation unit B 230 having low complexity to perform the reference layer with respect to the same picture of the reference layer. Characterized by generating different prediction images for. In particular, in this figure, only two interpolation units represented by high efficiency and low complexity are described, but three or more interpolation units having different characteristics can be applied, and in this case, information about which interpolation unit to select in the enhancement layer is explicitly specified. Signaling or may be derived from context information of an enhancement layer or a reference layer.
  • the pictures 260 and 270 interpolated by the interpolator A 240 and the interpolator B 230 are input to the reconstructed picture buffer of the enhancement layer 257 to compensate for motion in the inter prediction mode of the enhancement layer. Is used).
  • the picture 260 interpolated by the interpolator A 240 may further be used as an inter-layer intra prediction value in the intra predictor of the enhancement layer.
  • FIG. 3 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
  • the apparatus for decoding an image includes a portion for decoding a reference layer and a portion for decoding an enhancement layer.
  • the portion 305 for decoding the reference layer may include an entropy decoder 310, an inverse quantizer 311, an inverse transformer 312, a motion compensator 313, an intra predictor 314, and a deblocking filter 315. ), A sample adaptive offset unit 316, a reconstructed picture buffer 317, and the like.
  • a bitstream of a reference layer and an enhancement layer is composed of a single bitstream.
  • the demultiplexer 300 extracts only the bitstream of the reference layer from the received bitstream and inputs it to the video decoder of the reference layer.
  • the input bitstream is decoded by the syntax elements encoded by CABAC or VLC through the entropy decoding unit 310.
  • the entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 311, and the inverse quantized coefficients are inversely transformed through the inverse transformer 312 to restore a differential coefficient value.
  • the prediction block is generated from the reconstructed picture stored in the reconstructed picture buffer 317 through the motion compensation unit 313.
  • the intra predictor 314 When the block to be decoded is encoded in the intra prediction mode, the intra predictor 314 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block.
  • Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 315.
  • the deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary.
  • the decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 316, and a process of compensating an offset value in units of pixels according to each class is performed.
  • the reconstructed picture that has passed through the deblocking filter unit 315 and the sample adaptive offset unit 316 is stored in the reconstructed picture buffer 317 for the inter prediction mode of the next picture.
  • the picture 320 that has passed through the sample adaptive offset unit 316 is copied to the video output buffer and then output as video.
  • the decoding apparatus interpolates a reconstructed picture of the reference layer and then uses it as a reference picture of the enhancement layer.
  • An image decoding apparatus for an enhancement layer is similar to an image decoding apparatus of a reference layer, such as an entropy decoding unit 350, an inverse quantizer 351, an inverse transform unit 352, a motion compensator 353, and an intra predictor 354. , A deblocking filter unit 355, a sample adaptive offset unit 356, and a reconstructed picture buffer 357.
  • the apparatus for decoding an image additionally includes an interpolation unit 330 for interpolating a reconstructed picture of a reference layer.
  • the enhancement layer refers to the reference layer
  • decoding on the reference layer must be preceded.
  • the syntax elements of the enhancement layer encoded by CABAC or VLC are decoded through the entropy decoder 350 through the bitstream of the enhancement layer extracted through the demultiplexer 300.
  • the entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 351, and the inverse quantized coefficients are inversely changed by the inverse transformation unit 352 to restore the difference coefficient values.
  • a motion block 353 When the block of the enhancement layer to be decoded is in the inter prediction mode, a motion block 353 generates a prediction block from a picture stored in the reconstructed picture buffer 357.
  • the intra prediction unit 354 When the block of the enhancement layer to be decoded is encoded in the intra prediction mode, the intra prediction unit 354 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block.
  • Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 355.
  • the deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary.
  • the decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 356, and a process of compensating an offset value
  • the image decoding apparatus decodes a picture of a reference layer and interpolates it according to the resolution of the enhancement layer, and then uses the interpolated picture as a prediction value in inter-screen or intra-picture prediction of the enhancement layer.
  • the image decoding apparatus uses a plurality of interpolation points in interpolating a picture decoded in a reference layer.
  • the image decoding apparatus may include points before applying the deblocking filter 340, points after applying the deblocking filter 342, and points after applying the sample adaptive offset 345. It is used as an input point of the executive 330.
  • the point 340 before the deblocking filter is applied has a feature that edges are relatively well preserved since the deblocking filter is not applied.
  • the point 342 may have a small deblocking phenomenon, but edges may not be well preserved due to low-pass filtering.
  • the point 345 may be similar in terms of the PSNR and the original image of the reconstructed point because the band offset and the edge offset may be applied in units of coding tree units (CTUs).
  • the interpolator 330 selects two points from the picture 340 before applying the deblocking filter, the picture 342 after applying the picture, and the picture 345 applied up to the sample adaptive offset in the reference layer and interpolates the image according to the resolution of the enhancement layer. Do this.
  • Information about selecting two interpolation points in the interpolator 330 may be explicitly informed by the enhancement layer.
  • Two pictures interpolated at two points selected by the interpolator 330 are added to the reconstructed picture buffer 357 of the enhancement layer.
  • the interpolation pictures added to the reconstruction picture buffer 357 of the enhancement layer are used for constructing a reference picture list such as L0, L1, or BI direction prediction in the inter prediction process in the enhancement layer.
  • One of the two interpolation points selected by the interpolator 330 may be additionally used in the intra prediction unit of the enhancement layer, and the selection information about the interpolation points may be explicitly informed by the enhancement layer.
  • FIG. 4 is a block diagram illustrating a configuration of a video decoding apparatus according to an embodiment of the present invention.
  • the apparatus for decoding an image includes a portion for decoding a reference layer and a portion for decoding an enhancement layer.
  • a bitstream of a reference layer and an enhancement layer is composed of a single bitstream.
  • the demultiplexer 400 extracts only the bitstream of the reference layer from the received bitstream and inputs it to the video decoder of the reference layer.
  • the input bitstream is decoded by the syntax elements encoded by CABAC or VLC through the entropy decoding unit 410.
  • the entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 411, and the inverse quantized coefficients are inversely transformed through the inverse transformer 412 to be restored to differential coefficient values.
  • a prediction block is generated from a picture stored in the reconstructed picture buffer 417 through the motion compensation unit 413.
  • the intra predictor 414 When the block to be decoded is encoded in the intra prediction mode, the intra predictor 414 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block.
  • Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 415.
  • the deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary.
  • the decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 416, and a process of compensating an offset value in units of pixels according to each class is performed.
  • the reconstructed picture that has passed through the deblocking filter unit 415 and the sample adaptive offset unit 416 is stored in the reconstructed picture buffer 417 for the inter prediction mode of the next picture.
  • the picture 420 passed through the sample adaptive offset unit 416 is copied to the video output buffer and then output as video.
  • the decoding apparatus interpolates a reconstructed picture of the reference layer and then uses it as a reference picture of the enhancement layer.
  • An image decoding apparatus for an enhancement layer is similar to an image decoding apparatus of a reference layer, such as an entropy decoding unit 450, an inverse quantization unit 451, an inverse transform unit 452, a motion compensator 453, and an intra predictor 454. , A deblocking filter 455, a sample adaptive offset 456, and a reconstructed picture buffer 457.
  • the image decoding apparatus further includes interpolation unit A 440 and interpolation unit B 430 having different characteristics in order to interpolate the reconstructed picture of the reference layer.
  • the enhancement layer when decoding the enhancement layer in the scalable video codec, since the enhancement layer refers to the reference layer, decoding on the reference layer must be preceded.
  • the syntax elements of the enhancement layer encoded by CABAC or VLC are decoded through the entropy decoding unit 450 in the bitstream of the enhancement layer extracted through the demultiplexer 400.
  • the entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 451, and the inverse quantized coefficients are inversely changed by the inverse transformation unit 452, thereby restoring the differential coefficient values.
  • the motion compensation unit 453 When the block of the enhancement layer to be decoded is the inter prediction mode, the motion compensation unit 453 generates a prediction block from a picture stored in the reconstructed picture buffer 457.
  • the intra prediction unit 454 When the block of the enhancement layer to be decoded is encoded in the intra prediction mode, the intra prediction unit 454 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block.
  • Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 455.
  • the deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary.
  • the decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 456, and a process of compensating an offset value in
  • the image decoding apparatus decodes a picture of a reference layer and interpolates it according to the resolution of the enhancement layer, and then uses the interpolated picture as a prediction value in inter-screen or intra-picture prediction of the enhancement layer.
  • the image decoding apparatus uses a plurality of interpolation units considering interpolation points and characteristics of each interpolation point in interpolating a picture decoded in a reference layer.
  • the image decoding apparatus uses points 425 after the deblocking filter and points 420 after the sample adaptive offset are used as interpolation points. Since the two interpolation points have different characteristics depending on whether the sample adaptive offset unit is applied or not, interpolation unit A 440 and interpolation unit B 430 having different interpolation characteristics are used.
  • the pictures interpolated through the interpolator A 440 and the interpolator B 430 are used for constructing a reference picture list such as L0, L1, or BI direction prediction in the inter prediction process in the enhancement layer.
  • the picture 460 interpolated through the interpolator A 440 may be further used in the intra prediction unit of the enhancement layer.
  • FIG. 5 is a conceptual diagram for explaining adding pictures interpolated in a reference layer to a reference picture list of an enhancement layer in an image encoding / decoding apparatus according to the present invention.
  • an interpolation picture A having different characteristics by interpolating a decoded picture 510 at the same time in a reference layer when encoding / decoding a picture of an enhancement layer is performed.
  • 530 and interpolation picture B 520 are generated.
  • the generation of interpolation pictures having different characteristics may vary depending on the embodiment as in the first, second, and third embodiments of the present invention.
  • the generated interpolation picture A 530 and the interpolation picture B 520 are added to the L0 list 540 and the L1 list 550 in the enhancement layer to enable prediction through various picture combinations in the prediction mode of the enhancement layer.
  • FIG. 6 is a conceptual diagram for describing adding pictures interpolated in a reference layer to a reference picture list of an enhancement layer when encoding / decoding a random access picture is performed in an image encoding / decoding apparatus according to the present invention.
  • an interpolation picture A having different characteristics by interpolating decoded pictures 610 at the same time in a reference layer when encoding / decoding a picture of an enhancement layer is performed.
  • 630 and interpolation picture B 620 are generated.
  • the generated interpolation picture A 630 and interpolation picture B 620 may be randomly accessible pictures such as a clean random access (CRA) or instantaneous decoding refresh (IDR) picture of HEVC.
  • CRA clean random access
  • IDR instantaneous decoding refresh
  • FIG. 7 is a conceptual view illustrating encoding a block by applying an inter-layer intra prediction technique to a coding block of an enhancement layer in an image encoding apparatus to which the present invention is applied.
  • the image encoding apparatus to which the present invention is applied may apply an inter-layer intra prediction technique using a picture interpolated in a reference layer when encoding a coding block of an enhancement layer.
  • interpolation frame A 710 and interpolation frame B 720 having different characteristics may be generated using a plurality of interpolation points or a plurality of interpolation filters in the picture 700 of the reference layer.
  • two prediction blocks 730 and 732 are generated at positions corresponding to coding blocks encoded in an enhancement layer in a plurality of interpolation pictures.
  • the two prediction blocks are finally generated as the prediction block 735 through operations such as an average value and a weight-based average value.
  • the coding block 740 of the enhancement layer and the generated prediction block 735 are input to the difference 750 module and then calculate the difference coefficients.
  • the calculated difference coefficients are encoded 760 through a transform, quantization, and entropy coding process in the enhancement layer.
  • FIG. 8 is a conceptual diagram illustrating decoding of a block by applying an inter-layer intra prediction technique to a coding block of an enhancement layer in an image decoding apparatus according to the present invention.
  • an image decoding apparatus to which the present invention is applied may apply an inter-layer intra prediction technique using a picture interpolated in a reference layer when decoding a coding block of an enhancement layer.
  • the interpolation frame A 810 and the interpolation frame B 820 having different characteristics may be generated using a plurality of interpolation points or a plurality of interpolation filters of the picture 800 of the reference layer.
  • two prediction blocks 830 and 832 are generated at positions corresponding to coding blocks encoded in an enhancement layer in a plurality of interpolation pictures.
  • the two prediction blocks are finally generated as the prediction block 835 through calculation of an average value and a weight-based average value.
  • the difference coefficient reconstructed through the entry-decode decoding, inverse quantization, and the soft transform unit in the enhancement layer and the prediction block generated in the reference layer are input to the reconstruction unit 850.
  • the reconstruction unit 850 finally decodes the block 860 by adding the reconstruction difference coefficient of the enhancement layer and the prediction block generated in the reference layer in units of pixels.
  • FIG. 9 is a flowchart schematically illustrating a method of constructing a reference picture list of an enhancement layer and performing inter-layer prediction in the enhancement layer according to an embodiment of the present invention.
  • the method of FIG. 9 may be performed by the encoding apparatus and the decoding apparatus of FIGS. 1 to 4 described above. In FIG. 9, it is described as being performed by the decoding apparatus for convenience of description, but may also be performed by the encoding apparatus.
  • the decoding apparatus may generate a reference picture used for interlayer prediction (S900).
  • the reference picture may be a picture decoded in the reference layer at the same time as the current picture of the enhancement layer.
  • the picture decoded in the reference layer may be used as a reference picture after resampling according to the resolution of the enhancement layer through interpolation or the like.
  • the decoding apparatus may generate the reference picture A and the reference picture B by interpolating the decoded picture of the reference layer according to the resolution of the enhancement layer.
  • the reference picture A and the reference picture B may be interpolation pictures generated according to interpolation characteristics of the interpolation unit as in the first, second, and third embodiments of the present invention.
  • the decoding apparatus may construct a reference picture list of the enhancement layer by using the reference picture (S910).
  • reference pictures in the reference picture list may be specified by a reference picture index (refIdx) value.
  • the first reference picture in the reference picture list may have a reference picture index (refIdx) having a value of 0, and the second reference picture in the reference picture list may have a reference picture index (refIdx) having a value of 1.
  • the reference picture lists L0 and L1 may be configured as shown in FIGS. 5 and 6 described above.
  • the reference picture list L0 is a reference picture having a POC smaller than the picture order count (POC) of the current picture at the reference picture index (refIdx) 0 and a reference picture at the reference picture index (refIdx) 1.
  • A a reference picture having a larger PCO than the POC of the current picture may be added to the reference picture index refIdx 2.
  • the reference picture list L1 is a reference picture having a larger PCO than the POC of the current picture at reference picture index (refIdx) 0, a reference picture B at reference picture index (refIdx) 1, and a POC at the reference picture index (refIdx) 2 than the POC of the current picture.
  • a small reference picture may be added.
  • the reference picture list L0 may add a long-term reference picture having a large POC difference from the current picture to the reference picture index (refIdx) 3, and add the reference picture B to the reference picture index (refIdx) 4.
  • it can be configured.
  • Reference picture list L1 may add a long-term reference picture having a large POC difference from the current picture to reference picture index (refIdx) 3, and add reference picture A to reference picture index (refIdx) 4 Can be configured.
  • the decoding apparatus may perform inter-layer prediction on the current picture of the enhancement layer using the reference picture lists L0 and L1 (S920).
  • the decoding apparatus may receive information (reference picture index information) about a reference picture used for inter-layer prediction from the encoding apparatus.
  • a reference picture of the current picture can be obtained from the reference picture lists L0 and L1 based on the information about the reference picture (reference picture index information), and a prediction value of the prediction block in the current picture is generated using the reference picture. can do.
  • the method according to the present invention described above may be stored in a computer-readable recording medium that is produced as a program for execution on a computer, and examples of the computer-readable recording medium include ROM, RAM, CD-ROM, magnetic tape , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of carrier waves (eg, transmission over the Internet).
  • the computer readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments for implementing the method can be easily inferred by programmers in the art to which the present invention belongs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

The present invention relates to a method and apparatus for reference of reconstructed pictures in scalable video codecs. The decoding method comprises the steps of: reference point selection on a reference layer; interpolation filter selection; interpolation implementation; and reconstitution of enhancement layer reference list via the interpolated picture.

Description

비디오 부호화 및 복호화 방법, 그를 이용한 장치Video encoding and decoding method, apparatus using same
본 발명은 영상 처리 기술에 관한 것으로써, 보다 상세하게는 스케일러블 비디오 코덱에서 참조 계층의 픽쳐를 보간한 후 향상 계층의 참조 픽쳐로 사용하여 향상 계층을 부호화/복호화하는 방법 및 장치에 관한 것이다. The present invention relates to an image processing technique, and more particularly, to a method and apparatus for encoding / decoding an enhancement layer by interpolating a picture of a reference layer in a scalable video codec and using the same as a reference picture of the enhancement layer.
최근 고해상도, 고화질 영상에 대한 요구가 증가함에 따라 차세대 영상 서비스를 위한 고효율의 비디오 압축 기술에 대한 필요성이 대두되었다. 이러한 시장의 요구에 따라 MPEG과 VCEG은 2010년 1월 JCT-VC(Joint Collaborative Team on Video Coding)를 구성하였으며, JCT-VC를 통하여 2013년 1월에 HEVC(High Efficiency Video Coding)라는 차세대 비디오 표준 기술을 제정하였다. 이러한 HEVC는 종래에 가장 높은 압축 효율을 갖는 것으로 알려진 비디오 표준인 H.264/AVC High 프로파일에 비하여 주관적 화질 관점에서 비교한 경우 약 50% 이상의 압축 효율을 갖는다. 뿐만 아니라 HEVC는 4K-UHD와 8K-UHD 급의 해상도의 영상을 효과적으로 지원할 수 있으며, 부호화의 기본 블록이 가변적이기 때문에 종래의 비디오 압축 표준 기술보다 다양한 해상도의 영상을 보다 효과적으로 지원할 수 있다. Recently, as the demand for high resolution and high quality images increases, there is a need for a high efficiency video compression technology for the next generation video service. In response to these market demands, MPEG and VCEG formed Joint Collaborative Team on Video Coding (JCT-VC) in January 2010, and next-generation video standard called High Efficiency Video Coding (HEVC) in January 2013 through JCT-VC. The technology was established. This HEVC has a compression efficiency of about 50% or more when compared in terms of subjective picture quality compared to the H.264 / AVC High profile, which is a video standard known to have the highest compression efficiency. In addition, HEVC can effectively support 4K-UHD and 8K-UHD resolution video, and since the basic block of encoding is variable, it can support more various resolution video than conventional video compression standard technology.
기본 계층에 대한 HEVC 표준화는 HEVC 버전 1이라는 이름으로 2013년 1월에 표준이 제정되었으며, 2014년까지는 HEVC 기반의 스케일러블 비디오 압축 표준기술과 HEVC 기반의 다시점 비디오 압축 표준 기술이 개발될 계획이다. HEVC는 H.264/AVC와 같은 종래의 비디오 코덱과 기본 구조는 비슷하지만 새로운 부호화 기술들이 추가로 사용되었기 때문에 HEVC 기반의 스케일러블 비디오 압축 기술에서 HEVC에 새롭게 추가된 기술들을 고려한 계층간 예측 기술이 필요하다. The HEVC standardization for the base layer was established in January 2013 under the name HEVC version 1, and by 2014, the HEVC-based scalable video compression standard technology and the HEVC-based multiview video compression standard technology are planned to be developed. . HEVC is similar in structure to conventional video codecs such as H.264 / AVC, but since new coding techniques are additionally used, the interlayer prediction technique considering the new additions to HEVC in the HEVC-based scalable video compression technique need.
본 발명은 HEVC 기반의 스케일러블 비디오 압축 코덱에서 참조 계층의 복원된 픽쳐를 향상 계층의 해상도에 맞춰 보간 한 후, 향상 계층의 참조 픽쳐 리스트에 추가함으로써 향상 계층의 부호화 성능을 향상시키는 방법 및 장치를 제공하는 것을 목적으로 한다. The present invention provides a method and apparatus for improving encoding performance of an enhancement layer by interpolating a reconstructed picture of a reference layer according to the resolution of an enhancement layer in an HEVC-based scalable video compression codec, and adding it to a reference picture list of the enhancement layer. It aims to provide.
상기 과제를 해결하기 위한 본 발명의 일 실시에 따른 계층간 복원 픽쳐 참조 방법은, 참조 계층에서 보간 할 픽쳐를 선택하는 단계; 선택된 픽쳐에 대하여 다수의 보간부를 통하여 보간을 수행하는 단계; 보간된 픽쳐를 향상 계층의 참조 픽쳐 리스트에 추가하는 단계를 포함한다. An inter-layer reconstructed picture reference method according to an embodiment of the present invention for solving the above problems includes selecting a picture to be interpolated in a reference layer; Performing interpolation through a plurality of interpolators on the selected picture; Adding the interpolated picture to the reference picture list of the enhancement layer.
본 발명의 일 실시에 따른 계층간 복원 픽쳐 참조 장치는, 참조 계층에서 보간 할 픽쳐를 선택하는 장치; 선택된 픽쳐에 대하여 다수의 보간 장치를 통하여 보간을 수행하는 장치; 보간된 픽쳐를 향상 계층의 참조 픽쳐 리스트에 추가하는 장치를 포함한다. An inter-layer reconstructed picture reference apparatus according to an embodiment of the present invention includes an apparatus for selecting a picture to be interpolated in a reference layer; An apparatus for performing interpolation through a plurality of interpolation apparatuses on a selected picture; And an apparatus for adding the interpolated picture to the reference picture list of the enhancement layer.
상기 과제를 해결하기 위한 본 발명의 2실시에 따른 계층간 복원 픽쳐 참조 방법은, 참조 계층의 픽쳐에서 다수의 보간 지점을 선택하는 단계; 선택된 지점의 입력 픽쳐에 대하여 보간부를 통하여 보간을 수행하는 단계; 보간된 픽쳐를 향상 계층의 참조 픽쳐 리스트에 추가하는 단계를 포함한다.  The inter-layer reconstructed picture reference method according to the second embodiment of the present invention for solving the above problems comprises the steps of selecting a plurality of interpolation points in the picture of the reference layer; Performing interpolation through an interpolation unit on the input picture of the selected point; Adding the interpolated picture to the reference picture list of the enhancement layer.
본 발명의 2실시에 따른 계층간 복원 픽쳐 참조 장치는, 참조 계층의 픽쳐에서 다수의 보간 지점을 선택하는 장치; 선택된 지점의 입력 픽쳐에 대하여 보간부를 통하여 보간을 수행하는 장치; 보간된 픽쳐를 향상 계층의 참조 픽쳐 리스트에 추가하는 장치를 포함한다. An inter-layer reconstructed picture reference apparatus according to an embodiment of the present invention includes an apparatus for selecting a plurality of interpolation points in a picture of a reference layer; An apparatus for performing interpolation through an interpolation unit on an input picture of a selected point; And an apparatus for adding the interpolated picture to the reference picture list of the enhancement layer.
상기 과제를 해결하기 위한 본 발명의 3실시에 따른 계층간 복원 픽쳐 참조 방법은, 참조 계층의 픽쳐에서 다수의 보간 지점을 선택하는 단계; 선택된 지점의 입력 픽쳐에 따라 서로 다른 보간부를 통하여 보간을 수행하는 단계; 보간된 픽쳐를 향상 계층의 참조 픽쳐 리스트에 추가하는 단계를 포함한다. The inter-layer reconstructed picture reference method according to the third embodiment of the present invention for solving the above problems comprises the steps of selecting a plurality of interpolation points in a picture of a reference layer; Performing interpolation through different interpolators according to the input picture of the selected point; Adding the interpolated picture to the reference picture list of the enhancement layer.
본 발명의 3실시에 따른 계층간 복원 픽쳐 참조 장치는, 참조 계층의 픽쳐에서 다수의 보간 지점을 선택하는 장치; 선택된 지점의 입력 픽쳐에 따라 서로 다른 보간부를 통하여 보간을 수행하는 장치; 보간된 픽쳐를 향상 계층의 참조 픽쳐 리스트에 추가하는 장치를 포함한다.An inter-layer reconstructed picture reference apparatus according to an embodiment of the present invention includes an apparatus for selecting a plurality of interpolation points in a picture of a reference layer; An apparatus for performing interpolation through different interpolators in accordance with an input picture of a selected point; And an apparatus for adding the interpolated picture to the reference picture list of the enhancement layer.
본 발명의 일 실시 예에 따르면, 상기 계층간 복원 픽쳐 참조 부호화/복호화 장치는 참조 계층에서 샘플 적응적 오프셋이 적용된 영상에 대하여 다수의 보간부를 통하여 보간을 수행함으로써 특성이 다른 다수의 참조 픽쳐를 생성한다. 참조 계층을 통하여 생성된 다수의 참조 픽쳐는 향상 계층의 참조 픽쳐 리스트에 삽입되어 화면 간 예측에 사용됨으로써 향상 계층의 부호화 성능을 향상 시킬 수 있다. According to an embodiment of the present invention, the inter-layer reconstruction picture reference encoding / decoding apparatus interpolates a plurality of reference pictures having different characteristics by performing interpolation through a plurality of interpolators on an image to which sample adaptive offset is applied in a reference layer. Create A plurality of reference pictures generated through the reference layer may be inserted into a reference picture list of the enhancement layer and used for inter prediction to improve encoding performance of the enhancement layer.
본 발명의 2실시 예에 따르면, 상기 계층간 복원 픽쳐 참조 부호화/복호화 장치는 참조 계층에서의 참조 픽쳐에 대하여 다수의 보간 지점에서 보간함으로써 서로 다른 특성을 갖는 보간 영상을 생성하고, 이를 향상 계층에서 참조 픽쳐 리스터에서 사용하게 함으로써 다양한 조합을 통하여 향상 계층의 부호화 성능을 향상시킬 수 있다.According to an embodiment of the present invention, the inter-layer reconstructed picture reference encoding / decoding apparatus generates interpolation images having different characteristics by interpolating a reference picture in a reference layer at a plurality of interpolation points, and in the enhancement layer By using the reference picture lister, encoding performance of an enhancement layer can be improved through various combinations.
본 발명의 3실시 예에 따르면, 상기 계층간 복원 픽쳐 참조 부호화/복호화 장치는 참조 계층에서의 참조 픽쳐에 대하여 다수의 보간 지점을 선택하고, 각 보간 지점의 특성을 고려하여 서로 다른 특성을 갖는 다수의 보간부를 통하여 보간을 수행함으로써 특성이 다른 다수의 참조 픽쳐를 생성한다. 생성된 다수의 참조 픽쳐는 향상 계층의 참조 픽쳐 리스트에 삽입되어 화면 간 예측에 사용됨으로써 향상 계층의 부호화 성능을 향상 시킬 수 있다.According to an embodiment of the present invention, the inter-layer reconstructed picture reference encoding / decoding apparatus selects a plurality of interpolation points with respect to a reference picture in a reference layer and has a plurality of characteristics having different characteristics in consideration of characteristics of each interpolation point. The interpolation is performed to generate a plurality of reference pictures having different characteristics. The generated plurality of reference pictures may be inserted into the reference picture list of the enhancement layer and used for inter prediction to improve encoding performance of the enhancement layer.
도 1은 스케일러블 비디오 부호화기의 구성을 나타내는 블록도이다. 1 is a block diagram illustrating a configuration of a scalable video encoder.
도 2은 본 발명이 적용되는 영상 복호화 장치의 일 실시 예에 따른 구성을 나타내는 블록도이다.2 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
도 3는 본 발명이 적용되는 영상 복호화 장치의 2실시 예에 따른 구성을 나타내는 블록도이다.3 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
도 4은 본 발명이 적용되는 영상 복호화 장치의 3실시 예에 따른 구성을 나타내는 블록도이다. 4 is a block diagram illustrating a configuration of a video decoding apparatus according to an embodiment of the present invention.
도 5는 본 발명이 적용되는 영상 부호화/복호화 장치에서 참조 계층에서 보간한 픽쳐들을 향상 계층의 참조 픽쳐 리스트에 추가하는 것을 설명하기 위한 개념도이다. FIG. 5 is a conceptual diagram for describing adding pictures interpolated in a reference layer to a reference picture list of an enhancement layer in an image encoding / decoding apparatus according to the present invention.
도 6는 본 발명이 적용되는 영상 부호화/복호화 장치에서 임의 접근 픽쳐에 대한 복호화를 수행하는 경우에 참조 계층에서 보간한 픽쳐들을 향상 계층의 참조 픽쳐 리스트에 추가하는 것을 설명하기 위한 개념도이다. FIG. 6 is a conceptual diagram for describing adding pictures interpolated in a reference layer to a reference picture list of an enhancement layer when decoding an arbitrary access picture in the image encoding / decoding apparatus according to the present invention.
도 7은 본 발명이 적용되는 영상 부호화 장치에서 참조 계층에서 보간한 픽쳐들을 사용하여 향상 계층에서 계층 간 인트라 예측을 수행하고 향상 계층에서 차분 계수를 도출하고 이를 부호화하는 것을 설명하기 위한 개념도이다.FIG. 7 is a conceptual diagram illustrating an example of performing inter-layer intra prediction in an enhancement layer, deriving a difference coefficient from an enhancement layer, and encoding the same by using pictures interpolated in a reference layer in an image encoding apparatus to which the present invention is applied.
도 8은 본 발명이 적용되는 영상 복호화 장치에서 참조 계층에서 보간한 픽쳐들을 사용하여 향상 계층에서 계층간 인트라 예측을 수행하고 향상 계층의 복원된 차분 계수를 사용하여 블록을 복호화하는 것을 설명하기 위한 개념도이다. 8 is a conceptual diagram illustrating an example of performing inter-layer intra prediction in an enhancement layer using pictures interpolated in a reference layer and decoding a block using reconstructed difference coefficients of an enhancement layer in an image decoding apparatus to which the present invention is applied. to be.
도 9는 본 발명의 실시예에 따른 향상 계층의 참조 픽쳐 리스트를 구성하여 향상 계층에서 계층간 예측을 수행하는 방법을 개략적으로 나타내는 순서도이다.9 is a flowchart schematically illustrating a method of constructing a reference picture list of an enhancement layer and performing inter-layer prediction in the enhancement layer according to an embodiment of the present invention.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 구체적으로 설명한다. 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described concretely with reference to drawings. In describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있으나, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 아울러, 본 발명에서 특정 구성을 "포함"한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다. When a component is said to be "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that another component may be present in between. Should be. In addition, the content described as "include" a specific configuration in the present invention does not exclude a configuration other than the configuration, it means that additional configuration may be included in the scope of the technical idea of the present invention or the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
또한 본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.In addition, the components shown in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that each component is made of separate hardware or one software component unit. In other words, each component is included in each component for convenience of description, and at least two of the components may be combined into one component, or one component may be divided into a plurality of components to perform a function. Integrated and separate embodiments of the components are also included within the scope of the present invention without departing from the spirit of the invention.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.In addition, some of the components may not be essential components for performing essential functions in the present invention, but may be optional components for improving performance. The present invention can be implemented including only the components essential for implementing the essentials of the present invention except for the components used for improving performance, and the structure including only the essential components except for the optional components used for improving performance. Also included in the scope of the present invention.
도 1은 스케일러블 비디오 부호화기의 구성을 나타내는 블록도이다. 1 is a block diagram illustrating a configuration of a scalable video encoder.
도 1을 참조하면, 스케일러블 비디오 부호화기는 공간적 스케일러빌러티(spatial scalability), 시간적 스케일러빌리티(temporal scalability), 화질적 스케일러빌리티 (SNR scalability)를 제공한다. 공간적 스케일러빌러티를 위해서는 업샘플링을 이용한 다계층(multi-layers) 방식을 사용하며, 시간적 스케일러빌러티는 Hierarchical B 픽쳐 구조를 사용한다. 그리고 화질적 스케일러빌리티를 위해서는 공간적 스케일러빌러티를 위한 기법과 동일한 방식에 양자화 계수만을 변경하거나 양자화 에러에 대한 점진적 부호화 기법을 사용한다. Referring to FIG. 1, a scalable video encoder provides spatial scalability, temporal scalability, and SNR scalability. For spatial scalability, multi-layers using upsampling are used, and temporal scalability uses Hierarchical B picture structure. In addition, for the quality scalability, only the quantization coefficient is changed or a gradual encoding method for quantization error is used in the same manner as the technique for spatial scalability.
입력 비디오(110)는 spatial decimation(115)을 통해서 다운 샘플링된다. 다운 샘플링된 영상(120)은 참조 계층의 입력으로 사용되며 참조 계층의 픽쳐 내의 코딩 블록들을 효과적으로 부호화하기 위하여 인트라 예측부(135)를 통한 화면 내 예측 기술 또는 움직임 보상부(130)를 통한 화면 간 예측 기술을 사용한다. 부호화하려는 원본 블록과 움직임 보상부(130) 또는 인트라 예측부(135)에서 생성된 예측 블록과의 차이 값인 차분 계수는 변환부(140)를 통해서 이산여현변환 또는 정수변환된다. 변환 차분 계수는 양자화부(145)를 거치면서 양자화되고 양자화된 변환 차분 계수는 엔트로피 부호화부(150)를 통해 엔트로피 코딩된다. 양자화된 변환 차분 계수는 인접하는 블록 또는 인접한 픽쳐에서 사용할 예측 값을 생성하기 위하여 역양자화부(152)와 역변환부(154)를 거치면서 다시 차분 계수로 복원된다. 이때 양자화부(145)에서 발생하는 에러로 인하여 복원된 차분 계수 값은 변환부(140)의 입력으로 사용되었던 차분 계수 값과 같지 않을 수 있다. 복원된 차분 계수 값은 앞서 움직임 보상부(130) 또는 인트라 예측부(135)에서 생성된 예측 블록과 더해짐으로써 현재 부호화했던 블록의 픽셀 값을 복원한다. 복원된 블록은 인-루프 필터(156)를 거치게 되는데 픽쳐 내의 모든 블록이 복원된 경우 복원 픽쳐는 복원 픽쳐 버퍼(158)에 입력되어 참조 계층에서 화면 간 예측에 사용된다. Input video 110 is down sampled through spatial decimation 115. The down-sampled image 120 is used as an input of the reference layer, and the intra-prediction technique through the intra predictor 135 or the inter-screen through the motion compensator 130 for effectively coding the coding blocks in the picture of the reference layer. Use prediction techniques. The difference coefficient, which is a difference value between the original block to be encoded and the prediction block generated by the motion compensation unit 130 or the intra prediction unit 135, is discrete cosine transformed or integer transformed through the transform unit 140. The transform difference coefficient is quantized while passing through the quantization unit 145, and the transform difference coefficient is entropy coded by the entropy encoder 150. The quantized transform difference coefficients are reconstructed back into differential coefficients through the inverse quantizer 152 and the inverse transform unit 154 to generate predicted values for use in adjacent blocks or adjacent pictures. In this case, the difference coefficient value restored due to an error occurring in the quantization unit 145 may not be the same as the difference coefficient value used as an input of the converter 140. The reconstructed difference coefficient value is added to a prediction block previously generated by the motion compensator 130 or the intra predictor 135 to reconstruct the pixel value of the block currently encoded. The reconstructed block passes through the in-loop filter 156. When all blocks in the picture are reconstructed, the reconstructed picture is input to the reconstructed picture buffer 158 and used for inter prediction in the reference layer.
향상 계층에서는 입력 비디오(110)를 그대로 입력 값으로 사용하여 이를 부호화하는데, 참조 계층과 마찬가지로 픽쳐 내의 부호화 블록을 효과적으로 부호화하기 위하여 움직임 보상부(172) 또는 인트라 예측부(170)를 통해 화면 간 예측 또는 화면 내 예측을 수행하고 최적의 예측 블록을 생성한다. 향상 계층에서 부호화하려는 블록은 움직임 보상부(172) 또는 인트라 예측부(170)에서 생성된 예측 블록에서 예측되며 그 결과로 향상 계층에서의 차분 계수가 발생한다. 향상 계층의 차분 계수는 참조 계층과 마찬가지로 변환부, 양자화부, 엔트로피 부호화부를 통해서 부화된다. 도 1과 같이 다계층 구조에서는 각 계층에서 부호화 비트가 발생하는데 멀티플렉서는(192)는 이를 하나의 단일 비트스트림(194)으로 구성하는 역할을 한다. In the enhancement layer, the input video 110 is used as an input value and encoded. The interlayer prediction is performed by the motion compensator 172 or the intra predictor 170 in order to effectively encode the coding block in the picture as in the reference layer. Alternatively, an intra prediction is performed and an optimal prediction block is generated. The block to be encoded in the enhancement layer is predicted in the prediction block generated by the motion compensator 172 or the intra predictor 170, and as a result, a difference coefficient is generated in the enhancement layer. The difference coefficients of the enhancement layer are encoded through the transform unit, the quantization unit, and the entropy encoding unit similarly to the reference layer. In the multi-layered structure as shown in FIG. 1, encoded bits are generated in each layer. The multiplexer 192 serves to configure one single bitstream 194.
도 1에서 다계층 각각을 독립적으로 부호화할 수도 있지만, 하위 계층의 입력 비디오는 상위 계층의 비디오에서 다운 샘플링된 것이므로 매우 유사한 특성을 갖고 있다. 따라서 하위 계층의 비디오의 복원된 픽셀값, 모션벡터, 잔차 신호등을 향상 계층에서 이용하면 부호화 효율을 높일 수 있다. Although each of the multiple layers may be independently encoded in FIG. 1, since the input video of the lower layer is down-sampled from the video of the upper layer, it has very similar characteristics. Therefore, when the reconstructed pixel values, motion vectors, and residual signals of the lower layer video are used in the enhancement layer, encoding efficiency may be increased.
도 1에서 계층간 화면 내 예측(162)은 참조 계층의 영상을 복원한 후 복원된 영상(180)을 향상 계층의 영상 크기에 맞게 보간하고 이를 참조 영상으로 이용한다. 참조 계층의 영상을 복원하는 경우 복잡도 감소를 고려하여 프레임 단위로 참조 영상을 복호화 하는 방식과 블록 단위로 복호화 하는 방식이 사용될 수 있다. 특히 참조 계층이 화면 간 예측 모드로 부호화된 경우에는 이를 복호화하는 복잡도가 높기 때문에 H.264/SVC 에서는 참조 계층이 오직 화면 내 예측 모드로 부호화된 경우에만 계층간 화면 내 예측을 허용하였다. 참조 계층에서 복원된 영상(180)은 향상 계층의 인트라 예측부(170)에 입력되는데 이를 통해서 향상 계층에서 픽쳐 내에서 주변의 픽셀 값을 이용하는 것보다 부호화 효율을 향상시킬 수 있다. In FIG. 1, the inter-layer intra prediction 162 reconstructs an image of a reference layer and interpolates the reconstructed image 180 according to an image size of an enhancement layer and uses the image as a reference image. When reconstructing the image of the reference layer, a method of decoding the reference image in units of frames and a method of decoding in units of blocks may be used in consideration of complexity reduction. In particular, when the reference layer is encoded in the inter prediction mode, since the complexity of decoding is high, in H.264 / SVC, inter-layer prediction is allowed only when the reference layer is encoded in the intra prediction mode. The image 180 reconstructed in the reference layer is input to the intra prediction unit 170 of the enhancement layer, thereby improving coding efficiency than using neighboring pixel values in the picture in the enhancement layer.
도 1에서 계층간 모션 예측(160)은 참조 계층에서의 모션 벡터나 참조 프레임 인덱스와 같은 움직임 정보(185)를 향상 계층에서 참조한다. 특히 영상을 낮은 비트율로 부호화할 때 움직임 정보에 대한 비중이 높기 때문에, 참조 계층의 이러한 정보를 참조함으로써 향상 계층의 부호화 효율을 향상 시킨다. In FIG. 1, inter-layer motion prediction 160 refers to motion information 185 such as a motion vector or a reference frame index in the reference layer in the enhancement layer. In particular, since the specific gravity of the motion information is high when the video is encoded at a low bit rate, the coding efficiency of the enhancement layer is improved by referring to such information of the reference layer.
도 1에서 계층간 차분 계수 예측(164)은 향상 계층의 차분 계수를 참조 계층에서 복호된 차분 계수(190) 값으로 예측한다. 이를 통하여 향상 계층의 차분 계수 값을 더 효과적으로 부호화할 수 있는데, 부호화기의 구현 방식에 따라 참조 계층에서 복호된 차분 계수(190)를 향상 계층의 움직임 보상부(172)에 입력하여 향상 계층의 움직임 예측 과정에서부터 참조 계층의 복호된 차분 계수값(190)을 고려하여 최적의 움직임 벡터를 도출할 수 있다. In FIG. 1, the inter-layer difference coefficient prediction 164 predicts the difference coefficient of the enhancement layer as the value of the difference coefficient 190 decoded in the reference layer. Through this, the difference coefficient value of the enhancement layer can be encoded more effectively. According to the implementation method of the encoder, the difference coefficient 190 decoded in the reference layer is input to the motion compensation unit 172 of the enhancement layer to predict the motion of the enhancement layer. From the process, an optimal motion vector may be derived by considering the decoded difference coefficient value 190 of the reference layer.
도 2는 본 발명이 적용되는 영상 복호화 장치의 일 실시 예에 따른 구성을 나타내는 블록도이다. 2 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
도 2를 참조하면, 상기 영상 복호화 장치는 참조 계층을 복호화하는 부분과 향상 계층을 복호화하는 부분으로 구성된다. 참조 계층을 복호화하는 부분(205)은 엔트로피 복호화부(210), 역양자화부(211), 역변환부(212), 움직임 보상부(213), 인트라 예측부(214), 디블록킹 필터부(215), 샘플 적응적 오프셋부(216), 복원 픽쳐 버퍼(217) 등으로 구성된다.Referring to FIG. 2, the apparatus for decoding an image includes a portion for decoding a reference layer and a portion for decoding an enhancement layer. The portion 205 for decoding the reference layer includes an entropy decoder 210, an inverse quantizer 211, an inverse transformer 212, a motion compensator 213, an intra predictor 214, and a deblocking filter 215. ), A sample adaptive offset unit 216, a reconstructed picture buffer 217, and the like.
스케일러블 비디오 코덱에서는 참조 계층과 향상 계층에 대한 비트스트림을 단일 비트스트림으로 구성한다. 스케일러블 비디오 복호화기가 참조 계층에 대해서만 복호화하는 경우 디멀티플렉서(200)는 전송 받은 비트스트림에서 참조 계층의 비트스트림만을 적출 한 후 참조 계층의 비디오 복호화기에 입력한다. 입력된 비트스트림은 엔트로피복호화부(210)를 통해서 CABAC 또는 VLC로 부호화된 신택스 요소들이 복호호화된다. 엔트로피 복호화된 계수들은 역양자화부(211)를 거치면서 역양자화되고, 역양자화된 계수는 역변환부(212)를 통해서 역변환됨으로써 차분 계수 값으로 복원된다. 복호화하려는 블록이 화면 간 예측 모드인 경우에는 움직임 보상부(213)를 통해서 복원 픽쳐 버퍼(217)에 저장된 참조 픽쳐에서 예측 블록을 생성한다. 복호화하려는 블록이 화면 내 예측 모드로 부호화된 경우에는 인트라 예측부(214)를 통해서 현재 복호화하려는 블록의 주변에 복호된 픽셀 값을 사용하여 인트라 예측 모드에 따른 예측 블록을 생성한다. 화면 간 또는 화면 내 예측을 통해서 생성된 예측 블록은 픽셀 도메인의 차분 계수 값과 더해짐으로써 블록이 복호화된다. 복호화된 블록, 슬라이스, 또는 픽쳐들은 디블록킹 필터부(215)를 통해서 디블록킹 필터링이 수행된다. HEVC의 디블록킹 필터는 기본적으로 예측 블록 (prediction block; PB)과 변환 블록 (transform block; TB) 경계에 대해서 수행된다. 디블록킹 필터링이 적용된 복호화된 블록은 샘플 적응적 오프셋부(216)를 통하여 밴드 오프셋 또는 에지 오프셋 중 하나의 클래스로 선택되고 각 클래스에 따라 픽셀 단위에서 오프셋 값을 보상하는 과정이 수행된다. 디블록킹 필터부(215)와 샘플 적응적 오프셋부(216)를 거친 복원 픽쳐는 다음 픽쳐의 화면 간 예측 모드를 위하여 복원 픽쳐 버퍼(217)에 저장된다. 참조 계층의 비디오를 재생하는 경우에는 샘플 적응적 오프셋부(216)를 거친 픽쳐 (220)가 비디오 출력 버퍼로 복사된 후 비디오로 출력되게 된다. In the scalable video codec, a bitstream of a reference layer and an enhancement layer is composed of a single bitstream. When the scalable video decoder decodes only the reference layer, the demultiplexer 200 extracts only the bitstream of the reference layer from the received bitstream and inputs it to the video decoder of the reference layer. The input bitstream is decoded by the syntax elements encoded by CABAC or VLC through the entropy decoding unit 210. The entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 211, and the inverse quantized coefficients are inversely transformed through the inverse transformer 212 to restore a differential coefficient value. When the block to be decoded is in the inter prediction mode, the prediction block is generated from the reference picture stored in the reconstructed picture buffer 217 through the motion compensation unit 213. When the block to be decoded is encoded in the intra prediction mode, the intra prediction unit 214 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block. Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 215. The deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary. The decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 216, and a process of compensating an offset value in units of pixels according to each class is performed. The reconstructed picture that has passed through the deblocking filter unit 215 and the sample adaptive offset unit 216 is stored in the reconstructed picture buffer 217 for the inter prediction mode of the next picture. When the video of the reference layer is played back, the picture 220 that has passed through the sample adaptive offset unit 216 is copied to the video output buffer and then output as video.
본 발명의 일 실시 예를 따르는 복호화 장치는 향상 계층의 픽쳐를 효과적으로 부호화하기 위하여 참조 계층의 복원된 픽쳐(220)를 보간 한 후 향상 계층의 참조 픽쳐로 사용한다. 향상 계층을 위한 영상 복호화 장치는 참조 계층의 영상 복호화 장치와 유사하게 엔트로피복호화부(250), 역양자화부(251), 역변환부(252), 움직임 보상부(253), 인트라 예측부(254), 디블록킹 필터부(255), 샘플 적응적 오프셋부(256), 복원 픽쳐 버퍼(257)를 포함한다. 상기 영상 복호화 장치는 추가적으로 참조 계층의 복원 픽쳐를 보간하기 위하여 서로 다른 특성을 갖고 있는 보간부 A(240), 보간부 B(230)를 포함한다.The decoding apparatus according to an embodiment of the present invention interpolates the reconstructed picture 220 of the reference layer and then uses it as a reference picture of the enhancement layer in order to effectively encode the picture of the enhancement layer. An image decoding apparatus for an enhancement layer is similar to an image decoding apparatus of a reference layer, such as an entropy decoding unit 250, an inverse quantization unit 251, an inverse transform unit 252, a motion compensator 253, and an intra predictor 254. , A deblocking filter unit 255, a sample adaptive offset unit 256, and a reconstructed picture buffer 257. The image decoding apparatus further includes interpolation unit A 240 and interpolation unit B 230 having different characteristics in order to interpolate the reconstructed picture of the reference layer.
스케일러블 비디오 코덱에서 향상 계층을 복호화하는 경우 향상 계층은 참조 계층을 참조하기 때문에 참조 계층에 대한 복호화가 선행되어야 한다. 참조 계층에 대한 복호화가 선행된 후 디멀티플렉서(200)를 통해서 적출 된 향상 계층의 비트스트림은 엔트로피 복호화부(250)를 통해서 CABAC 또는 VLC로 부호화된 향상 계층의 신택스 요소들이 복호화된다. 엔트로피 복호화된 계수들은 역양자화부(251)를 거치면서 역양자화되고, 역양자화된 계수는 역변환부(252)를 통해서 역변화 됨으로써 차분 계수 값으로 복원된다. 복호화하려는 향상 계층의 블록이 화면 간 예측 모드인 경우에는 움직임 보상부(253)를 통해서 복원 픽쳐 버퍼(257)에 저장된 픽쳐에서 예측 블록을 생성한다. 복호화하려는 향상 계층의 블록이 화면 내 예측 모드로 부호화된 경우에는 인트라 예측부(254)를 통해서 현재 복호화하려는 블록의 주변에 복호된 픽셀 값을 사용하여 인트라 예측 모드에 따른 예측 블록을 생성한다. 화면 간 또는 화면 내 예측을 통해서 생성된 예측 블록은 픽셀 도메인의 차분 계수 값과 더해짐으로써 블록이 복호화된다. 복호화된 블록, 슬라이스, 또는 픽쳐들은 디블록킹 필터부(255)를 통해서 디블록킹 필터링이 수행된다. HEVC의 디블록킹 필터는 기본적으로 예측 블록 (prediction block; PB)과 변환 블록 (transform block; TB) 경계에 대해서 수행된다. 디블록킹 필터링이 적용된 복호화된 블록은 샘플 적응적 오프셋부(256)를 통하여 밴드 오프셋 또는 에지 오프셋 중 하나의 클래스로 선택되고 각 클래스에 따라 픽셀 단위에서 오프셋 값을 보상하는 과정이 수행된다.When decoding the enhancement layer in the scalable video codec, since the enhancement layer refers to the reference layer, decoding on the reference layer must be preceded. After decoding of the reference layer is preceded, the syntax elements of the enhancement layer encoded by CABAC or VLC are decoded through the entropy decoder 250 through the bitstream of the enhancement layer extracted through the demultiplexer 200. The entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 251, and the inverse quantized coefficients are inversely changed through the inverse transformation unit 252 to restore a differential coefficient value. When the block of the enhancement layer to be decoded is in the inter prediction mode, the prediction block is generated from the picture stored in the reconstructed picture buffer 257 through the motion compensation unit 253. When the block of the enhancement layer to be decoded is encoded in the intra prediction mode, the intra prediction unit 254 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block. Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 255. The deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary. The decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 256, and a process of compensating an offset value in units of pixels according to each class is performed.
상기 영상 복호화 장치는 참조 계층의 픽쳐를 복호화한 후 이를 향상 계층의 해상도에 맞춰 보간하고, 보간된 픽쳐를 향상 계층의 화면간 또는 화면내 예측에서 예측 값으로 사용한다. 상기 영상 복호화 장치가 참조 계층에서 복호화된 픽쳐(220)를 보간하는데 있어 다수의 보간 필터가 사용된다. 보간부A(240)는 참조 계층에서 복호화된 후 디블록킹 필터(215)와 샘플 적응적 오프셋(216)과 같은 인-루프 필터를 적용한 픽쳐에 대하여 향상 계층의 해상도와 동일하도록 보간을 수행한다. 보간부A(240)의 필터 계수는 DCT-IF 기반의 보간 필터, 적응적 필터 계수 기반의 보간 필터, 고정 계수 기반의 보간 필터 들이 사용될 수 있다. 보간부B(230)도 보간부A(240)의 입력과 동일한 픽쳐를 입력으로 받아서 향상 계층의 해상도를 고려하여 보간을 수행한다. 보간부B(230)는 복잡도를 고려하여 보간부A(240)보다 적은 필터 탭의 계수들을 사용하는 DCT-IF 기반의 보간 필터, 적응적 필터 계수 기반의 보간 필터, 고정 계수 기반의 보간 필터 들이 사용될 수 있다. The image decoding apparatus decodes a picture of a reference layer and interpolates it according to the resolution of the enhancement layer, and uses the interpolated picture as a prediction value in inter-screen or intra-picture prediction of the enhancement layer. A plurality of interpolation filters are used by the image decoding apparatus to interpolate the decoded picture 220 in the reference layer. The interpolator A 240 performs interpolation on the picture to which the in-loop filter such as the deblocking filter 215 and the sample adaptive offset 216 is applied after being decoded in the reference layer to be equal to the resolution of the enhancement layer. The filter coefficient of the interpolator A 240 may be a DCT-IF based interpolation filter, an adaptive filter coefficient based interpolation filter, or a fixed coefficient based interpolation filter. The interpolator B 230 also receives the same picture as the input of the interpolator A 240 and performs interpolation in consideration of the resolution of the enhancement layer. The interpolator B 230 is a DCT-IF based interpolation filter using fewer filter tap coefficients than the interpolator A 240, an adaptive filter coefficient based interpolation filter, and a fixed coefficient based interpolation filter. Can be used.
상기 영상 복호화 장치는 참조 계층의 픽쳐를 보간하기 위하여 고효율의 성능을 갖는 보간부A(240)와 저복잡도의 성능을 갖는 보간부B(230)를 사용하여 참조 계층의 동일 픽쳐에 대하여 참조 계층을 위한 서로 다른 예측 영상을 생성하는 것을 특징으로 한다. 특히 본 도면에서는 고효율성과 저복잡도로 대표되는 2개의 보간부 만을 기술하였지만 서로 다른 특성을 갖는 3개 이상의 보간부들이 적용될 수 있으며 이러한 경우에는 향상 계층에서 어떠한 보간부를 선택할지에 대한 정보를 명시적으로 시그널링 하거나 향상 계층 또는 참조 계층의 컨텍스트 정보로부터 유도할 수 있다. 보간부A(240)와 보간부B(230)에서 보간 된 픽쳐들 (260, 270)은 향상 계층의 복원 픽쳐 버퍼에(257)에 입력되어, 향상 계층의 화면 간 예측모드에서 움직임 보상 (253)에 사용된다. 보간부A(240)에서 보간된 픽쳐(260)는 추가로 향상 계층의 인트라 예측부에서 계층간 인트라 예측 값으로도 사용될 수 있다. In order to interpolate the pictures of the reference layer, the image decoding apparatus uses the interpolation unit A 240 having high efficiency and the interpolation unit B 230 having low complexity to perform the reference layer with respect to the same picture of the reference layer. Characterized by generating different prediction images for. In particular, in this figure, only two interpolation units represented by high efficiency and low complexity are described, but three or more interpolation units having different characteristics can be applied, and in this case, information about which interpolation unit to select in the enhancement layer is explicitly specified. Signaling or may be derived from context information of an enhancement layer or a reference layer. The pictures 260 and 270 interpolated by the interpolator A 240 and the interpolator B 230 are input to the reconstructed picture buffer of the enhancement layer 257 to compensate for motion in the inter prediction mode of the enhancement layer. Is used). The picture 260 interpolated by the interpolator A 240 may further be used as an inter-layer intra prediction value in the intra predictor of the enhancement layer.
도 3는 본 발명이 적용되는 영상 복호화 장치의 2실시 예에 따른 구성을 나타내는 블록도이다.3 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
도 3를 참조하면, 상기 영상 복호화 장치는 참조 계층을 복호화하는 부분과 향상 계층을 복호화하는 부분으로 구성된다. 참조 계층을 복호화하는 부분(305)은 엔트로피 복호화부(310), 역양자화부(311), 역변환부(312), 움직임 보상부(313), 인트라 예측부(314), 디블록킹 필터부(315), 샘플 적응적 오프셋부(316), 복원 픽쳐 버퍼(317) 등으로 구성된다.Referring to FIG. 3, the apparatus for decoding an image includes a portion for decoding a reference layer and a portion for decoding an enhancement layer. The portion 305 for decoding the reference layer may include an entropy decoder 310, an inverse quantizer 311, an inverse transformer 312, a motion compensator 313, an intra predictor 314, and a deblocking filter 315. ), A sample adaptive offset unit 316, a reconstructed picture buffer 317, and the like.
스케일러블 비디오 코덱에서는 참조 계층과 향상 계층에 대한 비트스트림을 단일 비트스트림으로 구성한다. 스케일러블 비디오 복호화기가 참조 계층에 대해서만 복호화하는 경우 디멀티플렉서(300)는 전송 받은 비트스트림에서 참조 계층의 비트스트림만을 적출 한 후 참조 계층의 비디오 복호화기에 입력한다. 입력된 비트스트림은 엔트로피복호화부(310)를 통해서 CABAC 또는 VLC로 부호화된 신택스 요소들이 복호호화된다. 엔트로피 복호화된 계수들은 역양자화부(311)를 거치면서 역양자화되고, 역양자화된 계수는 역변환부(312)를 통해서 역변환됨으로써 차분 계수 값으로 복원된다. 복호화하려는 블록이 화면 간 예측 모드인 경우에는 움직임 보상부(313)를 통해서 복원 픽쳐 버퍼(317)에 저장된 복원 픽쳐에서 예측 블록을 생성한다. 복호화하려는 블록이 화면 내 예측 모드로 부호화된 경우에는 인트라 예측부(314)를 통해서 현재 복호화하려는 블록의 주변에 복호된 픽셀 값을 사용하여 인트라 예측 모드에 따른 예측 블록을 생성한다. 화면 간 또는 화면 내 예측을 통해서 생성된 예측 블록은 픽셀 도메인의 차분 계수 값과 더해짐으로써 블록이 복호화된다. 복호화된 블록, 슬라이스, 또는 픽쳐들은 디블록킹 필터부(315)를 통해서 디블록킹 필터링이 수행된다. HEVC의 디블록킹 필터는 기본적으로 예측 블록 (prediction block; PB)과 변환 블록 (transform block; TB) 경계에 대해서 수행된다. 디블록킹 필터링이 적용된 복호화된 블록은 샘플 적응적 오프셋부(316)를 통하여 밴드 오프셋 또는 에지 오프셋 중 하나의 클래스로 선택되고 각 클래스에 따라 픽셀 단위에서 오프셋 값을 보상하는 과정이 수행된다. 디블록킹 필터부(315)와 샘플 적응적 오프셋부(316)를 거친 복원 픽쳐는 다음 픽쳐의 화면 간 예측 모드를 위하여 복원 픽쳐 버퍼(317)에 저장된다. 참조 계층의 비디오를 재생하는 경우에는 샘플 적응적 오프셋부(316)를 거친 픽쳐 (320)가 비디오 출력 버퍼로 복사된 후 비디오로 출력되게 된다. In the scalable video codec, a bitstream of a reference layer and an enhancement layer is composed of a single bitstream. When the scalable video decoder decodes only the reference layer, the demultiplexer 300 extracts only the bitstream of the reference layer from the received bitstream and inputs it to the video decoder of the reference layer. The input bitstream is decoded by the syntax elements encoded by CABAC or VLC through the entropy decoding unit 310. The entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 311, and the inverse quantized coefficients are inversely transformed through the inverse transformer 312 to restore a differential coefficient value. When the block to be decoded is in the inter prediction mode, the prediction block is generated from the reconstructed picture stored in the reconstructed picture buffer 317 through the motion compensation unit 313. When the block to be decoded is encoded in the intra prediction mode, the intra predictor 314 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block. Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 315. The deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary. The decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 316, and a process of compensating an offset value in units of pixels according to each class is performed. The reconstructed picture that has passed through the deblocking filter unit 315 and the sample adaptive offset unit 316 is stored in the reconstructed picture buffer 317 for the inter prediction mode of the next picture. When the video of the reference layer is played back, the picture 320 that has passed through the sample adaptive offset unit 316 is copied to the video output buffer and then output as video.
본 발명의 2실시 예에 따르면 복호화 장치는 향상 계층의 픽쳐를 효과적으로 부호화하기 위하여 참조 계층의 복원된 픽쳐를 보간 한 후 향상 계층의 참조 픽쳐로 사용한다. 향상 계층을 위한 영상 복호화 장치는 참조 계층의 영상 복호화 장치와 유사하게 엔트로피복호화부(350), 역양자화부(351), 역변환부(352), 움직임 보상부(353), 인트라 예측부(354), 디블록킹 필터부(355), 샘플 적응적 오프셋부(356), 복원 픽쳐 버퍼(357)를 포함한다. 상기 영상 복호화 장치는 추가적으로 참조 계층의 복원 픽쳐를 보간하기 위한 보간부(330)를 포함한다.According to a second embodiment of the present invention, in order to effectively encode a picture of an enhancement layer, the decoding apparatus interpolates a reconstructed picture of the reference layer and then uses it as a reference picture of the enhancement layer. An image decoding apparatus for an enhancement layer is similar to an image decoding apparatus of a reference layer, such as an entropy decoding unit 350, an inverse quantizer 351, an inverse transform unit 352, a motion compensator 353, and an intra predictor 354. , A deblocking filter unit 355, a sample adaptive offset unit 356, and a reconstructed picture buffer 357. The apparatus for decoding an image additionally includes an interpolation unit 330 for interpolating a reconstructed picture of a reference layer.
스케일러블 비디오 코덱에서 향상 계층을 복호화하는 경우 향상 계층은 참조 계층을 참조하기 때문에 참조 계층에 대한 복호화가 선행되어야 한다. 참조 계층에 대한 복호화가 선행된 후 디멀티플렉서(300)를 통해서 적출 된 향상 계층의 비트스트림은 엔트로피 복호화부(350)를 통해서 CABAC 또는 VLC로 부호화된 향상 계층의 신택스 요소들이 복호화된다. 엔트로피 복호화된 계수들은 역양자화부(351)를 거치면서 역양자화되고, 역양자화된 계수는 역변환부(352)를 통해서 역변화 됨으로써 차분 계수 값으로 복원된다. 복호화하려는 향상 계층의 블록이 화면 간 예측 모드인 경우에는 움직임 보상부(353)를 통해서 복원 픽쳐 버퍼(357)에 저장된 픽쳐에서 예측 블록을 생성한다. 복호화하려는 향상 계층의 블록이 화면 내 예측 모드로 부호화된 경우에는 인트라 예측부(354)를 통해서 현재 복호화하려는 블록의 주변에 복호된 픽셀 값을 사용하여 인트라 예측 모드에 따른 예측 블록을 생성한다. 화면 간 또는 화면 내 예측을 통해서 생성된 예측 블록은 픽셀 도메인의 차분 계수 값과 더해짐으로써 블록이 복호화된다. 복호화된 블록, 슬라이스, 또는 픽쳐들은 디블록킹 필터부(355)를 통해서 디블록킹 필터링이 수행된다. HEVC의 디블록킹 필터는 기본적으로 예측 블록 (prediction block; PB)과 변환 블록 (transform block; TB) 경계에 대해서 수행된다. 디블록킹 필터링이 적용된 복호화된 블록은 샘플 적응적 오프셋부(356)를 통하여 밴드 오프셋 또는 에지 오프셋 중 하나의 클래스로 선택되고 각 클래스에 따라 픽셀 단위에서 오프셋 값을 보상하는 과정이 수행된다.When decoding the enhancement layer in the scalable video codec, since the enhancement layer refers to the reference layer, decoding on the reference layer must be preceded. After decoding of the reference layer is preceded, the syntax elements of the enhancement layer encoded by CABAC or VLC are decoded through the entropy decoder 350 through the bitstream of the enhancement layer extracted through the demultiplexer 300. The entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 351, and the inverse quantized coefficients are inversely changed by the inverse transformation unit 352 to restore the difference coefficient values. When the block of the enhancement layer to be decoded is in the inter prediction mode, a motion block 353 generates a prediction block from a picture stored in the reconstructed picture buffer 357. When the block of the enhancement layer to be decoded is encoded in the intra prediction mode, the intra prediction unit 354 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block. Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 355. The deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary. The decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 356, and a process of compensating an offset value in units of pixels according to each class is performed.
상기 영상 복호화 장치는 참조 계층의 픽쳐를 복호화한 후 이를 향상 계층의 해상도에 맞춰 보간한 후, 보간된 픽쳐를 향상 계층의 화면간 또는 화면내 예측에서 예측 값으로 사용한다. 상기 영상 복호화 장치는 참조 계층에서 복호화된 픽쳐를 보간하는데 있어 다수의 보간 지점을 사용한다. 상기 영상 복호화 장치는 참조 계층에서 다수의 인-루프 필터가 사용되는 경우 디블록킹 필터 적용 전 지점(340), 디블록킹 필터 적용 후 지점(342), 샘플 적응적 오프셋 적용 후 지점(345)들이 보간부(330)의 입력 지점으로 사용된다. 디블록킹 필터부가 적용 되기 전 지점(340)은 디블록킹 필터가 적용되지 않았으므로 상대적으로 에지가 잘 보존되는 특징이 있지만, 양자화 값이 큰 경우에는 디블록킹 현상이 영상에 존재할 수 있다. 디블록킹 필터 적용 후 지점(342)은 디블록킹 현상은 적지만 로우패스 (low-pass) 필터링으로 인해 에지가 잘 보존되지 않을 수 있다. 샘플 적응적 오프셋 적용 후 지점(345)은 밴드 오프셋과 에지 오프셋이 CTU (coding tree unit) 단위로 적용될 수 있기 때문에 복원 지점 중 가장 원본 영상과 PSNR 관점에서 유사할 수 있다. 보간부(330)는 참조 계층에서 디블록킹 필터 적용 전 픽쳐 (340), 적용 후 픽쳐(342), 샘플 적응적 오프셋까지 적용된 픽쳐(345) 중 두 지점을 선택한 후 향상 계층의 해상도에 맞춰 영상 보간을 수행한다. 보간부(330)에서 두 개의 보간 지점을 선택하는 것에 대한 정보는 향상 계층에서 명시적으로 알려줄 수 있다. 보간부(330)에서 선택된 두 지점에서 보간된 두 개의 픽쳐는 향상 계층의 복원 픽쳐 버퍼(357)에 추가된다. 이렇게 향상 계층의 복원 픽쳐 버퍼(357)에 추가된 보간 픽쳐들은 향상 계층에서 화면 간 예측 과정에서 L0, L1, 또는 BI 방향 예측과 같은 참조 픽쳐 리스트 구성에 사용된다. 보간부(330)에서 선택 된 두 개의 보간 지점 중 하나는 추가로 향상 계층의 인트라 예측부에서 사용될 수 있으며 보간 지점에 대한 선택 정보는 향상 계층에서 명시적으로 알려줄 수 있다. The image decoding apparatus decodes a picture of a reference layer and interpolates it according to the resolution of the enhancement layer, and then uses the interpolated picture as a prediction value in inter-screen or intra-picture prediction of the enhancement layer. The image decoding apparatus uses a plurality of interpolation points in interpolating a picture decoded in a reference layer. When a plurality of in-loop filters are used in the reference layer, the image decoding apparatus may include points before applying the deblocking filter 340, points after applying the deblocking filter 342, and points after applying the sample adaptive offset 345. It is used as an input point of the executive 330. The point 340 before the deblocking filter is applied has a feature that edges are relatively well preserved since the deblocking filter is not applied. However, when the quantization value is large, a deblocking phenomenon may exist in the image. After the deblocking filter is applied, the point 342 may have a small deblocking phenomenon, but edges may not be well preserved due to low-pass filtering. After the sample adaptive offset is applied, the point 345 may be similar in terms of the PSNR and the original image of the reconstructed point because the band offset and the edge offset may be applied in units of coding tree units (CTUs). The interpolator 330 selects two points from the picture 340 before applying the deblocking filter, the picture 342 after applying the picture, and the picture 345 applied up to the sample adaptive offset in the reference layer and interpolates the image according to the resolution of the enhancement layer. Do this. Information about selecting two interpolation points in the interpolator 330 may be explicitly informed by the enhancement layer. Two pictures interpolated at two points selected by the interpolator 330 are added to the reconstructed picture buffer 357 of the enhancement layer. The interpolation pictures added to the reconstruction picture buffer 357 of the enhancement layer are used for constructing a reference picture list such as L0, L1, or BI direction prediction in the inter prediction process in the enhancement layer. One of the two interpolation points selected by the interpolator 330 may be additionally used in the intra prediction unit of the enhancement layer, and the selection information about the interpolation points may be explicitly informed by the enhancement layer.
도 4은 본 발명이 적용되는 영상 복호화 장치의 3실시 예에 따른 구성을 나타내는 블록도이다.4 is a block diagram illustrating a configuration of a video decoding apparatus according to an embodiment of the present invention.
도 4를 참조하면, 상기 영상 복호화 장치는 참조 계층을 복호화하는 부분과 향상 계층을 복호화하는 부분으로 구성된다. 스케일러블 비디오 코덱에서는 참조 계층과 향상 계층에 대한 비트스트림을 단일 비트스트림으로 구성한다. 스케일러블 비디오 복호화기가 참조 계층에 대해서만 복호화하는 경우 디멀티플렉서(400)는 전송 받은 비트스트림에서 참조 계층의 비트스트림만을 적출 한 후 참조 계층의 비디오 복호화기에 입력한다. 입력된 비트스트림은 엔트로피복호화부(410)를 통해서 CABAC 또는 VLC로 부호화된 신택스 요소들이 복호호화된다. 엔트로피 복호화된 계수들은 역양자화부(411)를 거치면서 역양자화되고, 역양자화된 계수는 역변환부(412)를 통해서 역변환됨으로써 차분 계수 값으로 복원된다. 복호화하려는 블록이 화면 간 예측 모드인 경우에는 움직임 보상부(413)를 통해서 복원 픽쳐 버퍼(417)에 저장된 픽쳐에서 예측 블록을 생성한다. 복호화하려는 블록이 화면 내 예측 모드로 부호화된 경우에는 인트라 예측부(414)를 통해서 현재 복호화하려는 블록의 주변에 복호된 픽셀 값을 사용하여 인트라 예측 모드에 따른 예측 블록을 생성한다. 화면 간 또는 화면 내 예측을 통해서 생성된 예측 블록은 픽셀 도메인의 차분 계수 값과 더해짐으로써 블록이 복호화된다. 복호화된 블록, 슬라이스, 또는 픽쳐들은 디블록킹 필터부(415)를 통해서 디블록킹 필터링이 수행된다. HEVC의 디블록킹 필터는 기본적으로 예측 블록 (prediction block; PB)과 변환 블록 (transform block; TB) 경계에 대해서 수행된다. 디블록킹 필터링이 적용된 복호화된 블록은 샘플 적응적 오프셋부(416)를 통하여 밴드 오프셋 또는 에지 오프셋 중 하나의 클래스로 선택되고 각 클래스에 따라 픽셀 단위에서 오프셋 값을 보상하는 과정이 수행된다. 디블록킹 필터부(415)와 샘플 적응적 오프셋부(416)를 거친 복원 픽쳐는 다음 픽쳐의 화면 간 예측 모드를 위하여 복원 픽쳐 버퍼(417)에 저장된다. 참조 계층의 비디오를 재생하는 경우에는 샘플 적응적 오프셋부(416)를 거친 픽쳐 (420)가 비디오 출력 버퍼로 복사된 후 비디오로 출력되게 된다. Referring to FIG. 4, the apparatus for decoding an image includes a portion for decoding a reference layer and a portion for decoding an enhancement layer. In the scalable video codec, a bitstream of a reference layer and an enhancement layer is composed of a single bitstream. When the scalable video decoder decodes only the reference layer, the demultiplexer 400 extracts only the bitstream of the reference layer from the received bitstream and inputs it to the video decoder of the reference layer. The input bitstream is decoded by the syntax elements encoded by CABAC or VLC through the entropy decoding unit 410. The entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 411, and the inverse quantized coefficients are inversely transformed through the inverse transformer 412 to be restored to differential coefficient values. When the block to be decoded is in the inter prediction mode, a prediction block is generated from a picture stored in the reconstructed picture buffer 417 through the motion compensation unit 413. When the block to be decoded is encoded in the intra prediction mode, the intra predictor 414 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block. Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 415. The deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary. The decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 416, and a process of compensating an offset value in units of pixels according to each class is performed. The reconstructed picture that has passed through the deblocking filter unit 415 and the sample adaptive offset unit 416 is stored in the reconstructed picture buffer 417 for the inter prediction mode of the next picture. In the case of playing the video of the reference layer, the picture 420 passed through the sample adaptive offset unit 416 is copied to the video output buffer and then output as video.
본 발명의 3실시 예에 따르면 복호화 장치는 향상 계층의 픽쳐를 효과적으로 부호화하기 위하여 참조 계층의 복원된 픽쳐를 보간 한 후 향상 계층의 참조 픽쳐로 사용한다. 향상 계층을 위한 영상 복호화 장치는 참조 계층의 영상 복호화 장치와 유사하게 엔트로피복호화부(450), 역양자화부(451), 역변환부(452), 움직임 보상부(453), 인트라 예측부(454), 디블록킹 필터부(455), 샘플 적응적 오프셋부(456), 복원 픽쳐 버퍼(457)를 포함한다. 상기 영상 복호화 장치는 추가적으로 참조 계층의 복원 픽쳐를 보간하기 위하여 서로 다른 특성을 갖고 있는 보간부 A(440), 보간부 B(430)를 포함한다.According to a third embodiment of the present invention, in order to effectively encode a picture of an enhancement layer, the decoding apparatus interpolates a reconstructed picture of the reference layer and then uses it as a reference picture of the enhancement layer. An image decoding apparatus for an enhancement layer is similar to an image decoding apparatus of a reference layer, such as an entropy decoding unit 450, an inverse quantization unit 451, an inverse transform unit 452, a motion compensator 453, and an intra predictor 454. , A deblocking filter 455, a sample adaptive offset 456, and a reconstructed picture buffer 457. The image decoding apparatus further includes interpolation unit A 440 and interpolation unit B 430 having different characteristics in order to interpolate the reconstructed picture of the reference layer.
스케일러블 비디오 코덱에서 향상 계층을 복호화하는 경우 향상 계층은 참조 계층을 참조하기 때문에 참조 계층에 대한 복호화가 선행되어야 한다. 참조 계층에 대한 복호화가 선행된 후 디멀티플렉서(400)를 통해서 적출 된 향상 계층의 비트스트림은 엔트로피 복호화부(450)를 통해서 CABAC 또는 VLC로 부호화된 향상 계층의 신택스 요소들이 복호화된다. 엔트로피 복호화된 계수들은 역양자화부(451)를 거치면서 역양자화되고, 역양자화된 계수는 역변환부(452)를 통해서 역변화 됨으로써 차분 계수 값으로 복원된다. 복호화하려는 향상 계층의 블록이 화면 간 예측 모드인 경우에는 움직임 보상부(453)를 통해서 복원 픽쳐 버퍼(457)에 저장된 픽쳐에서 예측 블록을 생성한다. 복호화하려는 향상 계층의 블록이 화면 내 예측 모드로 부호화된 경우에는 인트라 예측부(454)를 통해서 현재 복호화하려는 블록의 주변에 복호된 픽셀 값을 사용하여 인트라 예측 모드에 따른 예측 블록을 생성한다. 화면 간 또는 화면 내 예측을 통해서 생성된 예측 블록은 픽셀 도메인의 차분 계수 값과 더해짐으로써 블록이 복호화된다. 복호화된 블록, 슬라이스, 또는 픽쳐들은 디블록킹 필터부(455)를 통해서 디블록킹 필터링이 수행된다. HEVC의 디블록킹 필터는 기본적으로 예측 블록 (prediction block; PB)과 변환 블록 (transform block; TB) 경계에 대해서 수행된다. 디블록킹 필터링이 적용된 복호화된 블록은 샘플 적응적 오프셋부(456)를 통하여 밴드 오프셋 또는 에지 오프셋 중 하나의 클래스로 선택되고 각 클래스에 따라 픽셀 단위에서 오프셋 값을 보상하는 과정이 수행된다.When decoding the enhancement layer in the scalable video codec, since the enhancement layer refers to the reference layer, decoding on the reference layer must be preceded. After decoding of the reference layer is preceded, the syntax elements of the enhancement layer encoded by CABAC or VLC are decoded through the entropy decoding unit 450 in the bitstream of the enhancement layer extracted through the demultiplexer 400. The entropy decoded coefficients are inversely quantized while passing through the inverse quantization unit 451, and the inverse quantized coefficients are inversely changed by the inverse transformation unit 452, thereby restoring the differential coefficient values. When the block of the enhancement layer to be decoded is the inter prediction mode, the motion compensation unit 453 generates a prediction block from a picture stored in the reconstructed picture buffer 457. When the block of the enhancement layer to be decoded is encoded in the intra prediction mode, the intra prediction unit 454 generates a prediction block according to the intra prediction mode using pixel values decoded around the block to be currently decoded. The prediction block generated through inter-screen or intra-screen prediction is added to the difference coefficient value of the pixel domain to decode the block. Deblocking filtering is performed on the decoded block, slice, or pictures through the deblocking filter 455. The deblocking filter of HEVC is basically performed on a prediction block (PB) and a transform block (TB) boundary. The decoded block to which deblocking filtering is applied is selected as one of a band offset or an edge offset through the sample adaptive offset unit 456, and a process of compensating an offset value in units of pixels according to each class is performed.
상기 영상 복호화 장치는 참조 계층의 픽쳐를 복호화한 후 이를 향상 계층의 해상도에 맞춰 보간한 후, 보간된 픽쳐를 향상 계층의 화면간 또는 화면내 예측에서 예측 값으로 사용한다. 상기 영상 복호화 장치는 참조 계층에서 복호화된 픽쳐를 보간하는데 있어 다수의 보간 지점과 각 보간 지점의 특성을 고려한 다수의 보간부를 사용한다. 상기 영상 복호화 장치는 참조 계층에서 다수의 인-루프 필터가 사용되는 경우 디블록킹 필터 적용 후 지점(425), 샘플 적응적 오프셋 적용 후 지점(420)들이 보간 지점으로 사용된다. 두 보간 지점은 샘플 적응적 오프셋부의 적용 여부에 따라 서로 다른 특성을 가지므로 서로 다른 보간 특성을 갖는 보간부A(440)와 보간부B(430)이 각각 사용된다. The image decoding apparatus decodes a picture of a reference layer and interpolates it according to the resolution of the enhancement layer, and then uses the interpolated picture as a prediction value in inter-screen or intra-picture prediction of the enhancement layer. The image decoding apparatus uses a plurality of interpolation units considering interpolation points and characteristics of each interpolation point in interpolating a picture decoded in a reference layer. When a plurality of in-loop filters are used in the reference layer, the image decoding apparatus uses points 425 after the deblocking filter and points 420 after the sample adaptive offset are used as interpolation points. Since the two interpolation points have different characteristics depending on whether the sample adaptive offset unit is applied or not, interpolation unit A 440 and interpolation unit B 430 having different interpolation characteristics are used.
보간부A(440)와 보간부B(430)를 통해 보간된 픽쳐들은 향상 계층에서 화면 간 예측 과정에서 L0, L1, 또는 BI 방향 예측과 같은 참조 픽쳐 리스트 구성에 사용된다. 보간부A(440)를 통해서 보간된 픽쳐(460)는 추가로 향상 계층의 인트라 예측부에서 사용될 수 있다. The pictures interpolated through the interpolator A 440 and the interpolator B 430 are used for constructing a reference picture list such as L0, L1, or BI direction prediction in the inter prediction process in the enhancement layer. The picture 460 interpolated through the interpolator A 440 may be further used in the intra prediction unit of the enhancement layer.
도 5은 본 발명이 적용되는 영상 부호화/복호화 장치에서 참조 계층에서 보간한 픽쳐들을 향상 계층의 참조 픽쳐 리스트에 추가하는 것을 설명하기 위한 개념도이다. FIG. 5 is a conceptual diagram for explaining adding pictures interpolated in a reference layer to a reference picture list of an enhancement layer in an image encoding / decoding apparatus according to the present invention.
도 5을 참조하면, 본 발명이 적용되는 영상 부호화/복호화 장치는 향상 계층의 픽쳐를 부호화/복호화할 때 참조 계층에서 동일 시점의 복호화된 픽쳐(510)를 보간하여 서로 다른 특성을 갖는 보간 픽쳐A(530)와 보간 픽쳐B(520)를 생성한다. 서로 다른 특성을 갖는 보간 픽쳐의 생성은 본 발명의 제 1, 2, 3 실시예와 같이 실시예에 따라 다를 수 있다. Referring to FIG. 5, in the image encoding / decoding apparatus to which the present invention is applied, an interpolation picture A having different characteristics by interpolating a decoded picture 510 at the same time in a reference layer when encoding / decoding a picture of an enhancement layer is performed. 530 and interpolation picture B 520 are generated. The generation of interpolation pictures having different characteristics may vary depending on the embodiment as in the first, second, and third embodiments of the present invention.
생성된 보간 픽쳐A(530)와 보간 픽쳐B(520)는 향상 계층에서 L0리스트(540)와 L1리스트(550)에 추가됨으로써 향상 계층의 예측 모드에서 다양한 픽쳐 조합을 통한 예측을 가능하게 한다. The generated interpolation picture A 530 and the interpolation picture B 520 are added to the L0 list 540 and the L1 list 550 in the enhancement layer to enable prediction through various picture combinations in the prediction mode of the enhancement layer.
도 6은 본 발명이 적용되는 영상 부호화/복호화 장치에서 임의 접근 픽쳐에 대한 부호화/복호화를 수행하는 경우에 참조 계층에서 보간한 픽쳐들을 향상 계층의 참조 픽쳐 리스트에 추가하는 것을 설명하기 위한 개념도이다.FIG. 6 is a conceptual diagram for describing adding pictures interpolated in a reference layer to a reference picture list of an enhancement layer when encoding / decoding a random access picture is performed in an image encoding / decoding apparatus according to the present invention.
도 6을 참조하면, 본 발명이 적용되는 영상 부호화/복호화 장치는 향상 계층의 픽쳐를 부호화/복호화 할 때 참조 계층에서 동일 시점의 복호화된 픽쳐(610)를 보간 함으로써 서로 다른 특성을 갖는 보간 픽쳐A(630)와 보간 픽쳐B(620)을 생성한다. 생성된 보간 픽쳐A(630)와 보간 픽쳐B(620)는 향상 계층에서 부호화/복호화하려는 픽쳐가 HEVC의 CRA (clean random access) 또는 IDR (Instantaneous Decoding Refresh) 픽쳐와 같이 임의 접근이 가능한 픽쳐인 경우라도 해당 픽쳐에서 계층간 인트라 예측 기술을 사용하는 경우에는 향상 계층에서 L0리스트(640)와 L1리스트(650)에 추가됨으로써 향상 계층에서 다양한 픽쳐 조합을 통한 예측을 가능하게 한다. Referring to FIG. 6, in the image encoding / decoding apparatus to which the present invention is applied, an interpolation picture A having different characteristics by interpolating decoded pictures 610 at the same time in a reference layer when encoding / decoding a picture of an enhancement layer is performed. 630 and interpolation picture B 620 are generated. The generated interpolation picture A 630 and interpolation picture B 620 may be randomly accessible pictures such as a clean random access (CRA) or instantaneous decoding refresh (IDR) picture of HEVC. Even when the inter-layer intra prediction technique is used in the corresponding picture, the enhancement layer is added to the L0 list 640 and the L1 list 650 in the enhancement layer to enable prediction through various picture combinations in the enhancement layer.
도 7은 본 발명이 적용되는 영상 부호화 장치에서 향상 계층의 코딩 블록에 대하여 계층간 인트라 예측 기술을 적용하여 블록을 부호화하는 것을 설명하기 위한 개념도이다. FIG. 7 is a conceptual view illustrating encoding a block by applying an inter-layer intra prediction technique to a coding block of an enhancement layer in an image encoding apparatus to which the present invention is applied.
도 7을 참조하면, 본 발명이 적용되는 영상 부호화 장치는 향상 계층의 코딩 블록을 부호화할 때 참조 계층에서 보간된 픽쳐를 사용하여 계층간 인트라 예측 기술을 적용할 수 있다. 향상 계층의 부호화하려는 픽쳐에서는 참조 계층의 픽쳐(700)를 다수의 보간 지점 또는 다수의 보간 필터를 사용하여 서로 다른 특성을 갖는 보간 프레임A(710)와 보간 프레임B(720)를 생성할 수 있다. 계층간 인트라 예측에서는 다수의 보간 픽쳐에서 향상 계층에서 부호화하는 코딩 블록에 대응되는 위치에서 두 개의 예측 블록 (730, 732)을 생성한다. 두 예측 블록은 향상 계층의 코딩 블록을 위한 단일의 예측 블록으로 사용되기 위해서 평균 값, 가중 치 기반의 평균 값 등의 연산을 통해서 최종적으로 예측 블록(735)으로 생성된다. 향상 계층의 코딩 블록(740)과 생성된 예측 블록(735)은 차분(750) 모듈로 입력된 후 차분 계수를 계산한다. 계산된 차분 계수는 향상 계층에서 변환, 양자화, 엔트로피 코딩 과정을 거쳐 부호화(760) 된다. Referring to FIG. 7, the image encoding apparatus to which the present invention is applied may apply an inter-layer intra prediction technique using a picture interpolated in a reference layer when encoding a coding block of an enhancement layer. In the picture to be encoded in the enhancement layer, interpolation frame A 710 and interpolation frame B 720 having different characteristics may be generated using a plurality of interpolation points or a plurality of interpolation filters in the picture 700 of the reference layer. . In inter-layer intra prediction, two prediction blocks 730 and 732 are generated at positions corresponding to coding blocks encoded in an enhancement layer in a plurality of interpolation pictures. In order to be used as a single prediction block for the coding block of the enhancement layer, the two prediction blocks are finally generated as the prediction block 735 through operations such as an average value and a weight-based average value. The coding block 740 of the enhancement layer and the generated prediction block 735 are input to the difference 750 module and then calculate the difference coefficients. The calculated difference coefficients are encoded 760 through a transform, quantization, and entropy coding process in the enhancement layer.
도 8은 본 발명이 적용되는 영상 복호화 장치에서 향상 계층의 코딩 블록에 대하여 계층간 인트라 예측 기술을 적용하여 블록을 복호화하는 것을 설명하기 위한 개념도이다. 8 is a conceptual diagram illustrating decoding of a block by applying an inter-layer intra prediction technique to a coding block of an enhancement layer in an image decoding apparatus according to the present invention.
도 8을 참조하면, 본 발명이 적용되는 영상 복호화 장치는 향상 계층의 코딩 블록을 복호화할 때 참조 계층에서 보간된 픽쳐를 사용하여 계층간 인트라 예측 기술을 적용할 수 있다. 향상 계층의 복호화하려는 픽쳐에서는 참조 계층의 픽쳐(800)를 다수의 보간 지점 또는 다수의 보간 필터를 사용하여 서로 다른 특성을 갖는 보간 프레임A(810)와 보간 프레임B(820)를 생성할 수 있다. 계층간 인트라 예측에서는 다수의 보간 픽쳐에서 향상 계층에서 부호화하는 코딩 블록에 대응되는 위치에서 두 개의 예측 블록 (830, 832)을 생성한다. 두 예측 블록은 향상 계층의 코딩 블록을 위한 단일의 예측 블록으로 사용되기 위해서 평균 값, 가중 치 기반의 평균 값 등의 연산을 통해서 최종적으로 예측 블록(835)으로 생성된다. 향상 계층에서 엔트리피 복호화, 역양자화, 연변환부를 거쳐 복원된 차분 계수와 참조 계층에서 생성된 예측 블록은 복원부(850)에 입력된다. 복원부(850)에서는 향상 계층의 복원 차분 계수와 참조 계층에서 생성된 예측 블록을 픽셀 단위로 더하여 최종적으로 블록(860)을 복호화한다. Referring to FIG. 8, an image decoding apparatus to which the present invention is applied may apply an inter-layer intra prediction technique using a picture interpolated in a reference layer when decoding a coding block of an enhancement layer. In the picture to be decoded in the enhancement layer, the interpolation frame A 810 and the interpolation frame B 820 having different characteristics may be generated using a plurality of interpolation points or a plurality of interpolation filters of the picture 800 of the reference layer. . In inter-layer intra prediction, two prediction blocks 830 and 832 are generated at positions corresponding to coding blocks encoded in an enhancement layer in a plurality of interpolation pictures. In order to be used as a single prediction block for the coding block of the enhancement layer, the two prediction blocks are finally generated as the prediction block 835 through calculation of an average value and a weight-based average value. The difference coefficient reconstructed through the entry-decode decoding, inverse quantization, and the soft transform unit in the enhancement layer and the prediction block generated in the reference layer are input to the reconstruction unit 850. The reconstruction unit 850 finally decodes the block 860 by adding the reconstruction difference coefficient of the enhancement layer and the prediction block generated in the reference layer in units of pixels.
도 9는 본 발명의 실시예에 따른 향상 계층의 참조 픽쳐 리스트를 구성하여 향상 계층에서 계층간 예측을 수행하는 방법을 개략적으로 나타내는 순서도이다. 도 9의 방법은 상술한 도 1 내지 도 4의 부호화 장치 및 복호화 장치에서 수행될 수 있다. 도 9에서는 설명의 편의 상 복호화 장치에서 수행되는 것으로 설명하나, 부호화 장치에서도 수행될 수 있다. 9 is a flowchart schematically illustrating a method of constructing a reference picture list of an enhancement layer and performing inter-layer prediction in the enhancement layer according to an embodiment of the present invention. The method of FIG. 9 may be performed by the encoding apparatus and the decoding apparatus of FIGS. 1 to 4 described above. In FIG. 9, it is described as being performed by the decoding apparatus for convenience of description, but may also be performed by the encoding apparatus.
도 9를 참조하면, 향상 계층의 현재 픽쳐를 복호화할 때 계층간 예측을 적용하는 경우, 복호화 장치는 계층간 예측에 사용되는 참조 픽처를 생성할 수 있다(S900). Referring to FIG. 9, when interlayer prediction is applied when decoding a current picture of an enhancement layer, the decoding apparatus may generate a reference picture used for interlayer prediction (S900).
참조 픽쳐는 향상 계층의 현재 픽쳐와 동일 시점의 참조 계층에서 복호화된 픽쳐일 수 있다. 이러한 참조 계층에서 복호화된 픽쳐는 보간 등을 통해 향상 계층의 해상도에 맞게 리샘플링을 수행한 후 참조 픽쳐로 이용될 수 있다. The reference picture may be a picture decoded in the reference layer at the same time as the current picture of the enhancement layer. The picture decoded in the reference layer may be used as a reference picture after resampling according to the resolution of the enhancement layer through interpolation or the like.
예를 들어, 복호화 장치는 참조 계층의 복호화된 픽쳐를 향상 계층의 해상도에 맞게 보간하여 참조 픽쳐A와 참조 픽쳐B를 생성할 수 있다. 여기서, 참조 픽쳐A와 참조 픽쳐B는 상술한 본 발명의 제1, 2, 3 실시예에서와 같이 보간부의 보간 특성에 따라 생성된 보간 픽쳐들일 수 있다. For example, the decoding apparatus may generate the reference picture A and the reference picture B by interpolating the decoded picture of the reference layer according to the resolution of the enhancement layer. Here, the reference picture A and the reference picture B may be interpolation pictures generated according to interpolation characteristics of the interpolation unit as in the first, second, and third embodiments of the present invention.
복호화 장치는 참조 픽쳐를 이용하여 향상 계층의 참조 픽쳐 리스트를 구성할 수 있다(S910). The decoding apparatus may construct a reference picture list of the enhancement layer by using the reference picture (S910).
예를 들어, 상기와 같이 참조 픽쳐A와 참조 픽쳐B가 생성된 경우, 복호화 장치는 참조 픽쳐A와 참조 픽쳐B를 이용하여 화면 간 예측 또는 계층간 예측 과정에서 사용되는 L0, L1과 같은 참조 픽쳐 리스트를 구성할 수 있다. 이때, 참조 픽쳐 리스트 내 참조 픽처들은 참조 픽쳐 인덱스(refIdx) 값에 의해 특정될 수 있다. 예를 들어, 참조 픽쳐 리스트에서 첫번째 참조 픽처는 참조 픽쳐 인덱스(refIdx)가 0 값을 가질 수 있고, 참조 픽쳐 리스트에서 두번째 참조 픽처는 참조 픽쳐 인덱스(refIdx)가 1 값을 가질 수 있다. For example, when the reference picture A and the reference picture B are generated as described above, the decoding apparatus uses the reference picture A and the reference picture B to make reference pictures such as L0 and L1 used in inter-picture prediction or inter-layer prediction. Lists can be constructed. In this case, reference pictures in the reference picture list may be specified by a reference picture index (refIdx) value. For example, the first reference picture in the reference picture list may have a reference picture index (refIdx) having a value of 0, and the second reference picture in the reference picture list may have a reference picture index (refIdx) having a value of 1. FIG.
참조 픽쳐 리스트 L0와 L1은 상술한 도 5 및 도 6과 같이 구성될 수 있다. The reference picture lists L0 and L1 may be configured as shown in FIGS. 5 and 6 described above.
일례로, 도 5에 도시된 바와 같이, 참조 픽쳐 리스트 L0는 참조 픽쳐 인덱스(refIdx) 0에 현재 픽쳐의 POC(Picture Order Count) 보다 POC가 작은 참조 픽쳐, 참조 픽쳐 인덱스(refIdx) 1에 참조 픽쳐A, 참조 픽쳐 인덱스(refIdx) 2에 현재 픽쳐의 POC 보다 PCO가 큰 참조 픽쳐가 추가될 수 있다. 참조 픽쳐 리스트 L1는 참조 픽쳐 인덱스(refIdx) 0에 현재 픽쳐의 POC 보다 PCO가 큰 참조 픽쳐, 참조 픽쳐 인덱스(refIdx) 1에 참조 픽쳐B, 참조 픽쳐 인덱스(refIdx) 2에 현재 픽쳐의 POC 보다 POC가 작은 참조 픽쳐가 추가될 수 있다. For example, as shown in FIG. 5, the reference picture list L0 is a reference picture having a POC smaller than the picture order count (POC) of the current picture at the reference picture index (refIdx) 0 and a reference picture at the reference picture index (refIdx) 1. A, a reference picture having a larger PCO than the POC of the current picture may be added to the reference picture index refIdx 2. The reference picture list L1 is a reference picture having a larger PCO than the POC of the current picture at reference picture index (refIdx) 0, a reference picture B at reference picture index (refIdx) 1, and a POC at the reference picture index (refIdx) 2 than the POC of the current picture. A small reference picture may be added.
또한, 참조 픽쳐 리스트 L0는 현재 픽쳐와 POC 차이가 큰 장기 참조 픽처(long-term reference picture)를 참조 픽쳐 인덱스(refIdx) 3에 추가할 수 있고, 참조 픽쳐B를 참조 픽쳐 인덱스(refIdx) 4에 추가하여 구성될 수 있다. 참조 픽쳐 리스트 L1는 현재 픽쳐와 POC 차이가 큰 장기 참조 픽처(long-term reference picture)를 참조 픽쳐 인덱스(refIdx) 3에 추가할 수 있고, 참조 픽쳐A를 참조 픽쳐 인덱스(refIdx) 4에 추가하여 구성될 수 있다.In addition, the reference picture list L0 may add a long-term reference picture having a large POC difference from the current picture to the reference picture index (refIdx) 3, and add the reference picture B to the reference picture index (refIdx) 4. In addition, it can be configured. Reference picture list L1 may add a long-term reference picture having a large POC difference from the current picture to reference picture index (refIdx) 3, and add reference picture A to reference picture index (refIdx) 4 Can be configured.
복호화 장치는 참조 픽쳐 리스트(L0, L1)를 이용하여 향상 계층의 현재 픽쳐에 대한 계층간 예측을 수행할 수 있다(S920).The decoding apparatus may perform inter-layer prediction on the current picture of the enhancement layer using the reference picture lists L0 and L1 (S920).
예를 들어, 복호화 장치는 부호화 장치로부터 계층간 예측 시 사용되는 참조 픽쳐에 대한 정보(참조 픽쳐 인덱스 정보)를 수신할 수 있다. 이러한 참조 픽쳐에 대한 정보(참조 픽쳐 인덱스 정보)를 기반으로 참조 픽쳐 리스트(L0, L1)로부터 현재 픽쳐의 참조 픽쳐를 획득할 수 있고, 참조 픽쳐를 이용하여 현재 픽쳐 내 예측 블록의 예측 값을 생성할 수 있다. For example, the decoding apparatus may receive information (reference picture index information) about a reference picture used for inter-layer prediction from the encoding apparatus. A reference picture of the current picture can be obtained from the reference picture lists L0 and L1 based on the information about the reference picture (reference picture index information), and a prediction value of the prediction block in the current picture is generated using the reference picture. can do.
상술한 본 발명에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.The method according to the present invention described above may be stored in a computer-readable recording medium that is produced as a program for execution on a computer, and examples of the computer-readable recording medium include ROM, RAM, CD-ROM, magnetic tape , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of carrier waves (eg, transmission over the Internet).
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.The computer readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. In addition, functional programs, codes, and code segments for implementing the method can be easily inferred by programmers in the art to which the present invention belongs.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해 되어서는 안될 것이다.In addition, although the preferred embodiment of the present invention has been shown and described above, the present invention is not limited to the specific embodiments described above, but the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or prospect of the present invention.

Claims (10)

  1. 스케일러블 비디오 코덱에서 향상 계층을 복호화하기 위한 복원 픽쳐 참조 방법에 있어서,In a reconstructed picture reference method for decoding an enhancement layer in a scalable video codec,
    참조 계층의 픽쳐에서 복수의 보간 지점을 선택하는 단계; Selecting a plurality of interpolation points in a picture of the reference layer;
    상기 선택된 지점의 입력 픽쳐에 따라 서로 다른 보간부를 통하여 보간을 수행하는 단계; 및Performing interpolation through different interpolators according to the input picture of the selected point; And
    상기 보간된 픽쳐를 향상 계층의 참조 픽쳐 리스트에 추가하는 단계를 포함하는 계층간 복원 픽쳐 참조 방법.And adding the interpolated picture to a reference picture list of an enhancement layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 복수의 보간 지점을 선택하는 단계는 상기 참조 계층에서 복수의 인루프 필터가 사용되는 경우 디블록킹 필터 적용 전 지점을 상기 보간 지점으로 선택하는 단계를 포함하는 계층간 복원 픽쳐 참조 방법.The selecting of the plurality of interpolation points includes selecting a point before applying a deblocking filter as the interpolation point when a plurality of in-loop filters are used in the reference layer.
  3. 제1항에 있어서,The method of claim 1,
    상기 복수의 보간 지점을 선택하는 단계는 상기 참조 계층에서 디블록킹 필터 적용 전 픽쳐, 디블록킹 필터 적용 후 픽쳐 및 샘플 적응적 오프셋까지 적용된 픽쳐 중 두 지점을 선택하는 단계를 포함하는 계층간 복원 픽쳐 참조 방법.The selecting of the plurality of interpolation points may refer to an inter-layer reconstructed picture including selecting two points from a picture before a deblocking filter, a picture after a deblocking filter, and a picture applied to a sample adaptive offset in the reference layer. Way.
  4. 제1항에 있어서,The method of claim 1,
    상기 보간 대상 픽쳐는 상기 참조 계층에 포함된 복원된 픽쳐 중 적어도 하나를 포함하는 복원 픽쳐 참조 방법.The reconstructed picture reference method of the interpolation target picture includes at least one of reconstructed pictures included in the reference layer.
  5. 제1항에 있어서,The method of claim 1,
    상기 복수의 보간부는 각각 서로 다른 특성을 가지는 것을 특징으로 하는 복원 픽쳐 참조 방법.And the plurality of interpolators each have different characteristics.
  6. 스케일러블 비디오 코덱에서 향상 계층을 복호화하기 위한 복원 픽쳐 참조 장치에 있어서,A reconstructed picture reference apparatus for decoding an enhancement layer in a scalable video codec,
    참조 계층의 픽쳐에서 복수의 보간 지점을 선택하고, 상기 선택된 지점의 입력 픽쳐에 따라 서로 다른 보간부를 통하여 보간을 수행하는 복수의 보간부; 및A plurality of interpolators for selecting a plurality of interpolation points in a picture of a reference layer and performing interpolation through different interpolators according to input pictures of the selected points; And
    상기 보간된 픽쳐를 향상 계층의 참조 픽쳐 리스트에 추가하는 버퍼부를 포함하는 계층간 복원 픽쳐 참조 장치.And a buffer unit to add the interpolated picture to a reference picture list of an enhancement layer.
  7. 제6항에 있어서,The method of claim 6,
    상기 복수의 보간부는 상기 참조 계층에서 복수의 인루프 필터가 사용되는 경우 디블록킹 필터 적용 전 지점을 상기 보간 지점으로 선택하는 계층간 복원 픽쳐 참조 장치.And the plurality of interpolators further selects a point before applying a deblocking filter as the interpolation point when a plurality of in-loop filters are used in the reference layer.
  8. 제6항에 있어서,The method of claim 6,
    상기 복수의 보간부는 상기 참조 계층에서 디블록킹 필터 적용 전 픽쳐, 디블록킹 필터 적용 후 픽쳐 및 샘플 적응적 오프셋까지 적용된 픽쳐 중 두 지점을 선택하는 계층간 복원 픽쳐 참조 장치.And the plurality of interpolators select two points from the picture before the deblocking filter is applied, the picture after the deblocking filter is applied, and the picture to which the sample adaptive offset is applied.
  9. 제6항에 있어서,The method of claim 6,
    상기 보간 대상 픽쳐는 상기 참조 계층에 포함된 복원된 픽쳐 중 적어도 하나를 포함하는 복원 픽쳐 참조 장치.The reconstructed picture reference device of the interpolation target picture includes at least one of reconstructed pictures included in the reference layer.
  10. 제6항에 있어서,The method of claim 6,
    상기 복수의 보간부는 각각 서로 다른 특성을 가지는 것을 특징으로 하는 복원 픽쳐 참조 장치.The reconstructed picture reference apparatus, wherein the plurality of interpolators have different characteristics.
PCT/KR2013/011165 2012-12-04 2013-12-04 Video encoding and decoding method, and apparatus using same WO2014088316A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20120139394 2012-12-04
KR10-2012-0139394 2012-12-04
KR10-2013-0045284 2013-04-24
KR20130045290 2013-04-24
KR10-2013-0045277 2013-04-24
KR20130045284 2013-04-24
KR10-2013-0045290 2013-04-24
KR20130045277 2013-04-24

Publications (2)

Publication Number Publication Date
WO2014088316A2 true WO2014088316A2 (en) 2014-06-12
WO2014088316A3 WO2014088316A3 (en) 2014-10-23

Family

ID=50884107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011165 WO2014088316A2 (en) 2012-12-04 2013-12-04 Video encoding and decoding method, and apparatus using same

Country Status (1)

Country Link
WO (1) WO2014088316A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10567761B2 (en) 2016-03-14 2020-02-18 Interdigital Vc Holdings, Inc. Method and device for encoding at least one image unit, and method and device for decoding a stream representative of at least one image unit
CN115134591A (en) * 2015-06-05 2022-09-30 杜比实验室特许公司 Image encoding and decoding method and bit stream storage method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100238509B1 (en) * 1991-02-01 2000-01-15 내쉬 로저 윌리엄 Method and apparatus for decoding video signals
JP2006279383A (en) * 2005-03-29 2006-10-12 Nippon Telegr & Teleph Corp <Ntt> Interhierarchy prediction coding method, apparatus thereof, interhierarchy prediction decoding method, apparatus thereof, interhierarchy prediction coding program, interhierarchy prediction decoding program and program recording medium thereof
KR20080037593A (en) * 2006-10-25 2008-04-30 한국전자통신연구원 Multi-view video scalable coding and decoding
KR20110020211A (en) * 2009-08-21 2011-03-02 에스케이 텔레콤주식회사 Video coding method and apparatus by using adaptive motion vector resolution
KR20120045369A (en) * 2010-10-29 2012-05-09 에스케이 텔레콤주식회사 Video encoding/decoding apparatus and method for encoding and decoding of block filter information based on quad-tree

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100238509B1 (en) * 1991-02-01 2000-01-15 내쉬 로저 윌리엄 Method and apparatus for decoding video signals
JP2006279383A (en) * 2005-03-29 2006-10-12 Nippon Telegr & Teleph Corp <Ntt> Interhierarchy prediction coding method, apparatus thereof, interhierarchy prediction decoding method, apparatus thereof, interhierarchy prediction coding program, interhierarchy prediction decoding program and program recording medium thereof
KR20080037593A (en) * 2006-10-25 2008-04-30 한국전자통신연구원 Multi-view video scalable coding and decoding
KR20110020211A (en) * 2009-08-21 2011-03-02 에스케이 텔레콤주식회사 Video coding method and apparatus by using adaptive motion vector resolution
KR20120045369A (en) * 2010-10-29 2012-05-09 에스케이 텔레콤주식회사 Video encoding/decoding apparatus and method for encoding and decoding of block filter information based on quad-tree

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134591A (en) * 2015-06-05 2022-09-30 杜比实验室特许公司 Image encoding and decoding method and bit stream storage method
US10567761B2 (en) 2016-03-14 2020-02-18 Interdigital Vc Holdings, Inc. Method and device for encoding at least one image unit, and method and device for decoding a stream representative of at least one image unit

Also Published As

Publication number Publication date
WO2014088316A3 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
KR101345090B1 (en) Method and apparatus for encoding and/or decoding bit depth scalable video data using adaptive enhancement layer prediction
JP7171654B2 (en) Interlayer prediction method and apparatus based on temporal sublayer information
JP3877234B2 (en) Method and apparatus for transcoding a bitstream having video data
CN105491382B (en) Video decoder, video encoding/decoding method and program
TW202037163A (en) Improved sub-partition intra prediction
WO2014171768A1 (en) Video signal processing method and apparatus
WO2015005622A1 (en) Method and apparatus for processing video signal
WO2008071645A2 (en) Method and apparatus for encoding and/or decoding bit depth scalable video data using adaptive enhancement layer residual prediction
TW202042552A (en) Block size restriction for illumination compensation
WO2014171770A1 (en) Video signal processing method and apparatus
KR20140122189A (en) Method and Apparatus for Image Encoding and Decoding Using Inter-Layer Combined Intra Prediction
WO2011052990A2 (en) Method and apparatus for encoding/decoding images based on adaptive resolution
TW202236852A (en) Efficient video encoder architecture
JP2022526437A (en) Reference Picture Wrap-around motion compensation methods, equipment, computer programs in the presence of resampling
WO2014088316A2 (en) Video encoding and decoding method, and apparatus using same
WO2015072626A1 (en) Interlayer reference picture generation method and apparatus for multiple layer video coding
CN117356098A (en) Deriving offsets in cross-component transform coefficient level reconstruction
KR20080055685A (en) A method and apparatus for decoding a video signal
CN112118452B (en) Video decoding method and device and computer equipment
CN117063471A (en) Joint signaling method for motion vector difference
CN116235490A (en) Method and apparatus for video coding
WO2014171771A1 (en) Video signal processing method and apparatus
US20150010083A1 (en) Video decoding method and apparatus using the same
US11445206B2 (en) Method and apparatus for video coding
WO2013062174A1 (en) Method for managing memory, and device for decoding video using same

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 13860615

Country of ref document: EP

Kind code of ref document: A2