WO2014088084A1 - Method for producing slurry for negative electrode of lithium-ion secondary cell - Google Patents

Method for producing slurry for negative electrode of lithium-ion secondary cell Download PDF

Info

Publication number
WO2014088084A1
WO2014088084A1 PCT/JP2013/082758 JP2013082758W WO2014088084A1 WO 2014088084 A1 WO2014088084 A1 WO 2014088084A1 JP 2013082758 W JP2013082758 W JP 2013082758W WO 2014088084 A1 WO2014088084 A1 WO 2014088084A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
negative electrode
ion secondary
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2013/082758
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 香野
麻紗子 田中
敏光 海川
武内 正隆
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2014551147A priority Critical patent/JP6472660B2/en
Priority to CN201380063111.0A priority patent/CN104854737B/en
Publication of WO2014088084A1 publication Critical patent/WO2014088084A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a slurry for a lithium secondary battery negative electrode.
  • the present invention also relates to a slurry obtained by the production method, a negative electrode plate for a lithium ion secondary battery manufactured using the slurry, and a lithium ion secondary battery including the electrode plate.
  • Lithium ion secondary batteries are often used not only for small portable devices such as mobile phones and video cameras, but also for power supplies such as electric bicycles and various electric vehicles because of their high energy density and high voltage.
  • a negative electrode material used for these lithium secondary batteries a carbon material typified by graphite having a large potential charge / discharge capacity per unit mass at a base potential close to lithium (Li) is used.
  • PVdF polyvinylidene fluoride
  • fluororesins represented by copolymers thereof have been mainly used as negative electrode binders.
  • organic solvents are used as solvents. It was necessary to use a solvent.
  • SBR styrene-butadiene rubber
  • Patent Document 1 a manufacturing method for managing the process end condition by the viscosity of the slurry has been proposed as disclosed in JP 2009-187819 A (Patent Document 1).
  • vapor-grown carbon fibers are added from the viewpoint of reducing the resistance and extending the life of the battery.
  • Patent Document 2 the carbon fiber is added to the thickener aqueous solution and stirred, and then the negative electrode material is added.
  • the SBR aqueous dispersion After further stirring, the SBR aqueous dispersion And a manufacturing method in which a negative electrode material is added to a thickener aqueous solution and stirred, carbon fiber is added, and after stirring, an SBR aqueous dispersion is added and stirred.
  • JP 2009-187819 A Japanese Patent Laying-Open No. 2005-222933 (WO2005 / 067081)
  • Patent Document 1 since the slurry production process is managed by the viscosity and the current value of the apparatus, the dispersion medium is added and the solid content is added even if the slurry has a non-uniform portion of dispersion or an agglomerate such as an electrode active material. When the ratio is lowered, there is a problem that the viscosity and current value of the slurry are lowered and the process proceeds to the next process. Furthermore, when a large amount of the dispersion medium alone is added in the manufacturing process in order to adjust the viscosity, when the obtained slurry is applied to the current collector and dried, the current collector and the mixture layer There was a problem that the adhesion at the interface was lowered.
  • a method for producing a slurry for a negative electrode of a lithium ion secondary battery in a preferred embodiment of the present invention, a negative electrode plate using the slurry produced by the method, and a battery are as follows.
  • a method for producing a slurry for a negative electrode of a lithium ion secondary battery comprising a step of stirring a mixture containing a thickener solution and a dispersoid, wherein the dispersoid contains a negative electrode active material and the step of stirring A step of stirring a mixture in which the product ( ⁇ ⁇ ⁇ ) of the value ( ⁇ ) (m 2 / g) obtained by weighted averaging the specific surface area of the dispersoid and the solid content ratio ( ⁇ ) is 1.3 or more.
  • the lithium does not include a step of adding the dispersion medium used alone in the slurry, or if the step is included, the amount of the dispersion medium added alone is 5% by mass or less of the total amount of the dispersion medium in the slurry.
  • the step of stirring includes a step of adding a thickener solution to the dispersoid and stirring, and then a step of adding and further stirring the thickener solution once or twice or more. 2.
  • the step of stirring includes Introducing the entire amount of the dispersoid into a stirrer; 3.
  • the method for producing a slurry for a negative electrode for a lithium ion secondary battery as described in 2 above comprising the step of repeating the charging and stirring of the thickener solution into the stirrer twice or more.
  • [5] The method for producing a slurry for a negative electrode of a lithium ion secondary battery as described in 1 above, wherein the solvent of the thickener solution contains water.
  • the binder component contained in the binder liquid is styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butadiene rubber (BR), styrene acrylate (St-Ac), or polyacrylonitrile (PAN).
  • the method for producing a slurry for a negative electrode of a lithium ion secondary battery as described in 6 above which is at least one selected from the group consisting of polyamideimide and polyamideimide.
  • a slurry for a negative electrode of a lithium ion secondary battery produced by any one of the methods 1 to 10 above, wherein the particle size measured using a grind gauge in accordance with JIS K5600-2-5 is A slurry for a negative electrode of a lithium ion secondary battery having a cumulative particle diameter (D90) of 90% or less by volume based on a laser diffraction method of an active material.
  • An electrode plate for a negative electrode of a lithium ion secondary battery obtained by applying the slurry for a negative electrode of the lithium ion secondary battery as described in 11 above to a current collector and drying it.
  • a lithium ion secondary battery comprising the electrode plate for a lithium ion secondary battery negative electrode as described in 11 or 12 above.
  • a slurry showing a good dispersion state can be produced without agglomeration of dispersoids such as active materials, and when applied to a current collector and dried. Can obtain a negative electrode plate for a lithium ion secondary battery exhibiting high adhesion at the interface between the portion (mixture) formed by drying the slurry and the current collector.
  • the method for producing a slurry for a lithium ion secondary battery negative electrode in a preferred embodiment of the present invention includes a step of stirring a mixture containing a thickener solution and a dispersoid. Moreover, in the preferable embodiment of this invention, after the said stirring process, the process of throwing in a binder liquid and stirring is included.
  • Dispersoid A dispersoid contains a negative electrode active material, and can contain a conductive support agent etc. as an arbitrary component. 1-1.
  • Negative electrode active material The negative electrode active material is not particularly limited as long as it is a material that can be used as a negative electrode active material of a lithium ion secondary battery, specifically, a material that has the ability to electrochemically store and release ions.
  • the specific surface area is preferably 1 m 2 / g or more.
  • the upper limit of the specific surface area is preferably 7 m 2 / g.
  • a more preferable range of the specific surface area is 1.0 to 7.0 m 2 / g, and further preferably 1.5 to 6.0 m 2 / g.
  • the specific surface area means a specific surface area measured by the BET method unless otherwise noted.
  • the negative electrode active material is preferably a material containing carbon.
  • the material containing carbon include non-graphite carbon materials, graphite carbon materials, and mixtures thereof, and specifically include artificial graphite, natural graphite, amorphous graphite, soft carbon, and hard carbon.
  • the non-graphite-based carbon material is a carbon material having no three-dimensional crystal regularity of graphite, and includes a turbostratic carbon material and an amorphous carbon material.
  • Specific non-graphite-based carbon materials include glassy carbon and carbon materials that are not crystallized due to low heat treatment temperature. More specific non-graphite carbon materials include carbon materials obtained by heat-treating non-graphite polymers such as phenol resins, carbon materials obtained by heat-treating pitch and coke at about 1000 ° C., conductive polymers, etc. Examples thereof include a carbon material obtained by heat-treating a conjugated polymer, CVD carbon deposited on a substrate by a thermal CVD method, and the like. Further, Si can be mixed during each of the heat treatments, thereby increasing the electric capacity of the negative electrode.
  • the average particle size of the non-graphitic carbon material varies depending on the target electrode sheet shape and is not particularly limited. In general, however, the volume-based average particle size (D50) by laser diffraction method is in the range of 1 to 50 ⁇ m. is there.
  • the bulk density of the negative electrode material in the case of using the non-graphitic carbon material is not particularly limited, and the true density of the non-graphitic carbon material is generally 1.9 g / cm. is 3 or more, the negative electrode active material, the density of the mixture layer comprising a binder and conductive aid (electrode bulk density) is 1.5 g / cm 3 or more, more preferably from 1.7 g / cm 3 or more.
  • the graphite-based carbon material is a carbon material having three-dimensional crystal regularity of graphite, and natural graphite and artificial graphite that are generally used as a carbon-based active material for lithium secondary batteries can be used.
  • Artificial graphite can be obtained, for example, by heat-treating an easily graphitizable carbon material. Further, quiche graphite obtained by reprecipitation of graphite from the iron melt is also included.
  • Graphite-based carbon materials have the characteristics that the crystallinity develops, the insertion and desorption of Li ions occur uniformly, and the diffusion is fast, so that the change in the discharge potential of the battery is small and the high load characteristics are excellent.
  • Graphite-based carbon materials have a high true density of about 2.2 g / cm 3 , and when used as an electrode, the bulk density (electrode bulk density) is 1.5 g / cm 3 or more. Further, the porosity can be reduced and the electrode bulk density can be increased to 1.7 g / cm 3 or more.
  • the graphite-based carbon material one having a volume-based average particle diameter (D50) of about 1 to 50 ⁇ m by a laser diffraction method is used.
  • the laser Raman R value is 0.01 ⁇ 0.9 (R value: peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 by laser Raman spectrum) is preferred.
  • the addition amount of boron is not particularly limited, but if the addition amount is too small, the effect is not obtained, and if it is too much, it remains as an impurity, which is not preferable.
  • a preferable addition amount is in the range of 0.1 mass ppm to 100000 mass ppm, more preferably 10 mass ppm to 50000 mass ppm in the graphite-based carbon material in terms of boron atoms.
  • the conductive assistant as an optional component includes carbon fiber, carbon black, or a mixture thereof.
  • carbon black furnace black, acetylene black, ketine black and the like can be used, and those having an average primary particle diameter of 10 to 100 nm and a specific surface area of 10 to 100 m 2 / g are preferable.
  • carbon fibers, carbon nanotubes, carbon fibers and the like can be used, and those having an average fiber diameter of 5 to 500 nm, an average fiber length of 0.5 to 100 ⁇ m, and a specific surface area of 1 to 300 m 2 / g are preferable.
  • the blending amount is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass in the dispersoid.
  • the amount of the conductive auxiliary agent is excessive, the amount of the negative electrode active material is relatively reduced, leading to a reduction in battery capacity.
  • the thickener solution is used to adjust the viscosity of the slurry.
  • the thickener include polyethylene glycols, celluloses, polyacrylamides, poly N-vinyl amides, poly N-vinyl pyrrolidones and the like. Among these, polyethylene glycols and celluloses such as carboxymethyl cellulose (CMC) are preferable, and CMC is particularly preferable.
  • the blending amount of the thickener is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 3 parts by mass, when the dispersoid is 100 parts by mass.
  • the solvent of the thickener solution examples include water, alcohol (methanol, ethanol, propanol, butanol, isopropyl alcohol, etc.), and these can be used alone or in combination.
  • a preferred solvent is water.
  • the concentration of the thickener in the thickener solution is such that the viscosity can be 50 to 5000 mPa ⁇ s, preferably 100 to 3000 mPa ⁇ s at room temperature, and is usually in the range of 0.5 to 5% by mass.
  • the viscosity of the slurry is preferable to adjust the viscosity of the slurry within an appropriate range in consideration of the slurry coating process.
  • the viscosity of the slurry increases when the specific surface area of the dispersoid is large.
  • the slurry viscosity is the same, the larger the specific surface area of the dispersoid, the lower the solid content ratio, and conversely, the smaller the specific surface area, the higher the solid content ratio.
  • weighted average value of specific surface area of dispersoid ( ⁇ ) (m 2 / g) represents the specific surface area (m 2 / g) when the dispersoid is single, When the dispersoid is a mixture of a plurality of components, it means a value (m 2 / g) obtained by weighted average of the specific surface area of each dispersoid.
  • the dispersoid is a specific surface area was a mixture of x (m 2 / g) of active material a (g) and a specific surface area of y (m 2 / g) of the conductive auxiliary agent b (g), weighted
  • the average specific surface area is calculated as (xa + yb) / (a + b) (m 2 / g).
  • the “solid content ratio ( ⁇ )” means the ratio of the total mass added minus the mass of the dispersion medium, and is the ratio of the solid content remaining after the slurry is applied and dried.
  • the solid content includes a thickener and a binder component described later. The value of this ratio is in the range of 0-1.
  • the dispersoid does not include a thickener and a binder described later.
  • the addition amount is 5 mass% or less of the total amount of dispersion medium in the slurry manufactured, More preferably, it is 1 mass% or less.
  • the dispersion medium referred to in the present specification is a liquid component used for producing a slurry and does not contain a thickener or a binder, and most of them are removed by applying and drying the slurry. Is.
  • the stirring step is a step of adding a thickener solution to the dispersoid and stirring, and then adding a thickener solution and stirring the mixture once or twice or more. including. That is, the addition and stirring of the thickener are repeated two or more sets.
  • the stirring step comprises Introducing the entire amount of dispersoid into the stirrer, then It consists of a step of repeating the charging of the thickener solution into the stirrer twice or more.
  • the second stirring is performed in a state where the total amount of the thickener solution to be added is larger than that in the first stirring, the product of the mixture at the second stirring is smaller than that at the first stirring. Become.
  • the amount of the thickener solution charged in the first stirring step is preferably 5 to 40% by mass of the total amount of the thickener solution. . More preferably, it is 6 to 30% by mass.
  • the number of repetitions may be two or more, but is preferably performed three or more times because aggregation is further suppressed.
  • At least one of them may be a step of stirring the mixture within the product range.
  • a liquid component such as a thickener solution or a dispersoid is further added to the mixture, and a mixture having a product different from the above value is prepared and stirred.
  • at least one of the steps may be a step of stirring the mixture in the product range.
  • the product of the mixture at the second stirring is smaller than that at the first. Therefore, it is preferable that the mixture in at least the first stirring step is within the range of the product.
  • a variety of stirrers can be used.
  • apparatuses such as a ribbon mixer, a screw-type kneader, a Spartan-Luzer, a Redige mixer, a planetary mixer, a defoaming kneader, a universal mixer with stirring blades, and a paint shaker can be used.
  • a planetary mixer is particularly preferable.
  • the binder liquid can be added and stirred after the stirring step.
  • the current collector foil / mixture layer interface of the electrode plate is bound after coating and drying.
  • the binder liquid is preferably added at the final stage of the slurry production process, and the stirring time after addition of the binder liquid is preferably within 120 minutes. Aggregation may occur in the slurry when the binder liquid is stirred for a long time after the binder liquid is added.
  • binder component of the binder liquid examples include styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butadiene rubber (BR), styrene acrylate (St-Ac), polyacrylonitrile (PAN), and the like.
  • SBR styrene-butadiene rubber
  • NBR nitrile-butadiene rubber
  • BR butadiene rubber
  • St-Ac styrene acrylate
  • PAN polyacrylonitrile
  • the amount of the binder used is preferably 0.1 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the dispersoid.
  • the amount of the binder is too large, the amount of the negative electrode active material is relatively reduced, so that the electrode capacity is reduced and the resistance is also increased.
  • the amount of the binder is too small, the binding effect is reduced, the negative electrode is easily collapsed during battery assembly or charge / discharge, and the charge / discharge cycle life is reduced.
  • the solvent or dispersion medium of the binder liquid includes water, alcohol (methanol, ethanol, propanol, butanol, isopropyl alcohol, etc.), and these can be used alone or in combination. Of these, water is preferred.
  • the slurry for a lithium ion secondary battery negative electrode obtained by the above method has a dispersoid such as an electrode active material well dispersed therein, there are almost no dispersoid aggregates in the slurry. Whether or not an aggregate exists can be evaluated by a method of evaluating a particle size measured according to JIS K5600-2-5 using a grind gauge. In the slurry obtained by the above method, the particle size measured using a grind gauge is 90% or less of the cumulative particle diameter (D90) based on volume by the laser diffraction method of the negative electrode active material. This means that little aggregation is seen in the slurry.
  • the volume-based cumulative particle diameter can be measured, for example, using a Malvern master sizer as a laser diffraction particle size distribution measuring apparatus.
  • the aggregation also adversely affects the negative electrode performance, but the dispersibility of the conductive assistant is greatly improved by using the above method.
  • the dispersibility of the conductive auxiliary agent can be evaluated by a method of observing with a FE-SEM or the like a slurry applied to a substrate and dried. When the slurry obtained by the above method is used, it is observed that the conductive assistant is well dispersed. Specifically, when carbon black having an average particle size of 100 nm or less is used as the conductive additive, the diameter of the aggregated particles is 1 ⁇ m or less.
  • the slurry obtained by the above method is also excellent in adhesion to the current collector. This is presumably because the thickener and binder are also well dispersed in the slurry in addition to the dispersibility of the dispersoid.
  • the durability of the battery is improved by the excellent adhesion.
  • the evaluation of adhesion is performed by measuring the peel strength between the mixture and the current collector on the electrode plate coated with the slurry and dried. The peel strength is measured according to JIS K6854-2. When compared with the electrode plate using the slurry produced by adding only the dispersion medium exceeding 5% of the total amount of the dispersion medium at the final stage, the electrode plate using the slurry obtained by the above method has its adhesion. Is greatly improved.
  • composition and blending amount of each component are adjusted so that the slurry viscosity is 1 to 10 Pa ⁇ s, preferably 2 to 5 Pa ⁇ s.
  • the slurry obtained by the above-mentioned method can be applied to a current collector and dried to prepare an electrode plate for a lithium ion secondary battery negative electrode.
  • the slurry can be applied to the current collector by a known method, for example, a method of applying with a doctor blade or a bar coater.
  • the thickness of the coating layer is usually 10 to 200 ⁇ m. Drying can be performed by, for example, vacuum drying at 70 ° C. for 1 hour.
  • known materials such as a copper foil, an aluminum foil, a stainless steel foil, a nickel foil, a titanium foil, an alloy foil thereof, and a carbon sheet can be used.
  • the thickness of the current collector is not particularly limited, but is preferably 0.5 to 100 ⁇ m, more preferably 1 to 50 ⁇ m. If it is too thin, the strength will decrease, and problems will arise in the strength of the negative electrode material and the handling properties during coating. If it is too thick, the ratio of the mass and volume of the current collector foil in the battery structure is increased, the energy density of the battery is lowered, and the sheet-like electrode at the time of battery production becomes stiff, thereby hindering winding.
  • Negative electrode active material / artificial graphite SCMG (registered trademark) manufactured by Showa Denko KK, D50% 16 ⁇ m, D90% 40 ⁇ m, specific surface area 1.6 m 2 / g ⁇ Natural graphite: Made in China, D50% 17 ⁇ m, D90% 26 ⁇ m, specific surface area 5.9 m 2 / g
  • Conductive auxiliary agent / carbon black C65 manufactured by TIMCAL, average primary particle size 100 nm>, specific surface area 65 m 2 / g Fibrous carbon: VGCF-H (registered trademark) manufactured by Showa Denko KK, average fiber diameter of 150 nm, fiber length of 10 to 20 nm, specific surface area of 13 m 2 / g
  • Binder liquid / SBR binder liquid BM-400B manufactured
  • Example 1 Feeding and semi-dry mixing 135 g of artificial graphite, 2.84 g of carbon black, and 20 g of 1.1 mass% CMC aqueous solution are put into a planetary mixer manufactured by Primix with a pot capacity of 500 cm 3 , and the blade rotation speed is 30 rpm. Stir for minutes. (2) Solid kneading After scraping the material adhering to the blade of the planetary mixer with a plastic spatula, 70 g of 1.1 mass% CMC aqueous solution was further added to the mixer, and the blade was rotated at 30 rpm for 15 minutes. Stir. Thereafter, the rotational speed was increased to 60 rpm, and the mixture was further stirred for 75 minutes.
  • Example 2 The same treatment as in Example 1 was performed except that 67.5 g of artificial graphite and 67.5 g of natural graphite were used instead of 135 g of artificial graphite.
  • the production conditions of the slurry are shown in Table 1, and the evaluation results are shown in Table 2.
  • photographed with SEM is shown in FIG.
  • a is an enlarged view of natural graphite particles
  • b is an enlarged view of artificial graphite particles, and it can be seen that fine particles of carbon black are dispersed on the surface thereof.
  • An evaluation photograph using a grind gauge is shown in FIG.
  • Example 3 The same treatment as in Example 2 was performed except that 2.84 g of fibrous carbon was used instead of 2.84 g of carbon cracks.
  • the production conditions of the slurry are shown in Table 1, and the evaluation results are shown in Table 2.
  • Example 4 Instead of artificial graphite 135g, artificial graphite 69g and natural graphite 69g were used, and the same treatment as in Example 1 was performed except that carbon black was not added.
  • the production conditions of the slurry are shown in Table 1, and the evaluation results are shown in Table 2.
  • Comparative Example 1 (1) Charging / semi-dry mixing 67.5 g of artificial graphite, 67.5 g of natural graphite, 2.84 g of carbon black, and 30 g of 2.0% by mass CMC aqueous solution were charged in this order, and the blade was rotated at 30 rpm and stirred for 30 minutes. did. (2) Solid kneading After scraping the material adhering to the blade of the planetary mixer with a plastic spatula, 77 g of a 2.0 mass% CMC aqueous solution was added, stirring for 15 minutes at 30 rpm, and further rotating to 60 rpm. Was stirred for 75 minutes.
  • Comparative Example 2 (1) Input / Thickener mixing 135 g of artificial graphite, 2.84 g of carbon black, and 195 g of 1.1 mass% CMC aqueous solution were added, and the rotation speed of the blade was 30 rpm and stirred for 30 minutes. Raised and stirred for 180 minutes. (2) Binder mixing After adding 5.3 g of SBR binder liquid and stirring for 15 minutes at a rotational speed of 25 rpm while cooling with water, the slurry was completed by stirring for 60 minutes at a rotational speed of 100 rpm while performing vacuum degassing. The production conditions of the slurry are shown in Table 1, and the evaluation results are shown in Table 2. Moreover, the photograph image
  • c is an enlarged view of the agglomerated portion of carbon black as a conductive additive
  • d is an enlarged view of natural graphite particles
  • e is an enlarged view of artificial graphite particles
  • carbon black is agglomerated in a size of 5 to 20 ⁇ m. It can be seen that the dispersion is not sufficient.
  • An evaluation photograph using a grind gauge is shown in FIG.

Abstract

A method for producing a slurry for a negative electrode of a lithium-ion secondary cell, having a step for stirring a mixture containing a thickener solution and a dispersoid, the dispersoid including a negative electrode active material, the stirring step including a step for stirring a mixture in which the product (α × β) of the weighted average (α) (m2/g) specific surface area and the solid content ratio (β) of the dispersoid is at least 1.3 and not including a step for adding a dispersion medium separately which is used in the slurry, or, when this step is included, the amount of the dispersion medium added separately being 5% by mass or less of the total amount of dispersion medium in the slurry.

Description

リチウムイオン二次電池負極用スラリーの製造方法Method for producing slurry for negative electrode of lithium ion secondary battery
 本発明は、リチウム二次電池負極用スラリーを製造する方法に関する。また、本発明はその製法により得られたスラリー、そのスラリーにより製造されたリチウムイオン二次電池負極用極板、及びその極板を含むリチウムイオン二次電池に関する。 The present invention relates to a method for producing a slurry for a lithium secondary battery negative electrode. The present invention also relates to a slurry obtained by the production method, a negative electrode plate for a lithium ion secondary battery manufactured using the slurry, and a lithium ion secondary battery including the electrode plate.
 携帯電話やビデオカメラ等の小型携帯機器だけでなく、電動自転車や種々の電気自動車などの電源として、高エネルギー密度、高電圧という特徴からリチウムイオン二次電池が多く使われるようになっている。これらリチウム二次電池に用いられる負極材料としては、リチウム(Li)に近い卑な電位で単位質量あたりの充放電容量の大きい黒鉛に代表される炭素材料が用いられている。また、負極用バインダーとしてはこれまではポリフッ化ビニリデン(PVdFと略す。)及びその共重合体に代表されるフッ素樹脂が主に用いられてきたが、これらのバインダーを使用する場合は溶剤として有機溶媒を使用する必要があった。最近ではスチレン-ブタジエンゴム(SBRと略す。)が水分散液として利用できるためスラリー製造工程が簡易化されることなどのメリットから多く用いられるようになってきた。 Lithium ion secondary batteries are often used not only for small portable devices such as mobile phones and video cameras, but also for power supplies such as electric bicycles and various electric vehicles because of their high energy density and high voltage. As a negative electrode material used for these lithium secondary batteries, a carbon material typified by graphite having a large potential charge / discharge capacity per unit mass at a base potential close to lithium (Li) is used. In the past, polyvinylidene fluoride (abbreviated as PVdF) and fluororesins represented by copolymers thereof have been mainly used as negative electrode binders. However, when these binders are used, organic solvents are used as solvents. It was necessary to use a solvent. Recently, since styrene-butadiene rubber (abbreviated as SBR) can be used as an aqueous dispersion, it has come to be frequently used because of the advantage that the slurry production process is simplified.
 スラリーの製造方法としては、例えば特開2009-187819号公報(特許文献1)のようにスラリーの粘度で工程の終了条件を管理する製造方法が提案さている。また、電池の低抵抗化や長寿命化の観点から気相成長炭素繊維を添加する場合がある。その場合は特開2005-222933号公報(WO2005/067081)(特許文献2)のように増粘剤水溶液に炭素繊維を添加し撹拌させた後に負極材を添加し、更に撹拌後にSBR水分散液を添加撹拌する製造方法や、増粘剤水溶液に負極材を添加し撹拌させた後に炭素繊維を添加し、更に撹拌後にSBR水分散液を添加撹拌する製造方法が提案されている。 As a manufacturing method of the slurry, for example, a manufacturing method for managing the process end condition by the viscosity of the slurry has been proposed as disclosed in JP 2009-187819 A (Patent Document 1). In some cases, vapor-grown carbon fibers are added from the viewpoint of reducing the resistance and extending the life of the battery. In that case, as described in JP-A-2005-222933 (WO2005 / 067081) (Patent Document 2), the carbon fiber is added to the thickener aqueous solution and stirred, and then the negative electrode material is added. After further stirring, the SBR aqueous dispersion And a manufacturing method in which a negative electrode material is added to a thickener aqueous solution and stirred, carbon fiber is added, and after stirring, an SBR aqueous dispersion is added and stirred.
特開2009-187819号公報JP 2009-187819 A 特開2005-222933号公報(WO2005/067081)Japanese Patent Laying-Open No. 2005-222933 (WO2005 / 067081)
 特許文献1ではスラリーの製造工程を粘度や装置の電流値で管理しているため、スラリーに分散の不均一な部分や電極活物質等の凝集塊があったとしても分散媒が添加され固形分比率が下がればスラリーの粘度や電流値が下がり次工程に進んでしまうという課題があった。更に、粘度を調整するために製造工程で分散媒をそれ単体で大量に添加すると、得られたスラリーを集電体に塗工して乾燥させたときに、集電体と合剤層との界面の密着性が低下するという課題があった。 In Patent Document 1, since the slurry production process is managed by the viscosity and the current value of the apparatus, the dispersion medium is added and the solid content is added even if the slurry has a non-uniform portion of dispersion or an agglomerate such as an electrode active material. When the ratio is lowered, there is a problem that the viscosity and current value of the slurry are lowered and the process proceeds to the next process. Furthermore, when a large amount of the dispersion medium alone is added in the manufacturing process in order to adjust the viscosity, when the obtained slurry is applied to the current collector and dried, the current collector and the mixture layer There was a problem that the adhesion at the interface was lowered.
 本発明の好ましい実施態様におけるリチウムイオン二次電池負極用スラリーの製造方法、その方法で製造されたスラリーを用いた負極用極板及び電池は以下の通りである。 A method for producing a slurry for a negative electrode of a lithium ion secondary battery in a preferred embodiment of the present invention, a negative electrode plate using the slurry produced by the method, and a battery are as follows.
[1]増粘剤溶液と分散質とを含有する混合物を撹拌する工程を有するリチウムイオン二次電池負極用スラリーの製造方法であって、前記分散質は負極活物質を含み、前記撹拌する工程が前記分散質の比表面積を加重平均した値(α)(m2/g)と固形分比率(β)との積(α×β)が1.3以上である混合物を撹拌する工程を含み、かつスラリーに使用する分散媒を単独で添加する工程を含まないか、あるいはその工程を含む場合は単独で添加する分散媒の量がスラリー中の総分散媒量の5質量%以下であるリチウムイオン二次電池負極用スラリーの製造方法。
[2]前記の撹拌する工程には、前記分散質に増粘剤溶液を加えて撹拌する工程、その後さらに増粘剤溶液を加えて撹拌することを1回または2回以上繰り返す工程を含む前記1に記載のリチウムイオン二次電池負極用スラリーの製造方法。
[3]前記の撹拌する工程が、
 前記分散質の全量を撹拌機に投入する工程、次いで、
 前記撹拌機に増粘剤溶液を投入し撹拌することを2回以上繰り返す工程
からなる前記2に記載のリチウムイオン二次電池負極用スラリーの製造方法。
[4]最初の撹拌工程において投入する増粘剤溶液の量が、増粘剤溶液の総使用量の5~40質量%である前記3に記載のリチウムイオン二次電池負極用スラリーの製造方法。
[5]増粘剤溶液の溶媒が水を含む前記1に記載のリチウムイオン二次電池負極用スラリーの製造方法。
[6]増粘剤溶液と分散質とを含有する混合物を撹拌する前記工程の後に、バインダー液を投入して撹拌する工程を有する前記1に記載のリチウムイオン二次電池負極用スラリーの製造方法。
[7]前記負極活物質が、非黒鉛系炭素材料及び黒鉛系炭素材料からなる群より選ばれる1種以上である前記1に記載のリチウムイオン二次電池負極用スラリーの製造方法。
[8]負極活物質のレーザー回析法による体積基準の平均粒子径(D50)が1~50μmである前記1に記載のリチウムイオン二次電池負極用スラリーの製造方法。
[9]前記バインダー液に含まれるバインダー成分が、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、ブタジエンゴム(BR)、スチレンアクリル酸エステル(St-Ac)、ポリアクリロニトリル(PAN)及びポリアミドイミドからなる群から選ばれる少なくとも1種である前記6に記載のリチウムイオン二次電池負極用スラリーの製造方法。
[10]前記分散質が導電助剤を含む前記1に記載のリチウムイオン二次電池負極用スラリーの製造方法。
[11]前記1~10のいずれかの方法で製造したリチウムイオン二次電池負極用スラリーであって、グラインドゲージを使用しJIS K5600-2-5に準拠して測定される粒子サイズが、負極活物質のレーザー回析法による体積基準の90%の累積粒子径(D90)以下であるリチウムイオン二次電池負極用スラリー。
[12]前記11に記載のリチウムイオン二次電池負極用スラリーを集電体に塗布し乾燥することにより得られるリチウムイオン二次電池負極用極板。
[13]前記11または12に記載のリチウムイオン二次電池負極用極板を含むリチウムイオン二次電池。
[1] A method for producing a slurry for a negative electrode of a lithium ion secondary battery comprising a step of stirring a mixture containing a thickener solution and a dispersoid, wherein the dispersoid contains a negative electrode active material and the step of stirring A step of stirring a mixture in which the product (α × β) of the value (α) (m 2 / g) obtained by weighted averaging the specific surface area of the dispersoid and the solid content ratio (β) is 1.3 or more. In addition, the lithium does not include a step of adding the dispersion medium used alone in the slurry, or if the step is included, the amount of the dispersion medium added alone is 5% by mass or less of the total amount of the dispersion medium in the slurry. The manufacturing method of the slurry for ion secondary battery negative electrodes.
[2] The step of stirring includes a step of adding a thickener solution to the dispersoid and stirring, and then a step of adding and further stirring the thickener solution once or twice or more. 2. A method for producing a slurry for a negative electrode of a lithium ion secondary battery according to 1.
[3] The step of stirring includes
Introducing the entire amount of the dispersoid into a stirrer;
3. The method for producing a slurry for a negative electrode for a lithium ion secondary battery as described in 2 above, comprising the step of repeating the charging and stirring of the thickener solution into the stirrer twice or more.
[4] The method for producing a slurry for a negative electrode of a lithium ion secondary battery as described in 3 above, wherein the amount of the thickener solution charged in the first stirring step is 5 to 40% by mass of the total amount of the thickener solution used .
[5] The method for producing a slurry for a negative electrode of a lithium ion secondary battery as described in 1 above, wherein the solvent of the thickener solution contains water.
[6] The method for producing a slurry for a negative electrode of a lithium ion secondary battery as described in 1 above, comprising a step of adding and stirring the binder solution after the step of stirring the mixture containing the thickener solution and the dispersoid. .
[7] The method for producing a slurry for a negative electrode for a lithium ion secondary battery as described in 1 above, wherein the negative electrode active material is at least one selected from the group consisting of a non-graphite carbon material and a graphite carbon material.
[8] The method for producing a slurry for a negative electrode of a lithium ion secondary battery as described in 1 above, wherein the volume-based average particle diameter (D50) of the negative electrode active material by laser diffraction is 1 to 50 μm.
[9] The binder component contained in the binder liquid is styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butadiene rubber (BR), styrene acrylate (St-Ac), or polyacrylonitrile (PAN). And the method for producing a slurry for a negative electrode of a lithium ion secondary battery as described in 6 above, which is at least one selected from the group consisting of polyamideimide and polyamideimide.
[10] The method for producing a slurry for a negative electrode of a lithium ion secondary battery as described in 1 above, wherein the dispersoid contains a conductive additive.
[11] A slurry for a negative electrode of a lithium ion secondary battery produced by any one of the methods 1 to 10 above, wherein the particle size measured using a grind gauge in accordance with JIS K5600-2-5 is A slurry for a negative electrode of a lithium ion secondary battery having a cumulative particle diameter (D90) of 90% or less by volume based on a laser diffraction method of an active material.
[12] An electrode plate for a negative electrode of a lithium ion secondary battery obtained by applying the slurry for a negative electrode of the lithium ion secondary battery as described in 11 above to a current collector and drying it.
[13] A lithium ion secondary battery comprising the electrode plate for a lithium ion secondary battery negative electrode as described in 11 or 12 above.
 本発明のリチウムイオン二次電池負極用スラリー製造方法を用いることにより、活物質等の分散質が凝集することなく良好な分散状態を示すスラリーが製造でき、集電体へ塗工、乾燥した際にはスラリーが乾燥してなる部分(合剤)と集電体との界面において高い密着性を示すリチウムイオン二次電池用負極極板を得ることができる。 By using the method for producing a negative electrode for a lithium ion secondary battery negative electrode of the present invention, a slurry showing a good dispersion state can be produced without agglomeration of dispersoids such as active materials, and when applied to a current collector and dried. Can obtain a negative electrode plate for a lithium ion secondary battery exhibiting high adhesion at the interface between the portion (mixture) formed by drying the slurry and the current collector.
実施例2で得た合剤部分をSEMにて撮影した写真の一例である。a及びbは黒鉛粒子の拡大図の一例である。It is an example of the photograph which image | photographed the mixture part obtained in Example 2 with SEM. a and b are examples of enlarged views of graphite particles. 比較例2で得た合剤部分をSEMにて撮影した写真の一例である。cはカーボンブラックが凝集している部分の拡大図、d及びeは黒鉛粒子の拡大図の一例である。It is an example of the photograph which image | photographed the mixture part obtained in the comparative example 2 with SEM. c is an enlarged view of a portion where carbon black is aggregated, and d and e are examples of enlarged views of graphite particles. 実施例2及び比較例2で得られたスラリーの、グラインドゲージを用いた評価写真の一例である。It is an example of the evaluation photograph using the grind gauge of the slurry obtained in Example 2 and Comparative Example 2.
 本発明の好ましい実施態様におけるリチウムイオン二次電池負極用スラリーの製造方法には、増粘剤溶液と分散質とを含有する混合物を撹拌する工程が含まれる。また、本発明の好ましい実施態様においては、前記の撹拌工程の後に、バインダー液を投入して撹拌する工程を含む。 The method for producing a slurry for a lithium ion secondary battery negative electrode in a preferred embodiment of the present invention includes a step of stirring a mixture containing a thickener solution and a dispersoid. Moreover, in the preferable embodiment of this invention, after the said stirring process, the process of throwing in a binder liquid and stirring is included.
1.分散質
 分散質は負極活物質を含み、任意成分として導電助剤等を含むことができる。
1-1.負極活物質
 負極活物質とは、リチウムイオン二次電池の負極活物質として使用できる材料、具体的には電気化学的にイオンを吸蔵及び放出する能力を有する材料であれば特に制限はない。
 負極活物質の比表面積はできるだけ高い方が分散媒との濡れ性が改善され、扱いやすく、電極強度や電解液保持性の観点からも有利である。具体的には、比表面積が1m2/g以上が好ましい。一方、比表面積が高すぎると、電解液と副反応を起こしやすくなるため、比表面積の上限は7m2/gであることが好ましい。より好ましい比表面積の範囲は、1.0~7.0m2/gであり、さらに好ましくは1.5~6.0m2/gである。
 本明細書において比表面積とは、特に注釈のある場合を除き、BET法で測定される比表面積のことを表す。
1. Dispersoid A dispersoid contains a negative electrode active material, and can contain a conductive support agent etc. as an arbitrary component.
1-1. Negative electrode active material The negative electrode active material is not particularly limited as long as it is a material that can be used as a negative electrode active material of a lithium ion secondary battery, specifically, a material that has the ability to electrochemically store and release ions.
The higher the specific surface area of the negative electrode active material, the better the wettability with the dispersion medium, the easier it is to handle, and it is advantageous from the viewpoint of electrode strength and electrolyte solution retention. Specifically, the specific surface area is preferably 1 m 2 / g or more. On the other hand, if the specific surface area is too high, a side reaction with the electrolytic solution is likely to occur, so the upper limit of the specific surface area is preferably 7 m 2 / g. A more preferable range of the specific surface area is 1.0 to 7.0 m 2 / g, and further preferably 1.5 to 6.0 m 2 / g.
In the present specification, the specific surface area means a specific surface area measured by the BET method unless otherwise noted.
 負極活物質は、好ましくは炭素を含む材料である。
 炭素を含む材料としては、非黒鉛系炭素材料、黒鉛系炭素材料またはそれらの混合物が挙げられ、具体的には、人造黒鉛、天然黒鉛、非晶質黒鉛、ソフトカーボン及びハードカーボンなどがある。
The negative electrode active material is preferably a material containing carbon.
Examples of the material containing carbon include non-graphite carbon materials, graphite carbon materials, and mixtures thereof, and specifically include artificial graphite, natural graphite, amorphous graphite, soft carbon, and hard carbon.
 非黒鉛系炭素材料とは、黒鉛の三次元的結晶規則性を有しない炭素材料であり、乱層構造炭素材料、非晶質炭素材料が含まれる。具体的な非黒鉛系炭素材料には、ガラス状炭素や、熱処理温度が低いために結晶化の進んでいない炭素材料が含まれる。より具体的な非黒鉛系炭素材料としては、フェノール樹脂等の難黒鉛系高分子を熱処理してなる炭素材料、ピッチやコークスを1000℃程度で熱処理してなる炭素材料、導電性高分子等の共役系高分子を熱処理してなる炭素材料、熱CVD法により基板に堆積させたCVD炭素等が挙げられる。また、前記それぞれの熱処理時にSiを混入することもでき、それによって負極としての電気容量を増加させることもできる。 The non-graphite-based carbon material is a carbon material having no three-dimensional crystal regularity of graphite, and includes a turbostratic carbon material and an amorphous carbon material. Specific non-graphite-based carbon materials include glassy carbon and carbon materials that are not crystallized due to low heat treatment temperature. More specific non-graphite carbon materials include carbon materials obtained by heat-treating non-graphite polymers such as phenol resins, carbon materials obtained by heat-treating pitch and coke at about 1000 ° C., conductive polymers, etc. Examples thereof include a carbon material obtained by heat-treating a conjugated polymer, CVD carbon deposited on a substrate by a thermal CVD method, and the like. Further, Si can be mixed during each of the heat treatments, thereby increasing the electric capacity of the negative electrode.
 非黒鉛系炭素材料の平均粒子径は目的とする電極シート形状によって異なり、特に限定されないが、一般的には、レーザー回析法による体積基準の平均粒子径(D50)が1~50μmの範囲である。 The average particle size of the non-graphitic carbon material varies depending on the target electrode sheet shape and is not particularly limited. In general, however, the volume-based average particle size (D50) by laser diffraction method is in the range of 1 to 50 μm. is there.
 非黒鉛系炭素材料を用いる場合の負極材の嵩密度は、非黒鉛系炭素材料の真密度が様々であり、特に限定されないが、一般には非黒鉛系炭素材料の真密度は1.9g/cm3以上であり、負極活物質、バインダー及び導電助剤からなる合剤層の密度(電極嵩密度)は1.5g/cm3以上、さらには1.7g/cm3以上のものが好ましい。 The bulk density of the negative electrode material in the case of using the non-graphitic carbon material is not particularly limited, and the true density of the non-graphitic carbon material is generally 1.9 g / cm. is 3 or more, the negative electrode active material, the density of the mixture layer comprising a binder and conductive aid (electrode bulk density) is 1.5 g / cm 3 or more, more preferably from 1.7 g / cm 3 or more.
 黒鉛系炭素材料とは、黒鉛の三次元的結晶規則性を有する炭素材料であり、一般にリチウム二次電池の炭素系活物質材料として使用されている天然黒鉛や人造黒鉛を使用することができる。人造黒鉛は、例えば易黒鉛化性炭素材料を熱処理することにより得ることができる。また、鉄融体中から黒鉛が再析出して得られるキッシュ黒鉛も含まれる。 The graphite-based carbon material is a carbon material having three-dimensional crystal regularity of graphite, and natural graphite and artificial graphite that are generally used as a carbon-based active material for lithium secondary batteries can be used. Artificial graphite can be obtained, for example, by heat-treating an easily graphitizable carbon material. Further, quiche graphite obtained by reprecipitation of graphite from the iron melt is also included.
 黒鉛系炭素材料は結晶性が発達し、Liイオンの挿入脱離が均一に起こり、拡散も早いため、電池の放電電位の変化が少なく、また高負荷特性も優れるという特徴を有している。黒鉛系炭素材料は真密度が2.2g/cm3程度と高く、電極とした場合の嵩密度(電極嵩密度)は1.5g/cm3以上で使われる。さらに空隙率を減らし、電極嵩密度を1.7g/cm3以上にすることもできる。 Graphite-based carbon materials have the characteristics that the crystallinity develops, the insertion and desorption of Li ions occur uniformly, and the diffusion is fast, so that the change in the discharge potential of the battery is small and the high load characteristics are excellent. Graphite-based carbon materials have a high true density of about 2.2 g / cm 3 , and when used as an electrode, the bulk density (electrode bulk density) is 1.5 g / cm 3 or more. Further, the porosity can be reduced and the electrode bulk density can be increased to 1.7 g / cm 3 or more.
 この黒鉛系炭素材料は、レーザー回析法による体積基準の平均粒子径(D50)が1~50μm程度のものが用いられる。この黒鉛系炭素材料は結晶性が高いことが好ましく、X線回折測定での002面のC0が0.6900nm(d002=0.3450nm)以下であり、La(a軸方向の結晶子サイズ)が100nmより大きく、Lc(c軸方向の結晶子サイズ)も100nmより大きいことが好ましい。また、レーザーラマンR値は0.01~0.9(R値:レーザーラマンスペクトルによる1580cm-1のピーク強度に対する1360cm-1のピーク強度比)が好ましい。 As the graphite-based carbon material, one having a volume-based average particle diameter (D50) of about 1 to 50 μm by a laser diffraction method is used. This graphite-based carbon material preferably has high crystallinity, C 0 of the 002 plane in X-ray diffraction measurement is 0.6900 nm (d 002 = 0.3450 nm) or less, and La (crystallite size in the a-axis direction) ) Is larger than 100 nm, and Lc (crystallite size in the c-axis direction) is preferably larger than 100 nm. The laser Raman R value is 0.01 ~ 0.9 (R value: peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 by laser Raman spectrum) is preferred.
 この黒鉛系炭素材料にホウ素を加えて熱処理すると、結晶性が向上し、さらに電解液とのなじみ性や安定性が改善されるため好ましい。ホウ素の添加量は特に限定されないが、添加量が少なすぎると効果がでず、多すぎると不純物として残るため好ましくない。好ましい添加量は、ホウ素原子換算で、黒鉛系炭素材料中、0.1質量ppm~100000質量ppm、さらに好ましくは10質量ppmから50000質量ppmの範囲である。 It is preferable to heat treatment by adding boron to this graphite-based carbon material because crystallinity is improved and compatibility with electrolyte and stability are improved. The addition amount of boron is not particularly limited, but if the addition amount is too small, the effect is not obtained, and if it is too much, it remains as an impurity, which is not preferable. A preferable addition amount is in the range of 0.1 mass ppm to 100000 mass ppm, more preferably 10 mass ppm to 50000 mass ppm in the graphite-based carbon material in terms of boron atoms.
1-2.任意成分
 任意成分としての導電助剤には、炭素繊維、カーボンブラックまたはその混合物が含まれる。
 カーボンブラックとしては、ファーネスブラック、アセチレンブラック及びケッチンブラックなどが使用でき、その平均一次粒子径は10~100nm、比表面積は10~100m2/gのものが好ましい。
 炭素繊維としては、カーボンナノチューブ及びカーボンファイバーなどが使用でき、その平均繊維径は5~500nm、平均繊維長は0.5~100μm、比表面積は1~300m2/gのものが好ましい。
1-2. Optional Components The conductive assistant as an optional component includes carbon fiber, carbon black, or a mixture thereof.
As the carbon black, furnace black, acetylene black, ketine black and the like can be used, and those having an average primary particle diameter of 10 to 100 nm and a specific surface area of 10 to 100 m 2 / g are preferable.
As the carbon fibers, carbon nanotubes, carbon fibers and the like can be used, and those having an average fiber diameter of 5 to 500 nm, an average fiber length of 0.5 to 100 μm, and a specific surface area of 1 to 300 m 2 / g are preferable.
 導電助剤を添加することにより負極活物質粒子間に良好な導電パスを形成することができ、電池の低抵抗化及び長寿命化に寄与する。導電助剤を添加する場合、その配合量は分散質中、0.01~10質量%が好ましく、0.1~5質量%がさらに好ましい。導電助剤が多くなりすぎると、相対的に負極活物質の量が減り電池の容量低下に繋がる。 By adding a conductive auxiliary agent, a good conductive path can be formed between the negative electrode active material particles, which contributes to lowering the resistance and extending the life of the battery. When the conductive auxiliary agent is added, the blending amount is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass in the dispersoid. When the amount of the conductive auxiliary agent is excessive, the amount of the negative electrode active material is relatively reduced, leading to a reduction in battery capacity.
2.増粘剤溶液
 増粘剤溶液は、スラリーの粘度を調整するために用いる。
 増粘剤としては、例えばポリエチレングリコール類、セルロース類、ポリアクリルアミド類、ポリN-ビニルアミド類、ポリN-ビニルピロリドン類等が挙げられる。これらの中でも、ポリエチレングリコール類、カルボキシメチルセルロース(CMC)等のセルロース類等が好ましく、CMCが特に好ましい。増粘剤の配合量は、前記分散質を100質量部とした場合、0.1~10質量部が好ましく、0.3~3質量部がより好ましい。
 増粘剤溶液の溶媒は水、アルコール(メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール等)等が挙げられ、これらは単独でも混合して用いることもできる。好ましい溶媒は水である。
 増粘剤溶液中の増粘剤の濃度は、粘度として室温で50~5000mPa・s、好ましくは100~3000mPa・sとできる濃度であり、通常0.5~5質量%の範囲が好ましい。
2. Thickener solution The thickener solution is used to adjust the viscosity of the slurry.
Examples of the thickener include polyethylene glycols, celluloses, polyacrylamides, poly N-vinyl amides, poly N-vinyl pyrrolidones and the like. Among these, polyethylene glycols and celluloses such as carboxymethyl cellulose (CMC) are preferable, and CMC is particularly preferable. The blending amount of the thickener is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 3 parts by mass, when the dispersoid is 100 parts by mass.
Examples of the solvent of the thickener solution include water, alcohol (methanol, ethanol, propanol, butanol, isopropyl alcohol, etc.), and these can be used alone or in combination. A preferred solvent is water.
The concentration of the thickener in the thickener solution is such that the viscosity can be 50 to 5000 mPa · s, preferably 100 to 3000 mPa · s at room temperature, and is usually in the range of 0.5 to 5% by mass.
3.撹拌工程
 前記増粘剤溶液と前記分散質とを含有する混合物を撹拌する。
 前記混合物は、撹拌時において、分散質の比表面積を加重平均した値(α)(m2/g)と固形分比率(β)との積(α×β)が1.3以上であることが好ましい。より好ましくは、前記積が2.0以上であり、更に好ましくは前記積が2.4以上である。前記積の上限は特に限定されないが、7.0以下が好ましく、より好ましくは6.0以下である。
3. Stirring step The mixture containing the thickener solution and the dispersoid is stirred.
When the mixture is stirred, the product (α × β) of the value (α) (m 2 / g) obtained by weighted average of the specific surface area of the dispersoid and the solid content ratio (β) is 1.3 or more. Is preferred. More preferably, the product is 2.0 or more, and still more preferably the product is 2.4 or more. The upper limit of the product is not particularly limited, but is preferably 7.0 or less, and more preferably 6.0 or less.
 スラリーの粘度は、スラリー塗工工程を考慮した適度な範囲と調整することが好ましい。スラリーの粘度は、固形分比率が一定だった場合、分散質の比表面積が大きいと高くなる。通常、スラリー粘度が同じ場合には、分散質の比表面積が大きな方が固形分比率は低くなり、逆に比表面積が小さな方が固形分比率は高くなる。 It is preferable to adjust the viscosity of the slurry within an appropriate range in consideration of the slurry coating process. When the solid content ratio is constant, the viscosity of the slurry increases when the specific surface area of the dispersoid is large. In general, when the slurry viscosity is the same, the larger the specific surface area of the dispersoid, the lower the solid content ratio, and conversely, the smaller the specific surface area, the higher the solid content ratio.
 比表面積を加重平均した値(α)(m2/g)と固形分比率(β)との積(α×β)が上記範囲内にある混合物を撹拌することにより、分散質の凝集粒の発生が抑えられ、分散質が良好に分散する。また、導電助剤を用いた場合にあっても、上記の積の範囲内である混合物を撹拌することにより導電助剤の分散性が大きく向上する。 By stirring the mixture in which the product (α × β) of the weighted average value of the specific surface area (α) (m 2 / g) and the solid content ratio (β) is within the above range, Occurrence is suppressed and the dispersoid is well dispersed. Further, even when a conductive assistant is used, the dispersibility of the conductive assistant is greatly improved by stirring the mixture within the range of the above product.
 本明細書において、「分散質の比表面積を加重平均した値(α)(m2/g)」とは、分散質が単一の場合にはその比表面積(m2/g)を表し、分散質が複数成分の混合物の場合には各分散質の比表面積を加重平均した値(m2/g)を意味する。例えば、分散質が、比表面積がx(m2/g)の活物質a(g)と比表面積がy(m2/g)の導電助剤b(g)の混合物であった場合、加重平均した比表面積は(xa+yb)/(a+b)(m2/g)と計算される。
 また、「固形分比率(β)」とは、投入した総質量のうち分散媒の質量を差し引いたものの割合を意味し、スラリーを塗布乾燥させた後に残る固形分の割合である。固形分には、前記分散質の他、増粘剤や後述するバインダー成分も含まれる。この比率の値は0~1の範囲である。なお、前記分散質には、増粘剤及び後述するバインダーは含まれない。
In this specification, “weighted average value of specific surface area of dispersoid (α) (m 2 / g)” represents the specific surface area (m 2 / g) when the dispersoid is single, When the dispersoid is a mixture of a plurality of components, it means a value (m 2 / g) obtained by weighted average of the specific surface area of each dispersoid. For example, if the dispersoid is a specific surface area was a mixture of x (m 2 / g) of active material a (g) and a specific surface area of y (m 2 / g) of the conductive auxiliary agent b (g), weighted The average specific surface area is calculated as (xa + yb) / (a + b) (m 2 / g).
The “solid content ratio (β)” means the ratio of the total mass added minus the mass of the dispersion medium, and is the ratio of the solid content remaining after the slurry is applied and dried. In addition to the dispersoid, the solid content includes a thickener and a binder component described later. The value of this ratio is in the range of 0-1. The dispersoid does not include a thickener and a binder described later.
 スラリーを製造する場合、従来より最終段階で分散媒のみを添加して所望の粘度に調整することが広く行なわれている。しかし、粘度調整のために分散媒のみを添加して撹拌した場合には、増粘剤溶液やバインダー液と追加した分散媒とが均一に混合されずスラリーが不均一となりやすい。添加する分散媒の量が多くなると、その傾向は顕著になる。スラリーが不均一になると電極の集電体とスラリー(合剤)との界面での密着性が低下する。したがって、本発明においてはスラリーに使用する分散媒を単独で添加する工程を含まないことが好ましい。また分散媒を単独で添加する場合は、その添加量は製造されるスラリー中の総分散媒量の5質量%以下であることが好ましく、さらに好ましくは1質量%以下である。本発明においては最終段階で分散媒のみを添加することで粘度調整する必要がない利点がある。
 本明細書で言う分散媒とは、スラリーを製造するために使用される液状成分であって、増粘剤やバインダーを含まないものであり、スラリーを塗布乾燥することによりそのほとんどが除去されるものである。
In the case of producing a slurry, it has been widely practiced to add a dispersion medium only at the final stage to adjust to a desired viscosity. However, when only the dispersion medium is added and stirred for viscosity adjustment, the thickener solution or binder liquid and the added dispersion medium are not uniformly mixed, and the slurry tends to be non-uniform. The tendency becomes remarkable as the amount of the dispersion medium to be added increases. If the slurry becomes non-uniform, the adhesion at the interface between the current collector of the electrode and the slurry (mixture) decreases. Therefore, in the present invention, it is preferable not to include a step of adding the dispersion medium used in the slurry alone. Moreover, when adding a dispersion medium independently, it is preferable that the addition amount is 5 mass% or less of the total amount of dispersion medium in the slurry manufactured, More preferably, it is 1 mass% or less. In the present invention, there is an advantage that it is not necessary to adjust the viscosity by adding only the dispersion medium in the final stage.
The dispersion medium referred to in the present specification is a liquid component used for producing a slurry and does not contain a thickener or a binder, and most of them are removed by applying and drying the slurry. Is.
 本発明の好ましい実施態様においては、前記撹拌工程は、前記分散質に増粘剤溶液を加えて撹拌する工程、その後さらに増粘剤溶液を加えて撹拌することを1回または2回以上繰り返す工程を含む。すなわち、増粘剤の添加及び撹拌を2セット以上繰り返す。 In a preferred embodiment of the present invention, the stirring step is a step of adding a thickener solution to the dispersoid and stirring, and then adding a thickener solution and stirring the mixture once or twice or more. including. That is, the addition and stirring of the thickener are repeated two or more sets.
 本発明の好ましい実施態様においては、最初に分散質の全量を撹拌機に投入することが好ましい。すなわち、本発明のさらに好ましい実施態様においては、前記撹拌工程は、
 分散質の全量を撹拌機に投入する工程、次いで、
 前記撹拌機に増粘剤溶液を投入し撹拌することを2回以上繰り返す工程
からなる。この場合、2回目の撹拌は1回目の撹拌時に比べて投入する増粘剤溶液の合計量が多い状態で行なわれるため、2回目の撹拌時の混合物の前記積は1回目のそれよりも小さくなる。
 増粘剤溶液投入及び撹拌を複数回行なうことにより、前記分散質の凝集をより抑制することが可能となる。
In a preferred embodiment of the invention, it is preferred to initially charge the entire amount of dispersoid into the stirrer. That is, in a further preferred embodiment of the present invention, the stirring step comprises
Introducing the entire amount of dispersoid into the stirrer, then
It consists of a step of repeating the charging of the thickener solution into the stirrer twice or more. In this case, since the second stirring is performed in a state where the total amount of the thickener solution to be added is larger than that in the first stirring, the product of the mixture at the second stirring is smaller than that at the first stirring. Become.
By performing the thickener solution charging and stirring a plurality of times, it becomes possible to further suppress the aggregation of the dispersoid.
 上記のように複数回の増粘剤溶液投入及び撹拌を行なう場合、最初の撹拌工程において投入する増粘剤溶液の量は、増粘剤溶液の総量の5~40質量%とすることが好ましい。より好ましくは6~30質量%である。その範囲の増粘剤溶液を最初に投入することにより、前記分散質の凝集をより抑制することが可能となる。
 前記繰返し数は2回以上であればよいが、3回以上行うことで、凝集がさらに抑制されるので好ましい。上限は特にないが、多すぎると経済的に不利となるため好ましくは5回以下であり、さらに好ましくは4回以下である。
When the thickener solution is charged and stirred a plurality of times as described above, the amount of the thickener solution charged in the first stirring step is preferably 5 to 40% by mass of the total amount of the thickener solution. . More preferably, it is 6 to 30% by mass. By first introducing a thickener solution in that range, it is possible to further suppress aggregation of the dispersoid.
The number of repetitions may be two or more, but is preferably performed three or more times because aggregation is further suppressed. There is no particular upper limit, but if it is too much, it is economically disadvantageous, so it is preferably 5 times or less, more preferably 4 times or less.
 増粘剤溶液投入及び撹拌の工程を複数回行なう場合、そのうちの少なくとも1回が前記積の範囲内にある混合物を撹拌する工程であればよい。例えば、前記積が特定の値である混合物を撹拌した後に、それにさらに増粘剤溶液等の液体成分または分散質を添加して、前記値とは異なる積を有する混合物を調製後、撹拌する場合には、そのうちの少なくとも1回の工程が前記積の範囲内にある混合物を撹拌する工程であればよい。分散質の全量を最初に撹拌機に投入する場合は、前記したように、2回目の撹拌時の混合物の前記積は1回目のそれよりも小さくなる。そのため、少なくとも最初の撹拌工程における混合物が前記積の範囲内とすることが好ましい。 In the case where the steps of adding the thickener solution and stirring are performed a plurality of times, at least one of them may be a step of stirring the mixture within the product range. For example, when a mixture having a specific value is stirred, a liquid component such as a thickener solution or a dispersoid is further added to the mixture, and a mixture having a product different from the above value is prepared and stirred. In this case, at least one of the steps may be a step of stirring the mixture in the product range. When the entire amount of the dispersoid is first charged into the stirrer, as described above, the product of the mixture at the second stirring is smaller than that at the first. Therefore, it is preferable that the mixture in at least the first stirring step is within the range of the product.
 撹拌機としては、種々のものを使用することができる。例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、脱泡ニーダー、撹拌羽根つき万能ミキサー、ペイントシェーカー等の装置を使用することができる。これらのなかでプラネタリーミキサーが特に好ましい。 A variety of stirrers can be used. For example, apparatuses such as a ribbon mixer, a screw-type kneader, a Spartan-Luzer, a Redige mixer, a planetary mixer, a defoaming kneader, a universal mixer with stirring blades, and a paint shaker can be used. Among these, a planetary mixer is particularly preferable.
4.バインダー液の添加及び更なる撹拌
 本発明の好ましい実施態様においては、前記の撹拌工程の後、バインダー液を添加し撹拌することができる。バインダー液を添加して撹拌することにより塗工・乾燥後極板の集電箔/合剤層界面が結着する。
 バインダー液は、スラリー製造工程の最終段階で添加することが好ましく、バインダー液添加後の撹拌時間は120分以内が好ましい。バインダー液を添加した後に長時間撹拌するとスラリー中で凝集が発生する場合がある。
4). Addition of Binder Liquid and Further Stirring In a preferred embodiment of the present invention, the binder liquid can be added and stirred after the stirring step. By adding and stirring the binder liquid, the current collector foil / mixture layer interface of the electrode plate is bound after coating and drying.
The binder liquid is preferably added at the final stage of the slurry production process, and the stirring time after addition of the binder liquid is preferably within 120 minutes. Aggregation may occur in the slurry when the binder liquid is stirred for a long time after the binder liquid is added.
 バインダー液のバインダー成分としては、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、ブタジエンゴム(BR)、スチレンアクリル酸エステル(St-Ac)、ポリアクリロニトリル(PAN)等が挙げられる。好ましいバインダー成分はSBR及びSt-Acである。 Examples of the binder component of the binder liquid include styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butadiene rubber (BR), styrene acrylate (St-Ac), polyacrylonitrile (PAN), and the like. Preferred binder components are SBR and St-Ac.
 バインダーの使用量は、前記分散質100質量部に対して、0.1~10質量部が好ましく、1~5質量部がより好ましい。バインダーは多すぎると相対的に負極活物質の量が少なくなるため電極容量が低下し、また抵抗も増加する。バインダーが少なすぎると、結着効果が低下し、電池組み立て時や充放電中に負極の崩壊が起こり易くなり、また充放電サイクル寿命が低下する。 The amount of the binder used is preferably 0.1 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the dispersoid. When the amount of the binder is too large, the amount of the negative electrode active material is relatively reduced, so that the electrode capacity is reduced and the resistance is also increased. When the amount of the binder is too small, the binding effect is reduced, the negative electrode is easily collapsed during battery assembly or charge / discharge, and the charge / discharge cycle life is reduced.
 バインダー液の溶媒あるいは分散媒は水、アルコール(メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール等)等が挙げられ、これらは単独でも混合して用いることもできる。中でも水が好ましい。 The solvent or dispersion medium of the binder liquid includes water, alcohol (methanol, ethanol, propanol, butanol, isopropyl alcohol, etc.), and these can be used alone or in combination. Of these, water is preferred.
5.スラリーの特性
 上記方法で得られるリチウムイオン二次電池負極用スラリーは、電極活物質等の分散質が良好に分散して存在するため、スラリー中に分散質の凝集体がほとんど存在しない。
 凝集体が存在するかどうかは、グラインドゲージを用いてJIS K5600-2-5に準拠して測定される粒子サイズを評価する方法により評価することができる。上記方法で得られたスラリーは、グラインドゲージを用いて測定された粒子サイズが負極活物質のレーザー回析法による体積基準の90%の累積粒子径(D90)以下となる。このことは、スラリー中に凝集がほとんど見られないことを意味する。
 体積基準の累積粒子径は、例えばレーザー回折式粒度分布測定装置としてマルバーン製マスターサイザーを用いて測定することができる。
5. Characteristics of Slurry Since the slurry for a lithium ion secondary battery negative electrode obtained by the above method has a dispersoid such as an electrode active material well dispersed therein, there are almost no dispersoid aggregates in the slurry.
Whether or not an aggregate exists can be evaluated by a method of evaluating a particle size measured according to JIS K5600-2-5 using a grind gauge. In the slurry obtained by the above method, the particle size measured using a grind gauge is 90% or less of the cumulative particle diameter (D90) based on volume by the laser diffraction method of the negative electrode active material. This means that little aggregation is seen in the slurry.
The volume-based cumulative particle diameter can be measured, for example, using a Malvern master sizer as a laser diffraction particle size distribution measuring apparatus.
 導電助剤を用いた場合には、その凝集も負極性能に悪影響を及ぼすが、上記方法を用いることにより導電助剤の分散性も大きく向上する。導電助剤の分散性については、スラリーを基板に塗工して乾燥させたものをFE-SEM等により観察する方法により評価することができる。上記方法にて得られたスラリーを用いた場合は、導電助剤が良好に分散している様子が観察される。具体的には、導電助剤として平均粒径100nm以下のカーボンブラックを用いた場合には、凝集粒の径は1μm以下となる。 When a conductive assistant is used, the aggregation also adversely affects the negative electrode performance, but the dispersibility of the conductive assistant is greatly improved by using the above method. The dispersibility of the conductive auxiliary agent can be evaluated by a method of observing with a FE-SEM or the like a slurry applied to a substrate and dried. When the slurry obtained by the above method is used, it is observed that the conductive assistant is well dispersed. Specifically, when carbon black having an average particle size of 100 nm or less is used as the conductive additive, the diameter of the aggregated particles is 1 μm or less.
 上記方法で得られたスラリーは、集電体との密着性にも優れる。これは、分散質の分散性に加え、増粘剤やバインダーもまたスラリー中に良好に分散するためと考えられる。密着性が優れることにより、電池の耐久性が向上する。
 密着性の評価は、スラリーを集電体に塗工して乾燥させた極板に対し、合剤と集電体との剥離強度を測定することにより行なう。剥離強度はJIS K6854-2に準拠して測定する。
 最終段階で分散媒の総量の5%を超える分散媒のみを添加して製造したスラリーを用いた極板と比較した場合、上記の方法で得られたスラリーを用いた極板は、その密着性が大幅に改善される。
The slurry obtained by the above method is also excellent in adhesion to the current collector. This is presumably because the thickener and binder are also well dispersed in the slurry in addition to the dispersibility of the dispersoid. The durability of the battery is improved by the excellent adhesion.
The evaluation of adhesion is performed by measuring the peel strength between the mixture and the current collector on the electrode plate coated with the slurry and dried. The peel strength is measured according to JIS K6854-2.
When compared with the electrode plate using the slurry produced by adding only the dispersion medium exceeding 5% of the total amount of the dispersion medium at the final stage, the electrode plate using the slurry obtained by the above method has its adhesion. Is greatly improved.
 スラリー粘度は、1~10Pa・s、好ましくは2~5Pa・sとなるように各成分の組成や配合量を調整する。 The composition and blending amount of each component are adjusted so that the slurry viscosity is 1 to 10 Pa · s, preferably 2 to 5 Pa · s.
6.シート状負極用極板の作製
 上述の方法で得たスラリーは集電体に塗布し乾燥することにより、リチウムイオン二次電池負極用極板を作製できる。
 スラリーの集電体への塗工は、公知の方法により実施できるが、例えばドクターブレードやバーコーターなどで塗工する方法等が挙げられる。塗工層の厚みは通常10~200μmとする。乾燥は、例えば70℃1時間の真空乾燥により行うことができる。
 集電体としては、銅箔、アルミニウム箔、ステンレス箔、ニッケル箔、チタン箔及びそれらの合金箔、カーボンシートなど公知の材料が使用できる。これらの中では、強度、電気化学安定性、コスト等の面から、銅箔や銅合金箔が好ましい。
 集電体の厚みに特に制限はないが、0.5~100μmが好ましく、1~50μmがより好ましい。薄すぎると強度が低下し、負極材の強度や塗布時の取扱い性に問題が生じる。厚すぎると、電池構成体中の集電体箔の質量、体積の割合が高くなり、電池のエネルギー密度が低下し、さらに電池作製時のシート状電極が堅くなり、捲回に支障をきたす。
6). Preparation of electrode plate for sheet-like negative electrode The slurry obtained by the above-mentioned method can be applied to a current collector and dried to prepare an electrode plate for a lithium ion secondary battery negative electrode.
The slurry can be applied to the current collector by a known method, for example, a method of applying with a doctor blade or a bar coater. The thickness of the coating layer is usually 10 to 200 μm. Drying can be performed by, for example, vacuum drying at 70 ° C. for 1 hour.
As the current collector, known materials such as a copper foil, an aluminum foil, a stainless steel foil, a nickel foil, a titanium foil, an alloy foil thereof, and a carbon sheet can be used. Among these, copper foil and copper alloy foil are preferable from the viewpoints of strength, electrochemical stability, cost, and the like.
The thickness of the current collector is not particularly limited, but is preferably 0.5 to 100 μm, more preferably 1 to 50 μm. If it is too thin, the strength will decrease, and problems will arise in the strength of the negative electrode material and the handling properties during coating. If it is too thick, the ratio of the mass and volume of the current collector foil in the battery structure is increased, the energy density of the battery is lowered, and the sheet-like electrode at the time of battery production becomes stiff, thereby hindering winding.
 以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。なお、実施例及び比較例において使用した材料と評価方法は以下の通りである。 In the following, typical examples of the present invention will be shown and more specifically described. Note that these are merely illustrative examples, and the present invention is not limited thereto. The materials and the evaluation methods used in the examples and comparative examples are as follows.
(1)材料
(i)負極活物質
・人造黒鉛:昭和電工株式会社製SCMG(登録商標),D50%16μm、D90%40μm、比表面積1.6m2/g
・天然黒鉛:中国製,D50%17μm、D90%26μm、比表面積5.9m2/g
(ii)導電助剤
・カーボンブラック:TIMCAL社製C65,平均一次粒子径100nm>、比表面積65m2/g
・繊維状炭素:昭和電工株式会社製VGCF-H(登録商標),平均繊維経150nm、繊維長10~20nm、比表面積13m2/g
(iii)増粘剤
・カルボキシメチルセルロース(CMC):ダイセルファインケム株式会社製2200番
(iv)バインダー液
・SBRバインダー液:日本ゼオン社製BM-400B,40質量%水分散液
(1) Material (i) Negative electrode active material / artificial graphite: SCMG (registered trademark) manufactured by Showa Denko KK, D50% 16 μm, D90% 40 μm, specific surface area 1.6 m 2 / g
・ Natural graphite: Made in China, D50% 17 μm, D90% 26 μm, specific surface area 5.9 m 2 / g
(Ii) Conductive auxiliary agent / carbon black: C65 manufactured by TIMCAL, average primary particle size 100 nm>, specific surface area 65 m 2 / g
Fibrous carbon: VGCF-H (registered trademark) manufactured by Showa Denko KK, average fiber diameter of 150 nm, fiber length of 10 to 20 nm, specific surface area of 13 m 2 / g
(Iii) Thickener / Carboxymethylcellulose (CMC): Daicel Finechem Co., Ltd. No. 2200 (iv) Binder liquid / SBR binder liquid: BM-400B manufactured by Nippon Zeon Co., Ltd., 40 mass% aqueous dispersion
(2)評価方法
(i)負極活物質の凝集
 スラリー中の粒子サイズをグラインドゲージを用いて測定する。測定はJIS K5600-2-5に準拠して行なう。このサイズが大きいことは、スラリー中に負極活物質が凝集して存在し、その分散が十分ではないことを表す。
(ii)導電助剤の凝集
 厚さ20μmの銅箔上にドクターブレードを用いてスラリーを150μmの厚みに塗布する。次いで、70℃で1時間真空乾燥し、銅箔上に合剤層が形成された電極板を得る。
 得られた電極板を電極を用いて、FE-SEMによる1μm以上の導電助剤の凝集の有無を評価する。
(iii)剥離強度
 上記(ii)で得られた電極を用いて、JIS K6854-2に準拠し、銅箔と合剤層との剥離強度を測定する。
(2) Evaluation method (i) Aggregation of negative electrode active material The particle size in the slurry is measured using a grind gauge. The measurement is performed according to JIS K5600-2-5. The large size indicates that the negative electrode active material is present in an aggregated state in the slurry, and the dispersion is not sufficient.
(Ii) Aggregation of conductive aid A slurry is applied to a thickness of 150 μm on a copper foil having a thickness of 20 μm using a doctor blade. Subsequently, it vacuum-drys at 70 degreeC for 1 hour, and the electrode board in which the mixture layer was formed on copper foil is obtained.
Using the obtained electrode plate as an electrode, the presence or absence of aggregation of the conductive assistant of 1 μm or more by FE-SEM is evaluated.
(Iii) Peel strength Using the electrode obtained in (ii) above, the peel strength between the copper foil and the mixture layer is measured according to JIS K6854-2.
実施例1
(1)投入・セミドライ混合
 釜容量500cm3のプライミクス社製プラネタリーミキサーに人造黒鉛135g、カーボンブラック2.84g、及び1.1質量%CMC水溶液20gを投入し、ブレードの回転速度30rpmにて30分間撹拌した。
(2)固練り
 プラネタリーミキサーのブレードに付着した材料を樹脂製のヘラで掻き落した後、前記ミキサーに1.1質量%CMC水溶液70gをさらに添加し、ブレードの回転速度30rpmにて15分間撹拌した。その後、前記回転速度を60rpmに上げてさらに75分間撹拌した。
(3)緩練り
 プラネタリーミキサーのブレードに付着した材料を樹脂製のヘラで掻き落した後、前記ミキサーに1.1質量%CMC水溶液105gをさらに添加し、ブレードの回転速度30rpmにて15分間撹拌した。その後、前記回転速度を80rpmに上げてさらに75分間撹拌した。
(4)バインダー混合
 前記ミキサーにSBRバインダー液5.3gを投入し、水冷しながらブレードの回転速度25rpmにて15分間撹拌した。その後、真空脱泡を行いながら、ブレードの回転速度100rpmにて60分間撹拌し、スラリーを得た。
 スラリーの製造条件を表1に示す。
(5)評価
 上記で得られたスラリーをグラインドゲージを用いてJIS K5600-2-5に準拠した分散の度合い、およびスラリーを厚さ20μmの銅箔上にドクターブレードを用いて150μmの厚みに塗布して70℃で1時間真空乾燥した電極を用いて、FE-SEMによる1μm以上の導電助剤の凝集の有無ならびにJIS K6854-2に準拠した剥離強度を確認した。評価結果を表2に示す。
Example 1
(1) Feeding and semi-dry mixing 135 g of artificial graphite, 2.84 g of carbon black, and 20 g of 1.1 mass% CMC aqueous solution are put into a planetary mixer manufactured by Primix with a pot capacity of 500 cm 3 , and the blade rotation speed is 30 rpm. Stir for minutes.
(2) Solid kneading After scraping the material adhering to the blade of the planetary mixer with a plastic spatula, 70 g of 1.1 mass% CMC aqueous solution was further added to the mixer, and the blade was rotated at 30 rpm for 15 minutes. Stir. Thereafter, the rotational speed was increased to 60 rpm, and the mixture was further stirred for 75 minutes.
(3) Loose kneading After scraping the material adhering to the blade of the planetary mixer with a plastic spatula, 105 g of 1.1 mass% CMC aqueous solution was further added to the mixer, and the blade was rotated at 30 rpm for 15 minutes. Stir. Thereafter, the rotational speed was increased to 80 rpm and the mixture was further stirred for 75 minutes.
(4) Binder mixing 5.3 g of SBR binder solution was added to the mixer and stirred for 15 minutes at a blade rotation speed of 25 rpm while cooling with water. Thereafter, the mixture was stirred for 60 minutes at a blade rotation speed of 100 rpm while vacuum degassing to obtain a slurry.
The production conditions of the slurry are shown in Table 1.
(5) Evaluation The degree of dispersion of the slurry obtained above using a grind gauge according to JIS K5600-2-5, and the slurry was applied to a thickness of 150 μm using a doctor blade on a copper foil having a thickness of 20 μm. Then, using an electrode vacuum-dried at 70 ° C. for 1 hour, the presence or absence of aggregation of the conductive auxiliary of 1 μm or more by FE-SEM and the peel strength according to JIS K6854-2 were confirmed. The evaluation results are shown in Table 2.
実施例2
 人造黒鉛135gに代えて、人造黒鉛67.5gおよび天然黒鉛67.5gを使用した以外は実施例1と同様の処理を行った。スラリーの製造条件を表1に示し、評価結果を表2に示す。
 また、SEMにて撮影した写真を図1に示す。ここでaは天然黒鉛粒子、bは人造黒鉛粒子の拡大図であり、その表面等にカーボンブラックの微細粒子が分散して存在していることがわかる。
 グラインドゲージを用いた評価写真を図3に示す。
Example 2
The same treatment as in Example 1 was performed except that 67.5 g of artificial graphite and 67.5 g of natural graphite were used instead of 135 g of artificial graphite. The production conditions of the slurry are shown in Table 1, and the evaluation results are shown in Table 2.
Moreover, the photograph image | photographed with SEM is shown in FIG. Here, a is an enlarged view of natural graphite particles and b is an enlarged view of artificial graphite particles, and it can be seen that fine particles of carbon black are dispersed on the surface thereof.
An evaluation photograph using a grind gauge is shown in FIG.
実施例3
 カーボンクラック2.84gに代えて繊維状炭素2.84gを使用した以外は実施例2と同様の処理を行った。スラリーの製造条件を表1に示し、評価結果を表2に示す。
Example 3
The same treatment as in Example 2 was performed except that 2.84 g of fibrous carbon was used instead of 2.84 g of carbon cracks. The production conditions of the slurry are shown in Table 1, and the evaluation results are shown in Table 2.
実施例4
 人造黒鉛135gに代えて、人造黒鉛69gおよび天然黒鉛69gを使用し、カーボンブラックを添加しない以外は実施例1と同様の処理を行った。スラリーの製造条件を表1に示し、評価結果を表2に示す。
Example 4
Instead of artificial graphite 135g, artificial graphite 69g and natural graphite 69g were used, and the same treatment as in Example 1 was performed except that carbon black was not added. The production conditions of the slurry are shown in Table 1, and the evaluation results are shown in Table 2.
比較例1
(1)投入・セミドライ混合
 人造黒鉛67.5g、天然黒鉛67.5g、カーボンブラック2.84g、および2.0質量%CMC水溶液30gをこの順で投入しブレードの回転速度を30rpmとし30分間撹拌した。
(2)固練り
 プラネタリーミキサーのブレードに付着した材料を樹脂製のヘラで掻き落した後に2.0質量%CMC水溶液77gを追加し、30rpmの回転数で15分間撹拌後に更に60rpmに回転速度を上げ75分間撹拌した。
(3)希釈
 プラネタリーミキサーのブレードに付着した材料を樹脂製のヘラで掻き落した後に水88gを追加し、30rpmの回転速度で15分間撹拌後に更に80rpmに回転数を上げ75分間撹拌した。
(4)バインダー混合
 SBRバインダー液5.3gを投入し水冷しながら25rpmの回転速度で15分間撹拌後に、真空脱泡を行いながら100rpmの回転速度で60分間撹拌しスラリーを完成とした。
 スラリーの製造条件を表1に示し、評価結果を表2に示す。
Comparative Example 1
(1) Charging / semi-dry mixing 67.5 g of artificial graphite, 67.5 g of natural graphite, 2.84 g of carbon black, and 30 g of 2.0% by mass CMC aqueous solution were charged in this order, and the blade was rotated at 30 rpm and stirred for 30 minutes. did.
(2) Solid kneading After scraping the material adhering to the blade of the planetary mixer with a plastic spatula, 77 g of a 2.0 mass% CMC aqueous solution was added, stirring for 15 minutes at 30 rpm, and further rotating to 60 rpm. Was stirred for 75 minutes.
(3) Dilution The material adhering to the blade of the planetary mixer was scraped off with a plastic spatula, and 88 g of water was added. After stirring for 15 minutes at a rotation speed of 30 rpm, the number of rotations was further increased to 80 rpm and stirring was continued for 75 minutes.
(4) Binder mixing After adding 5.3 g of SBR binder liquid and stirring for 15 minutes at a rotational speed of 25 rpm while cooling with water, the slurry was completed by stirring for 60 minutes at a rotational speed of 100 rpm while performing vacuum degassing.
The production conditions of the slurry are shown in Table 1, and the evaluation results are shown in Table 2.
比較例2
(1)投入・増粘剤混合
 人造黒鉛135g、カーボンブラック2.84g、および1.1質量%CMC水溶液195gを投入し、ブレードの回転速度を30rpmとし30分間撹拌した後に更に80rpmに回転数を上げ180分間撹拌した。
(2)バインダー混合
 SBRバインダー液5.3gを投入し水冷しながら25rpmの回転速度で15分間撹拌後に、真空脱泡を行いながら100rpmの回転速度で60分間撹拌しスラリーを完成とした。
 スラリーの製造条件を表1に示し、評価結果を表2に示す。
 また、SEMにて撮影した写真を図2に示す。ここでcは導電助剤であるカーボンブラックの凝集している箇所の拡大図、dは天然黒鉛粒子、eは人造黒鉛粒子の拡大図であり、カーボンブラックは5~20μmの大きさで凝集しており、その分散が十分ではないことがわかる。
 グラインドゲージを用いた評価写真を図3に示す。
Comparative Example 2
(1) Input / Thickener mixing 135 g of artificial graphite, 2.84 g of carbon black, and 195 g of 1.1 mass% CMC aqueous solution were added, and the rotation speed of the blade was 30 rpm and stirred for 30 minutes. Raised and stirred for 180 minutes.
(2) Binder mixing After adding 5.3 g of SBR binder liquid and stirring for 15 minutes at a rotational speed of 25 rpm while cooling with water, the slurry was completed by stirring for 60 minutes at a rotational speed of 100 rpm while performing vacuum degassing.
The production conditions of the slurry are shown in Table 1, and the evaluation results are shown in Table 2.
Moreover, the photograph image | photographed with SEM is shown in FIG. Here, c is an enlarged view of the agglomerated portion of carbon black as a conductive additive, d is an enlarged view of natural graphite particles, e is an enlarged view of artificial graphite particles, and carbon black is agglomerated in a size of 5 to 20 μm. It can be seen that the dispersion is not sufficient.
An evaluation photograph using a grind gauge is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (13)

  1.  増粘剤溶液と分散質とを含有する混合物を撹拌する工程を有するリチウムイオン二次電池負極用スラリーの製造方法であって、前記分散質は負極活物質を含み、前記撹拌する工程が前記分散質の比表面積を加重平均した値(α)(m2/g)と固形分比率(β)との積(α×β)が1.3以上である混合物を撹拌する工程を含み、かつスラリーに使用する分散媒を単独で添加する工程を含まないか、あるいはその工程を含む場合は単独で添加する分散媒の量がスラリー中の総分散媒量の5質量%以下であるリチウムイオン二次電池負極用スラリーの製造方法。 A method for producing a slurry for a negative electrode of a lithium ion secondary battery having a step of stirring a mixture containing a thickener solution and a dispersoid, wherein the dispersoid includes a negative electrode active material, and the step of stirring includes the dispersion. A step of stirring a mixture in which the product (α × β) of the weight averaged surface area (α) (m 2 / g) and the solid content ratio (β) is 1.3 or more, and slurry Lithium ion secondary in which the step of adding the dispersion medium used alone is not included, or when the step is included, the amount of the dispersion medium added alone is 5% by mass or less of the total amount of the dispersion medium in the slurry The manufacturing method of the slurry for battery negative electrodes.
  2.  前記の撹拌する工程には、前記分散質に増粘剤溶液を加えて撹拌する工程、その後さらに増粘剤溶液を加えて撹拌することを1回または2回以上繰り返す工程を含む請求項1に記載のリチウムイオン二次電池負極用スラリーの製造方法。 The step of stirring includes a step of adding a thickener solution to the dispersoid and stirring, and then adding a thickener solution and stirring the mixture once or twice or more. The manufacturing method of the slurry for lithium ion secondary battery negative electrodes of description.
  3.  前記の撹拌する工程が、
     前記分散質の全量を撹拌機に投入する工程、次いで、
     前記撹拌機に増粘剤溶液を投入し撹拌することを2回以上繰り返す工程
    からなる請求項2に記載のリチウムイオン二次電池負極用スラリーの製造方法。
    The step of stirring includes
    Introducing the entire amount of the dispersoid into a stirrer;
    The method for producing a slurry for a negative electrode of a lithium ion secondary battery according to claim 2, comprising a step in which the thickener solution is charged into the stirrer and stirred twice or more.
  4.  最初の撹拌工程において投入する増粘剤溶液の量が、増粘剤溶液の総使用量の5~40質量%である請求項3に記載のリチウムイオン二次電池負極用スラリーの製造方法。 The method for producing a slurry for a negative electrode of a lithium ion secondary battery according to claim 3, wherein the amount of the thickener solution to be charged in the first stirring step is 5 to 40% by mass of the total amount of the thickener solution used.
  5.  増粘剤溶液の溶媒が水を含む請求項1に記載のリチウムイオン二次電池負極用スラリーの製造方法。 The method for producing a slurry for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the solvent of the thickener solution contains water.
  6.  増粘剤溶液と分散質とを含有する混合物を撹拌する前記工程の後に、バインダー液を投入して撹拌する工程を有する請求項1に記載のリチウムイオン二次電池負極用スラリーの製造方法。 The manufacturing method of the slurry for lithium ion secondary battery negative electrodes of Claim 1 which has the process of throwing in a binder liquid and stirring after the said process of stirring the mixture containing a thickener solution and a dispersoid.
  7.  前記負極活物質が、非黒鉛系炭素材料及び黒鉛系炭素材料からなる群より選ばれる1種以上である請求項1に記載のリチウムイオン二次電池負極用スラリーの製造方法。 The method for producing a slurry for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the negative electrode active material is at least one selected from the group consisting of a non-graphite carbon material and a graphite carbon material.
  8.  負極活物質のレーザー回析法による体積基準の平均粒子径(D50)が1~50μmである請求項1に記載のリチウムイオン二次電池負極用スラリーの製造方法。 The method for producing a slurry for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the volume-based average particle diameter (D50) of the negative electrode active material by laser diffraction is 1 to 50 µm.
  9.  前記バインダー液に含まれるバインダー成分が、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、ブタジエンゴム(BR)、スチレンアクリル酸エステル(St-Ac)、ポリアクリロニトリル(PAN)及びポリアミドイミドからなる群から選ばれる少なくとも1種である請求項6に記載のリチウムイオン二次電池負極用スラリーの製造方法。 The binder component contained in the binder liquid includes styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butadiene rubber (BR), styrene acrylate (St-Ac), polyacrylonitrile (PAN), and polyamideimide. The method for producing a slurry for a negative electrode of a lithium ion secondary battery according to claim 6, wherein the slurry is at least one selected from the group consisting of:
  10.  前記分散質が導電助剤を含む請求項1に記載のリチウムイオン二次電池負極用スラリーの製造方法。 The method for producing a slurry for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the dispersoid includes a conductive additive.
  11.  請求項1~10のいずれかの方法で製造したリチウムイオン二次電池負極用スラリーであって、グラインドゲージを使用しJIS K5600-2-5に準拠して測定される粒子サイズが、負極活物質のレーザー回析法による体積基準の90%の累積粒子径(D90)以下であるリチウムイオン二次電池負極用スラリー。 11. A slurry for a negative electrode of a lithium ion secondary battery produced by the method according to claim 1, wherein the particle size measured using a grind gauge according to JIS K5600-2-5 is a negative electrode active material. A slurry for a negative electrode of a lithium ion secondary battery having a cumulative particle diameter (D90) of 90% or less by volume based on the laser diffraction method.
  12.  請求項11に記載のリチウムイオン二次電池負極用スラリーを集電体に塗布し乾燥することにより得られるリチウムイオン二次電池負極用極板。 An electrode plate for a lithium ion secondary battery negative electrode obtained by applying the slurry for a lithium ion secondary battery negative electrode according to claim 11 to a current collector and drying.
  13.  請求項11または12に記載のリチウムイオン二次電池負極用極板を含むリチウムイオン二次電池。 A lithium ion secondary battery including the electrode plate for a lithium ion secondary battery negative electrode according to claim 11 or 12.
PCT/JP2013/082758 2012-12-07 2013-12-06 Method for producing slurry for negative electrode of lithium-ion secondary cell WO2014088084A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014551147A JP6472660B2 (en) 2012-12-07 2013-12-06 Method for producing slurry for negative electrode of lithium ion secondary battery
CN201380063111.0A CN104854737B (en) 2012-12-07 2013-12-06 The manufacture method of lithium ion secondary battery negative pole slurries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-268529 2012-12-07
JP2012268529 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014088084A1 true WO2014088084A1 (en) 2014-06-12

Family

ID=50883496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082758 WO2014088084A1 (en) 2012-12-07 2013-12-06 Method for producing slurry for negative electrode of lithium-ion secondary cell

Country Status (3)

Country Link
JP (1) JP6472660B2 (en)
CN (1) CN104854737B (en)
WO (1) WO2014088084A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195559A (en) * 2017-05-16 2018-12-06 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous secondary battery, and nonaqueous secondary battery
WO2020110943A1 (en) * 2018-11-26 2020-06-04 昭和電工株式会社 Lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2020110942A1 (en) * 2018-11-26 2020-06-04 昭和電工株式会社 Lithium ion secondary battery negative electrode and lithium ion secondary battery
CN112838261A (en) * 2020-12-28 2021-05-25 惠州亿纬创能电池有限公司 Negative electrode slurry and homogenizing method and application thereof
CN113029881A (en) * 2021-04-12 2021-06-25 惠州亿纬创能电池有限公司 Method and device for detecting dispersion effect of battery conductive agent
CN113823762A (en) * 2021-09-16 2021-12-21 湖北亿纬动力有限公司 Mixing method of negative electrode slurry, preparation method of battery and application
CN114464776A (en) * 2022-01-18 2022-05-10 贵州梅岭电源有限公司 Preparation method of ultra-high power ultra-thin negative plate capable of being produced in batch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220004673A (en) * 2019-04-26 2022-01-11 덴카 주식회사 Slurry containing carbon black, electrode paste, method for producing an electrode, and method for producing a secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042817A (en) * 2000-05-15 2002-02-08 Denso Corp Lithium secondary battery and its positive electrode producing method
JP2005222933A (en) * 2004-01-05 2005-08-18 Showa Denko Kk Negative pole material for lithium battery, and lithium battery
JP2008181870A (en) * 2006-12-26 2008-08-07 Mitsubishi Chemicals Corp Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same composite graphite particles, negative electrode, and nonaqueous secondary battery
WO2011078263A1 (en) * 2009-12-24 2011-06-30 日本ゼオン株式会社 Electrode for secondary battery, and secondary battery
JP2012146635A (en) * 2010-12-20 2012-08-02 Jsr Corp Binder composition, slurry, negative electrode for electrical storage device, and electrical storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709788B2 (en) * 2001-05-11 2004-03-23 Denso Corporation Lithium secondary cell and method of producing lithium nickel metal oxide positive electrode therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042817A (en) * 2000-05-15 2002-02-08 Denso Corp Lithium secondary battery and its positive electrode producing method
JP2005222933A (en) * 2004-01-05 2005-08-18 Showa Denko Kk Negative pole material for lithium battery, and lithium battery
JP2008181870A (en) * 2006-12-26 2008-08-07 Mitsubishi Chemicals Corp Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same composite graphite particles, negative electrode, and nonaqueous secondary battery
WO2011078263A1 (en) * 2009-12-24 2011-06-30 日本ゼオン株式会社 Electrode for secondary battery, and secondary battery
JP2012146635A (en) * 2010-12-20 2012-08-02 Jsr Corp Binder composition, slurry, negative electrode for electrical storage device, and electrical storage device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195559A (en) * 2017-05-16 2018-12-06 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous secondary battery, and nonaqueous secondary battery
WO2020110943A1 (en) * 2018-11-26 2020-06-04 昭和電工株式会社 Lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2020110942A1 (en) * 2018-11-26 2020-06-04 昭和電工株式会社 Lithium ion secondary battery negative electrode and lithium ion secondary battery
CN112838261A (en) * 2020-12-28 2021-05-25 惠州亿纬创能电池有限公司 Negative electrode slurry and homogenizing method and application thereof
CN113029881A (en) * 2021-04-12 2021-06-25 惠州亿纬创能电池有限公司 Method and device for detecting dispersion effect of battery conductive agent
CN113029881B (en) * 2021-04-12 2023-01-13 惠州亿纬创能电池有限公司 Method and device for detecting dispersion effect of battery conductive agent
CN113823762A (en) * 2021-09-16 2021-12-21 湖北亿纬动力有限公司 Mixing method of negative electrode slurry, preparation method of battery and application
CN114464776A (en) * 2022-01-18 2022-05-10 贵州梅岭电源有限公司 Preparation method of ultra-high power ultra-thin negative plate capable of being produced in batch

Also Published As

Publication number Publication date
JP6472660B2 (en) 2019-02-20
JPWO2014088084A1 (en) 2017-01-05
CN104854737B (en) 2017-11-24
CN104854737A (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP6472660B2 (en) Method for producing slurry for negative electrode of lithium ion secondary battery
JP6528826B2 (en) Carbon material for non-aqueous secondary battery and negative electrode and lithium ion secondary battery using the same
KR102272893B1 (en) Method for preparing anode slurry for batteries
JP4084353B2 (en) Method for producing composition for negative electrode material for lithium battery
JP7125409B2 (en) Large format battery anode containing silicon particles
JP2009016265A (en) Electrode for lithium battery, manufacturing method of electrode for lithium battery, lithium battery, and manufacturing method for lithium battery
WO2007000982A1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
JP2014130844A (en) Method for manufacturing electrode of lithium ion secondary battery and lithium ion secondary battery
WO2011037142A1 (en) Anode for use in a lithium-ion secondary battery, and lithium-ion secondary battery
WO2015147234A1 (en) Fibrous carbon-containing electrode mixture layer for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries comprising same, and nonaqueous electrolyte secondary battery
WO2015064464A1 (en) Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2008016456A (en) Negative electrode material for lithium battery and lithium battery
US20220238885A1 (en) Carbon-based conductive filler precursor dispersions for battery electrodes and methods for making and use thereof
WO2021241748A1 (en) Negative electrode material for lithium ion secondary battery, and use thereof
CN104934576A (en) Carbon-Silicon Composite, And Lithium Secondary Battery Anode And Lithium Secondary Battery Including The Same
CN111052466A (en) Negative electrode active material for secondary battery and secondary battery
EP3977545A2 (en) Silicon-dominant battery electrodes
JP3915072B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and battery using the same
US20230307613A1 (en) Novel composites for anode electrodes
KR20140117314A (en) Anode materials of lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860158

Country of ref document: EP

Kind code of ref document: A1