WO2014088060A1 - Method for producing shell-type needle bearing - Google Patents
Method for producing shell-type needle bearing Download PDFInfo
- Publication number
- WO2014088060A1 WO2014088060A1 PCT/JP2013/082679 JP2013082679W WO2014088060A1 WO 2014088060 A1 WO2014088060 A1 WO 2014088060A1 JP 2013082679 W JP2013082679 W JP 2013082679W WO 2014088060 A1 WO2014088060 A1 WO 2014088060A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- outer ring
- shell
- portions
- cage
- shell outer
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/44—Needle bearings
- F16C19/46—Needle bearings with one row or needles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/4617—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
- F16C33/4623—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
- F16C33/4635—Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C43/00—Assembling bearings
- F16C43/04—Assembling rolling-contact bearings
- F16C43/06—Placing rolling bodies in cages or bearings
- F16C43/08—Placing rolling bodies in cages or bearings by deforming the cages or the races
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/02—Plastics; Synthetic resins, e.g. rubbers comprising fillers, fibres
- F16C2208/04—Glass fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/20—Thermoplastic resins
- F16C2208/58—Several materials as provided for in F16C2208/30 - F16C2208/54 mentioned as option
Definitions
- the present invention relates to a method for manufacturing a needle bearing, and more particularly, to a method for manufacturing a shell-type needle bearing used for a rotation support portion of various mechanical devices.
- shell-type needle bearings having the same cross-sectional height are used in place of sliding bearings (bushes) at sites that receive radial loads.
- the shell-type needle bearing 100 can be rolled along a raceway surface 101a, a shell outer ring 101 having a raceway surface 101a on an inner peripheral surface and a pair of flange portions 101b and 101c on both ends.
- a plurality of needles 102 arranged in the shell outer ring 101 and a holder 103 having a plurality of pockets for holding the plurality of needles 102 are provided.
- a conventional manufacturing method of such a shell-type needle bearing 100 first, as a forming process of the shell outer ring 101, a deep cold drawing from a normal cold-rolled steel sheet (for example, a low carbon steel such as SPCC) into a cup shape is performed.
- a normal cold-rolled steel sheet for example, a low carbon steel such as SPCC
- One flange portion 101b is formed by punching.
- a plating process such as copper plating is performed on the edge of the shell outer ring 101 on the axial opening side, and a heat treatment such as carburizing or carbonitriding is performed.
- the needle 102 and the cage 103 are incorporated into the shell outer ring 101 from which the plating has been removed, and the flange portion 101c is formed by bending the edge of the shell outer ring 101 on the opening side in the axial direction.
- the bearing 100 is manufactured.
- Patent Document 1 describes a hot curl technique in which bending is performed while heating the flange portion 101c at a high frequency.
- Patent Document 2 describes a technique in which a shell needle bearing is assembled without performing heat treatment, and finally, the assembled shell needle bearing is entirely nitrided.
- This invention is made
- the objective is to provide the manufacturing method of the shell type needle bearing using the resin retainer which can be manufactured with the manufacturing method which does not require a plating process. .
- a shell outer ring having a raceway surface on an inner peripheral surface and a pair of inward flange portions on both ends;
- a plurality of needles arranged in the shell outer ring so as to be able to roll along the raceway surface of the shell outer ring;
- a retainer having a plurality of pockets for holding the plurality of needles, and
- a manufacturing method of a shell-type needle bearing comprising: The cage can be reduced in diameter, After both flange portions of the shell outer ring are molded and heat-treated, the cage is reduced in diameter and inserted into the shell outer ring, and then the plurality of needles are inserted into pockets of the cage.
- a method for manufacturing a shell needle bearing is performed by the following configurations.
- a shell outer ring having a raceway surface on an inner peripheral surface and a pair of inward flange portions on both ends;
- a plurality of needles arranged in the shell outer ring so as to be able to roll along the raceway surface of the shell outer ring;
- a retainer having a plurality of pockets for holding the plurality of needles, and a manufacturing method of a shell-type needle bearing comprising:
- the cage can be reduced in diameter, After forming both flange portions of the shell outer ring and applying heat treatment, a unit incorporating the plurality of needles in the cage pocket is inserted into the shell outer ring by reducing the diameter of the cage.
- the cage includes a pair of rim portions arranged coaxially with each other, and a plurality of column portions that connect the pair of rim portions in the axial direction,
- Each of the pair of rim portions is constituted by a plurality of arc-shaped portions,
- a plurality of cuts are formed in the same direction in the circumferential direction in each rim portion between each end of the arc-shaped portion adjacent in the circumferential direction,
- a plurality of elastic deformation portions that contract or extend in the circumferential direction are provided in the circumferential direction between the column portions adjacent in the circumferential direction in which the cut is formed,
- the elastically deforming portion has each end portion of the arc-shaped portion adjacent in the circumferential direction as a base end portion and extends inward in the axial direction from each end portion, and the extended portion is in the circumferential direction.
- the cage and needle are incorporated after both flange portions of the shell outer ring are molded and heat-treated, the plating process as in the prior art is unnecessary, and the cage Is not affected by the heat treatment, so that a resin can be used as a material for the cage.
- FIG. 2 Partially enlarged plan view of the cage of FIG. FIG. 2 is an axial sectional view of the cage of FIG. 1.
- transformation to the radial direction of the elastic deformation part of FIG. (A) shows the sectional view of a cage before elastic deformation, and a shell, (b) is a side view seen from the V direction of (a).
- (A) shows the cage after elastic deformation, and a sectional view of the shell, (b) is a side view seen from the VI direction of (a).
- the shell needle bearing 10 includes a shell outer ring 11 as a bearing ring having a raceway surface 11 a on an inner peripheral surface and a pair of inward flange portions 11 b and 11 c on both ends, and a shell outer ring 11.
- a plurality of needles 12 arranged in the shell outer ring 11 and a cage 13 having a plurality of pockets 14 for holding the plurality of needles 12 so as to be freely rollable along the raceway surface 11a.
- a shaft (or inner ring member) (not shown) is rotatably supported.
- the shell outer ring 11 is formed by subjecting a cold-rolled steel sheet (for example, low carbon steel such as SPCC) or the like to plastic processing such as drawing, so that a pair of flange portions 11b and 11c are bent at both ends of the entire cylindrical shape. Is formed.
- the shell outer ring 11 is hardened by heat treatment by carburizing or carbonitriding.
- the shell outer ring 11 is formed with flange portions 11b and 11c before the needle 12 and the cage 13 are assembled, and is further cured by heat treatment. Therefore, unlike the flange 101c of the conventional shell outer ring 101, the flanges 11b and 11c can be formed in the same shape so that they can be easily bent later. Can be eliminated. Further, it is possible to form by cutting from a thick plate instead of plastic processing of a thin plate.
- the retainer 13 includes a pair of rim portions 15 and 15 arranged coaxially with each other, and a plurality of column portions 16 that connect the pair of rim portions 15 and 15 in the axial direction.
- the pair of rim portions 15 and 15 are respectively configured by a plurality (four in this embodiment) of arc-shaped portions 15a.
- a plurality of cuts 15c are formed in the rim portions 15 and 15 with the same phase in the circumferential direction. As the number of cuts 15c increases, the number of needles 12 decreases, so the number of cuts 15c is preferably 2-6.
- the cage 13 is provided with an elastic deformation portion 17 that contracts the cage 13 (cut 15c) in the circumferential direction between the column portions 16 and 16 adjacent to each other in the circumferential direction in which the cut 15c is formed.
- a plurality are provided in the direction.
- a rectangular space that is surrounded by four sides by the circumferential side surfaces of the column parts 16 and 16 that are adjacent to each other in the circumferential direction without sandwiching the elastic deformation part 17 and the inner side surfaces of the pair of rim parts 15 and 15 that face each other.
- the portions are pockets 14 and 14, respectively.
- the inner diameter side latching protrusions 16a, 16a are provided on the inner end portions in the diameter direction of the cage 13 on both sides in the circumferential direction of the pillars 16, 16, respectively. 16 is formed over the entire length.
- the elastically deformable portion 17 extends inward in the axial direction from each of the end portions 15b with the end portions 15b, 15b of the arc-shaped portions 15a, 15a adjacent in the circumferential direction as base end portions. It has a pair of elastic deformation pieces 17a and 17a which connect the done part in the circumference direction.
- the pair of elastic deformation pieces 17 a and 17 a have the same shape, and the elastic deformation portion 17 is formed symmetrically with respect to the axial intermediate portion C of the cage 13.
- the elastic deformation piece 17a is composed of a plurality of arcs 17a1, 17a2, 17a3 each having a radius of curvature R1 to R3.
- the elastic deformation piece 17a may be configured by a single arc.
- each end portion 15b of the arcuate portion 15a serving as the base end portion of the elastic deformation portion 17 is equal to or greater than the axial width w2 of the arcuate portion 15a in consideration of the strength of the base end portion.
- the curvature of the arc surface formed on the inner side surface in the axial direction of the base end portion is large (the curvature radius r is small).
- the radial thickness h of the elastic deformation piece 17a is set to be thicker than the width w3 of the elastic deformation piece 17a. Can be suppressed.
- FIG. 6 (a) is a cross-sectional view of the cage 13 and the shell outer ring 11 before elastic deformation
- FIG. 6 (b) is a side view seen from the V direction of FIG. 6 (a).
- 7A is a cross-sectional view of the cage 13 and the shell outer ring 11 after elastic deformation
- FIG. 7B is a side view seen from the VI direction of FIG. 7A.
- the outer diameter ⁇ D1n of the cage 13 is larger than the inner diameter ⁇ D2 (hereinafter referred to as the flange inner diameter) of the pair of inward flange portions 11b and 11c of the shell outer ring 11 ( ⁇ D1n> ⁇ D2).
- the cage 13 can deform the elastic deformation portion 17 to narrow the circumferential distance L1 (see FIG. 2) of the cut 15c, and can shrink the cage 13 in the circumferential direction. Thereby, as shown in FIG. 6, the cage 13 can be reduced in diameter to an outer diameter ⁇ D1s smaller than the flange inner diameter ⁇ D2 of the shell outer ring 11 ( ⁇ D2> ⁇ D1s).
- the relationship between the outer peripheral length of the cage 13, the sum of the circumferential distances L1 of the cuts 15c, and the inner peripheral lengths of the inward flange portions 11b and 11c of the shell outer ring 11 is substantially as follows: Obtain. ⁇ ⁇ ⁇ D1n ⁇ L1 ⁇ (number of cuts) ⁇ ⁇ ⁇ D2
- the movable range that is, the deformation amount of the elastic deformation piece 17a can be arbitrarily set by the axial distance L3 (see FIG. 3) between the pair of elastic deformation pieces 17a and 17a and the circumferential distance L1 of the cut 15c. It becomes.
- the circumferential distance L1 of the cut 15c before elastic deformation is such that the column 16 and the elastic deformation piece 17a before the elastic deformation do not contact each other before the cut 15c disappears. It is set smaller than the sum of the circumferential distances L2 and L2 (L1 ⁇ 2 ⁇ L2).
- the diameter of the cage 13 is reduced until it becomes smaller than the flange inner diameter ⁇ D2 of the shell outer ring 11, and the cage 13 is inserted into the shell outer ring 11. After the insertion, the cage 13 is accommodated in the shell outer ring 11 when the elastic deformation portion 17 is restored.
- the needle 12 is inserted into the pockets 14 and 14 of the cage 13 from the inner diameter side of the cage 13.
- the column portions 16 and 16 partitioning the circumferential sides of the pockets 14 and 14 and the inner diameter side locking projections 16a formed on the side surfaces of the column portions 16 and 16 are elastically deformed. Meanwhile, each needle 12 is pushed into each pocket 14, 14.
- the needle 12 Since the width Wp extending in the circumferential direction of the pocket 14 at the portion removed from the locking protrusion 16a is larger than the outer diameter ⁇ Dk of the needle 12 (Wp> ⁇ Dk), the needle 12 is held in each pocket 14 The needles 12 can roll with a light force in the pockets 14. Further, the distance Wi between the distal end edges of the pair of inner diameter side locking projections 16a, 16a existing in the inner diameter side opening of each pocket 14, 14 is smaller than the outer diameter ⁇ Dk of each needle 12. ( ⁇ Dk ⁇ Wi). Therefore, the needles 12 held in the pockets 14 and 14 are not inadvertently dropped from the pockets 14 and 14.
- the retainer 13 has inner side locking projections 16 a and 16 a at the inner end portions in the diameter direction of the retainer 13 on both circumferential sides of the pillars 16 and 16. It is formed over the entire length of the column parts 16 and 16.
- the retainer 18 used in this assembling method includes outer diameter side locking projections 16b and 16b on the outer end in addition to the inner diameter side locking projections 16a and 16a. It is formed over the entire length of the portions 16 and 16.
- Other configurations are the same as those of the cage 13 described above.
- a plurality of needles 12 and 12 are inserted into the pockets 14 and 14 from the inner diameter side or outer diameter side of the cage 18.
- the column portions 16 and 16 partitioning both sides in the circumferential direction of the pockets 14 and 14 and the inner diameter side locking projections 16a formed on the side surfaces of the column portions 16 and 16,
- Each needle 12 is pushed into each of the pockets 14 and 14 while elastically deforming the radial side locking projection 16b.
- each pocket 14, 14 at the part removed from each locking projection 16 a, 16 b is larger than the outer diameter ⁇ Dk of each needle 12 (Wp> ⁇ Dk)
- the needles 12 can roll with a light force in the pockets 14.
- the distance Wo in the free state between the distal end edges of the radial side locking projections 16b, 16b is smaller than the outer diameter ⁇ Dk of each needle 12 ( ⁇ Dk ⁇ Wi, ⁇ Dk ⁇ Wo). Therefore, the needles 12 held in the pockets 14 and 14 are not inadvertently dropped from the pockets 14 and 14.
- the diameter is reduced in the same manner as the cage 13 described above and incorporated in the shell outer ring 11. Therefore, since the sub-assembly product in which the plurality of needles 12 and 12 are incorporated in the cage 18 can be handled as a unit, the degree of freedom in the assembly process can be increased.
- the cages 13 and 18 are made of resin, and polyamides (nylon resin) such as aromatic polyamide (aromatic PA), polyamide 46, polyamide 6 and polyamide 66, polyphenylene sulfide (PPS), polyether ether ketone.
- Fluorine resins such as (PEEK), polyacetal (POM), and polytetrafluoroethylene (PTFE) can be used.
- PEEK polyethylene
- POM polyacetal
- PTFE polytetrafluoroethylene
- polyamide resin is mixed with glass fiber or carbon fiber in an amount of 5 to 30% by weight, and the flexural modulus is set to 2000 to 5000 MPa. Within this range, the deformable portion can be more suitably deformed and have the necessary rigidity.
- the inner diameter side locking projection 16a and the outer diameter side locking projection 16b are formed over the entire length of each of the column portions 16 and 16, respectively, but only in a range narrower than the total length. It may be provided or may be divided into a plurality of parts.
- the cages 13 and 18 are provided with a plurality of elastic deformation portions 17 that are contracted in the circumferential direction. Since the portion 17 is formed symmetrically with respect to the axial middle portion C, plastic deformation is prevented, it has sufficient strength against axial twisting, and a sufficient amount of deformation is ensured. However, the cages 13 and 18 that can be contracted in the circumferential direction can be provided. Further, the elastic deformation portion 17 allows the movement of the needle 12 to be appropriately allowed, and can prevent fretting.
- the pair of rim portions 15 and 15 are configured by a plurality of arc-shaped portions 15a, and the pair of rim portions 15 and 15 includes a plurality of rim portions 15 and 15 between a plurality of end portions 15b of the arc-shaped portions 15a adjacent in the circumferential direction.
- the cuts 15c are formed in the same phase in the circumferential direction, and the elastic deformation portions 17 extend inward in the axial direction from the respective end portions 15b of the adjacent arc-shaped portions 15a, and the extended portions are arranged in the circumferential direction.
- the elastic deformation portion 17 is formed between the column portions 16 and 16 adjacent in the circumferential direction, and the circumferential distance L1 of the cut 15c is the circumferential direction between the adjacent column portion 16 and the elastic deformation piece 17a. Since the distance L2 is smaller than the sum of the distances L2, the column part 16 and the elastic deformation piece 17a do not contact each other before the cut 15c disappears when contracted in the circumferential direction, and a sufficient amount of deformation can be ensured. .
- the cage and needle are incorporated after both flange portions of the shell outer ring are molded and heat-treated, so that the plating process as in the prior art is unnecessary.
- the cage is not affected by the heat treatment. Therefore, since a resin can be used as the material of the cage, it can be suitably employed as a method for manufacturing a shell-type needle bearing used for the rotation support portion of various mechanical devices.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
- Mounting Of Bearings Or Others (AREA)
Abstract
The present invention is a method for assembling a shell-type needle bearing (10) that does not require a plating step as in conventional techniques by means of assembling a needle (12) and holders (13, 18) after forming and heat-treating both flange sections (11b, 11c) of a shell outer race (11) by using diameter-reducible holders. Also, it is possible to use a resin material as the material for the holders (13, 18) as the holders (13, 18) do not incur the effect of heat resulting from the heat treatment.
Description
本発明は、ニードル軸受の製造方法に関し、特に、各種機械装置の回転支持部に用いられるシェル形ニードル軸受の製造方法に関する。
The present invention relates to a method for manufacturing a needle bearing, and more particularly, to a method for manufacturing a shell-type needle bearing used for a rotation support portion of various mechanical devices.
近年、自動車の自動変速機等においては、ラジアル方向の荷重を受ける部位に、すべり軸受(ブッシュ)の代わりに、同じ断面高さを有するシェル形ニードル軸受が使用されている。図9に示すように、シェル形ニードル軸受100は、内周面に軌道面101aを、両端部に一対のフランジ部101b,101cを有するシェル外輪101と、軌道面101aに沿って転動自在となるようにシェル外輪101内に配置される複数のニードル102と、複数のニードル102を保持するための複数のポケットを有する保持器103と、を備える。
In recent years, in automatic transmissions of automobiles, shell-type needle bearings having the same cross-sectional height are used in place of sliding bearings (bushes) at sites that receive radial loads. As shown in FIG. 9, the shell-type needle bearing 100 can be rolled along a raceway surface 101a, a shell outer ring 101 having a raceway surface 101a on an inner peripheral surface and a pair of flange portions 101b and 101c on both ends. A plurality of needles 102 arranged in the shell outer ring 101 and a holder 103 having a plurality of pockets for holding the plurality of needles 102 are provided.
このようなシェル形ニードル軸受100の従来の製造方法としては、まず、シェル外輪101の成形工程として、通常の冷延鋼板(例えば、SPCC等の低炭素鋼)からカップ状に深絞りされ、底面を打抜き加工されることにより一方のフランジ部101bが形成される。シェル外輪101の軸方向開口側の縁部に銅メッキ等のメッキ処理を施し浸炭又は浸炭窒化処理等の熱処理をおこなう。その後、メッキを剥がしたシェル外輪101に、ニードル102及び保持器103を組み込み、シェル外輪101の軸方向開口側の縁部に曲げ加工を行うことによりフランジ部101cを形成し、シェル型針状ころ軸受100が製造される。
As a conventional manufacturing method of such a shell-type needle bearing 100, first, as a forming process of the shell outer ring 101, a deep cold drawing from a normal cold-rolled steel sheet (for example, a low carbon steel such as SPCC) into a cup shape is performed. One flange portion 101b is formed by punching. A plating process such as copper plating is performed on the edge of the shell outer ring 101 on the axial opening side, and a heat treatment such as carburizing or carbonitriding is performed. Thereafter, the needle 102 and the cage 103 are incorporated into the shell outer ring 101 from which the plating has been removed, and the flange portion 101c is formed by bending the edge of the shell outer ring 101 on the opening side in the axial direction. The bearing 100 is manufactured.
しかしながら、プレス工程の後、メッキ工程、熱処理工程、メッキ剥がし工程、組立て・プレス工程と進める場合、これら各工程を同一ライン上に設定することが困難である。工程数が多く、加工時間が掛かることや、設備にコストが掛かるだけでなく、各工程間の搬送なども考慮しなければならないという問題があった。さらには、メッキ剥がしのためには、種々の化学物質を使用しなければならないという問題があった。
However, when the pressing process is followed by the plating process, the heat treatment process, the plating removal process, and the assembly / pressing process, it is difficult to set these processes on the same line. There are problems in that the number of processes is large, processing time is required, equipment costs are high, and transportation between the processes must be taken into consideration. Furthermore, there has been a problem that various chemical substances must be used for removing the plating.
そこで、メッキ工程を省くため、特許文献1にはフランジ部101cを高周波で加熱しながら曲げ加工を行うホットカールの技術が記載されている。
また、特許文献2には、熱処理を行わずにシェル型ニードル軸受を組立て、最後に、組み上がったシェル型ニードル軸受全体に窒化処理を行う技術が記載されている。 Therefore, in order to omit the plating process, Patent Document 1 describes a hot curl technique in which bending is performed while heating theflange portion 101c at a high frequency.
Patent Document 2 describes a technique in which a shell needle bearing is assembled without performing heat treatment, and finally, the assembled shell needle bearing is entirely nitrided.
また、特許文献2には、熱処理を行わずにシェル型ニードル軸受を組立て、最後に、組み上がったシェル型ニードル軸受全体に窒化処理を行う技術が記載されている。 Therefore, in order to omit the plating process, Patent Document 1 describes a hot curl technique in which bending is performed while heating the
Patent Document 2 describes a technique in which a shell needle bearing is assembled without performing heat treatment, and finally, the assembled shell needle bearing is entirely nitrided.
しかしながら、引用文献1、2の技術では、いずれもシェル外輪101に、構成部品を組み込んだ後に熱処理を施すため、熱に弱い樹脂保持器を使用することが出来なかった。そのため、樹脂保持器を使用する場合、従来技術のようにメッキ工程を含む製造方法を選択せざるを得なかった。
However, in the techniques of the cited references 1 and 2, since the heat treatment is performed after the component parts are incorporated in the shell outer ring 101, it is not possible to use a resin cage that is weak against heat. For this reason, when using a resin cage, a manufacturing method including a plating step as in the prior art has to be selected.
本発明は、上記事情に鑑みてなされたもので、その目的は、メッキ工程を必要としない製造方法で製造可能な、樹脂保持器を用いたシェル型ニードル軸受の製造方法を提供することにある。
This invention is made | formed in view of the said situation, The objective is to provide the manufacturing method of the shell type needle bearing using the resin retainer which can be manufactured with the manufacturing method which does not require a plating process. .
本発明の上記目的は、下記の構成によって達成される。
(1) 内周面に軌道面を、両端部に一対の内向きフランジ部を有するシェル外輪と、
前記シェル外輪の軌道面に沿って転動自在となるように、シェル外輪内に配置される複数のニードルと、
前記複数のニードルを保持するための複数のポケットを有する保持器と、を備えたシェル形ニードル軸受の製造方法であって、
前記保持器は、縮径可能であり、
前記シェル外輪の両フランジ部を成形し、熱処理を施した後で、前記保持器を縮径して前記シェル外輪に挿入した後、前記複数のニードルを前記保持器のポケットに挿入することを特徴とするシェル形ニードル軸受の製造方法。
(2) 内周面に軌道面を、両端部に一対の内向きフランジ部を有するシェル外輪と、
前記シェル外輪の軌道面に沿って転動自在となるように、シェル外輪内に配置される複数のニードルと、
前記複数のニードルを保持するための複数のポケットを有する保持器と、を備えたシェル形ニードル軸受の製造方法であって、
前記保持器は、縮径可能であり、
前記シェル外輪の両フランジ部を成形し、熱処理を施した後で、前記保持器のポケットに前記複数のニードルを組み込んだユニットを、前記保持器を縮径することにより前記シェル外輪に挿入することを特徴とするシェル形ニードル軸受の製造方法。
(3) 前記保持器は、互いに同軸に配置された一対のリム部と、前記一対のリム部を軸方向に連結する複数の柱部と、を備え、
前記一対のリム部は、複数の円弧状部分によってそれぞれ構成され、
円周方向に隣接する前記円弧状部分の各端部間に複数の切れ目が前記各リム部において円周方向に同位相でそれぞれ形成されており、
前記切れ目が形成される円周方向において隣接する前記柱部間に、円周方向に収縮、或いは伸長させる弾性変形部が円周方向に複数設けられ、
前記弾性変形部は、円周方向に隣接する前記円弧状部分の各端部を基端部として、これら各端部からそれぞれ軸方向内側に延出するとともに、該延出した部分を円周方向において連結する一対の弾性変形片を有し、
前記一対の弾性変形片は同一形状を有しており、
前記弾性変形部は軸方向中間部に対して対称に形成されていることを特徴とする(1)または(2)に記載のシェル形ニードル軸受の製造方法。 The above object of the present invention is achieved by the following configurations.
(1) a shell outer ring having a raceway surface on an inner peripheral surface and a pair of inward flange portions on both ends;
A plurality of needles arranged in the shell outer ring so as to be able to roll along the raceway surface of the shell outer ring;
A retainer having a plurality of pockets for holding the plurality of needles, and a manufacturing method of a shell-type needle bearing comprising:
The cage can be reduced in diameter,
After both flange portions of the shell outer ring are molded and heat-treated, the cage is reduced in diameter and inserted into the shell outer ring, and then the plurality of needles are inserted into pockets of the cage. A method for manufacturing a shell needle bearing.
(2) a shell outer ring having a raceway surface on an inner peripheral surface and a pair of inward flange portions on both ends;
A plurality of needles arranged in the shell outer ring so as to be able to roll along the raceway surface of the shell outer ring;
A retainer having a plurality of pockets for holding the plurality of needles, and a manufacturing method of a shell-type needle bearing comprising:
The cage can be reduced in diameter,
After forming both flange portions of the shell outer ring and applying heat treatment, a unit incorporating the plurality of needles in the cage pocket is inserted into the shell outer ring by reducing the diameter of the cage. A method for manufacturing a shell-type needle bearing.
(3) The cage includes a pair of rim portions arranged coaxially with each other, and a plurality of column portions that connect the pair of rim portions in the axial direction,
Each of the pair of rim portions is constituted by a plurality of arc-shaped portions,
A plurality of cuts are formed in the same direction in the circumferential direction in each rim portion between each end of the arc-shaped portion adjacent in the circumferential direction,
A plurality of elastic deformation portions that contract or extend in the circumferential direction are provided in the circumferential direction between the column portions adjacent in the circumferential direction in which the cut is formed,
The elastically deforming portion has each end portion of the arc-shaped portion adjacent in the circumferential direction as a base end portion and extends inward in the axial direction from each end portion, and the extended portion is in the circumferential direction. Having a pair of elastically deforming pieces to be connected at
The pair of elastic deformation pieces have the same shape,
The method for manufacturing a shell-type needle bearing according to (1) or (2), wherein the elastically deforming portion is formed symmetrically with respect to an axially intermediate portion.
(1) 内周面に軌道面を、両端部に一対の内向きフランジ部を有するシェル外輪と、
前記シェル外輪の軌道面に沿って転動自在となるように、シェル外輪内に配置される複数のニードルと、
前記複数のニードルを保持するための複数のポケットを有する保持器と、を備えたシェル形ニードル軸受の製造方法であって、
前記保持器は、縮径可能であり、
前記シェル外輪の両フランジ部を成形し、熱処理を施した後で、前記保持器を縮径して前記シェル外輪に挿入した後、前記複数のニードルを前記保持器のポケットに挿入することを特徴とするシェル形ニードル軸受の製造方法。
(2) 内周面に軌道面を、両端部に一対の内向きフランジ部を有するシェル外輪と、
前記シェル外輪の軌道面に沿って転動自在となるように、シェル外輪内に配置される複数のニードルと、
前記複数のニードルを保持するための複数のポケットを有する保持器と、を備えたシェル形ニードル軸受の製造方法であって、
前記保持器は、縮径可能であり、
前記シェル外輪の両フランジ部を成形し、熱処理を施した後で、前記保持器のポケットに前記複数のニードルを組み込んだユニットを、前記保持器を縮径することにより前記シェル外輪に挿入することを特徴とするシェル形ニードル軸受の製造方法。
(3) 前記保持器は、互いに同軸に配置された一対のリム部と、前記一対のリム部を軸方向に連結する複数の柱部と、を備え、
前記一対のリム部は、複数の円弧状部分によってそれぞれ構成され、
円周方向に隣接する前記円弧状部分の各端部間に複数の切れ目が前記各リム部において円周方向に同位相でそれぞれ形成されており、
前記切れ目が形成される円周方向において隣接する前記柱部間に、円周方向に収縮、或いは伸長させる弾性変形部が円周方向に複数設けられ、
前記弾性変形部は、円周方向に隣接する前記円弧状部分の各端部を基端部として、これら各端部からそれぞれ軸方向内側に延出するとともに、該延出した部分を円周方向において連結する一対の弾性変形片を有し、
前記一対の弾性変形片は同一形状を有しており、
前記弾性変形部は軸方向中間部に対して対称に形成されていることを特徴とする(1)または(2)に記載のシェル形ニードル軸受の製造方法。 The above object of the present invention is achieved by the following configurations.
(1) a shell outer ring having a raceway surface on an inner peripheral surface and a pair of inward flange portions on both ends;
A plurality of needles arranged in the shell outer ring so as to be able to roll along the raceway surface of the shell outer ring;
A retainer having a plurality of pockets for holding the plurality of needles, and a manufacturing method of a shell-type needle bearing comprising:
The cage can be reduced in diameter,
After both flange portions of the shell outer ring are molded and heat-treated, the cage is reduced in diameter and inserted into the shell outer ring, and then the plurality of needles are inserted into pockets of the cage. A method for manufacturing a shell needle bearing.
(2) a shell outer ring having a raceway surface on an inner peripheral surface and a pair of inward flange portions on both ends;
A plurality of needles arranged in the shell outer ring so as to be able to roll along the raceway surface of the shell outer ring;
A retainer having a plurality of pockets for holding the plurality of needles, and a manufacturing method of a shell-type needle bearing comprising:
The cage can be reduced in diameter,
After forming both flange portions of the shell outer ring and applying heat treatment, a unit incorporating the plurality of needles in the cage pocket is inserted into the shell outer ring by reducing the diameter of the cage. A method for manufacturing a shell-type needle bearing.
(3) The cage includes a pair of rim portions arranged coaxially with each other, and a plurality of column portions that connect the pair of rim portions in the axial direction,
Each of the pair of rim portions is constituted by a plurality of arc-shaped portions,
A plurality of cuts are formed in the same direction in the circumferential direction in each rim portion between each end of the arc-shaped portion adjacent in the circumferential direction,
A plurality of elastic deformation portions that contract or extend in the circumferential direction are provided in the circumferential direction between the column portions adjacent in the circumferential direction in which the cut is formed,
The elastically deforming portion has each end portion of the arc-shaped portion adjacent in the circumferential direction as a base end portion and extends inward in the axial direction from each end portion, and the extended portion is in the circumferential direction. Having a pair of elastically deforming pieces to be connected at
The pair of elastic deformation pieces have the same shape,
The method for manufacturing a shell-type needle bearing according to (1) or (2), wherein the elastically deforming portion is formed symmetrically with respect to an axially intermediate portion.
本発明のシェル形ニードル軸受の製造方法によれば、シェル外輪の両フランジ部を成形、熱処理した後に保持器、ニードルを組み込むので、従来技術のようなメッキ工程が不要であり、また、保持器が熱処理による熱影響を受けないので、保持器の材料として樹脂を用いることができる。
According to the method for manufacturing a shell-type needle bearing of the present invention, since the cage and needle are incorporated after both flange portions of the shell outer ring are molded and heat-treated, the plating process as in the prior art is unnecessary, and the cage Is not affected by the heat treatment, so that a resin can be used as a material for the cage.
以下、本発明の各実施形態に係るシェル形ニードル軸受について図面を参照して詳細に説明する。
Hereinafter, shell-type needle bearings according to embodiments of the present invention will be described in detail with reference to the drawings.
シェル形ニードル軸受10は、図1に示すように、内周面に軌道面11aを、両端部に一対の内向きフランジ部11b,11cを有する軌道輪としてのシェル外輪11と、シェル外輪11の軌道面11aに沿って転動自在となるように、シェル外輪11内に配置される複数のニードル12と、複数のニードル12を保持するための複数のポケット14を有する保持器13と、を備え、図示しない軸(或は内輪部材)を回転自在に支持している。
As shown in FIG. 1, the shell needle bearing 10 includes a shell outer ring 11 as a bearing ring having a raceway surface 11 a on an inner peripheral surface and a pair of inward flange portions 11 b and 11 c on both ends, and a shell outer ring 11. A plurality of needles 12 arranged in the shell outer ring 11 and a cage 13 having a plurality of pockets 14 for holding the plurality of needles 12 so as to be freely rollable along the raceway surface 11a. A shaft (or inner ring member) (not shown) is rotatably supported.
シェル外輪11は、冷延鋼板(例えば、SPCC等の低炭素鋼)等に絞り加工等の塑性加工を施すことにより、全体が円筒状の両端部に一対のフランジ部11b,11cが屈曲して形成されている。また、シェル外輪11は、浸炭若しくは浸炭窒化処理による熱処理加工によって硬化されている。
The shell outer ring 11 is formed by subjecting a cold-rolled steel sheet (for example, low carbon steel such as SPCC) or the like to plastic processing such as drawing, so that a pair of flange portions 11b and 11c are bent at both ends of the entire cylindrical shape. Is formed. The shell outer ring 11 is hardened by heat treatment by carburizing or carbonitriding.
シェル外輪11は、ニードル12、保持器13を組み込む前にフランジ部11b,11cが成型され、さらに熱処理で硬化される。そのため、従来のシェル外輪101のフランジ101cの様に、後から曲げ加工しやすい様に肉薄にする必要がないので、フランジ11bと11cは、同じ形状とすることができ、シェル外輪11に方向性をなくす事ができる。また、薄板の塑性加工ではなく、厚板からの切削加工によっての成形も可能である。
The shell outer ring 11 is formed with flange portions 11b and 11c before the needle 12 and the cage 13 are assembled, and is further cured by heat treatment. Therefore, unlike the flange 101c of the conventional shell outer ring 101, the flanges 11b and 11c can be formed in the same shape so that they can be easily bent later. Can be eliminated. Further, it is possible to form by cutting from a thick plate instead of plastic processing of a thin plate.
保持器13は、図2に示すように、互いに同軸に配置された一対のリム部15,15と、一対のリム部15,15を軸方向に連結する複数の柱部16と、を備える。一対のリム部15,15は、複数(本実施形態では、4つ)の円弧状部分15aによってそれぞれ構成される。円周方向に隣接する円弧状部分15aの各端部15b,15b間には、複数の切れ目15cが各リム部15,15において円周方向に同位相でそれぞれ形成されている。なお、切れ目15cの数が多くなると、ニードル12の数が少なくなるので、切れ目15cの数は2~6箇所が好ましい。
As shown in FIG. 2, the retainer 13 includes a pair of rim portions 15 and 15 arranged coaxially with each other, and a plurality of column portions 16 that connect the pair of rim portions 15 and 15 in the axial direction. The pair of rim portions 15 and 15 are respectively configured by a plurality (four in this embodiment) of arc-shaped portions 15a. Between the end portions 15b and 15b of the arc-shaped portion 15a adjacent to each other in the circumferential direction, a plurality of cuts 15c are formed in the rim portions 15 and 15 with the same phase in the circumferential direction. As the number of cuts 15c increases, the number of needles 12 decreases, so the number of cuts 15c is preferably 2-6.
そして、保持器13には、この切れ目15cが形成される円周方向において隣接する柱部16,16間に、保持器13(切れ目15c)を円周方向に収縮させる弾性変形部17が円周方向に複数設けられている。
The cage 13 is provided with an elastic deformation portion 17 that contracts the cage 13 (cut 15c) in the circumferential direction between the column portions 16 and 16 adjacent to each other in the circumferential direction in which the cut 15c is formed. A plurality are provided in the direction.
弾性変形部17を挟まずに円周方向に隣り合う柱部16,16の円周方向両側面と、一対のリム部15,15の互いに対向する内側面と、により四周を囲まれる矩形の空間部分は、それぞれポケット14,14とされている。そして、図3に示すように各柱部16,16の円周方向両側面で、保持器13の直径方向に関する内端部には、内径側係止突部16a,16aを各柱部16,16の全長に亙って形成している。
A rectangular space that is surrounded by four sides by the circumferential side surfaces of the column parts 16 and 16 that are adjacent to each other in the circumferential direction without sandwiching the elastic deformation part 17 and the inner side surfaces of the pair of rim parts 15 and 15 that face each other. The portions are pockets 14 and 14, respectively. And as shown in FIG. 3, the inner diameter side latching protrusions 16a, 16a are provided on the inner end portions in the diameter direction of the cage 13 on both sides in the circumferential direction of the pillars 16, 16, respectively. 16 is formed over the entire length.
弾性変形部17は、円周方向に隣接する円弧状部分15a,15aの各端部15b,15bを基端部として、これら各端部15bからそれぞれ軸方向内側に延出するとともに、該延出した部分を円周方向において連結する一対の弾性変形片17a,17aを有する。一対の弾性変形片17a,17aは、同一形状を有しており、弾性変形部17は保持器13の軸方向中間部Cに対して対称に形成される。
The elastically deformable portion 17 extends inward in the axial direction from each of the end portions 15b with the end portions 15b, 15b of the arc-shaped portions 15a, 15a adjacent in the circumferential direction as base end portions. It has a pair of elastic deformation pieces 17a and 17a which connect the done part in the circumference direction. The pair of elastic deformation pieces 17 a and 17 a have the same shape, and the elastic deformation portion 17 is formed symmetrically with respect to the axial intermediate portion C of the cage 13.
図4に拡大して示すように、弾性変形片17aは、それぞれ曲率半径R1~R3を有する複数の円弧17a1,17a2,17a3で構成されている。ただし、弾性変形片17aは、単一円弧によって構成されてもよい。
As shown in FIG. 4 in an enlarged manner, the elastic deformation piece 17a is composed of a plurality of arcs 17a1, 17a2, 17a3 each having a radius of curvature R1 to R3. However, the elastic deformation piece 17a may be configured by a single arc.
また、弾性変形部17の基端部となる円弧状部分15aの各端部15bの軸方向幅w1は、基端部の強度を考慮すると、円弧状部分15aの軸方向幅w2と同等以上であることが好ましい。また、基端部の軸方向内側面に形成される円弧面の曲率は大きい(曲率半径rは小さい)ほうが好ましい。
Further, the axial width w1 of each end portion 15b of the arcuate portion 15a serving as the base end portion of the elastic deformation portion 17 is equal to or greater than the axial width w2 of the arcuate portion 15a in consideration of the strength of the base end portion. Preferably there is. Further, it is preferable that the curvature of the arc surface formed on the inner side surface in the axial direction of the base end portion is large (the curvature radius r is small).
さらに、図5に示すように、弾性変形片17aの径方向肉厚hは、弾性変形片17aの幅w3よりも厚く設定されており、これにより、矢印に示すような径方向への変形を抑制することができる。
Further, as shown in FIG. 5, the radial thickness h of the elastic deformation piece 17a is set to be thicker than the width w3 of the elastic deformation piece 17a. Can be suppressed.
次に、上記のような構成の保持器13をシェル外輪11に組み込む方法について説明する。
Next, a method for incorporating the cage 13 having the above-described configuration into the shell outer ring 11 will be described.
図6(a)は、弾性変形前の保持器13、及びシェル外輪11の断面図であり、図6(b)は、図6(a)のV方向から見た側面図である。そして、図7(a)は、弾性変形後の保持器13、及びシェル外輪11の断面図であり、図7(b)は、図7(a)のVI方向から見た側面図である。
6 (a) is a cross-sectional view of the cage 13 and the shell outer ring 11 before elastic deformation, and FIG. 6 (b) is a side view seen from the V direction of FIG. 6 (a). 7A is a cross-sectional view of the cage 13 and the shell outer ring 11 after elastic deformation, and FIG. 7B is a side view seen from the VI direction of FIG. 7A.
保持器13の外形φD1nは、シェル外輪11の一対の内向きフランジ部11b,11cの内径φD2(以後、フランジ部内径と呼ぶ。)よりも大径である(φD1n>φD2)。保持器13は、弾性変形部17を変形させることで、切れ目15cの円周方向距離L1(図2参照)を狭め、保持器13を円周方向に収縮させることができる。これにより、図6に示すように、保持器13は、シェル外輪11のフランジ部内径φD2より小さい外径φD1sまで縮径することができる(φD2>φD1s)。ここで、保持器13の外周長さと、切れ目15cの円周方向距離L1の総和と、シェル外輪11の内向きフランジ部11b、11cの内周長さの関係は、ほぼ、次式のようになる。
π・φD1n-L1×(切れ目の数)<π・φD2 The outer diameter φD1n of thecage 13 is larger than the inner diameter φD2 (hereinafter referred to as the flange inner diameter) of the pair of inward flange portions 11b and 11c of the shell outer ring 11 (φD1n> φD2). The cage 13 can deform the elastic deformation portion 17 to narrow the circumferential distance L1 (see FIG. 2) of the cut 15c, and can shrink the cage 13 in the circumferential direction. Thereby, as shown in FIG. 6, the cage 13 can be reduced in diameter to an outer diameter φD1s smaller than the flange inner diameter φD2 of the shell outer ring 11 (φD2> φD1s). Here, the relationship between the outer peripheral length of the cage 13, the sum of the circumferential distances L1 of the cuts 15c, and the inner peripheral lengths of the inward flange portions 11b and 11c of the shell outer ring 11 is substantially as follows: Become.
π · φD1n−L1 × (number of cuts) <π · φD2
π・φD1n-L1×(切れ目の数)<π・φD2 The outer diameter φD1n of the
π · φD1n−L1 × (number of cuts) <π · φD2
なお、一対の弾性変形片17a,17a間の軸方向距離L3(図3参照)と、切れ目15cの円周方向距離L1により、可動範囲、即ち、弾性変形片17aの変形量が任意に設定可能となる。ただし、切れ目15cがなくなる前に柱部16と弾性変形片17aとが接触しないように、弾性変形前の切れ目15cの円周方向距離L1は、隣接する柱部16と弾性変形片17aとの各円周方向距離L2,L2の総和よりも小さく設定されている(L1<2×L2)。
The movable range, that is, the deformation amount of the elastic deformation piece 17a can be arbitrarily set by the axial distance L3 (see FIG. 3) between the pair of elastic deformation pieces 17a and 17a and the circumferential distance L1 of the cut 15c. It becomes. However, the circumferential distance L1 of the cut 15c before elastic deformation is such that the column 16 and the elastic deformation piece 17a before the elastic deformation do not contact each other before the cut 15c disappears. It is set smaller than the sum of the circumferential distances L2 and L2 (L1 <2 × L2).
保持器13の外径がシェル外輪11のフランジ部内径φD2よりも小径になるまで縮径させ、シェル外輪11内へ挿入する。挿入後、保持器13は、弾性変形部17が復元することによりシェル外輪11内に収まる。
The diameter of the cage 13 is reduced until it becomes smaller than the flange inner diameter φD2 of the shell outer ring 11, and the cage 13 is inserted into the shell outer ring 11. After the insertion, the cage 13 is accommodated in the shell outer ring 11 when the elastic deformation portion 17 is restored.
そして、保持器13の各ポケット14,14内にニードル12を、保持器13の内径側から挿入する。この挿入作業の際には、これら各ポケット14,14の円周方向両側を仕切る柱部16,16及びこれら各柱部16,16の側面に形成した内径側係止突部16aを弾性変形させつつ、各ニードル12を各ポケット14,14内に押し込む。
Then, the needle 12 is inserted into the pockets 14 and 14 of the cage 13 from the inner diameter side of the cage 13. In the insertion operation, the column portions 16 and 16 partitioning the circumferential sides of the pockets 14 and 14 and the inner diameter side locking projections 16a formed on the side surfaces of the column portions 16 and 16 are elastically deformed. Meanwhile, each needle 12 is pushed into each pocket 14, 14.
係止突部16aから外れた部分でのポケット14の円周方向に亙る幅Wpは、ニードル12の外径φDkよりも大きい(Wp>φDk)為、各ポケット14内にニードル12を保持した状態でこれら各ニードル12は、各ポケット14内で軽い力で転動自在となる。又、各ポケット14,14の内径側開口部に存在する一対の内径側係止突部16a,16aの先端縁同士の自由状態での間隔Wiは、それぞれ各ニードル12の外径φDkよりも小さい(φDk<Wi)。従って、各ポケット14,14内に保持したニードル12が、これら各ポケット14,14内から不用意に脱落する事はない。
Since the width Wp extending in the circumferential direction of the pocket 14 at the portion removed from the locking protrusion 16a is larger than the outer diameter φDk of the needle 12 (Wp> φDk), the needle 12 is held in each pocket 14 The needles 12 can roll with a light force in the pockets 14. Further, the distance Wi between the distal end edges of the pair of inner diameter side locking projections 16a, 16a existing in the inner diameter side opening of each pocket 14, 14 is smaller than the outer diameter φDk of each needle 12. (ΦDk <Wi). Therefore, the needles 12 held in the pockets 14 and 14 are not inadvertently dropped from the pockets 14 and 14.
次に、シェル形ニードル軸受を組み立てる、別な方法について説明する。この別な方法による組立てに使用する構成部品と、前述の組立てに使用する構成部品とは、保持器18のみが異なる。
Next, another method for assembling the shell type needle bearing will be described. The components used for the assembly by this different method and the components used for the assembly described above differ only in the cage 18.
前述の保持器13には、図3に示すように各柱部16,16の円周方向両側面で、保持器13の直径方向に関する内端部に内径側係止突部16a,16aを各柱部16,16の全長に亙って形成している。一方、図8に示すように、本組立て方法に用いる保持器18は、内径側係止突部16a,16aに加え、外端部に外径側係止突部16b,16bを、それぞれ各柱部16,16の全長に亙って形成している。その他の構成は、前述の保持器13と同じである。
As shown in FIG. 3, the retainer 13 has inner side locking projections 16 a and 16 a at the inner end portions in the diameter direction of the retainer 13 on both circumferential sides of the pillars 16 and 16. It is formed over the entire length of the column parts 16 and 16. On the other hand, as shown in FIG. 8, the retainer 18 used in this assembling method includes outer diameter side locking projections 16b and 16b on the outer end in addition to the inner diameter side locking projections 16a and 16a. It is formed over the entire length of the portions 16 and 16. Other configurations are the same as those of the cage 13 described above.
まず、各ポケット14,14内に複数のニードル12,12を、保持器18の内径側、あるいは外径側から挿入する。この挿入作業の際には、これら各ポケット14,14の円周方向両側を仕切る柱部16,16及びこれら各柱部16,16の側面に形成した内径側係止突部16a、あるいは、外径側係止突部16bを弾性変形させつつ、各ニードル12を各ポケット14,14内に押し込む。各係止突部16a,16bから外れた部分での各ポケット14,14の円周方向に亙る幅Wpは、各ニードル12の外径φDkよりも大きい(Wp>φDk)為、各ポケット14内にニードル12を保持した状態でこれら各ニードル12は、各ポケット14内で軽い力で転動自在となる。又、各ポケット14,14の内径側開口部に存在する一対の内径側係止突部16a,16aの先端縁同士の自由状態での間隔Wi、並びに外径側開口部に存在する一対の外径側係止突部16b,16bの先端縁同士の自由状態での間隔Woは、それぞれ各ニードル12の外径φDkよりも小さい(φDk<Wi、φDk<Wo)。従って、各ポケット14,14内に保持したニードル12が、これら各ポケット14,14内から不用意に脱落する事はない。
First, a plurality of needles 12 and 12 are inserted into the pockets 14 and 14 from the inner diameter side or outer diameter side of the cage 18. At the time of this insertion work, the column portions 16 and 16 partitioning both sides in the circumferential direction of the pockets 14 and 14 and the inner diameter side locking projections 16a formed on the side surfaces of the column portions 16 and 16, Each needle 12 is pushed into each of the pockets 14 and 14 while elastically deforming the radial side locking projection 16b. Since the width Wp extending in the circumferential direction of each pocket 14, 14 at the part removed from each locking projection 16 a, 16 b is larger than the outer diameter φDk of each needle 12 (Wp> φDk), In the state where the needles 12 are held, the needles 12 can roll with a light force in the pockets 14. In addition, the distance Wi between the distal end edges of the pair of inner diameter side locking projections 16a, 16a existing in the inner diameter side opening portions of the pockets 14, 14 in a free state and the pair of outer surfaces existing in the outer diameter side opening portions. The distance Wo in the free state between the distal end edges of the radial side locking projections 16b, 16b is smaller than the outer diameter φDk of each needle 12 (φDk <Wi, φDk <Wo). Therefore, the needles 12 held in the pockets 14 and 14 are not inadvertently dropped from the pockets 14 and 14.
このように、まず、保持器18に複数のニードル12,12を組み込んだ後、前述の保持器13と同様に縮径させてシェル外輪11に組み込む。そのため、保持器18に複数のニードル12,12を組み込んだサブアッシー品をユニットとして扱えるので、組立工程に自由度が増すことができる。
Thus, after the plurality of needles 12 and 12 are first assembled in the cage 18, the diameter is reduced in the same manner as the cage 13 described above and incorporated in the shell outer ring 11. Therefore, since the sub-assembly product in which the plurality of needles 12 and 12 are incorporated in the cage 18 can be handled as a unit, the degree of freedom in the assembly process can be increased.
ここで、保持器13,18は、樹脂製であり、芳香族ポリアミド(芳香族PA)、ポリアミド46、ポリアミド6、ポリアミド66等のポリアミド(ナイロン樹脂)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアセタール(POM)や、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂等が使用できる。また、これらの樹脂にガラス繊維や炭素繊維等の強化剤を混合させたものも好適に使用できる。より好ましくは、ポリアミド樹脂にガラス繊維または炭素繊維を5~30重量%混合し、曲げ弾性率を2000~5000MPaとしたものが良い。この範囲のものであれば、より好適に、変形部に変形能をもたせ、かつ必要な剛性のあるものとすることができる。
Here, the cages 13 and 18 are made of resin, and polyamides (nylon resin) such as aromatic polyamide (aromatic PA), polyamide 46, polyamide 6 and polyamide 66, polyphenylene sulfide (PPS), polyether ether ketone. Fluorine resins such as (PEEK), polyacetal (POM), and polytetrafluoroethylene (PTFE) can be used. Moreover, what mixed reinforcing agents, such as glass fiber and carbon fiber, with these resin can also be used conveniently. More preferably, polyamide resin is mixed with glass fiber or carbon fiber in an amount of 5 to 30% by weight, and the flexural modulus is set to 2000 to 5000 MPa. Within this range, the deformable portion can be more suitably deformed and have the necessary rigidity.
また、本実施形態では、内径側係止突部16a、外径側係止突部16bを、それぞれ各柱部16,16の全長に亙って形成しているが、全長より狭い範囲にのみ設けても良いし、複数に分割して設けても良い。
In the present embodiment, the inner diameter side locking projection 16a and the outer diameter side locking projection 16b are formed over the entire length of each of the column portions 16 and 16, respectively, but only in a range narrower than the total length. It may be provided or may be divided into a plurality of parts.
以上説明したように、本実施形態のシェル形ニードル軸受10によれば、保持器13,18には、円周方向に収縮させる弾性変形部17が円周方向に複数設けられており、弾性変形部17は軸方向中間部Cに対して対称に形成されているので、塑性変形が防止され、また、軸方向のねじれに対して十分な強度を有し、かつ、十分な変形量を確保しつつ円周方向に収縮可能な保持器13,18を設けることができる。また、弾性変形部17により、ニードル12の動きが適度に許容され、フレッチングを防止することも可能である。
As described above, according to the shell-type needle bearing 10 of the present embodiment, the cages 13 and 18 are provided with a plurality of elastic deformation portions 17 that are contracted in the circumferential direction. Since the portion 17 is formed symmetrically with respect to the axial middle portion C, plastic deformation is prevented, it has sufficient strength against axial twisting, and a sufficient amount of deformation is ensured. However, the cages 13 and 18 that can be contracted in the circumferential direction can be provided. Further, the elastic deformation portion 17 allows the movement of the needle 12 to be appropriately allowed, and can prevent fretting.
また、一対のリム部15,15は、複数の円弧状部分15aによって構成され、一対のリム部15,15には、円周方向に隣接する円弧状部分15aの各端部15b間に複数の切れ目15cが円周方向において同位相でそれぞれ形成され、弾性変形部17は、隣接する円弧状部分15aの各端部15bからそれぞれ軸方向内側に延出するとともに、延出した部分を円周方向において連結する一対の弾性変形片17a,17aを有する。これにより、軸方向中間部Cに対して対称な弾性変形部17を形成することができる。
Further, the pair of rim portions 15 and 15 are configured by a plurality of arc-shaped portions 15a, and the pair of rim portions 15 and 15 includes a plurality of rim portions 15 and 15 between a plurality of end portions 15b of the arc-shaped portions 15a adjacent in the circumferential direction. The cuts 15c are formed in the same phase in the circumferential direction, and the elastic deformation portions 17 extend inward in the axial direction from the respective end portions 15b of the adjacent arc-shaped portions 15a, and the extended portions are arranged in the circumferential direction. Has a pair of elastically deformable pieces 17a, 17a connected to each other. Thereby, the elastic deformation part 17 symmetrical with respect to the axial direction intermediate part C can be formed.
さらに、弾性変形部17は、円周方向に隣接する柱部16,16間に形成され、切れ目15cの円周方向距離L1は、隣接する柱部16と弾性変形片17aとの各円周方向距離L2の総和よりも小さいので、円周方向に収縮させた場合に切れ目15cがなくなる前に柱部16と弾性変形片17aとが接触することがなく、十分な変形量を確保することができる。
Further, the elastic deformation portion 17 is formed between the column portions 16 and 16 adjacent in the circumferential direction, and the circumferential distance L1 of the cut 15c is the circumferential direction between the adjacent column portion 16 and the elastic deformation piece 17a. Since the distance L2 is smaller than the sum of the distances L2, the column part 16 and the elastic deformation piece 17a do not contact each other before the cut 15c disappears when contracted in the circumferential direction, and a sufficient amount of deformation can be ensured. .
また、シェル外輪11の両フランジ部11b,11cを成形、熱処理した後に保持器13,18、ニードル12を組み込むので、従来技術のようなメッキ工程が不要であり、また、保持器が熱処理による熱影響を受けないので、保持器13,18の材料として樹脂を用いることができる。
In addition, since the cages 13 and 18 and the needle 12 are incorporated after the flange portions 11b and 11c of the shell outer ring 11 are molded and heat-treated, the plating process as in the prior art is unnecessary, and the cage is heated by heat treatment. Since it is not affected, resin can be used as the material of the cages 13 and 18.
なお、本発明は、上述した各実施形態に限定されるものでなく、適宜、変形、改良等が可能である。
Note that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like can be made as appropriate.
また、本出願は、2012年12月6日出願の日本特許出願2012-267411に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on Japanese Patent Application No. 2012-267411 filed on Dec. 6, 2012, the contents of which are incorporated herein by reference.
以上説明したように、本発明のシェル形ニードル軸受の製造方法によれば、シェル外輪の両フランジ部を成形、熱処理した後に保持器、ニードルを組み込むので、従来技術のようなメッキ工程が不要であり、また、保持器が熱処理による熱影響を受けない。したがって、保持器の材料として樹脂を用いることができるので、各種機械装置の回転支持部に用いられるシェル形ニードル軸受の製造方法として好適に採用することができる。
As described above, according to the manufacturing method of the shell type needle bearing of the present invention, the cage and needle are incorporated after both flange portions of the shell outer ring are molded and heat-treated, so that the plating process as in the prior art is unnecessary. In addition, the cage is not affected by the heat treatment. Therefore, since a resin can be used as the material of the cage, it can be suitably employed as a method for manufacturing a shell-type needle bearing used for the rotation support portion of various mechanical devices.
10 シェル形ニードル軸受
11 シェル外輪
11a 軌道面
11b フランジ部
11c フランジ部
12 ニードル
13 保持器
14 ポケット
15 リム部
15a 円弧状部分
15b 端部
15c 切れ目
16 柱部
16a 内径側係止突部
16b 外径側係止突部
17 弾性変形部
17a 弾性変形片
17a1 円弧
17a2 円弧
17a3 円弧
18 保持器
100 シェル形ニードル軸受
101 シェル外輪
101a 軌道面
101b フランジ部
101c フランジ部
102 ニードル
103 保持器 DESCRIPTION OFSYMBOLS 10 Shell type needle bearing 11 Shell outer ring | wheel 11a Raceway surface 11b Flange part 11c Flange part 12 Needle 13 Cage 14 Pocket 15 Rim part 15a Arc-shaped part 15b End part 15c Break 16 Column part 16a Inner diameter side locking protrusion 16b Outer diameter side Locking projection 17 Elastic deformation part 17a Elastic deformation piece 17a1 Arc 17a2 Arc 17a3 Arc 18 Cage 100 Shell-type needle bearing 101 Shell outer ring 101a Track surface 101b Flange part 101c Flange part 102 Needle 103 Cage
11 シェル外輪
11a 軌道面
11b フランジ部
11c フランジ部
12 ニードル
13 保持器
14 ポケット
15 リム部
15a 円弧状部分
15b 端部
15c 切れ目
16 柱部
16a 内径側係止突部
16b 外径側係止突部
17 弾性変形部
17a 弾性変形片
17a1 円弧
17a2 円弧
17a3 円弧
18 保持器
100 シェル形ニードル軸受
101 シェル外輪
101a 軌道面
101b フランジ部
101c フランジ部
102 ニードル
103 保持器 DESCRIPTION OF
Claims (3)
- 内周面に軌道面を、両端部に一対の内向きフランジ部を有するシェル外輪と、
前記シェル外輪の軌道面に沿って転動自在となるように、シェル外輪内に配置される複数のニードルと、
前記複数のニードルを保持するための複数のポケットを有する保持器と、を備えたシェル形ニードル軸受の製造方法であって、
前記保持器は、縮径可能であり、
前記シェル外輪の両フランジ部を成形し、熱処理を施した後で、前記保持器を縮径して前記シェル外輪に挿入した後、前記複数のニードルを前記保持器のポケットに挿入することを特徴とするシェル形ニードル軸受の製造方法。 A shell outer ring having a raceway surface on the inner peripheral surface and a pair of inward flange portions on both ends;
A plurality of needles arranged in the shell outer ring so as to be able to roll along the raceway surface of the shell outer ring;
A retainer having a plurality of pockets for holding the plurality of needles, and a manufacturing method of a shell-type needle bearing comprising:
The cage can be reduced in diameter,
After both flange portions of the shell outer ring are molded and heat-treated, the cage is reduced in diameter and inserted into the shell outer ring, and then the plurality of needles are inserted into pockets of the cage. A method for manufacturing a shell needle bearing. - 内周面に軌道面を、両端部に一対の内向きフランジ部を有するシェル外輪と、
前記シェル外輪の軌道面に沿って転動自在となるように、シェル外輪内に配置される複数のニードルと、
前記複数のニードルを保持するための複数のポケットを有する保持器と、を備えたシェル形ニードル軸受の製造方法であって、
前記保持器は、縮径可能であり、
前記シェル外輪の両フランジ部を成形し、熱処理を施した後で、前記保持器のポケットに前記複数のニードルを組み込んだユニットを、前記保持器を縮径することにより前記シェル外輪に挿入することを特徴とするシェル形ニードル軸受の製造方法。 A shell outer ring having a raceway surface on the inner peripheral surface and a pair of inward flange portions on both ends;
A plurality of needles arranged in the shell outer ring so as to be able to roll along the raceway surface of the shell outer ring;
A retainer having a plurality of pockets for holding the plurality of needles, and a manufacturing method of a shell-type needle bearing comprising:
The cage can be reduced in diameter,
After forming both flange portions of the shell outer ring and performing heat treatment, a unit incorporating the plurality of needles in the pocket of the cage is inserted into the shell outer ring by reducing the diameter of the cage. A method for manufacturing a shell needle bearing. - 前記保持器は、互いに同軸に配置された一対のリム部と、前記一対のリム部を軸方向に連結する複数の柱部と、を備え、
前記一対のリム部は、複数の円弧状部分によってそれぞれ構成され、
円周方向に隣接する前記円弧状部分の各端部間に複数の切れ目が前記各リム部において円周方向に同位相でそれぞれ形成されており、
前記切れ目が形成される円周方向において隣接する前記柱部間に、円周方向に収縮、或いは伸長させる弾性変形部が円周方向に複数設けられ、
前記弾性変形部は、円周方向に隣接する前記円弧状部分の各端部を基端部として、これら各端部からそれぞれ軸方向内側に延出するとともに、該延出した部分を円周方向において連結する一対の弾性変形片を有し、
前記一対の弾性変形片は同一形状を有しており、
前記弾性変形部は軸方向中間部に対して対称に形成されていることを特徴とする請求項1または2に記載のシェル形ニードル軸受の製造方法。 The cage includes a pair of rim portions arranged coaxially with each other, and a plurality of column portions that connect the pair of rim portions in the axial direction,
Each of the pair of rim portions is constituted by a plurality of arc-shaped portions,
A plurality of cuts are formed in the same direction in the circumferential direction in each rim portion between the end portions of the arc-shaped portions adjacent in the circumferential direction,
A plurality of elastic deformation portions that contract or extend in the circumferential direction are provided in the circumferential direction between the column portions adjacent in the circumferential direction in which the cut is formed,
The elastically deforming portion has each end portion of the arc-shaped portion adjacent in the circumferential direction as a base end portion and extends inward in the axial direction from each end portion, and the extended portion is in the circumferential direction. Having a pair of elastically deforming pieces to be connected at
The pair of elastic deformation pieces have the same shape,
The method for manufacturing a shell-type needle bearing according to claim 1 or 2, wherein the elastically deforming portion is formed symmetrically with respect to the axially intermediate portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012267411A JP2016029286A (en) | 2012-12-06 | 2012-12-06 | Method for assembling shell type needle bearing |
JP2012-267411 | 2012-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014088060A1 true WO2014088060A1 (en) | 2014-06-12 |
Family
ID=50883472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/082679 WO2014088060A1 (en) | 2012-12-06 | 2013-12-05 | Method for producing shell-type needle bearing |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016029286A (en) |
WO (1) | WO2014088060A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270853A (en) * | 2006-03-30 | 2007-10-18 | Ntn Corp | Roller bearing for hydraulic pressure pump and method for assemblying the same |
WO2011020657A1 (en) * | 2009-08-20 | 2011-02-24 | Schaeffler Technologies Gmbh & Co. Kg | Rolling element cage |
-
2012
- 2012-12-06 JP JP2012267411A patent/JP2016029286A/en active Pending
-
2013
- 2013-12-05 WO PCT/JP2013/082679 patent/WO2014088060A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270853A (en) * | 2006-03-30 | 2007-10-18 | Ntn Corp | Roller bearing for hydraulic pressure pump and method for assemblying the same |
WO2011020657A1 (en) * | 2009-08-20 | 2011-02-24 | Schaeffler Technologies Gmbh & Co. Kg | Rolling element cage |
Also Published As
Publication number | Publication date |
---|---|
JP2016029286A (en) | 2016-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5776547B2 (en) | Needle bearing | |
JP6041055B2 (en) | Manufacturing method of shell-type needle bearing and manufacturing jig used for manufacturing the same | |
JP2009036327A (en) | Tapered roller bearing | |
US20160230809A1 (en) | Tiered axial bearing with s-shaped intermediate washer | |
EP2710274A1 (en) | A cage for a toroidal roller bearing | |
EP3073137A1 (en) | Needle roller bearing with double row of retainers | |
JP2009250412A (en) | Cylindrical roller bearing | |
US9644677B2 (en) | Preliminary retainer for radial needle bearing | |
WO2014088060A1 (en) | Method for producing shell-type needle bearing | |
JP2008138842A (en) | Tandem type double row angular contact ball bearing | |
JP5668515B2 (en) | Shell needle bearing | |
WO2014088059A1 (en) | Ball bearing cage, and cage and roller | |
JP2009079680A (en) | Tandem type double-row angular ball bearing and differential device | |
JP2007270853A (en) | Roller bearing for hydraulic pressure pump and method for assemblying the same | |
JP2014206202A (en) | Shell-type needle bearing | |
JP2010196726A (en) | Shell-shaped needle bearing | |
US20150377291A1 (en) | Cage part for a rolling bearing cage | |
JP2008095876A (en) | Thrust roller bearing and its manufacturing method | |
JP6557950B2 (en) | Solid needle bearing | |
JP7472544B2 (en) | Cylindrical roller bearing with outer ring | |
JP2008281016A (en) | Thrust roller bearing and its manufacturing method | |
CN109844338B (en) | Bearing assembly and bearing cage | |
JP2017223305A (en) | Thrust roller bearing and thrust roller bearing holder | |
JP2008128448A (en) | Tandem double-row angular ball bearing | |
JP2005106252A (en) | Roller bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13859673 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13859673 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |