WO2014088291A1 - Method for forming fine conductive pattern using metal nanoink for laser patterning process - Google Patents

Method for forming fine conductive pattern using metal nanoink for laser patterning process Download PDF

Info

Publication number
WO2014088291A1
WO2014088291A1 PCT/KR2013/011109 KR2013011109W WO2014088291A1 WO 2014088291 A1 WO2014088291 A1 WO 2014088291A1 KR 2013011109 W KR2013011109 W KR 2013011109W WO 2014088291 A1 WO2014088291 A1 WO 2014088291A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
laser
ink composition
acid
fine pattern
Prior art date
Application number
PCT/KR2013/011109
Other languages
French (fr)
Korean (ko)
Inventor
정선호
최영민
이수현
서영희
류병환
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2014088291A1 publication Critical patent/WO2014088291A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light

Definitions

  • the present invention relates to a new laser pattern processing metal ink capable of controlling surface oxide film formation and producing finer nano-sized particles and a method for producing a metal conductive fine pattern using the same.
  • the present invention also relates to a method of manufacturing a metal conductive fine pattern with excellent conductivity.
  • the present invention also improves the adhesion of the metal nanoparticles on the substrate,
  • metal nanoinks for laser patterns containing metal nanoparticles including fine pattern metal wiring, screen printing, inkjet printing, grabar offset printing and reverse offset printing, without the use of complex photolithography processes It has the advantage of simplifying the process by printing on a variety of substrates through a single printing process.In addition, the manufacturing process can not only greatly reduce the manufacturing cost but also make the production of high density and high efficiency printed circuits by minimizing the wiring width. Made it possible.
  • Patent Document 1 discloses a method for producing metal nanoparticles having oxidation stability against a conventional polar solvent, wherein metal ions are present in the presence of a surfactant solution and an antioxidant (antioxidant). Research has been initiated using a wet reduction method that produces metal nanoparticles by reducing metal ions using a reducing agent. The production method uses a surfactant to form a small sized nano-reactor and reduce the particles through reduction reaction by the reducing agent. It is easy to control the size of particles, and has advantages such as stability.However, due to the surfactants and antioxidants used to ensure oxidation stability and dispersion stability, There is a problem such as high resistance when forming a metal film ⁇
  • An object of the present invention is to fabricate a low-cost conductive micropattern having conductivity.
  • Another object of the present invention is to provide an ink composition for laser pattern processing having an improved stability of an ink including metal nanoparticles, and a metal conductive micropattern manufactured using the same.
  • Another object of the present invention is to provide an ink composition for laser pattern processing, in which the metal nanoparticles are stably fixed on a substrate without regeneration of conductivity, and a metal conductive micropattern prepared therefrom.
  • the present invention comprises the steps of synthesizing the metal nanoparticles for laser pattern processing having a controlled surface oxide film formation and more excellent conductivity, the conductive ink for laser pattern processing using the metal nanoparticles It provides a metal conductive ink composition for a laser pattern process comprising the step of preparing the composition.
  • the present invention also provides a metal for laser pattern processing in which surface oxide film formation is controlled.
  • Synthesizing the nanoparticles preparing a conductive ink composition for the laser pattern process that can be firmly fixed to the substrate using the metal nanoparticles, applying the ink composition to an insulating substrate and to the substrate coated with the ink composition It provides a method for producing a metal conductive fine pattern using a laser comprising the step of producing a fine pattern by laser irradiation.
  • the present invention relates to metal nano laser processing for laser pattern processing in which surface oxide film formation is controlled by heating and stirring a solution containing a metal precursor, an organic acid compound, an organic amine compound, and a reducing agent at the same time.
  • a metal nano ink preliminary composition for laser pattern process can be prepared. have.
  • the present invention is more excellent by heating to prepare the nanoparticles in an inert atmosphere in the step of preparing the metal nano ink preliminary composition,
  • the inert atmosphere in the above means an inert atmosphere commonly understood in this field, such as an atmosphere such as nitrogen or argon, and the like.
  • the present invention can prepare a conductive metal nanoink composition for laser pattern process by dispersing the prepared metal nano ink preliminary composition in a non-aqueous solvent.
  • the present invention also provides a structure of the metal nano ink pre
  • the laser irradiation may be characterized by further higher resolution.
  • the following compound may be added together with the metal precursor, or may be added when the resulting metal nanoparticles described below are dispersed in a nonaqueous solvent.
  • X is an amine group (-NH 2) or a thiol group (-SH), 1 ⁇ is (C 0 -C l7
  • Alkyl group, 3 ⁇ 4 comprises a (C, -C 17 ) alkyl group or a (C, -C 5 ) alkoxy group, ⁇ is an integer from 1 to 3.
  • R, CH 3 , CF 3 , C 6 H 5 , C 6 H 4 F, C 6 F 5 , 3 ⁇ 4 is (CH 2 ) n , (CF 2 ) n , (C 6 H 4 ) resort, where n is an integer from 1 to 17.
  • the metal precursor is not particularly limited, but one or more metal precursors may be selected from the group consisting of metals such as copper, nickel, cobalt, and aluminum, and alloys thereof. It can be selected from one or two or more metal precursors selected from inorganic salts consisting of nitrates, sulfates, acetates, phosphates, silicates and hydrochlorides of metal components such as metals such as copper, nickel and cobalt and alloys thereof.
  • the organic acid compound is not particularly limited, but may be at least one organic acid compound having 6 to 30 carbon atoms, linear, branched and cyclic, and may be one or two or more selected from saturated or unsaturated acids.
  • oleic acid lysine oleic acid, stearic acid, hydroxystearic acid, linoleic acid, aminodecanoic acid, hydroxy decanoic acid, lauric acid, dekenoic acid, undecanoic acid, palistoleic acid, nuclear sildecanoate Iksan, hydroxypalmitic acid, hydroxymyritic acid,
  • One or two or more selected from the group consisting of hydroxy decanoic acid, palmitoleic acid and myrisrisic acid are not limited thereto.
  • the content of the organic acid compound according to the present invention is not particularly limited, but the molar ratio between the metal precursor and the organic acid compound is 1: 0.2 to 4, which is better for the characteristics required by the present invention.
  • the organic amine compound has at least one of linear, branched, and cyclic increments having 6 to 30 carbon atoms, and may be one or two or more selected from saturated and unsaturated amines.
  • the organic amine compound may be selected from, but are not limited to, nuclear chamber amine, heptyl amine, octyl amine, dodecyl amine, 2-ethylnuclear amine, 1,3-dimethyl-n-butyl amine, and 1-aminotoridecane.
  • the content of the organic aminated compound is not particularly limited, but if the molar ratio with the metal precursor is greater than 1: 0.2 molar ratio, there is no problem in the generation of particles or stability of the ink.
  • an excess amount of the organic amine compound may be used. Surprisingly, even if the amount is excessive, the organic amine compound acts as a solvent,
  • it does not affect sizing, particle reduction and ink stability.
  • it may be used at a magnification of 30 mol or more and 50 mol or more with respect to 1 mol of the metal precursor, but is not limited thereto.
  • the reducing agent is a hydrazine-based, hydride-based, borohydride-based,
  • One or two or more selected from sodium phosphate-based and ascrobic acid may be known.
  • the reducing agent is a hydrazine, hydrazine anhydride,
  • One or two or more hydrazine-based reducing agents selected from phenylhydrazine may be used.
  • the reducing agent is not particularly limited as long as the metal precursor can be reduced to metal particles.
  • the reducing agent may include a reducing agent / metal precursor molar ratio of 1 to 100 to obtain the desired effect in the present invention.
  • the reducing agent is added to the synthesis solution before the heating and stirring step, and may be added after the heating and stirring step.
  • the heating step is not greatly limited if the reduction is made smoothly, for example, it is better to improve the conductivity is carried out at 100 ⁇ 350 ° C, preferably 150 ⁇ 300 ° C.
  • Non-aqueous solvents are not particularly limited, but for example, alkanes, amines having 6 to 30 carbon atoms, One or more may be selected from the group consisting of toluene, xylene, chloroform, dichloromethane, tetradecane, octadecene, chlorobenzene, dichlorobenzene, chlorobenzoic acid, and dipropylene glycol propyl ether, but not limited thereto.
  • the amount of the non-aqueous solvent can be varied depending on the viscosity of the ink and the field of application.
  • the present invention is not particularly limited.
  • a metal precursor, an organic acid compound, and an organic amine compound are simultaneously used.
  • the particle size of the metal precursor is reduced, so that the stability of the ink can be improved, and the unexpected effect of achieving excellent conductivity by obtaining the metal oxide film can be achieved. It became. Although this effect is not clear, when acid precursor and amine component are added simultaneously, it is thought that when metal precursor is reduced, it acts on the metal surface to protect the surface and suppress the formation of metal oxide. Although such an effect is very limited, the present invention was able to obtain an effect of remarkably reducing the particles due to simultaneous input.
  • the present invention can achieve an unexpected effect of increasing the conductivity when heated in an atmosphere where oxygen is excluded in the step of preparing the metal nanoparticles.
  • the metal oxide film is already formed in an oxygen atmosphere such as air using the structure of the present invention.
  • the coating may be performed by a coating or printing method, and the coating may be selected from dip coating, spin coating, and casting, and the printing may be inkjet printing, electrostatic printing, micro contact printing, or the like. It can be selected from printing, gravure printing, reverse offset printing, gravure offset printing and screen printing.
  • Sintering may produce a fine pattern.
  • the conditions of laser irradiation in the present invention include a laser irradiation method (continuous irradiation, field irradiation), laser intensity, laser wavelength, irradiation time, irradiation atmosphere (general atmosphere, inertness, hydrogen reduction atmosphere). .
  • the conductive ink composition for forming a laser pattern is a metal nanoparticle 100
  • It may include 1 to 20 parts by weight of dispersant based on parts by weight.
  • the dispersant may be selected from one or more of anionic compounds, non-silvery compounds, cationic compounds, positive compounds, polymeric aqueous dispersants, polymeric non-aqueous dispersants, and polymeric cationic dispersants.
  • the metal conductive micropattern produced by the laser pattern process according to the present invention is a metal precursor, an organic acid and an organic amine compound at the same time to reduce by a reducing agent, the process is simple and efficient.
  • the present invention suppresses the formation of the metal oxide film on the surface during generation of the metal nanoparticles for laser pattern processing, and thus high conductivity can be obtained. That is, the present invention has an excellent electrical conductivity because the surface oxide film that causes the property degradation in terms of expression of conductivity during nanoparticle synthesis as well as process efficiency is controlled.
  • the present invention may further produce metal nanoparticles for laser pattern process having more excellent conductivity when manufacturing metal nanoparticles in a non-oxygen atmosphere.
  • the present invention can produce a stable laser pattern for processing nanoparticles to achieve the stability effect of the ink.
  • FIG. 4 is XRD data of nickel particles prepared in Preparation Example 6.
  • FIG. 5 is an SEM photograph of the micropattern of Example 1.
  • an aspect of the present invention comprising the steps of synthesizing the metal nanoparticles for laser pattern process is controlled surface oxide film formation; To provide a conductive ink composition for a laser pattern process using the metal nanoparticles.
  • the surface oxide film formation is controlled
  • the present invention provides a highly conductive metal nano ink composition for a laser pattern process in which a metal precursor, an organic acid compound, and an organic amine compound are simultaneously added to reduce the metal precursor with a reducing agent, thereby suppressing formation of a surface oxide film.
  • Heating in an inert atmosphere provides a highly conductive metal nano ink composition for laser pattern processing with improved conductivity.
  • the present invention is an ink and a laser prepared from the ink to impart the function of firmly adjusting the metal nanoparticles on the substrate without damaging the conductivity by combining each or a compound of the following structural formula in the preparation of the metal nano ink composition
  • a metal conductive micropattern by sintering irradiation is provided.
  • the following compound may be added together with the metal precursor, or may be added when the produced metal nanoparticles described below are dispersed in a non-aqueous solvent.
  • the content of the following compound is preferably 0.001 to 1 parts by weight, more preferably 0.01 to 0.3 parts by weight based on 100 parts by weight of the metal precursor.
  • X is an amine group (-NH 2 ) or a thio group (-SH),! ⁇ is (C 0 -C 17)
  • R 2 comprises a (C, -C I7 ) alkyl group or a (dC 5 ) alkoxy group, n is an integer from 1 to 3.
  • R, CH 3 , CF 3 , H 5 , C 6 H 4 F, F 5 , 1 2 is (CH 2 ) lake, (CF 2 ) n , (C 6 H 4 )
  • N is an integer from 1 to 17.
  • the laser nano-metal composition for laser pattern process prepared in the above aspects of the present invention in the step of preparing the conductive nano ink composition, dispersed in a non-aqueous solvent in the synthesized metal nanoparticle solution It also includes the step of further comprising.
  • the present invention provides a method for producing a metal conductive fine pattern patterned by a laser prepared by applying a non-solvent-dispersed high conductive metal nano ink composition for a laser pattern process on a substrate. do.
  • Another embodiment of the present invention is a method of manufacturing a metal conductive micropattern comprising the step of applying the high conductive metal nano ink composition to a substrate, and then irradiating the substrate with a laser to form a fine pattern by sintering to provide.
  • the highly conductive metal nano ink composition for a laser pattern process of the present invention is characterized in that a) a surface oxide film is controlled by heating and stirring a solution containing a metal precursor, an organic acid compound, an organic amine compound, and a reducing agent. Synthesizing metal nanoparticles;
  • step B) dispersing the metal nanoparticles produced in step a) in a non-aqueous solvent to prepare a conductive ink composition for laser pattern processing.
  • the present invention also includes the step a) is a step of heating in an inert atmosphere.
  • the method for producing a metal conductive micropattern by the laser pattern process of the present invention is a method for controlling the formation of a surface oxide film by heating and stirring a solution containing a metal precursor, an organic acid compound, an organic amine compound and a reducing agent. Synthesizing the prepared metal nanoparticles; B) preparing a conductive ink composition by dispersing the metal nanoparticles produced in step a) in a non-aqueous solvent;
  • Step a) is a step of synthesizing the metal nanoparticles, a step of synthesizing the metal nanoparticles with controlled surface oxide film formation by heating and stirring a solution containing a metal precursor, acid, amine and reducing agent, a) Through the step, metal ions of the metal precursor are reduced to form metal nanoparticles. At this time, the metal nanoparticles of the capsular form in which the acid and the amine are capped are formed on the surface of the metal nanoparticles, thereby preventing the metal nanoparticles from being transformed into metal oxides even when left in the air.
  • the present invention was made possible to reduce the reaction at 100 ° C or more by adding the reducing agent.
  • the organic acid compound or the organic amine compound is not contained at the same time, metal oxides are formed on the surface, thereby reducing the conductivity, but according to the present invention, this problem can be eliminated.
  • the metal precursor is copper, nickel, cobalt and alloys thereof.
  • One or more may be selected from the group consisting of:
  • the acid has at least one of linear, branched and cyclic carbon atoms having 6 to 30 carbon atoms, and may be one or two or more selected from saturated or unsaturated acids.
  • oleic acid More specifically, oleic acid, lysine oleic acid, stearic acid, hydroxystearic acid, linoleic acid, aminodecanoic acid, hydroxy decanoic acid, lauric acid, dekenoic acid, undecanoic acid, palistoleic acid, Nucleosildecanoic acid, hydroxypalmitic acid, hydroxymyritic acid, hydroxy decanoic acid, palmitoleic acid and
  • One or two or more may be selected from the group consisting of misrisoleic acid, but is not limited thereto.
  • the metal conductive micropattern according to the present invention is characterized in that the molar ratio of the metal precursor and the acid is 1: 0.2 to 4. [90] If the molar ratio of acid to precursor is less than 0.2, capping may be incomplete and oxidation of some of the metals that are not capped may occur. The capping materials may be entangled with each other and may not be recovered in the form of capped particles.
  • Anmin may have at least one of linear, branched and cyclic carbon atoms having 6 to 30 carbon atoms, and may select one or two or more of saturated and unsaturated amines.
  • nucleus amine More specifically, it may be selected from nucleus amine, heptyl amine, octyl amine, dodecyl amine, 2—ethylnuclear amine, 1,3-dimethyl-n-butyl amine, 1-aminotoridecane, and the like. no.
  • the amount of amine is preferably 0.2 mol or more, preferably 1 to 50 mol, and more preferably 5 to 50 mol, with respect to 1 mol of the metal precursor.
  • the organic amine compound may act as a non-aqueous solvent, so it is not necessarily limited.
  • the hydrazine-based reducing agent is hydrazine
  • hydrazine anhydride hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate and phenylhydrazine.
  • Borohydride systems including tetramethylammonium borohydride, tetraethylammonium borohydride, sodium borohydride and the like; Small phosphate; And ascrobic acid; You can select and use one or more from.
  • the hydrazine-based reducing agent is most preferred because of the strong reducing power.
  • the synthesis of the metal nanoparticles for the laser pattern process is large.
  • the present invention enables the reduction reaction at 100 ° C or more.
  • the production rate and yield could be increased.
  • the hydrazine-based reducing agent is generally better because it has a superior reducing power as compared with other reducing agents.
  • step a In the synthesis of metal nanoparticles in step a), the composition ratio of the first solution is described in detail.
  • the composition ratio is not particularly limited, but considering the capping efficiency of the metal nanoparticles, the acid is 0.2-4 mol, the amine is 0.2 or more, preferably 0.2-50, more preferably 5-20 with respect to 1 mol of the metal precursor. It may contain moles.
  • the reducing agent may include a reducing agent / metal precursor molar ratio of 1 to 100. If the molar ratio is less than or equal to 1, there is a problem in that the metal ions of the metal precursor are not all reduced, and if it exceeds 100, the excess is not preferable in terms of efficiency because it does not affect the reduction rate.
  • the solution of step a) containing the metal nanoparticles may be obtained by using only the metal nanoparticles by using a separation method of washing and recovering the particles by centrifugation.
  • the metal conductive ink according to the present invention is easy to process by adding a metal precursor, an organic acid compound, an organic amine compound, and a reducing agent at the same time.
  • metal nanoparticles for laser pattern process in which the surface oxide film is completely controlled can be synthesized.
  • the reducing agent may be partially added in advance in synthesizing the metal nanoparticles according to the present invention to promote reduction of metal ions of the metal precursor.
  • the reducing agent may be partially added in advance in synthesizing the metal nanoparticles according to the present invention to promote reduction of metal ions of the metal precursor.
  • the hydrazine-based reducing agent is present in the reaction solution to remove the oxygen causing the oxidation of the metal nanoparticles, thereby functioning to further suppress the surface oxide film formation.
  • the present invention is in the step a) to further prepare metal nanoparticles
  • the metal oxide film When heated in a fluorinated atmosphere, unexpected effects of increased conductivity can be achieved.
  • the metal oxide film is already suppressed to the extent that the metal oxide film is not detected in the analysis in the oxygen atmosphere using the structure of the present invention. It is estimated to increase.
  • step b) will be described.
  • Step b) is a step of preparing a conductive ink composition for a laser pattern process using the metal nanoparticles and the non-aqueous solvent prepared in step a).
  • the non-aqueous solvent is not particularly limited but preferably has 6 to 30 carbon atoms.
  • One or more may be selected from the group consisting of alkanes, amines, toluenes, xylenes, chloroform, dichloromethane, tetradecane, octadecene, chlorobenzene, dichlorobenzene, chlorobenzoic acid, and dipropylene glycol propyl ether.
  • Such conductive ink compositions are not particularly limited, but may be prepared by dispersing the same by stirring and milling.
  • the conductive ink composition may use a dispersant if necessary. .
  • the additive dispersants include fatty acid salts (soaps), a-sulfofatty acid ester salts (MES),
  • ABS alkylbenzenesulfonates
  • LAS straight chain alkylbenzene sulfonates
  • AS alkyl sulfates
  • AES alkyl ether sulfate ester salts
  • alkyl sulfate triethane Compound; Amide fatty acid ethane
  • Low molecular weight nonionic compounds such as polyoxyalkylene alkyl ether (AE), polyoxy alkylene alkylphenyl ether (APE), sorbbi and sorbitan; Low molecular cationic compounds such as alkyltrimethylammonium salts, dialkyldimethylammonium chlorides and alkylpyridinium chlorides; Low molecular positive compounds such as alkylcarboxybetaine, sulfobetaine and lecithin; Formalin condensates of naphthalenesulfonates,
  • Polystyrene sulfonates polyacrylates, copolymer salts of vinyl compounds and carboxylic acid monomers, polymeric aqueous dispersants such as carboxymethyl cellulose and polyvinyl alcohol; polyacrylic acid partial alkyl esters and polyalkylene polyamines; Same polymer «
  • EFKA4008 EFKA4009, EFKA4010, EFKA4015, EFKA4046, EFKA4047, EFKA4060, EFKA4080, EFKA7462, EFKA4020, EFKA4050,
  • DisperBYKlOl DisperBYK102, DisperBYK106, DisperBYK108, DisperBYKl 1, DisperBYKl 16, DisperBYKl 16, DisperBYKl 16, DisperBYKl 16 DisperBYKl 61, DisperBYKl 62, DisperBYKl 63, DisperBYKl 63, DisperBYKl 64, DisperBYKl 66, DisperBYK167, DisperBYKl 68, DisperBYK170, DisperBYK171, DisperBYKl 74, DisperBYKl 80, DisperBYKl, DisperBYK2, DisperKK12000, DisperKK12000, DisperKK12000
  • Examples include, but are not limited to, the Printant 750FM (manufactured by Neos, MEGAFACE) F-477, MegaPack 480SF, and MegaPack F-482 (manufactured by DIC Corporation).
  • the dispersant is 1 ⁇ 20 parts by weight based on 100 parts by weight of the metal nanoparticles
  • step c) will be described.
  • step c) the conductive ink composition for laser pattern process prepared in step b) is applied onto the insulating substrate.
  • coating or printing may be more effective.
  • This method uses UV irradiation or electron beam irradiation.
  • the coating of step c) may be performed by coating or printing, and the coating may be selected from dip coating, spin coating, and casting, and the printing may be performed by inkjet printing, electrostatic printing, micro contact printing, You can choose from Imprinting, Gravure Printing, Reverse Offset Printing, Gravure Offset Printing and Screen Printing.
  • the coating thickness is not particularly limited, but the thickness after heat treatment is preferably 0.1 to 50.
  • the substrate may be a silica, a silica coated substrate on a SiO 2 substrate, glass, polyimide, polyethylene terephthalate, polysulfone, polyethylene naphthalate, or polycarbonate, but is not limited thereto. It doesn't happen. example
  • the compound of Formula 1 or 2 when used as a compound for firmly fixing to the substrate, the effect of fixing to the substrate is significantly increased.
  • step d) the metal nanoparticle thin film is selectively irradiated with laser
  • the frequency of the fill laser is preferably 1-500 kHz.
  • the laser intensity is preferably 0.01-1 W, and more preferably 0.1-0.4 W.
  • the laser wavelength is preferably 300-1500 nm.
  • the irradiation speed is preferably 1-100 mnVs.
  • the irradiation atmosphere is preferably an atmospheric atmosphere, an inert gas or a hydrogen reducing atmosphere.
  • the metal conductive micropatterns manufactured by the above-described manufacturing method are included in the scope of the present invention.
  • the flexible circuit board including the metal conductive micropattern is included in the scope of the present invention.
  • Copper acetate was added to prepare a synthesis solution.
  • the molar ratio of oleic acid / guriacetate is 0.2.
  • the temperature is raised to 150 ° C, which induces the reduction reaction of copper and silver to obtain copper nanoparticles.
  • the synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in toluene to prepare a conductive ink composition.
  • the obtained copper nanoparticles were measured by XRD
  • a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation.
  • the prepared ink composition was coated on the insulating substrate by a casting method to have a thickness of 2 and then heat-treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
  • the copper nanoparticles were synthesized by raising the reaction temperature to 1.50 o C to induce a reduction reaction of the copper ions.
  • the synthesized copper nanoparticles were washed and recovered by centrifugation, and the conductive ink composition was prepared by dispersing about 80mn of the finally obtained copper nanoparticles in roluene.
  • a copper conductive ink composition having a uniform dispersed phase was prepared by bleeding and ultrasonic irradiation.
  • the prepared ink composition was coated on the insulating substrate by a casting method to have a thickness of 2, and thermally treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
  • FIG. 1 is an XRD graph of copper nanoparticles prepared according to the preparation example of the present invention.
  • FIG. 2 is an XRD graph of copper nanoparticles prepared according to the preparation example of the present invention, it can be seen that an oxide film is not formed.
  • even an insignificant amount of oxide film not detected in the XRD analysis may cause a result of increasing the specific resistance of the conductive thin film. Therefore, XPS analysis was conducted for more accurate analysis.
  • the XPS analysis of FIG. 2 no picks due to Cu-0 chemical bonds were observed, and picks with symmetry due to Cii-Cu chemical bonds were observed. You can see that.
  • Copper acetate was added to prepare a synthesis solution.
  • the molar ratio of oleic acid / guriacetate is 4.
  • copper nanoparticles were synthesized by raising the reaction temperature to 150 ° C to induce a reduction reaction of copper and silver.
  • the synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in toluene to prepare a conductive ink composition.
  • a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation.
  • the prepared ink composition was coated on the insulating substrate using a casting method so as to have a thickness of 2 ⁇ and thermally treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
  • Copper acetate was added to prepare a synthesis solution.
  • the molar ratio of oleic acid / copper acetate is 0.2.
  • the temperature was raised to 150 ° C. to induce the reaction of copper ions to synthesize copper nanoparticles.
  • the conductive copper composition was prepared by washing and recovering the synthesized copper nanoparticles by centrifugation and dispersing the finally obtained copper nanoparticles in toluene.
  • a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation.
  • the prepared ink composition was coated on the insulating substrate by a casting method to have a thickness of 2 after heat treatment, and thermally treated at 250 ° C. and 5% H 2 to prepare a conductive thin film.
  • the oxide film was not produced as in Preparation Example 2, and the conductivity was very good as 3xi0 5 (S / cm).
  • the conductivity was higher than that of the inert gas atmosphere, but the conductivity was very high, and the firing in the hydrogen atmosphere was more effective.
  • Copper acetate was added to prepare a synthesis solution.
  • the molar ratio of oleic acid / guriacetate is 0.2.
  • the copper temperature was synthesized by raising the reaction temperature to 150 ° C to induce reduction reaction of copper ions.
  • the synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in toluene to prepare a conductive ink composition.
  • the obtained copper nanoparticles were measured by XRD
  • Nickel acetoacetate was added to prepare a synthetic solution.
  • the molar ratio of oleic acid / guriacetate is 0.73.
  • copper nanoparticles were synthesized by raising the reaction temperature to 240 ° C to induce reduction reaction of copper ions.
  • the synthesized copper nanoparticles were washed and recovered by centrifugation.
  • the resulting nickel particles produced pure nickel metal particles that did not produce nickel oxide (see FIGS. 3 to 4) and also had very good conductivity of 1.2xl0 5 (S / cm) after heat treatment in a 5% H 2 atmosphere. It can be seen that the characteristics are shown.
  • a conductive ink composition was prepared.
  • the particles of copper nanoparticles having a size of about 180 nm were obtained.
  • a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation.
  • the prepared ink composition was coated to have a thickness after heat treatment on the insulating substrate by a casting method, and thermally treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
  • the synthesis solution was prepared by the addition.
  • the molar ratio of oleic acid / guriacetate is 4.
  • the temperature was raised to 150 ° C. to induce a reduction reaction of copper and silver to synthesize copper nanoparticles.
  • the synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in toluene to prepare a conductive ink composition.
  • a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation.
  • the prepared ink composition was coated on the insulating substrate by a casting method so as to have a thickness of 2 kPa, and then heat-treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
  • Copper acetate was added to prepare a synthesis solution.
  • the molar ratio of oleic acid / guriacetate is 1.42.
  • the temperature is raised to 150 ° C, which induces a reduction reaction of copper ions,
  • the synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in dipropylene glycol propyl ether to prepare a conductive ink composition.
  • a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation.
  • the glass substrate was subjected to UV treatment, and a thin film was prepared by spin coating at 1500-4000 rpm.
  • a pils laser (frequency: 100 kHz) with a wavelength of 1070 nm and an average power of 0.2 W was irradiated at 30 mm / ses scan rate in a normal atmosphere.
  • the conductive copper fine pattern was prepared by washing the unused area with toluene.
  • a conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation, and 2 parts having 23 parts by weight relative to 100 parts by weight of the ink composition were prepared. Distilled water was added to adjust the viscosity.
  • UV treatment was performed, and a thin film was prepared by spin coating at 1500-4000 rpm.
  • a scan laser (frequency: 100 kHz) with a wavelength of 1070 nm and an average power of 0.2 W was scanned at 30 mm / ses in a normal atmosphere. Irradiated at a rate, the conductive fine copper conductive pattern was prepared by washing the unirradiated region with secondary distilled water.
  • the microconductive pattern based on the prepared CuO ink partial eye reduction reaction occurs after laser irradiation, and thus the oxide film formation is not completely controlled, and the resulting micropattern is 3xl0 4 S / cm to form the surface oxide film. It can be seen that the conductivity is lower than the conductivity pattern manufactured by the controlled nanoparticle ink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

The present invention relates to a method for forming a fine conductive metal pattern by means of laser micropatterning, comprising the step of forming a fine conductive metal pattern, by means of a firing technique using laser radiation, on an insulating substrate having a novel ink composition for laser patterning applied thereto.

Description

명세서  Specification
발명의명칭:레이져패턴공정용금속나노잉크를이용한미세 전도성패턴제작방법  Name of invention: Fabrication method of fine conductive pattern using metal nano ink for laser pattern process
기술분야  Field of technology
[1] 본발명은표면산화막형성이제어되고더욱미세한나노사이즈의입자를 제조할수있는새로운레이져패턴공정용금속잉크및이를이용한금속 전도성미세패턴의제조방법에관한것이다.  [1] The present invention relates to a new laser pattern processing metal ink capable of controlling surface oxide film formation and producing finer nano-sized particles and a method for producing a metal conductive fine pattern using the same.
[2] 또한본발명은우수한전도도를가지는금속전도성미세패턴을제조하는 방법에관한것이다.  [2] The present invention also relates to a method of manufacturing a metal conductive fine pattern with excellent conductivity.
[3] 또한본발명은기판상에상기금속나노입자의고착성을향상하면서 ,  [3] The present invention also improves the adhesion of the metal nanoparticles on the substrate,
전도성의물성에영향을주지않는레이져패턴공정용고전도성금속나노 잉크조성물및그로부터제조되는금속전도성미세패턴에관한것이다. 배경기술  It relates to highly conductive metal nano ink compositions for laser pattern processing that do not affect conductive properties and metal conductive fine patterns produced therefrom. Background
[4] 금속나노입자를포함하는레이져패턴용금속나노잉크의개발은,미세한 패턴의금속배선을포토리소그라피의복잡한공정을사용하지않고도,스크린 프린팅,잉크젯프린팅,그라이바오프셋프린팅및리버스오프셋프린팅등의 단일프린팅공정을통해다양한기재에인쇄함으로써공정을단순화할수있는 장점을가진다.또한이에따른공정의단순화로제조원가를획기적으로즐일 수있을뿐만아니라,배선폭의미세화로고집적및고효율의인쇄회로의 제조를가능하게하였다.  [4] The development of metal nanoinks for laser patterns containing metal nanoparticles, including fine pattern metal wiring, screen printing, inkjet printing, grabar offset printing and reverse offset printing, without the use of complex photolithography processes It has the advantage of simplifying the process by printing on a variety of substrates through a single printing process.In addition, the manufacturing process can not only greatly reduce the manufacturing cost but also make the production of high density and high efficiency printed circuits by minimizing the wiring width. Made it possible.
[5] 전통적인물리적인방법을통해레이져패턴용금속나노입자를제조하는 방법으로는현실적으로산화안정성을가지는나노크기의금속입자를만드는 것이거의불가능하며극성용매로서예를들면초순수 (deionized water)등에 분산시켜산화안정성올가지는 ^속나노입자분산액을제공하는것은더욱 어렵다.  [5] It is almost impossible to make metal nanoparticles for laser pattern through traditional physical methods. It is practically impossible to make nano-sized metal particles which have oxidative stability. It is a polar solvent, for example, dispersed in ultrapure water. It is more difficult to provide oxidative stability ^ ^ nanoparticle dispersions.
[6] 이러한금속나노입자는일반적으로습식환원법으로합성되며,합성시  [6] These metal nanoparticles are generally synthesized by wet reduction method.
금속입자에표면산화막이쉽게형성되는문제점으로인하여전도도발현 측면에서특성저하를야기하였다.  Due to the problem that the surface oxide film is easily formed on the metal particles, the characteristics were deteriorated in terms of conductivity expression.
[7] 대한민국특허공개제 2000-0018196호 (특허문헌 1)에서는종래의극성용매에 대해산화안정성이있는금속나노입자제조방법으로,금속이온을계면활성제 용액및항산화제 (산화방지제)의존재하에서환원제를이용하여금속이온을 환원시켜나노금속입자를제조하는습식환원법을이용하는연구가개시되어 있다.이제조방법은계면활성제를이용하여나노크기의작은반웅기를만들어 그안에서환원제에의한환원반옹을통해입자의크기를조절하는방법으로 입자의크기조절이용이하며안정한점등의장점이있으나산화안정성및 분산안정성을확보하기위하여사용된계면활성제및항산화제때문에배선및 금속막 형성 시 저항이 높아지는 등의 문제점이 있다ᅳ [7] Korean Patent Publication No. 2000-0018196 (Patent Document 1) discloses a method for producing metal nanoparticles having oxidation stability against a conventional polar solvent, wherein metal ions are present in the presence of a surfactant solution and an antioxidant (antioxidant). Research has been initiated using a wet reduction method that produces metal nanoparticles by reducing metal ions using a reducing agent. The production method uses a surfactant to form a small sized nano-reactor and reduce the particles through reduction reaction by the reducing agent. It is easy to control the size of particles, and has advantages such as stability.However, due to the surfactants and antioxidants used to ensure oxidation stability and dispersion stability, There is a problem such as high resistance when forming a metal film ᅳ
[8] 또한 생성된 나노입자의 표면에 금속산화막이 생성되어 금속의 전도성 둥이 물성 이 훼손되는 단점을 개선할 여지가 여전히 존재하고 있었다. [8] There was still room for improvement of the disadvantage that the metal oxide film was formed on the surface of the resulting nanoparticles, thereby impairing the properties of the metal's conductive spout.
[9] 또한 생성된 나노입자가 기판에 단단히 고착할 때,배선 및 금속막 형성시 바인더를 사용하면 저항이 높아져서 전도성 이 층분히 확보되지 못하는 문제점 이 여 전히 해결되어야 한다. [9] In addition, when the produced nanoparticles are firmly fixed to the substrate, the use of a binder for wiring and metal film formation has a problem that the resistance is not sufficiently secured due to high resistance.
발명의 상세한 설명  Detailed description of the invention
기술적 과제  Technical challenges
[10] 본 발명은 상기 문제점을 해결하기 위한 것으로 레이져 패턴 공정용 금속  [10] The present invention has been made to solve the above problems and the laser pattern processing metal
나노입자 합성 시,공정을 간소화하고, 전도도 발현 측면에서 특성 저하를 야기하는 표면 산화막의 형성 이 완벽히 제어된 금속 나노입자를 합성하고,표면 산화막 형성을 억제하기 위해 도입된 캡핑 분자를 효과적으로 제거함으로서 우수한 전도도를 가지는 저가의 전도성 미세패턴을 제작하는 것을 목적으로 한다.  When synthesizing nanoparticles, it is possible to synthesize metal nanoparticles that have a completely controlled formation of surface oxide films that cause degradation of properties in terms of conductivity, and to effectively remove capping molecules introduced to suppress surface oxide formation. An object of the present invention is to fabricate a low-cost conductive micropattern having conductivity.
[11] 또한 금속나노입자를 포함하는 잉크의 향상된 안정성을 가지는 레 이져 패턴 공정용 잉크 조성물 및 이를 이용하여 제조되는 금속 전도성 미세패턴을 제공하는 것을 목적으로 한다.  Another object of the present invention is to provide an ink composition for laser pattern processing having an improved stability of an ink including metal nanoparticles, and a metal conductive micropattern manufactured using the same.
[12] 또한 본 발명은 전도성의 회 생 없이 상기 금속나노입자가 기판상에 안정하게 고착화하는 레이져 패턴 공정용 잉크 조성물 및 이로부터 제조되는 금속 전도성 미세패턴을 제공하는 것을 목적으로 한다.  Another object of the present invention is to provide an ink composition for laser pattern processing, in which the metal nanoparticles are stably fixed on a substrate without regeneration of conductivity, and a metal conductive micropattern prepared therefrom.
과제 해결 수단  Challenge solution
[13] 상기 목적을 달성하기 위하여 , 본 발명은, 표면 산화막 형성 이 제어되고 더욱 우수한 전도성을 가지는 레이져 패턴 공정용 금속 나노입자를 합성하는 단계 , 상기 금속 나노입자를 이용하여 레이져 패턴 공정용 전도성 잉크 조성물을 제조하는 단계를 포함하는 레이져 패턴 공정용 금속 전도성 잉크 조성물을 제공한다.  In order to achieve the above object, the present invention comprises the steps of synthesizing the metal nanoparticles for laser pattern processing having a controlled surface oxide film formation and more excellent conductivity, the conductive ink for laser pattern processing using the metal nanoparticles It provides a metal conductive ink composition for a laser pattern process comprising the step of preparing the composition.
[14] 또한 본 발명은,표면 산화막 형 성이 제어된 레이져 패턴 공정용 금속  [14] The present invention also provides a metal for laser pattern processing in which surface oxide film formation is controlled.
나노입자를 합성하는 단계, 상기 금속 나노입자를 이용하여 기판에 단단히 고착 가능한 레이져 패턴 공정용 전도성 잉크 조성물을 제조하는 단계,상기 잉크 조성물을 절연성 기판에 도포하는 단계 및 상기 잉크조성물이 도포된 기판에 레이져 조사하여 미세패턴을 제작하는 단계,를 포함하는 레 이져를 이용한 금속 전도성 미세패턴의 제조방법을 제공한다.  Synthesizing the nanoparticles, preparing a conductive ink composition for the laser pattern process that can be firmly fixed to the substrate using the metal nanoparticles, applying the ink composition to an insulating substrate and to the substrate coated with the ink composition It provides a method for producing a metal conductive fine pattern using a laser comprising the step of producing a fine pattern by laser irradiation.
[15] 이하,본 발명의 제조방법에 대하여 구체적으로 살피면 다음과 같다.  [15] Hereinafter, the manufacturing method of the present invention will be described in detail.
[16] 먼저 레이져 패턴 공정용 잉크를 제조하는 단계에서 본 발명은 금속 전구체, 유기산화합물,유기아민화합물 및 환원제를 동시에 포함하는 용액을 가열 및 교반하여 표면 산화막 형성 이 제어된 레이져 패턴 공정용 금속 나노입자 함유 용액을 제조함으로써 레이져 패턴 공정용 금속 나노 잉크 예비 조성물 제조할 수 있다. [16] In the step of preparing an ink for laser pattern processing, the present invention relates to metal nano laser processing for laser pattern processing in which surface oxide film formation is controlled by heating and stirring a solution containing a metal precursor, an organic acid compound, an organic amine compound, and a reducing agent at the same time. By preparing a particle-containing solution, a metal nano ink preliminary composition for laser pattern process can be prepared. have.
[17] 또한 본 발명은 상기 금속 나노 잉크 예비 조성물을 제조하는 단계에서 비활성 분위 기에서 나노입자를 제조하기 위하여 가열함으로써,더욱 우수한  In addition, the present invention is more excellent by heating to prepare the nanoparticles in an inert atmosphere in the step of preparing the metal nano ink preliminary composition,
전도특성을 가지는 레이져 패턴 공정용 전도성 금속 나노 잉크 조성물을 제조하는 수단을 제공한다. 상기에서 비활성분위기 란 질소나 아르곤 등의 분위기 등 이 분야에 통상적으로 이해하는 불활성분위기를 의미하면,상기에 제한되지 않는다.  It provides a means for producing a conductive metal nano ink composition for a laser pattern process having a conductive property. The inert atmosphere in the above means an inert atmosphere commonly understood in this field, such as an atmosphere such as nitrogen or argon, and the like.
[18] 또한 본 발명은 제조된 금속 나노 잉크 예비 조성물을 비수계 용매에 분산하여 레이져 패턴 공정용 전도성 금속 나노잉크 조성물을 제조할 수 있다.  In addition, the present invention can prepare a conductive metal nanoink composition for laser pattern process by dispersing the prepared metal nano ink preliminary composition in a non-aqueous solvent.
[19] 또한 본 발명은 상기 금속 나노 잉크 예비조성물의 제조 시 하기 구조식의  [19] The present invention also provides a structure of the metal nano ink pre
화합물을 포함하여 전도성의 손상 없이 기판상에 금속 나노입자를 단단히 조정하는 기능을 부여하는 잉크 및 이로부터 제조된 레이져 패턴 공정에 의한 금속 전도성 미세패턴을 제공한다. 하기 화합물에서 선택되는 1종 또는 2종 이상의 것을 포함하는 경우 레 이져 조사시 해상도가 더욱 놓은 특징 이 있어서 좋다. 본 발명에서 하기 화합물은 금속전구체와 함께 투입할 수도 있고, 하기에서 설명하는 생성된 금속 나노입자를 비수용매에 분산시킬 때 투입할 수도 있다.  It provides a metal conductive micropattern by the ink and the laser pattern process prepared therefrom providing a function of firmly adjusting the metal nanoparticles on the substrate, including the compound, without damaging the conductivity. In the case of including one or two or more selected from the following compounds, the laser irradiation may be characterized by further higher resolution. In the present invention, the following compound may be added together with the metal precursor, or may be added when the resulting metal nanoparticles described below are dispersed in a nonaqueous solvent.
[20] [화학식 1]  [20] [Formula 1]
[21] [X-R nCRJ^Si  [21] [X-R nCRJ ^ Si
[22] (상기 화학식 1에서, X는 아민기 (-NH2) 또는 싸이올기 (-SH), 1^는 (C0-Cl7 [22] (in Formula 1, X is an amine group (-NH 2) or a thiol group (-SH), 1 ^ is (C 0 -C l7
)알킬기, ¾는 (C,-C17)알킬기 또는 (C,-C5)알콕시기를 포함하며 , η은 1 내지 3의 ' 정수이다.) ) Alkyl group, ¾ comprises a (C, -C 17 ) alkyl group or a (C, -C 5 ) alkoxy group, η is an integer from 1 to 3.
[23] [화학식 2] [23] [Formula 2]
[24] [Ri]-[R2]-SH [24] [Ri]-[R 2 ] -SH
[25] (상기 화학식 2에서, R,은 CH3, CF3, C6H5, C6H4F, C6F5, ¾는 (CH2)n, (CF2)n, (C6H4) „를 포함하며, n은 1 내지 17의 정수이다.) (In Formula 2, R, CH 3 , CF 3 , C 6 H 5 , C 6 H 4 F, C 6 F 5 , ¾ is (CH 2 ) n , (CF 2 ) n , (C 6 H 4 ) „, where n is an integer from 1 to 17.)
[26] 다음으로,본 발명의 레이져 조사에 의한 금속 전도성 미세패턴의 제조방법에 대하여 설명하면 다음과 같다.  Next, a method of manufacturing a metal conductive fine pattern by laser irradiation of the present invention will be described.
[27] 상기 양태들의 레이져 패턴 공정용 전도성 금속 나노 잉크 조성물올 절연성 기판에 도포하는 단계;및 상기 전도성 금속 나노 잉크 조성물이 도포된 절연성 기판을 레이져 조사하여 금속 전도성 미세패턴을 형성하는 단계를 포함하는 단계로부터 전도성 이 우수한 금속 전도성 미세패턴의 제조방법을 제공한다.  [27] applying the conductive metal nano ink composition for the laser pattern process of the embodiments to an insulating substrate; and irradiating the insulating substrate coated with the conductive metal nano ink composition to form a metal conductive micropattern. It provides a method for producing a metal conductive fine pattern excellent in conductivity from the step.
[28] 본 발명 에서 상기 금속 전구체는 특별히 제한하지 않지만, 구리 , 니켈, 코발트, 알루미늄와 같은 금속 및 이들의 합금으로 이루어진 군으로부터 하나 또는 둘 이상의 금속전구체를 선택할 수 있으며,그 예로는 상기 금속전구체는 구리, 니켈,코발트와 같은 금속 및 이들의 합금 등의 금속성분의 질산염,황산염, 아세트산염,인산염 , 규산염 및 염산염으로 이루어진 무기 염에서 선택되는 1종 또는 2종이상의 금속전구체로부터 선택할 수 있다. [29] 본 발명에서 상기 유기산화합물은 크게 제한하는 것은 아니지만 탄소수가 6 ~ 30 인 직쇄형,분지형 및 환형 중 적 어도 하나의 유기산화합물로서,포화 또는 불포화 산에서 선택된 하나 또는 둘 이상일 수 있다. 예를 들면,올레산, 리신올레산, 스테아릭산, 히아드록시스테아릭산, 리놀레산,아미노데카노익산, 하이드록시 데카노익산,라우르산, 데케노익산,운데케노익산,팔리트올레산, 핵실데카노익산, 하이드록시팔미틱산,하이드록시미리스트산, In the present invention, the metal precursor is not particularly limited, but one or more metal precursors may be selected from the group consisting of metals such as copper, nickel, cobalt, and aluminum, and alloys thereof. It can be selected from one or two or more metal precursors selected from inorganic salts consisting of nitrates, sulfates, acetates, phosphates, silicates and hydrochlorides of metal components such as metals such as copper, nickel and cobalt and alloys thereof. In the present invention, the organic acid compound is not particularly limited, but may be at least one organic acid compound having 6 to 30 carbon atoms, linear, branched and cyclic, and may be one or two or more selected from saturated or unsaturated acids. For example, oleic acid, lysine oleic acid, stearic acid, hydroxystearic acid, linoleic acid, aminodecanoic acid, hydroxy decanoic acid, lauric acid, dekenoic acid, undecanoic acid, palistoleic acid, nuclear sildecanoate Iksan, hydroxypalmitic acid, hydroxymyritic acid,
하이드록시 데카노익산, 팔미트올레산 및 미스리스을레산 둥으로 이루어진 군에서 하나 또는 둘 이상 선택할 수 있으나 이에 한정되는 것은 아니다.  One or two or more selected from the group consisting of hydroxy decanoic acid, palmitoleic acid and myrisrisic acid are not limited thereto.
[30] 본 발명에 따른 상기 유기산화합물의 함량은 크게 제한하는 것은 아니지만 상기 금속 전구체와 상기 유기산화합물과의 몰비율이 1 : 0.2 ~ 4 인 것이 본 발명 에서 요구하는 특성에 더욱 좋다.  The content of the organic acid compound according to the present invention is not particularly limited, but the molar ratio between the metal precursor and the organic acid compound is 1: 0.2 to 4, which is better for the characteristics required by the present invention.
[31] 본 발명에서 상기 유기아민화합물은 탄소수가 6 ~ 30인 직 쇄형,분지 형 및 환형 증 적어도 하나의 형 태를 가지며,포화 및 불포화 아민 중에서 선택된 하나 또는 둘 이상일 수 있다. 유기아민화합물의 예로는 핵실 아민,헵틸 아민,옥틸 아민, 도데실 아민, 2-에틸핵실 아민, 1,3-디메틸 -n-부틸 아민, 1-아미노토리 데칸 등에서 선택할 수 있으나 이에 한정되는 것은 아니며 , 본 발명에서 상기 유기 아민 화화합물의 함량은 크게 제한되는 것은 아니지만, 금속전구체와의 몰비율이 1: 0.2몰비 이상의 경우라면 입자의 크기의 생성 이라든지 또는 잉크의 안정성에 문제가 없다. 또한 유기아민화합물은 과량 사용하여도 좋은데, 이는 놀랍게도 과량 사용하여도 유기아민화합물이 마치 용매의 역할을 하여 입자의  In the present invention, the organic amine compound has at least one of linear, branched, and cyclic increments having 6 to 30 carbon atoms, and may be one or two or more selected from saturated and unsaturated amines. Examples of the organic amine compound may be selected from, but are not limited to, nuclear chamber amine, heptyl amine, octyl amine, dodecyl amine, 2-ethylnuclear amine, 1,3-dimethyl-n-butyl amine, and 1-aminotoridecane. In the present invention, the content of the organic aminated compound is not particularly limited, but if the molar ratio with the metal precursor is greater than 1: 0.2 molar ratio, there is no problem in the generation of particles or stability of the ink. In addition, an excess amount of the organic amine compound may be used. Surprisingly, even if the amount is excessive, the organic amine compound acts as a solvent,
크기조절과 입자의 환원 및 잉크의 안정성에 영향을 미치지 않는 사실도 알게 되었다. 예를 들면 금속전구체 1몰에 대하여 30몰이상, 50몰이상의 배율로 사용하여도 좋으며 이에 제한되는 것은 아니다.  It has also been found that it does not affect sizing, particle reduction and ink stability. For example, it may be used at a magnification of 30 mol or more and 50 mol or more with respect to 1 mol of the metal precursor, but is not limited thereto.
[32] 상기 환원제는 하이드라진계,하이드라이드계,보로하이드라이드계,  [32] The reducing agent is a hydrazine-based, hydride-based, borohydride-based,
소듐포스페이트계 및 아스크로빅산에서 선택된 하나 또는 둘 이상알 수 있다.  One or two or more selected from sodium phosphate-based and ascrobic acid may be known.
[33] 보다 구체적으로, 상기 환원제는 하이드라진,하이드라진무수물,  More specifically, the reducing agent is a hydrazine, hydrazine anhydride,
염산하이드라진, 황산하이드라진,하이드라진 하이드레이트 및  Hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate and
페닐하이드라진에서 선택된 하나 또는 둘 이상의 하이드리진계 환원제를 사용할 수 있다.  One or two or more hydrazine-based reducing agents selected from phenylhydrazine may be used.
[34] 환원제는 금속전구체를 금속입자로 환원할 수 있다면 크게 제한되지 않지만, 예를 들면 환원제 /금속 전구체 몰비가 1~100이 되도록 포함하는 것이 본 발명에서 목적하는 효과를 얻을 수 있어서 좋다.  The reducing agent is not particularly limited as long as the metal precursor can be reduced to metal particles. For example, the reducing agent may include a reducing agent / metal precursor molar ratio of 1 to 100 to obtain the desired effect in the present invention.
[35] 상기 환원제는 가열 및 교반단계 전에 합성 용액에 첨가하며 , 가열 및 교반단계 후에 첨가될 수 있다. 본 발명에서 가열단계는 환원이 원활하게 이루어진다면 크게 제한되지 않지만,예를 들면 100 ~ 350°C,좋게는 150~300°C에서 수행되는 것이 전도성 향상에 더욱 좋다.  The reducing agent is added to the synthesis solution before the heating and stirring step, and may be added after the heating and stirring step. In the present invention, the heating step is not greatly limited if the reduction is made smoothly, for example, it is better to improve the conductivity is carried out at 100 ~ 350 ° C, preferably 150 ~ 300 ° C.
[36] 본 발명에서 제조된 금속 나노 잉크 예비 조성물을 분산하는데 사용하는  [36] Used to disperse the metal nano ink preliminary composition prepared in the present invention
비수계용매는 크게 제한되지 않지만 예를 들면 탄소수가 6 ~ 30인 알케인, 아민, 를루엔, 크실렌,클로로포름, 디클로로메탄,테트라데칸, 옥타데센,클로로벤젠, 다이클로로벤젠,클로로벤조산,및 다이프로필렌 글리콜 프로필 에테르으로 이루어진 군으로부터 하나 또는 둘 이상을 선택할 수 있지만 이에 한정하는 것은 아니다. Non-aqueous solvents are not particularly limited, but for example, alkanes, amines having 6 to 30 carbon atoms, One or more may be selected from the group consisting of toluene, xylene, chloroform, dichloromethane, tetradecane, octadecene, chlorobenzene, dichlorobenzene, chlorobenzoic acid, and dipropylene glycol propyl ether, but not limited thereto.
[37] 비수계 용매의 사용량은 잉크의 점도나 웅용분야에 따라 다양하게 조절  [37] The amount of the non-aqueous solvent can be varied depending on the viscosity of the ink and the field of application.
가능하므로 본 발명에서는 크게 제한하지 않는다.  Since it is possible, the present invention is not particularly limited.
[38] 본 발명에서는 금속전구체,유기산화합물,유기아민화합물를 동시  [38] In the present invention, a metal precursor, an organic acid compound, and an organic amine compound are simultaneously used.
투입함으로써 이유가 명확하지 않지만, 금속전구체의 입자사이즈가 감소되 어 잉크의 안정성 이 향상되고 또한 금속산화막의 생성을 억제하여 우수한 전도성을 얻을 수 있는 등의 예상하지 못한 효과를 달성할 수 있음을 알게 되었다. 이 러한 효과는 명확하지 않지만 산성분과 아민성분을 동시에 투입함으로써 금속전구체가 환원될 때,금속표면에 작용하여 표면을 보호하여 금속산화물의 생성을 억제하는 것으로 생각되는데,각각을 별도로 투입하는 경우에는 이 러한 효과가 매우 제한적 임 에도 본 발명에서는 동시 투입에 따른 입자의 감소효과가 현저히 나타나는 효과를 얻을 수 있었다.  Although the reason is not clear by the addition, the particle size of the metal precursor is reduced, so that the stability of the ink can be improved, and the unexpected effect of achieving excellent conductivity by obtaining the metal oxide film can be achieved. It became. Although this effect is not clear, when acid precursor and amine component are added simultaneously, it is thought that when metal precursor is reduced, it acts on the metal surface to protect the surface and suppress the formation of metal oxide. Although such an effect is very limited, the present invention was able to obtain an effect of remarkably reducing the particles due to simultaneous input.
[39] 또한 본 발명은 추가적으로 금속나노입자를 제조하는 단계에서 산소가 배제된 분위기에서 가열하는 경우,전도성 이 증가되는 예상하지 못한 효과를 달성할 수 있다. 이와 같이 산소를 배제한 분위기에서 금속 나노입자를 제공하는 경우에 본 발명의 구성을 이용한 대기 등의 산소분위기에서 금속산화막이 이미  In addition, the present invention can achieve an unexpected effect of increasing the conductivity when heated in an atmosphere where oxygen is excluded in the step of preparing the metal nanoparticles. In the case where the metal nanoparticles are provided in the oxygen-excluded atmosphere as described above, the metal oxide film is already formed in an oxygen atmosphere such as air using the structure of the present invention.
억제되지만,더욱 금속 산화막의 미세한 생성조차도 제어되어 전도성 이 더욱 증가되는 것으로 추정된다.  Although suppressed, even the finer generation of the metal oxide film is controlled, and it is estimated that the conductivity is further increased.
[40] 본 발명에서 도포는 코팅 또는 프린팅의 방법으로 수행할 수 있으며, 상기 코팅은 딥코팅 , 스핀 코팅 및 캐스팅에서 선택할 수 있으며 , 상기 프린팅은 잉크젯 프린팅 , 정전수력학 프린팅 , 마이크로 컨택 프린팅,임프린팅 , 그라비아 프린팅,리버스옵셋 프린팅 , 그라비옵셋 프린팅 및 스크린 프린팅에서 선택하여 사용할 수 있다.  In the present invention, the coating may be performed by a coating or printing method, and the coating may be selected from dip coating, spin coating, and casting, and the printing may be inkjet printing, electrostatic printing, micro contact printing, or the like. It can be selected from printing, gravure printing, reverse offset printing, gravure offset printing and screen printing.
[41] 본 발명에서 도포된 미세패턴의 형성을 위하여 레 이져를 조사함으로써  [41] By irradiating a laser to form a fine pattern applied in the present invention
소결하여 미세패턴을 제조할 수 있다.  Sintering may produce a fine pattern.
[42] 본 발명에서 레이져 조사의 조건은 레이저 조사 방법 (연속 조사,필스 조사), 레이 저 세기 , 레이 저 파장, 조사 시 간, 조사 분위 기 (일반 대기,불활성 , 수소 환원 분위기)를 포함한다.  [42] The conditions of laser irradiation in the present invention include a laser irradiation method (continuous irradiation, field irradiation), laser intensity, laser wavelength, irradiation time, irradiation atmosphere (general atmosphere, inertness, hydrogen reduction atmosphere). .
[43] 또한 상기 레이져 패턴 형성용 전도성 잉크 조성물은 금속 나노입자 100  In addition, the conductive ink composition for forming a laser pattern is a metal nanoparticle 100
중량부에 대하여 1 ~ 20 중량부의 분산제를 포함할 수 있다.  It may include 1 to 20 parts by weight of dispersant based on parts by weight.
[44] 상기 분산제는 음이온성 화합물, 비 이은계 화합물, 양이은성 화합물,양성 계 화합물,고분자 수계 분산제,고분자 비수계 분산제 및 고분자 양이온계 분산제 등에서 하나 또는 들 이상을 선택할 수 있다. The dispersant may be selected from one or more of anionic compounds, non-silvery compounds, cationic compounds, positive compounds, polymeric aqueous dispersants, polymeric non-aqueous dispersants, and polymeric cationic dispersants.
[45] 또한 본 발명에 따른 제조방법으로 제조된 금속 전도성 미세패턴은 본 발명의 범위에 포함된다. 발명의 효과 In addition, the metal conductive micropattern manufactured by the manufacturing method according to the present invention is included in the scope of the present invention. Effects of the Invention
본 발명에 따른 레이져 패턴 공정에 의해 제조되는 금속 전도성 미세패턴은 금속전구체,유기산 및 유기아민 화합물을 동시에 투입하여 환원제에 의해 환원하는 것이므로,공정이 간편하고 효율적 이다.  The metal conductive micropattern produced by the laser pattern process according to the present invention is a metal precursor, an organic acid and an organic amine compound at the same time to reduce by a reducing agent, the process is simple and efficient.
본 발명은 레이져 패턴 공정용 금속나노입자의 생성 시에 표면의 금속산화막의 형성을 억 제하므로,높은 전도성을 얻을 수 있다. 즉 본 발명은 공정효율뿐만 아니라 나노입자 합성 시 전도도 발현 측면에서 특성 저하를 야기하는 표면 산화막이 제어되는 효과를 가지므로 우수한 전기 전도성을 보유한다.  The present invention suppresses the formation of the metal oxide film on the surface during generation of the metal nanoparticles for laser pattern processing, and thus high conductivity can be obtained. That is, the present invention has an excellent electrical conductivity because the surface oxide film that causes the property degradation in terms of expression of conductivity during nanoparticle synthesis as well as process efficiency is controlled.
또한 본 발명은 추가적으로 비산소분위기에서 금속나노입자를 제조하는 경우에는 더욱 우수한 전도성을 가지는 레이져 패턴 공정용 금속나노입자를 제조할 수 있다.  In addition, the present invention may further produce metal nanoparticles for laser pattern process having more excellent conductivity when manufacturing metal nanoparticles in a non-oxygen atmosphere.
또한 본 발명은 안정한 레이져 패턴 공정용 나노입자를 제조하여 잉크의 안정성 효과를 달성할 수 있다.  In addition, the present invention can produce a stable laser pattern for processing nanoparticles to achieve the stability effect of the ink.
또한 기존의 귀금속 나노입자 기반의 전도성 잉크를 대체할 수 있는 저가, 전도성 미세패턴의 제조를 가능하게 하므로 이의 활용이 더욱 확대될 것으로 보인다.  In addition, it is possible to manufacture a low-cost, conductive micropattern that can replace the conductive ink based on the noble metal nanoparticles, and its use will be further expanded.
도면의 간단한 설명  Brief description of the drawings
도 1은 제조예 2에서 제조된 구리 나노입자의 XRD를 나타낸 그래프이고, 도 2는 제조예 2에서 제조된 구리 나노입자의 XPS를 나타낸 그래프이고, 도 3은 제조예 6에서 제조된 니켈 나노입자의 SEM사진이며  1 is a graph showing the XRD of the copper nanoparticles prepared in Preparation Example 2, Figure 2 is a graph showing the XPS of the copper nanoparticles prepared in Preparation Example 2, Figure 3 is a nickel nanoparticles prepared in Preparation Example 6 SEM photo of
도 4은 제조예 6에서 제조된 니켈 입자의 XRD데이터 이다.  4 is XRD data of nickel particles prepared in Preparation Example 6. FIG.
도 5는 실시 예 1의 미세패턴의 SEM 사진이다.  5 is an SEM photograph of the micropattern of Example 1. FIG.
발명의 실시를 위한 최선의 형 태  Best mode for carrying out the invention
이하 본 발명의 제조방법에 대하여 구체적으로 살펴본다.  Hereinafter, the manufacturing method of the present invention will be described in detail.
먼저 본 발명의 양태는,표면 산화막 형성 이 제어된 레 이져 패턴 공정용 금속 나노입자를 합성하는 단계; 상기 금속 나노입자를 이용하여 레 이져 패턴 공정용 전도성 잉크 조성물을 제조하는 단계 ;를 제공한다.  First, an aspect of the present invention, comprising the steps of synthesizing the metal nanoparticles for laser pattern process is controlled surface oxide film formation; To provide a conductive ink composition for a laser pattern process using the metal nanoparticles.
또한 본 발명은 또 다른 양태는 표면 산화막 형성 이 제어되고,  In another aspect of the present invention, the surface oxide film formation is controlled,
불활성분위기에서 가열하여 환원함으로써 금속 나노입자를 합성하는 단계; 상기 금속 나노입자를 이용하여 레이져 패턴 공정용 전도성 잉크 조성물을 제조하는 단계;를 제공한다.  Synthesizing the metal nanoparticles by heating and reducing in an inert atmosphere; To provide a conductive ink composition for a laser pattern process using the metal nanoparticles.
본 발명은 또 다른 양태는 금속전구체,유기산화합물, 유기아민화합물을 동시에 투입하여 금속전구체를 환원제에 의해 환원함으로써,표면 산화막의 형성 이 억제된 레이져 패턴 공정용 고 전도성 금속 나노 잉크 조성물을 제공한다. In still another aspect, the present invention provides a highly conductive metal nano ink composition for a laser pattern process in which a metal precursor, an organic acid compound, and an organic amine compound are simultaneously added to reduce the metal precursor with a reducing agent, thereby suppressing formation of a surface oxide film.
Figure imgf000008_0001
본 발명은 또 다른 양태는 금속전구체,유기산 화합물,유기아민 화합물을 동시 에 투입하고 금속전구체를 환원제에 의해 가열 환원할 때, 불활성분위기에서 가열함으로써,더욱 전도성 이 향상된 레이져 패턴 공정용 고 전도성 금속 나노 잉크 조성물을 제공한다.
Figure imgf000008_0001
According to another aspect of the present invention, when a metal precursor, an organic acid compound, and an organic amine compound are simultaneously added and the metal precursor is heated and reduced with a reducing agent, Heating in an inert atmosphere provides a highly conductive metal nano ink composition for laser pattern processing with improved conductivity.
[61] 또한 본 발명은 상기 금속 나노 잉크 조성물의 제조 시 하기 구조식의 화합물을 각각 또는 흔합하여 전도성의 손상 없이 기판 상에 금속 나노입자를 단단히 조정하는 기능을 부여하는 잉크 및 이로부터 제조된 레이 져 소결 조사에 의한 금속 전도성 미세패턴을 제공한다. 본 발명에서 하기 화합물은 금속전구체와 함께 투입할 수도 있고,하기에서 설명하는 생성된 금속 나노입자를 비수용매에 분산시 킬 때 투입할 수도 있다. 본 발명 에서 하기 화합물의 함량은 금속전구체 100중량부에 대하여 0.001 내지 1중량부,더욱 좋게는 0.01 내지 0.3중량부 흔합하는 것이 좋다. In addition, the present invention is an ink and a laser prepared from the ink to impart the function of firmly adjusting the metal nanoparticles on the substrate without damaging the conductivity by combining each or a compound of the following structural formula in the preparation of the metal nano ink composition A metal conductive micropattern by sintering irradiation is provided. In the present invention, the following compound may be added together with the metal precursor, or may be added when the produced metal nanoparticles described below are dispersed in a non-aqueous solvent. In the present invention, the content of the following compound is preferably 0.001 to 1 parts by weight, more preferably 0.01 to 0.3 parts by weight based on 100 parts by weight of the metal precursor.
[62] [화학식 1]  [62] [Formula 1]
[63] [X-R,]n[R2]4.nSi [63] [XR,] n [R 2 ] 4 . n Si
[64] (상기 화학식 1에서, X는 아민기 (-NH2) 또는 싸이을기 (-SH),!^는 (C0-C17 (In Formula 1, X is an amine group (-NH 2 ) or a thio group (-SH),! ^ is (C 0 -C 17)
)알킬기 , R2는 (C,-CI7)알킬기 또는 (d-C5)알콕시 기를 포함하며, n은 1 내지 3의 정수이다.) An alkyl group, R 2 comprises a (C, -C I7 ) alkyl group or a (dC 5 ) alkoxy group, n is an integer from 1 to 3.
[65] [화학식 2]  [65] [Formula 2]
[66] [R,]-[R2]-SH [66] [R,]-[R 2 ] -SH
[67] (상기 화학식 2에서 , R,은 CH3, CF3, H5, C6H4F, F5, 1 2는 (CH2)„, (CF2)n, (C6H4)In Chemical Formula 2, R, CH 3 , CF 3 , H 5 , C 6 H 4 F, F 5 , 1 2 is (CH 2 ) „, (CF 2 ) n , (C 6 H 4 )
„를 포함하며 , n은 1 내지 17의 정수이다.) „, N is an integer from 1 to 17.)
[68] 본 발명은, 상기의 본 발명의 양태들로 제조된 레 이 져 패턴 공정용 금속 나노 잉크 조성물은 상기 전도성 나노 잉크 조성물을 제조하는 단계에서,합성된 금속 나노입자 용액에 비수용매에 분산하는 단계를 더 포함하는 것을 또한 포함한다. The present invention, the laser nano-metal composition for laser pattern process prepared in the above aspects of the present invention in the step of preparing the conductive nano ink composition, dispersed in a non-aqueous solvent in the synthesized metal nanoparticle solution It also includes the step of further comprising.
[69] 또한 본 발명은 상기 비수용매가 분산된 레이져 패턴 공정용 고 전도성 금속 나노 잉크 조성물을 기판상에 도포하는 단계를 포함하여 제조하는 레이져에 의해 패턴닝된 금속전도성 미세패턴의 제조방법을 제공한다. In another aspect, the present invention provides a method for producing a metal conductive fine pattern patterned by a laser prepared by applying a non-solvent-dispersed high conductive metal nano ink composition for a laser pattern process on a substrate. do.
[70] 또한 본 발명의 다른 양태는 상기 고 전도성 금속 나노 잉크 조성물을 기판에 도포한 후, 상기 기판을 레이져로 조사하여 소결함으로서 미세패턴을 형성하는 단계를 포함하는 금속 전도성 미세패턴의 제조방법을 제공한다. Another embodiment of the present invention is a method of manufacturing a metal conductive micropattern comprising the step of applying the high conductive metal nano ink composition to a substrate, and then irradiating the substrate with a laser to form a fine pattern by sintering to provide.
[71] 구체적으로 본 발명의 레이져 패턴 공정용 고 전도성 금속 나노 잉크 조성물은 [72] a) 금속 전구체,유기산 화합물,유기아민 화합물 및 환원제를 포함하는 용액을 가열 및 교반하여 표면 산화막 형성 이 제어된 금속 나노입자를 합성하는 단계 ; [71] Specifically, the highly conductive metal nano ink composition for a laser pattern process of the present invention is characterized in that a) a surface oxide film is controlled by heating and stirring a solution containing a metal precursor, an organic acid compound, an organic amine compound, and a reducing agent. Synthesizing metal nanoparticles;
[73] b) 상기 a) 단계에서 생성된 금속 나노입자를 비수계 용매에 분산시켜 레이져 패턴 공정용 전도성 잉크 조성물을 제조하는 단계 ;를 포함하여 제조한다. B) dispersing the metal nanoparticles produced in step a) in a non-aqueous solvent to prepare a conductive ink composition for laser pattern processing.
[74] 또한 본 발명은 상기 a)단계가 불활성 분위기에서 가열하는 단계인 것을 또한 포함한다. In addition, the present invention also includes the step a) is a step of heating in an inert atmosphere.
[75] 또한 본 발명의 레이져 패턴 공정 에 의한 금속전도성 미세패턴의 제조방법은 [76] a) 금속 전구체, 유기산 화합물, 유기아민 화합물 및 환원제를 포함하는 용액을 가열 및 교반하여 표면 산화막 형성 이 제어된 금속 나노입자를 합성하는 단계 ; [77] b) 상기 a) 단계에서 생성된 금속 나노입자를 비수계 용매에 분산시켜 전도성 잉크 조성물을 제조하는 단계; In addition, the method for producing a metal conductive micropattern by the laser pattern process of the present invention is a method for controlling the formation of a surface oxide film by heating and stirring a solution containing a metal precursor, an organic acid compound, an organic amine compound and a reducing agent. Synthesizing the prepared metal nanoparticles; B) preparing a conductive ink composition by dispersing the metal nanoparticles produced in step a) in a non-aqueous solvent;
[78] c) 상기 전도성 잉크 조성물을 절연성 기판에 도포하는 단계;및 C) applying the conductive ink composition to an insulating substrate; and
[79] d) 잉크 조성물이 도포된 절연성 기판을 레이져로 소결하여 금속 전도성 [79] d) Metal conductive by sintering the insulating substrate coated with the ink composition with a laser
미세패턴을 형성하는 단계;  Forming a fine pattern;
[80] 를 포함하는 금속 전도성 미 세패턴의 제조방법을 제공한다. It provides a method for producing a metal conductive fine pattern comprising a [80].
[81] 이하에서는 본 발명에 따른 레이져 패턴용 고 전도성 금속 나노 잉크 조성물의 제조방법 및 금속 전도성 미세패턴의 제조방법의 각 단계에 대하여 보다 상세하게 설명한다. Hereinafter, each step of the manufacturing method of the highly conductive metal nano ink composition for a laser pattern and the manufacturing method of the metal conductive micropattern according to the present invention will be described in more detail.
[82] 상기 a) 단계는 금속 나노입자를 합성하는 단계로써 금속 전구체,산, 아민 및 환원제를 포함하는 용액을 가열 및 교반하여 표면 산화막 형성 이 제어된 금속 나노입자를 합성하는 단계이며, a) 단계를 통하여 금속전구체의 금속이온이 환원되어 금속 나노입자를 형성한다. 이때 금속 나노입자 표면에 산 및 아민이 캡핑 된 캡슐형 태의 금속 나노입자가 형성되어 , 공기 중에 방치 했을 때에도 금속 나노입자가 금속산화물로 변질되는 것을 막을 수 있다.  Step a) is a step of synthesizing the metal nanoparticles, a step of synthesizing the metal nanoparticles with controlled surface oxide film formation by heating and stirring a solution containing a metal precursor, acid, amine and reducing agent, a) Through the step, metal ions of the metal precursor are reduced to form metal nanoparticles. At this time, the metal nanoparticles of the capsular form in which the acid and the amine are capped are formed on the surface of the metal nanoparticles, thereby preventing the metal nanoparticles from being transformed into metal oxides even when left in the air.
[83] 본 발명은 상기 환원제를 투입하여 100°C 이상에서의 환원반웅을 가능하게 하였다. 본 발명과 같이 , 유기산 화합물이나 유기아민화합물을 동시에 함유하지 않는 경우에는 금속산화물이 표면에 생성되어 전도성의 저하가 필연적으로 존재하였지만 본 발명에 따를 경우에는 이 러한 문제를 제거할 수 있다.  The present invention was made possible to reduce the reaction at 100 ° C or more by adding the reducing agent. As in the present invention, when the organic acid compound or the organic amine compound is not contained at the same time, metal oxides are formed on the surface, thereby reducing the conductivity, but according to the present invention, this problem can be eliminated.
[84] 또한 본 발명에서는 불활성분위기에서 금속 나노입자를 가열하여 환원하는 경우에도 메우 우수한 전도성을 가지는 금속입자가 얻어지는 효과를 달성할 수 있음을 알게 되 었다.  In addition, in the present invention, it was found that even when the metal nanoparticles are heated and reduced in an inert atmosphere, an effect of obtaining metal particles having excellent conductivity can be achieved.
[85] 상기 a) 단계에서,금속 전구체는 구리,니켈,코발트및 이들의 합금으로  In step a), the metal precursor is copper, nickel, cobalt and alloys thereof.
이루어 진 군으로부터 하나 또는 들 이상을 선택할 수 있다.  One or more may be selected from the group consisting of:
[86] 보다 구체적으로, 구리 , 니켈, 코발트 및 이들의 합금으로 이루어진 군에서 선택된 금속의 질산염,황산염,아세트산염,인산염,규산염 및 염산염으로 이루어진 무기 염에서 1종 이상 선택할 수 있다. More specifically, at least one selected from inorganic salts consisting of nitrates, sulfates, acetates, phosphates, silicates and hydrochlorides of metals selected from the group consisting of copper, nickel, cobalt and alloys thereof.
[87] 상기 a) 단계에서 , 산은 탄소수가 6 ~ 30인 직쇄형,분지형 및 환형 중 적어도 하나의 형 태를 가지며,포화 또는 불포화 산에서 선택된 하나 또는 둘 이상일 수 있다. In step a), the acid has at least one of linear, branched and cyclic carbon atoms having 6 to 30 carbon atoms, and may be one or two or more selected from saturated or unsaturated acids.
[88] 보다 구체적으로,올레산,리신올레산,스테아릭산,히아드록시스테아릭산, 리놀레산,아미노데카노익산,하이드록시 데카노익산, 라우르산,데케노익산, 운데케노익산,팔리트올레산,핵실데카노익산,하이드록시팔미틱산, 하이드록시미리스트산, 하이드록시 데카노익산, 팔미트올레산 및  [88] More specifically, oleic acid, lysine oleic acid, stearic acid, hydroxystearic acid, linoleic acid, aminodecanoic acid, hydroxy decanoic acid, lauric acid, dekenoic acid, undecanoic acid, palistoleic acid, Nucleosildecanoic acid, hydroxypalmitic acid, hydroxymyritic acid, hydroxy decanoic acid, palmitoleic acid and
미스리스올레산 등으로 이루어진 군에서 하나 또는 둘 이상 선택할 수 있으나 이에 한정되는 것은 아니다.  One or two or more may be selected from the group consisting of misrisoleic acid, but is not limited thereto.
[89] 본 발명에 따른 금속 전도성 미세패턴은 상기 금속 전구체와 상기 산과의 몰비율이 1: 0.2 ~ 4 인 것을 특징으로 한다. [90] 전구체 대비 산의 몰비율이 0.2 미만이면 캡핑 이 완벽하게 이루어지지 못하여 캡핑되지 못한 금속의 일부에 산화가 되는 현상이 발생할 수도 있으며,몰비율이 4를 초과하면 캡핑물질이 모두 반웅하지 못하고 캡핑 물질이 서로 엉켜서 캡핑된 입자의 형 태로 회수를 하지 못하게 될 수도 있다. The metal conductive micropattern according to the present invention is characterized in that the molar ratio of the metal precursor and the acid is 1: 0.2 to 4. [90] If the molar ratio of acid to precursor is less than 0.2, capping may be incomplete and oxidation of some of the metals that are not capped may occur. The capping materials may be entangled with each other and may not be recovered in the form of capped particles.
[91 ] 상기 a) 단계에서 , 안민은 탄소수가 6 ~ 30인 직쇄형,분지형 및 환형 중 적어도 하나의 형 태를 가지 , 포화 및 불포화 아민중에서 하나 또는 둘 이상을 선택할 수 있다.  In step a), Anmin may have at least one of linear, branched and cyclic carbon atoms having 6 to 30 carbon atoms, and may select one or two or more of saturated and unsaturated amines.
[92] 보다 구체적으로 핵실 아민,헵틸 아민,옥틸 아민, 도데실 아민, 2—에틸핵실 아민, 1,3-디메틸 -n-부틸 아민, 1-아미노토리 데칸 등에서 선택할 수 있으나 이 에 한정되는 것은 아니다. 아민의 함량은 금속전구체에 1몰에 대하여 0.2몰이상, 좋게는 1~50몰, 더욱 좋게는 5~50몰이 좋으며,상한의 경우에는  More specifically, it may be selected from nucleus amine, heptyl amine, octyl amine, dodecyl amine, 2—ethylnuclear amine, 1,3-dimethyl-n-butyl amine, 1-aminotoridecane, and the like. no. The amount of amine is preferably 0.2 mol or more, preferably 1 to 50 mol, and more preferably 5 to 50 mol, with respect to 1 mol of the metal precursor.
유기아민화합물이 비수계용매로 작용할 수 있으므로 굳이 제한되지 않는다.  The organic amine compound may act as a non-aqueous solvent, so it is not necessarily limited.
[93] 상기 a) 단계에서 , 상기 하이드라진계 환원제는 하이드라진,  In the step a), the hydrazine-based reducing agent is hydrazine,
하이드라진무수물,염산하이드라진,황산하이드라진,하이드라진 하이드레이트 및 페닐하이드라진에서 선택된 하나 또는 둘 이상일 수 있다. 또한 이밖에도 하이드라이드계; 테트라부틸암모늄보로하이드라이드,  It may be one or two or more selected from hydrazine anhydride, hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate and phenylhydrazine. In addition, hydrides; Tetrabutylammonium borohydride ,
테트라메틸암모늄보로하이드라이드, 테트라에틸암모늄보로하이드라이드 및 소듐보로하이드라이드 등을 포함하는 보로하이드라이드계 ; 소듬포스페이트계; 및 아스크로빅산; 에서 하나 또는 둘 이상을 선택하여 사용할 수 있다. 그 중 하이드라진계 환원제는 환원력 이 강하여 가장 바람직하다.  Borohydride systems including tetramethylammonium borohydride, tetraethylammonium borohydride, sodium borohydride and the like; Small phosphate; And ascrobic acid; You can select and use one or more from. Among them, the hydrazine-based reducing agent is most preferred because of the strong reducing power.
[94] 상기 a)단계에서 상기 레이져 패턴 공정용 금속 나노입자 합성단계는 크게  In the step a), the synthesis of the metal nanoparticles for the laser pattern process is large.
제한적 이지 않지 만 환원 효율성을 고려하여 100 ~ 350°C 에서,보다  Not limited, but at 100 to 350 ° C, considering reduction efficiency
바람직하게는 140 ~300°C, 더욱 좋게는 150~250°C 에서 수행되는 것이 적합하다.  Preferably it is suitable to be carried out at 140 ~ 300 ° C, more preferably 150 ~ 250 ° C.
[95] 본 발명은 100°C 이상에서 환원반웅을 가능하게 하였다.  The present invention enables the reduction reaction at 100 ° C or more.
[96] 또한 100°C 이상의 고은에서 환원반웅이 가능하므로 금속 나노 입자의  [96] It is also possible to reduce the reaction at high silver above 100 ° C.
생성속도 및 수율을 높일 수 있었다ᅳ 또한 하이드라진계 환원제는 일반적으로 우수한 환원력으로 다른 환원제와 비교시에 보다 우수한 환원력을 가지므로 더욱 좋다.  In addition, the production rate and yield could be increased. In addition, the hydrazine-based reducing agent is generally better because it has a superior reducing power as compared with other reducing agents.
[97] a) 단계의 금속 나노입자 합성 시,제 1 용액의 조성 비에 대하여 상술하기로  In the synthesis of metal nanoparticles in step a), the composition ratio of the first solution is described in detail.
한다. 상기 조성 비는 크게 제한적 이지 않지 만, 금속나노입자의 캡핑효율을 고려하였을때, 금속전구체 1 몰에 대하여 산은 0.2 - 4몰,아민은 0.2이상, 좋게는 0.2 ~ 50, 더욱 좋게는 5~20몰을 함유할 수 있다.  do. The composition ratio is not particularly limited, but considering the capping efficiency of the metal nanoparticles, the acid is 0.2-4 mol, the amine is 0.2 or more, preferably 0.2-50, more preferably 5-20 with respect to 1 mol of the metal precursor. It may contain moles.
[98] 환원제는 환원제 /금속 전구체 몰비가 1~100이 되도록 포함할 수 있다. 몰비가 1이하인 경우 금속전구체의 금속이온이 전부 환원되지 못하는 문제가 있으며 100을 초과하는 경우 과잉 이 되어 환원속도에 영향을 주지 못하므로 효율면에서 바람직하지 못하다.  The reducing agent may include a reducing agent / metal precursor molar ratio of 1 to 100. If the molar ratio is less than or equal to 1, there is a problem in that the metal ions of the metal precursor are not all reduced, and if it exceeds 100, the excess is not preferable in terms of efficiency because it does not affect the reduction rate.
[99] 이 렇게 금속 나노입자가 함유된 a) 단계의 용액은 원심분리 법을 이용하여 세척 및 회수하는 둥의 분리방법을 이용하여 금속 나노입자만을 얻을 수도 있다. [100] 본 발명에 따른 금속 전도성 잉크는 금속 전구체,유기산화합물, 유기아민 화합물 및 환원제를 한꺼번에 투입하여 반웅하는 반웅으로 공정 이 간편하며, 아민만 금속나노입자에 캡핑하거나 유기산만을 금속나노입자에 캡핑함으로써 발생되는 산화막 발생을 억제하는 기술로 표면 산화막이 완벽히 제어된 레이져 패턴 공정용 금속 나노 입자를 합성할 수 있다. The solution of step a) containing the metal nanoparticles may be obtained by using only the metal nanoparticles by using a separation method of washing and recovering the particles by centrifugation. The metal conductive ink according to the present invention is easy to process by adding a metal precursor, an organic acid compound, an organic amine compound, and a reducing agent at the same time. As a technique of suppressing the generation of oxide film generated by the present invention, metal nanoparticles for laser pattern process in which the surface oxide film is completely controlled can be synthesized.
[101] 이 때 환원제는 본 발명 에 따른 금속나노입자의 합성 시 미 리 일부 투입하여 금속전구체의 금속이온의 환원을 촉진할 수도 있다. 이 러할 경우,특히  In this case, the reducing agent may be partially added in advance in synthesizing the metal nanoparticles according to the present invention to promote reduction of metal ions of the metal precursor. In this case,
하이드라진계 환원제는 반웅 전 용액 내에 존재하여 금속나노입자의 산화를 유발하는 산소를 제거하므로,표면 산화막 형성을 더욱 억제하는 기능을 한다.  The hydrazine-based reducing agent is present in the reaction solution to remove the oxygen causing the oxidation of the metal nanoparticles, thereby functioning to further suppress the surface oxide film formation.
[102] 또한 본 발명은 추가적으로 금속나노입자를 제조하는 상기 a) 단계에서  In addition, the present invention is in the step a) to further prepare metal nanoparticles
불화성분위기에서 가열하는 경우,전도성 이 증가되는 예상하지 못한 효과를 달성 할 수 있다. 이와 같이 불활성분위 기 에서 금속 나노입자를 제공하는 경우에 , 본 발명의 구성을 이용한 산소분위기에서 금속산화막이 분석상에서 검출되지 않을 정도로 이미 억제되지만,더욱 금속산화막의 미세한 생성조차도 제어되 어 전도성 이 더욱 증가되는 것으로 추정된다.  When heated in a fluorinated atmosphere, unexpected effects of increased conductivity can be achieved. In the case of providing the metal nanoparticles in the inert atmosphere as described above, the metal oxide film is already suppressed to the extent that the metal oxide film is not detected in the analysis in the oxygen atmosphere using the structure of the present invention. It is estimated to increase.
[103] 다음으로 b)단계에 대하여 설명한다.  Next, step b) will be described.
[104] b) 단계는 상기 a) 단계에서 제조된 금속 나노입자 및 비수계 용매를 이용하여 레이져 패턴 공정용 전도성 잉크 조성물을 제조하는 단계이다.  Step b) is a step of preparing a conductive ink composition for a laser pattern process using the metal nanoparticles and the non-aqueous solvent prepared in step a).
[105] 이 때, 비수계 용매는 특별히 제한되지 않지만 좋게는 탄소수가 6 ~ 30인  In this case, the non-aqueous solvent is not particularly limited but preferably has 6 to 30 carbon atoms.
알케인,아민,틀루엔,크실렌,클로로포름,디클로로메탄,테트라데칸, 옥타데센, 클로로벤젠, 다이클로로벤젠,클로로벤조산,및 다이프로필렌 글리콜 프로필 에 테르로 이루어 진 군으로부터 하나 또는 들 이상을 선택할 수 있다. 이 러한 전도성 잉크조성물은 크게 제한되지 않으나 교반 및 밀링 등의 방법으로 분산하여 제조할 수 있다.  One or more may be selected from the group consisting of alkanes, amines, toluenes, xylenes, chloroform, dichloromethane, tetradecane, octadecene, chlorobenzene, dichlorobenzene, chlorobenzoic acid, and dipropylene glycol propyl ether. have. Such conductive ink compositions are not particularly limited, but may be prepared by dispersing the same by stirring and milling.
[106] 또한 상기 전도성 잉크 조성물은 필요에 따라 분산제를 사용할 수 있다. .  In addition, the conductive ink composition may use a dispersant if necessary. .
[107] 상가 분산제는 지방산염 (비누), a-술포지방산 에스테르염 (MES),  [107] The additive dispersants include fatty acid salts (soaps), a-sulfofatty acid ester salts (MES),
알킬벤젠술폰산염 (ABS),직 쇄 (直鎖) 알킬벤젠 술폰산염 (LAS), 알킬황산염 (AS), 알킬에테르황산에스테르염 (AES) 및 알킬황산트리에탄을 둥과 같은 저분자 음이은성 (anionic) 화합물; 지방산 에탄을 아미드,  Low molecular weight anionics such as alkylbenzenesulfonates (ABS), straight chain alkylbenzene sulfonates (LAS), alkyl sulfates (AS), alkyl ether sulfate ester salts (AES), and alkyl sulfate triethane ) Compound; Amide fatty acid ethane ,
폴리옥시알킬렌알킬에 테르 (AE), 폴리옥시 알킬렌알킬페닐에 테르 (APE), 솔비를 및 솔비탄 등과 같은 저분자 비 (非)이온계 화합물; 알킬트리메틸암모늄염, 디알킬디메틸암모늄클로라이드 및 알킬피 리 디늄클로라이드 둥과 같은 저분자 양이온성 (cationic) 화합물; 알킬카르복실베타인,술포베타인 및 레시 틴 등과 같은 저분자 양성 계 화합물; 나프탈렌술폰산염의 포르말린 축합물,  Low molecular weight nonionic compounds such as polyoxyalkylene alkyl ether (AE), polyoxy alkylene alkylphenyl ether (APE), sorbbi and sorbitan; Low molecular cationic compounds such as alkyltrimethylammonium salts, dialkyldimethylammonium chlorides and alkylpyridinium chlorides; Low molecular positive compounds such as alkylcarboxybetaine, sulfobetaine and lecithin; Formalin condensates of naphthalenesulfonates,
폴리스티 렌술폰산염,폴리아크릴산염,비닐화합물과 카르복실산계 단량체의 공중합체염,카르복시메틸셀를로오스 및 폴리 비 닐알콜 등의 고분자 수계 분산제;ᅳ폴리아크릴산 부분 알킬 에스테르 및 폴리알킬렌폴리아민 등과 같은 고분자 «ᅵ수계 분산제; 및 폴리에틸렌이민 및 아미노알킬메타크릴레이트 공중합체 등과 같은 고분자 양이온계 분산제;에서 선택된 하나 또는 둘 이상을 선택할 수 있다. Polystyrene sulfonates, polyacrylates, copolymer salts of vinyl compounds and carboxylic acid monomers, polymeric aqueous dispersants such as carboxymethyl cellulose and polyvinyl alcohol; polyacrylic acid partial alkyl esters and polyalkylene polyamines; Same polymer «|| aqueous dispersant; And polyethyleneimine and aminoalkyl methacrylates One or two or more selected from a polymeric cationic dispersant such as a copolymer;
[108] 구체적으로는, EFKA4008, EFKA4009, EFKA4010, EFKA4015, EFKA4046, EFKA4047, EFKA4060, EFKA4080, EFKA7462, EFKA4020, EFKA4050,  Specifically, EFKA4008, EFKA4009, EFKA4010, EFKA4015, EFKA4046, EFKA4047, EFKA4060, EFKA4080, EFKA7462, EFKA4020, EFKA4050,
EFKA4055, EFKA4400, EFKA4401, EFKA4402, EFKA4403, EF A4300,  EFKA4055, EFKA4400, EFKA4401, EFKA4402, EFKA4403, EF A4300,
EFKA4330, EFKA4340, EFKA6220, EFKA6225, EFKA6700, EFKA6780,  EFKA4330, EFKA4340, EFKA6220, EFKA6225, EFKA6700, EFKA6780,
EFKA6782, EFKA8503(EFKA ADDITIVES B. V. 제품), TEXAPHOR-UV21, TEXAPHOR-UV61(코그니스 재팬 가부시키가이샤 제품), DisperBYKlOl, DisperBYK102, DisperBYK106, DisperBYK108, DisperBYKll 1, DisperBYKl 16, DisperBYKl 30, DisperBYKl 40, DisperBYK142, DisperBYK145, DisperBYKl 61, DisperBYKl 62, DisperBYKl 63, DisperBYKl 64, DisperBYKl 66, DisperBYK167, DisperBYKl 68, DisperBYK170, DisperBYK171, DisperBYKl 74, DisperBYKl 80, DisperBYKl 82, DisperBYK192, DisperBYK193, DisperBYK2000, DisperBYK2001 DisperBYK2020, DisperBYK2025, DisperBYK2050, DisperBYK2070,  EFKA6782, EFKA8503 (manufactured by EFKA ADDITIVES BV), TEXAPHOR-UV21, TEXAPHOR-UV61 (manufactured by Cognis Japan), DisperBYKlOl, DisperBYK102, DisperBYK106, DisperBYK108, DisperBYKl 1, DisperBYKl 16, DisperBYKl 16, DisperBYKl 16, DisperBYKl 16 DisperBYKl 61, DisperBYKl 62, DisperBYKl 63, DisperBYKl 63, DisperBYKl 64, DisperBYKl 66, DisperBYK167, DisperBYKl 68, DisperBYK170, DisperBYK171, DisperBYKl 74, DisperBYKl 80, DisperBYKl, DisperBYK2, DisperKK12000, DisperKK12000
DisperBYK2155, DisperBYK2164, BYK220S, BYK300, BYK306, BYK320, BYK322, BYK325, BYK330, BYK340, BYK350, BYK377, BYK378, BYK380N, BYK410, BYK425, BYK430(빅케미 재 팬 가부시키가이샤 제품), FTX-207S, FTX-212P, FTX-220P, FTX-220S, FTX-228P, FTX-710LL, FTX-750LL, 프터전트 (ftergent) 212P, 프터 전트 220P, 프터 전트 222F, 프터 전트 228P, 프터 전트 245F, 프터 전트 245P, 프터 전트 250, 프터전트 251,프터 전트 710FM, 프터 전트 730FM, 프터 전트 730LL, 프터 전트 730LS, 프터 전트 750DM,  DisperBYK2155, DisperBYK2164, BYK220S, BYK300, BYK306, BYK320, BYK322, BYK325, BYK330, BYK340, BYK350, BYK377, BYK378, BYK380N, BYK410, BYK425, BYK430 212P, FTX-220P, FTX-220S, FTX-228P, FTX-710LL, FTX-750LL, ftgent 212P, Printer 220P, Printer 222F, Printer 228P, Printer 245F, Printer 245P, Xergent 250, Xergent 251, Xergent 710FM, Xergent 730FM, Xergent 730LL, Xergent 730LS, Xergent 750DM,
프터 전트 750FM (가부시키가이샤 네오스 제품),메가팩 (MEGAFACE)F-477, 메가팩 480SF 및 메가팩 F-482(DIC 가부시키가이샤 제품)등을 예시할 수 있으나 이에 제한되는 것은 아니다.  Examples include, but are not limited to, the Printant 750FM (manufactured by Neos, MEGAFACE) F-477, MegaPack 480SF, and MegaPack F-482 (manufactured by DIC Corporation).
[ 109] 또한 상기 분산제는 금속 나노입자 100 중량부에 대하여 1 ᅳ 20 중량부를  In addition, the dispersant is 1 ᅳ 20 parts by weight based on 100 parts by weight of the metal nanoparticles
사용할 수 있다. 상기 분산제의 함량이 상기 범위에서 사용하는 경우 층분한 분산효과와 더불어 전도도의 저하 효과를 방지할 수 있다ᅳ  Can be used. When the content of the dispersant is used in the above range, it is possible to prevent the effect of lowering the conductivity as well as the dispersion effect.
[1 10] 다음으로 c) 단계에 대하여 설명 한다.  [1 10] Next, step c) will be described.
[111] c) 단계는 b) 단계에서 제조된 레이져 패턴 공정용 전도성 잉크 조성물을 절연 기판위에 도포하는 단계이다.  In step c), the conductive ink composition for laser pattern process prepared in step b) is applied onto the insulating substrate.
[112] c)단계 전에 기판을 표면을 개질함으로서,코팅 이나 프린팅 이 더욱 잘 되는 효과를 가질 수 있다. 이 러한 방법은 UV조사나 전자빔조사 등을 통한 By modifying the surface of the substrate before step c), coating or printing may be more effective. This method uses UV irradiation or electron beam irradiation.
표면개질방법을 채택할 수도 있다.  Surface modification methods may also be adopted.
[113] c)단계의 도포는 코팅 또는 프린팅의 방법으로 수행할 수 있으며,상기 코팅은 딥코팅 , 스핀 코팅 및 캐스팅에서 선택할 수 있으며,상기 프린팅은 잉크젯 프린팅,정 전수력학 프린팅,마이크로 컨택 프린팅,임프린팅 , 그라비아 프린팅, 리버스옵셋 프린팅 , 그라비옵셋 프린팅 및 스크린 프린팅에서 선택하여 사용할 수 있다. [1 14] 도포 두께는 크게 제한적 이지는 않지만 열처 리 후의 두께가 0.1 ~ 50 인 것이 바람직하다. The coating of step c) may be performed by coating or printing, and the coating may be selected from dip coating, spin coating, and casting, and the printing may be performed by inkjet printing, electrostatic printing, micro contact printing, You can choose from Imprinting, Gravure Printing, Reverse Offset Printing, Gravure Offset Printing and Screen Printing. [1 14] The coating thickness is not particularly limited, but the thickness after heat treatment is preferably 0.1 to 50.
[115] 또한 본 발명에서 상기 기판은 실리카, Si02기판위의 실리카 도포된 기판, 유리 , 폴리 이미드, 폴리에 틸렌테레프탈레이트, 폴리술폰,폴리에틸렌나프탈레이트, 또는 폴리카보네이트 등을 사용하지만 이에 한정되는 것은 아니다. 본 In the present invention, the substrate may be a silica, a silica coated substrate on a SiO 2 substrate, glass, polyimide, polyethylene terephthalate, polysulfone, polyethylene naphthalate, or polycarbonate, but is not limited thereto. It doesn't happen. example
발명에서는 상기 기판에 단단히 고정하기 위한 화합물로 상기 화학식 1 또는 2의 화합물을 사용하는 경우 상기 기판에 고정되는 효과가 현저히 상승한다.  In the present invention, when the compound of Formula 1 or 2 is used as a compound for firmly fixing to the substrate, the effect of fixing to the substrate is significantly increased.
[1 16] 마지막으로 d) 단계의 레이져 조사에 의한 패턴 형성에 대하여 설명한다.  [1 16] Finally, pattern formation by laser irradiation in step d) will be described.
[117] d) 단계는 금속 나노입자 박막에 선택적으로 레이저를 조사하여,입자간의  In step d), the metal nanoparticle thin film is selectively irradiated with laser,
소결을 유도하고 레이저가 조사되지 않은 부분을 용매로 세척 함으로서 금속 전도성 미세 패턴이 형성된다. 이 때 레이저의 조사 방법은 연속 조사 및 필스 조사 모두 가능하다. 필스 레 이져의 주파수는 1 - 500 kHz가 바람직하다. 또한, 레이저 세기는 0.01 - 1 W가 바람직하며 0.1 - 0.4 W의 레이저 세기가 보다 바람직하다. 레이 저 파장은 300 - 1500 nm가 바람직하다. 조사 속도는 1 - 100 mnVs가 바람직하며 , 조사 분위기로는 일반 대기 , 불활성,수소 환원 분위기가 바람직하디-.  By inducing sintering and washing the unirradiated part with a solvent, a metal conductive fine pattern is formed. At this time, the laser irradiation method is possible for both continuous irradiation and field irradiation. The frequency of the fill laser is preferably 1-500 kHz. In addition, the laser intensity is preferably 0.01-1 W, and more preferably 0.1-0.4 W. The laser wavelength is preferably 300-1500 nm. The irradiation speed is preferably 1-100 mnVs. The irradiation atmosphere is preferably an atmospheric atmosphere, an inert gas or a hydrogen reducing atmosphere.
[118] 지금까지 상술된 상기 제조방법으로 제조된 금속 전도성 미세패턴은 본 발명의 범위에 포함된다.  The metal conductive micropatterns manufactured by the above-described manufacturing method are included in the scope of the present invention.
[119] 또한 상기 금속 전도성 미세패턴을 포함하는 연성회로기판은 본 발명의 범위에 포함된다.  In addition, the flexible circuit board including the metal conductive micropattern is included in the scope of the present invention.
[120] 이하는 본 발명의 구체적 인 설명을 위하여 일예를 들어 설명하는 바,본 발명 이 하기 제조예 및 실시 예에 한정되는 것은 아니다.  Hereinafter, the present invention will be described by way of example for the detailed description of the present invention, but the present invention is not limited to the following preparation examples and examples.
[121] [제조예 1] (산화막이 억 제된 나노입자 및 박막의 제조방법 )  Production Example 1 (Method for Producing Nanoparticles and Thin Films with Inhibited Oxide Film)
[122] 73.63 g의 옥틸아민, 3.52g의 올레산, 87.4g의 페닐하이드라진 및 10.38g의  [122] 73.63 g octylamine, 3.52 g oleic acid, 87.4 g phenylhydrazine and 10.38 g
구리아세테이트를 첨가하여 합성 용액을 제조하였다. 올레산 /구리아세테이트의 몰비율은 0.2이다. 질소 가스를 이용하여 비활성 분위기를 만든 후,합성온도인 150°C로 승온시켜 구리 이은의 환원반웅을 유도하여 구리 나노입자를  Copper acetate was added to prepare a synthesis solution. The molar ratio of oleic acid / guriacetate is 0.2. After making an inert atmosphere by using nitrogen gas, the temperature is raised to 150 ° C, which induces the reduction reaction of copper and silver to obtain copper nanoparticles.
합성하였다. 합성 된 구리 나노입자를 원심분리 법을 이용하여 세척 및 회수를 하고, 최종적으로 얻어진 구리 나노입자를 를루엔에 분산시 킴으로서 전도성 잉크 조성물을 제조하였다. 얻어진 구리나노입자는 XRD 측정결과  Synthesized. The synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in toluene to prepare a conductive ink composition. The obtained copper nanoparticles were measured by XRD
구리산화물이 없는 구리 입자임을 확인하였다. 톨루엔 100 중량부에 대하여 20 중량부의 구리 나노입자 및 1 증량부의 고분자 비수계 분산제 (DiSperBYK130)를 첨가한 후, 볼밀링 및 초음파 조사를 통해 균일한 분산상을 가지는 구리 전도성 잉크 조성물을 제조하였다. 준비된 잉크 조성물을 캐스팅 법을 이용하여 절연성 기판상에 열처리후 두께가 2 되도록 코팅하고, 250°C , Ar 분위기 에서 열처리하여 전도성 박막을 제조하였다. It was confirmed that the copper particles without copper oxide. After adding 20 parts by weight of copper nanoparticles and 1 part by weight of polymer non-aqueous dispersant (Di S perBYK130) based on 100 parts by weight of toluene, a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation. The prepared ink composition was coated on the insulating substrate by a casting method to have a thickness of 2 and then heat-treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
[123] 이 렇게 제조된 전도성 박막의 산화막 존재여부 및 전도도를 측정하였다. 그 결과 금속 나노 입자의 합성 시,환원제의 첨가와 더불어 산 및 아민의 동시 첨가를 통해 6xl03(S/cm)의 우수한 전도도 발현이 가능하며, XRD와 XPS 분석 결과 표면 산화막 형성 이 없는 금속 나노입자를 합성 할 수 있었다. The presence of the oxide film and the conductivity of the conductive thin film thus prepared were measured. As a result, in the synthesis of metal nanoparticles, simultaneous addition of acids and amines with addition of reducing agents Through the addition, excellent conductivity expression of 6xl0 3 (S / cm) was possible, and XRD and XPS analysis showed that metal nanoparticles without surface oxide film formation could be synthesized.
[124] [제조예 2] [124] [Manufacture Example 2]
[125] 73.63 g의 옥틸아민, 25.1g의 을레산, 87.4g의 페닐하이드라진 및 10.38g의  [125] 73.63 g of octylamine, 25.1 g of oleic acid, 87.4 g of phenylhydrazine and 10.38 g of
구리아세테이트를 첨가하여 합성 용액을 제조하였다. 올레산 /구리아세테 이트의 몰비율은 1.42이다. 질소 가스를 이용하여 비활성 분위기를 만든 후,합성온도인 Copper acetate was added to prepare a synthesis solution. The molar ratio of oleic acid / guriacetate is 1.42. After creating an inert atmosphere using nitrogen gas, the synthesis temperature
1.50oC로 승온시켜 구리 이온의 환원반웅을 유도하여 구리 나노입자를 합성하였다. 합성된 구리 나노입자를 원심분리 법을 이용하여 세척 및 회수를 하고, 최종적으로 얻어진 약 80mn의 구리 나노입자를 롤루엔에 분산시 킴으로서 전도성 잉크 조성물을 제조하였다. 롤루엔 100 중량부에 대하여 20 증량부의 구리 나노입자 및 1 중량부의 고분자 비수계 분산제 (DisperBYK130)를 첨가한 후 블밀링 및 초음파 조사를 통해 균일한 분산상을 가지는 구리 전도성 잉크 조성물을 제조하였다. 준비된 잉크 조성물을 캐스팅법을 이용하여 절연성 기판 상에 열처 리후 두께가 2 되도록 코팅하고, 250°C, Ar 분위 기 에서 열처 리하여 전도성 박막을 제조하였다. The copper nanoparticles were synthesized by raising the reaction temperature to 1.50 o C to induce a reduction reaction of the copper ions. The synthesized copper nanoparticles were washed and recovered by centrifugation, and the conductive ink composition was prepared by dispersing about 80mn of the finally obtained copper nanoparticles in roluene. After adding 20 parts by weight of copper nanoparticles and 1 part by weight of a polymer non-aqueous dispersant (DisperBYK130) based on 100 parts by weight of roluene, a copper conductive ink composition having a uniform dispersed phase was prepared by bleeding and ultrasonic irradiation. The prepared ink composition was coated on the insulating substrate by a casting method to have a thickness of 2, and thermally treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
[126] 이 렇게 제조된 전도성 박막의 산화막 존재여부 및 전도도를 측정한 결과  [126] As a result of measuring the presence and conductivity of the oxide film of the conductive thin film thus prepared
전도도는 6xl03(S/cm)으로 매우 우수한 값을 나타내었다. 본 발명의 제조예에 따라 제조된 구리 나노입자의 XRD 그래프인 도 1에 의하면, 산화막이 형성되지 않은 것을 확인할 수 있다. 하지 만,전도성 박막 제조에 있어서 , XRD 분석에서 검출되지 않는 미미 한 양의 산화막 조차도 전도성 박막의 비저항을 높이는 결과를 야기할 수 있으므로, 보다 정확한 분석을 위해 XPS 분석을 실시하였다. 그 결과,도 2의 XPS 분석결과, Cu-0 화학결합에 의한 픽은 전혀 관찰되지 않으며, Cii-Cu 화학결합에 의한 대칭성을 가지는 픽 이 관찰되는 점으로 미루어 보아, 산화막의 형성 이 완벽히 제어된 것을 확인할 수 있다. The conductivity was very good at 6xl0 3 (S / cm). According to FIG. 1, which is an XRD graph of copper nanoparticles prepared according to the preparation example of the present invention, it can be seen that an oxide film is not formed. However, in the manufacture of the conductive thin film, even an insignificant amount of oxide film not detected in the XRD analysis may cause a result of increasing the specific resistance of the conductive thin film. Therefore, XPS analysis was conducted for more accurate analysis. As a result, in the XPS analysis of FIG. 2, no picks due to Cu-0 chemical bonds were observed, and picks with symmetry due to Cii-Cu chemical bonds were observed. You can see that.
[127] [제조예 3]  [127] [Manufacturing Example 3]
[128] 73.63 g의 옥틸아민, 70.3g의 올레산, 87.4g의 페닐하이드라진 및 10.38g의  [128] 73.63 g octylamine, 70.3 g oleic acid, 87.4 g phenylhydrazine and 10.38 g
구리아세테이트를 첨가하여 합성 용액을 제조하였다. 올레산 /구리아세테이트의 몰비율은 4이다. 질소 가스를 이용하여 비활성 분위 기를 만든 후, 합성온도인 150°C 로 승온시켜 구리 이은의 환원반웅을 유도하여 구리 나노입자를 합성하였다. 합성된 구리 나노입자를 원심분리 법을 이용하여 세척 및 회수를 하고,최종적으로 얻어진 구리 나노입자를 틀루엔에 분산시킴으로서 전도성 잉크 조성물을 제조하였다. 틀루엔 100 증량부에 대하여 20 중량부의 구리 나노입자 및 1 중량부의 고분자 비수계 분산제 (DisperBYK130)를 첨가한 후, 볼밀링 및 초음파 조사를 통해 균일한 분산상을 가지는 구리 전도성 잉크 조성물을 제조하였다. 준비된 잉크 조성물을 캐스팅 법을 이용하여 절연성 기판 상에 열처 리후 두께가 2卿되도록 코팅하고, 250°C, Ar 분위 기에서 열처 리하여 전도성 박막을 제조하였다.  Copper acetate was added to prepare a synthesis solution. The molar ratio of oleic acid / guriacetate is 4. After the inert atmosphere was made using nitrogen gas, copper nanoparticles were synthesized by raising the reaction temperature to 150 ° C to induce a reduction reaction of copper and silver. The synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in toluene to prepare a conductive ink composition. After adding 20 parts by weight of copper nanoparticles and 1 part by weight of a polymer non-aqueous dispersant (DisperBYK130) based on 100 parts by weight of toluene, a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation. The prepared ink composition was coated on the insulating substrate using a casting method so as to have a thickness of 2 卿 and thermally treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
[129] 이 렇게 제조된 전도성 박막의 산화막 존재여부를 살핀 결과 상기 제조예 2와 같이 산화막이 생성되지 않았으며,또한 전도도도 6xl03(S/cm)으론 우수한 값을 보여주었다. [129] As a result of examining the presence of the oxide film of the conductive thin film prepared as described above in Preparation Example 2 Similarly, no oxide film was formed and the conductivity was excellent with 6xl0 3 (S / cm).
[130] [제조예 4] [130] [Manufacturing Example 4]
[1.31] 73.63 g의 옥틸아민, 3.52g의 올레산, 87.4g의 페닐하이드라진 및 K).38g의  [1.31] 73.63 g octylamine, 3.52 g oleic acid, 87.4 g phenylhydrazine and K).
구리아세테이트를 첨가하여 합성 용액을 제조하였다. 올레산 /구리 아세테 이트의 몰비율은 0.2이다. 질소 가스를 이용하여 비활성 분위 기를 만든 후,합성온도인 150°C로 승온시켜 구리 이온의 환원반웅을 유도하여 구리 나노입자를 합성하였다. 합성된 구리 나노입자를 원심분리 법을 이용하여 세척 및 회수를 하고,최종적으로 얻어진 구리 나노입자를 를루엔에 분산시 킴으로서 전도성 잉크 조성물을 제조하였다. 를루엔 100 증량부에 대하여 20 중량부의 구리 나노입자 및 1 중량부의 고분자 비수계 분산제 (DisperBYK130)를 첨가한 후, 볼밀링 및 초음파 조사를 통해 균일한 분산상을 가지는 구리 전도성 잉크 조성물을 제조하였다. 준비된 잉크 조성물을 캐스팅 법을 이용하여 절연성 기판 상에 열처리후 두께가 2 되도록 코팅하고, 250°C , 5% H2분위기에 서 열처 리하여 전도성 박막을 제조하였다. Copper acetate was added to prepare a synthesis solution. The molar ratio of oleic acid / copper acetate is 0.2. After the inert atmosphere was made using nitrogen gas, the temperature was raised to 150 ° C. to induce the reaction of copper ions to synthesize copper nanoparticles. The conductive copper composition was prepared by washing and recovering the synthesized copper nanoparticles by centrifugation and dispersing the finally obtained copper nanoparticles in toluene. After adding 20 parts by weight of copper nanoparticles and 1 part by weight of a polymer non-aqueous dispersant (DisperBYK130) based on 100 parts by weight of toluene, a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation. The prepared ink composition was coated on the insulating substrate by a casting method to have a thickness of 2 after heat treatment, and thermally treated at 250 ° C. and 5% H 2 to prepare a conductive thin film.
[132] 이 렇게 제조된 전도성 박막의 산화막 존재여부를 살핀 결과 상기 제조예 2와 같이 산화막이 생성되지 않았으며,또한 전도도도 3xi05(S/cm)으로 매우 우수한 값을 보여주었다. 특히 수소분위기 에서는 전도도의 상승이 불활성 개스 분위기와 비교할 경우 더욱 낮은 은도에서 소성하였어도 아주 우수한 전도도의 상승 특징을 보여주어,수소 분위기 에서 소성하는 것이 더욱 효과적 임을 알 수 있었다. As a result of examining the presence or absence of the oxide film of the conductive thin film thus prepared, the oxide film was not produced as in Preparation Example 2, and the conductivity was very good as 3xi0 5 (S / cm). Particularly, in the hydrogen atmosphere, the conductivity was higher than that of the inert gas atmosphere, but the conductivity was very high, and the firing in the hydrogen atmosphere was more effective.
[ 33] [제조예 5] [33] [Manufacturing Example 5]
[134] 73.63 g의 옥틸아민, 3.5¾의 올레산, 87.4g의 페닐하이드라진 및 10.38g의  [134] 73.63 g octylamine, 3.5¾ oleic acid, 87.4 g phenylhydrazine and 10.38 g
구리아세테이트를 첨가하여 합성 용액을 제조하였다. 올레산 /구리아세테이트의 몰비율은 0.2이다. 질소 가스를 이용하여 비활성 분위기를 만든 후, 합성온도인 150°C로 승온시켜 구리 이온의 환원반웅을 유도하여 구리 나노입자를 합성하였다. 합성된 구리 나노입자를 원심분리 법을 이용하여 세 척 및 회수를 하고, 최종적으로 얻어진 구리 나노입자를 를루엔에 분산시 킴으로서 전도성 잉크 조성물을 제조하였다. 얻어진 구리나노입자는 XRD 측정결과  Copper acetate was added to prepare a synthesis solution. The molar ratio of oleic acid / guriacetate is 0.2. After making an inert atmosphere using nitrogen gas, the copper temperature was synthesized by raising the reaction temperature to 150 ° C to induce reduction reaction of copper ions. The synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in toluene to prepare a conductive ink composition. The obtained copper nanoparticles were measured by XRD
구리산화물이 없는 구리 입자임을 확인하였다. 톨루엔 100 증량부에 대하여 20 중량부의 구리 나노입자 및 1 중량부의 고분자 비수계 분산제 (DisperBYK130) 및 아미노옥틸트리 메틸실란 0.1중량부를 첨가한 후,볼밀링 및 초음파 조사를 통해 균일한 분산상을 가지는 구리 전도성 잉크 조성물을 제조하였다. 준비된 잉크 조성물을 캐스팅 법을 이용하여 절연성 기판상에 열처리후 두께가 ¾ 되도록 코팅하고, 250°C, Ar 분위기 에서 열처리하여 전도성 박막을 제조하였다. It was confirmed that the copper particles without copper oxide. 20 parts by weight of copper nanoparticles, 1 part by weight of polymer non-aqueous dispersant (Di spe rBYK130) and 0.1 part by weight of aminooctyltrimethylsilane were added to 100 parts by weight of toluene, and then a uniform dispersed phase was obtained through ball milling and ultrasonic irradiation. Eggplant made a copper conductive ink composition. The prepared ink composition was coated on the insulating substrate by a casting method to have a thickness of ¾, and then heat-treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
[135] 이 렇게 제조된 전도성 박막의 산화막 존재여부를 살핀 결과 상기 제조예 2와 같이 산화막이 생성되지 않았으며 , 또한 전도도도 6xl03(S/cm)으로 우수한 값을 보여주었다. [136] [제조예 6] As a result of examining the presence or absence of the oxide film of the conductive thin film thus prepared, the oxide film was not produced as in Preparation Example 2, and the conductivity showed an excellent value of 6xl0 3 (S / cm). [136] [Manufacture Example 6]
[137] 71.84g의 올레아민, 4.23g의 올레산, 29g의 페닐하이드라진 및 5g의  [137] 71.84 g oleamine, 4.23 g oleic acid, 29 g phenylhydrazine and 5 g
니켈아세토아세테이트를 첨가하여 합성 용액을 제조하였다.  Nickel acetoacetate was added to prepare a synthetic solution.
올레산 /구리아세테이트의 몰비율은 0.73이다. 질소 가스를 이용하여 비활성 분위기를 만든 후, 합성온도인 240°C 로 승온시켜 구리 이온의 환원반웅을 유도하여 구리 나노입자를 합성하였다. 합성 된 구리 나노입자를 원심분리 법을 이용하여 세척 및 회수를 하였다. 그 결과 제조된 니켈입자는 니켈산화물이 생성되지 않은 순수 니켈금속입자가 생성되고 (도 3 내지 4 참조) 또한 5% H2 분위 기에서 열처 리 후 1.2xl05(S/cm)의 매우 우수한 전도도 특성을 보이는 것을 알 수 있다. The molar ratio of oleic acid / guriacetate is 0.73. After the inert atmosphere was made using nitrogen gas, copper nanoparticles were synthesized by raising the reaction temperature to 240 ° C to induce reduction reaction of copper ions. The synthesized copper nanoparticles were washed and recovered by centrifugation. The resulting nickel particles produced pure nickel metal particles that did not produce nickel oxide (see FIGS. 3 to 4) and also had very good conductivity of 1.2xl0 5 (S / cm) after heat treatment in a 5% H 2 atmosphere. It can be seen that the characteristics are shown.
[138] [비교제조예 1]  [138] [Comparative Manufacturing Example 1]
[139] 73.63 g의 옥틸아민, 87.4g의 페닐하이드라진 및 10.38g의 구리아세테이트를 첨가하여 합성 용액을 제조하였다. 질소 가스를 이용하여 비활성 분위기를 만든 후,합성온도인 150°C로 승온시켜 구리 이온의 환원반웅을 유도하여 구리 나노입 자를 합성하였다. 합성된 구리 나노입자를 원심분리 법을 이용하여 세척 및 희수를 하였고,최종적으로 얻어 진 구리 나노입자를 톨루엔에  73.63 g of octylamine, 87.4 g of phenylhydrazine and 10.38 g of copper acetate were added to prepare a synthetic solution. After the inert atmosphere was made using nitrogen gas, the temperature was raised to 150 ° C., which induces a reduction reaction of copper ions to synthesize copper nanoparticles. The synthesized copper nanoparticles were washed and rare water by centrifugation, and the finally obtained copper nanoparticles were added to toluene.
분산시 킴으로서 전도성 잉크 조성물을 제조하였다. 제조된 구리나노입자의 크기는 180nm 정도로 큰 입자가 얻어졌다. 를루엔 100 중량부에 대하여 20 증량부의 구리 나노입자 및 1 중량부의 고분자 비수계 분산제 를 첨가한 후, 볼밀링 및 초음파 조사를 통해 균일한 분산상을 가지는 구리 전도성 잉크 조성물을 제조하였다. 준비된 잉크 조성물을 캐스팅법을 이용하여 절연성 기판 상에 열처리후 두께가 되도록 코팅하고, 250°C, Ar 분위기에서 열처 리하여 전도성 박막을 제조하였다.  By dispersing, a conductive ink composition was prepared. The particles of copper nanoparticles having a size of about 180 nm were obtained. After adding 20 parts by weight of copper nanoparticles and 1 part by weight of a polymer non-aqueous dispersant based on 100 parts by weight of toluene, a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation. The prepared ink composition was coated to have a thickness after heat treatment on the insulating substrate by a casting method, and thermally treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
[140] 이 렇게 제조된 전도성 박막의 산화막이 존재함으로 분석하여 알 수 있었으며, 전도도도 4xl02(S/cm) 으로 매우 낮은 값을 가짐을 알 수 있었다. The presence of the oxide film of the conductive thin film prepared as described above was found, and the conductivity was found to have a very low value of 4xl0 2 (S / cm).
[141] [비교제조예 2]  [141] [Comparative Manufacturing Example 2]
[142] 70.3g의 올레산, 87.4g의 페닐하이드라진 및 10.38g의 구리아세테이트를  [142] 70.3 g of oleic acid, 87.4 g of phenylhydrazine and 10.38 g of copper acetate
첨가하여 합성 용액을 제조하였다. 올레산 /구리아세테이트의 몰비율은 4이다. 질소 가스를 이용하여 비활성 분위기를 만든 후,합성온도인 150°C로 승온시 켜 구리 이은의 환원반응을 유도하여 구리 나노입자를 합성하였다. 합성된 구리 나노입자를 원심분리법을 이용하여 세척 및 회수를 하고,최종적으로 얻어진 구리 나노입자를 를루엔에 분산시킴으로서 전도성 잉크 조성물을 제조하였다. 를루엔 100 중량부에 대하여 20 중량부의 구리 나노입자 및 1 중량부의 고분자 비수계 분산제를 첨가한 후,볼밀링 및 초음파 조사를 통해 균일한 분산상을 가지는 구리 전도성 잉크 조성물을 제조하였다. 준비된 잉크 조성물을 캐스팅 법을 이용하여 절연성 기판 상에 열처리후 두께가 2卿되도록 코팅하고, 250oC, Ar 분위기에서 열처리하여 전도성 박막을 제조하였다. The synthesis solution was prepared by the addition. The molar ratio of oleic acid / guriacetate is 4. After the inert atmosphere was made using nitrogen gas, the temperature was raised to 150 ° C. to induce a reduction reaction of copper and silver to synthesize copper nanoparticles. The synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in toluene to prepare a conductive ink composition. After adding 20 parts by weight of copper nanoparticles and 1 part by weight of a polymer non-aqueous dispersant based on 100 parts by weight of toluene, a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation. The prepared ink composition was coated on the insulating substrate by a casting method so as to have a thickness of 2 kPa, and then heat-treated at 250 ° C. in an Ar atmosphere to prepare a conductive thin film.
[143] 이 렇게 제조된 전도성 박막의 산화막이 존재함으로 분석하여 알 수 있었으며, 전도도도 7xKF(S/cm) 으로 매우 낮은 값을 가짐을 알 수 있었다. [143] The presence of the oxide film of the conductive thin film prepared as described above was found. The conductivity was found to have a very low value of 7xKF (S / cm).
[144] [실시 예 1] [Example 1]
[145] (산화막이 형성 이 제어된 구리 나노입자를 이용한 레이져 패터 닝 )  [145] (Laser patterning using copper nanoparticles with controlled oxide formation)
[146] 73.63 g의 옥틸아민, 25.1 g의 올레산, 87.4g의 페닐하이드라진 및 I0.38g의  [146] 73.63 g octylamine, 25.1 g oleic acid, 87.4 g phenylhydrazine and I0.38 g
구리아세테이트를 첨가하여 합성 용액을 제조하였다. 올레산 /구리아세테이트의 몰비율은 1.42이다. 질소 가스를 이용하여 비활성 분위 기를 만든 후,합성온도인 150°C로 승온시켜 구리 이온의 환원반웅을 유도하여 구리 나노입자를  Copper acetate was added to prepare a synthesis solution. The molar ratio of oleic acid / guriacetate is 1.42. After making an inert atmosphere using nitrogen gas, the temperature is raised to 150 ° C, which induces a reduction reaction of copper ions,
합성하였다. 합성된 구리 나노입자를 원심분리 법을 이용하여 세척 및 회수를 하고,최종적으로 얻어진 구리 나노입자를 다이프로필렌 글리콜 프로필 에 테르에 분산시 킴으로서 전도성 잉크 조성물을 제조하였다. 를루엔 100 증량부에 대하여 4 중량부의 구리 나노입자 및 1 중량부의 고분자 비수계 분산제 (DisperBYK130)를 첨가한 후, 볼밀링 및 초음파 조사를 통해 균일한 분산상을 가지는 구리 전도성 잉크 조성물을 제조하였다.  Synthesized. The synthesized copper nanoparticles were washed and recovered by centrifugation, and the finally obtained copper nanoparticles were dispersed in dipropylene glycol propyl ether to prepare a conductive ink composition. After adding 4 parts by weight of copper nanoparticles and 1 part by weight of the polymer non-aqueous dispersant (DisperBYK130) based on 100 parts by weight of toluene, a copper conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation.
[147] 제조된 잉크 조성물을 유리 기판에 코팅하기 위하여 , 유리 기판을 UV 처리를 하였으며 , 1500-4000 rpm 조건에서 스핀코팅을 하여 박막을 제조하였다. 레이져 조사를 통한 입자간의 소결을 유도하기 위해, 1070 nm의 파장 및 0.2 W의 average power를 가지는 필스 레이져 (주파수: 100 kHz)를 일반 대기 분위 기 에서 30 mm/ses 스캔 속도로 조사하였으며,조사되지 않은 영 역을 톨루엔을 이용하여 세척함으로서 전도성 구리 미세 패턴을 제조하였다.  In order to coat the prepared ink composition on the glass substrate, the glass substrate was subjected to UV treatment, and a thin film was prepared by spin coating at 1500-4000 rpm. In order to induce sintering between particles through laser irradiation, a pils laser (frequency: 100 kHz) with a wavelength of 1070 nm and an average power of 0.2 W was irradiated at 30 mm / ses scan rate in a normal atmosphere. The conductive copper fine pattern was prepared by washing the unused area with toluene.
[148] 도 5는 구리 잉크 조성물을 이용하여 형성된 박막 기반으로 레이 저 조사 및  5 is a laser irradiation based on a thin film formed using a copper ink composition
선택적 세척을 형성된 미세 전도성 패턴의 표면 SEM 이미지를 나타내는 것인데, 매우 해상도가 높은 정교한 미세패턴을 제조할 수 있었다. 즉,본 발명에 의해 합성된 표면 산화막 형성 이 제어된 구리 나노입자를 이용한 경우 20 의 선폭을 가지는 미세 전도성 패턴이 고 해상도로 매우 용이하게 형성된 것을 확인할 수 있으며 , 4xl05 S/cm의 높은 전도도를 가지는 것을 확인하였다. Selective washes show surface SEM images of the formed microconductive pattern, which could produce sophisticated micropatterns with very high resolution. That is, in the case of using the copper nanoparticles with controlled surface oxide film formation according to the present invention, it can be seen that the microconductive pattern having a line width of 20 is very easily formed at high resolution, and has a high conductivity of 4xl0 5 S / cm. It was confirmed to have.
[149] [비교예 1]  [149] [Comparative Example 1]
[150] (표면 산화막이 형성된 구리 나노입자를 이용한 레이져 패터닝)  [150] (Laser Patterning Using Copper Nanoparticles with Surface Oxide Films)
[151] 60 중량부의 CuO 나노입자 (Nanophase Technologies Corp.), 13 중량부의  [151] 60 parts by weight of CuO nanoparticles (Nanophase Technologies Corp.), 13 parts by weight
polyvinylpyrrolidone (분자량: 10,000), 및 27 중량부의 ethyleneglyc이이 첨가된 용액을 제작한 후 볼밀링 및 초음파 조사를 통해 균일한 분산상을 가지는 전도성 잉크 조성물을 제조하였으며, 100 중량부 잉크조성물 대비 23 중량부를 가지는 2차 증류수를 첨가하여 점도를 조절하였다. 제조된 잉크 조성물을 유리 기판에 코팅하기 위하여 , UV 처리를 하였으며 , 1500-4000 rpm 조건에서 스핀코팅을 하여 박막을 제조하였다. 레이 져 조사를 통한 입자간의 소결 및 부분적 인 CuO의 환원반응을 유도하기 위해, 1070 nm의 파장 및 0.2 W의 average power를 가지는 펼스 레이져 (주파수: 100 kHz)를 일반 대기 분위기에서 30 mm/ses 스캔 속도로 조사하였으며,조사되지 않은 영 역을 2차 증류수를 이용하여 세척함으로서 전도성 미세 구리 전도성 패턴을 제조하였다. [152] 제조된 CuO잉크를기반으로한미세전도성패턴의경우레이져조사후에 부분적안환원반웅이일어남으로서산화막형성이완벽히제어되지못하고, 이로인해형성된미세패턴은 3xl04 S/cm으로표면산화막형성이제어된 나노입자잉크로제조된전도성패턴에비하여낮은전도도를가지는것을 확인할수있다. After preparing a solution containing polyvinylpyrrolidone (molecular weight: 10,000) and 27 parts by weight of ethyleneglyc, a conductive ink composition having a uniform dispersed phase was prepared through ball milling and ultrasonic irradiation, and 2 parts having 23 parts by weight relative to 100 parts by weight of the ink composition were prepared. Distilled water was added to adjust the viscosity. In order to coat the prepared ink composition on a glass substrate, UV treatment was performed, and a thin film was prepared by spin coating at 1500-4000 rpm. In order to induce sintering and partial reduction of CuO between particles through laser irradiation, a scan laser (frequency: 100 kHz) with a wavelength of 1070 nm and an average power of 0.2 W was scanned at 30 mm / ses in a normal atmosphere. Irradiated at a rate, the conductive fine copper conductive pattern was prepared by washing the unirradiated region with secondary distilled water. [152] In the case of the microconductive pattern based on the prepared CuO ink, partial eye reduction reaction occurs after laser irradiation, and thus the oxide film formation is not completely controlled, and the resulting micropattern is 3xl0 4 S / cm to form the surface oxide film. It can be seen that the conductivity is lower than the conductivity pattern manufactured by the controlled nanoparticle ink.
[153]  [153]

Claims

청구범위 Claim
금속전구처ᅵ,산,아민및환원제를동시에포함하는용액을가열 및교반하여제조된금속나노입자를포함하는전도성잉크 조성물을절연성기판에도포하는단계;및  Applying to the insulating substrate a conductive ink composition comprising metal nanoparticles prepared by heating and stirring a solution containing a metal precursor, an acid, an amine and a reducing agent at the same time; and
잉크조성물이도포된절연성기판에레이져조사에의해 소성하여금속전도성미세패턴을형성하는단계;  Firing by laser irradiation on an insulating substrate coated with an ink composition to form a metal conductive fine pattern;
를포함하는레이져미세패턴화에의한금속전도성미세패턴의 제조방법.  Method for producing a metal conductive fine pattern by laser fine patterning comprising a.
제 1항에있어서,  According to claim 1,
상기금속전구체는구리,니켈,코발트및이들의합금으로 이루어진군으로부터선택된하나또는둘이상인레이져 미세패턴화에의한금속전도성미세패턴의제조방법.  The metal precursor is one or more than one selected from the group consisting of copper, nickel, cobalt and alloys thereof.
제 I항에있어서,  In claim I,
상기산은상기산은탄소수가 6 ~ 30인직쇄형,분지형및환형중 적어도하나의형태를가지며,포화또는불포화산에서선택된 하나또는둘이상인레이져미세패턴화에의한금속전도성 미세패턴의제조방법.  The acid is a method for producing a metal conductive fine pattern by laser micropatterning having at least one form of linear, branched and cyclic having a carbon number of 6 to 30, and selected from saturated or unsaturated acids.
제 1항에있어서,  In paragraph 1,
상기금속전구체와상기산과의몰비율은 1:으 2 ~ 4인레이져 미세패턴화에의한금속전도성미세패턴의제조방법.  A method of producing a metal conductive fine pattern by laser micropatterning, wherein the molar ratio between the metal precursor and the acid is 1: 4.
제 1항에있어서,  According to claim 1,
상기아민은탄소수가 6 ~ 30인직쇄형,분지형및환형증적어도 하나의형태를가지며,포화및불포화아민증에서선택된하나 또는둘이상인레이져미세패턴화에의한금속전도성  The amines have at least one form of linear, branched and cyclic deposits having 6 to 30 carbon atoms, and metal conduction by laser micropatterning of one or more selected from saturated and unsaturated amines.
미세패턴의제조방법.  Manufacturing method of fine pattern.
제 1항에있어서,  In paragraph 1,
상기환원제는하이드라진계,하이드라이드계,  The reducing agent is a hydrazine-based, hydride-based,
보로하이드라이드계,소듭포스페이트계및아스크로빅산에서 선택된하나또는둘이상인레이져미세패턴화에의한금속 전도성미세패턴의제조방법.  A method for producing a metal conductive fine pattern by laser micropatterning, which is one or more selected from borohydride type, knot phosphate type and ascorbic acid.
제 1항에있어서,  According to claim 1,
상기금속나노입자합성단계는 100 ~ 240 °C에서수행되는레이져 미세패턴화에의한금속전도성미세패턴의제조방법.The metal nanoparticle synthesis step is a method of manufacturing a metal conductive fine pattern by laser fine patterning is performed at 100 ~ 240 ° C.
Figure imgf000020_0001
제 1항에있어서,
Figure imgf000020_0001
According to claim 1,
상기전도성잉크조성물은금속나노입자 100중량부에대하여 1 ~ 20증량부의분산제를포함하는레이져미세패턴화에의한금속 전도성미세패턴의제조방법. [청구항 9] 제 1항에있어서, The conductive ink composition is a method for producing a metal conductive fine pattern by laser fine patterning comprising 1 to 20 parts by weight of a dispersant with respect to 100 parts by weight of the metal nanoparticles. [Claim 9] In paragraph 1,
상기레이져조사에의한소성은활성분위기에서가열되는레이져 미세패턴화에의한금속전도성미세패턴의제조방법.  The firing by laser irradiation is a method for producing a metal conductive fine pattern by laser fine patterning is heated in an active atmosphere.
[청구항 10] 제 1항내지제 9항에서선택되는어느한항에있어서, [Claim 10] In any of the paragraphs selected from paragraphs 1 to 9,
상기전도성잉크조성물은화학식 1과화학식 2에서선택되는 하나또는둘이상의화합물을금속전구체 100중량부에대하여 0.001내지 1중량부함유하는레이져미세패턴화에의한금속 전도성미세패턴의제조방법.  The conductive ink composition is a method for producing a metal conductive fine pattern by laser micropatterning, containing 0.001 to 1 part by weight of one or two or more compounds selected from Formula 1 and Formula 2 with respect to 100 parts by weight of the metal precursor.
[화학식 1]  [Formula 1]
[X-r^UR^-nSi [Xr ^ UR ^ -n Si
(상기화학식 1에서, X는아민기 (-NH2)또는싸이올기 (^! , ^는 (C0-Cl7)알킬기, R2는 (CrCn)알킬기또는 (C,- )알콕시기를 포함하며, n은 1내지 3의정수이다.) (In Formula 1, X is an amine group (-NH 2) or a thiol group (^, ^ is (C 0 -C l7) alkyl group, R 2 is (CrCn) alkyl or (C, -! Comprises a) alkoxy, and N is an integer from 1 to 3.
[화학식 2]  [Formula 2]
[R,]-[R2]-SH [R,]-[R 2 ] -SH
(상기화학식 2에서, 은 CH3, CF3, C6H5, C6H4F, C^, R2는 (CH2)„, (CF^, (C6H4)n를포함하며 ,n은 1내지 17의정수이다.) (In Formula 2, is CH 3 , CF 3 , C 6 H 5 , C 6 H 4 F, C ^, R 2 includes (CH 2 ) ', (CF ^, (C 6 H 4 ) n And , n is an integer from 1 to 17.)
PCT/KR2013/011109 2012-12-04 2013-12-03 Method for forming fine conductive pattern using metal nanoink for laser patterning process WO2014088291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120139390A KR101402010B1 (en) 2012-12-04 2012-12-04 Method for fabricating the conductive fine patterns using metal nano-ink for direct laser patterning
KR10-2012-0139390 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014088291A1 true WO2014088291A1 (en) 2014-06-12

Family

ID=50883664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011109 WO2014088291A1 (en) 2012-12-04 2013-12-03 Method for forming fine conductive pattern using metal nanoink for laser patterning process

Country Status (2)

Country Link
KR (1) KR101402010B1 (en)
WO (1) WO2014088291A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798277B1 (en) 2014-09-17 2017-11-15 주식회사 엘지화학 Method for manufacturing conductive copper thin-film pattern using flat-type oxidized copper nano material
JP2018085437A (en) * 2016-11-24 2018-05-31 株式会社村田製作所 Method for manufacturing electronic component and electronic component
KR102125148B1 (en) * 2018-12-05 2020-06-19 한양대학교 에리카산학협력단 Manufacturing method of engraved pattern and nano metal coated layer produced by the method
KR102171531B1 (en) * 2019-02-18 2020-10-29 (주)디엔에프 a method for manufacturing conductive thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321216A (en) * 2006-06-02 2007-12-13 Nippon Shokubai Co Ltd Method for producing metallic nanoparticles, metallic nanoparticles, dispersion of metallic nanoparticles, and electron device
JP2009024193A (en) * 2007-07-17 2009-02-05 Nippon Shokubai Co Ltd Method for producing metallic nanoparticle, metallic nanoparticle, dispersion of metallic nanoparticle, and metallic coating film
KR20100080120A (en) * 2008-12-31 2010-07-08 한국생산기술연구원 Sintering method of printed circuit by laser writing
KR20110020966A (en) * 2009-08-25 2011-03-04 주식회사 동진쎄미켐 Preparation method of matal nano powder, matal nano powder therefrom and metal ink composition comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321216A (en) * 2006-06-02 2007-12-13 Nippon Shokubai Co Ltd Method for producing metallic nanoparticles, metallic nanoparticles, dispersion of metallic nanoparticles, and electron device
JP2009024193A (en) * 2007-07-17 2009-02-05 Nippon Shokubai Co Ltd Method for producing metallic nanoparticle, metallic nanoparticle, dispersion of metallic nanoparticle, and metallic coating film
KR20100080120A (en) * 2008-12-31 2010-07-08 한국생산기술연구원 Sintering method of printed circuit by laser writing
KR20110020966A (en) * 2009-08-25 2011-03-04 주식회사 동진쎄미켐 Preparation method of matal nano powder, matal nano powder therefrom and metal ink composition comprising same

Also Published As

Publication number Publication date
KR101402010B1 (en) 2014-06-02

Similar Documents

Publication Publication Date Title
KR101418276B1 (en) Synthetic method of preventing metal nano-particle from having oxidized film and method of forming conductive metal thin film via solution-processed
TWI568523B (en) Copper powder, copper paste, conductive film manufacturing method and conductive coating
KR101020844B1 (en) Reducing agent for low temperature reducing and sintering of copper nanoparticels, and method for low temperature sintering using the same
JP5450725B2 (en) Collagen peptide-coated copper nanoparticles, collagen peptide-coated copper nanoparticle dispersion, method for producing collagen peptide-coated copper nanoparticles, conductive ink, method for producing conductive film, and conductor wiring
JP2008019503A (en) Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
Cheon et al. Inkjet printing using copper nanoparticles synthesized by electrolysis
KR101392226B1 (en) New facial method for growing graphene film
JP6051165B2 (en) Composition for forming copper pattern and method for producing copper pattern
JP4662829B2 (en) Silver nanoparticles and method for producing the same
JP2009295965A (en) Bimetallic nanoparticles for conductive ink application
JP2005507452A5 (en)
JP2005507452A (en) Inkjet ink containing metal nanoparticles
WO2014088291A1 (en) Method for forming fine conductive pattern using metal nanoink for laser patterning process
KR20120132424A (en) Light sintering method of conductive Cu nano ink
JP4935175B2 (en) Metal fine particle dispersion and method for producing the same
WO2012053456A1 (en) Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor
JP2005281781A (en) Method for producing copper nanoparticle
Wu et al. Preparation of highly concentrated and stable suspensions of silver nanoparticles by an organic base catalyzed reduction reaction
US20100178420A1 (en) Method of preparing conductive ink composition for printed circuit board and method of producing printed circuit board
KR101344846B1 (en) Method for fabricating the active devices using electrohydrodynamic-jet printable metal nano-ink
KR101947633B1 (en) Conductive composite Cu ink and light sintering method using the same
WO2013141172A1 (en) Conductive ink and production method for base material including conductor
JP2014196384A (en) Conductive film-forming composition and method for producing conductive film using the same
WO2013147535A1 (en) Synthetic method of suppressing metal nano-particle from having oxidized film and method of manufacturing conductive metal thin film via solution-processed
JP2012131895A (en) Electrically conductive ink composition and electric conduction part produced using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860764

Country of ref document: EP

Kind code of ref document: A1