WO2014088255A1 - Base sequence for enhancing translation efficiency of target proteins in plants - Google Patents

Base sequence for enhancing translation efficiency of target proteins in plants Download PDF

Info

Publication number
WO2014088255A1
WO2014088255A1 PCT/KR2013/010856 KR2013010856W WO2014088255A1 WO 2014088255 A1 WO2014088255 A1 WO 2014088255A1 KR 2013010856 W KR2013010856 W KR 2013010856W WO 2014088255 A1 WO2014088255 A1 WO 2014088255A1
Authority
WO
WIPO (PCT)
Prior art keywords
recombinant vector
plant
protein
target protein
dna fragment
Prior art date
Application number
PCT/KR2013/010856
Other languages
French (fr)
Korean (ko)
Inventor
황인환
김영현
박민희
조규형
이용직
손은주
Original Assignee
주식회사 바이오앱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오앱 filed Critical 주식회사 바이오앱
Publication of WO2014088255A1 publication Critical patent/WO2014088255A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8251Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon

Definitions

  • the present invention relates to a novel base sequence that can enhance the translation efficiency of genes in order to produce a large amount of the protein of interest in plants.
  • Plant cells unlike animal cells, are unlikely to be infected with a virus that can infect the human body, and have well-established experiences and infrastructure related to cultivation and harvesting from the past to the present, so that only the cultivated area for mass production is secured. Since mass production is always possible, the cost equipment investment for mass production is relatively inexpensive.
  • the protein is produced through a transcriptional step and a translational step that generate mRNA.
  • the production of mRNA is improved by improving the efficiency of transcription step to effectively express the useful protein in the plant, the produced mRNA is not all used for translation, and in some cases inhibits the production of mRNA. (Napoli C et al., 1990; van der Krol AR et al., 1990).
  • the inventors of the present invention while studying the method to promote the synthesis of the protein in the translation step by mass production of useful proteins from the plant, the base of the 5 'UTR in the adjacent upper portion of the translation start codon The present invention was completed by paying attention to the sequence and artificially synthesizing the 5 'UTR sequence.
  • the present invention is a DNA fragment consisting of the nucleotide sequence of SEQ ID NO: 1, the DNA fragment is to improve the translation (translation) of the target protein located downstream of the plant cell Provided is a DNA fragment for improving translation efficiency.
  • the present invention also provides a recombinant vector comprising the DNA fragment for improving the translation efficiency.
  • the recombinant vector may be a promoter, a DNA fragment for enhancing translation efficiency, and a gene encoding a target protein to be operably linked sequentially.
  • the recombinant vector may be one operably linked to a base sequence that can target (target) and retain the target protein (ER) in plant cells.
  • the base sequence that can target the target protein to the endoplasmic reticulum (ER) in the plant cell is the nucleotide sequence represented by SEQ ID NO: 3 encoding the BiP (chaperone binding protein) protein
  • the base sequence capable of retaining the target protein may be a base sequence encoding a HDEL (His-Asp-Glu-Leu) or KDEL (Lys-Asp-Glu-Leu) peptide.
  • the recombinant vector may be one operably linked to the nucleotide sequence of SEQ ID NO: 4 encoding the cellulose-binding domain (CBD).
  • the present invention provides a method for mass-producing a protein of interest from a plant comprising introducing a recombinant vector into the plant.
  • the step of introducing the recombinant vector to the plant is PEG precipitation method (Polyethylen glycol), Agrobacterium (Agrobacterium sp.)-Mediated method, particle gun bombardment (particle gun bombardment) It may be made using any one method selected from the group consisting of silicon carbide whiskers, sonication, and electroporation.
  • the plant is Arabidopsis, soybean, tobacco, eggplant, pepper, potato, tomato, cabbage, radish, cabbage, lettuce, peach, pear, strawberry, watermelon, melon, cucumber, carrot, and Dicotyledonous plants selected from the group consisting of celery; Or a monocotyledonous plant selected from the group consisting of rice, barley, wheat, rye, corn, sugar cane, oats, and onions.
  • the DNA fragment according to the present invention is added upstream of the target protein to be produced as a recombinant vector, so that the plant transformed with the recombinant vector can improve the translation of the target protein and induce targeting to a specific place in the plant to target the target protein. This can be accumulated stably.
  • FIG. 1 shows a schematic diagram of recombinant vector to which a) M17 and b) R21 are added for expression of fusion protein GFP in Arabidopsis protoplasts.
  • Figure 2 confirms the expression of GFP from Arabidopsis protoplasts transformed with the recombinant vector of Figure 1 by Western analysis.
  • lane 1 Marker
  • lane 2 M17-GFP
  • lane 3 R21 GFP
  • lane 4 Negative control
  • gBiP recombinantly operably linked signal sequence
  • GFP target protein
  • CBD cellulose-binding domain
  • HDEL high-density lipoprotein
  • the present inventors pay attention to the development of 5'untranslated regions (5'UTRs) that can enhance the translation of genes in order to find a way to mass-produce a target protein in plants, and Arabidopsis thaliana ) synthesized an arbitrary 5 'UTR sequence based on the 5' UTR sequence of the small subunit (RbcS) gene of ribulose bisphosphate carboxylase / oxygenase (RuBisCo), which is known to have excellent translation efficiency. .
  • 5 'untranslated region (5' UTR) of mRNA performs a number of functions in the gene expression process, the biggest feature of these functions is involved in the regulation of mRNA translation efficiency.
  • the nucleotide sequence of the 5 'UTR in the immediate upper portion of the translation initiation codon has been reported to influence the efficiency of the translation step (Xiong W et al., 2001; Rogozin IB et al., 2001; Gallie DR et al., 1989; Mignone F et al.
  • a representative example is the 5 ′ UTR of the small subunit (RbcS) gene of ribulose bisphosphate carboxylase / oxygenase (RuBisCo).
  • This 5 'UTR has a back base or more of nucleotides, and the 3' UTR has a few kilo bases longer.
  • a sequence belonging to 5'UTR which is not a predetermined position such as a Shine-Dalgarno sequence, which is known as a ribosome binding site sequence located at 5 'UTR in prokaryotes, is a ribosome binding site sequence which is also called a ribosome binding site sequence in eukaryotes.
  • the present inventors use a small subunit (RbcS) of ribulose bisphosphate carboxylase / oxygenase (RuBisCo), which is known to have excellent translation efficiency among the sequences of 5 'UTR of Arabidopsis in a way to mass-produce a target protein.
  • RbcS ribulose bisphosphate carboxylase / oxygenase
  • RuBisCo ribulose bisphosphate carboxylase / oxygenase
  • the present invention is a DNA fragment consisting of the nucleotide sequence of SEQ ID NO: 1, the DNA fragment is a DNA fragment for enhancing the translation efficiency, characterized in that to improve the translation (translation) of the target protein located downstream of the plant cell to provide.
  • the present invention is a DNA fragment consisting of the nucleotide sequence of SEQ ID NO: 1, wherein the DNA fragment is a DNA fragment for enhancing the translation efficiency, characterized in that to enhance the translation (translation) of the target protein located downstream of the plant cell It provides a recombinant vector comprising a.
  • the recombinant vector is a promoter based on an existing vector used for protein expression, promoter, the DNA fragment according to the present invention to enhance the translation efficiency of the protein, and the gene encoding the target protein sequentially It may be a recombinant expression vector operably linked.
  • the term "expression vector” refers to a plasmid, virus or other medium known in the art in which the polynucleotide sequence encoding the DNA fragment and the target protein according to the present invention can be inserted or introduced.
  • the DNA fragment and the polynucleotide sequence encoding the target protein according to the present invention may be operably linked to an expression control sequence, wherein the operably linked gene sequence and the expression control sequence are selected markers and replication origin. It may be included in one expression vector containing together.
  • “Operably linked” can be genes and expression control sequences linked in such a way as to enable gene expression when the appropriate molecule is bound to the expression control sequences.
  • an "expression control sequence” refers to a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a particular host cell.
  • Such regulatory sequences include promoters for carrying out transcription, any operator sequence for controlling transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control termination of transcription and translation.
  • the promoter is not particularly limited as long as it can express an insertion gene in a plant, but is not limited thereto, and the 35S RNA and 19S RNA promoters of CaMV; Full-length transcriptional promoters derived from Peak Water Mosaic Virus (FMV) and coat protein promoters of TMV.
  • suitable vectors for introducing the DNA fragments according to the invention and polynucleotide sequences encoding the desired proteins into plant cells are Ti plasmids and plant viral vectors. Examples of suitable vectors are, but are not limited to, p35S.
  • a vector suitable for introducing the DNA fragment and the polynucleotide sequence encoding the protein of interest according to the present invention in the present invention plant cell polynucleotide sequence encoding the DNA fragment and the protein of interest according to the invention Any vector that can be introduced into can be used.
  • the present inventors use the DNA fragments of the present invention to enhance the translational efficiency of the protein of interest, thereby enhancing protein expression as well as inducing and retaining the targeting of the target protein to specific places in plant cells.
  • Recombinant expression vector was constructed to see if it can be.
  • the phenomenon of proteolytic degradation often occurs.
  • these proteins can be stored more stably.
  • the degradation of the protein can be minimized than that present in the cytoplasm.
  • the human epidermal growth factor is targeted to the endoplasmic reticulum in tobacco, the yield of the protein is about 10 4 times higher. It is known (Wirth S et al., 2004).
  • ER retention signal peptides such as KDEL or HDEL keeps the target protein in the endoplasmic reticulum, thereby increasing folding and assembly by molecular chaperones, resulting in protein degradation. Can be minimized (Nuttall J et al., 2002).
  • the yield of the target protein has been known to increase by about 10 to 100 times (Hellwig S et al., 2004).
  • the chloroplasts of plants are not only huge protein reservoirs containing more than 40% of the total water soluble protein but also a large number, making them a good target for the storage of target proteins.
  • the plant's chloroplasts contain only the minimal protease necessary for protein processing, which means that the protein of interest can be stored in high concentrations in the chloroplasts by preventing degradation by the protease.
  • the DNA fragment of the present invention consists of a promoter, a nucleotide sequence of SEQ ID NO: 1 which enhances the translation efficiency of a protein, and a plant to a recombinant expression vector in which a gene encoding a target protein is operably linked.
  • Recombinant vectors were additionally operably linked to specific locations of the vesicles or chloroplasts to target the target protein.
  • a base sequence encoding a BiP (chaperone binding protein) protein may be used, and preferably a cDNA of BiP to enhance the translation efficiency.
  • the nucleotide sequence represented by SEQ ID NO: 3, which is a genomic DNA of BiP containing an intron may be used.
  • a base sequence for retaining the target protein is not limited thereto.
  • the base sequence encoding the HDEL (His-Asp-Glu-Leu) or KDEL (Lys-Asp-Glu-Leu) peptide is preferred. Can be used.
  • the N-terminus of the BiP protein contains a signal sequence that determines targeting to the endoplasmic reticulum, which may serve to target the target proteins to the endoplasmic reticulum.
  • a signal sequence that determines targeting to the endoplasmic reticulum, which may serve to target the target proteins to the endoplasmic reticulum.
  • the target protein to the chloroplast in the plant cells can be used to coat the base sequence.
  • Cab chlororophyll a / b binding protein
  • target proteins can be normally targeted to chloroplasts (kavanagh TA). Et al., 1988).
  • the target protein when using an expression vector using such BiP signal sequence, vesicle maintenance signal sequence, or CAB transit peptide, the target protein can be targeted to the endoplasmic reticulum or chloroplast, and the target protein can be accumulated at a high level for mass production. It has an effect.
  • the present invention further provides a plant transformed by introducing the recombinant vector according to the present invention into a plant using methods known in the art.
  • Method for introducing the recombinant vector of the present invention into the plant is useful for but not limited to precipitation by PEG (Polyethylenglycol), Agrobacterium (Agrobacterium sp.) - method according to the parameters, the particle gun bombardment method (particle gun bombardment ), Silicon carbide whiskers, sonication, or electroporation.
  • PEG Polyethylenglycol
  • the particle gun bombardment method particle gun bombardment
  • Silicon carbide whiskers Silicon carbide whiskers
  • sonication electroporation.
  • Arabidopsis was transformed with the recombinant vector of the present invention using the precipitation method by polyethylene glycol (PEG).
  • the Arabidopsis was used as the plant, but this is only a preferred example, and the plant may be a dicotyledonous plant or a monocotyledonous plant, but the dicotyledonous plant is not limited thereto.
  • the present invention can provide a method for mass-producing a target protein from a plant by introducing a recombinant vector containing a DNA fragment comprising SEQ ID NO: 1 of the present invention into a plant.
  • the target protein is a term meaning a protein to be produced, and is not limited to a specific protein.
  • reporter proteins may be included as the target protein, wherein the reporter protein is a protein expressed by a reporter gene and refers to a labeling protein indicating its activity in a cell by its presence.
  • green fluorescent protein GFP was used as the target protein.
  • the method for producing a target protein from the transformed plant comprises introducing a recombinant vector according to the present invention into a plant or a protein translation enhancing DNA fragment according to the present invention and a nucleotide sequence encoding the target protein operably connected to the plant or the
  • the cells may be transformed with the recombinant expression vector, then incubated for a suitable time to express the protein of interest, and then obtained from the transformed plant or cell.
  • the method for expressing the target protein can be used as long as it is known in the art.
  • the recovery of the target protein highly expressed in the transformed plant or cell can be carried out through various separation and purification methods known in the art, and the cell lysate is usually removed to remove cell debris.
  • a target protein of the present invention can be purified by applying techniques such as ion exchange chromatography, gel-penetration chromatography, HPLC, reverse phase-HPLC, affinity column chromatography, or ultrafiltration alone or in combination.
  • the present invention is to encode a cellulose-binding domain (CBD) of the cellulase in the recombinant vector of the present invention to more easily and quickly separate and purify the target protein from the transformed plant
  • CBD cellulose-binding domain
  • the target protein expressed by using a recombinant vector including a cellulose-binding domain may be in a fused form with a cellulose-binding domain, and can be easily separated and purified through chromatography using a cellulose carrier as a column.
  • the produced protein of the fused form may be cleaved of the cellulose binding domain using an appropriate enzyme and the like, followed by additional separation and purification to produce the non-fused form of the protein of interest.
  • a green fluorescent protein (GFP) was used as a reporter gene, and as shown in FIG. 1, M17 was placed on the start codon of the GFP.
  • R21 a 5 'UTR derived from RbcS, was installed on top of the start codon of GFP.
  • PEG Polyethylen glycol precipitation method was introduced to protoplasts of Arabidopsis to determine whether M17 is effective in improving translation efficiency.
  • M17 has an effect of improving the expression rate by enhancing the translation efficiency of the target protein.
  • M17 the 5 'UTR developed by the present inventors, shows excellent translation efficiency even in a vector designed to transport a target protein to a specific place for stable storage and increased yield of the protein.
  • M17 5 'UTR and control group R21 5' UTR were added to the vector transporting the target protein to the endoplasmic reticulum.
  • the vector produced to transport the target protein to the endoplasmic reticulum is a base sequence encoding the BiP (chaperone binding protein) involved in the endoplasmic reticulum transport, retaining the target protein in the endoplasmic reticulum It consists of a base sequence encoding the HDEL (His-Asp-Glu-Leu) for, and a base sequence encoding the cellulose-binding domain (cellulose-binding domain) used for the purification of proteins.
  • the target protein Green fluorescent protein (GFP), which is a reporter gene, was used, and these vectors were introduced into Arabidopsis protoplasts using PEG precipitation and compared with expression efficiency.
  • GFP Green fluorescent protein
  • the expression of the 5 'untranslated region M17 was superior to that of the control group R21, confirming that the 5' untranslated region M17 was more effective in transporting the target protein GFP into the endoplasmic reticulum. It was.
  • the 5 'untranslated region M17 of the present invention having excellent translation efficiency can be usefully used for targeting and retention of a target protein to a specific place.
  • Plants transformed with a recombinant vector comprising a DNA fragment of the present invention can be usefully used to produce a large amount of the protein of interest.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a DNA fragment, which is synthesized for the enhancement of translation efficiency, and to a recombinant vector comprising same. More particularly, the present invention relates to a DNA fragment and to a recombinant vector comprising the DNA fragment, wherein the DNA fragment is composed of 21 base sequences expressed by SEQ ID No: 1, and can enhance the translation efficiency of a target protein. The DNA fragment according to the present invention can be inserted upstream of a target protein, thereby being constructed as a recombinant vector. As a result, a plant which is transformed with the vector can improve the translation of a target protein and allow the target protein to be stably accumulated by inducing the targeting of the target protein to a particular location in the plant. Thus, the present invention has the effect of producing target proteins from a plant in large amounts.

Description

식물체에서 목적 단백질의 번역 효율을 증진시키기 위한 염기서열Sequences for Enhancing Translation Efficiency of Target Proteins in Plants
본 발명은 식물체에서 목적 단백질을 대량으로 생산하기 위하여 유전자의 번역 효율을 증진시킬 수 있는 신규한 염기서열에 관한 것이다.The present invention relates to a novel base sequence that can enhance the translation efficiency of genes in order to produce a large amount of the protein of interest in plants.
현재까지 이용되는 많은 생의약품은 대부분 동물세포, 박테리아, 곰팡이 등을 이용해 생산되어 왔다(Granz PR 외, 1996; Ma JK 외, 1999; Pen J, 1996). 그러나 미생물 시스템을 이용한 재조합 단백질의 생산은 대량 생산이 쉽다는 장점이 있는 반면 단백질의 적절한 접힘, 및 당화과정(glycosylation)과 같은 단백질 합성 후 변형과정(post translational modification)이 일어나지 않는 문제점이 있어 당단백질의 생성에는 적합하지 않다. 상기 문제점은 동물세포를 이용함으로써 해결되었으나, 동물세포가 인체 감염 가능한 바이러스에 감염될 수 있다는 문제와 대량 생산을 위한 설비확충에 큰 비용이 소요되는 것이 해결되어야 할 또 다른 문제점으로 대두되었다.Many biopharmaceuticals used to date have been mostly produced using animal cells, bacteria and fungi (Granz PR et al., 1996; Ma JK et al., 1999; Pen J, 1996). However, the production of recombinant protein using a microbial system has the advantage that mass production is easy, while glycoproteins have problems of proper folding of proteins and post-translational modification such as glycosylation. It is not suitable for the production of. The problem has been solved by using animal cells, but it has emerged as another problem to be solved that animal cells can be infected with human infectious viruses and that a large cost is required to expand equipment for mass production.
식물세포의 경우, 동물세포와 달리 인체에 감염 가능한 바이러스에 감염될 가능성이 없고, 과거부터 현재까지 전해져 온 재배, 수확과 관련된 경험과 기반 시설이 잘 구축되어 있어 대량 생산을 위한 경작면적만 확보하면 언제나 대량 생산이 가능하므로 대량 생산을 위한 비용 설비 투자가 상대적으로 저렴한 장점이 있다.Plant cells, unlike animal cells, are unlikely to be infected with a virus that can infect the human body, and have well-established experiences and infrastructure related to cultivation and harvesting from the past to the present, so that only the cultivated area for mass production is secured. Since mass production is always possible, the cost equipment investment for mass production is relatively inexpensive.
그러나 이러한 장점에도 식물에서 단백질 생산에 걸림돌이 되고 있는 문제점 중의 하나는 식물체 또는 식물세포에서 단백질을 발현시켰을 때, 식물에서 생산 가능한 단백질 발현 수준이 상업적 규모만큼 이루어지지 않아 아직까지 잘 이용되지 않았다.However, even with these advantages, one of the obstacles to protein production in plants is that protein expression in plants or plant cells is not well utilized because the level of protein expression that can be produced in plants has not been achieved on a commercial scale.
단백질의 생성은 mRNA를 생성하는 전사(transcription)단계와 번역(translation) 단계를 거쳐 단백질을 생성한다. 단백질의 발현을 조절하는 방법에는 크게 전사량을 상승시키는 방법과 번역 효율을 올리는 방법이 있다. 그러나 유용 단백질을 식물체 내에서 효과적으로 발현시키기 위해 전사(transcription)단계 효율을 개선하여 mRNA의 생산을 증대하여도 생산된 mRNA가 모두 번역에 이용되지 않을 뿐만 아니라 경우에 따라 mRNA 생산을 저해하는 경우가 발생한다고 보고되어 있다(Napoli C 외, 1990; van der Krol AR 외, 1990).The protein is produced through a transcriptional step and a translational step that generate mRNA. There are two methods of regulating the expression of proteins, a method of greatly increasing the amount of transcription and a method of increasing translation efficiency. However, even if the production of mRNA is improved by improving the efficiency of transcription step to effectively express the useful protein in the plant, the produced mRNA is not all used for translation, and in some cases inhibits the production of mRNA. (Napoli C et al., 1990; van der Krol AR et al., 1990).
아울러 유전자로부터 최종적으로 합성되어지는 단백질의 양은 전사 단계 보다는 번역 단계에서의 조절이 더 중요한 작용을 하고 있다는 사실이 밝혀짐에 따라 효과적인 유용 단백질의 대량생산을 위해서는 전사 단계가 아닌 번역 단계에서 단백질 발현을 조절할 수 있는 기술의 개발이 필요한 실정이다.In addition, as the amount of protein finally synthesized from a gene is found to be more important in the translational stage than in the transcriptional stage, the expression of protein at the translational stage, not at the transcriptional stage, is not required for mass production of effective useful proteins. The development of adjustable technology is needed.
이에 본 발명자들은 종래기술의 문제점을 극복하기 위하여, 번역 단계에서 단백질의 합성을 증진시켜 유용단백질을 식물체로부터 대량생산할 수 있는 방법을 연구하던 중 번역개시 코돈의 인접한 상부에 존재하는 5' UTR의 염기서열에 주목하고, 인위적으로 5' UTR 염기서열을 합성함으로써 본 발명을 완성하였다.In order to overcome the problems of the prior art, the inventors of the present invention, while studying the method to promote the synthesis of the protein in the translation step by mass production of useful proteins from the plant, the base of the 5 'UTR in the adjacent upper portion of the translation start codon The present invention was completed by paying attention to the sequence and artificially synthesizing the 5 'UTR sequence.
따라서 본 발명의 목적은 단백질의 번역 효율을 증진시킬 수 있는 DNA 단편 및/또는 상기 DNA 단편을 포함하는 재조합 벡터를 제공하는 것이다.It is therefore an object of the present invention to provide a DNA fragment capable of enhancing the translational efficiency of a protein and / or a recombinant vector comprising said DNA fragment.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 서열번호 1의 염기서열로 구성되는 DNA 단편으로, 상기 DNA 단편은 식물세포 내에서 그 하류에 위치한 목적 단백질의 번역(translation)을 증진시키는 것을 특징으로 하는 번역 효율 증진용 DNA 단편을 제공한다.In order to achieve the object of the present invention as described above, the present invention is a DNA fragment consisting of the nucleotide sequence of SEQ ID NO: 1, the DNA fragment is to improve the translation (translation) of the target protein located downstream of the plant cell Provided is a DNA fragment for improving translation efficiency.
또한, 본 발명은 상기 번역 효율 증진용 DNA 단편을 포함하는 재조합 벡터를 제공한다.The present invention also provides a recombinant vector comprising the DNA fragment for improving the translation efficiency.
본 발명의 일 구현예에 있어서, 상기 재조합 벡터는 프로모터, 번역 효율 증진용 DNA 단편, 및 목적 단백질을 암호화하는 유전자가 순차적으로 작동 가능하게 연결된 것일 수 있다.In one embodiment of the present invention, the recombinant vector may be a promoter, a DNA fragment for enhancing translation efficiency, and a gene encoding a target protein to be operably linked sequentially.
본 발명의 다른 구현예에 있어서, 상기 재조합 벡터는 식물 세포에서 소포체(ER)로 목적 단백질을 타겟팅(targeting) 및 유지(retention)할 수 있는 염기서열이 추가적으로 작동가능하게 연결된 것일 수 있다.In another embodiment of the present invention, the recombinant vector may be one operably linked to a base sequence that can target (target) and retain the target protein (ER) in plant cells.
본 발명의 또 다른 구현예에 있어서, 상기 식물 세포에서 소포체(ER)로 목적 단백질을 타겟팅(targeting)할 수 있는 염기서열은 BiP(chaperone binding protein) 단백질을 암호화하는 서열번호 3으로 표시되는 염기서열이고, 상기 목적 단백질을 유지(retention)할 수 있는 염기서열은 HDEL(His-Asp-Glu-Leu) 또는 KDEL(Lys-Asp-Glu-Leu) 펩타이드를 암호화하는 염기서열인 것일 수 있다.In another embodiment of the present invention, the base sequence that can target the target protein to the endoplasmic reticulum (ER) in the plant cell is the nucleotide sequence represented by SEQ ID NO: 3 encoding the BiP (chaperone binding protein) protein The base sequence capable of retaining the target protein may be a base sequence encoding a HDEL (His-Asp-Glu-Leu) or KDEL (Lys-Asp-Glu-Leu) peptide.
본 발명의 또 다른 구현예에 있어서, 상기 재조합 벡터는 셀룰로오스-결합 도메인(cellulose-binding domain: CBD)을 암호화하는 서열번호 4의 염기서열이 추가적으로 작동 가능하게 연결된 것일 수 있다.In another embodiment of the present invention, the recombinant vector may be one operably linked to the nucleotide sequence of SEQ ID NO: 4 encoding the cellulose-binding domain (CBD).
이에 더하여, 본 발명은 재조합 벡터를 식물체에 도입하는 단계를 포함하는 식물체로부터 목적 단백질을 대량 생산하는 방법을 제공한다.In addition, the present invention provides a method for mass-producing a protein of interest from a plant comprising introducing a recombinant vector into the plant.
본 발명의 일 구현예에 있어서, 상기 재조합 벡터를 식물체에 도입하는 단계는 PEG 침전법(Polyethylen glycol), 아그로박테리움(Agrobacterium sp.)-매개에 의한 방법, 입자 총 충격법(particle gun bombardment), 실리콘 탄화물 위스커법(Silicon carbide whiskers), 초음파 처리법(sonication), 및 전기천공법(electroporation)으로 이루어진 군으로부터 선택되는 어느 하나의 방법을 사용하여 이루어지는 것일 수 있다.In one embodiment of the present invention, the step of introducing the recombinant vector to the plant is PEG precipitation method (Polyethylen glycol), Agrobacterium (Agrobacterium sp.)-Mediated method, particle gun bombardment (particle gun bombardment) It may be made using any one method selected from the group consisting of silicon carbide whiskers, sonication, and electroporation.
본 발명의 다른 구현예에 있어서, 상기 식물은 애기장대, 대두, 담배, 가지, 고추, 감자, 토마토, 배추, 무, 양배추, 상추, 복숭아, 배, 딸기, 수박, 참외, 오이, 당근, 및 샐러리로 이루어진 군으로부터 선택되는 쌍자엽 식물; 또는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 및 양파로 이루어진 군으로부터 선택되는 단자엽 식물일 수 있다.In another embodiment of the invention, the plant is Arabidopsis, soybean, tobacco, eggplant, pepper, potato, tomato, cabbage, radish, cabbage, lettuce, peach, pear, strawberry, watermelon, melon, cucumber, carrot, and Dicotyledonous plants selected from the group consisting of celery; Or a monocotyledonous plant selected from the group consisting of rice, barley, wheat, rye, corn, sugar cane, oats, and onions.
본 발명에 따른 DNA 단편은 목적 단백질의 상류에 첨가되어 재조합 벡터로 제작됨으로써, 상기 재조합 벡터로 형질 전환된 식물체는 목적 단백질의 번역을 향상시킬 수 있고, 식물체 내의 특정 장소로 타겟팅을 유도하여 목적 단백질이 안정하게 축적될 수 있도록 한다.The DNA fragment according to the present invention is added upstream of the target protein to be produced as a recombinant vector, so that the plant transformed with the recombinant vector can improve the translation of the target protein and induce targeting to a specific place in the plant to target the target protein. This can be accumulated stably.
도 1은 애기장대의 원형질체에서 융합단백질 GFP의 발현을 위하여, a) M17, b) R21이 각각 첨가된 재조합 벡터 모식도를 나타낸 것이다.1 shows a schematic diagram of recombinant vector to which a) M17 and b) R21 are added for expression of fusion protein GFP in Arabidopsis protoplasts.
도 2는 도 1의 재조합 벡터로 형질전환된 애기장대 원형질체로부터 GFP의 발현을 웨스턴 분석을 통하여 확인한 것이다. lane 1: Marker, lane 2: M17-GFP, lane 3: R21 GFP, lane 4: Negative controlFigure 2 confirms the expression of GFP from Arabidopsis protoplasts transformed with the recombinant vector of Figure 1 by Western analysis. lane 1: Marker, lane 2: M17-GFP, lane 3: R21 GFP, lane 4: Negative control
도 3은 본 발명에 따른 번역효율 증진용 DNA 단편과 소포체로 타켓팅 할 수 있는 신호서열(gBiP), 목적 단백질(GFP) 서열, 셀룰로오스-결합 도메인(CBD), 및 HDEL 서열이 작동가능하게 연결된 재조합 벡터의 모식도를 나타낸 것이다.3 is a recombinantly operably linked signal sequence (gBiP), target protein (GFP) sequence, cellulose-binding domain (CBD), and HDEL sequence that can be targeted to DNA fragments and endoplasmic reticulum for enhancing translation efficiency according to the present invention. The schematic of the vector is shown.
도 4는 도 3의 재조합 벡터로 형질전환된 애기장대 원형질체로부터 목적 단백질인 GFP가 소포체로 타겟팅 되어 적절히 발현하는지 웨스턴 블롯을 이용하여 확인한 것이다.4 is confirmed by Western blot whether the target protein GFP is properly targeted to the endoplasmic reticulum from the Arabidopsis protoplasts transformed with the recombinant vector of FIG. 3.
본 발명자들은 식물체 내에서 목적 단백질을 대량 생산할 수 있는 방법을 찾기 위하여, 유전자의 번역을 증진할 수 있는 5' 비번역 부위(5’UTR: 5’untranslated region) 개발에 주목하고, 애기장대(Arabidopsis thaliana)에서 번역 효율이 우수한 것으로 알려진 리불로스 비스포스페이트 카복시라아제/옥시게나아제(RuBisCo)의 작은 서브유니트(RbcS) 유전자의 5' UTR의 염기서열 기초로 임의적인 5' UTR 염기서열을 합성하였다.The present inventors pay attention to the development of 5'untranslated regions (5'UTRs) that can enhance the translation of genes in order to find a way to mass-produce a target protein in plants, and Arabidopsis thaliana ) synthesized an arbitrary 5 'UTR sequence based on the 5' UTR sequence of the small subunit (RbcS) gene of ribulose bisphosphate carboxylase / oxygenase (RuBisCo), which is known to have excellent translation efficiency. .
일반적으로 mRNA의 5' 비번역 부위(5' untranslated region: 5' UTR)는 유전자 발현 과정에서 여러 가지 기능을 수행하나 이러한 기능 중, 가장 큰 특징은 mRNA 번역 효율 조절에 관여하는 것이다. 번역개시 코돈의 인접한 상부에 존재하는 5' UTR의 염기서열이 번역 단계의 효율에 영향을 미치는 것으로 보고되어 있으며(Xiong W 외, 2001; Rogozin IB 외, 2001; Gallie DR 외, 1989; Mignone F 외, 2002; Kawaguchi R 외, 2002; Kawaguchi R 외, 2005), 그 대표적인 예가 리불로스 비스포스페이트 카복시라아제/옥시게나아제(RuBisCo)의 작은 서브유니트(subunit; RbcS) 유전자의 5' UTR이다. 이러한 5' UTR의 길이는 백 베이스 (base) 또는 그 이상의 뉴클레오티드로 되어 있고, 3' UTR의 길이는 그보다 더 긴 몇 킬로베이스(kilo base)로 이루어져 있다. 또한, 원핵생물에 5' UTR에 위치한 리보솜 결합 부위 시퀀스로 알려진 샤인-달가노 시퀀스 (Shine-Dalgarno sequence)와 같이 정해진 위치는 아니지만 진핵생물에서도 리보솜 결합 부위 시퀀스라 할 수 있는 5’UTR에 속한 시퀀스들에 관한 연구 결과가 보고된 바 있다(Kozak M, 1987; Hamilton 외, 1987; Yamauchi 외, 1991; Joshi 외, 1997).In general, 5 'untranslated region (5' UTR) of mRNA performs a number of functions in the gene expression process, the biggest feature of these functions is involved in the regulation of mRNA translation efficiency. The nucleotide sequence of the 5 'UTR in the immediate upper portion of the translation initiation codon has been reported to influence the efficiency of the translation step (Xiong W et al., 2001; Rogozin IB et al., 2001; Gallie DR et al., 1989; Mignone F et al. , 2002; Kawaguchi R et al., 2002; Kawaguchi R et al., 2005), a representative example is the 5 ′ UTR of the small subunit (RbcS) gene of ribulose bisphosphate carboxylase / oxygenase (RuBisCo). This 5 'UTR has a back base or more of nucleotides, and the 3' UTR has a few kilo bases longer. In addition, a sequence belonging to 5'UTR, which is not a predetermined position such as a Shine-Dalgarno sequence, which is known as a ribosome binding site sequence located at 5 'UTR in prokaryotes, is a ribosome binding site sequence which is also called a ribosome binding site sequence in eukaryotes. Have been reported (Kozak M, 1987; Hamilton et al., 1987; Yamauchi et al., 1991; Joshi et al., 1997).
이에 본 발명자들은 목적 단백질을 대량 생산할 수 있는 방법으로, 애기장대의 5' UTR의 서열 가운데 번역 효율이 우수한 것으로 알려진 리불로스 비스포스페이트 카복시라아제/옥시게나아제(RuBisCo)의 작은 서브유니트(RbcS) 유전자의 5' UTR 서열을 기초로 서열번호 1로 표시되는 5' UTR 염기서열을 합성하였고, 상기 서열이 우수한 번역 효율을 가진다는 사실을 확인하였다(실시예 1 참조).In this regard, the present inventors use a small subunit (RbcS) of ribulose bisphosphate carboxylase / oxygenase (RuBisCo), which is known to have excellent translation efficiency among the sequences of 5 'UTR of Arabidopsis in a way to mass-produce a target protein. The 5 'UTR nucleotide sequence represented by SEQ ID NO: 1 was synthesized based on the 5' UTR sequence of the gene, and it was confirmed that the sequence had excellent translation efficiency (see Example 1).
따라서 본 발명은 서열번호 1의 염기서열로 구성되는 DNA 단편으로, 상기 DNA 단편은 식물세포 내에서 그 하류에 위치한 목적 단백질의 번역(translation)을 증진시키는 것을 특징으로 하는 번역 효율 증진용 DNA 단편을 제공한다.Therefore, the present invention is a DNA fragment consisting of the nucleotide sequence of SEQ ID NO: 1, the DNA fragment is a DNA fragment for enhancing the translation efficiency, characterized in that to improve the translation (translation) of the target protein located downstream of the plant cell to provide.
또한, 본 발명은 서열번호 1의 염기서열로 구성되는 DNA 단편으로, 상기 DNA 단편은 식물세포 내에서 그 하류에 위치한 목적 단백질의 번역(translation)을 증진시키는 것을 특징으로 하는 번역 효율 증진용 DNA 단편을 포함하는 재조합 벡터를 제공한다.In addition, the present invention is a DNA fragment consisting of the nucleotide sequence of SEQ ID NO: 1, wherein the DNA fragment is a DNA fragment for enhancing the translation efficiency, characterized in that to enhance the translation (translation) of the target protein located downstream of the plant cell It provides a recombinant vector comprising a.
보다 구체적으로, 상기 재조합 벡터는 단백질 발현에 사용되는 기존의 벡터를 기본 골격으로 하여 프로모터, 단백질의 번역(translation) 효율을 증진시키는 본 발명에 따른 상기 DNA 단편, 및 목적 단백질을 암호화하는 유전자가 순차적으로 작동 가능하게 연결된 재조합 발현 벡터일 수 있다.More specifically, the recombinant vector is a promoter based on an existing vector used for protein expression, promoter, the DNA fragment according to the present invention to enhance the translation efficiency of the protein, and the gene encoding the target protein sequentially It may be a recombinant expression vector operably linked.
본 발명에서 상기 "발현 벡터"라는 용어는 본 발명에 따른 상기 DNA 단편 및 목적 단백질을 암호화하는 폴리뉴클레오티드 서열이 삽입 또는 도입될 수 있는 당분야에 공지된 플라스미드, 바이러스 또는 기타 매개체를 의미한다. 본 발명에 따른 상기 DNA 단편 및 목적 단백질을 암호화하는 폴리뉴클레오티드 서열은 발현 조절 서열에 작동 가능하게 연결될 수 있으며, 상기 작동 가능하게 연결된 유전자 서열과 발현 조절 서열은 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함될 수 있다. 상기 "작동 가능하게 연결(operably linked)"된다는 것은 적절한 분자가 발현 조절 서열에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 발현 조절 서열일 수 있다. "발현 조절 서열(expression control sequence)"이란 특정한 숙주 세포에서 작동 가능하게 연결된 폴리뉴클레오티드 서열의 발현을 조절하는 DNA 서열을 의미한다. 이러한 조절 서열은 전사를 실시하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 암호화하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다.In the present invention, the term "expression vector" refers to a plasmid, virus or other medium known in the art in which the polynucleotide sequence encoding the DNA fragment and the target protein according to the present invention can be inserted or introduced. The DNA fragment and the polynucleotide sequence encoding the target protein according to the present invention may be operably linked to an expression control sequence, wherein the operably linked gene sequence and the expression control sequence are selected markers and replication origin. It may be included in one expression vector containing together. “Operably linked” can be genes and expression control sequences linked in such a way as to enable gene expression when the appropriate molecule is bound to the expression control sequences. An "expression control sequence" refers to a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a particular host cell. Such regulatory sequences include promoters for carrying out transcription, any operator sequence for controlling transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control termination of transcription and translation.
상기 프로모터로는 식물체 내에서 삽입 유전자를 발현시킬 수 있는 것이라면 특별히 제한되지 않으며, 이에 한정되는 것은 아니나, CaMV의 35S RNA 및 19S RNA 프로모터; 피크워트 모자이크 비루스(FMV)에서 유래한 전장 전사 프로모터 및 TMV의 코트 단백질 프로모터일 수 있다. 또한 식물 세포 내로 본 발명에 따른 상기 DNA 단편 및 목적 단백질을 암호화하는 폴리뉴클레오티드 서열을 도입시키기 위한 적합한 벡터로는 Ti 플라스미드 및 식물 바이러스 벡터가 있다. 상기 적합한 벡터의 예로는 이에 한정되지는 않으나, p35S일 수 있다. 당업자라면 본 발명에 따른 상기 DNA 단편 및 목적 단백질을 암호화하는 폴리뉴클레오티드 서열을 도입시키는데 적합한 벡터를 선택할 수 있으며, 본 발명에서는 본 발명에 따른 상기 DNA 단편 및 목적 단백질을 암호화하는 폴리뉴클레오티드 서열을 식물 세포내로 도입할 수 있는 벡터라면 모두 사용 가능하다.The promoter is not particularly limited as long as it can express an insertion gene in a plant, but is not limited thereto, and the 35S RNA and 19S RNA promoters of CaMV; Full-length transcriptional promoters derived from Peak Water Mosaic Virus (FMV) and coat protein promoters of TMV. Also suitable vectors for introducing the DNA fragments according to the invention and polynucleotide sequences encoding the desired proteins into plant cells are Ti plasmids and plant viral vectors. Examples of suitable vectors are, but are not limited to, p35S. Those skilled in the art can select a vector suitable for introducing the DNA fragment and the polynucleotide sequence encoding the protein of interest according to the present invention, in the present invention plant cell polynucleotide sequence encoding the DNA fragment and the protein of interest according to the invention Any vector that can be introduced into can be used.
또한, 본 발명자들은 목적 단백질의 번역 효율을 증진시킬 수 있는 본 발명의 DNA 단편을 이용하여, 단백질 발현을 증진시킬 뿐 아니라 식물 세포 내의 특정 장소로 목적 단백질의 타겟팅(targeting)을 유도하고 유지(retention)시킬 수 있는 지 알아보기 위해 재조합 발현 벡터를 제작하였다.In addition, the present inventors use the DNA fragments of the present invention to enhance the translational efficiency of the protein of interest, thereby enhancing protein expression as well as inducing and retaining the targeting of the target protein to specific places in plant cells. Recombinant expression vector was constructed to see if it can be.
일반적으로 형질전환 식물체 또는 세포내에서 목적 단백질을 과발현시키는 경우, 단백질이 분해(proteolytic degradation)되는 현상들이 종종 발생한다. 그러나 다양한 세포내 소기관으로 외래 단백질을 타겟팅시킬 경우에는 이들 단백질을 보다 안정적으로 저장할 수 있다. 특히, 목적 단백질을 소포체로 타겟팅 할 경우, 세포질에 존재하는 것 보다 단백질의 분해를 최소화 할 수 있으며, 이러한 예로 담배에서 인간 상피 성장 인자를 소포체로 타겟팅 시켰을 때 단백질의 수율이 약 104배나 증가된다는 것이 알려져 있다(Wirth S 외, 2004). 또한, KDEL 또는 HDEL과 같은 소포체 저장 신호 펩타이드(ER retention signal peptide)를 이용하면 목적 단백질을 소포체내에 머물도록 함으로써 분자 샤페론에 의한 폴딩(folding)과 조합(assembly)이 증가되어 결과적으로 단백질의 분해를 최소화 할 수 있다(Nuttall J 외, 2002). 이러한 예로서, 목적 단백질을 분비 경로로 보냈을 때보다 소포체에 유지(retention) 시킨 경우, 목적 단백질의 수율이 10~100배 정도 증가된다고 알려진 바 있다(Hellwig S 외, 2004). 또한, 식물의 엽록체는 총 수용성 단백질의 40% 이상을 함유하고 있는 거대한 단백질 저장소일 뿐만 아니라 그 수가 많기 때문에 목적 단백질의 저장소로서 좋은 타겟이 되고 있다. 식물의 엽록체 내에는 단백질 프로세싱에 필요한 최소한의 프로테아제(protease)만을 포함하고 있는데, 이것은 목적 단백질을 프로테아제에 의해 분해되는 것을 막음으로써 엽록체 내에 고농도로 저장할 수 있음을 의미한다.In general, in the case of overexpressing a target protein in a transgenic plant or cell, the phenomenon of proteolytic degradation often occurs. However, when foreign proteins are targeted to various intracellular organelles, these proteins can be stored more stably. In particular, if the target protein is targeted to the endoplasmic reticulum, the degradation of the protein can be minimized than that present in the cytoplasm. For example, when the human epidermal growth factor is targeted to the endoplasmic reticulum in tobacco, the yield of the protein is about 10 4 times higher. It is known (Wirth S et al., 2004). In addition, the use of ER retention signal peptides such as KDEL or HDEL keeps the target protein in the endoplasmic reticulum, thereby increasing folding and assembly by molecular chaperones, resulting in protein degradation. Can be minimized (Nuttall J et al., 2002). As such an example, when the target protein is retained in the endoplasmic reticulum than when it is sent to the secretory pathway, the yield of the target protein has been known to increase by about 10 to 100 times (Hellwig S et al., 2004). In addition, the chloroplasts of plants are not only huge protein reservoirs containing more than 40% of the total water soluble protein but also a large number, making them a good target for the storage of target proteins. The plant's chloroplasts contain only the minimal protease necessary for protein processing, which means that the protein of interest can be stored in high concentrations in the chloroplasts by preventing degradation by the protease.
따라서 본 발명자들은 프로모터, 단백질의 번역(translation) 효율을 증진시키는 서열번호 1의 염기서열로 구성되는 본 발명의 DNA 단편, 및 목적 단백질을 암호화하는 유전자가 순차적으로 작동 가능하게 연결된 재조합 발현 벡터에 식물체의 특정 장소, 즉, 소포체 또는 엽록체로 목적 단백질을 타겟팅 할 수 있는 표지 서열을 추가적으로 작동 가능하게 연결된 재조합 벡터를 제조하였다.Therefore, the present inventors have found that the DNA fragment of the present invention consists of a promoter, a nucleotide sequence of SEQ ID NO: 1 which enhances the translation efficiency of a protein, and a plant to a recombinant expression vector in which a gene encoding a target protein is operably linked. Recombinant vectors were additionally operably linked to specific locations of the vesicles or chloroplasts to target the target protein.
이때, 상기 식물 세포에서 소포체(ER)로 목적 단백질을 타겟팅(targeting) 할 경우에는 BiP (chaperone binding protein) 단백질을 암호화하는 염기서열을 사용할 수 있으며, 바람직하게는 번역 효율을 증진시키기 위해 BiP의 cDNA 대신 인트론을 포함하는 BiP의 게놈 DNA인 서열번호 3으로 표시되는 염기서열을 사용할 수 있다. 상기 목적 단백질을 유지(retention)시키기 위한 염기서열로는 이에 한정되는 것은 아니나, 바람직하게는 HDEL(His-Asp-Glu-Leu) 또는 KDEL(Lys-Asp-Glu-Leu) 펩타이드를 암호화하는 염기서열을 사용할 수 있다. BiP 단백질의 N-말단에는 소포체로의 타겟팅을 결정하는 신호 서열을 함유하고 있어 목적 단백질들을 소포체로 타겟팅 시키는 역할을 할 수 있다. 또한, 상기 식물 세포에서 엽록체로 목적 단백질을 타겟팅(targeting)할 경우에는 Cab(엽록소 a/b 결합 단백질)을 코팅하는 염기서열을 사용할 수 있다. Cab(엽록소 a/b 결합 단백질)는 N-말단에 엽록체로의 타겟팅에 필요한 트랜지트 펩타이드(transit peptide)를 가지고 있어서, 이 펩타이드를 이용할 경우, 목적 단백질을 정상적으로 엽록체로 타겟팅 할 수 있다(kavanagh TA. 외., 1988).At this time, when targeting the target protein to the endoplasmic reticulum (ER) in the plant cell, a base sequence encoding a BiP (chaperone binding protein) protein may be used, and preferably a cDNA of BiP to enhance the translation efficiency. Instead, the nucleotide sequence represented by SEQ ID NO: 3, which is a genomic DNA of BiP containing an intron, may be used. A base sequence for retaining the target protein is not limited thereto. Preferably, the base sequence encoding the HDEL (His-Asp-Glu-Leu) or KDEL (Lys-Asp-Glu-Leu) peptide is preferred. Can be used. The N-terminus of the BiP protein contains a signal sequence that determines targeting to the endoplasmic reticulum, which may serve to target the target proteins to the endoplasmic reticulum. In addition, when targeting the target protein to the chloroplast in the plant cells (nucleotide chlorophyll a / b binding protein) can be used to coat the base sequence. Cab (chlorophyll a / b binding protein) has a transit peptide necessary for targeting to chloroplasts at the N-terminus, and when the peptide is used, target proteins can be normally targeted to chloroplasts (kavanagh TA). Et al., 1988).
따라서 이러한 BiP의 신호 서열, 소포체 유지 신호 서열 또는 Cab의 트랜지트 펩타이드 등을 이용한 발현 벡터를 사용할 경우, 목적 단백질을 소포체 또는 엽록체로 타겟팅 시킬 수 있을 뿐 아니라 목적 단백질을 높은 수준으로 축적시켜 대량 생산할 수 있는 효과가 있다.Therefore, when using an expression vector using such BiP signal sequence, vesicle maintenance signal sequence, or CAB transit peptide, the target protein can be targeted to the endoplasmic reticulum or chloroplast, and the target protein can be accumulated at a high level for mass production. It has an effect.
나아가 본 발명은 본 발명에 따른 상기 재조합 벡터를 당분야에 공지된 방법을 사용하여 식물체 내로 도입시킴으로써 형질전환된 식물을 제공한다.The present invention further provides a plant transformed by introducing the recombinant vector according to the present invention into a plant using methods known in the art.
상기 본 발명의 재조합 벡터를 식물체 내로 도입하는 방법은 이에 제한되지는 않으나, PEG(Polyethylenglycol)에 의한 침전법, 아그로박테리움(Agrobacterium sp.)-매개에 의한 방법, 입자 총 충격법(particle gun bombardment), 실리콘 탄화물 위스커법(Silicon carbide whiskers), 초음파 처리법(sonication), 또는 전기천공법(electroporation) 등을 사용할 수 있다. 본 발명의 일실시예에서는 PEG(Polyethylenglycol)에 의한 침전법을 사용하여 본 발명의 재조합 벡터로 애기장대를 형질전환시켰다.Method for introducing the recombinant vector of the present invention into the plant is useful for but not limited to precipitation by PEG (Polyethylenglycol), Agrobacterium (Agrobacterium sp.) - method according to the parameters, the particle gun bombardment method (particle gun bombardment ), Silicon carbide whiskers, sonication, or electroporation. In one embodiment of the present invention, Arabidopsis was transformed with the recombinant vector of the present invention using the precipitation method by polyethylene glycol (PEG).
본 발명의 일실시에 에서는 상기 식물체로 애기장대를 사용하였으나, 이는 바람직한 일례일 뿐, 상기 식물체는 쌍자엽 식물 또는 단자엽 식물일 수 있으며, 상기 쌍자엽 식물로는 이에 제한되지는 않으나, 애기장대, 대두, 담배, 가지, 고추, 감자, 토마토, 배추, 무, 양배추, 상추, 복숭아, 배, 딸기, 수박, 참외, 오이, 당근 또는 샐러리 등일 수 있고, 상기 단자엽 식물로는 이에 제한되지는 않으나, 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 또는 양파 등일 수 있다.In one embodiment of the present invention, the Arabidopsis was used as the plant, but this is only a preferred example, and the plant may be a dicotyledonous plant or a monocotyledonous plant, but the dicotyledonous plant is not limited thereto. Tobacco, eggplant, pepper, potato, tomato, cabbage, radish, cabbage, lettuce, peach, pear, strawberry, watermelon, melon, cucumber, carrot or celery and the like, and the monocotyledonous plant, but is not limited thereto, rice, Barley, wheat, rye, corn, sugar cane, oats, onions, and the like.
또한, 본 발명은 상기 본 발명의 서열번호 1로 구성되는 DNA 단편이 첨가된 재조합 벡터를 식물체에 도입함으로써 식물체로부터 목적 단백질을 대량 생산하는 방법을 제공할 수 있다.In addition, the present invention can provide a method for mass-producing a target protein from a plant by introducing a recombinant vector containing a DNA fragment comprising SEQ ID NO: 1 of the present invention into a plant.
상기에서 목적 단백질은 생산하고자 하는 단백질을 의미하는 용어로서, 특정 단백질로 한정되지는 않는다. 또한, 상기 목적 단백질로서 리포터 단백질들이 포함될 수 있는데, 상기 리포터 단백질은 리포터 유전자에 의해 발현된 단백질로서 그 존재에 의해서 세포 내에서의 그의 활성을 알려주는 표지 단백질을 말한다. 본 발명의 일실시예에서는 상기 목적 단백질로 녹색 형광 단백질(GFP)를 사용하였다.In the above, the target protein is a term meaning a protein to be produced, and is not limited to a specific protein. In addition, reporter proteins may be included as the target protein, wherein the reporter protein is a protein expressed by a reporter gene and refers to a labeling protein indicating its activity in a cell by its presence. In one embodiment of the present invention, green fluorescent protein (GFP) was used as the target protein.
상기 형질전환된 식물체로부터 목적 단백질을 생산하는 방법은 본 발명에 따른 단백질 번역 증진 DNA 단편 및 목적 단백질을 암호화하는 염기서열이 프로모터와 작동 가능하게 연결된 본 발명에 따른 재조합 벡터를 식물체에 도입하거나 또는 상기 재조합 발현 벡터로 세포를 형질전환 시킨 다음, 목적 단백질이 발현되도록 적당한 시간동안 배양한 후, 형질전환된 식물 또는 세포로부터 수득할 수 있다. 이때 상기 목적 단백질을 발현시키는 방법은 당업계에 공지된 방법이라면 모두 사용가능하다. 또한 형질전환된 식물 또는 세포에서 고발현된 목적 단백질의 회수는 당업계에 공지된 다양한 분리 및 정제 방법을 통해 수행할 수 있으며, 통상적으로 세포 조각(cell debris) 등을 제거하기 위하여 상기 세포 용해물을 원심분리한 후, 침전, 예를 들어, 염석(황산암모늄 침전 및 인산나트륨 침전), 용매 침전(아세톤, 에탄올 등을 이용한 단백질 분획 침전)등을 수행할 수 있고, 투석, 전기영동 및 각종 컬럼 크로마토그래피 등을 수행할 수 있다. 상기 크로마토그래피로는 이온교환 크로마토그래피, 겔-침투 크로마토그래피, HPLC, 역상-HPLC, 친화성 컬럼 크로마토그래피, 또는 한외여과 등의 기법을 단독 또는 조합으로 적용시켜 본 발명의 목적 단백질을 정제할 수 있다(Maniatis 외., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.(1982); Sambrook 외., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press(1989); Deutscher, M., Guide to Protein Purification Methods Enzymology, vol. 182. Academic Press. Inc., San Diego, CA(1990)).The method for producing a target protein from the transformed plant comprises introducing a recombinant vector according to the present invention into a plant or a protein translation enhancing DNA fragment according to the present invention and a nucleotide sequence encoding the target protein operably connected to the plant or the The cells may be transformed with the recombinant expression vector, then incubated for a suitable time to express the protein of interest, and then obtained from the transformed plant or cell. At this time, the method for expressing the target protein can be used as long as it is known in the art. In addition, the recovery of the target protein highly expressed in the transformed plant or cell can be carried out through various separation and purification methods known in the art, and the cell lysate is usually removed to remove cell debris. After centrifugation, precipitation, for example, salting out (ammonium sulfate precipitation and sodium phosphate precipitation), solvent precipitation (protein fraction precipitation using acetone, ethanol, etc.) may be performed, and dialysis, electrophoresis and various columns are performed. Chromatography may be performed. As the chromatography, a target protein of the present invention can be purified by applying techniques such as ion exchange chromatography, gel-penetration chromatography, HPLC, reverse phase-HPLC, affinity column chromatography, or ultrafiltration alone or in combination. (Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982); Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press (1989) Deutscher, M., Guide to Protein Purification Methods Enzymology, vol. 182. Academic Press. Inc., San Diego, CA (1990)).
또한, 본 발명에서는 상기 형질전환된 식물체로부터 목적 단백질을 보다 간편하고 빠르게 분리 및 정제하기 위해 앞서 기술한 본 발명의 재조합 벡터에 셀룰라제의 셀룰로오스-결합 도메인(cellulose-binding domain:CBD)을 암호화하는 염기서열, 바람직하게는 서열번호 4로 표시되는 염기서열을 추가적으로 작동 가능하게 연결된 재조합 벡터를 제조하였다.In addition, the present invention is to encode a cellulose-binding domain (CBD) of the cellulase in the recombinant vector of the present invention to more easily and quickly separate and purify the target protein from the transformed plant A recombinant vector was prepared, in which the nucleotide sequence represented by SEQ ID NO: 4 is further operably linked.
따라서 본 발명에서는 셀룰로오스-결합 도메인을 포함하는 재조합 벡터를 사용함에 따라 발현된 목적 단백질이 셀룰로오스 결합 도메인과 융합된 형태일 수 있으며, 셀룰로오스 담체를 컬럼으로 이용하는 크로마토그래피를 통하여 용이하게 분리 및 정제할 수 있다. 이렇게 생산된 융합된 형태의 목적 단백질은 적절한 효소 등을 이용하여 셀룰로오스 결합 도메인을 절단한 다음 추가적인 분리 정제 과정을 거쳐서 비융합된 형태의 목적 단백질을 생산할 수 있다.Therefore, in the present invention, the target protein expressed by using a recombinant vector including a cellulose-binding domain may be in a fused form with a cellulose-binding domain, and can be easily separated and purified through chromatography using a cellulose carrier as a column. have. The produced protein of the fused form may be cleaved of the cellulose binding domain using an appropriate enzyme and the like, followed by additional separation and purification to produce the non-fused form of the protein of interest.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
[실시예 1]Example 1
번역효율을 증가시키는 5' UTR의 개발Development of 5 'UTR to increase translation efficiency
목적 단백질의 생산을 증가 시킬 수 있도록 유전자의 번역을 증진할 수 있는 5' UTR을 개발하기 위하여, 애기장대에서 번역 효율이 우수한 것으로 알려진 리불로스 비스포스페이트 카복시라아제/옥시게나아제(RuBisCo)의 작은 서브유니트(RbcS) 유전자의 5' UTR의 염기서열을 기초로 임의적인 5' UTR 염기서열을 개발하여 합성하였다. 합성된 5' UTR을 M17이라 명명하고, RbcS 유전자의 5' UTR을 R21이라 명명하였으며, 각 염기서열을 하기 표 1에 나타내었다.In order to develop a 5 'UTR that can enhance the translation of genes to increase the production of the protein of interest, a small amount of ribulose bisphosphate carboxylase / oxygenase (RuBisCo), which is known to have excellent translation efficiency in Arabidopsis An arbitrary 5 'UTR sequence was developed and synthesized based on the 5' UTR sequence of the subunit (RbcS) gene. The synthesized 5 'UTR was named M17, the 5' UTR of the RbcS gene was named R21, and each base sequence is shown in Table 1 below.
표 1
명칭 염기서열 서열번호
M17 5' UTR 5'- GGC GTG TGT GTG TGT TAA AGA -3' 1
R21 5' UTR 5'- CAC AAA GAG TAA AGA AGA ACA -3' 2
Table 1
designation Sequence SEQ ID NO:
M17 5 'UTR 5'- GGC GTG TGT GTG TGT TAA AGA -3 ' One
R21 5 'UTR 5'- CAC AAA GAG TAA AGA AGA ACA -3 ' 2
[실시예 2]Example 2
개발된 5' UTR의 식물세포 내에서 발현량 확인Expression level of the developed 5 'UTR in plant cells
단백질 발현과정에서 M17 번역 효율이 증가하였는지를 확인하기 위하여, 리포터(report) 유전자로 녹색형광단백질(Green fluorescent protein; GFP)를 사용하였으며, 도 1에 나타낸 바와 같이, 상기 GFP의 개시코돈 상부에 M17을 설치하고, 대조군으로 RbcS 유래의 5' UTR인 R21을 GFP의 개시코돈 상부에 설치하였다. 그리고 PEG(Polyethylen glycol) 침전법으로 이들을 애기장대의 원형질체(protoplast)에 도입하여 M17이 번역 효율 향상에 효과적인지를 알아보았다.In order to confirm that M17 translation efficiency was increased during protein expression, a green fluorescent protein (GFP) was used as a reporter gene, and as shown in FIG. 1, M17 was placed on the start codon of the GFP. As a control, R21, a 5 'UTR derived from RbcS, was installed on top of the start codon of GFP. In addition, PEG (Polyethylen glycol) precipitation method was introduced to protoplasts of Arabidopsis to determine whether M17 is effective in improving translation efficiency.
그 결과, 도 2에 나타낸 바와 같이, 애기장대에서 비교적 높은 발현에 관여하는 것으로 알려진 RbcS 유래의 5' 비번역 염기서열인 R21보다 M17이 설치된 군의 발현 효과가 좋은 것으로 나타났다.As a result, as shown in Fig. 2, the expression effect of the group in which M17 was installed was better than that of R21, a 5 ′ untranslated sequence derived from RbcS, which is known to be involved in relatively high expression in Arabidopsis.
상기로부터, M17이 목적 단백질의 번역 효율을 증진시켜 발현율을 향상시키는 효과가 있음을 알 수 있다.From the above, it can be seen that M17 has an effect of improving the expression rate by enhancing the translation efficiency of the target protein.
[실시예 3]Example 3
식물 세포 내의 특정 장소에 목적 단백질을 수송 시 개발된 5' UTR 번역 효율 분석Analysis of the developed 5 'UTR translation efficiency when transporting the target protein to a specific place within plant cells
본 발명자들이 개발한 5' UTR인 M17이 단백질의 안정된 저장 및 수율 증가를 위해, 목적 단백질을 특정장소로 수송할 수 있도록 작성된 벡터에서도 우수한 번역 효율을 보이는지를 조사하였다. 이를 위해, 도 3에 나타낸 바와 같이, 소포체로 목적 단백질을 수송하는 벡터에 M17 5' UTR 및 대조군인 R21 5' UTR을 각각 첨가하였다. 이때, 소포체(endoplasmic reticulum; ER)로 목적 단백질을 수송하기 위하여 제작된 벡터는 소포체 수송에 관여하는 BiP(chaperone binding protein)를 암호화(coding)하는 염기서열, 목적단백질을 소포체에 유지(retention)시키기 위한 HDEL(His-Asp-Glu-Leu)를 암호화하는 염기서열, 그리고 단백질의 정제에 이용되는 셀룰로스-결합 도메인(cellulose-binding domain)을 암호화하는 염기서열로 구성되어 있다. 상기 벡터에서 목적단백질은 리포터(report) 유전자인 녹색형광단백질(Green fluorescent protein; GFP)이 사용되었으며, 이들 벡터를 PEG 침전법을 이용하여 애기장대 원형질체에 도입하고 발현 효율을 비교하였다.The inventors investigated whether M17, the 5 'UTR developed by the present inventors, shows excellent translation efficiency even in a vector designed to transport a target protein to a specific place for stable storage and increased yield of the protein. To this end, as shown in Figure 3, M17 5 'UTR and control group R21 5' UTR were added to the vector transporting the target protein to the endoplasmic reticulum. At this time, the vector produced to transport the target protein to the endoplasmic reticulum (ER) is a base sequence encoding the BiP (chaperone binding protein) involved in the endoplasmic reticulum transport, retaining the target protein in the endoplasmic reticulum It consists of a base sequence encoding the HDEL (His-Asp-Glu-Leu) for, and a base sequence encoding the cellulose-binding domain (cellulose-binding domain) used for the purification of proteins. In the vector, the target protein, Green fluorescent protein (GFP), which is a reporter gene, was used, and these vectors were introduced into Arabidopsis protoplasts using PEG precipitation and compared with expression efficiency.
그 결과, 도 4에 나타낸 바와 같이, 5' 비번역 부위 M17의 발현이 대조군인 R21의 발현보다 우수한 것으로 나타나, 목적 단백질인 GFP를 소포체로 수송함에 있어서 5' 비번역 부위 M17가 더 효과적인 것을 확인하였다.As a result, as shown in FIG. 4, the expression of the 5 'untranslated region M17 was superior to that of the control group R21, confirming that the 5' untranslated region M17 was more effective in transporting the target protein GFP into the endoplasmic reticulum. It was.
상기로부터, 번역효율이 우수한 본 발명의 5' 비번역 부위 M17은 목적 단백질을 특정장소로 타겟팅(targeting) 및 유지(retention)하는 데에 유용하게 사용될 수 있음을 알 수 있다.From the above, it can be seen that the 5 'untranslated region M17 of the present invention having excellent translation efficiency can be usefully used for targeting and retention of a target protein to a specific place.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above are to be understood in all respects as illustrative and not restrictive.
본 발명의 DNA 단편을 포함하는 재조합 벡터로 형질 전환된 식물체를 이용하여 목적 단백질을 대량으로 생산하는 데 유용하게 활용될 수 있다.Plants transformed with a recombinant vector comprising a DNA fragment of the present invention can be usefully used to produce a large amount of the protein of interest.
<210> 1<210> 1
<211> 21<211> 21
<212> DNA<212> DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> M17 5' UTR<223> M17 5 'UTR
<400> 1<400> 1
ggcgtgtgtg tgtgttaaag aggcgtgtgtg tgtgttaaag a
<210> 2<210> 2
<211> 21<211> 21
<212> DNA<212> DNA
<213> Arabidopsis thaliana - RbcS 5' UTR<213> Arabidopsis thaliana-RbcS 5 'UTR
<400> 2<400> 2
cacaaagagt aaagaagaac acacaaagagt aaagaagaac a
<210> 3<210> 3
<211> 272<211> 272
<212> DNA<212> DNA
<213> Arabidopsis thaliana - BiP<213> Arabidopsis thaliana-BiP
<400> 3<400> 3
atggctcgct cgtttggagc taacagtacc gttgtgttgg cgatcatctt cttcggtgagatggctcgct cgtttggagc taacagtacc gttgtgttgg cgatcatctt cttcggtgag
tgattttccg atcttcttct ccgatttaga tctcctctac attgttgctt aatctcagaatgattttccg atcttcttct ccgatttaga tctcctctac attgttgctt aatctcagaa
ccttttttcg ttgttcctgg atctgaatgt gtttgtttgc aatttcacga tcttaaaaggccttttttcg ttgttcctgg atctgaatgt gtttgtttgc aatttcacga tcttaaaagg
ttagatctcg attggtattg acgattggaa tctttacgat ttcaggatgt ttatttgcgtttagatctcg attggtattg acgattggaa tctttacgat ttcaggatgt ttatttgcgt
tgtcctctgc aatagaagag gctacgaagt tatgtcctctgc aatagaagag gctacgaagt ta
<210> 4<210> 4
<211> 502<211> 502
<212> DNA<212> DNA
<213> Clostridium stercorarium - CBD<213> Clostridium stercorarium-CBD
<400> 4<400> 4
ttacacatgg catggatgaa ctatacaaat taggaggtgg aggtggaccc cgggcacaccttacacatgg catggatgaa ctatacaaat taggaggtgg aggtggaccc cgggcacacc
accaccacca ccactttcga agttcaccag tgcctgcacc tggtgataac acaagagacgaccaccacca ccactttcga agttcaccag tgcctgcacc tggtgataac acaagagacg
catattctat cattcaggcc gaggattatg acagcagtta tggtcccaac cttcaaatctcatattctat cattcaggcc gaggattatg acagcagtta tggtcccaac cttcaaatct
ttagcttacc aggtggtggc agcgccattg gctatattga aaatggttat tccactacctttagcttacc aggtggtggc agcgccattg gctatattga aaatggttat tccactacct
ataaaaatat tgattttggt gacggcgcaa cgtccgtaac agcaagagta gctacccagaataaaaatat tgattttggt gacggcgcaa cgtccgtaac agcaagagta gctacccaga
atgctactac cattcaggta agattgggaa gtccatcggg tacattactt ggaacaatttatgctactac cattcaggta agattgggaa gtccatcggg tacattactt ggaacaattt
acgtggggtc cacaggaagc tttgatactt atagggatgt atccgctacc attagtaataacgtggggtc cacaggaagc tttgatactt atagggatgt atccgctacc attagtaata
ctgcgggtgt aaaagatatt gttcttgtat tctcaggtcc tgttaatgtt gactggtttgctgcgggtgt aaaagatatt gttcttgtat tctcaggtcc tgttaatgtt gactggtttg
tattctcaaa tcaagaactt agtattctcaaa tcaagaactt ag

Claims (9)

  1. 서열번호 1의 염기서열로 구성되는 DNA 단편으로, 상기 DNA 단편은 식물세포 내에서 그 하류에 위치한 목적 단백질의 번역(translation)을 증진시키는 것을 특징으로 하는 번역 효율 증진용 DNA 단편.DNA fragment consisting of the nucleotide sequence of SEQ ID NO: 1, wherein the DNA fragment is a DNA fragment for enhancing translation efficiency, characterized in that to promote the translation (translation) of the target protein located downstream of the plant cell.
  2. 제1항의 번역 효율 증진용 DNA 단편을 포함하는 재조합 벡터.Recombinant vector comprising a DNA fragment for improving the translation efficiency of claim 1.
  3. 제2항에 있어서,The method of claim 2,
    상기 재조합 벡터는 프로모터, 번역 효율 증진용 DNA 단편, 및 목적 단백질을 암호화하는 유전자가 순차적으로 작동 가능하게 연결된 것을 특징으로 하는, 재조합 벡터.The recombinant vector is a recombinant vector, characterized in that the promoter, the DNA fragment for enhancing the translation efficiency, and the gene encoding the target protein is operably linked in sequence.
  4. 제3항에 있어서,The method of claim 3,
    상기 재조합 벡터는 식물 세포에서 소포체(ER)로 목적 단백질을 타겟팅(targeting) 및 유지(retention)할 수 있는 염기서열이 추가적으로 작동가능하게 연결된 것을 특징으로 하는, 재조합 벡터.The recombinant vector is a recombinant vector, characterized in that the nucleotide sequence capable of targeting and retention of the target protein (ER) in the plant cell additionally operably linked.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 식물 세포에서 소포체(ER)로 목적 단백질을 타겟팅(targeting)할 수 있는 염기서열은 BiP(chaperone binding protein) 단백질을 암호화하는 서열번호 3으로 표시되는 염기서열이고, 상기 목적 단백질을 유지(retention)할 수 있는 염기서열은 HDEL(His-Asp-Glu-Leu) 또는 KDEL(Lys-Asp-Glu-Leu) 펩타이드를 암호화하는 염기서열인 것을 특징으로 하는, 재조합 벡터.The base sequence capable of targeting the target protein to the ER (ER) in the plant cell is a nucleotide sequence represented by SEQ ID NO: 3 encoding a BiP (chaperone binding protein) protein, and retains the target protein. A nucleotide sequence which can be a nucleotide sequence encoding HDEL (His-Asp-Glu-Leu) or KDEL (Lys-Asp-Glu-Leu) peptide, recombinant vector.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 재조합 벡터는 셀룰로오스-결합 도메인(cellulose-binding domain: CBD)을 암호화하는 서열번호 4의 염기서열이 추가적으로 작동 가능하게 연결된 것을 특징으로 하는, 재조합 벡터.The recombinant vector is a recombinant vector, characterized in that the nucleotide sequence of SEQ ID NO: 4 encoding the cellulose-binding domain (CBD) is additionally operably linked.
  7. 제2항 내지 제6항 중 어느 한 항의 재조합 벡터를 식물체에 도입하는 단계를 포함하는 식물체로부터 목적 단백질을 대량 생산하는 방법.A method for mass-producing a protein of interest from a plant comprising the step of introducing the recombinant vector of any one of claims 2 to 6 into a plant.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 재조합 벡터를 식물체에 도입하는 단계는 PEG 침전법(Polyethylen glycol), 아그로박테리움(Agrobacterium sp.)-매개에 의한 방법, 입자 총 충격법(particle gun bombardment), 실리콘 탄화물 위스커법(Silicon carbide whiskers), 초음파 처리법(sonication), 및 전기천공법(electroporation)으로 이루어진 군으로부터 선택되는 어느 하나의 방법을 사용하여 이루어지는 것을 특징으로 하는, 방법.The step of introducing the recombinant vector into the plant is PEG precipitation (Polyethylen glycol), Agrobacterium ( Agrobacterium sp. )- Mediated method, particle gun bombardment, silicon carbide whiskers (Silicon carbide whiskers) ), Sonication, and electroporation, the method comprising any one selected from the group consisting of.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 식물은 애기장대, 대두, 담배, 가지, 고추, 감자, 토마토, 배추, 무, 양배추, 상추, 복숭아, 배, 딸기, 수박, 참외, 오이, 당근, 및 샐러리로 이루어진 군으로부터 선택되는 쌍자엽 식물; 또는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 및 양파로 이루어진 군으로부터 선택되는 단자엽 식물인 것을 특징으로 하는, 방법.The plant is a dicotyledonous plant selected from the group consisting of Arabidopsis, soybean, tobacco, eggplant, pepper, potato, tomato, cabbage, radish, cabbage, lettuce, peach, pear, strawberry, watermelon, melon, cucumber, carrot, and celery ; Or a monocotyledonous plant selected from the group consisting of rice, barley, wheat, rye, corn, sugar cane, oats, and onions.
PCT/KR2013/010856 2012-12-06 2013-11-27 Base sequence for enhancing translation efficiency of target proteins in plants WO2014088255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120141256A KR101449155B1 (en) 2012-12-06 2012-12-06 Nucleotide sequence to promote translation efficiency in plants
KR10-2012-0141256 2012-12-06

Publications (1)

Publication Number Publication Date
WO2014088255A1 true WO2014088255A1 (en) 2014-06-12

Family

ID=50883634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010856 WO2014088255A1 (en) 2012-12-06 2013-11-27 Base sequence for enhancing translation efficiency of target proteins in plants

Country Status (2)

Country Link
KR (1) KR101449155B1 (en)
WO (1) WO2014088255A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563518A (en) * 2016-05-12 2019-04-02 巴伊沃爱普有限公司 The vaccine composition and its manufacturing method for classical swine fever from plant
JP2020503884A (en) * 2017-01-17 2020-02-06 バイオアプリケーションズ インコーポレイテッドBioapplications Inc. Recombinant vector for expression of target protein in plant cells

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796104B1 (en) * 2015-12-10 2017-11-10 한국생명공학연구원 Recombinant vector for mass-producing N protein from PRRSV in plant cell organelle and uses thereof
US10947278B2 (en) 2018-09-19 2021-03-16 Bioapplications Inc. Recombinant vector comprising porcine FC fragment and preparation method of recombinant protein using thereof
KR102148405B1 (en) * 2018-09-19 2020-08-27 주식회사 바이오앱 Recombinant vector comprising porcine Fc fragment and preparation method of recombinant proteins using thereof
WO2020101187A1 (en) 2018-11-15 2020-05-22 주식회사 바이오앱 Recombinant vector for expressing virus-like particles in plant and method for preparation of vaccine composition containing circovirus-like particles by using same
KR102288367B1 (en) 2018-11-15 2021-08-11 주식회사 바이오앱 Recombinant vector expressing virus-like particles in plants and methods of preparing vaccine compositions comprising circovirus-like particles using the same
KR102250576B1 (en) 2018-11-15 2021-05-12 주식회사 바이오앱 Recombinant vector to increase the expression of capsid protein in plant expression system and virus-like particles preparation method using the same
KR102557824B1 (en) * 2020-08-18 2023-07-20 주식회사 바이오앱 Vaccine compositions comprising plant expressing recombinant Zika virus envelope proteins and preparation methods thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003017A2 (en) * 1998-07-10 2000-01-20 Calgene Llc Enhancer elements for increased translation in plant plastids
WO2003012035A2 (en) * 2001-07-27 2003-02-13 Icon Genetics, Inc. Commercial use of arabidopsis for production of human and animal therapeutic and diagnostic proteins
WO2005021765A2 (en) * 2003-08-27 2005-03-10 Orf Liftaekni Hf. Enhancing accumulation of heterologous polypeptides in plant seeds through targeted suppression of endogenous storage proteins
WO2009087391A1 (en) * 2008-01-08 2009-07-16 Plant Bioscience Limited Protein expression systems
WO2009158716A1 (en) * 2008-06-28 2009-12-30 The Donald Danforth Plant Science Center Improved protein production and storage in plants
WO2011028914A1 (en) * 2009-09-04 2011-03-10 Syngenta Participations Ag Stacking of translational enhancer elements to increase polypeptide expression in plants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100730875B1 (en) * 2004-12-07 2007-06-20 가부시키가이샤 시마즈세이사쿠쇼 DNA fragment to promote translation reaction and method for cell-free system protein synthesis using the same
KR101161622B1 (en) * 2009-08-31 2012-07-04 헬릭스 주식회사 DNA fragment to promote translation efficiency and recombinant vectors containing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003017A2 (en) * 1998-07-10 2000-01-20 Calgene Llc Enhancer elements for increased translation in plant plastids
WO2003012035A2 (en) * 2001-07-27 2003-02-13 Icon Genetics, Inc. Commercial use of arabidopsis for production of human and animal therapeutic and diagnostic proteins
WO2005021765A2 (en) * 2003-08-27 2005-03-10 Orf Liftaekni Hf. Enhancing accumulation of heterologous polypeptides in plant seeds through targeted suppression of endogenous storage proteins
WO2009087391A1 (en) * 2008-01-08 2009-07-16 Plant Bioscience Limited Protein expression systems
WO2009158716A1 (en) * 2008-06-28 2009-12-30 The Donald Danforth Plant Science Center Improved protein production and storage in plants
WO2011028914A1 (en) * 2009-09-04 2011-03-10 Syngenta Participations Ag Stacking of translational enhancer elements to increase polypeptide expression in plants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563518A (en) * 2016-05-12 2019-04-02 巴伊沃爱普有限公司 The vaccine composition and its manufacturing method for classical swine fever from plant
JP2020503884A (en) * 2017-01-17 2020-02-06 バイオアプリケーションズ インコーポレイテッドBioapplications Inc. Recombinant vector for expression of target protein in plant cells

Also Published As

Publication number Publication date
KR101449155B1 (en) 2014-10-13
KR20140073710A (en) 2014-06-17

Similar Documents

Publication Publication Date Title
WO2014088255A1 (en) Base sequence for enhancing translation efficiency of target proteins in plants
Marillonnet et al. In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium
AU648951B2 (en) Agrobacterium mediated transformation of germinating plant seeds
KR101161622B1 (en) DNA fragment to promote translation efficiency and recombinant vectors containing the same
EP0429478A1 (en) Expression cassette for plants.
EP0179861A1 (en) Methods and vectors for transformation of plant cells
EP3604546A1 (en) Protein expression system in plant cell and use thereof
Fütterer et al. Differential inhibition of downstream gene expression by the cauliflower mosaic virus 35S RNA leader
US5846774A (en) Chlorella virus promoters
Yang et al. An efficient transient gene expression system for protein subcellular localization assay and genome editing in citrus protoplasts
D'Aoust et al. Efficient and reliable production of pharmaceuticals in alfalfa
WO2021187750A1 (en) Method for mass production of target protein in plant
WO2021085852A1 (en) Nitrogen starvation-inducible promoter, chlorella-derived signal peptide, and gene expression system comprising same
WO2013151211A1 (en) Plant body producing light chain protein of human enterokinase and use thereof
Scholthof et al. A naturally occurring deletion mutant of figwort mosaic virus (caulimovirus) is generated by RNA splicing
WO2022019560A1 (en) N-glycosylation mutant rice, method for preparing same, and method for preparing rice for protein production by using same
López et al. MALDI‐TOF characterization of hGH1 produced by hairy root cultures of Brassica oleracea var. italica grown in an airlift with mesh bioreactor
CN108893486A (en) A kind of carrier can be used for filamentous fungi gene knockout and application
WO2020059960A1 (en) Recombinant vector comprising pig fc fragment and method for producing recombinant protein using same vector
EP0391972A1 (en) Cucumber mosaic virus coat protein gene.
CN107177602B (en) NtDR1 gene related to drought tolerance of plant and application thereof
WO2023177114A1 (en) High expression vector including strong recombinant promoter and/or terminator for mass-producing protein of interest in plant, and method for mass-producing protein of interest using same
KR100756889B1 (en) Marker free transgenic potato hairy roots using agrobacterium rhizogenes
CN117286178B (en) Simplified construction method of double-component viral vector and related application thereof
WO2024096643A1 (en) Method for preparing monoclonal-antibody-producing rice by using n-glycosylation mutant rice, and monoclonal antibody produced thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860935

Country of ref document: EP

Kind code of ref document: A1