WO2014088088A1 - Method for detecting and identifying bacterium belonging to genus mycoplasma or ureaplasma - Google Patents

Method for detecting and identifying bacterium belonging to genus mycoplasma or ureaplasma Download PDF

Info

Publication number
WO2014088088A1
WO2014088088A1 PCT/JP2013/082779 JP2013082779W WO2014088088A1 WO 2014088088 A1 WO2014088088 A1 WO 2014088088A1 JP 2013082779 W JP2013082779 W JP 2013082779W WO 2014088088 A1 WO2014088088 A1 WO 2014088088A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
oligonucleotide probe
probe
represented
invader
Prior art date
Application number
PCT/JP2013/082779
Other languages
French (fr)
Japanese (ja)
Inventor
玲 柳原
真樹 高梨
橋本 修
Original Assignee
三菱化学メディエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学メディエンス株式会社 filed Critical 三菱化学メディエンス株式会社
Priority to JP2014551150A priority Critical patent/JP6019134B2/en
Publication of WO2014088088A1 publication Critical patent/WO2014088088A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Definitions

  • the present invention relates to a method for detecting and identifying Mycoplasma and Ureaplasma bacteria, and a reagent kit.
  • Urinary tract infections are caused by the engraftment and propagation of pathogens from the kidneys through the ureters and bladders to the urethral passages, and exhibit the same pathology and pathophysiology regardless of the type of infectious bacteria. .
  • Bacterial infections of the urethra are caused by bacteria that have retrograde to the urethra propagate acutely or chronically in the upper and lower urinary tracts of men and in the periurethral glands present throughout the female urethra.
  • urinary tract infections in sexually transmitted diseases that are transmitted through sexual negotiations are generally asymptomatic in women, but urethritis is common in men. Most obvious thing pathogenic significance as pathogenic bacteria male urethritis was gonococcal (N.
  • C. trachomatis Chlamydia trachomatis
  • Urethitis is divided into gonococcal urethritis and non-gonococcal urethritis, and non-gonococcal urethritis is further classified into chlamydial urethritis and non-chlamydial urethritis.
  • Trachomatis is detected in about 30 to 40%, and it was not clear what the symptoms originated from.
  • Mycoplasma (genus Mycoplasma ) and Ureaplasma (genus Ureaplasma ) bacteria are distinguished from other bacteria due to the lack of cell walls and the like, and are the smallest microorganisms having a self-replicating function. From humans, detection of 13 species in the genus Mycoplasma and 2 species in the genus Ureaplasma have been reported. Among them, Mycoplasma pneumoniae ( M.
  • pneumoniae which is a pneumonia- causing fungus
  • M. Detection of genitalium has been reported and is being watched as a non-gonococcal non-chlamydial causative fungus.
  • Mycoplasma hominis M. hominis
  • urea plasma ureaity cam U. urealyticum
  • urea plasma parvum U. parvum
  • M.M. genitalium is a causative bacterium of non-gonococcal urethritis due to a significantly higher detection rate than healthy individuals as a result of inoculation experiments with primates since isolation from patients with non-gonococcal urethritis was reported It is strongly suggested.
  • M.M. genitalium is C.I. trachomatis infection and N. Detected in 20-30% of male urethritis patients denied gonorrhoeae infection and in less than 10% of female cervicitis patients, which are significantly higher than the detection rate of asymptomatic controls.
  • ureallyticum is associated with important and significant human morbidity and mortality but can also be found in asymptomatic healthy individuals as well. M.M. hominis and U.I. There is also a report that ureallyticum has no significant difference in the detection rate from healthy individuals, and there are still many unclear points about its pathogenic role. U. It has been suggested that parvum may cause inflammation of the placental amniotic sac in the early stages of pregnancy leading to infertility. As described above, it is desired to clarify these roles in nongonococcal urethritis, and a reliable and highly sensitive detection method from clinical specimens is important.
  • M there is generally no difference between chlamydial non-gonococcal urethritis and non-chlamydia non-gonococcal urethritis, but M.
  • M The possibility of involvement of genitalium has been pointed out.
  • the sensitivity of genitalium to various antibacterial agents is C.I. Slightly different from trachomatis and the like, tetracycline and macrolide are more effective than new quinolone, which is the first-line drug for the treatment of urethritis, and the selection of macrolide antibacterial drugs is particularly recommended. Therefore, mycoplasma genus and ureaplasma genus, in particular, M. pneumoniae, are also used for selecting an appropriate treatment strategy and determining the effect . There is a need for a test method that allows early detection and identification of genitalium bacteria.
  • Separation culture method is a gold standard for bacterial detection and identification, but mycoplasma culture requires a culture medium with complicated nutritional conditions and addition of carbon dioxide as a culture condition for cell growth. In many laboratory facilities, it is difficult to isolate mycoplasma cultures. Therefore, it remains impossible to truly diagnose the presence of these important pathogenic bacteria. Moreover, the growth is relatively slow and reaches only a low cell density compared to the majority of bacteria, so it is not very rapid for use in clinical diagnosis. Further, in serological tests, M.M. pneumoniae and M. pneumoniae . There was a problem in terms of specificity, such as cross-reactions with genitalium .
  • the DNA fluorescent staining method takes several days to several weeks to obtain the result, and it is remarkably lacking in speed for use in clinical diagnosis.
  • Classification based on biochemical properties is unsuitable for clinical diagnosis because more than 100 bacteria can be divided into several groups because of the few constituent enzymes of Mycoplasma bacteria.
  • nucleic acid amplification tests such as PCR, which is a molecular biological technique, have been adopted by many laboratories, test companies, and reagent companies for detecting microbial infections.
  • Nucleic acid amplification test is also used for detection of Mycoplasma and Ureaplasma, and detection by PCR method using species-specific primers has been carried out. As a result, many detections from clinical materials are reported. became.
  • PCR polymerase chain reaction
  • LCR ligase chain reaction
  • LAMP strand displacement amplification
  • TMA transcription-mediated amplification
  • Detection and identification of Mycoplasma and Ureaplasma bacteria using the PCR method include detection and identification of PCR amplification products by plate hybridization (Patent Document 1), decoding the base sequence of PCR products, and system analysis
  • Patent Document 3 A method for detection and identification by JP
  • Patent Document 3 A method for detection, identification and quantification by Real-time PCR targeting genitalium
  • the method for detecting and identifying Mycoplasma and Ureaplasma bacteria using the method described above is a method that requires many assay steps and requires a long assay time, or is difficult to automate. However, it cannot meet the demands of laboratories, particularly laboratories, which have a low processing capacity and need to process a large amount of specimens. As a result, there has been a situation where the purpose of promptly providing a material for selecting an appropriate treatment policy and a material for determining the effect of a therapeutic agent cannot be achieved. Further, in non-gonococcal urethritis, M. genitalium , M. et al . hominis , U .; ureallyticum and U.I.
  • the present invention has been made in view of the above problems, and has an object to detect and identify Mycoplasma and Ureaplasma bacteria with rapid, simple and high accuracy.
  • a gene amplification reaction method by PCR hereinafter sometimes referred to as a PCR method
  • an invader method an invasive cleavage structure cleavage assay method
  • the present invention relates to the following [1] to [25].
  • a method for detecting and identifying Mycoplasma and Ureaplasma bacteria comprising the following steps; (A) A step of performing PCR using a primer set set for a region common to nucleic acids contained in the bacteria group in 16s rRNA of Mycoplasma and Ureaplasma bacteria (b) The Mycoplasma and Urea A step of detecting and identifying a predetermined bacterium contained in a plasma genus bacterial group using an invader reaction.
  • the predetermined bacterium is M. pneumoniae. genitalium , M. et al . hominis , U .; ureallyticum , and U.S.A.
  • the invader reaction uses an oligonucleotide probe set including a sequence specific to the nucleic acid contained in each of the selected bacteria.
  • the predetermined bacterium is M. pneumoniae. genitalium , M. et al . hominis , U .; ureallyticum , and U.S.A. at least one selected from parvum ,
  • An oligonucleotide probe having an invader reaction that is a sequence common to the nucleic acids contained in each of the selected bacteria, and a sequence specific to the nucleic acids contained in the Mycoplasma and Ureaplasma groups The method according to [1], wherein the set is used.
  • [4] The method according to any one of [1] to [3], wherein the primer set is capable of amplifying a region consisting of positions 516 to 1049 of the base sequence represented by SEQ ID NO: 1.
  • the PCR primer set is a primer set consisting of the nucleotide sequences represented by SEQ ID NO: 5 and SEQ ID NO: 6.
  • the oligonucleotide probe sets, M. [1], [2] is an oligonucleotide probe set designed for detection and identification of genitalium, using the 320th base or its complementary base in the base sequence represented by SEQ ID NO: 37 as a target nucleic acid.
  • the oligonucleotide probe sets, M. [1], [2] is an oligonucleotide probe set designed for detection and identification of hominis and designed using the 100th base or its complementary base in the base sequence represented by SEQ ID NO: 38 as a target nucleic acid. , [4], The method in any one of [5].
  • [8] The oligonucleotide probe set described in US Pat.
  • the oligonucleotide probe set is used for detection and identification of bacteria belonging to the genus Mycoplasma and Ureaplasma, and the 264th base in the base sequence represented by SEQ ID NO: 37 or its complementary base is designed as a target nucleic acid.
  • the oligonucleotide probe set containing an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 is an oligonucleotide probe set according to [6], wherein the oligonucleotide probe comprising a sequence specific to the nucleic acid contained in genitalium Method.
  • the oligonucleotide probe comprising an allele probe represented by SEQ ID NO: 10 and an invader probe represented by SEQ ID NO: 11 is an oligonucleotide probe set according to [7], wherein the oligonucleotide probe comprising a sequence specific to the nucleic acid contained in hominis Method.
  • U.S. The oligonucleotide probe comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 according to [8], wherein the oligonucleotide probe comprising a sequence specific to the nucleic acid contained in urealyticum is an oligonucleotide probe set Method.
  • the oligonucleotide probe comprising a sequence specific to the nucleic acid contained in parvum is an oligonucleotide probe set comprising the allele probe represented by SEQ ID NO: 16 and the invader probe represented by SEQ ID NO: 14 according to [9].
  • Method. [15] An oligonucleotide probe comprising a sequence common to the nucleic acid contained in each of the selected bacteria, and comprising a sequence specific to the nucleic acid contained in the Mycoplasma and Ureaplasma bacteria groups The method according to [10], which is an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21.
  • [16] The method according to any one of [1] to [15], wherein a plurality of oligonucleotide probe sets used for the invader reaction are used in the same reaction vessel.
  • [17] The method according to any one of [1] to [16], wherein an internal standard substance and an oligonucleotide probe set used for an invader reaction to the internal standard substance are simultaneously present in the reaction vessel.
  • [18] The oligonucleotide probe set according to [17], wherein the oligonucleotide probe set is designed using the 329th base in the base sequence represented by SEQ ID NO: 36 or a complementary base thereof as a target nucleic acid.
  • the oligonucleotide probe set including a sequence specific to the internal standard substance is an oligonucleotide probe set including an allele probe represented by SEQ ID NO: 23 and an invader probe represented by SEQ ID NO: 24.
  • Method. [20] The method according to any one of [1] to [19], wherein the step of carrying out the PCR and the step of carrying out detection and identification using the invader reaction are carried out simultaneously. [21] The method according to any one of [1] to [19], wherein a step of performing detection and identification using the invader reaction is performed subsequent to the step of performing the PCR.
  • Mycoplasma and ureaplasma bacteria comprising a primer set of SEQ ID NOS: 5 and 6 and an oligonucleotide probe set selected from at least one of the following (a) to (e): Nucleic acid probe assay reagent kit for detection and identification: (A) M.M. detection of genitalium , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 for identification; (B) M.M.
  • an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 10 and an invader probe represented by SEQ ID NO: 11 for identification;
  • C U.I. detection of ureallyticum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 for identification;
  • D U.
  • an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14 for identification;
  • An oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma and Ureaplasma bacteria groups.
  • Mycoplasma and Ureaplasma bacteria comprising a primer set of SEQ ID NOs: 5 and 6, and an oligonucleotide probe set designed with a sequence common to all Mycoplasma and Ureaplasma bacteria as a target site Nucleic acid probe assay reagent kit for detection and identification.
  • the assay can be performed in a short time with few work steps, and since it can be automated, it is possible to process a large amount of specimens with high throughput. Further, not only the operation process becomes simple, but also the container is not opened after mixing the reagents, so that contamination due to carryover or the like can be avoided.
  • all Mycoplasma and Ureaplasma bacteria that have been reported to be isolated from nongonococcal urethritis and clinical specimens can be detected with the same sensitivity, and the species of the bacteria can be identified with high specificity.
  • mycoplasma and ureaplasma bacteria that have been reported to be isolated from humans using clinical specimens are equivalent. Can be identified and identified for species that are implicated in non-gonococcal urethritis, helping to accumulate accurate information about non-gonococcal urethritis-causing fungi It is possible to quickly provide a therapeutic policy selection material and a therapeutic drug effect determination material.
  • M.M. genitalium M. et al . hominis , U .; ureallyticum , U.S.A. It is the result of aligning the sequences obtained from GenBank for four species of parvum according to the colstalW algorithm for a part of the 16srRNA region. It is the figure which described the positional information on the primer set and the various oligonucleotide probe which were designed in Example 1 based on the alignment result of FIG. It is the figure which described the positional information on the primer set and various oligonucleotide probe which were designed in the comparative example 1 based on the alignment result of FIG.
  • An embodiment of the detection and identification of Mycoplasma and Ureaplasma bacteria of the present invention is: (A) in 16s rRNA of Mycoplasma and Ureaplasma bacteria, performing PCR using a primer set set for a region common to nucleic acids contained in the bacteria group; and (b) the Mycoplasma genus and The method includes a step of detecting and identifying a predetermined bacterium contained in a group of ureaplasma bacteria using an invader reaction.
  • all Mycoplasma and Ureaplasma bacteria are to be detected and identified.
  • Mycoplasma and 2 species of Ureaplasma that have been reported to be detected from humans.
  • M. has been suggested to cause urinary tract infections . genitalium , M. et al . hominis , U .; ureallyticum , U.S.A. It is preferable to detect and identify parvum .
  • Biological samples used in embodiments of the present invention include samples that may contain one or more of the bacteria to be tested and can be obtained from humans, non-human animals, plants, or food.
  • Said biological sample can comprise a host organism, eg cells, tissues and / or DNA from a human patient, the purpose of which is to test for the presence of bacteria in that host, the host itself It is not intended to test DNA.
  • nucleic acid DNA, RNA, gene expression, code, template, promoter, primer, oligonucleotide probe, PCR, sequence, etc.
  • molecular biology genetics, genetic engineering, etc. It has the same meaning as a widely used term.
  • the nucleic acid sample is a sample containing nucleic acid and is not particularly limited as long as it is the biological sample.
  • genomic DNA or RNA obtained from all cells in the sample using blood or tissue as a sample is applicable.
  • the extraction of the nucleic acid can be performed by a known method such as a phenol / chloroform method.
  • a commercially available reagent kit for nucleic acid extraction can also be used.
  • the target site is a nucleic acid sequence in which a first oligonucleotide probe (3 ′ terminal sequence of an allele probe) and a second oligonucleotide probe (invader probe) are hybridized in a target nucleic acid sequence present in a nucleic acid sample. It is used for detection and identification of Mycoplasma and Ureaplasma bacteria.
  • the target nucleic acid refers to a base at a site where the nucleic acid sequence of the target site and the following two oligonucleotide probes among various oligonucleotide probes used in the invader method form a triple structure.
  • the base of the target nucleic acid is complementary to the base of the allele probe at the same position, and is non-complementary to the base of the invader probe at the same position.
  • Hybridization means that various oligonucleotide probes and the target nucleic acid sequences of the various oligonucleotide probes bind complementarily to all or part of the sequences.
  • Target sites may include base substitutions, insertions, deletions. Further, it may indicate a strand having a sequence encoding genetic information (hereinafter sometimes referred to as a sense strand) or a strand having a sequence complementary to the sense strand (hereinafter referred to as an antisense strand). May be shown).
  • a reaction system that simultaneously detects and identifies multiple species in the same region, many species are detected by setting target sites on the antisense strand for some species, In addition to being able to be targeted for identification, non-specific reactions can also be suppressed. At that time, the type of target site to be set on the antisense strand can be appropriately set by those skilled in the art. It also includes nucleic acid sequence changes in sequences that are not directly related to genetic information.
  • a 16s rRNA region can be used. It is preferable because detection and identification of target bacteria can be performed with high sensitivity and high accuracy.
  • primers are set for a region common to nucleic acids contained in the bacterial group in 16s rRNAs of all mycoplasma and ureaplasma bacteria.
  • Those skilled in the art can design and synthesize the primer from sequence information by a conventional method, but it is preferable to determine the primer in consideration of the detection and identification steps in the invader reaction described later.
  • a primer which can amplify a region consisting of 516th to 1049th in the base sequence represented by SEQ ID NO: 1 and preferably comprises a base sequence continuous from the 516th base to the 3 ′ end side, or A primer set comprising a primer containing a continuous base sequence capable of hybridizing to the complementary sequence from the 1049th base to the 5 ′ end side can be used.
  • the number of consecutive bases can be appropriately changed and used depending on the relationship with the oligonucleotide probe described later.
  • Particularly preferred is a combination of base sequences represented by SEQ ID NOs: 5 and 6.
  • substitution, deletion, insertion and addition of about 1 to 5 bases can be performed as long as high-sensitivity and high-precision detection of Mycoplasma and Ureaplasma bacteria is not hindered.
  • the concentration of the two kinds of primers used in PCR is not particularly limited as long as it is a concentration ratio that can obtain a double-stranded nucleic acid as a PCR product, but is preferably used at an equal concentration.
  • the invader reaction is a method for detecting and identifying a target site utilizing the property of an enzyme called flap endonuclease (chrybase). That is, when a flap endonuclease forms a triple structure (hereinafter sometimes referred to as a cleavage structure) in which three bases of a target nucleic acid, an allele probe, and an invader probe are aligned at the position of the target nucleic acid, 'Recognize the part where the sequence on the terminal side is a flap, and cut the flap part. Allele probes are designed to contain the same sequence as the target site and a sequence complementary to the FRET probe. The flap portion released from the allele probe is then hybridized with a FRET probe having a complementary sequence.
  • a flap endonuclease that is, when a flap endonuclease forms a triple structure (hereinafter sometimes referred to as a cleavage structure) in which three bases of a target nucleic acid, an allele
  • the base located at the 5 ′ end of the flap portion enters and enters the complementary binding site of the FRET probe itself to form a cleavage structure.
  • the flap endonuclease again recognizes this cleavage structure and cleaves the reporter base with the fluorescent dye.
  • the cleaved fluorescent dye is not affected by the quencher and exhibits fluorescence.
  • the allele probe does not have the same sequence as the target site, for example, when it is a sequence derived from another bacterium, a cleavage structure is not formed. Therefore, since the cleavage by the flap endonuclease and the release of the sequence of the flap portion do not occur, the fluorescence bound to the reporter base is not detected.
  • Detection is by measuring these fluorescences. For example, the fluorescence intensity detected by the fluorescence detector gradually increases from the start of the reaction and eventually reaches a plateau. For this reason, conditions can also be set from the fluorescence intensity when a specific time has elapsed from the start of the reaction, the time until the fluorescence intensity reaches a plateau, the fluorescence intensity at that time, and the like.
  • the invader reaction shows higher target specificity than the method using hybridization alone because the fluorescence intensity is amplified by repeating the reaction with the excess signal probe or FRET probe present in the reaction reagent.
  • a plurality of universal FRET probes can be used, it has an advantage that it is more cost effective than the melting curve method or TaqMan method that requires a fluorescent probe for each target site. According to such a method using an invader reaction, it is possible to prevent contamination that may occur due to opening the reaction vessel lid after PCR, and a highly sensitive analysis can be performed easily and quickly.
  • the invader reaction can be performed simultaneously with the nucleic acid amplification reaction by PCR.
  • This method is generally called an invader method.
  • the invader method is performed by dividing the PCR process. Only the nucleic acid amplification by PCR is performed in the first few cycles, and detection and identification by the nucleic acid amplification reaction and the invader reaction are simultaneously performed in the second PCR cycle. Since the invader method performs nucleic acid amplification by PCR before the invader reaction, the sensitivity is increased by performing nucleic acid amplification, and detection can be performed more quickly than when detection is performed directly from a nucleic acid sample. In addition, since background increases when many templates are brought in, it is preferable to set reaction conditions by adjusting the amount of nucleic acid brought into the reaction system.
  • the invader plus method has the advantage that amplification and subsequent detection can be performed in one tube.
  • Each method is properly used according to the usage scene.
  • the invader method can be used for SNP analysis, and the invader plus method can be used for detection of microorganisms.
  • the real-time invader method that measures the increase in fluorescence caused by the invader reaction in real time, the amount of nucleic acid in the nucleic acid sample can be accurately quantified.
  • oligonucleotide probes FRET probe and Invader probe
  • the nucleic acid amplification reaction by PCR is performed under conditions that do not serve as primers.
  • Taq polymerase is inactivated at a high temperature, and then the invader reaction is performed by maintaining the optimum temperature for the invader reaction for a certain time.
  • the oligonucleotide probe used in the invader reaction means that it has a base sequence capable of forming a stable hydrogen bond with a target site under hybridization conditions. It means a polymer having units or nucleobase subunits, and includes DNA and / or RNA or analogs thereof. A perfect match between the nucleic acids of the various oligonucleotide probes is not required.
  • various oligonucleotide probes labeled with a labeling compound can be used.
  • various oligonucleotide probes will be described by way of example in which the target site is set to the sense strand.
  • the allele probe is composed of a first oligonucleotide probe and a third oligonucleotide probe, and is a hybridization region capable of forming a complementary strand by hybridization with a region containing a base from the target nucleic acid to the 5 ′ end of the target site.
  • First oligonucleotide probe and a flap region (third oligonucleotide probe) that has a sequence unrelated to the sequence of the target site and does not hybridize with the target site. It is arranged on the 5 ′ end side of the oligonucleotide probe.
  • the base corresponding to the target nucleic acid in the first oligonucleotide probe is located on the most 5 'side of the first oligonucleotide probe and has a sequence specific to the target nucleic acid.
  • specific means that it hybridizes with the nucleic acid sequence of the target site of the target bacterium and does not substantially hybridize with the nucleic acid sequence of other bacteria.
  • an oligonucleotide probe is considered to hybridize with other bacteria, if the bacteria are rarely detected in clinical specimens to be examined, or usually If a non-specific reaction due to a cross-reaction with a rarely detected bacterium is detected, there will be no problem in the actual detection and identification of the target bacterium, so the use of such an oligonucleotide probe is allowed. .
  • the first oligonucleotide probe which is the 5 'terminal sequence of the allele probe, is labeled with a labeling compound without using the FRET probe described later, and is designed to emit fluorescence when cleaved with a flap endonuclease. Thus, it can be used for detection and identification of target bacteria.
  • An invader probe (hereinafter sometimes referred to as a second oligonucleotide probe) is an unlabeled oligo that hybridizes with a region containing a base from the target nucleic acid to the 3 ′ end of the target site to form a complementary strand.
  • the base located at the 3 ′ end of the invader probe and corresponding to the target nucleic acid may be any base, and may be designed not to hybridize. Therefore, when a nucleic acid sample containing a target nucleic acid is hybridized with an allele probe or an invader probe, one base of the invader probe is interrupted at the position of the target nucleic acid where the target site and the first oligonucleotide probe are hybridized.
  • the flap endonuclease is a flap region (third oligo) which is a sequence on the 5 ′ end side of an allele probe when three bases of a target nucleic acid, an allele probe and an invader probe are aligned to form a cleavage structure.
  • the third oligonucleotide probe is released. Since this third oligonucleotide probe has a sequence complementary to a predetermined region of the FRET probe described later, it hybridizes with the FRET probe.
  • the detection is performed using a FRET probe (hereinafter sometimes referred to as “fourth oligonucleotide probe”) (hereinafter referred to as “fourth oligonucleotide probe”).
  • the FRET probe is designed so that its 5 ′ terminal sequence self-associates to form a loop structure, and is composed of three regions. That is, the region from the 5 ′ end of the FRET probe to the loop structure (region 1), the region forming the stem loop (region 2), and the region from the stem loop to the hybridization of the third oligonucleotide probe (region 3) is there.
  • Region 1 faces the region 2 to form a loop structure and is designed to be a complementary sequence. Therefore, region 1 forms a complementary strand with region 2 itself.
  • a flap that is, a region (region 3) that has a sequence complementary to the third oligonucleotide probe and hybridizes with the third oligonucleotide probe. Since the FRET probe has a sequence completely unrelated to the target sequence, it is possible to select and set the sequence according to the purpose of detection and identification regardless of the type of the target sequence, and to set a common sequence. it can. It is also possible to appropriately set an optimal combination of the sequence of the first oligonucleotide probe and the invader probe designed specifically for the target site and the flap portion of the allele probe, that is, the sequence of the third oligonucleotide probe.
  • a reporter is labeled on the base at the 5 'end, and a quencher is bound downstream thereof. Therefore, in this state, the quencher absorbs the fluorescence, and the fluorescence detector cannot detect the fluorescence.
  • Use of dyes such as 6-FAM, TET, HEX, Cy3, VIC, TAMRA, ROX, LC Red, Cy5, BHQ-1, BHQ-2, BHQ-3, Yakima Yellow, Redmond Red, etc.
  • usable dyes are not limited to these, and those skilled in the art can appropriately select and use a dye having a wavelength that can be detected by an instrument actually used for measurement. .
  • FAM has an excitation wavelength of 494 nm and a detection wavelength of 518 nm
  • VIC has an excitation wavelength of 538 nm and a detection wavelength of 552 nm
  • ROX has an excitation wavelength of 587 nm and a detection wavelength of 607 nm.
  • Yakima Yellow has an excitation wavelength of 531 nm and a detection wavelength of 550 nm, which is almost equivalent to VIC, it can be detected and identified using a filter set for VIC.
  • Redmond Red has an excitation wavelength of 579 nm and a detection wavelength of 595 nm, which is substantially equivalent to ROX, and therefore can be detected and identified using a filter set for ROX. In this way, it is possible to construct a detection and identification reaction by combining a plurality of dyes.
  • the third oligonucleotide probe hybridizes in the region 3 of the FRET probe, it hybridizes in such a way that the base of the third oligonucleotide probe enters between the complementary strands forming a loop on the 5 ′ end side of the FRET probe.
  • the third oligonucleotide probe becomes an invader probe to form a cleavage structure (hereinafter sometimes referred to as a second cleavage structure).
  • a second cleavage structure cleavage structure
  • the FRET probe utilizes the property of forming a stem loop
  • factors affecting the properties of the FRET probe as a probe include the length of the self-complementary region, the length of the overlap region, Watson-Crick base Stability of hairpins or stem-loop structures as predicted by the presence or absence of pairs and specially stable loop sequences is envisaged, but those skilled in the art will also consider the design of the sequences that form the stem loops.
  • these fourth oligonucleotide probes can be appropriately designed.
  • the fluorescence intensity emitted from the FRET probe is measured, detected, and identified, but a determination criterion can also be set in order to quickly report the test result.
  • a determination criterion can also be set in order to quickly report the test result.
  • the amount of fluorescence when the plasmid is 0 copies / reaction is used as the background .
  • genitalium is 6,000
  • M. hominis is 6,000
  • U.I. parvum 1,700
  • ureallyticum is 800
  • Mycoplasma and Ureaplasma genus hereinafter abbreviated as ALL Myco
  • ALL Myco Myco
  • the internal standard is set to 1,700 as the cut-off value. Can do.
  • a site having a species-specific sequence in a region used for detection and identification of all Mycoplasma and Ureaplasma bacteria can be used.
  • the target site is set with respect to a continuous base sequence before and after the sequence portion specific to the bacterium to be detected and identified as a target nucleic acid .
  • 320 th base of the base sequence represented by SEQ ID NO: 37 in the case of genitalium M. 100 th base of the base sequence represented by SEQ ID NO: 38 in the case of hominis, U. 312 th base of the base sequence represented by SEQ ID NO: 39 in the case of urealyticum, U.
  • the target site can be set using the 329th base of the base sequence represented by SEQ ID NO: 36 as the target nucleic acid.
  • the number of consecutive bases in each oligonucleotide probe that hybridizes to the target site can be adjusted as appropriate, taking into account the calculation of adjacent bases and the calculation of the free energy of a given structure in addition to the Tm value. It is not limited to the number of bases.
  • the invader reaction uses a reaction in which a nucleic acid sequence to be detected and identified at a target nucleic acid position, an allele probe and an invader probe form a triple structure. Therefore, before the allele probe hybridizes to the target site, the invader probe must enter and hybridize. Therefore, the invader probe can be designed and used so as to form a triple structure by making the Tm value of the invader probe smaller than that of the allele probe.
  • oligonucleotide probes can usually be designed by selecting species-specific sequences based on the sequence information. However, those skilled in the art should appropriately design and use them according to known methods. Is possible. As described above, in the invader reaction, since the invader probe enters between the target sequence and the allele probe to form a cleavage structure, the invader probe has a smaller Tm value than the allele probe. It is possible to adjust appropriately based on the presence or absence of a higher order structure of the corresponding sequence part, the GC content, etc. For example, it is possible to design by consigning to Hologic and to select a sequence by considering an optimal combination with primers and probes. Moreover, those skilled in the art can appropriately manufacture various designed oligonucleotide probes according to known methods. For example, production may be outsourced to a company such as Hologic.
  • a plurality of oligonucleotide probes are designed based on the general index as described above, and a plurality of Mycoplasma and Ureaplasma bacteria are simultaneously detected and identified using these oligonucleotide probes.
  • the conditions of the invader reaction suitable for the reaction can be set as appropriate, but when the invader reaction conditions are to be set to specific conditions, each oligonucleotide probe exhibits the same reactivity under the conditions, It is also possible to improve the oligonucleotide probe sequence side so that each oligonucleotide probe can react with high specificity with the target site of the bacteria to be detected and identified.
  • the oligonucleotide probe sequence is partially modified, or a plurality of oligonucleotide probes having similar sequences. And can be determined as appropriate by selecting one that exhibits the most appropriate reaction under specific conditions.
  • species-specific oligonucleotide probes can be designed to identify each species for Mycoplasma or Ureaplasma bacteria. A plurality of species can be detected and identified simultaneously by labeling different dyes on the oligonucleotide probes designed for each species.
  • the newly reported bacterium is phylogenetic close to either the Mycoplasma or Ureaplasma genus, i.e. the organisms are close to each other in an evolutionary sense, and thus far away. It is only necessary that the entire nucleic acid sequence has higher homology than the organism, and it is not necessary that the bacteria are closely related to the four types of bacteria and have high homology.
  • the oligonucleotide probe set includes an allele probe and an invader probe, and can detect and identify target Mycoplasma and Ureaplasma bacteria without using a FRET probe.
  • the end of the allele probe should be labeled and designed to emit fluorescence when cleaved by a flap endonuclease.
  • a FRET probe can also be included as needed.
  • the allele probe having the base sequence in which the sequence of the first oligonucleotide probe is located after the third oligonucleotide probe sequence per target site to be detected and identified, the second oligo There is an invader probe consisting of a nucleotide probe sequence and a FRET probe consisting of a fourth oligonucleotide probe sequence.
  • Oligonucleotide probe sets can be used by appropriately selecting what oligonucleotide probe sets are combined depending on the purpose and situation of detection and identification. For example, at least one or more sets of detection and identification can be performed using only a species-specific oligonucleotide probe set to be identified. These may be used in one set of oligonucleotide probe sets or in combination of two or more sets of oligonucleotide probes.
  • M.M. Detection of genitalium in the case of identification, the oligonucleotide probe set containing invader probe represented by the allele probe and SEQ ID NO: 8 of SEQ ID NO: 7, M. Detection of hominis, in the case of identification, the oligonucleotide probe set containing invader probe represented by the allele probe and SEQ ID NO: 11 of SEQ ID NO: 10, U. Detection of urealyticum, in the case of identification, the oligonucleotide probe set containing invader probe represented by the allele probe and SEQ ID NO: 14 of SEQ ID NO: 13, U.
  • an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14, the target species is detected with high sensitivity and high accuracy. It is preferable because it can be identified.
  • allele probes and invader probes including a first oligonucleotide probe specific to the target site are designed, and each species specific It can also be used simultaneously with the designed oligonucleotide probe.
  • the sequence of the third oligonucleotide probe that is cleaved from the allele probe and released, the sequence of the FRET probe to which the third oligonucleotide probe binds, and the fluorescently labeled compound are the sequence of the oligonucleotide probe and the fluorescence that are designed specifically for the species, respectively. Designed differently from the labeled compound.
  • a first oligonucleotide probe and an invader probe are designed that have a sequence specific to genitalium as a target site. Further, a third oligonucleotide probe that is cleaved from the allele probe and released, and a FRET probe that is complementary-bonded to the third oligonucleotide probe and labeled with FAM at the base on the 5 ′ end side are prepared. On the other hand, a first oligonucleotide probe and an invader probe are designed using a sequence common to all Mycoplasma and Ureaplasma bacteria as a target site.
  • a third oligonucleotide probe that is released when the first oligonucleotide probe is cleaved and a FRET probe that is complementary-bonded to the third oligonucleotide probe and labeled with a VIC on the 5 ′ terminal side are prepared. All these reagents are mixed and an invader reaction is performed. At this time, an invader method in which PCR and an invader reaction are simultaneously performed may be performed, or an invader plus method in which an invader reaction is performed after the amplification reaction by the PCR reaction may be performed. The invader plus method is preferable because highly sensitive analysis can be performed easily and rapidly.
  • Detection is performed by measuring the fluorescence intensity of FAM and VIC with a fluorescence detector. That is, as a result of detection, if VIC fluorescence can be detected in addition to strong FAM fluorescence, it means that the nucleic acid contained in the sample is a bacterium belonging to the genus Mycoplasma or Ureaplasma.
  • the sequence is M.M. It means having a genitalium specific sequences, M. can be identified as genitalium .
  • fluorescence VIC of FAM are, M. It can be presumed that they are bacteria of the genus Mycoplasma or Ureaplasma other than genitalium .
  • an oligonucleotide probe set for detecting and identifying the internal standard substance may be used in combination.
  • an internal standard substance can be added to the reaction solution.
  • the internal standard is amplified by the primer set used, but does not react with any of the species-specific oligonucleotide probes used in the invader reaction process, and the oligonucleotide probe designed for detection and identification of the internal standard That have a sequence that reacts only with
  • PCR conditions can be changed or primers can be added. However, it is preferable to add the primer so as not to greatly affect the reaction without increasing the number of primer sets.
  • M.M An artificially modified sequence of the genitalium sequence (X77334) can be used.
  • a reagent kit comprising a nucleic acid probe assay composition according to an embodiment of the present invention is configured to detect and identify Mycoplasma and Ureaplasma bacteria using PCR and an invader reaction according to an embodiment of the present invention.
  • a primer set (SEQ ID NOs: 5 and 6) designed in a 16s rRNA region common to all mycoplasma and ureaplasma bacteria of interest, and a sequence common to all mycoplasma and ureaplasma bacteria of interest
  • Oligonucleotide probe set designed as a target site and / or oligonucleotide probe set designed as a target site with at least one species-specific sequence selected from all Mycoplasma and Ureaplasma bacteria can be included.
  • Oligonucleotide probe sets can be used by appropriately selecting what kind of oligonucleotide probe sets are combined according to the purpose and situation of detection and identification. It is possible to select a combination according to the identification method.
  • the oligonucleotide probe set includes an allele probe and an invader probe, and may include a FRET probe as necessary. In the case where the FRET probe is not used, the allele probe end may be labeled and designed to emit fluorescence when cleaved by a flap endonuclease.
  • at least one or more sets of detection and identification target species-specific oligonucleotide probe sets can be included.
  • oligonucleotide probe sets may contain one set of oligonucleotide probe sets or two or more sets of oligonucleotide probe sets.
  • the oligonucleotide probe set include an oligonucleotide probe set selected from at least one of the following (a) to (e).
  • (A) M.M. detection of genitalium an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 for identification
  • B M.M. detection of hominis
  • an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 10 for identification and an invader probe represented by SEQ ID NO: 11,
  • C U.I.
  • oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 for detection and identification of urealyticum
  • D U. detection of parvum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14 for identification
  • E An oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma and Ureaplasma bacteria groups.
  • the oligonucleotide probe set constituting the reagent kit can be appropriately selected and used in accordance with the purpose of the test and the target bacterial species.
  • an internal standard substance and an oligonucleotide probe set for detection and identification of the internal standard substance can also be included.
  • the internal standard can be appropriately selected and used.
  • An oligonucleotide probe set including an allele probe represented by SEQ ID NO: 23 and an invader probe represented by SEQ ID NO: 24 can be used by using a modified part of the genitalium sequence.
  • oligonucleotide probe set for detection and identification of oligonucleotide probe set can also be included.
  • a set of oligonucleotide probes comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 for detection and identification of urealyticum ;
  • D U. detection of parvum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14 for identification;
  • E an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma spp.
  • Ureaplasma spp The bacterial oligonucleotide probe set of interest can be selected and included from any of the above.
  • A M.M. detection of genitalium , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 for identification;
  • B M.M. detection of hominis , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 10 for identification and an invader probe represented by SEQ ID NO: 11,
  • C U.I. a set of oligonucleotide probes comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 for detection and identification of urealyticum ;
  • D U.
  • an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14 for identification;
  • an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma spp.
  • Ureaplasma spp Ureaplasma spp.
  • an internal standard substance and an oligonucleotide probe set for detection and identification of the internal standard substance can also be included.
  • Example 1 Design of primers and oligonucleotide probes
  • M.M. genitalium X77334; SEQ ID NO: 1
  • M. et al . hominis M96660; SEQ ID NO: 2
  • U. urealyticum AF073450; SEQ ID NO: 3
  • GenBank National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov/genbank/
  • Each obtained sequence was aligned using the software GENEX (manufactured by Genetics) according to the algorithm of ClustalW, which is a multiple alignment program. The alignment result is shown in FIG.
  • Primers and oligonucleotide probes were designed with reference to the alignment data. Primers were designed by selecting sequence sites common to these species. Oligonucleotide probes were designed by selecting species-specific sequences. M.M. Genitalium designed the oligonucleotide probe to hybridize to the antisense strand, all others designed the oligonucleotide probe to hybridize to the sense strand.
  • the primer sequences used for the PCR reaction are as follows.
  • Myco_Urea_F 5′-CGCGGGTAATACATGGTTGCAACGTTTATC-3 ′ (SEQ ID NO: 5)
  • Rv1 5′-GCACCACCTGTCACTCTGTTAACCTC-3 ′ (SEQ ID NO: 6)
  • the oligonucleotide probe sequences used for each type are as follows. M.M.
  • the genitalium- specific oligonucleotide probe is as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
  • the fourth oligonucleotide probe designed for detection and identification of genitalium was purchased from Hologic Co., which had its 5 ′ end labeled with FAM.
  • the hominis specific probe is as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
  • Allele probe Mh2_63_P1_arm7 5′-tccgcgcgtccCGCCTCGCTTTGG-3 ′ (SEQ ID NO: 10)
  • Second oligonucleotide probe (invader probe) Mh2_inv2: 5′-GAGTTAAATCCCGGGGCTCAACCCA-3 ′ (SEQ ID NO: 11)
  • Third oligonucleotide probe 5′-tccgcgcgtcc-3 ′ (SEQ ID NO: 12) M.M.
  • a fourth oligonucleotide probe designed for detection and identification of hominis was purchased from Hologic Co., Ltd. with its 5 ′ end labeled with FAM.
  • the urealyticum- specific oligonucleotide probe is as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
  • the fourth oligonucleotide probe designed for detection and identification of urealyticum was purchased from Hologic, with its 5 'end labeled with Redmond Red.
  • the parvum specific oligonucleotide probe is as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case. Allele probe Up_63_P1_arm1: 5′-cgcgccgaggCCGAATGGGTCGGT-3 ′ (SEQ ID NO: 16) Second oligonucleotide probe (invader probe) is, U. A common sequence (SEQ ID NO: 14) with urealyticum was designed and used. Third oligonucleotide probe: 5′-cgcgccgagg-3 ′ (SEQ ID NO: 17) U. The fourth oligonucleotide probe designed for parvum detection and identification was purchased from Hologic, whose 5 ′ end was labeled with Yakima Yellow.
  • oligonucleotide probes common to all Mycoplasma and Ureaplasma bacteria were designed as follows.
  • the flap sequence that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
  • Ureaplasma spp U.urealyticum, U.parvum detection of the fourth oligonucleotide probes for the identification is designed to be common sequences, the 5 'terminus U.
  • the oligonucleotide probe for detection of urealyticum is Yakima, U.
  • the oligonucleotide probe for detection of parvum was labeled with Redmond.
  • Yakima has an excitation wavelength of 531 nm and a detection wavelength of 550 nm, which is almost equivalent to VIC, and therefore can be detected and identified using a filter set for VIC.
  • Redmond since Redmond has an excitation wavelength of 579 nm and a detection wavelength of 595 nm, which is substantially equivalent to ROX, it can be detected and identified using a filter set for ROX.
  • oligonucleotide probes specific to the internal standard were designed.
  • the flap sequence that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
  • Allele probe Myco_IC_P_arm1 5′-cgcgccgaggCGACAGCTAGTATCTACG-3 ′ (SEQ ID NO: 23)
  • the fourth oligonucleotide probe designed for internal standard substance detection and identification was purchased from Hologic Co., Ltd. with its 5 ′ end labeled with Yakima Yellow.
  • the base located at the 3 ′ end of all the third oligonucleotide probes is synthesized so as to bind to the base located at the 5 ′ end of the first oligonucleotide probe by a phosphodiester bond, and one is not mixed when mixing the reagents.
  • One oligonucleotide probe is present in the reaction solution.
  • Table 1 shows a list of primers and each oligonucleotide probe.
  • the third oligonucleotide probe is shown in lower case in the sequence described as an invader probe.
  • IC indicates an internal standard substance.
  • strain Strains of Mycoplasma and Ureaplasma spp. Bacteria were purchased from ATCC (American Type Culture Collection) . genitalium , M. et al . hominis , U .; ureallyticum , U.S.A. Parvum mycoplasma and ureaplasma strains were used. In addition, 41 types of bacteria and yeasts other than Mycoplasma and Ureaplasma bacteria used in the cross test were all purchased from ATCC and used. Table 2 shows a list of strains used.
  • DNA used as a positive control for detection and as a template for PCR reaction was prepared. M. to be detected and identified . genitalium , M. et al . hominis , U .; ureallyticum , U.S.A. DNA extraction was performed using an automated purification reagent (QIAsymphony SP, manufactured by QIAGEN) as 4 strains of parvum . Using the extracted DNA as a template, the primer set consisting of SEQ ID NO: 5 and SEQ ID NO: 6 designed in Example 1 was used for amplification under normal PCR reaction conditions. M.M.
  • genitalium contains bases 516 to 1037
  • hominis contains the 512th to 1019th bases
  • ureallyticum contains bases 492-1013
  • U. parvum amplified the 496th to 1017th bases.
  • the obtained PCR amplification product was inserted into a plasmid for gene recombination (pT7 Blue T-vector, manufactured by Novagen) and cloned according to the attached protocol. This was used as a positive target for detection and a template for PCR reaction.
  • An internal standard substance used for confirming the presence or absence of inhibition during the PCR reaction was prepared.
  • the M.M. Using a plasmid inserted with DNA having the genitalium sequence as a template, The genitalium sequence portion was amplified by a PCR reaction according to a conventional method. After purifying the obtained PCR product, a plasmid for gene recombination (pT7 Blue T-vector, manufactured by Novagen) obtained by artificially modifying a part of the base sequence (corresponding to positions 769 to 930 of X77334) The product was inserted and cloned in accordance with the attached protocol, and used as an internal standard (SEQ ID NO: 36).
  • reagent kit 1 M.
  • a reagent set comprising an oligonucleotide probe set specific to genitalium , an oligonucleotide probe set common to all Mycoplasma and Ureaplasma bacteria (hereinafter referred to as ALL Myco), and an oligonucleotide probe set designed for an internal standard As kit 2, M.M. hominis , U .; ureallyticum , U.S.A. Prepared as a reaction solution for detecting a specific oligonucleotide probe set for each of parvum .
  • Example 3 Examination of PCR condition cycle number
  • the conditions under which each bacterium of parvum can be detected and identified were examined.
  • the plasmid prepared in Example 2 was used so as to be 10 6 to 10 1 copies per reaction.
  • the method of detecting and identifying by the invader reaction simultaneously with the amplification by the PCR reaction is the PCR amplification using a thermal cycler (PRISM 7900HT, manufactured by Applied Biosystems) in which the reagent mixed as described above is heated to 95 ° C. Reaction conditions are (95 ° C., 10 seconds) + (95 ° C., 30 seconds + 70 ° C., 1 minute) ⁇ 2 + (95 ° C., 15 seconds + 70 ° C., 1 minute) ⁇ 10 + (95 ° C., 15 seconds + 63 ° C., 1 minute) ) X40.
  • PRISM 7900HT manufactured by Applied Biosystems
  • the Invader Plus method which detects and identifies by the Invader method after the PCR reaction, uses a thermal cycler (PRISM7900HT, manufactured by Applied Biosystems) in which the reagent mixed as described above is heated to 95 ° C.
  • the reaction conditions were (95 ° C., 10 seconds) + (95 ° C., 15 seconds + 70 ° C., 1 minute) ⁇ 30, followed by heating at 99 ° C. for 10 minutes to inactivate Taq polymerase, (63 ° C., 30 Second) x 60, fluorescence data was acquired by the invader method. Comparison results between the invader method and the invader plus method are shown in FIG. 4 (invader method) and FIG. 5 (invader plus method).
  • the PCR reaction cycle number was amplified as 20, 27, 30, and 40 cycles, followed by heating at 99 ° C. for 10 minutes to inactivate Taq polymerase, and then the invader reaction was performed at 63 ° C. And 60 cycles of fluorescence data were acquired (fluorescence data was acquired every 30 seconds at 63 ° C. for 30 minutes), and the determination results are shown in FIG. 5 (PCR: 30 cycles), FIG. 6 (PCR: 40 cycles), and FIG. (PCR: 20 cycles), shown in Table 3.
  • detection by PCR can be detected from a nucleic acid sample having a low copy number by increasing the number of PCR cycles.
  • the amount of PCR amplification product and the intensity of fluorescence over time regardless of whether the copy number contained in the nucleic acid sample is high or low, It is possible to detect an increasing situation.
  • the amount of the PCR amplification product becomes excessive as the number of PCR reaction cycles increases, so that the background fluorescence intensity increases and it becomes difficult to detect in a high copy number nucleic acid sample. It was found that some species could be excluded from detection despite having a sufficient amount of nucleic acid, which could cause misjudgment (FIG. 6).
  • Example 4 Detection and identification of nucleic acid derived from Mycoplasma and Ureaplasma bacteria
  • the plasmid prepared in Example 2 was used so as to be 10 6 to 10 1 copies per reaction.
  • PCR amplification reaction conditions were 95 ° C., 10 seconds + (95 ° C., 15 seconds + 70 ° C., 1 minute) ) ⁇ 34 cycles + 99 ° C., 10 minutes + (63 ° C., 30 seconds) ⁇ 60 cycles
  • the invader reaction was determined by obtaining fluorescence data of 60 cycles at 63 ° C. (acquiring fluorescence data every 30 seconds at 63 ° C. for 30 minutes).
  • the fluorescence detection amount of the specific oligonucleotide probe was measured to determine the detection criterion.
  • the amount of fluorescence when the plasmid was 0 copies / reaction was used as the background .
  • genitalium is 6,000
  • M. hominis is 6,000
  • U.I. parvum is 1,700 .
  • ureallyticum was set to 800, 800 for Mycoplasma and Ureaplasma bacteria (hereinafter abbreviated as ALL Myco), and 1,700 for the internal standard substance.
  • Table 4 shows the amount of fluorescence of each detected oligonucleotide probe. It was confirmed that the amount of fluorescence detected for any of the various oligonucleotide probes exceeded the judgment value up to 10 copies per reaction.
  • Example 5 Confirmation of reproducibility
  • Detection sensitivity and reproducibility were confirmed using a reagent kit containing primers and oligonucleotide probes designed in the present invention.
  • M.M. genitalium M. et al . hominis , U .; ureallyticum , U.S.A.
  • Three lots were prepared so that the concentration of the plasmid DNA incorporating the PCR amplification product of parvum was 10 2 , 10 1 , and 0 copies per reaction. These three lots were measured 6 times as confirmation of simultaneous reproducibility, and further, confirmation measurement of day difference reproducibility by changing the day was performed 3 times.
  • the concentration at which the detection rate was 100% was defined as the minimum detection limit.
  • the detection and identification methods were the same as in Example 4. As a result, in the 18 measurements carried out, the number of copies with a detection rate of 100% was M.P. genitalium , M. et al . hominis , U .; urealyticum, ALL Myco is 50 copies / test, U. parvum , the internal standard was 100 copies / test and sufficiently satisfied the detection sensitivity required in the laboratory.
  • Example 6 Cross-reactivity test
  • Table 6 shows the results of cross-reactivity studies with 41 bacteria other than Mycoplasma and Ureaplasma that have been reported to be infected with the urinary tract. Shown in Each oligonucleotide probe designed specifically for the species was confirmed to react only with the target bacterium, and a non-specific reaction that reacted with the non-target bacterium was not detected. In addition, when the ALLMyco probe designed with a sequence common to all Mycoplasma and Ureaplasma bacteria as a target site was used, detection of Proteus mirabilis and Vibrio parahaemolyticus was confirmed. It was not detected from yeast. Even when a species other than the target species has a highly homologous sequence, it seems that there is substantially no problem for a species that has almost no separation from clinical specimens.
  • Example 7 Detection from clinical specimen
  • the control method a comparison was made using a method disclosed in JP-A-2004-24206 (hereinafter referred to as the control method). Nucleic acid extraction from the sample was carried out by the same detection and identification method as in Example 3, except that a nucleic acid sample was prepared using QIAsymphony Virum / Bacteria Midi Kit (manufactured by QIAGEN).
  • M.M. In the case of genitalium , M. cerevisiae was also detected from samples not detected by the control method . It was confirmed that genitalium can be detected and identified. Similarly it was compared for the other species results, M. hominis and U.I. detected in not detected analyte by also control method for urealyticum, identification was confirmed to be possible. U. As for parvum , specimens in which the results were inconsistent between the control method and the method of the present invention were observed.
  • the nucleic acid sample contained in the sample has a low copy number close to the minimum detection limit, which is the detection lower limit, and infection of multiple bacteria is suspected It turned out to be a complex infection.
  • the forward primer has the same sequence as that designed in Example 1 (SEQ ID NO: 5), and the reverse primer is designed so that the primer used in the example is shifted 12 bases downstream.
  • the sequence of the reverse primer used is shown below.
  • the oligonucleotide probe sequences used for each type are as follows.
  • the flap sequence that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
  • M.M. A genitalium- specific oligonucleotide probe was designed for the sense strand.
  • the part used as the 3rd oligonucleotide probe of a flap part is not changed.
  • Third oligonucleotide probe 5′-tccgcgcgtcc-3 ′ SEQ ID NO: 29
  • the fourth oligonucleotide probe was prepared by the M.I. The same fourth oligonucleotide probe for detection and identification of genitalium was used.
  • the urealyticum- specific oligonucleotide probe two types of allele probes were used.
  • the third oligonucleotide probe to be the sequence of the flap portion was changed, and the sequence of the fourth oligonucleotide probe was changed accordingly.
  • the flap sequence that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
  • Uu — 63_P1 — 2 arm3: 5′-acggacgcgggagTCGAACGAGGTCTGTT-3 ′ (SEQ ID NO: 31)
  • the second oligonucleotide probe (invader probe) was the same as that designed in Example 1 (SEQ ID NO: 14).
  • the fourth oligonucleotide probe designed for detection and identification of urealyticum was purchased from Hologic, with its 5 ′ end labeled with Yakima Yellow.
  • the fourth oligonucleotide probe was common to Ureaplasma bacteria ( U. urealyticum , U. parvum ), and its 5 ′ end was labeled with Yakima for detection and identification of Ureaplasma bacteria.
  • the oligonucleotide probes common to all Mycoplasma and Ureaplasma bacteria are as follows.
  • the flap sequence that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
  • Allele probe ALL2_63_P2-2_arm6 5′-cgcgaggccgAGATACCCTAGTAGTCCCAC-3 ′ (SEQ ID NO: 33)
  • the 5 ′ end of the second oligonucleotide probe designed for detection and identification was labeled with “(labeled compound)”.
  • Third oligonucleotide probe 5′-cgcgaggccg-3 ′ (SEQ ID NO: 35)
  • the fourth oligonucleotide probe designed for detection and identification of all Mycoplasma and Ureaplasma bacteria was purchased from Hologic Co., Ltd. with its 5 ′ end labeled with Yakima Yellow.
  • Table 7 shows a list of primers and each oligonucleotide probe.
  • IC indicates an internal standard substance.
  • a reagent kit containing the primer and oligonucleotide probe designed in Comparative Example 1 was prepared.
  • the reagent kit 1 includes M.M. Includes detection of genitalium , oligonucleotide probe for identification, internal standard detection, oligonucleotide probe for identification, detection of all Mycoplasma and Ureaplasma bacteria, and oligonucleotide probe for identification.
  • Reagent Kit 2 contains M.M.
  • hominis U .; ureallyticum , U.S.A. It contains oligonucleotide probes for detecting and identifying each of the parvum .
  • primer sets that have sequences designed according to conventional methods from sequence information may not be sufficient.
  • highly specific reactions that take into account the specificity in the detection and identification process in the invader reaction. It turns out that it is necessary to build a system. Therefore, primer sets and oligonucleotide probe sets designed by known methods may not be sufficient for use in the detection and identification of Mycoplasma and Ureaplasma bacteria and may not be used.
  • Test systems that use primers and various oligonucleotide probes are particularly described in M.M. genitalium , M. et al . hominis , U .; ureallyticum , and U.S.A.
  • reagents required for PCR amplification reaction, detection by invader method, and identification reaction are mixed at once in one container, and separation from humans has been reported using clinical samples as materials.
  • All Mycoplasma and Ureaplasma bacteria can be detected with comparable sensitivity and identified for species that are suggested to be associated with nongonococcal urethritis.
  • it helps to accumulate accurate information about non-gonococcal urethritis-causing bacteria, and can promptly provide a material for selecting an appropriate treatment policy and a material for determining the effect of a therapeutic agent.
  • this invention was demonstrated along the specific aspect, the deformation
  • SEQ ID Nos: 7, 10, 13, 16, 18, 19, 23, 24, 27, 30, 31, 33 in the sequence listing are Mg_SE_P1_arm7, Mh2_63_P1_arm7, Uu_63_P1_arm6, Up_63_P1_arm1, ALL2_SE_P1_arm4, ALL2_SE_P1_G_, Uu_63_P1_arm3, Uu_63_P1_2_arm3, ALL2_63_P2-2_arm6.
  • Each base sequence of SEQ ID Nos: 9, 12, 15, 17, 22, 25, 29, 32, and 35 is a third oligonucleotide probe sequence.
  • the base sequence of SEQ ID NO: 36 is an internal standard substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a method for quickly, easily and accurately detecting and identifying a bacterium belonging to the genus Mycoplasma or Ureaplasma. The method comprises: step (a) for performing PCR with the use of a primer set, said primer set being designed for a region common to nucleic acids contained in bacteria belonging to the genera Mycoplasma and Ureaplasma in 16s rRNAs of the aforesaid bacteria; and step (b) for detecting and identifying a definite bacterium belonging to the genus Mycoplasma or Ureaplasma with the use of an invader reaction.

Description

マイコプラズマ属及びウレアプラズマ属細菌を検出、同定する方法Method for detecting and identifying Mycoplasma and Ureaplasma bacteria
 本発明は、マイコプラズマ属及びウレアプラズマ属細菌の検出、同定する方法、及び試薬キットに関する。 The present invention relates to a method for detecting and identifying Mycoplasma and Ureaplasma bacteria, and a reagent kit.
 尿路感染症は、腎臓から尿管、膀胱を通って尿道口にいたる尿の通り道に病原体が生着・増殖することにより引き起こされ、感染菌の種類に関係なく同様の病像、病態を呈する。
 尿道の細菌感染は、尿道に逆行した細菌が、男性の上部尿路と下部尿路、また女性の尿道全体に存在する尿道周囲腺に、急性または慢性に繁殖することにより起こる。中でも性的交渉により感染する性行為感染症における尿路感染症では、女性では一般的に無症候性であるものの、男性では尿道炎が多く見られる。
 男子尿道炎の起炎菌として病原的意義の明らかなもののほとんどは淋菌(N.gonorrhoeae)とクラミジア・トラコマチス(C.trachomatis)であった。尿道炎は淋菌性尿道炎と非淋菌性尿道炎に分けられ、非淋菌性尿道炎はさらにクラミジア性尿道炎と非クラミジア性尿道炎とに分類される。尿道炎の70%を占める非淋菌性尿道炎患者においてC.trachomatisが検出されるのは30~40%程度であり、多くはその症状が何に由来するか明らかでなかった。
Urinary tract infections are caused by the engraftment and propagation of pathogens from the kidneys through the ureters and bladders to the urethral passages, and exhibit the same pathology and pathophysiology regardless of the type of infectious bacteria. .
Bacterial infections of the urethra are caused by bacteria that have retrograde to the urethra propagate acutely or chronically in the upper and lower urinary tracts of men and in the periurethral glands present throughout the female urethra. In particular, urinary tract infections in sexually transmitted diseases that are transmitted through sexual negotiations are generally asymptomatic in women, but urethritis is common in men.
Most obvious thing pathogenic significance as pathogenic bacteria male urethritis was gonococcal (N. gonorrhoeae) and Chlamydia trachomatis (C. trachomatis). Urethitis is divided into gonococcal urethritis and non-gonococcal urethritis, and non-gonococcal urethritis is further classified into chlamydial urethritis and non-chlamydial urethritis. C. in non-gonococcal urethritis patients accounting for 70% of urethritis . Trachomatis is detected in about 30 to 40%, and it was not clear what the symptoms originated from.
 近年、尿道炎とマイコプラズマ属(genus Mycoplasma)およびウレアプラズマ属(genus Ureaplasma)細菌の関与が注目され、尿道炎の起炎菌としての意義についての知見が蓄積しつつある。
 マイコプラズマ属(genus Mycoplasma)およびウレアプラズマ属(genus Ureaplasma)細菌は、細胞壁の欠如などから他の細菌とは区別され、自己複製機能を持った最小の微生物とされている。ヒトからはマイコプラズマ属で13種、ウレアプラズマ属で2種の検出が報告されている。その中で、ヒトに病原性を呈するものとしては、肺炎の起炎菌であるマイコプラズマ・ニューモニエ(M.pneumoniae)がよく知られている。また、近年では非淋菌性非クラミジア性尿道炎患者からの生殖器及び尿路からは、M.genitaliumの検出が報告され、非淋菌性非クラミジア性の起炎菌として注視されている。さらに、マイコプラズマ・ホミニス(M.hominis)、ウレアプラズマ・ウレアリティカム(U.urealyticum)、ウレアプラズマ・パルバム(U.parvum)が単離され、これらの細菌についても尿道炎起炎菌の可能性が考えられており、今後も上記以外の菌種の単離が報告される可能性がある。
In recent years, attention has been paid to the involvement of urethritis and bacteria of the genus Mycoplasma and genus ureaplasma , and knowledge about the significance of urethritis as a causative bacterium is accumulating.
Mycoplasma (genus Mycoplasma ) and Ureaplasma (genus Ureaplasma ) bacteria are distinguished from other bacteria due to the lack of cell walls and the like, and are the smallest microorganisms having a self-replicating function. From humans, detection of 13 species in the genus Mycoplasma and 2 species in the genus Ureaplasma have been reported. Among them, Mycoplasma pneumoniae ( M. pneumoniae), which is a pneumonia- causing fungus, is well known as one that exhibits pathogenicity in humans. In recent years from genital and urinary tract from patients nongonococcal non chlamydial urethritis, M. Detection of genitalium has been reported and is being watched as a non-gonococcal non-chlamydial causative fungus. In addition, Mycoplasma hominis ( M. hominis), urea plasma ureaity cam ( U. urealyticum ), and urea plasma parvum ( U. parvum) have been isolated. There is a possibility that isolation of bacterial species other than the above will be reported in the future.
 特にM.genitaliumは、非淋菌性尿道炎患者からの分離が報告されて以来、霊長類への接種実験の結果、健常人よりも有意に高い検出率などから、非淋菌性尿道炎の起炎菌であることが強く示唆されている。実際、M.genitaliumC.trachomatis感染やN.gonorrhoeae感染を否定された男子尿道炎患者の20~30%、女子子宮頚管炎患者の10%弱に検出され、これらは無症候対照の検出率に比べて有意に高い。 In particular, M.M. genitalium is a causative bacterium of non-gonococcal urethritis due to a significantly higher detection rate than healthy individuals as a result of inoculation experiments with primates since isolation from patients with non-gonococcal urethritis was reported It is strongly suggested. In fact, M.M. genitalium is C.I. trachomatis infection and N. Detected in 20-30% of male urethritis patients denied gonorrhoeae infection and in less than 10% of female cervicitis patients, which are significantly higher than the detection rate of asymptomatic controls.
 M.hominisは、卵管炎、羊膜炎、非特異的腟炎、及び産褥敗血症熱を引き起こす作用因子として関与しているとの報告がある一方で、無症状の女性からも単離された例が多く報告されている。
 U.urealyticumは、非淋菌性尿道炎、絨毛性羊膜炎、早産に関与が指摘されており、分娩時の罹患率や死亡率についての報告がある。約40%もの急性非淋菌性尿道炎が、ウレアプラズマにより引き起こされているとの報告がM.genitaliumよりも以前からなされている一方で、否定的な報告も近年多くなされている。例えば、U.urealyticumは、重要かつ重大なヒトの罹患率及び死亡率に関連してはいるものの、同様に無症候性の健常人においても発見され得る、との報告がなされている。
 M.hominisおよびU.urealyticumは、健常人との検出率に有意差が見られないとの報告もあり、その病原的な役割は未だ不明な点が多く存在する。
 U.parvumは、妊娠初期に胎盤羊膜嚢の炎症を引き起こし、不妊症へと至る可能性が示唆されている。
 以上のように、非淋菌性尿道炎におけるこれらの役割を明らかにすることが望まれており、臨床検体からの確実かつ高感度な検出法が重要である。
M.M. While hominis has been reported to be involved as an agent that causes tubal inflammation, amniotic inflammation, nonspecific vaginitis, and postpartum septic fever, many cases have been isolated from asymptomatic women. Has been.
U. ureallyticum has been implicated in nongonococcal urethritis, chorioamnionitis, and premature birth, and there are reports on morbidity and mortality during delivery. It has been reported that about 40% of acute non-gonococcal urethritis is caused by urea plasma . While it has been made before genitalium, many negative reports have been made in recent years. For example, U. It has been reported that ureallyticum is associated with important and significant human morbidity and mortality but can also be found in asymptomatic healthy individuals as well.
M.M. hominis and U.I. There is also a report that ureallyticum has no significant difference in the detection rate from healthy individuals, and there are still many unclear points about its pathogenic role.
U. It has been suggested that parvum may cause inflammation of the placental amniotic sac in the early stages of pregnancy leading to infertility.
As described above, it is desired to clarify these roles in nongonococcal urethritis, and a reliable and highly sensitive detection method from clinical specimens is important.
 更に、一般にクラミジア性非淋菌性尿道炎と非クラミジア性非淋菌性尿道炎の間に差は認められないが、通常の抗菌治療後に尿道炎症状の持続あるいは再発をきたす難治例にはM.genitaliumが関与する可能性が指摘されている。M.genitaliumの各種抗菌薬に対する感受性はC.trachomatis等とはやや異なり、尿道炎治療の第一選択薬であるニューキノロン系よりもテトラサイクリン系やマクロライド系でより効果が高く、特にマクロライド系抗菌薬の選択が推奨されている。そのため、的確な治療方針の選択および効果判定のためにも、マイコプラズマ属及びウレアプラズマ属、特にはM.genitaliumの細菌について早期の検出と同定が可能な検査法が必要である。 In addition, there is generally no difference between chlamydial non-gonococcal urethritis and non-chlamydia non-gonococcal urethritis, but M. The possibility of involvement of genitalium has been pointed out. M.M. The sensitivity of genitalium to various antibacterial agents is C.I. Slightly different from trachomatis and the like, tetracycline and macrolide are more effective than new quinolone, which is the first-line drug for the treatment of urethritis, and the selection of macrolide antibacterial drugs is particularly recommended. Therefore, mycoplasma genus and ureaplasma genus, in particular, M. pneumoniae, are also used for selecting an appropriate treatment strategy and determining the effect . There is a need for a test method that allows early detection and identification of genitalium bacteria.
 マイコプラズマ属およびウレアプラズマ属の検出、同定検査としては、分離培養法、DNA蛍光染色、生化学性状による分類法等が実施されている。 As detection and identification tests for the genus Mycoplasma and Ureaplasma, separation culture methods, DNA fluorescent staining, classification methods based on biochemical properties, and the like have been implemented.
 分離培養法は、細菌の検出、同定のゴールドスタンダードとされる方法であるが、マイコプラズマの培養は複雑な栄養条件の培養培地を必要とする上に、細胞増殖用の培養条件として二酸化炭素の添加を必要とする事から、多くの検査施設においてはマイコプラズマの培養物の単離を容易に行うことができない。そのためこれらの重要な病原性細菌の存在を真に診断することができないままとなっている。しかも、増殖は比較的緩慢であり、大多数の細菌に比べて低い細胞密度にしか達しないため、臨床診断に利用するには著しく迅速性に欠けている。更には、血清学的試験においても、M.pneumoniaeM.genitaliumとの間などでは交差反応が懸念されるなど特異性の面で問題があった。 Separation culture method is a gold standard for bacterial detection and identification, but mycoplasma culture requires a culture medium with complicated nutritional conditions and addition of carbon dioxide as a culture condition for cell growth. In many laboratory facilities, it is difficult to isolate mycoplasma cultures. Therefore, it remains impossible to truly diagnose the presence of these important pathogenic bacteria. Moreover, the growth is relatively slow and reaches only a low cell density compared to the majority of bacteria, so it is not very rapid for use in clinical diagnosis. Further, in serological tests, M.M. pneumoniae and M. pneumoniae . There was a problem in terms of specificity, such as cross-reactions with genitalium .
 DNA蛍光染色法は、その結果を得るまでに数日から数週間を要し、臨床診断に利用するには著しく迅速性に欠けている。 The DNA fluorescent staining method takes several days to several weeks to obtain the result, and it is remarkably lacking in speed for use in clinical diagnosis.
 生化学性状による分類は、マイコプラズマ属細菌が持つ構成酵素が少ないために、100を超える細菌を幾つかのグループに分ける程度にしかできないため、臨床診断に利用するには不適である。 Classification based on biochemical properties is unsuitable for clinical diagnosis because more than 100 bacteria can be divided into several groups because of the few constituent enzymes of Mycoplasma bacteria.
 近年では微生物感染の検出に分子生物学的手法であるPCR法をはじめとした核酸増幅検査が多くの検査室、検査会社、試薬会社において採用されている。核酸増幅検査は、マイコプラズマ属およびウレアプラズマ属の検出にも活用され、種特異的プライマーを使用したPCR法による検出が行われるようになった結果、臨床材料からの検出が多数報告されるようになった。 In recent years, nucleic acid amplification tests such as PCR, which is a molecular biological technique, have been adopted by many laboratories, test companies, and reagent companies for detecting microbial infections. Nucleic acid amplification test is also used for detection of Mycoplasma and Ureaplasma, and detection by PCR method using species-specific primers has been carried out. As a result, many detections from clinical materials are reported. became.
 核酸増幅検査の最も一般的な方法はポリメラーゼ連鎖反応(PCR)であり、その他にはリガーゼ連鎖反応(LCR)、鎖置換増幅(LAMP)、転写媒介増幅(TMA)、配列に基づく増幅アッセイ、等に基づくものが存在する。
 PCR法を利用したマイコプラズマ属及びウレアプラズマ属細菌の検出、同定方法としては、PCR増幅産物をプレートハイブリダイゼーションにより検出、同定する方法(特許文献1)、PCR産物の塩基配列を解読し、系統解析による検出、同定する方法(特許文献2)、M.genitaliumをターゲットとしたReal-time PCRによる検出、同定および定量方法(特許文献3)が開発されている。
The most common method for nucleic acid amplification testing is the polymerase chain reaction (PCR), others include ligase chain reaction (LCR), strand displacement amplification (LAMP), transcription-mediated amplification (TMA), sequence-based amplification assays, etc. There is something based on.
Detection and identification of Mycoplasma and Ureaplasma bacteria using the PCR method include detection and identification of PCR amplification products by plate hybridization (Patent Document 1), decoding the base sequence of PCR products, and system analysis A method for detection and identification by JP A method for detection, identification and quantification by Real-time PCR targeting genitalium (Patent Document 3) has been developed.
特開2004- 24206号公報JP 2004-24206 A 特開2001-299352号公報JP 2001-299352 A 特開2002-281980号公報JP 2002-281980 A
 上述したような手法を用いたマイコプラズマ属及びウレアプラズマ属細菌の検出、同定方法は、作業工程が多く長いアッセイ時間を必要とする方法であったり、自動化することが困難な方法であったりするため、処理能力が低く大量の検体を処理する必要がある検査室、特に検査センター等の要求を満たすことはできない。結果として、的確な治療方針の選択材料及び治療薬の効果判定材料を迅速に提供するという目的を果たすことができない事態が生じていた。
 更に、非淋菌性尿道炎においては、M.genitaliumをはじめ、M.hominisU.urealyticum及びU.parvumが起炎菌としてその関与が示唆されてきたが、これらの関与を解明し、的確な治療方針の選択及び効果判定をするためには、臨床検体を材料にヒトからの分離が報告されている全てのマイコプラズマ属及びウレアプラズマ属細菌を同等の感度で検出し、その種類を同定する検査法が必要である。感度、特異性、迅速性、簡便性、コストの全てについて要求を満たす検出系を構築することは非常に困難であるが、ゆえに重要で意義のある課題である。
The method for detecting and identifying Mycoplasma and Ureaplasma bacteria using the method described above is a method that requires many assay steps and requires a long assay time, or is difficult to automate. However, it cannot meet the demands of laboratories, particularly laboratories, which have a low processing capacity and need to process a large amount of specimens. As a result, there has been a situation where the purpose of promptly providing a material for selecting an appropriate treatment policy and a material for determining the effect of a therapeutic agent cannot be achieved.
Further, in non-gonococcal urethritis, M. genitalium , M. et al . hominis , U .; ureallyticum and U.I. parvum has been suggested as a causative fungus, but in order to elucidate their involvement and to select an appropriate treatment strategy and determine the effect, separation from humans has been reported using clinical samples as materials. There is a need for a test method that detects all Mycoplasma and Ureaplasma bacteria with the same sensitivity and identifies their types. Although it is very difficult to construct a detection system that satisfies the requirements for sensitivity, specificity, speed, simplicity, and cost, it is therefore an important and meaningful issue.
 既存の核酸増幅を使用した検査方法の多くは種特異的プライマーを使用して開発されているが、それぞれの検出系において、目的とするマイコプラズマ属及びウレアプラズマ属細菌以外の関与については触れられていない場合がある。しかも、わずかな塩基の違いも認識できるほどの高精度な条件を設定しているにも関わらず非特異反応が多く検出されるなど、細菌の種類を正確に同定できる検査系を構築することは非常に困難であった。
 一方で、共通性の高い領域を使用したプライマー設計を行うPCR等の核酸増幅方法による検査法では、同じマイコプラズマ属及びウレアプラズマ属細菌との非特異反応が検出されやすくなる。また、このような共通性の高い領域を使用した場合には、マイコプラズマ属及びウレアプラズマ属以外の細菌との非特異反応が検出される可能性が大きくなる。非特異反応が頻繁に検出される検査系では、再検査を実施するため、作業量が大幅に増えるだけでなく、非特異反応を陽性としてしまうリスクもある。このように、既存の検査方法では信頼性の高い情報を迅速に提供することが困難であることが問題視されていた。
 本発明は上記のような問題に鑑みてなされたものであり、迅速、簡易、高精度に、マイコプラズマ属及びウレアプラズマ属細菌を検出、同定することを目的とした。
Many of the existing testing methods using nucleic acid amplification have been developed using species-specific primers, but the detection systems other than the target Mycoplasma and Ureaplasma bacteria are mentioned in each detection system. There may not be. In addition, it is not possible to construct a test system that can accurately identify the type of bacteria, such as many non-specific reactions are detected despite the fact that high-precision conditions are set so that even slight differences in bases can be recognized. It was very difficult.
On the other hand, non-specific reactions with the same Mycoplasma and Ureaplasma bacteria are likely to be detected by an inspection method using a nucleic acid amplification method such as PCR that performs primer design using a highly common region. In addition, when such a highly common region is used, the possibility that a non-specific reaction with bacteria other than Mycoplasma and Ureaplasma will be detected increases. In a test system in which a non-specific reaction is frequently detected, since the retest is performed, not only the amount of work increases significantly, but there is also a risk that the non-specific reaction becomes positive. Thus, it has been regarded as a problem that it is difficult to quickly provide highly reliable information with existing inspection methods.
The present invention has been made in view of the above problems, and has an object to detect and identify Mycoplasma and Ureaplasma bacteria with rapid, simple and high accuracy.
 本発明者は、上記課題を解決する手段を鋭意検討した結果、PCRによる遺伝子増幅反応法(以下PCR法と称することがある)及び侵襲的開裂構造体切断アッセイ法(以下、インベーダー法、あるいはその反応自体をインベーダー反応と称することがある)を組み合わせることにより、多検体から迅速、簡易、高感度で、マイコプラズマ属及びウレアプラズマ属細菌を検出、同定することができることを見出した。 As a result of earnestly examining the means for solving the above problems, the present inventor has found that a gene amplification reaction method by PCR (hereinafter sometimes referred to as a PCR method) and an invasive cleavage structure cleavage assay method (hereinafter referred to as an invader method, or a method thereof) It has been found that by combining the reaction itself (sometimes referred to as an invader reaction), bacteria of the genus Mycoplasma and Ureaplasma can be detected and identified from multiple specimens quickly, simply and with high sensitivity.
 すなわち、本発明は以下の[1]~[25]に関する。
[1]マイコプラズマ属及びウレアプラズマ属細菌の検出、同定を行う方法であって、以下の工程を含む方法;
(a)マイコプラズマ属及びウレアプラズマ属細菌の16s rRNAにおいて、前記細菌群に含まれる核酸に共通する領域に対して設定したプライマーセットを使用してPCRを実施する工程
(b)前記マイコプラズマ属及びウレアプラズマ属細菌群に含まれる所定の細菌を、インベーダー反応を使用して検出、同定を実施する工程。
[2]前記所定の細菌がM.genitaliumM.hominisU.urealyticum、及びU.parvumから少なくとも一つ以上選ばれるものであり、
インベーダー反応が、前記選ばれた各細菌に含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブセットを使用する、[1]に記載の方法。
[3]前記所定の細菌がM.genitaliumM.hominisU.urealyticum、及びU.parvumから少なくとも一つ以上選ばれるものであり、
インベーダー反応が、前記選ばれた各細菌に含まれる核酸に対して共通な配列であり、且つ、前記マイコプラズマ属及びウレアプラズマ属細菌群に含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブセットを使用する、[1]に記載の方法。
[4]前記プライマーセットが、配列番号1で表される塩基配列の516~1049番目からなる領域を増幅可能である、[1]~[3]のいずれか一項に記載の方法。
[5]前記PCRプライマーセットが、配列番号5及び配列番号6で表される塩基配列からなるプライマーセットである、[1]~[4]のいずれかに記載の方法。
[6]前記オリゴヌクレオチドプローブセットが、M.genitalium検出、同定用であって、配列番号37で表される塩基配列中の第320番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、[1]、[2]、[4]、[5]のいずれかに記載の方法。
[7]前記オリゴヌクレオチドプローブセットが、M.hominis検出、同定用であって、配列番号38で表される塩基配列中の第100番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、[1]、[2]、[4]、[5]のいずれかに記載の方法。
[8]前記オリゴヌクレオチドプローブセットが、U.urealyticum検出、同定用であって、配列番号39で表される塩基配列中の第312番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、[1]、[2]、[4]、[5]のいずれかに記載の方法。
[9]前記オリゴヌクレオチドプローブセットが、U.parvum検出、同定用であって、配列番号40で表される塩基配列中の第312番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、[1]、[2]、[4]、[5]のいずれかに記載の方法。
[10]前記オリゴヌクレオチドプローブセットが、マイコプラズマ属及びウレアプラズマ属細菌検出、同定用であって、配列番号37で表される塩基配列中の第264番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、[1]又は[3]に記載の方法。
[11]M.genitaliumに含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号7で表わされるアレルプローブ及び配列番号8で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、[6]に記載の方法。
[12]M.hominisに含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号10で表わされるアレルプローブ及び配列番号11で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、[7]に記載の方法。
[13]U.urealyticumに含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号13で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、[8]に記載の方法。
[14]U.parvumに含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号16で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、[9]に記載の方法。
[15]前記選ばれた各細菌に含まれる核酸に対して共通な配列であり、且つ、前記マイコプラズマ属及びウレアプラズマ属細菌群に含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号18又は19で表わされるアレルプローブと配列番号20又は21で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、[10]に記載の方法。
[16]前記インベーダー反応に使用されるオリゴヌクレオチドプローブセットを、同一反応容器内において複数使用する、[1]~[15]のいずれかに記載の方法。
[17]更に、内部標準物質と該内部標準物質に対するインベーダー反応に使用するオリゴヌクレオチドプローブセットを反応容器中に同時に存在させる、[1]~[16]のいずれかに記載の方法。
[18]前記オリゴヌクレオチドプローブセットが、配列番号36で表される塩基配列中の第329番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、[17]に記載の方法。
[19]前記内部標準物質に対して特異的な配列を含むオリゴヌクレオチドプローブセットが、配列番号23で表わされるアレルプローブ及び配列番号24で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、[18]に記載の方法。
[20]前記PCRを実施する工程と前記インベーダー反応を使用して検出、同定を実施する工程とが同時に行われる、[1]~[19]のいずれかに記載の方法。
[21]前記PCRを実施する工程に続いて、前記インベーダー反応を使用して検出、同定を実施する工程が行われる、[1]~[19]のいずれかに記載の方法。
[22]配列番号5及び6のプライマーセット、及び、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する配列を標的部位として設計したオリゴヌクレオチドプローブセット、及び/又は、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌から選ばれる少なくとも一つ以上の菌種特異的な配列を標的部位として設計したオリゴヌクレオチドプローブセットを含む、マイコプラズマ属及びウレアプラズマ属細菌の検出、同定用核酸プローブアッセイ試薬キット。
[23]配列番号5及び6のプライマーセット、及び、以下の(a)~(e)から少なくとも一つ以上選ばれるオリゴヌクレオチドプローブセットを含む、[22]に記載のマイコプラズマ属及びウレアプラズマ属細菌の検出、同定用核酸プローブアッセイ試薬キット:
(a)M.genitaliumの検出、同定用の配列番号7で表わされるアレルプローブ及び配列番号8で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、
(b)M.hominisの検出、同定用の配列番号10で表わされるアレルプローブ及び配列番号11で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、
(c)U.urealyticumの検出、同定用の配列番号13で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、
(d)U.parvumの検出、同定用の配列番号16で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、
(e)マイコプラズマ属及びウレアプラズマ属細菌群の検出、同定用の配列番号18又は19で表わされるアレルプローブと配列番号20又は21で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット。
[24]配列番号5及び6のプライマーセット、及び、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する配列を標的部位として設計したオリゴヌクレオチドプローブセットを含む、マイコプラズマ属及びウレアプラズマ属細菌の検出、同定用核酸プローブアッセイ試薬キット。
[25]更に、内部標準物質の検出、同定用の配列番号23で表わされるアレルプローブ及び配列番号24で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットを含む、[22]~[24]のいずれかに記載のマイコプラズマ属及びウレアプラズマ属細菌の検出、同定用核酸プローブアッセイ試薬キット。
That is, the present invention relates to the following [1] to [25].
[1] A method for detecting and identifying Mycoplasma and Ureaplasma bacteria, the method comprising the following steps;
(A) A step of performing PCR using a primer set set for a region common to nucleic acids contained in the bacteria group in 16s rRNA of Mycoplasma and Ureaplasma bacteria (b) The Mycoplasma and Urea A step of detecting and identifying a predetermined bacterium contained in a plasma genus bacterial group using an invader reaction.
[2] The predetermined bacterium is M. pneumoniae. genitalium , M. et al . hominis , U .; ureallyticum , and U.S.A. at least one selected from parvum ,
The method according to [1], wherein the invader reaction uses an oligonucleotide probe set including a sequence specific to the nucleic acid contained in each of the selected bacteria.
[3] The predetermined bacterium is M. pneumoniae. genitalium , M. et al . hominis , U .; ureallyticum , and U.S.A. at least one selected from parvum ,
An oligonucleotide probe having an invader reaction that is a sequence common to the nucleic acids contained in each of the selected bacteria, and a sequence specific to the nucleic acids contained in the Mycoplasma and Ureaplasma groups The method according to [1], wherein the set is used.
[4] The method according to any one of [1] to [3], wherein the primer set is capable of amplifying a region consisting of positions 516 to 1049 of the base sequence represented by SEQ ID NO: 1.
[5] The method according to any one of [1] to [4], wherein the PCR primer set is a primer set consisting of the nucleotide sequences represented by SEQ ID NO: 5 and SEQ ID NO: 6.
[6] The oligonucleotide probe sets, M. [1], [2] is an oligonucleotide probe set designed for detection and identification of genitalium, using the 320th base or its complementary base in the base sequence represented by SEQ ID NO: 37 as a target nucleic acid. , [4], The method in any one of [5].
[7] The oligonucleotide probe sets, M. [1], [2] is an oligonucleotide probe set designed for detection and identification of hominis and designed using the 100th base or its complementary base in the base sequence represented by SEQ ID NO: 38 as a target nucleic acid. , [4], The method in any one of [5].
[8] The oligonucleotide probe set described in US Pat. [1], [2], which are oligonucleotide probe sets designed for detection and identification of urealyticum and designed using the 312th base in the base sequence represented by SEQ ID NO: 39 or its complementary base as a target nucleic acid , [4], The method in any one of [5].
[9] The oligonucleotide probe set described in US Pat. [1], [2], which are oligonucleotide probe sets designed for detection and identification of parvum and designed using the 312th base or its complementary base in the base sequence represented by SEQ ID NO: 40 as a target nucleic acid , [4], The method in any one of [5].
[10] The oligonucleotide probe set is used for detection and identification of bacteria belonging to the genus Mycoplasma and Ureaplasma, and the 264th base in the base sequence represented by SEQ ID NO: 37 or its complementary base is designed as a target nucleic acid. The method according to [1] or [3], which is an oligonucleotide probe set.
[11] M.M. The oligonucleotide probe set containing an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 is an oligonucleotide probe set according to [6], wherein the oligonucleotide probe comprising a sequence specific to the nucleic acid contained in genitalium Method.
[12] M.M. The oligonucleotide probe comprising an allele probe represented by SEQ ID NO: 10 and an invader probe represented by SEQ ID NO: 11 is an oligonucleotide probe set according to [7], wherein the oligonucleotide probe comprising a sequence specific to the nucleic acid contained in hominis Method.
[13] U.S. The oligonucleotide probe comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 according to [8], wherein the oligonucleotide probe comprising a sequence specific to the nucleic acid contained in urealyticum is an oligonucleotide probe set Method.
[14] U.S. The oligonucleotide probe comprising a sequence specific to the nucleic acid contained in parvum is an oligonucleotide probe set comprising the allele probe represented by SEQ ID NO: 16 and the invader probe represented by SEQ ID NO: 14 according to [9]. Method.
[15] An oligonucleotide probe comprising a sequence common to the nucleic acid contained in each of the selected bacteria, and comprising a sequence specific to the nucleic acid contained in the Mycoplasma and Ureaplasma bacteria groups The method according to [10], which is an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21.
[16] The method according to any one of [1] to [15], wherein a plurality of oligonucleotide probe sets used for the invader reaction are used in the same reaction vessel.
[17] The method according to any one of [1] to [16], wherein an internal standard substance and an oligonucleotide probe set used for an invader reaction to the internal standard substance are simultaneously present in the reaction vessel.
[18] The oligonucleotide probe set according to [17], wherein the oligonucleotide probe set is designed using the 329th base in the base sequence represented by SEQ ID NO: 36 or a complementary base thereof as a target nucleic acid. Method.
[19] The oligonucleotide probe set including a sequence specific to the internal standard substance is an oligonucleotide probe set including an allele probe represented by SEQ ID NO: 23 and an invader probe represented by SEQ ID NO: 24. [18 ] Method.
[20] The method according to any one of [1] to [19], wherein the step of carrying out the PCR and the step of carrying out detection and identification using the invader reaction are carried out simultaneously.
[21] The method according to any one of [1] to [19], wherein a step of performing detection and identification using the invader reaction is performed subsequent to the step of performing the PCR.
[22] The primer set of SEQ ID NOs: 5 and 6, and the oligonucleotide probe set designed as a target site for sequences common to all mycoplasma and ureaplasma bacteria, and / or all of the target Nucleic acid probe assay reagent for detection and identification of Mycoplasma and Ureaplasma bacteria, comprising an oligonucleotide probe set designed with at least one species-specific sequence selected from Mycoplasma and Ureaplasma bacteria as a target site kit.
[23] Mycoplasma and ureaplasma bacteria according to [22], comprising a primer set of SEQ ID NOS: 5 and 6 and an oligonucleotide probe set selected from at least one of the following (a) to (e): Nucleic acid probe assay reagent kit for detection and identification:
(A) M.M. detection of genitalium , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 for identification;
(B) M.M. detection of hominis , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 10 and an invader probe represented by SEQ ID NO: 11 for identification;
(C) U.I. detection of ureallyticum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 for identification;
(D) U. detection of parvum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14 for identification;
(E) An oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma and Ureaplasma bacteria groups.
[24] Mycoplasma and Ureaplasma bacteria comprising a primer set of SEQ ID NOs: 5 and 6, and an oligonucleotide probe set designed with a sequence common to all Mycoplasma and Ureaplasma bacteria as a target site Nucleic acid probe assay reagent kit for detection and identification.
[25] Any of [22] to [24], further comprising an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 23 and an invader probe represented by SEQ ID NO: 24 for detection and identification of an internal standard substance A nucleic acid probe assay reagent kit for detecting and identifying Mycoplasma and Ureaplasma bacteria described in 1.
 本発明の実施の形態によれば、PCRとインベーダー反応による検出、同定反応に必要な試薬を容器内に混合して簡便に反応を行うことが可能である。そのため、作業工程が少なく短い時間でアッセイが可能であり、また、自動化することができるため、処理能力が高く大量の検体を処理できる。また、操作工程が簡便となるだけでなく、試薬混合後は容器を開封しないため、キャリーオーバー等によるコンタミネーションを回避することができる。
 また、非淋菌性尿道炎と臨床検体からの分離が報告されている全てのマイコプラズマ属及びウレアプラズマ属細菌を同等の感度で検出し、かつ高い特異性でその細菌の種を同定することができるため、非特異反応を陽性としてしまうリスクを考慮せずによくなり、信頼性の高い情報を迅速に提供することができる。
 また、核酸量や配列の違いに由来するインベーダー反応効率の違い、また、核酸試料の分注精度等に影響を受けて精度が落ちることを回避することができるため、交差反応が無く信頼性の高い精度で細菌の種を同定することができる。
According to the embodiment of the present invention, it is possible to simply carry out a reaction by mixing reagents necessary for detection and identification reaction by PCR and invader reaction in a container. Therefore, the assay can be performed in a short time with few work steps, and since it can be automated, it is possible to process a large amount of specimens with high throughput. Further, not only the operation process becomes simple, but also the container is not opened after mixing the reagents, so that contamination due to carryover or the like can be avoided.
In addition, all Mycoplasma and Ureaplasma bacteria that have been reported to be isolated from nongonococcal urethritis and clinical specimens can be detected with the same sensitivity, and the species of the bacteria can be identified with high specificity. Therefore, it becomes better without considering the risk of making a non-specific reaction positive, and highly reliable information can be provided quickly.
In addition, since it is possible to avoid a drop in accuracy due to differences in invader reaction efficiency due to differences in nucleic acid amount and sequence, and dispensing accuracy of nucleic acid samples, there is no cross-reaction and reliability. Bacterial species can be identified with high accuracy.
 以上のように、感度、特異性、迅速性、簡便性、コストの要求を満たすだけでなく、臨床検体を材料にヒトからの分離が報告されている全てのマイコプラズマ属及びウレアプラズマ属細菌を同等の感度で検出し、非淋菌性尿道炎との関連が示唆されている種について同定することができるため、非淋菌性尿道炎の起炎菌についての正確な情報を蓄積する一助となり、的確な治療方針の選択材料及び治療薬の効果判定材料を迅速に提供することができる。 As described above, not only the requirements for sensitivity, specificity, rapidity, simplicity and cost are met, but all mycoplasma and ureaplasma bacteria that have been reported to be isolated from humans using clinical specimens are equivalent. Can be identified and identified for species that are implicated in non-gonococcal urethritis, helping to accumulate accurate information about non-gonococcal urethritis-causing fungi It is possible to quickly provide a therapeutic policy selection material and a therapeutic drug effect determination material.
M.genitaliumM.hominisU.urealyticumU.parvumの4種についてのGenBankから入手した配列を、16srRNA領域の一部についてclustalWのアルゴリズムに従って配列のアライメントを実施した結果である。 M.M. genitalium , M. et al . hominis , U .; ureallyticum , U.S.A. It is the result of aligning the sequences obtained from GenBank for four species of parvum according to the colstalW algorithm for a part of the 16srRNA region. 図1のアライメント結果に基づいて実施例1で設計したプライマーセット及び各種オリゴヌクレオチドプローブの位置情報を記載した図である。It is the figure which described the positional information on the primer set and the various oligonucleotide probe which were designed in Example 1 based on the alignment result of FIG. 図1のアライメント結果に基づいて比較例1で設計したプライマーセット及び各種オリゴヌクレオチドプローブの位置情報を記載した図である。It is the figure which described the positional information on the primer set and various oligonucleotide probe which were designed in the comparative example 1 based on the alignment result of FIG. 核酸試料に含まれる鋳型量を変化させて、PCRによる増幅反応と同時にインベーダー反応を実施して蛍光を検出した時の結果である。This is a result when fluorescence is detected by changing the amount of template contained in the nucleic acid sample and performing an invader reaction simultaneously with the amplification reaction by PCR. 核酸試料に含まれる鋳型量を変化させて、PCRによる増幅反応の後にインベーダー反応を実施して蛍光を検出した時の結果である。This is a result when fluorescence is detected by carrying out an invader reaction after an amplification reaction by PCR while changing the amount of template contained in the nucleic acid sample. 核酸試料に含まれる鋳型量を変化させて、PCRをサイクル数40サイクルで増幅させた後にインベーダー反応を実施して蛍光を検出した時の結果である。This is a result when fluorescence is detected by carrying out an invader reaction after PCR is amplified with a cycle number of 40 by changing the amount of template contained in the nucleic acid sample. 核酸試料に含まれる鋳型量を変化させて、PCRをサイクル数20サイクルで増幅させた後にインベーダー反応を実施して蛍光を検出した時の結果である。This is a result when fluorescence is detected by carrying out an invader reaction after amplification of PCR with 20 cycles by changing the amount of template contained in the nucleic acid sample.
 以下において、本発明の実施形態について適宜図面を参照しながら詳細に説明するが、利用方法や試薬キットの態様についてはこれに限定されるものではない。
 本発明のマイコプラズマ属及びウレアプラズマ属細菌の検出、同定の実施形態は、
(a)マイコプラズマ属及びウレアプラズマ属細菌の16s rRNAにおいて、前記細菌群に含まれる核酸に共通する領域に対して設定したプライマーセットを使用してPCRを実施する工程と
(b)前記マイコプラズマ属及びウレアプラズマ属細菌群に含まれる所定の細菌を、インベーダー反応を使用して検出、同定を実施する工程
を含むことを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. However, usage methods and reagent kit embodiments are not limited thereto.
An embodiment of the detection and identification of Mycoplasma and Ureaplasma bacteria of the present invention is:
(A) in 16s rRNA of Mycoplasma and Ureaplasma bacteria, performing PCR using a primer set set for a region common to nucleic acids contained in the bacteria group; and (b) the Mycoplasma genus and The method includes a step of detecting and identifying a predetermined bacterium contained in a group of ureaplasma bacteria using an invader reaction.
 本発明の実施形態においては、全てのマイコプラズマ属及びウレアプラズマ属細菌が検出、同定の対象となる。例えば、ヒトからの検出が報告されている、マイコプラズマ属の13種、ウレアプラズマ属の2種が挙げられる。特に、尿路感染症を引き起こすと示唆されているM.genitaliumM.hominisU.urealyticumU.parvumを検出、同定の対象とすることが好ましい。 In the embodiment of the present invention, all Mycoplasma and Ureaplasma bacteria are to be detected and identified. For example, there are 13 species of Mycoplasma and 2 species of Ureaplasma that have been reported to be detected from humans. In particular, M. has been suggested to cause urinary tract infections . genitalium , M. et al . hominis , U .; ureallyticum , U.S.A. It is preferable to detect and identify parvum .
 本発明の実施形態において使用される生物試料とは、試験される単数又は複数種の前記細菌を含みうる試料を含むものとされ、ヒト、ヒト以外の動物、植物、又は食物から得ることができ、例えば、尿、便、膣、鼻、直腸又は咽頭のスワブ、血液、唾液、喀痰、精液、膣又は尿道の排出物及びそれらのスワブ、涙(すなわち涙管分泌液)、バイオプシー組織試料、及び上述の分泌物及び物質がその上で堆積した表面のスワブを含むが、中でも尿路感染症との関連が強く示唆される尿を用いることが好ましい。前記生物試料は、宿主生物、例えばヒトの患者由来の細胞、組織及び/又はDNAを含むことができ、該実施形態の目的はその宿主内における細菌の存在を試験することにあり、その宿主自身のDNAを試験するものではない。 Biological samples used in embodiments of the present invention include samples that may contain one or more of the bacteria to be tested and can be obtained from humans, non-human animals, plants, or food. Urine, stool, vagina, nasal, rectal or pharyngeal swabs, blood, saliva, sputum, semen, vaginal or urethral discharge and their swabs, tears (ie lacrimal fluid), biopsy tissue samples, and It is preferred to use urine, which includes surface swabs on which the secretions and substances described above are deposited, but which is strongly suggested to be associated with urinary tract infections. Said biological sample can comprise a host organism, eg cells, tissues and / or DNA from a human patient, the purpose of which is to test for the presence of bacteria in that host, the host itself It is not intended to test DNA.
 本発明の実施形態において、核酸、DNA、RNA、遺伝子発現、コード、鋳型、プロモーター、プライマー、オリゴヌクレオチドプローブ、PCR、配列等の用語の定義に関しては、分子生物学、遺伝学、遺伝子工学等で広く一般的に使用されている用語と同じ意味である。 In the embodiments of the present invention, regarding the definition of terms such as nucleic acid, DNA, RNA, gene expression, code, template, promoter, primer, oligonucleotide probe, PCR, sequence, etc., molecular biology, genetics, genetic engineering, etc. It has the same meaning as a widely used term.
 核酸試料とは、核酸を含有する試料であって、前記生物試料であれば、特に限定されるものではない。例えば、血液や組織等を試料として試料中の全細胞から得られるゲノムDNAやRNAが該当する。この核酸の抽出は、フェノール/クロロホルム法等の公知の手法により行うことができる。また、市販の核酸抽出用試薬キットを使用することもできる。 The nucleic acid sample is a sample containing nucleic acid and is not particularly limited as long as it is the biological sample. For example, genomic DNA or RNA obtained from all cells in the sample using blood or tissue as a sample is applicable. The extraction of the nucleic acid can be performed by a known method such as a phenol / chloroform method. A commercially available reagent kit for nucleic acid extraction can also be used.
 標的部位とは、核酸試料中に存在する標的となる核酸配列において、第一オリゴヌクレオチドプローブ(アレルプローブの3’末側配列)及び第二オリゴヌクレオチドプローブ(インベーダープローブ)がハイブリダイゼーションする核酸配列を意味し、マイコプラズマ属及びウレアプラズマ属細菌の検出、同定に使用される。 The target site is a nucleic acid sequence in which a first oligonucleotide probe (3 ′ terminal sequence of an allele probe) and a second oligonucleotide probe (invader probe) are hybridized in a target nucleic acid sequence present in a nucleic acid sample. It is used for detection and identification of Mycoplasma and Ureaplasma bacteria.
 標的核酸とは、標的部位の核酸配列と、インベーダー法に使用する各種オリゴヌクレオチドプローブのうち以下の2つのオリゴヌクレオチドプローブとが三重構造を形成する箇所の塩基をさす。標的核酸の塩基は、同位置にあるアレルプローブの塩基に対して相補的であり、同位置にあるインベーダープローブの塩基とは非相補的である。 The target nucleic acid refers to a base at a site where the nucleic acid sequence of the target site and the following two oligonucleotide probes among various oligonucleotide probes used in the invader method form a triple structure. The base of the target nucleic acid is complementary to the base of the allele probe at the same position, and is non-complementary to the base of the invader probe at the same position.
 ハイブリダイゼーションするとは、各種オリゴヌクレオチドプローブと該各種オリゴヌクレオチドプローブの対象となる核酸配列とが、その配列の全部又は一部と相補的に結合することを意味する。標的部位には、塩基の置換、挿入、欠失が含まれてもよい。また、遺伝情報をコードする配列を有する鎖(以下、センス鎖とする場合がある)を示すものであってもよいし、センス鎖に対して相補的な配列を有する鎖(以下、アンチセンス鎖とする場合がある)を示すものであってもよい。例えば、同じ領域内において複数の種を同時に検出、同定する反応系を構築する場合には、一部の種に対してアンチセンス鎖上に標的部位を設定することで、多くの種を検出、同定の対象とすることが可能となるだけでなく、非特異反応を抑えることもできる。その際、どの種の標的部位をアンチセンス鎖上に設定するかは、当業者であれば適宜設定することができる。また、遺伝情報に直接関与しない配列における核酸配列の変化も含まれるものとする。 “Hybridization” means that various oligonucleotide probes and the target nucleic acid sequences of the various oligonucleotide probes bind complementarily to all or part of the sequences. Target sites may include base substitutions, insertions, deletions. Further, it may indicate a strand having a sequence encoding genetic information (hereinafter sometimes referred to as a sense strand) or a strand having a sequence complementary to the sense strand (hereinafter referred to as an antisense strand). May be shown). For example, when constructing a reaction system that simultaneously detects and identifies multiple species in the same region, many species are detected by setting target sites on the antisense strand for some species, In addition to being able to be targeted for identification, non-specific reactions can also be suppressed. At that time, the type of target site to be set on the antisense strand can be appropriately set by those skilled in the art. It also includes nucleic acid sequence changes in sequences that are not directly related to genetic information.
 本発明の実施形態においては、16s rRNA領域を使用することができる。対象とする菌の検出・同定を高感度、高精度に行うことができるので好ましい。 In the embodiment of the present invention, a 16s rRNA region can be used. It is preferable because detection and identification of target bacteria can be performed with high sensitivity and high accuracy.
 PCRを実施する工程においては、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌の16s rRNAにおいて、前記細菌群に含まれる核酸に共通する領域に対してプライマーを設定する。該プライマーは、当業者であれば配列情報から常法により設計、合成することができるが、後述するインベーダー反応における検出、同定工程を考慮して決定することが好ましい。例えば、配列番号1で表わされる塩基配列中の516番目~1049番目からなる領域を増幅可能であって、好ましくは、516番目の塩基から3’末端側に連続した塩基配列を含むプライマー、或いは、1049番目の塩基から5’末端側にその相補的配列にハイブリダイゼーションすることのできる連続した塩基配列を含むプライマーから成るプライマーセットを使用することができる。連続する塩基数は、後述するオリゴヌクレオチドプローブとの関係によって適宜変更して使用することができる。特に好ましくは、配列番号5と6で表わされる塩基配列の組み合わせが挙げられる。これにより、全てのマイコプラズマ属及びウレアプラズマ属細菌を対象として、高感度、高精度に対象とする菌の検出・同定を高感度、高精度に行うことができる。また、マイコプラズマ属及びウレアプラズマ属細菌の高感度且つ高精度な検出を妨げない限り、1~5個程度の数塩基の置換、欠失、挿入、付加を行うことができる。
 なお、PCRにおいて用いられる該2種類のプライマーの各濃度は、PCR産物として二本鎖核酸を得ることができる濃度比であれば特に限定されるものではないが、等濃度で用いることが好ましい。
In the step of performing PCR, primers are set for a region common to nucleic acids contained in the bacterial group in 16s rRNAs of all mycoplasma and ureaplasma bacteria. Those skilled in the art can design and synthesize the primer from sequence information by a conventional method, but it is preferable to determine the primer in consideration of the detection and identification steps in the invader reaction described later. For example, a primer which can amplify a region consisting of 516th to 1049th in the base sequence represented by SEQ ID NO: 1 and preferably comprises a base sequence continuous from the 516th base to the 3 ′ end side, or A primer set comprising a primer containing a continuous base sequence capable of hybridizing to the complementary sequence from the 1049th base to the 5 ′ end side can be used. The number of consecutive bases can be appropriately changed and used depending on the relationship with the oligonucleotide probe described later. Particularly preferred is a combination of base sequences represented by SEQ ID NOs: 5 and 6. Thereby, it is possible to detect and identify target bacteria with high sensitivity and high accuracy with high sensitivity and high accuracy for all Mycoplasma and Ureaplasma bacteria. In addition, substitution, deletion, insertion and addition of about 1 to 5 bases can be performed as long as high-sensitivity and high-precision detection of Mycoplasma and Ureaplasma bacteria is not hindered.
The concentration of the two kinds of primers used in PCR is not particularly limited as long as it is a concentration ratio that can obtain a double-stranded nucleic acid as a PCR product, but is preferably used at an equal concentration.
 インベーダー反応とは、フラップエンドヌクレアーゼ(クリベース)という酵素の性質を利用した標的部位の検出、同定方法である。すなわち、フラップエンドヌクレアーゼは、標的核酸の位置において標的核酸、アレルプローブ及びインベーダープローブの3つの塩基が並び三重構造体(以下、開裂構造体と称する場合がある)を形成した時に、アレルプローブの5’末端側の配列がフラップ状になっている部分を認識して、そのフラップ部分を切断する。アレルプローブは標的部位と同じ配列とFRETプローブに相補的な配列を含むように設計されている。
 次に、アレルプローブから遊離したフラップ部分は、相補的な配列をもつFRETプローブとハイブリダイゼーションする。このとき、フラップ部分の5’末端に位置する塩基がFRETプローブ自身の相補結合部位に割り込んで侵入し、開裂構造体を形成する。フラップエンドヌクレアーゼは再びこの開裂構造体を認識して蛍光色素を有するレポーター塩基を切断する。切断された蛍光色素は、クエンチャーの影響を受けなくなり、蛍光を呈する。
 アレルプローブが対象とする前記標的部位と同じ配列を有さない場合、例えば、他の細菌由来の配列である場合においては、開裂構造体を形成しない。従って、フラップエンドヌクレアーゼによる切断、フラップ部分の配列の遊離も起こらないため、レポーター塩基に結合した蛍光も検出されない。
The invader reaction is a method for detecting and identifying a target site utilizing the property of an enzyme called flap endonuclease (chrybase). That is, when a flap endonuclease forms a triple structure (hereinafter sometimes referred to as a cleavage structure) in which three bases of a target nucleic acid, an allele probe, and an invader probe are aligned at the position of the target nucleic acid, 'Recognize the part where the sequence on the terminal side is a flap, and cut the flap part. Allele probes are designed to contain the same sequence as the target site and a sequence complementary to the FRET probe.
The flap portion released from the allele probe is then hybridized with a FRET probe having a complementary sequence. At this time, the base located at the 5 ′ end of the flap portion enters and enters the complementary binding site of the FRET probe itself to form a cleavage structure. The flap endonuclease again recognizes this cleavage structure and cleaves the reporter base with the fluorescent dye. The cleaved fluorescent dye is not affected by the quencher and exhibits fluorescence.
When the allele probe does not have the same sequence as the target site, for example, when it is a sequence derived from another bacterium, a cleavage structure is not formed. Therefore, since the cleavage by the flap endonuclease and the release of the sequence of the flap portion do not occur, the fluorescence bound to the reporter base is not detected.
 検出は、これらの蛍光を測定することによる。例えば、蛍光検出器によって検出される蛍光強度は反応開始から徐々に上昇し、やがてプラトーに達する。このため、反応開始から特定の時間が経過した時点における蛍光強度や、蛍光強度がプラトーに達するまでの時間とそのときの蛍光強度等から条件設定することもできる。 Detection is by measuring these fluorescences. For example, the fluorescence intensity detected by the fluorescence detector gradually increases from the start of the reaction and eventually reaches a plateau. For this reason, conditions can also be set from the fluorescence intensity when a specific time has elapsed from the start of the reaction, the time until the fluorescence intensity reaches a plateau, the fluorescence intensity at that time, and the like.
 インベーダー反応は、反応試薬中に存在している過剰なシグナルプローブやFRETプローブによって、反応が繰り返されて蛍光強度が増幅されるため、ハイブリダイゼーション単独による方法に比べてより高い標的特異性を示すことや、複数のユニバーサルFRETプローブを使用出来るため、標的部位ごとに蛍光プローブを必要とする融解曲線法やTaqMan法に比べて、費用効果が高いという利点をもつ。
 このようなインベーダー反応を用いた方法によれば、PCRの後に反応容器の蓋を開けるために生じうるコンタミネーションを防ぐことが可能となり、簡便且つ迅速に高感度な分析を行うことができる。
The invader reaction shows higher target specificity than the method using hybridization alone because the fluorescence intensity is amplified by repeating the reaction with the excess signal probe or FRET probe present in the reaction reagent. In addition, since a plurality of universal FRET probes can be used, it has an advantage that it is more cost effective than the melting curve method or TaqMan method that requires a fluorescent probe for each target site.
According to such a method using an invader reaction, it is possible to prevent contamination that may occur due to opening the reaction vessel lid after PCR, and a highly sensitive analysis can be performed easily and quickly.
 また、前記インベーダー反応は、PCRによる核酸増幅反応と同時に行うことができる。この方法は一般的にインベーダー法と呼ばれている。インベーダー法は、PCR工程を分けて実施する。前半の数サイクルではPCRによる核酸増幅のみを行い、後半のPCRサイクルにおいて、核酸増幅反応とインベーダー反応による検出、同定を同時に実施する。インベーダー法はインベーダー反応の前にPCRによる核酸増幅をするため、核酸増幅を実施する分感度が上昇し、直接核酸試料から検出を行うよりも迅速に検出が可能になる。なお、多く鋳型が持ち込まれるとバックグラウンドが上昇するため、反応系へ持ち込まれる核酸量を調節して反応条件を設定することが好ましい。
 また、PCRによる核酸増幅反応に続いてインベーダー反応を行う方法があり、これはインベーダープラス法と呼ばれている。インベーダープラス法では1チューブで増幅とその後の検出ができるという長所を有する。
 各々の方法は使用場面に応じて使い分けられており、例えば、インベーダー法はSNP解析への利用等、インベーダープラス法は微生物等の検出等への利用等が挙げられる。
 更に、インベーダー反応によって生じる蛍光の増加量をリアルタイムに測定するリアルタイムインベーダー法によれば、核酸試料中の核酸量を正確に定量することもできる。
The invader reaction can be performed simultaneously with the nucleic acid amplification reaction by PCR. This method is generally called an invader method. The invader method is performed by dividing the PCR process. Only the nucleic acid amplification by PCR is performed in the first few cycles, and detection and identification by the nucleic acid amplification reaction and the invader reaction are simultaneously performed in the second PCR cycle. Since the invader method performs nucleic acid amplification by PCR before the invader reaction, the sensitivity is increased by performing nucleic acid amplification, and detection can be performed more quickly than when detection is performed directly from a nucleic acid sample. In addition, since background increases when many templates are brought in, it is preferable to set reaction conditions by adjusting the amount of nucleic acid brought into the reaction system.
There is also a method of performing an invader reaction following a nucleic acid amplification reaction by PCR, which is called the invader plus method. The Invader Plus method has the advantage that amplification and subsequent detection can be performed in one tube.
Each method is properly used according to the usage scene. For example, the invader method can be used for SNP analysis, and the invader plus method can be used for detection of microorganisms.
Furthermore, according to the real-time invader method that measures the increase in fluorescence caused by the invader reaction in real time, the amount of nucleic acid in the nucleic acid sample can be accurately quantified.
 インベーダープラス法では、予め反応容器にPCR用の試薬類とインベーダー反応用の試薬類とを全て収容し、まずインベーダー反応用のオリゴヌクレオチドプローブ(FRETプローブ及びインベーダープローブ)がハイブリダイゼーションし、これらがPCRのプライマーとはならない条件で、PCRによる核酸増幅反応を行う。
 PCR終了後にTaqポリメラーゼを高温で失活させた後、一定時間、インベーダー反応の至適温度に維持することによりインベーダー反応を行う。
In the Invader Plus method, all of the reagents for PCR and the reagents for Invader reaction are accommodated in advance in a reaction vessel, and first, oligonucleotide probes (FRET probe and Invader probe) for invader reaction are hybridized, and these are PCR. The nucleic acid amplification reaction by PCR is performed under conditions that do not serve as primers.
After the PCR is completed, Taq polymerase is inactivated at a high temperature, and then the invader reaction is performed by maintaining the optimum temperature for the invader reaction for a certain time.
 インベーダー反応で使用するオリゴヌクレオチドプローブとは、ハイブリダイゼーション条件下において標的部位と安定的な水素結合を形成し得る塩基配列を有することを意味し、公知の一緒に結合された二つ以上のヌクレオシドサブユニット又は核酸塩基サブユニットを有するポリマーを意味し、DNAおよび/もしくはRNA又はそのアナログを含む。各種オリゴヌクレオチドプローブの核酸間の完全な一致は必要とされない。また、各種オリゴヌクレオチドプローブが標識化合物によって標識されているものを使用することができる。
 以下、各種オリゴヌクレオチドプローブについて、標的部位がセンス鎖に設定された場合を例に説明する。
The oligonucleotide probe used in the invader reaction means that it has a base sequence capable of forming a stable hydrogen bond with a target site under hybridization conditions. It means a polymer having units or nucleobase subunits, and includes DNA and / or RNA or analogs thereof. A perfect match between the nucleic acids of the various oligonucleotide probes is not required. In addition, various oligonucleotide probes labeled with a labeling compound can be used.
Hereinafter, various oligonucleotide probes will be described by way of example in which the target site is set to the sense strand.
 アレルプローブは、第一オリゴヌクレオチドプローブと第三オリゴヌクレオチドプローブとから構成され、標的核酸から標的部位の5’側末端までの塩基を含む領域とハイブリダイゼーションして相補鎖を形成しうるハイブリダイゼーション領域(第一オリゴヌクレオチドプローブ)と、標的部位の配列とは無関係な配列を有して標的部位とハイブリダイゼーションしないフラップ領域(第三オリゴヌクレオチドプローブ)とから構成され、第三オリゴヌクレオチドプローブが第一オリゴヌクレオチドプローブの5’末端側に配置されている。第一オリゴヌクレオチドプローブ中の標的核酸に対応する塩基は、第一オリゴヌクレオチドプローブの最も5’側に位置し標的核酸に特異的な配列を有する。 The allele probe is composed of a first oligonucleotide probe and a third oligonucleotide probe, and is a hybridization region capable of forming a complementary strand by hybridization with a region containing a base from the target nucleic acid to the 5 ′ end of the target site. (First oligonucleotide probe) and a flap region (third oligonucleotide probe) that has a sequence unrelated to the sequence of the target site and does not hybridize with the target site. It is arranged on the 5 ′ end side of the oligonucleotide probe. The base corresponding to the target nucleic acid in the first oligonucleotide probe is located on the most 5 'side of the first oligonucleotide probe and has a sequence specific to the target nucleic acid.
 ここで特異的とは、対象細菌の標的部位の核酸配列とハイブリダイゼーションし、それ以外の細菌の核酸配列とは実質的にハイブリダイゼーションしないことを意味する。なお、原理上は他の細菌ともハイブリダイゼーションすると考えられるオリゴヌクレオチドプローブであっても、その細菌が検査される臨床検体において極めて稀にしか検出されることのない細菌である場合、或いは、通常は検出されることが極めて稀な細菌との交差反応による非特異反応が検出された場合、実際的な対象細菌の検出、同定において問題とならないため、このようなオリゴヌクレオチドプローブの使用が許容される。
 後述のFRETプローブを使用せずに、アレルプローブの5’末端側配列である、第一オリゴヌクレオチドプローブを標識化合物によって標識しておき、フラップエンドヌクレアーゼによって切断された際に蛍光を発するように設計して、目的の細菌の検出、同定に使用することもできる。
Here, specific means that it hybridizes with the nucleic acid sequence of the target site of the target bacterium and does not substantially hybridize with the nucleic acid sequence of other bacteria. In principle, even if an oligonucleotide probe is considered to hybridize with other bacteria, if the bacteria are rarely detected in clinical specimens to be examined, or usually If a non-specific reaction due to a cross-reaction with a rarely detected bacterium is detected, there will be no problem in the actual detection and identification of the target bacterium, so the use of such an oligonucleotide probe is allowed. .
The first oligonucleotide probe, which is the 5 'terminal sequence of the allele probe, is labeled with a labeling compound without using the FRET probe described later, and is designed to emit fluorescence when cleaved with a flap endonuclease. Thus, it can be used for detection and identification of target bacteria.
 インベーダープローブ(以下、第二オリゴヌクレオチドプローブと称する場合がある)は非標識オリゴであって、標的核酸から標的部位の3’側末端までの塩基を含む領域とハイブリダイゼーションして相補鎖を形成する。インベーダープローブの3’末端に位置し標的核酸に対応する塩基は任意の塩基でよく、ハイブリダイゼーションしないように設計することもできる。
 従って、標的核酸を含む核酸試料と、アレルプローブ、インベーダープローブをハイブリダイゼーションさせると、標的部位と第一オリゴヌクレオチドプローブとがハイブリダイゼーションした標的核酸の位置には、インベーダープローブの1塩基が割り込むように侵入し、その結果、塩基が三重に並んだ構造が部分的に形成される(第一開裂構造体)。既に述べたように、フラップエンドヌクレアーゼは、標的核酸、アレルプローブ及びインベーダープローブの3つの塩基が並び開裂構造体を形成した時に、アレルプローブの5’末端側の配列であるフラップ領域(第三オリゴヌクレオチドプローブ)を切断するため、第三オリゴヌクレオチドプローブが遊離する。この第三オリゴヌクレオチドプローブは、後述するFRETプローブの所定の領域と相補的な配列を有しているため、FRETプローブとハイブリダイゼーションする。
An invader probe (hereinafter sometimes referred to as a second oligonucleotide probe) is an unlabeled oligo that hybridizes with a region containing a base from the target nucleic acid to the 3 ′ end of the target site to form a complementary strand. . The base located at the 3 ′ end of the invader probe and corresponding to the target nucleic acid may be any base, and may be designed not to hybridize.
Therefore, when a nucleic acid sample containing a target nucleic acid is hybridized with an allele probe or an invader probe, one base of the invader probe is interrupted at the position of the target nucleic acid where the target site and the first oligonucleotide probe are hybridized. As a result, a structure in which the bases are arranged in a triple manner is partially formed (first cleavage structure). As already described, the flap endonuclease is a flap region (third oligo) which is a sequence on the 5 ′ end side of an allele probe when three bases of a target nucleic acid, an allele probe and an invader probe are aligned to form a cleavage structure. In order to cleave the nucleotide probe, the third oligonucleotide probe is released. Since this third oligonucleotide probe has a sequence complementary to a predetermined region of the FRET probe described later, it hybridizes with the FRET probe.
 検出は、FRETプローブ((fluorescence resonance energy transfer probe)以下、第四オリゴヌクレオチドプローブと称する場合がある)を使用して行う。
 FRETプローブは、その5’末側の配列が自己会合してループ構造を形成するように設計されており、3つの領域から構成される。すなわち、FRETプローブの5’末端からループ構造までの領域(領域1)、ステムループを形成する領域(領域2)、ステムループから第三オリゴヌクレオチドプローブがハイブリダイゼーションするまでの領域(領域3)である。領域1は領域2と向き合ってループ構造を形成し、相補的な配列となるように設計されている。従って、領域1は領域2と自分自身で相補鎖を形成する。更にその下流には、第一オリゴヌクレオチドプローブにおけるフラップ、すなわち第三オリゴヌクレオチドプローブと相補的な配列を有し第三オリゴヌクレオチドプローブとハイブリダイゼーションする領域(領域3)をもつ。
 FRETプローブは標的配列とは全く無関係な配列を有するため、標的配列の種類によらず検出、同定の目的に沿って配列を選択、設定することが可能であり、共通の配列を設定することもできる。また、標的部位特異的に設計した第一オリゴヌクレオチドプローブ及びインベーダープローブの配列と、アレルプローブのフラップ部分、すなわち第三オリゴヌクレオチドプローブの配列との最適な組合せを適宜設定することも可能である。
The detection is performed using a FRET probe (hereinafter sometimes referred to as “fourth oligonucleotide probe”) (hereinafter referred to as “fourth oligonucleotide probe”).
The FRET probe is designed so that its 5 ′ terminal sequence self-associates to form a loop structure, and is composed of three regions. That is, the region from the 5 ′ end of the FRET probe to the loop structure (region 1), the region forming the stem loop (region 2), and the region from the stem loop to the hybridization of the third oligonucleotide probe (region 3) is there. Region 1 faces the region 2 to form a loop structure and is designed to be a complementary sequence. Therefore, region 1 forms a complementary strand with region 2 itself. Further downstream of the first oligonucleotide probe is a flap, that is, a region (region 3) that has a sequence complementary to the third oligonucleotide probe and hybridizes with the third oligonucleotide probe.
Since the FRET probe has a sequence completely unrelated to the target sequence, it is possible to select and set the sequence according to the purpose of detection and identification regardless of the type of the target sequence, and to set a common sequence. it can. It is also possible to appropriately set an optimal combination of the sequence of the first oligonucleotide probe and the invader probe designed specifically for the target site and the flap portion of the allele probe, that is, the sequence of the third oligonucleotide probe.
 FRETプローブは、その5’末端の塩基にレポーターが標識されており、その下流にはクエンチャーが結合している。従って、この状態ではクエンチャーが蛍光を吸収するため、蛍光検出器では蛍光を検出できない。使用される色素としては、6-FAM、TET、HEX、Cy3、VIC、TAMRA、ROX、LC Red、Cy5、BHQ-1、BHQ-2、BHQ-3、Yakima Yellow、Redmond Red等の色素の使用が可能であるが、使用可能な色素はこれらに限定されるものではなく、当業者であれば、実際に測定に使用する機器が検出可能な波長の色素を適宜選択して使用することができる。上記色素のうち、使用する測定機器において割り当てられたチャネル数に応じて、色素を選択し使用することが可能であるが、検出波長が近い場合であっても、その蛍光が互いに干渉を受けない色素どうしであれば、同時に使用することができる。例えば、例えば、FAMは励起波長494nm、検出波長518nm、VICは励起波長538nm、検出波長552nm、ROXは励起波長587nm、検出波長607nmであるため、同時に使用することが許容される。更に、Yakima Yellowは励起波長531nm、検出波長550nmとVICとほぼ同等であるため、VIC用に設定されたフィルターを使用して検出、同定できる。また、Redmond Redは励起波長579nm、検出波長595nmとROXとほぼ同等であるため、ROX用に設定されたフィルターを使用して検出、同定できる。このように、複数の色素を組合せて検出、同定反応を構築することが可能である。 In the FRET probe, a reporter is labeled on the base at the 5 'end, and a quencher is bound downstream thereof. Therefore, in this state, the quencher absorbs the fluorescence, and the fluorescence detector cannot detect the fluorescence. Use of dyes such as 6-FAM, TET, HEX, Cy3, VIC, TAMRA, ROX, LC Red, Cy5, BHQ-1, BHQ-2, BHQ-3, Yakima Yellow, Redmond Red, etc. However, usable dyes are not limited to these, and those skilled in the art can appropriately select and use a dye having a wavelength that can be detected by an instrument actually used for measurement. . Among the above dyes, it is possible to select and use a dye according to the number of channels assigned in the measuring instrument to be used, but the fluorescence does not interfere with each other even when the detection wavelength is close. If the dyes are used, they can be used simultaneously. For example, for example, FAM has an excitation wavelength of 494 nm and a detection wavelength of 518 nm, VIC has an excitation wavelength of 538 nm and a detection wavelength of 552 nm, and ROX has an excitation wavelength of 587 nm and a detection wavelength of 607 nm. Furthermore, since Yakima Yellow has an excitation wavelength of 531 nm and a detection wavelength of 550 nm, which is almost equivalent to VIC, it can be detected and identified using a filter set for VIC. Further, Redmond Red has an excitation wavelength of 579 nm and a detection wavelength of 595 nm, which is substantially equivalent to ROX, and therefore can be detected and identified using a filter set for ROX. In this way, it is possible to construct a detection and identification reaction by combining a plurality of dyes.
 第三オリゴヌクレオチドプローブがFRETプローブの領域3においてハイブリダイゼーションすると、FRETプローブの5’末端側でループを形成した相補鎖の間に第三オリゴヌクレオチドプローブの塩基が入り込んだ形でハイブリダイゼーションするため、第三オリゴヌクレオチドプローブはインベーダープローブとなり開裂構造体が形成される(以下、第二開裂構造体と称する場合がある)。該第二開裂構造体のうちFRETプローブのフラップ領域をフラップエンドヌクレアーゼが認識して切断すると、5’末の塩基に標識されているレポーター分子がクエンチャーから離れるため、蛍光を発する。 When the third oligonucleotide probe hybridizes in the region 3 of the FRET probe, it hybridizes in such a way that the base of the third oligonucleotide probe enters between the complementary strands forming a loop on the 5 ′ end side of the FRET probe. The third oligonucleotide probe becomes an invader probe to form a cleavage structure (hereinafter sometimes referred to as a second cleavage structure). When the flap endonuclease recognizes and cleaves the flap region of the FRET probe in the second cleavage structure, the reporter molecule labeled with the base at the 5 'end leaves the quencher and emits fluorescence.
 FRETプローブはステムループを形成する性質を利用しているため、FRETプローブのプローブとしての性質を左右する因子としては、自己相補的な領域の長さ、オーバーラップ領域の長さ、ワトソン-クリック塩基対及び特別に安定なループ配列の存在又は不存在によって予測されるようなヘアピン又はステムループ構造の安定性などが想定されるが、当業者であれば、ステムループを形成する配列のデザインも考慮して、これら第四オリゴヌクレオチドプローブを適宜設計することができる。 Since the FRET probe utilizes the property of forming a stem loop, factors affecting the properties of the FRET probe as a probe include the length of the self-complementary region, the length of the overlap region, Watson-Crick base Stability of hairpins or stem-loop structures as predicted by the presence or absence of pairs and specially stable loop sequences is envisaged, but those skilled in the art will also consider the design of the sequences that form the stem loops. Thus, these fourth oligonucleotide probes can be appropriately designed.
 判定に際してはFRETプローブから発せられる蛍光強度を測定し、検出、同定を行うが、迅速に検査結果を報告するために、判定基準を設定することもできる。例えば、プラスミドが0コピー/反応時の蛍光量をバックグランドとし、M.genitaliumは6,000、M.hominisは6,000、U.parvumは1,700、U.urealyticumは800、マイコプラズマ属およびウレアプラズマ属(以後ALL Mycoと略す)は800、内部標準物質は1,700をカットオフ値として設定し、各々のオリゴヌクレオチドプローブについて検出、同定の判定基準とすることができる。 In the determination, the fluorescence intensity emitted from the FRET probe is measured, detected, and identified, but a determination criterion can also be set in order to quickly report the test result. For example, the amount of fluorescence when the plasmid is 0 copies / reaction is used as the background . genitalium is 6,000, M. hominis is 6,000, U.I. parvum is 1,700 . ureallyticum is 800, Mycoplasma and Ureaplasma genus (hereinafter abbreviated as ALL Myco) is 800, and the internal standard is set to 1,700 as the cut-off value. Can do.
 これらオリゴヌクレオチドプローブがハイブリダイゼーションする標的部位は、全てのマイコプラズマ属及びウレアプラズマ属細菌の検出、同定に使用する領域において種特異的な配列を有する部位を使用することができる。該標的部位は、検出、同定したい細菌に特異的な配列部分を標的核酸として、その前後の連続した塩基配列に対して設定し、例えば、M.genitaliumの場合には配列番号37で表わされる塩基配列の320番目の塩基、M.hominisの場合には配列番号38で表わされる塩基配列の100番目の塩基、U.urealyticumの場合には配列番号39で表わされる塩基配列の312番目の塩基、U.parvumの場合には配列番号40で表わされる塩基配列の312番目の塩基、マイコプラズマ属及びウレアプラズマ属細菌の検出、同定用の場合には配列番号37で表わされる塩基配列の264番目の塩基、内部標準物質の場合には配列番号36で表わされる塩基配列の329番目の塩基を標的核酸として標的部位を設定することができる。 As a target site to which these oligonucleotide probes hybridize, a site having a species-specific sequence in a region used for detection and identification of all Mycoplasma and Ureaplasma bacteria can be used. The target site is set with respect to a continuous base sequence before and after the sequence portion specific to the bacterium to be detected and identified as a target nucleic acid . 320 th base of the base sequence represented by SEQ ID NO: 37 in the case of genitalium, M. 100 th base of the base sequence represented by SEQ ID NO: 38 in the case of hominis, U. 312 th base of the base sequence represented by SEQ ID NO: 39 in the case of urealyticum, U. In the case of parvum , the 312th base of the base sequence represented by SEQ ID NO: 40, the detection of Mycoplasma and Ureaplasma bacteria, the 264th base of the base sequence represented by SEQ ID NO: 37 in the case of identification, In the case of a standard substance, the target site can be set using the 329th base of the base sequence represented by SEQ ID NO: 36 as the target nucleic acid.
 標的部位にハイブリダイゼーションする各々のオリゴヌクレオチドプローブの連続する塩基の数は、Tm値に加えて塩基の隣接計算や所与の構造の遊離エネルギー計算結果を考慮して適宜調整することができ、特定の塩基数に限定されるものではない。
 インベーダー反応は、前述した通り、標的核酸の位置で検出、同定対象の核酸配列とアレルプローブ及びインベーダープローブとが三重構造体を形成させる反応を利用している。そのため、標的部位に対してアレルプローブがハイブリダイゼーションする前にインベーダープローブが侵入してハイブリダイゼーションする必要がある。従って、アレルプローブよりもインベーダープローブのTm値を小さくして三重構造体を形成するように設計して使用することができる。
The number of consecutive bases in each oligonucleotide probe that hybridizes to the target site can be adjusted as appropriate, taking into account the calculation of adjacent bases and the calculation of the free energy of a given structure in addition to the Tm value. It is not limited to the number of bases.
As described above, the invader reaction uses a reaction in which a nucleic acid sequence to be detected and identified at a target nucleic acid position, an allele probe and an invader probe form a triple structure. Therefore, before the allele probe hybridizes to the target site, the invader probe must enter and hybridize. Therefore, the invader probe can be designed and used so as to form a triple structure by making the Tm value of the invader probe smaller than that of the allele probe.
 これら各種オリゴヌクレオチドプローブの設計は、通常は、配列情報に基づいて種特異的な配列を選択することにより設計できるが、当業者であれば、公知の方法に従って、適宜、設計して使用することが可能である。前述したように、インベーダー反応では、標的配列とアレルプローブとの間にインベーダープローブが入り込み開裂構造体を形成する反応を利用するため、インベーダープローブがアレルプローブに比してそのTm値が小さくなるような配列にする等を考慮した上で、また、該当の配列部位の高次構造の有無や、GC含量等に基づいて適宜調整可能である。例えば、ホロジック社に委託して設計し、プライマーやプローブとの最適な組み合わせを検討して配列を選択することも可能である。また、設計された各種オリゴヌクレオチドプローブの製造は、当業者であれば公知の方法に従って、適宜製造することが可能である。例えばホロジック社などのような会社に製造を委託してもよい。 These various oligonucleotide probes can usually be designed by selecting species-specific sequences based on the sequence information. However, those skilled in the art should appropriately design and use them according to known methods. Is possible. As described above, in the invader reaction, since the invader probe enters between the target sequence and the allele probe to form a cleavage structure, the invader probe has a smaller Tm value than the allele probe. It is possible to adjust appropriately based on the presence or absence of a higher order structure of the corresponding sequence part, the GC content, etc. For example, it is possible to design by consigning to Hologic and to select a sequence by considering an optimal combination with primers and probes. Moreover, those skilled in the art can appropriately manufacture various designed oligonucleotide probes according to known methods. For example, production may be outsourced to a company such as Hologic.
 なお、通常、上記のような一般的な指標に基づいて複数のオリゴヌクレオチドプローブを設計し、これら複数のオリゴヌクレオチドプローブを使用して同時に複数のマイコプラズマ属及びウレアプラズマ属細菌の検出、同定を行うのに適したインベーダー反応の条件を適宜設定することができるが、インベーダー反応の条件を特定の条件に定めたい場合には、該条件の下で各々のオリゴヌクレオチドプローブが同等の反応性を示し、各々のオリゴヌクレオチドプローブが検出、同定の対象となる細菌の標的部位と特異性高く反応することができるように、オリゴヌクレオチドプローブ配列側を改良することも可能である。このような場合には、例えば、上記のような一般的な指標に基づいてオリゴヌクレオチドプローブを設計した後、オリゴヌクレオチドプローブ配列の一部改変を行ったり、類似の配列を有する複数のオリゴヌクレオチドプローブを調製したりして、特定の条件下で最も適切な反応を示すものを選択する等により適宜確定することができる。 Usually, a plurality of oligonucleotide probes are designed based on the general index as described above, and a plurality of Mycoplasma and Ureaplasma bacteria are simultaneously detected and identified using these oligonucleotide probes. The conditions of the invader reaction suitable for the reaction can be set as appropriate, but when the invader reaction conditions are to be set to specific conditions, each oligonucleotide probe exhibits the same reactivity under the conditions, It is also possible to improve the oligonucleotide probe sequence side so that each oligonucleotide probe can react with high specificity with the target site of the bacteria to be detected and identified. In such a case, for example, after designing an oligonucleotide probe based on the general index as described above, the oligonucleotide probe sequence is partially modified, or a plurality of oligonucleotide probes having similar sequences. And can be determined as appropriate by selecting one that exhibits the most appropriate reaction under specific conditions.
 本発明によって、種特異的なオリゴヌクレオチドプローブを設計してマイコプラズマ属又はウレアプラズマ属細菌について各々の種を同定することができる。種ごとに設計したオリゴヌクレオチドプローブに異なる色素を標識することで、複数の種を同時に検出、同定することもできる。 According to the present invention, species-specific oligonucleotide probes can be designed to identify each species for Mycoplasma or Ureaplasma bacteria. A plurality of species can be detected and identified simultaneously by labeling different dyes on the oligonucleotide probes designed for each species.
 将来新たに尿路感染症を引き起こすマイコプラズマ属及びウレアプラズマ属細菌が分離報告された場合には、前述した公知のオリゴヌクレオチドプローブ設計法に基づいて、対象となる種を追加することも可能である。その場合、新たに報告された細菌がマイコプラズマ属及びウレアプラズマ属細菌のいずれかに系統発生的に近い関係であること、すなわち、その生物が進化的意味において互いに近い関係があり、ゆえに遠い関係の生物より全体の核酸配列が高い相同性を有していればよく、該4種の細菌のみに近縁で高い相同性を有する細菌である必要はない。 When Mycoplasma and Ureaplasma bacteria causing new urinary tract infections are reported separately in the future, it is also possible to add target species based on the above-mentioned known oligonucleotide probe design method . In that case, the newly reported bacterium is phylogenetic close to either the Mycoplasma or Ureaplasma genus, i.e. the organisms are close to each other in an evolutionary sense, and thus far away. It is only necessary that the entire nucleic acid sequence has higher homology than the organism, and it is not necessary that the bacteria are closely related to the four types of bacteria and have high homology.
 本発明においてオリゴヌクレオチドプローブセットとは、アレルプローブとインベーダープローブを含み、FRETプローブを使用せずに対象とするマイコプラズマ属及びウレアプラズマ属細菌の検出、同定を行うこともできる。その場合、前述の通りアレルプローブ末端を標識しておき、フラップエンドヌクレアーゼによって切断された場合に蛍光を発するように設計するとよい。
 また、必要に応じてFRETプローブを含むこともできる。その場合、反応液中には、検出、同定の対象となる標的部位あたりの、第三オリゴヌクレオチドプローブ配列に続いて第一オリゴヌクレオチドプローブの配列が位置する塩基配列をもつアレルプローブ、第二オリゴヌクレオチドプローブ配列からなるインベーダープローブ、及び第四オリゴヌクレオチドプローブ配列からなるFRETプローブが存在する。
In the present invention, the oligonucleotide probe set includes an allele probe and an invader probe, and can detect and identify target Mycoplasma and Ureaplasma bacteria without using a FRET probe. In that case, as described above, the end of the allele probe should be labeled and designed to emit fluorescence when cleaved by a flap endonuclease.
Moreover, a FRET probe can also be included as needed. In that case, in the reaction solution, the allele probe having the base sequence in which the sequence of the first oligonucleotide probe is located after the third oligonucleotide probe sequence per target site to be detected and identified, the second oligo There is an invader probe consisting of a nucleotide probe sequence and a FRET probe consisting of a fourth oligonucleotide probe sequence.
 オリゴヌクレオチドプローブセットは、検出、同定を実施する目的や状況に応じて、どのようなオリゴヌクレオチドプローブセットを組み合わせるか、適宜選択して使用することができる。
 例えば、少なくとも一セット以上の検出、同定の対象とする種特異的なオリゴヌクレオチドプローブセットだけを使用して実施することができる。これらは、一セットのオリゴヌクレオチドプローブセットで使用してもよいし、二セット以上のオリゴヌクレオチドプローブセットを組み合わせて使用してもよい。
Oligonucleotide probe sets can be used by appropriately selecting what oligonucleotide probe sets are combined depending on the purpose and situation of detection and identification.
For example, at least one or more sets of detection and identification can be performed using only a species-specific oligonucleotide probe set to be identified. These may be used in one set of oligonucleotide probe sets or in combination of two or more sets of oligonucleotide probes.
 例えば、M.genitaliumの検出、同定の場合には、配列番号7で表わされるアレルプローブ及び配列番号8で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、M.hominisの検出、同定の場合には、配列番号10で表わされるアレルプローブ及び配列番号11で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、U.urealyticumの検出、同定の場合には、配列番号13で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、U.parvumの検出、同定の場合には配列番号16で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットを使用することで、高感度且つ高精度に対象の種を検出、同定することができるので好ましい。 For example, M.M. Detection of genitalium, in the case of identification, the oligonucleotide probe set containing invader probe represented by the allele probe and SEQ ID NO: 8 of SEQ ID NO: 7, M. Detection of hominis, in the case of identification, the oligonucleotide probe set containing invader probe represented by the allele probe and SEQ ID NO: 11 of SEQ ID NO: 10, U. Detection of urealyticum, in the case of identification, the oligonucleotide probe set containing invader probe represented by the allele probe and SEQ ID NO: 14 of SEQ ID NO: 13, U. In the case of detection and identification of parvum , by using an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14, the target species is detected with high sensitivity and high accuracy. It is preferable because it can be identified.
 また、必要に応じて、全てのマイコプラズマ属及びウレアプラズマ属細菌を検出、同定の対象とするオリゴヌクレオチドプローブセットを追加して実施してもよい。
 全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する配列を標的部位として、該標的部位に対して特異的な第一オリゴヌクレオチドプローブを含むアレルプローブ及びインベーダープローブを設計して、各々の種特異的に設計されたオリゴヌクレオチドプローブと同時に使用することもできる。この場合、アレルプローブから切断されて遊離する第三オリゴヌクレオチドプローブ及び該第三オリゴヌクレオチドプローブが結合するFRETプローブの配列と蛍光標識化合物は、それぞれ種特異的に設計したオリゴヌクレオチドプローブの配列及び蛍光標識化合物とは異なるように設計する。
 全てのマイコプラズマ属及びウレアプラズマ属細菌に共通した配列を検出することで、PCRによって増幅され検出された細菌がマイコプラズマ属或いはウレアプラズマ属細菌であることを確認することができる。これにより、種特異的なオリゴヌクレオチドプローブで検出、同定されたシグナルが非特異的反応である場合などには誤判定を防ぐことが可能となり、検査精度を向上させることができる。
Moreover, you may implement by adding the oligonucleotide probe set made into the object of detection and identification of all the Mycoplasma genus and Ureaplasma genus bacteria as needed.
Using a sequence common to all Mycoplasma and Ureaplasma bacteria as a target site, allele probes and invader probes including a first oligonucleotide probe specific to the target site are designed, and each species specific It can also be used simultaneously with the designed oligonucleotide probe. In this case, the sequence of the third oligonucleotide probe that is cleaved from the allele probe and released, the sequence of the FRET probe to which the third oligonucleotide probe binds, and the fluorescently labeled compound are the sequence of the oligonucleotide probe and the fluorescence that are designed specifically for the species, respectively. Designed differently from the labeled compound.
By detecting a sequence common to all Mycoplasma and Ureaplasma bacteria, it is possible to confirm that the bacteria amplified and detected by PCR are Mycoplasma or Ureaplasma bacteria. This makes it possible to prevent misjudgment when the signal detected and identified by the species-specific oligonucleotide probe is a non-specific reaction, and the test accuracy can be improved.
 また、検出、同定の対象としている種特異的なオリゴヌクレオチドプローブによっては検出されなかったが、全てのマイコプラズマ属及びウレアプラズマ属細菌を対象としたオリゴヌクレオチドプローブによって検出がされた場合には、現在尿路感染症への関与が示唆されている種類の細菌以外の新たな関与を示唆する発見が可能となり、尿路感染症の起炎菌を正確に把握することが可能となる。 In addition, it was not detected by the species-specific oligonucleotide probe to be detected and identified, but when it was detected by oligonucleotide probes targeting all Mycoplasma and Ureaplasma bacteria, Discovery that suggests a new involvement other than the type of bacteria that has been suggested to be involved in urinary tract infections is possible, and it is possible to accurately identify the causative bacteria of urinary tract infections.
 例えば、M.genitalilumに特異的な配列を標的部位とする、第一オリゴヌクレオチドプローブ、インベーダープローブを設計する。更に、アレルプローブから切断されて遊離する第三オリゴヌクレオチドプローブと該第三オリゴヌクレオチドプローブと相補結合する、5’末端側の塩基をFAMで標識したFRETプローブを準備する。
 一方で、全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する配列を標的部位として第一オリゴヌクレオチドプローブ、インベーダープローブを設計する。更に、第一オリゴヌクレオチドプローブが切断されて遊離する第三オリゴヌクレオチドプローブと該第三オリゴヌクレオチドプローブと相補結合する、5’末端側の塩基をVICで標識したFRETプローブを準備する。
 これらの試薬を全て混合し、インベーダー反応を行う。この時、PCRとインベーダー反応を同時に行うインベーダー法を行ってもよいし、PCR反応による増幅反応終了後にインベーダー反応を行うインベーダープラス法を行ってもよい。インベーダープラス法により、更に、簡便且つ迅速に高感度な分析を行うことができるので好ましい。
For example, M.M. A first oligonucleotide probe and an invader probe are designed that have a sequence specific to genitalium as a target site. Further, a third oligonucleotide probe that is cleaved from the allele probe and released, and a FRET probe that is complementary-bonded to the third oligonucleotide probe and labeled with FAM at the base on the 5 ′ end side are prepared.
On the other hand, a first oligonucleotide probe and an invader probe are designed using a sequence common to all Mycoplasma and Ureaplasma bacteria as a target site. Further, a third oligonucleotide probe that is released when the first oligonucleotide probe is cleaved and a FRET probe that is complementary-bonded to the third oligonucleotide probe and labeled with a VIC on the 5 ′ terminal side are prepared.
All these reagents are mixed and an invader reaction is performed. At this time, an invader method in which PCR and an invader reaction are simultaneously performed may be performed, or an invader plus method in which an invader reaction is performed after the amplification reaction by the PCR reaction may be performed. The invader plus method is preferable because highly sensitive analysis can be performed easily and rapidly.
 蛍光検出器によってFAM及びVICの蛍光強度を測定して検出を行う。すなわち、検出の結果、強いFAMの蛍光に加えてVICの蛍光を検出できた場合には、試料に含まれる核酸がマイコプラズマ属またはウレアプラズマ属細菌であることを意味し、更には標的部位の核酸配列がM.genitalium特異的な配列を有することを意味し、M.genitaliumであると同定することができる。また、検出の結果、FAMの蛍光のみでVICの蛍光が検出できない場合には、M.genitalium以外のマイコプラズマ属又はウレアプラズマ属細菌であると推定することができる。 Detection is performed by measuring the fluorescence intensity of FAM and VIC with a fluorescence detector. That is, as a result of detection, if VIC fluorescence can be detected in addition to strong FAM fluorescence, it means that the nucleic acid contained in the sample is a bacterium belonging to the genus Mycoplasma or Ureaplasma. The sequence is M.M. It means having a genitalium specific sequences, M. can be identified as genitalium . As a result of the detection, if it can not only fluorescent detection is fluorescence VIC of FAM are, M. It can be presumed that they are bacteria of the genus Mycoplasma or Ureaplasma other than genitalium .
 更に、内部標準物質を検出、同定の対象とするオリゴヌクレオチドプローブセットを組合せて実施してもよい。PCR反応時の阻害の有無を確認するために、反応溶液中に内部標準物質を添加して実施することができる。内部標準物質は、使用するプライマーセットにより増幅されるが、インベーダー反応の工程で使用される種特異的オリゴヌクレオチドプローブのいずれとも反応せず、内部標準物質の検出、同定用に設計したオリゴヌクレオチドプローブのみと反応する配列を有するものを用いる。
 内部標準物質を使用するために、PCRの条件を変更したりプライマーを追加することもできるが、プライマーセットの数を増やさず反応に大きな影響を与えない程度に添加され使用されることが好ましい。例えば、M.genitaliumの配列(X77334)の配列の一部を人為的に改変したものを使用することができる。
Furthermore, an oligonucleotide probe set for detecting and identifying the internal standard substance may be used in combination. In order to confirm the presence or absence of inhibition during the PCR reaction, an internal standard substance can be added to the reaction solution. The internal standard is amplified by the primer set used, but does not react with any of the species-specific oligonucleotide probes used in the invader reaction process, and the oligonucleotide probe designed for detection and identification of the internal standard That have a sequence that reacts only with
In order to use the internal standard, PCR conditions can be changed or primers can be added. However, it is preferable to add the primer so as not to greatly affect the reaction without increasing the number of primer sets. For example, M.M. An artificially modified sequence of the genitalium sequence (X77334) can be used.
 本発明の実施形態である核酸プローブアッセイ用組成物を含む試薬キットは、本発明の実施形態によるPCRとインベーダー反応を使用したマイコプラズマ属及びウレアプラズマ属細菌の検出、同定が実施できるように構成される。
 例えば、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する16s rRNA領域に設計したプライマーセット(配列番号5、6)、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する配列を標的部位として設計したオリゴヌクレオチドプローブセット、及び/又は、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌から選ばれる少なくとも一つ以上の種特異的な配列を標的部位として設計したオリゴヌクレオチドプローブセット、を含み、更に、Taqポリメラーゼ、フラップエンドヌクレアーゼを含むことができる。
A reagent kit comprising a nucleic acid probe assay composition according to an embodiment of the present invention is configured to detect and identify Mycoplasma and Ureaplasma bacteria using PCR and an invader reaction according to an embodiment of the present invention. The
For example, a primer set (SEQ ID NOs: 5 and 6) designed in a 16s rRNA region common to all mycoplasma and ureaplasma bacteria of interest, and a sequence common to all mycoplasma and ureaplasma bacteria of interest Oligonucleotide probe set designed as a target site and / or oligonucleotide probe set designed as a target site with at least one species-specific sequence selected from all Mycoplasma and Ureaplasma bacteria In addition, Taq polymerase and flap endonuclease can be included.
 オリゴヌクレオチドプローブセットは、検出、同定を実施する目的や状況に応じて、どのようなオリゴヌクレオチドプローブセットを組み合わせるか、適宜選択して使用することができ、選択の仕方としては、前述した検出、同定する方法に倣って組み合わせを選択することが可能である。オリゴヌクレオチドプローブセットは、アレルプローブとインベーダープローブを含み、必要に応じてFRETプローブを含むこともできる。FRETプローブを使用せずに実施する場合、アレルプローブ末端を標識しておき、フラップエンドヌクレアーゼによって切断された場合に蛍光を発するように設計するとよい。
 例えば、少なくとも一セット以上の検出、同定の対象とする種特異的なオリゴヌクレオチドプローブセットを含むことができる。これらは、一セットのオリゴヌクレオチドプローブセットを含んでいてもよいし、二セット以上のオリゴヌクレオチドプローブセットを含んでいてもよい。
 具体的なオリゴヌクレオチドプローブセットとしては、以下の(a)~(e)から少なくとも一つ以上選ばれるオリゴヌクレオチドプローブセットを挙げることができる。
(a)M.genitaliumの検出、同定用の配列番号7で表わされるアレルプローブ及び配列番号8で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(b)M.hominisの検出、同定用の配列番号10で表わされるアレルプローブ及び配列番号11で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(c)U.urealyticumの検出、同定用の配列番号13で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(d)U.parvumの検出、同定用の配列番号16で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(e)マイコプラズマ属及びウレアプラズマ属細菌群の検出、同定用の配列番号18又は19で表わされるアレルプローブと配列番号20又は21で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット。
 試薬キットの構成とするオリゴヌクレオチドプローブセットは、検査目的や対象とする菌種に合わせて、適宜、選択して使用することができる。
Oligonucleotide probe sets can be used by appropriately selecting what kind of oligonucleotide probe sets are combined according to the purpose and situation of detection and identification. It is possible to select a combination according to the identification method. The oligonucleotide probe set includes an allele probe and an invader probe, and may include a FRET probe as necessary. In the case where the FRET probe is not used, the allele probe end may be labeled and designed to emit fluorescence when cleaved by a flap endonuclease.
For example, at least one or more sets of detection and identification target species-specific oligonucleotide probe sets can be included. These may contain one set of oligonucleotide probe sets or two or more sets of oligonucleotide probe sets.
Specific examples of the oligonucleotide probe set include an oligonucleotide probe set selected from at least one of the following (a) to (e).
(A) M.M. detection of genitalium , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 for identification;
(B) M.M. detection of hominis , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 10 for identification and an invader probe represented by SEQ ID NO: 11,
(C) U.I. a set of oligonucleotide probes comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 for detection and identification of urealyticum ;
(D) U. detection of parvum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14 for identification;
(E) An oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma and Ureaplasma bacteria groups.
The oligonucleotide probe set constituting the reagent kit can be appropriately selected and used in accordance with the purpose of the test and the target bacterial species.
 更に、内部標準を検査する場合には、内部標準物質、及び、内部標準物質の検出、同定用オリゴヌクレオチドプローブセットを含むこともできる。
 内部標準としては、適宜、選択して使用することができるが、例えば、内部標準物質としてM.genitaliumの配列の一部を改変したものを使用し、配列番号23で表わされるアレルプローブ及び配列番号24で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセットを含むこともできる。
Furthermore, in the case of examining an internal standard, an internal standard substance and an oligonucleotide probe set for detection and identification of the internal standard substance can also be included.
The internal standard can be appropriately selected and used. For example, M.I. An oligonucleotide probe set including an allele probe represented by SEQ ID NO: 23 and an invader probe represented by SEQ ID NO: 24 can be used by using a modified part of the genitalium sequence.
 検査目的に合わせた具体的な試薬キットの構成としては、例えば、尿路感染症との関連が強く示唆され、最も検出率の高いM.genitaliumの検出検査に使用が想定される場合には、M.genitaliumの検出、同定用の配列番号7で表わされるアレルプローブ及び配列番号8で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、内部標準物質、及び、内部標準物質の検出、同定用のオリゴヌクレオチドプローブセットを含むこともできる。 As a specific reagent kit configuration tailored to the test purpose, for example, it is strongly suggested that it is associated with urinary tract infection, and M. when used in the detection check genitalium is assumed, M. Detection of genitalium , oligonucleotide probe set for detection and identification of oligonucleotide probe set, internal standard substance, and internal standard substance including allele probe represented by SEQ ID NO: 7 for identification and invader probe represented by SEQ ID NO: 8 Sets can also be included.
 また、特定の細菌の感染状況を調べる疫学調査等に使用が想定される場合には、
(a)M.genitaliumの検出、同定用の配列番号7で表わされるアレルプローブ及び配列番号8で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(b)M.hominisの検出、同定用の配列番号10で表わされるアレルプローブ及び配列番号11で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(c)U.urealyticumの検出、同定用の配列番号13で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(d)U.parvumの検出、同定用の配列番号16で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(e)マイコプラズマ属及びウレアプラズマ属細菌群の検出、同定用の配列番号18又は19で表わされるアレルプローブと配列番号20又は21で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
のいずれかから対象とする細菌のオリゴヌクレオチドプローブセットを選択し、含むことができる。
In addition, if it is expected to be used for epidemiological studies to investigate the infection status of specific bacteria,
(A) M.M. detection of genitalium , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 for identification;
(B) M.M. detection of hominis , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 10 for identification and an invader probe represented by SEQ ID NO: 11,
(C) U.I. a set of oligonucleotide probes comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 for detection and identification of urealyticum ;
(D) U. detection of parvum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14 for identification;
(E) an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma spp. And Ureaplasma spp.
The bacterial oligonucleotide probe set of interest can be selected and included from any of the above.
 また、尿路感染症とその起炎菌との関連について調査する場合には、
(a)M.genitaliumの検出、同定用の配列番号7で表わされるアレルプローブ及び配列番号8で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(b)M.hominisの検出、同定用の配列番号10で表わされるアレルプローブ及び配列番号11で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(c)U.urealyticumの検出、同定用の配列番号13で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(d)U.parvumの検出、同定用の配列番号16で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
(e)マイコプラズマ属及びウレアプラズマ属細菌群の検出、同定用の配列番号18又は19で表わされるアレルプローブと配列番号20又は21で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
 更に、内部標準物質、及び、内部標準物質の検出、同定用のオリゴヌクレオチドプローブセットを含むこともできる。
When investigating the relationship between urinary tract infections and their causative bacteria,
(A) M.M. detection of genitalium , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 for identification;
(B) M.M. detection of hominis , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 10 for identification and an invader probe represented by SEQ ID NO: 11,
(C) U.I. a set of oligonucleotide probes comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 for detection and identification of urealyticum ;
(D) U. detection of parvum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14 for identification;
(E) an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma spp. And Ureaplasma spp.
Furthermore, an internal standard substance and an oligonucleotide probe set for detection and identification of the internal standard substance can also be included.
 また、上記以外のマイコプラズマ属及びウレアプラズマ属について調査研究の対象とする場合には、
(e)マイコプラズマ属及びウレアプラズマ属細菌群の検出、同定用の配列番号18又は19で表わされるアレルプローブと配列番号20又は21で表わされるインベーダープローブを含む、オリゴヌクレオチドプローブセット、
を更に含む試薬キット構成とし、いずれの種特異的オリゴヌクレオチドプローブセットとも反応しない菌が検出、同定された場合に更なる解析を実施する対象を絞り込むこともできる。
In addition, in the case of the subject of research on Mycoplasma and Ureaplasma other than the above,
(E) an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma spp. And Ureaplasma spp.
In addition, it is possible to narrow down the target for further analysis when bacteria that do not react with any species-specific oligonucleotide probe set are detected and identified.
 次に実施例を挙げて本発明の詳細を説明するが、下記実施例は本発明について具体的な認識を得る一助としてのみ挙げたものであり、これによって本発明の範囲が何ら制限されるものではない。 Next, the present invention will be described in detail with reference to examples. However, the following examples are given only as an aid for obtaining specific recognition of the present invention, and the scope of the present invention is thereby limited in any way. is not.
(実施例1;プライマー、オリゴヌクレオチドプローブの設計)
 本発明において検出、同定の対象とするM.genitalium(X77334;配列番号1)、M.hominis(M96660;配列番号2)、U.urealyticum(AF073450;配列番号3)、U.parvum(A073459;配列番号4)の4種について、GenBank(米国国立バイオテクノロジー情報センター;http://www.ncbi.nlm.nih.gov/genbank/)から16s rRNAの配列を入手した。入手した各配列をソフトウェアGENETIX(ゼネティックス社製)を使用して、多重整列プログラムであるClustalWのアルゴリズムに従って配列のアライメントを実施した。アライメント結果を図1に示す。
(Example 1: Design of primers and oligonucleotide probes)
In the present invention, M.M. genitalium (X77334; SEQ ID NO: 1), M. et al . hominis (M96660; SEQ ID NO: 2), U. urealyticum (AF073450; SEQ ID NO: 3), U. The 16s rRNA sequences were obtained from GenBank (National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov/genbank/) for four species of parvum (A073459; SEQ ID NO: 4). Each obtained sequence was aligned using the software GENEX (manufactured by Genetics) according to the algorithm of ClustalW, which is a multiple alignment program. The alignment result is shown in FIG.
 プライマー及びオリゴヌクレオチドプローブはアライメントデータを参考にして、プライマー及びオリゴヌクレオチドプローブを設計した。プライマーはこれらの種に共通する配列部位を選び出して設計した。オリゴヌクレオチドプローブは、種特異的な配列を選び出して設計した。M.genitaliumはアンチセンス鎖に対してハイブリダイゼーションするようにオリゴヌクレオチドプローブを設計し、それ以外はすべてセンス鎖に対してハイブリダイゼーションするようにオリゴヌクレオチドプローブを設計した。 Primers and oligonucleotide probes were designed with reference to the alignment data. Primers were designed by selecting sequence sites common to these species. Oligonucleotide probes were designed by selecting species-specific sequences. M.M. Genitalium designed the oligonucleotide probe to hybridize to the antisense strand, all others designed the oligonucleotide probe to hybridize to the sense strand.
 PCR反応に使用したプライマー配列は以下の通りである。
Myco_Urea_F: 5’-CGCGGTAATACATAGGTTGCAAGCGTTATC-3’(配列番号5)
Rv1: 5’-GCACCACCTGTCACTCTGTTAACCTC-3’(配列番号6)
The primer sequences used for the PCR reaction are as follows.
Myco_Urea_F: 5′-CGCGGGTAATACATGGTTGCAACGTTTATC-3 ′ (SEQ ID NO: 5)
Rv1: 5′-GCACCACCTGTCACTCTGTTAACCTC-3 ′ (SEQ ID NO: 6)
 また、種別に使用したオリゴヌクレオチドプローブ配列は以下の通りである。
 M.genitalium特異的オリゴヌクレオチドプローブは、以下の通りである。なお、アレルプローブ中においてフラップ配列、すなわち、フラップエンドヌクレアーゼにより切断されて第三オリゴヌクレオチドプローブとなる配列は小文字で記載した。
アレルプローブ
Mg_SE_P1_arm7: 5’-tccgcgcgtccAGGGATCGCTCCG-3’(配列番号7)
第二オリゴヌクレオチドプローブ(インベーダープローブ)
Mg_SE_inv: 5’-AGATACTTAATGTGTTAACTTCACTACCGAT-3’(配列番号8)
第三オリゴヌクレオチドプローブ: 5’-tccgcgcgtcc-3’(配列番号9)
 M.genitalium検出、同定用に設計した第四オリゴヌクレオチドプローブはその5’末端をFAMで標識されたものをホロジック社から購入した。
The oligonucleotide probe sequences used for each type are as follows.
M.M. The genitalium- specific oligonucleotide probe is as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
Allele probe Mg_SE_P1_arm7: 5′-tccgcgcgtccAGGGATCGCTCCG-3 ′ (SEQ ID NO: 7)
Second oligonucleotide probe (invader probe)
Mg_SE_inv: 5′-AGATAACTTAATGTGTTAACTTCACTACCGAT-3 ′ (SEQ ID NO: 8)
Third oligonucleotide probe: 5′-tccgcgcgtcc-3 ′ (SEQ ID NO: 9)
M.M. The fourth oligonucleotide probe designed for detection and identification of genitalium was purchased from Hologic Co., which had its 5 ′ end labeled with FAM.
 M.hominis特異的プローブは、以下の通りである。なお、アレルプローブ中においてフラップ配列、すなわち、フラップエンドヌクレアーゼにより切断されて第三オリゴヌクレオチドプローブとなる配列は小文字で記載した。
アレルプローブ
Mh2_63_P1_arm7: 5’-tccgcgcgtccCGGCTCGCTTTGG-3’(配列番号10)
第二オリゴヌクレオチドプローブ(インベーダープローブ)
Mh2_inv2: 5’-GAGTTAAATCCCGGGGCTCAACCCA-3’(配列番号11)
第三オリゴヌクレオチドプローブ: 5’-tccgcgcgtcc-3’(配列番号12)
 M.hominis検出、同定用に設計した第四オリゴヌクレオチドプローブはその5’末端をFAMで標識されたものをホロジック社から購入した。
M.M. The hominis specific probe is as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
Allele probe Mh2_63_P1_arm7: 5′-tccgcgcgtccCGCCTCGCTTTGG-3 ′ (SEQ ID NO: 10)
Second oligonucleotide probe (invader probe)
Mh2_inv2: 5′-GAGTTAAATCCCGGGGCTCAACCCA-3 ′ (SEQ ID NO: 11)
Third oligonucleotide probe: 5′-tccgcgcgtcc-3 ′ (SEQ ID NO: 12)
M.M. A fourth oligonucleotide probe designed for detection and identification of hominis was purchased from Hologic Co., Ltd. with its 5 ′ end labeled with FAM.
 U.urealyticum特異的オリゴヌクレオチドプローブは、以下の通りである。なお、アレルプローブ中においてフラップ配列、すなわち、フラップエンドヌクレアーゼにより切断されて第三オリゴヌクレオチドプローブとなる配列は小文字で記載した。
アレルプローブ
Uu_63_P1_arm6: 5’-cgcgaggccgTCGAACGAGTCGGT-3’(配列番号13)
第二オリゴヌクレオチドプローブ(インベーダープローブ);
Urea_Inv2: 5’-ACCGTAAACGATCATCATTAAATGTCGGCA-3’(配列番号14)
第三オリゴヌクレオチドプローブ: 5’-cgcgaggccg-3’(配列番号15)
 U.urealyticum検出、同定用に設計した第四オリゴヌクレオチドプローブはその5’末端をRedmond Redで標識されたものをホロジック社から購入した。
U. The urealyticum- specific oligonucleotide probe is as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
Allele probe Uu — 63_P1 — arm6: 5′-cgcgaggccgTCGAACGAGTCGGT-3 ′ (SEQ ID NO: 13)
A second oligonucleotide probe (invader probe);
Urea_Inv2: 5′-ACCGTAAACGATCATCATTAAAATGTGGCA-3 ′ (SEQ ID NO: 14)
Third oligonucleotide probe: 5′-cgcgaggccg-3 ′ (SEQ ID NO: 15)
U. The fourth oligonucleotide probe designed for detection and identification of urealyticum was purchased from Hologic, with its 5 'end labeled with Redmond Red.
 U.parvum特異的オリゴヌクレオチドプローブは、以下の通りである。なお、アレルプローブ中においてフラップ配列、すなわち、フラップエンドヌクレアーゼにより切断されて第三オリゴヌクレオチドプローブとなる配列は小文字で記載した。
アレルプローブ
Up_63_P1_arm1: 5’-cgcgccgaggCCGAATGGGTCGGT-3’(配列番号16)
第二オリゴヌクレオチドプローブ(インベーダープローブ)は、U.urealyticumと共通の配列(配列番号14)を設計し使用した。
第三オリゴヌクレオチドプローブ: 5’-cgcgccgagg-3’(配列番号17)
 U.parvum検出、同定用に設計した第四オリゴヌクレオチドプローブはその5’末端をYakima Yellowで標識されたものをホロジック社から購入した。
U. The parvum specific oligonucleotide probe is as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
Allele probe Up_63_P1_arm1: 5′-cgcgccgaggCCGAATGGGTCGGT-3 ′ (SEQ ID NO: 16)
Second oligonucleotide probe (invader probe) is, U. A common sequence (SEQ ID NO: 14) with urealyticum was designed and used.
Third oligonucleotide probe: 5′-cgcgccgagg-3 ′ (SEQ ID NO: 17)
U. The fourth oligonucleotide probe designed for parvum detection and identification was purchased from Hologic, whose 5 ′ end was labeled with Yakima Yellow.
 また、全てのマイコプラズマ属及びウレアプラズマ属細菌に共通のオリゴヌクレオチドプローブは、以下の通り設計した。なお、アレルプローブ中においてフラップ配列、すなわち、フラップエンドヌクレアーゼにより切断されて第三オリゴヌクレオチドプローブとなる配列は小文字で記載した。
アレルプローブ
ALL2_SE_P1_arm4: 5’-aggccacggacgTAATCCTATTTGCTCCCCA-3’(配列番号18)
ALL2_SE_P1_G_arm4: 5’-aggccacggacgTAATCCTGTTTGCTCCC-3’(配列番号19)
第二オリゴヌクレオチドプローブ(インベーダープローブ)
ALL2_SE_inv: 5’-TACGGTGTGGACTACTAGGGTATCC-3’(配列番号20)
ALL2_SE_inv_CC: 5’-GCGTGGACTACCAGGGTATCC-3’(配列番号21)
第三オリゴヌクレオチドプローブ: 5’-aggccacggacg-3’(配列番号22)
 全てのマイコプラズマ属及びウレアプラズマ属細菌検出、同定用に設計した第四オリゴヌクレオチドプローブはその5’末端をRedmond Redで標識されたものをホロジック社から購入した。
In addition, oligonucleotide probes common to all Mycoplasma and Ureaplasma bacteria were designed as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
Allele probe ALL2_SE_P1_arm4: 5′-agggccacggacTAATCTCATTTTGCTCCCCA-3 ′ (SEQ ID NO: 18)
ALL2_SE_P1_G_arm4: 5′-aggccacggacgTAATCCCTGTTTCCTCCC-3 ′ (SEQ ID NO: 19)
Second oligonucleotide probe (invader probe)
ALL2_SE_inv: 5′-TACGGTGTGACTACTAGGGTATC-3 ′ (SEQ ID NO: 20)
ALL2_SE_inv_CC: 5′-GCGGTGACTACCAGGGTATC-3 ′ (SEQ ID NO: 21)
Third oligonucleotide probe: 5′-agggccacggacg-3 ′ (SEQ ID NO: 22)
A fourth oligonucleotide probe designed for detection and identification of all Mycoplasma and Ureaplasma bacteria was purchased from Hologic, with the 5 'end labeled with Redmond Red.
 ウレアプラズマ属細菌(U.urealyticumU.parvum)の検出、同定用第四オリゴヌクレオチドプローブは共通した配列となるように設計し、その5’末端をU.urealyticum検出用オリゴヌクレオチドプローブはYakimaで、U.parvum検出用オリゴヌクレオチドプローブはRedmondで標識した。Yakimaは励起波長531nm、検出波長550nmとVICとほぼ同等であるため、VIC用に設定されたフィルターを使用して検出、同定できる。また、Redmondは励起波長579nm、検出波長595nmとROXとほぼ同等であるため、ROX用に設定されたフィルターを使用して検出、同定できる。 Ureaplasma spp (U.urealyticum, U.parvum) detection of the fourth oligonucleotide probes for the identification is designed to be common sequences, the 5 'terminus U. The oligonucleotide probe for detection of urealyticum is Yakima, U. The oligonucleotide probe for detection of parvum was labeled with Redmond. Yakima has an excitation wavelength of 531 nm and a detection wavelength of 550 nm, which is almost equivalent to VIC, and therefore can be detected and identified using a filter set for VIC. Further, since Redmond has an excitation wavelength of 579 nm and a detection wavelength of 595 nm, which is substantially equivalent to ROX, it can be detected and identified using a filter set for ROX.
 また、内部標準物質に対しても特異的なオリゴヌクレオチドプローブをそれぞれ設計した。なお、アレルプローブ中においてフラップ配列、すなわち、フラップエンドヌクレアーゼにより切断されて第三オリゴヌクレオチドプローブとなる配列は小文字で記載した。
アレルプローブ
Myco_IC_P_arm1: 5’-cgcgccgaggCGACAGCTAGTATCTATCG-3’(配列番号23)
第二オリゴヌクレオチドプローブ(インベーダープローブ)
IC_inv: 5’-TGCAGGATCGGAATTCCAGCA-3’(配列番号24)
第三オリゴヌクレオチドプローブ: 5’-cgcgccgagg-3’(配列番号25)
 内部標準物質検出、同定用に設計した第四オリゴヌクレオチドプローブはその5’末端をYakima Yellowで標識されたものをホロジック社から購入した。
 なお、全ての第三オリゴヌクレオチドプローブの3’末端に位置する塩基は、第一オリゴヌクレオチドプローブの5’末端に位置する塩基とホスホジエステル結合によって結合するように合成され、試薬混合時においては一つのオリゴヌクレオチドプローブとして反応溶液中に存在する。
In addition, oligonucleotide probes specific to the internal standard were designed. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
Allele probe Myco_IC_P_arm1: 5′-cgcgccgaggCGACAGCTAGTATCTACG-3 ′ (SEQ ID NO: 23)
Second oligonucleotide probe (invader probe)
IC_inv: 5′-TGCAGGATCGGAATTCCAGCA-3 ′ (SEQ ID NO: 24)
Third oligonucleotide probe: 5′-cgcgccgagg-3 ′ (SEQ ID NO: 25)
The fourth oligonucleotide probe designed for internal standard substance detection and identification was purchased from Hologic Co., Ltd. with its 5 ′ end labeled with Yakima Yellow.
Note that the base located at the 3 ′ end of all the third oligonucleotide probes is synthesized so as to bind to the base located at the 5 ′ end of the first oligonucleotide probe by a phosphodiester bond, and one is not mixed when mixing the reagents. One oligonucleotide probe is present in the reaction solution.
 設計したプライマー及び各オリゴヌクレオチドプローブの位置をアライメント図2に示す。また、プライマー及び各オリゴヌクレオチドプローブの一覧を表1に示す。第三オリゴヌクレオチドプローブについては、インベーダープローブとして記載した配列中に小文字で示した。なお、表中のICは内部標準物質を示す。 The alignment of the designed primer and each oligonucleotide probe is shown in FIG. Table 1 shows a list of primers and each oligonucleotide probe. The third oligonucleotide probe is shown in lower case in the sequence described as an invader probe. In the table, IC indicates an internal standard substance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2;材料の調製)
(菌株)
 マイコプラズマ属及びウレアプラズマ属細菌の菌株は、ATCC(American Type Culture Collection)より購入したM.genitaliumM.hominisU.urealyticumU.parvumのマイコプラズマ菌株及びウレアプラズマ菌株を使用した。
 また、交差試験に使用したマイコプラズマ属及びウレアプラズマ属細菌以外の41種類の細菌、酵母についても全てATCCから購入して使用した。表2に使用した菌株の一覧を示す。
(Example 2: Preparation of material)
(Strain)
Strains of Mycoplasma and Ureaplasma spp. Bacteria were purchased from ATCC (American Type Culture Collection) . genitalium , M. et al . hominis , U .; ureallyticum , U.S.A. Parvum mycoplasma and ureaplasma strains were used.
In addition, 41 types of bacteria and yeasts other than Mycoplasma and Ureaplasma bacteria used in the cross test were all purchased from ATCC and used. Table 2 shows a list of strains used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(プライマー、オリゴヌクレオチドプローブの合成)
 実施例1で設計したプライマー及びオリゴヌクレオチドプローブの合成は、ホロジック社に委託して製造した。
(Synthesis of primers and oligonucleotide probes)
The synthesis of the primer and oligonucleotide probe designed in Example 1 was commissioned to Hologic.
(プラスミドの調製)
 検出用陽性対照として、またPCR反応の鋳型として使用するDNAを作製した。検出、同定の対象とするM.genitaliumM.hominisU.urealyticumU.parvumの4菌株試料として、自動化精製試薬(QIAsymphony SP、QIAGEN社製)を使用してDNAの抽出を行った。抽出したDNAを鋳型として、実施例1で設計した配列番号5及び配列番号6からなるプライマーセットを使用して、通常のPCR反応条件により増幅した。M.genitaliumは516~1037番目の塩基を、M.hominisは512~1019番目の塩基を、U.urealyticumは492~1013番目の塩基を、U.parvumは496~1017番目の塩基を増幅した。
 得られたPCR増幅産物を遺伝子組み換え用プラスミド(pT7 Blue T-vector,Novagen社製)内に、添付のプロトコルに従って挿入しクローニングした。これを検出用陽性対象及びPCR反応の鋳型とした。
(Preparation of plasmid)
DNA used as a positive control for detection and as a template for PCR reaction was prepared. M. to be detected and identified . genitalium , M. et al . hominis , U .; ureallyticum , U.S.A. DNA extraction was performed using an automated purification reagent (QIAsymphony SP, manufactured by QIAGEN) as 4 strains of parvum . Using the extracted DNA as a template, the primer set consisting of SEQ ID NO: 5 and SEQ ID NO: 6 designed in Example 1 was used for amplification under normal PCR reaction conditions. M.M. genitalium contains bases 516 to 1037, hominis contains the 512th to 1019th bases, ureallyticum contains bases 492-1013, U. parvum amplified the 496th to 1017th bases.
The obtained PCR amplification product was inserted into a plasmid for gene recombination (pT7 Blue T-vector, manufactured by Novagen) and cloned according to the attached protocol. This was used as a positive target for detection and a template for PCR reaction.
(内部標準物質の作製)
 PCR反応時の阻害の有無を確認するために使用する内部標準物質を作製した。実施例2で作製したM.genitaliumの配列を有するDNAが挿入されたプラスミドを鋳型として、M.genitalium配列部分を通常の方法に従ってPCR反応で増幅した。
 得られたPCR産物を精製した後、その塩基配列の一部(X77334の769番目~930番目に相当)を人為的に改変したものを遺伝子組み換え用プラスミド(pT7 Blue T-vector,Novagen社製)内に、添付のプロトコルに従って挿入しクローニングし、内部標準物質とした(配列番号36)。
(Preparation of internal standard substance)
An internal standard substance used for confirming the presence or absence of inhibition during the PCR reaction was prepared. The M.M. Using a plasmid inserted with DNA having the genitalium sequence as a template, The genitalium sequence portion was amplified by a PCR reaction according to a conventional method.
After purifying the obtained PCR product, a plasmid for gene recombination (pT7 Blue T-vector, manufactured by Novagen) obtained by artificially modifying a part of the base sequence (corresponding to positions 769 to 930 of X77334) The product was inserted and cloned in accordance with the attached protocol, and used as an internal standard (SEQ ID NO: 36).
 試薬キット1として実施例1で設計した共通プライマーセット、M.genitaliumに特異的なオリゴヌクレオチドプローブセット、全てのマイコプラズマ属及びウレアプラズマ属細菌に共通である(以後ALL Mycoと称する)オリゴヌクレオチドプローブセット、内部標準物質に対して設計したオリゴヌクレオチドプローブセットを、試薬キット2としてM.hominisU.urealyticumU.parvumのそれぞれに対して特異的なオリゴヌクレオチドプローブセットを検出する反応液として調製した。 Common primer sets designed in Example 1 as a reagent kit 1, M. A reagent set comprising an oligonucleotide probe set specific to genitalium , an oligonucleotide probe set common to all Mycoplasma and Ureaplasma bacteria (hereinafter referred to as ALL Myco), and an oligonucleotide probe set designed for an internal standard As kit 2, M.M. hominis , U .; ureallyticum , U.S.A. Prepared as a reaction solution for detecting a specific oligonucleotide probe set for each of parvum .
(実施例3:PCR条件サイクル数の検討)
 PCR反応後にインベーダー反応による検出、同定を行う場合について、PCR反応のサイクル数と検出状況について検討し、最適なPCR反応のサイクル数を設定した。実施例2で調製した材料を使用して、試薬キット1を使用してM.genitaliumを、試薬キット2を使用してM.hominisU.urealyticumU.parvumの各細菌を検出、同定できる条件の検討を行った。鋳型としては、実施例2で調製したプラスミドを1反応あたり10~10コピーとなるように使用した。
(Example 3: Examination of PCR condition cycle number)
In the case of performing detection and identification by invader reaction after the PCR reaction, the number of PCR reaction cycles and the detection status were examined, and the optimal number of PCR reaction cycles was set. Using the material prepared in Example 2, M. The genitalium, M. using a reagent kit 2 hominis , U .; ureallyticum , U.S.A. The conditions under which each bacterium of parvum can be detected and identified were examined. As a template, the plasmid prepared in Example 2 was used so as to be 10 6 to 10 1 copies per reaction.
 PCR反応による増幅と同時にインベーダー反応によって検出、同定する方法は、上記のように混合した試薬を、95℃に加温したサーマルサイクラー(PRISM7900HT,アプライドバイオシステムズ社製)を使用して、PCRの増幅反応条件は(95℃、10秒)+(95℃、30秒+70℃、1分)×2+(95℃、15秒+70℃、1分)×10+(95℃、15秒+63℃、1分)×40で行った。
 PCR反応後にインベーダー法による検出、同定を行うインベーダープラス法は、上記のように混合した試薬を、95℃に加温したサーマルサイクラー(PRISM7900HT,アプライドバイオシステムズ社製)を使用して、PCRの増幅反応条件を(95℃、10秒)+(95℃、15秒+70℃、1分)×30で行った後、99℃で10分加熱してTaqポリメラーゼを不活化し、(63℃、30秒)×60でインベーダー法による蛍光データ取得をした。インベーダー法とインベーダープラス法の比較結果を図4(インベーダー法)及び図5(インベーダープラス法)に示す。
The method of detecting and identifying by the invader reaction simultaneously with the amplification by the PCR reaction is the PCR amplification using a thermal cycler (PRISM 7900HT, manufactured by Applied Biosystems) in which the reagent mixed as described above is heated to 95 ° C. Reaction conditions are (95 ° C., 10 seconds) + (95 ° C., 30 seconds + 70 ° C., 1 minute) × 2 + (95 ° C., 15 seconds + 70 ° C., 1 minute) × 10 + (95 ° C., 15 seconds + 63 ° C., 1 minute) ) X40.
The Invader Plus method, which detects and identifies by the Invader method after the PCR reaction, uses a thermal cycler (PRISM7900HT, manufactured by Applied Biosystems) in which the reagent mixed as described above is heated to 95 ° C. The reaction conditions were (95 ° C., 10 seconds) + (95 ° C., 15 seconds + 70 ° C., 1 minute) × 30, followed by heating at 99 ° C. for 10 minutes to inactivate Taq polymerase, (63 ° C., 30 Second) x 60, fluorescence data was acquired by the invader method. Comparison results between the invader method and the invader plus method are shown in FIG. 4 (invader method) and FIG. 5 (invader plus method).
 また、インベーダープラス法において、PCR反応のサイクル数を、20、27、30、40の各サイクルとして増幅後、99℃、10分加熱してTaqポリメラーゼを不活化させた後、インベーダー反応は63℃で60サイクルの蛍光データを取得(63℃で30秒毎に30分間蛍光データを取得)し判定を行った結果を図5(PCR:30サイクル)、図6(PCR:40サイクル)、図7(PCR:20サイクル)、表3に示す。 In the invader plus method, the PCR reaction cycle number was amplified as 20, 27, 30, and 40 cycles, followed by heating at 99 ° C. for 10 minutes to inactivate Taq polymerase, and then the invader reaction was performed at 63 ° C. And 60 cycles of fluorescence data were acquired (fluorescence data was acquired every 30 seconds at 63 ° C. for 30 minutes), and the determination results are shown in FIG. 5 (PCR: 30 cycles), FIG. 6 (PCR: 40 cycles), and FIG. (PCR: 20 cycles), shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 一般的には、PCRによる検出はPCRサイクル数を増やすことで低コピー数の核酸試料からも検出が可能となる。PCR反応と同時にインベーダー反応を実施して検出、同定する系では、核酸試料に含まれるコピー数が高コピーである場合にも低コピーである場合にもPCR増幅産物の量と蛍光強度が経時的に増加する状況を検出することが可能である。一方で本発明の方法では、PCR反応サイクル数の増加に伴いPCR増幅産物の量が過剰となるため、バックグラウンドの蛍光強度が上昇し、高コピー数の核酸試料において検出が困難となる。種によっては十分な核酸量があるにも関わらず検出対象外となり、誤判定の原因となりうることが分かった(図6)。 Generally, detection by PCR can be detected from a nucleic acid sample having a low copy number by increasing the number of PCR cycles. In a system that performs detection and identification by performing an invader reaction at the same time as the PCR reaction, the amount of PCR amplification product and the intensity of fluorescence over time, regardless of whether the copy number contained in the nucleic acid sample is high or low, It is possible to detect an increasing situation. On the other hand, in the method of the present invention, the amount of the PCR amplification product becomes excessive as the number of PCR reaction cycles increases, so that the background fluorescence intensity increases and it becomes difficult to detect in a high copy number nucleic acid sample. It was found that some species could be excluded from detection despite having a sufficient amount of nucleic acid, which could cause misjudgment (FIG. 6).
(実施例4:マイコプラズマ属及びウレアプラズマ属細菌由来核酸の検出、同定)
 実施例2で調製した材料を使用して、試薬キット1を使用してM.genitaliumを、試薬キット2を使用してM.hominisU.urealyticumU.parvumの各細菌を検出、同定できることを確認した。鋳型としては、実施例2で調製したプラスミドを1反応あたり10~10コピーとなるように使用した。
(Example 4: Detection and identification of nucleic acid derived from Mycoplasma and Ureaplasma bacteria)
Using the material prepared in Example 2, M. The genitalium, M. using a reagent kit 2 hominis , U .; ureallyticum , U.S.A. It was confirmed that each parvum bacterium could be detected and identified. As a template, the plasmid prepared in Example 2 was used so as to be 10 6 to 10 1 copies per reaction.
 混合した試薬を、95℃に加温したサーマルサイクラー(PRISM7900HT,アプライドバイオシステムズ社製)を使用して、PCRの増幅反応条件は95℃、10秒+(95℃、15秒+70℃、1分)×34cycles+99℃、10分+(63℃、30秒)×60cyclesで実施した。インベーダー反応は63℃で60cyclesの蛍光データを取得(63℃で30秒毎に30分間蛍光データを取得)し判定を行った。 Using a thermal cycler (PRISM7900HT, manufactured by Applied Biosystems) in which the mixed reagent was heated to 95 ° C., PCR amplification reaction conditions were 95 ° C., 10 seconds + (95 ° C., 15 seconds + 70 ° C., 1 minute) ) × 34 cycles + 99 ° C., 10 minutes + (63 ° C., 30 seconds) × 60 cycles The invader reaction was determined by obtaining fluorescence data of 60 cycles at 63 ° C. (acquiring fluorescence data every 30 seconds at 63 ° C. for 30 minutes).
 判定に際しては特異オリゴヌクレオチドプローブの蛍光検出量を測定し、検出判定基準を決定した。
 プラスミドが0コピー/反応時の蛍光量をバックグランドとし、M.genitaliumは6,000、M.hominisは6,000、U.parvumは1,700、U.urealyticumは800、マイコプラズマ属及びウレアプラズマ属細菌について(以後ALL Mycoと略す)は800、内部標準物質については1,700を判定基準とした。
 検出された各種オリゴヌクレオチドプローブの蛍光量を表4に示す。いずれの各種オリゴヌクレオチドプローブについても検出された蛍光量が1反応あたり10コピーまで判定値を上回ることが確認された。
In the determination, the fluorescence detection amount of the specific oligonucleotide probe was measured to determine the detection criterion.
The amount of fluorescence when the plasmid was 0 copies / reaction was used as the background . genitalium is 6,000, M. hominis is 6,000, U.I. parvum is 1,700 . ureallyticum was set to 800, 800 for Mycoplasma and Ureaplasma bacteria (hereinafter abbreviated as ALL Myco), and 1,700 for the internal standard substance.
Table 4 shows the amount of fluorescence of each detected oligonucleotide probe. It was confirmed that the amount of fluorescence detected for any of the various oligonucleotide probes exceeded the judgment value up to 10 copies per reaction.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例5:再現性の確認)
 本発明において設計したプライマー及びオリゴヌクレオチドプローブを含む試薬キットを使用して、検出感度と再現性の確認を行った。M.genitaliumM.hominisU.urealyticumU.parvumのPCR増幅産物を組込んだプラスミドDNAの濃度が、1反応あたり10、10、0コピーとなるように3ロットを調製した。これら3ロットについて同時再現性の確認として6回測定し、さらに日を変えての日差再現性の確認測定を3回実施した。検出率が100%となる濃度を最小の検出限界とした。検出、同定の方法は実施例4と同様にして行った。その結果、実施した18回の測定において、検出率が100%となるコピー数はM.genitaliumM.hominisU.urealyticum、ALL Mycoが50コピー/テスト、U.parvum、内部標準物質が100コピー/テストであり、検査室において求められる検出感度を十分に満たすものであった。
(Example 5: Confirmation of reproducibility)
Detection sensitivity and reproducibility were confirmed using a reagent kit containing primers and oligonucleotide probes designed in the present invention. M.M. genitalium , M. et al . hominis , U .; ureallyticum , U.S.A. Three lots were prepared so that the concentration of the plasmid DNA incorporating the PCR amplification product of parvum was 10 2 , 10 1 , and 0 copies per reaction. These three lots were measured 6 times as confirmation of simultaneous reproducibility, and further, confirmation measurement of day difference reproducibility by changing the day was performed 3 times. The concentration at which the detection rate was 100% was defined as the minimum detection limit. The detection and identification methods were the same as in Example 4. As a result, in the 18 measurements carried out, the number of copies with a detection rate of 100% was M.P. genitalium , M. et al . hominis , U .; urealyticum, ALL Myco is 50 copies / test, U. parvum , the internal standard was 100 copies / test and sufficiently satisfied the detection sensitivity required in the laboratory.
(実施例6:交差反応性試験)
 実施例2で調製した試薬キットを使用したマイコプラズマ属及びウレアプラズマ属細菌の検出、同定法について、他の種との交差反応性について検討を行った。
(Example 6: Cross-reactivity test)
Regarding the detection and identification methods of Mycoplasma and Ureaplasma bacteria using the reagent kit prepared in Example 2, cross-reactivity with other species was examined.
6-1.マイコプラズマ属及びウレアプラズマ属細菌内における交差反応性試験
 ヒトに対して感染が確認されているマイコプラズマ属13種、ウレアプラズマ属2種について、交差反応が起きないかを確認した結果を表5に示す。種特異的に設計した各オリゴヌクレオチドプローブは、いずれも対象とする菌とのみ反応が確認され、対象外の細菌と反応する非特異反応検出されなかった。
6-1. Cross-reactivity test in Mycoplasma and Ureaplasma bacteria Table 5 shows the results of confirming that cross-reaction does not occur in 13 Mycoplasma genera and 2 Ureaplasma gene species that have been confirmed to infect humans. . Each oligonucleotide probe designed specifically for the species was confirmed to react only with the target bacterium, and a non-specific reaction that reacted with the non-target bacterium was not detected.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
6-2.泌尿器関連微生物に対する交差反応性試験
 泌尿器への感染が報告されているマイコプラズマ属及びウレアプラズマ属以外の細菌41種を使用して、それらの細菌との交差反応性について検討を行った結果を表6に示す。
 種特異的に設計した各オリゴヌクレオチドプローブは、いずれも対象とする菌とのみ反応が確認され、対象外の細菌と反応する非特異反応検出されなかった。また、全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する配列を標的部位として設計したALLMycoプローブを使用した場合には、Proteus mirabilis及びViblio parahaemolyticusの検出が確認されたが、その他では実施した全ての細菌、酵母からの検出はされなかった。対象種以外の種が相同性の高い配列を有する場合においても、臨床検体からの分離例がほとんど無い種については、実質的に問題にならないと思われた。
6-2. Cross-reactivity test against urinary-related microorganisms Table 6 shows the results of cross-reactivity studies with 41 bacteria other than Mycoplasma and Ureaplasma that have been reported to be infected with the urinary tract. Shown in
Each oligonucleotide probe designed specifically for the species was confirmed to react only with the target bacterium, and a non-specific reaction that reacted with the non-target bacterium was not detected. In addition, when the ALLMyco probe designed with a sequence common to all Mycoplasma and Ureaplasma bacteria as a target site was used, detection of Proteus mirabilis and Vibrio parahaemolyticus was confirmed. It was not detected from yeast. Even when a species other than the target species has a highly homologous sequence, it seems that there is substantially no problem for a species that has almost no separation from clinical specimens.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実施例7:臨床検体からの検出)
 本発明の試薬キットを使用して、臨床検体73件から対象とする4種の検出、同定を試みた。対照法としては、特開2004-24206号公報に公開されている方法(以下、対照法と称する)を使用して比較を行った。試料からの核酸抽出には、QIAsymphony Virum/Bacteria Midi Kit(QIAGEN社製)を用いて核酸試料を調製した以外は、実施例3と同様の検出、同定方法にて行った。
(Example 7: Detection from clinical specimen)
Using the reagent kit of the present invention, four types of detection and identification from 73 clinical specimens were tried. As a control method, a comparison was made using a method disclosed in JP-A-2004-24206 (hereinafter referred to as the control method). Nucleic acid extraction from the sample was carried out by the same detection and identification method as in Example 3, except that a nucleic acid sample was prepared using QIAsymphony Virum / Bacteria Midi Kit (manufactured by QIAGEN).
 M.genitaliumの場合では、対照法によっては検出されなかった検体からもM.genitaliumを検出、同定することができることが確認された。同様に他の種についても比較を行った結果、M.hominis及びU.urealyticumについても対照法によっては検出されなかった検体からも検出、同定が可能であることが確認された。
 U.parvumについては、対照法と本発明の方法とで結果が不一致となる検体が見られた。不一致検体について検出されたPCR増幅産物について詳細を解析した結果、検体中に含まれる核酸試料が検出下限となる最小検出限界に近い低コピー数であること、また、複数の菌の感染が疑われる複合感染であることがあることが判明した。
M.M. In the case of genitalium , M. cerevisiae was also detected from samples not detected by the control method . It was confirmed that genitalium can be detected and identified. Similarly it was compared for the other species results, M. hominis and U.I. detected in not detected analyte by also control method for urealyticum, identification was confirmed to be possible.
U. As for parvum , specimens in which the results were inconsistent between the control method and the method of the present invention were observed. As a result of analyzing the details of the PCR amplification products detected for the mismatched sample, the nucleic acid sample contained in the sample has a low copy number close to the minimum detection limit, which is the detection lower limit, and infection of multiple bacteria is suspected It turned out to be a complex infection.
(比較例1:プライマー及びオリゴヌクレオチドプローブ設計)
 実施例1で実施したアライメントデータを参考にしてプライマー及びオリゴヌクレオチドプローブを設計した。プライマー及びオリゴヌクレオチドプローブの設計方法は実施例に準拠して行った。設計されたプライマー及びオリゴヌクレオチドプローブは以下の通りである。
(Comparative Example 1: Primer and oligonucleotide probe design)
Primers and oligonucleotide probes were designed with reference to the alignment data performed in Example 1. The design method of the primer and the oligonucleotide probe was performed according to the examples. The designed primers and oligonucleotide probes are as follows.
 このプライマーセットは、フォワードプライマーは実施例1で設計したものと同一の配列(配列番号5)で、リバースプライマーは実施例で使用したプライマーを下流側に12塩基ずれた設計となっている。使用したリバースプライマーの配列を以下に記す。
Myco_Urea R6: 5’-GACGACAACCATGCACCATCTGTCA-3’(配列番号26)
In this primer set, the forward primer has the same sequence as that designed in Example 1 (SEQ ID NO: 5), and the reverse primer is designed so that the primer used in the example is shifted 12 bases downstream. The sequence of the reverse primer used is shown below.
Myco_Urea R6: 5′-GACGACAACCCATGCACCATCTGTCA-3 ′ (SEQ ID NO: 26)
 また、種別に使用したオリゴヌクレオチドプローブ配列は以下の通りである。なお、アレルプローブ中においてフラップ配列、すなわち、フラップエンドヌクレアーゼにより切断されて第三オリゴヌクレオチドプローブとなる配列は小文字で記載した。
 M.genitalium特異的オリゴヌクレオチドプローブは、センス鎖に対して設計した。なお、フラップ部分の第三オリゴヌクレオチドプローブとなる部分は変更していない。
アレルプローブ
Mg_63_P1_arm7: 5’-tccgcgcgtccTTCGGTAGTGAAGTTAACAC-3’(配列番号27)
第二オリゴヌクレオチドプローブ(インベーダープローブ)
Mg_inv: 5’-AGCTGTCGGAGCGATCCCA-3’(配列番号28)
第三オリゴヌクレオチドプローブ
5’-tccgcgcgtcc-3’(配列番号29)
 第四オリゴヌクレオチドプローブは実施例1で設計したM.genitalium検出、同定用第四オリゴヌクレオチドプローブと同じものを使用した。
The oligonucleotide probe sequences used for each type are as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
M.M. A genitalium- specific oligonucleotide probe was designed for the sense strand. In addition, the part used as the 3rd oligonucleotide probe of a flap part is not changed.
Allele probe Mg_63_P1_arm7: 5′-tccgcgcgtccTTCGGGTAGGAAGTTAACAC-3 ′ (SEQ ID NO: 27)
Second oligonucleotide probe (invader probe)
Mg_inv: 5′-AGCTGTCGGAGCGATCCA-3 ′ (SEQ ID NO: 28)
Third oligonucleotide probe 5′-tccgcgcgtcc-3 ′ (SEQ ID NO: 29)
The fourth oligonucleotide probe was prepared by the M.I. The same fourth oligonucleotide probe for detection and identification of genitalium was used.
 M.hominis特異的オリゴヌクレオチドプローブについては、実施例1で設計した第一~第四オリゴヌクレオチドプローブと同じものを使用した。 M.M. As the hominis- specific oligonucleotide probe, the same one as the first to fourth oligonucleotide probes designed in Example 1 was used.
 U.urealyticum特異的オリゴヌクレオチドプローブは、アレルプローブを2種類とした。また、フラップ部分の配列となる第三オリゴヌクレオチドプローブを変更し、それに伴って第四オリゴヌクレオチドプローブの配列も変更した。なお、アレルプローブ中においてフラップ配列、すなわち、フラップエンドヌクレアーゼにより切断されて第三オリゴヌクレオチドプローブとなる配列は小文字で記載した。
アレルプローブ
Uu_63_P1_arm3:5’-acggacgcggagTCGAACGAGTCGGT-3’(配列番号30)
Uu_63_P1_2_arm3:5’-acggacgcggagTCGAACGAGTCGGTT-3’(配列番号31)
第二オリゴヌクレオチドプローブ(インベーダープローブ)は、実施例1で設計したものと同じもの(配列番号14)を使用した。
第三オリゴヌクレオチドプローブ
5’-acggacgcggag-3’(配列番号32)
 U.urealyticum検出、同定用に設計した第四オリゴヌクレオチドプローブはその5’末端をYakima Yellowで標識されたものをホロジック社から購入した。
 第四オリゴヌクレオチドプローブはUreaplasma属細菌(U.urealyticumU.parvum)について共通するものとし、ウレアプラズマ属細菌の検出、同定用として、その5’末端をYakimaで標識した。
U. As the urealyticum- specific oligonucleotide probe, two types of allele probes were used. In addition, the third oligonucleotide probe to be the sequence of the flap portion was changed, and the sequence of the fourth oligonucleotide probe was changed accordingly. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
Allele probe Uu — 63_P1 — arm3: 5′-acggacggcggagTCGAACGAGGTCGT-3 ′ (SEQ ID NO: 30)
Uu — 63_P1 — 2 — arm3: 5′-acggacgcgggagTCGAACGAGGTCTGTT-3 ′ (SEQ ID NO: 31)
The second oligonucleotide probe (invader probe) was the same as that designed in Example 1 (SEQ ID NO: 14).
Third oligonucleotide probe 5′-acggacgcggag-3 ′ (SEQ ID NO: 32)
U. The fourth oligonucleotide probe designed for detection and identification of urealyticum was purchased from Hologic, with its 5 ′ end labeled with Yakima Yellow.
The fourth oligonucleotide probe was common to Ureaplasma bacteria ( U. urealyticum , U. parvum ), and its 5 ′ end was labeled with Yakima for detection and identification of Ureaplasma bacteria.
 U.parvum特異的プローブは実施例1で設計した第一~第四オリゴヌクレオチドプローブと同じものを使用した。 U. The same parvum probe as the first to fourth oligonucleotide probes designed in Example 1 was used.
 全てのマイコプラズマ属及びウレアプラズマ属細菌に共通のオリゴヌクレオチドプローブは、以下の通りである。なお、アレルプローブ中においてフラップ配列、すなわち、フラップエンドヌクレアーゼにより切断されて第三オリゴヌクレオチドプローブとなる配列は小文字で記載した。
アレルプローブ
ALL2_63_P2-2_arm6: 5’-cgcgaggccgAGATACCCTAGTAGTCCAC-3’(配列番号33)
第二オリゴヌクレオチドプローブ(インベーダープローブ)
ALL2_inv2: 5’-AGGGTCGAAAGTGTGGGGAGCAAACAGGATTC-3’(配列番号34)
検出、同定用に設計した第二オリゴヌクレオチドプローブはその5’末端を『(標識化合物)』で標識した。
第三オリゴヌクレオチドプローブ:
5’-cgcgaggccg-3’(配列番号35)
 全てのマイコプラズマ属及びウレアプラズマ属細菌検出、同定用に設計した第四オリゴヌクレオチドプローブはその5’末端をYakima Yellowで標識されたものをホロジック社から購入した。
The oligonucleotide probes common to all Mycoplasma and Ureaplasma bacteria are as follows. In the allele probe, the flap sequence, that is, the sequence that is cleaved by the flap endonuclease to become the third oligonucleotide probe is shown in lower case.
Allele probe ALL2_63_P2-2_arm6: 5′-cgcgaggccgAGATACCCTAGTAGTCCCAC-3 ′ (SEQ ID NO: 33)
Second oligonucleotide probe (invader probe)
ALL2_inv2: 5′-AGGGTCGAAAGTGTGGGGAGCAAACAGGATTC-3 ′ (SEQ ID NO: 34)
The 5 ′ end of the second oligonucleotide probe designed for detection and identification was labeled with “(labeled compound)”.
Third oligonucleotide probe:
5′-cgcgaggccg-3 ′ (SEQ ID NO: 35)
The fourth oligonucleotide probe designed for detection and identification of all Mycoplasma and Ureaplasma bacteria was purchased from Hologic Co., Ltd. with its 5 ′ end labeled with Yakima Yellow.
 設計したプライマー及び各オリゴヌクレオチドプローブの位置をアライメント図3に示す。また、プライマー及び各オリゴヌクレオチドプローブの一覧を表7に示す。なお、表中のICは内部標準物質を示す。 The alignment of the designed primer and each oligonucleotide probe is shown in FIG. Table 7 shows a list of primers and each oligonucleotide probe. In the table, IC indicates an internal standard substance.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(比較例2:マイコプラズマ属及びウレアプラズマ属細菌由来核酸の検出、同定)
 実施例2の方法に準拠して、比較例1で設計したプライマー及びオリゴヌクレオチドプローブを含む試薬キットを調製した。
 試薬キットの構成としては、試薬キット1にはプライマーセットに加えて、M.genitalium検出、同定用オリゴヌクレオチドプローブ、内部標準物質検出、同定用オリゴヌクレオチドプローブ、全てのマイコプラズマ属及びウレアプラズマ属細菌の検出、同定用オリゴヌクレオチドプローブを含む。試薬キット2にはプライマーセットに加えて、M.hominisU.urealyticumU.parvumのそれぞれを検出、同定するためのオリゴヌクレオチドプローブを含む。
 該試薬キットを使用してマイコプラズマ属及びウレアプラズマ属細菌の検出、同定を試みた。
 その結果、対象とした4種いずれについても検出することが可能であった。感度は、U.urealyticumが1テストあたり100コピーである以外は、いずれも1テストあたり50コピーであった。
(Comparative Example 2: Detection and identification of nucleic acid derived from Mycoplasma and Ureaplasma bacteria)
In accordance with the method of Example 2, a reagent kit containing the primer and oligonucleotide probe designed in Comparative Example 1 was prepared.
As a configuration of the reagent kit, in addition to the primer set, the reagent kit 1 includes M.M. Includes detection of genitalium , oligonucleotide probe for identification, internal standard detection, oligonucleotide probe for identification, detection of all Mycoplasma and Ureaplasma bacteria, and oligonucleotide probe for identification. In addition to the primer set, Reagent Kit 2 contains M.M. hominis , U .; ureallyticum , U.S.A. It contains oligonucleotide probes for detecting and identifying each of the parvum .
An attempt was made to detect and identify Mycoplasma and Ureaplasma bacteria using the reagent kit.
As a result, it was possible to detect any of the four target types. Sensitivity, U. All were 50 copies per test except that the urealyticum was 100 copies per test.
(比較例3:交差反応性試験)
 比較例2で調製した試薬キットを使用したマイコプラズマ属及びウレアプラズマ属細菌の検出、同定法について、他の種との交差反応性について検討を行った。
(Comparative Example 3: Cross-reactivity test)
Regarding the detection and identification method of Mycoplasma and Ureaplasma bacteria using the reagent kit prepared in Comparative Example 2, cross-reactivity with other species was examined.
3-1.マイコプラズマ属及びウレアプラズマ属細菌内における交差反応性試験
 ヒトに対して感染が確認されているマイコプラズマ属13種、ウレアプラズマ属2種について、交差反応が起きないかを確認した結果を表8に示す。M.genitalium特異的なオリゴヌクレオチドプローブにおいては、M.genitalium以外にM.pneumoniaeとの反応が確認された。M.hominis特異的なオリゴヌクレオチドプローブでは、M.hominis以外にM.fauciumM.oraleM.primatumM.salivariumとの反応が確認されたことから、本試薬構成では高精度にマイコプラズマ属及びウレアプラズマ属細菌の検出、同定を行うには不十分であると考えられた。
3-1. Cross-reactivity test in Mycoplasma and Ureaplasma bacteria Table 8 shows the results of confirming whether cross-reactions occurred in 13 Mycoplasma genera and 2 Ureaplasma gene species that have been confirmed to infect humans. . M.M. In genitalium specific oligonucleotide probes, M. M. In addition to genitalium Reaction with pneumoniae was confirmed. M.M. In hominis specific oligonucleotide probe, M. In addition to hominis , M.M. faucium, M. orale, M. primatum, M. Since the reaction with salivarium was confirmed, it was considered that this reagent configuration is insufficient to detect and identify Mycoplasma and Ureaplasma bacteria with high accuracy.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
3-2.泌尿器関連微生物に対する交差反応性試験
 泌尿器への感染が報告されているマイコプラズマ属及びウレアプラズマ属以外の細菌41種(表2参照)を使用して、それらの細菌との交差反応性について検討を行った結果を表9に示す。なお、表9中の細菌番号(No.1~41)は、表2の細菌番号と一致する。
 その結果、M.hominis特異的に設計したオリゴヌクレオチドプローブでは、M.hominis以外にSalmonella typhimurium及びStaphylococcus aureusの2種との反応が確認された。また、全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する配列を標的部位として設計したALL Mycoプローブを使用した場合には、マイコプラズマ属及びウレアプラズマ属細菌以外の17種類の細菌との反応が確認された。このことから、目的とする4種のマイコプラズマ属及びウレアプラズマ属細菌以外の細菌とも反応することが確認された。
3-2. Cross-reactivity test against urinary-related microorganisms Using 41 species of mycoplasma and ureaplasma that have been reported to infect the urinary tract (see Table 2), we examined the cross-reactivity with these bacteria. Table 9 shows the results. Note that the bacterial numbers (Nos. 1-41) in Table 9 coincide with the bacterial numbers in Table 2.
As a result, M.M. In hominis specifically designed oligonucleotide probe, M. In addition to hominis , reaction with two species of Salmonella typhimurium and Staphylococcus aureus was confirmed. In addition, when an ALL Myco probe designed with a sequence common to all Mycoplasma and Ureaplasma bacteria as a target site was used, reactions with 17 types of bacteria other than Mycoplasma and Ureaplasma were confirmed. It was. From this, it was confirmed that it reacts also with bacteria other than the four kinds of bacteria of the genus Mycoplasma and Ureaplasma.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記のプライマーセット及びオリゴヌクレオチドプローブセットを含む試薬構成でマイコプラズマ属及びウレアプラズマ属細菌の検出同定を行った場合には、目的とする4種の細菌以外と反応し本来検出、同定の対象とする種とは異なるマイコプラズマ細菌であると同定される可能性があるだけでなく、他の属の細菌を誤ってマイコプラズマ属及びウレアプラズマ属細菌であると同定してしまう可能性が高いため、治療方針の選択材料及び治療薬の効果判定材料として提供するには危険性が高く、採用することはできない。 When detection and identification of Mycoplasma and Ureaplasma bacteria is performed with a reagent configuration including the above primer set and oligonucleotide probe set, it reacts with other than the four types of bacteria of interest and is originally targeted for detection and identification Not only can it be identified as a mycoplasma bacterium that is different from the species, but there is a high probability that other genus bacteria will be mistakenly identified as Mycoplasma and Ureaplasma bacteria. Therefore, it cannot be adopted because it is highly dangerous.
 特にプライマーセットに関しては、配列情報から常法に従って設計した配列を有するプライマーセットだけでは不十分な場合があり、更に、インベーダー反応における検出、同定工程での特異性を考慮して特異性の高い反応系を構築する必要があることが分かった。
 従って、公知の方法によって設計されたプライマーセット及びオリゴヌクレオチドプローブセットは、マイコプラズマ属及びウレアプラズマ属細菌の検出、同定に使用するためには不十分で使用できない場合があり、本発明において設計されたプライマー及び各種オリゴヌクレオチドプローブを使用した検査系は、特に、M.genitaliumM.hominisU.urealyticum、及びU.parvumの4種を検出、同定するにあたって、有用であることが示された。
 これらのプライマーセット及びオリゴヌクレオチドプローブセットを含む試薬を使用した検出、同定方法は、臨床検体を使用して多検体を迅速に処理することが可能であり、簡易かつ高感度で、一反応で複数のマイコプラズマ属及びウレアプラズマ属細菌を検出し、交差反応が無く信頼性の高い精度で種を同定可能であることが明らかとなった。
Especially for primer sets, primer sets that have sequences designed according to conventional methods from sequence information may not be sufficient. In addition, highly specific reactions that take into account the specificity in the detection and identification process in the invader reaction. It turns out that it is necessary to build a system.
Therefore, primer sets and oligonucleotide probe sets designed by known methods may not be sufficient for use in the detection and identification of Mycoplasma and Ureaplasma bacteria and may not be used. Test systems that use primers and various oligonucleotide probes are particularly described in M.M. genitalium , M. et al . hominis , U .; ureallyticum , and U.S.A. It was shown to be useful in detecting and identifying four species of parvum .
The detection and identification methods using reagents including these primer sets and oligonucleotide probe sets are capable of rapidly processing multiple samples using clinical samples, and are simple and highly sensitive. Mycoplasma and Ureaplasma spp. Were detected, and it was revealed that species could be identified with high accuracy without cross-reaction.
 本発明の実施形態によれば、PCRによる増幅反応とインベーダー法による検出、同定反応に必要な試薬を一つの容器内に一度に混合して、臨床検体を材料にヒトからの分離が報告されている全てのマイコプラズマ属及びウレアプラズマ属細菌を同等の感度で検出し、非淋菌性尿道炎との関連が示唆されている種について同定することができる。また、非淋菌性尿道炎の起炎菌についての正確な情報を蓄積する一助となり、的確な治療方針の選択材料及び治療薬の効果判定材料を迅速に提供することができる。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。
According to an embodiment of the present invention, reagents required for PCR amplification reaction, detection by invader method, and identification reaction are mixed at once in one container, and separation from humans has been reported using clinical samples as materials. All Mycoplasma and Ureaplasma bacteria can be detected with comparable sensitivity and identified for species that are suggested to be associated with nongonococcal urethritis. In addition, it helps to accumulate accurate information about non-gonococcal urethritis-causing bacteria, and can promptly provide a material for selecting an appropriate treatment policy and a material for determining the effect of a therapeutic agent.
As mentioned above, although this invention was demonstrated along the specific aspect, the deformation | transformation and improvement obvious to those skilled in the art are included in the scope of the present invention.
 配列表の配列番号7、10、13、16、18、19、23、24、27、30、31、33は、それぞれ、Mg_SE_P1_arm7、Mh2_63_P1_arm7、Uu_63_P1_arm6、Up_63_P1_arm1、ALL2_SE_P1_arm4、ALL2_SE_P1_G_arm4、Myco_IC_P_arm1、IC_inv、Mg_63_P1_arm7、Uu_63_P1_arm3、Uu_63_P1_2_arm3、ALL2_63_P2-2_arm6である。配列番号9、12、15、17、22、25、29、32、35の各塩基配列は第三オリゴヌクレオチドプローブ配列である。配列番号36の塩基配列は内部標準物質である。 SEQ ID NOs: 7, 10, 13, 16, 18, 19, 23, 24, 27, 30, 31, 33 in the sequence listing are Mg_SE_P1_arm7, Mh2_63_P1_arm7, Uu_63_P1_arm6, Up_63_P1_arm1, ALL2_SE_P1_arm4, ALL2_SE_P1_G_, Uu_63_P1_arm3, Uu_63_P1_2_arm3, ALL2_63_P2-2_arm6. Each base sequence of SEQ ID NOs: 9, 12, 15, 17, 22, 25, 29, 32, and 35 is a third oligonucleotide probe sequence. The base sequence of SEQ ID NO: 36 is an internal standard substance.

Claims (25)

  1.  マイコプラズマ属及びウレアプラズマ属細菌の検出、同定を行う方法であって、以下の工程を含む方法;
    (a)マイコプラズマ属及びウレアプラズマ属細菌の16s rRNAにおいて、前記細菌群に含まれる核酸に共通する領域に対して設定したプライマーセットを使用してPCRを実施する工程
    (b)前記マイコプラズマ属及びウレアプラズマ属細菌群に含まれる所定の細菌を、インベーダー反応を使用して検出、同定を実施する工程
    A method for detecting and identifying Mycoplasma and Ureaplasma bacteria, comprising the following steps:
    (A) A step of performing PCR using a primer set set for a region common to nucleic acids contained in the bacterial group in 16s rRNA of Mycoplasma and Ureaplasma bacteria (b) The Mycoplasma and urea A process of detecting and identifying a predetermined bacterium contained in a plasma genus bacterial group using an invader reaction
  2.  前記所定の細菌がM.genitaliumM.hominisU.urealyticum、及びU.parvumから少なくとも一つ以上選ばれるものであり、
    インベーダー反応が、前記選ばれた各細菌に含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブセットを使用する、請求項1に記載の方法。
    The predetermined bacteria is M. pneumoniae. genitalium , M. et al . hominis , U .; ureallyticum , and U.S.A. at least one selected from parvum ,
    The method according to claim 1, wherein the invader reaction uses an oligonucleotide probe set comprising a sequence specific to the nucleic acid contained in each selected bacterium.
  3.  前記所定の細菌がM.genitaliumM.hominisU.urealyticum、及びU.parvumから少なくとも一つ以上選ばれるものであり、
    インベーダー反応が、前記選ばれた各細菌に含まれる核酸に対して共通な配列であり、且つ、前記マイコプラズマ属及びウレアプラズマ属細菌群に含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブセットを使用する、請求項1に記載の方法。
    The predetermined bacteria is M. pneumoniae. genitalium , M. et al . hominis , U .; ureallyticum , and U.S.A. at least one selected from parvum ,
    Oligonucleotide probe whose invader reaction is a sequence common to the nucleic acids contained in each of the selected bacteria and includes a sequence specific to the nucleic acids contained in the Mycoplasma and Ureaplasma bacteria groups The method of claim 1, wherein a set is used.
  4.  前記プライマーセットが、配列番号1で表される塩基配列の516~1049番目からなる領域を増幅可能である、請求項1乃至3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the primer set is capable of amplifying a region consisting of positions 516 to 1049 of the base sequence represented by SEQ ID NO: 1.
  5.  前記PCRプライマーセットが、配列番号5及び配列番号6で表される塩基配列からなるプライマーセットである、請求項1乃至4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the PCR primer set is a primer set consisting of the base sequences represented by SEQ ID NO: 5 and SEQ ID NO: 6.
  6.  前記オリゴヌクレオチドプローブセットが、M.genitalium検出、同定用であって、配列番号37で表される塩基配列中の第320番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、請求項1、2、4、5のいずれか一項に記載の方法。 It said oligonucleotide probe sets, M. The oligonucleotide probe set for detection and identification of genitalium , wherein the oligonucleotide probe set is designed using the 320th base or its complementary base in the base sequence represented by SEQ ID NO: 37 as a target nucleic acid. 6. The method according to any one of 5 above.
  7.  前記オリゴヌクレオチドプローブセットが、M.hominis検出、同定用であって、配列番号38で表される塩基配列中の第100番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、請求項1、2、4、5のいずれか一項に記載の方法。 It said oligonucleotide probe sets, M. An oligonucleotide probe set designed for detection and identification of hominis and designed using the 100th base in the base sequence represented by SEQ ID NO: 38 or a complementary base thereof as a target nucleic acid. The method according to any one of 5.
  8.  前記オリゴヌクレオチドプローブセットが、U.urealyticum検出、同定用であって、配列番号39で表される塩基配列中の第312番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、請求項1、2、4、5のいずれか一項に記載の方法。 Said oligonucleotide probe sets, U. The oligonucleotide probe set for detection and identification of urealyticum , wherein the oligonucleotide probe set is designed using the 312th base in the base sequence represented by SEQ ID NO: 39 or a complementary base thereof as a target nucleic acid. 6. The method according to any one of 5 above.
  9.  前記オリゴヌクレオチドプローブセットが、U.parvum検出、同定用であって、配列番号40で表される塩基配列中の第312番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、請求項1、2、4、5のいずれか一項に記載の方法。 Said oligonucleotide probe sets, U. The oligonucleotide probe set for detection and identification of parvum , wherein the oligonucleotide probe set is designed using the 312th base in the base sequence represented by SEQ ID NO: 40 or its complementary base as a target nucleic acid. The method according to any one of 5.
  10.  前記オリゴヌクレオチドプローブセットが、マイコプラズマ属及びウレアプラズマ属細菌検出、同定用であって、配列番号37で表される塩基配列中の第264番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、請求項1又は3に記載の方法。 The oligonucleotide probe set is used for detection and identification of bacteria belonging to the genus Mycoplasma and Ureaplasma. The method according to claim 1 or 3, which is a nucleotide probe set.
  11.  M.genitaliumに含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号7で表わされるアレルプローブ及び配列番号8で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、請求項6に記載の方法。 M.M. The oligonucleotide probe comprising a sequence specific to the nucleic acid contained in genitalium is an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8. Method.
  12.  M.hominisに含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号10で表わされるアレルプローブ及び配列番号11で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、請求項7に記載の方法。 M.M. The oligonucleotide probe set containing the allele probe represented by SEQ ID NO: 10 and the invader probe represented by SEQ ID NO: 11 is an oligonucleotide probe set according to claim 7, wherein the oligonucleotide probe comprising a sequence specific to the nucleic acid contained in hominis Method.
  13.  U.urealyticumに含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号13で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、請求項8に記載の方法。 U. 9. The oligonucleotide probe set comprising the allele probe represented by SEQ ID NO: 13 and the invader probe represented by SEQ ID NO: 14 as the oligonucleotide probe comprising a sequence specific to the nucleic acid contained in urealyticum. Method.
  14.  U.parvumに含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号16で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、請求項9に記載の方法。 U. The oligonucleotide probe comprising a sequence specific to the nucleic acid contained in parvum is an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14. Method.
  15.  前記選ばれた各細菌に含まれる核酸に対して共通な配列であり、且つ、前記マイコプラズマ属及びウレアプラズマ属細菌群に含まれる核酸に対して特異的な配列を含むオリゴヌクレオチドプローブが配列番号18又は19で表わされるアレルプローブと配列番号20又は21で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、請求項10に記載の方法。 An oligonucleotide probe comprising a sequence common to the nucleic acid contained in each of the selected bacteria and comprising a sequence specific to the nucleic acid contained in the Mycoplasma and Ureaplasma bacteria group is SEQ ID NO: 18. The method according to claim 10, wherein the oligonucleotide probe set comprises an allele probe represented by 19 and an invader probe represented by SEQ ID NO: 20 or 21.
  16.  前記インベーダー反応に使用されるオリゴヌクレオチドプローブセットを、同一反応容器内において複数使用する、請求項1乃至15のいずれか一項に記載の方法。 The method according to any one of claims 1 to 15, wherein a plurality of oligonucleotide probe sets used for the invader reaction are used in the same reaction vessel.
  17.  更に、内部標準物質と該内部標準物質に対するインベーダー反応に使用するオリゴヌクレオチドプローブセットを反応容器中に同時に存在させる、請求項1乃至16のいずれか一項に記載の方法。 Furthermore, the method according to any one of claims 1 to 16, wherein an internal standard substance and an oligonucleotide probe set used for an invader reaction to the internal standard substance are simultaneously present in the reaction vessel.
  18.  前記オリゴヌクレオチドプローブセットが、配列番号36で表される塩基配列中の第329番塩基またはその相補的塩基を標的核酸として設計されるオリゴヌクレオチドプローブセットである、請求項17に記載の方法。 The method according to claim 17, wherein the oligonucleotide probe set is an oligonucleotide probe set designed using the 329th base in the base sequence represented by SEQ ID NO: 36 or a complementary base thereof as a target nucleic acid.
  19.  前記内部標準物質に対して特異的な配列を含むオリゴヌクレオチドプローブセットが、配列番号23で表わされるアレルプローブ及び配列番号24で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットである、請求項18に記載の方法。 The oligonucleotide probe set comprising a sequence specific to the internal standard substance is an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 23 and an invader probe represented by SEQ ID NO: 24. the method of.
  20.  前記PCRを実施する工程と前記インベーダー反応を使用して検出、同定を実施する工程とが同時に行われる、請求項1乃至19のいずれか一項に記載の方法。 The method according to any one of claims 1 to 19, wherein the step of performing the PCR and the step of performing detection and identification using the invader reaction are performed simultaneously.
  21.  前記PCRを実施する工程に続いて、前記インベーダー反応を使用して検出、同定を実施する工程が行われる、請求項1乃至19のいずれか一項に記載の方法。 The method according to any one of claims 1 to 19, wherein a step of performing detection and identification using the invader reaction is performed following the step of performing the PCR.
  22.  配列番号5及び6のプライマーセット、及び、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する配列を標的部位として設計したオリゴヌクレオチドプローブセット、及び/又は、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌から選ばれる少なくとも一つ以上の菌種特異的な配列を標的部位として設計したオリゴヌクレオチドプローブセットを含む、マイコプラズマ属及びウレアプラズマ属細菌の検出、同定用核酸プローブアッセイ試薬キット。 A primer set of SEQ ID NOs: 5 and 6, and an oligonucleotide probe set designed with a sequence common to all mycoplasma and ureaplasma bacteria as a target site, and / or all mycoplasma genus and A nucleic acid probe assay reagent kit for detecting and identifying Mycoplasma and Ureaplasma bacteria, comprising an oligonucleotide probe set designed with at least one species-specific sequence selected from Ureaplasma bacteria as a target site.
  23.  配列番号5及び6のプライマーセット、及び、以下の(a)~(e)から少なくとも一つ以上選ばれるオリゴヌクレオチドプローブセットを含む、請求項22に記載のマイコプラズマ属及びウレアプラズマ属細菌の検出、同定用核酸プローブアッセイ試薬キット:
    (a)M.genitaliumの検出、同定用の配列番号7で表わされるアレルプローブ及び配列番号8で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、
    (b)M.hominisの検出、同定用の配列番号10で表わされるアレルプローブ及び配列番号11で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、
    (c)U.urealyticumの検出、同定用の配列番号13で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、
    (d)U.parvumの検出、同定用の配列番号16で表わされるアレルプローブ及び配列番号14で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット、
    (e)マイコプラズマ属及びウレアプラズマ属細菌群の検出、同定用の配列番号18又は19で表わされるアレルプローブと配列番号20又は21で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセット。
    The detection of Mycoplasma and Ureaplasma bacteria according to claim 22, comprising a primer set of SEQ ID NOs: 5 and 6, and at least one oligonucleotide probe set selected from the following (a) to (e): Nucleic acid probe assay reagent kit for identification:
    (A) M.M. detection of genitalium , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 7 and an invader probe represented by SEQ ID NO: 8 for identification;
    (B) M.M. detection of hominis , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 10 and an invader probe represented by SEQ ID NO: 11 for identification;
    (C) U.I. detection of ureallyticum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 13 and an invader probe represented by SEQ ID NO: 14 for identification;
    (D) U. detection of parvum , an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 16 and an invader probe represented by SEQ ID NO: 14 for identification;
    (E) An oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 18 or 19 and an invader probe represented by SEQ ID NO: 20 or 21 for detection and identification of Mycoplasma and Ureaplasma bacteria groups.
  24.  配列番号5及び6のプライマーセット、及び、対象とする全てのマイコプラズマ属及びウレアプラズマ属細菌に共通する配列を標的部位として設計したオリゴヌクレオチドプローブセットを含む、マイコプラズマ属及びウレアプラズマ属細菌の検出、同定用核酸プローブアッセイ試薬キット。 Detection of Mycoplasma and Ureaplasma bacteria, comprising a primer set of SEQ ID NOs: 5 and 6, and an oligonucleotide probe set designed with a sequence common to all Mycoplasma and Ureaplasma bacteria of interest as target sites; Nucleic acid probe assay reagent kit for identification.
  25.  更に、内部標準物質の検出、同定用の配列番号23で表わされるアレルプローブ及び配列番号24で表わされるインベーダープローブを含むオリゴヌクレオチドプローブセットを含む、請求項22乃至24のいずれか一項に記載のマイコプラズマ属及びウレアプラズマ属細菌の検出、同定用核酸プローブアッセイ試薬キット。 The oligonucleotide probe set according to any one of claims 22 to 24, further comprising an oligonucleotide probe set comprising an allele probe represented by SEQ ID NO: 23 and an invader probe represented by SEQ ID NO: 24 for detection and identification of an internal standard substance. Nucleic acid probe assay reagent kit for detection and identification of Mycoplasma and Ureaplasma bacteria.
PCT/JP2013/082779 2012-12-07 2013-12-06 Method for detecting and identifying bacterium belonging to genus mycoplasma or ureaplasma WO2014088088A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551150A JP6019134B2 (en) 2012-12-07 2013-12-06 Method for detecting and identifying Mycoplasma and Ureaplasma bacteria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-268813 2012-12-07
JP2012268813 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014088088A1 true WO2014088088A1 (en) 2014-06-12

Family

ID=50883500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082779 WO2014088088A1 (en) 2012-12-07 2013-12-06 Method for detecting and identifying bacterium belonging to genus mycoplasma or ureaplasma

Country Status (2)

Country Link
JP (1) JP6019134B2 (en)
WO (1) WO2014088088A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017209063A (en) * 2016-05-26 2017-11-30 学校法人福岡大学 Method for identification and detection of microorganisms associated with chorioamnionitis, primer set and assay kit for detection of chorioamnionitis-associated microorganisms, and method for detecting chorioamnionitis
JP2018126089A (en) * 2017-02-08 2018-08-16 学校法人日本大学 Primer sets for detecting ureaplasma bacteria and uses thereof
CN110643723A (en) * 2019-09-26 2020-01-03 刘君 Primer group for detecting ureaplasma parvum
JP2020089339A (en) * 2018-12-07 2020-06-11 一般財団法人日本生物科学研究所 Primer set, and nucleic acid amplification method using primer set, bacteria identifying method, and method for diagnosing bacterial infection of infected pig
CN114480663A (en) * 2021-11-15 2022-05-13 贵州省畜牧兽医研究所 Primer pair, kit and detection method for detecting swine-origin differential ureaplasma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299352A (en) * 2000-04-20 2001-10-30 Mitsubishi Kagaku Bio-Clinical Laboratories Inc Method for detecting bacteria belonging to genus mycoplasma and genus ureaplasma and method for identifying species of bacteria belonging to genus mycoplasma and genus ureaplasma
JP2004024206A (en) * 2002-06-28 2004-01-29 Mitsubishi Kagaku Bio-Clinical Laboratories Inc Method for detecting mycoplasma and ureaplasma
JP2007244349A (en) * 2006-03-20 2007-09-27 Bml Inc Method for detecting bacteria of periodontal disease
JP2010104379A (en) * 2010-02-01 2010-05-13 Mitsubishi Chemical Medience Corp Method for identifying strain of mycoplasma and ureaplasma

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299352A (en) * 2000-04-20 2001-10-30 Mitsubishi Kagaku Bio-Clinical Laboratories Inc Method for detecting bacteria belonging to genus mycoplasma and genus ureaplasma and method for identifying species of bacteria belonging to genus mycoplasma and genus ureaplasma
JP2004024206A (en) * 2002-06-28 2004-01-29 Mitsubishi Kagaku Bio-Clinical Laboratories Inc Method for detecting mycoplasma and ureaplasma
JP2007244349A (en) * 2006-03-20 2007-09-27 Bml Inc Method for detecting bacteria of periodontal disease
JP2010104379A (en) * 2010-02-01 2010-05-13 Mitsubishi Chemical Medience Corp Method for identifying strain of mycoplasma and ureaplasma

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017209063A (en) * 2016-05-26 2017-11-30 学校法人福岡大学 Method for identification and detection of microorganisms associated with chorioamnionitis, primer set and assay kit for detection of chorioamnionitis-associated microorganisms, and method for detecting chorioamnionitis
JP2018126089A (en) * 2017-02-08 2018-08-16 学校法人日本大学 Primer sets for detecting ureaplasma bacteria and uses thereof
JP2020089339A (en) * 2018-12-07 2020-06-11 一般財団法人日本生物科学研究所 Primer set, and nucleic acid amplification method using primer set, bacteria identifying method, and method for diagnosing bacterial infection of infected pig
JP7267001B2 (en) 2018-12-07 2023-05-01 一般財団法人日本生物科学研究所 Primer set, nucleic acid amplification method using primer set, method for identifying bacteria, and method for diagnosing bacterial infection in diseased swine
CN110643723A (en) * 2019-09-26 2020-01-03 刘君 Primer group for detecting ureaplasma parvum
CN114480663A (en) * 2021-11-15 2022-05-13 贵州省畜牧兽医研究所 Primer pair, kit and detection method for detecting swine-origin differential ureaplasma

Also Published As

Publication number Publication date
JPWO2014088088A1 (en) 2017-01-05
JP6019134B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6081916B2 (en) Gardnerella vaginails assay
JP6019134B2 (en) Method for detecting and identifying Mycoplasma and Ureaplasma bacteria
US11591659B2 (en) Compositions and methods for detection of Mycoplasma genitalium
JP6574703B2 (en) Method for detecting Helicobacter pylori DNA in stool samples
CN114729398A (en) Compositions and methods for rapid identification of bacteria and fungi and phenotypic antimicrobial drug susceptibility testing
CN110358815B (en) Method for simultaneously detecting multiple target nucleic acids and kit thereof
CN110317861B (en) Kit for detecting pathogen
JP4662578B2 (en) Methods and kits for identifying antibiotic-resistant microorganisms
EP2014775B1 (en) Method for the detection of bacterial species of the genera Anaplasma/Ehrlichia and Bartonella
EP1570086A2 (en) Quantitative test for bacterial pathogens
JP2006525809A5 (en)
KR101482681B1 (en) A method for detecting microorganisms occuring sexually transmitted diseases using liquid beads array and multiplex pcr
JP4744878B2 (en) Polynucleotides for the amplification and detection of Trachoma chlamydia and Neisseria gonorrhoeae
JP2014501494A (en) Quantitative multiple identification of nucleic acid targets
EP2910646B1 (en) Neisseria gonorrhoeae assay
US20210348231A1 (en) Detection of drug-resistant mycoplasma genitalium
KR101915211B1 (en) Method for detecting lower urinary tract infection using melting peak analysis
US10190176B2 (en) Primers, probes, and methods for mycobacterium tuberculosis specific diagnosis
US11359250B2 (en) Methods of detecting trichomonas vaginalis
US20220081707A1 (en) Diagnostic assay for a strain of neisseria meningitidis
CA3188657A1 (en) Detection of macrolide-resistant mycoplasma genitalium
JP2017521066A (en) Methods and reagents for detecting water pollution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861009

Country of ref document: EP

Kind code of ref document: A1