WO2014088047A1 - Amine derivative, organic light-emitting material, and organic electroluminescence element using same - Google Patents

Amine derivative, organic light-emitting material, and organic electroluminescence element using same Download PDF

Info

Publication number
WO2014088047A1
WO2014088047A1 PCT/JP2013/082647 JP2013082647W WO2014088047A1 WO 2014088047 A1 WO2014088047 A1 WO 2014088047A1 JP 2013082647 W JP2013082647 W JP 2013082647W WO 2014088047 A1 WO2014088047 A1 WO 2014088047A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
amine derivative
unsubstituted
general formula
Prior art date
Application number
PCT/JP2013/082647
Other languages
French (fr)
Japanese (ja)
Inventor
純太 渕脇
裕美 大山
康生 宮田
直也 坂本
雅嗣 上野
高田 一範
Original Assignee
三星ディスプレイ株式▲会▼社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013247909A external-priority patent/JP6307687B2/en
Application filed by 三星ディスプレイ株式▲会▼社 filed Critical 三星ディスプレイ株式▲会▼社
Priority to KR1020157002270A priority Critical patent/KR20150090021A/en
Priority to KR1020177018061A priority patent/KR20170081718A/en
Publication of WO2014088047A1 publication Critical patent/WO2014088047A1/en
Priority to US14/731,180 priority patent/US9780317B2/en
Priority to US15/716,613 priority patent/US10629830B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to a novel amine derivative suitably used as an organic light-emitting material, particularly an organic light-emitting material such as a hole transport material, and an organic electroluminescence device using the same.
  • an organic electroluminescent display device displays a light emitting material containing an organic compound in a light emitting layer by emitting light and recombining holes and electrons injected from an anode and a cathode in the light emitting layer. This is a so-called self-luminous display device.
  • organic electroluminescent elements which are composed of a plurality of layers having different characteristics, such as a light emitting layer and a layer for transporting carriers (holes, electrons) to the light emitting layer.
  • the hole transport layer is required to have excellent hole transport ability and carrier resistance. From such a viewpoint, various hole transport materials have been proposed.
  • Patent Document 1 and Patent Document 6 Various materials such as aromatic amine compounds are known as materials used for each layer of the organic electroluminescence element.
  • a carbazole derivative is proposed as a hole transport material or a hole injection material.
  • an amine compound having a terphenyl group is proposed as a hole transport material and a host material in a light emitting layer.
  • an amine compound having a fluorenyl group is proposed as a hole transport material or a hole injection material.
  • Patent Document 4 an amine derivative having a dibenzofuryl group is proposed as a hole transport material or a host material of a light emitting layer.
  • Patent Document 5 an amine derivative having a silyl group is proposed as a hole transport material.
  • Patent Document 7 and Patent Document 8 carbazole derivatives substituted with a condensed ring are proposed.
  • a triarylamine derivative is proposed as a light emitting layer material or a hole injecting and transporting material.
  • Patent Document 10 a tri (p-terphenyl-4-yl) amine compound is proposed as a hole transport material.
  • Patent Document 11 a diamine compound is proposed as a hole transport material.
  • Patent Document 12 and Patent Document 13 an amine compound having a silyl group is proposed as a light emitting layer material.
  • Patent Document 14 an amine compound having a silyl group is proposed as an electron blocking layer material or a light emitting layer material.
  • organic electroluminescence elements using these materials also have a sufficient light emission lifetime. At present, the organic electroluminescence elements can be driven with higher efficiency and lower voltage and have a longer light emission life. Is desired.
  • the organic light emitting material is required to have a long lifetime.
  • the device using the compound proposed so far in the hole injection layer or the hole transport layer has not been sufficiently resistant to electrons, an improvement in device lifetime has been demanded.
  • the present invention provides an organic electroluminescence device having an improved device lifetime by suppressing a deterioration mechanism of the device caused by electrons entering the hole transport layer, and an organic light emitting device that realizes the organic electroluminescence device It is an object to provide materials.
  • An amine derivative according to an embodiment of the present invention is represented by the following general formula (1).
  • Ar 1 , Ar 2 , and Ar 3 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and Ar 1 , Ar 2 , and Ar 3 At least one of them is substituted with a substituted or unsubstituted silyl group.
  • L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • the amine derivative is an aryl group in which Ar 1 in the general formula (1) is substituted with a silyl group exhibiting strong electron resistance. Therefore, the electron resistance is improved, and the organic electroluminescent element is improved. Improvement of luminous efficiency and long life can be realized.
  • At least one of Ar 1 , Ar 2 , and Ar 3 may be a substituted or unsubstituted heteroaryl group.
  • Ar 1 and Ar 2 may each independently be a substituted or unsubstituted aryl group.
  • Ar 1 and Ar 2 are each independently an aryl group having 6 to 18 ring carbon atoms, and Ar 3 is substituted or unsubstituted. It may be a dibenzoheteroyl group.
  • the amine derivative according to one embodiment of the present invention is an aryl derivative in which in the general formula (1), a silyl group that substitutes at least one of Ar 1 , Ar 2 , and Ar 3 is substituted with the silyl group.
  • the group may be a triarylsilyl group having 6 to 18 ring carbon atoms, or a trialkylsilyl group having 1 to 6 carbon atoms in the alkyl group substituted by the silyl group.
  • Ar 1 and Ar 2 may each be substituted with one silyl group.
  • Ar 1 , Ar 2 , and Ar 3 in the general formula (1) may be substituted with one silyl group.
  • L may be a single bond or an arylene group having 6 to 14 ring carbon atoms.
  • Ar 3 in the general formula (1) may be a substituted or unsubstituted dibenzofuryl group.
  • the introduction of a dibenzofuryl group further improves the electron resistance and increases the glass transition temperature. For this reason, the improvement of the luminous efficiency of an organic electroluminescent element, low voltage, and lifetime improvement are realizable.
  • L in the general formula (1) may not include a single bond.
  • L is a phenylene group, and a dibenzofuryl group that is Ar 3 may be bonded to L at the 3-position.
  • the hole transportability is improved, whereby the light emission efficiency of the organic electroluminescence device can be improved, the voltage can be lowered, and the life can be extended.
  • the amine derivative according to one embodiment of the present invention represented by the general formula (1) may be a compound represented by the following general formula (2).
  • An organic electroluminescence device includes any one of the above-described amine derivatives in a light emitting layer.
  • an organic electroluminescence device that achieves improved luminous efficiency, lower voltage, and longer life is provided.
  • An organic electroluminescence device includes any one of the above-described amine derivatives in one of the laminated films between the light emitting layer and the anode.
  • an organic electroluminescence device that achieves improved luminous efficiency, lower voltage, and longer life is provided.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, At least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted dibenzofuryl group, and L may be a single bond. .
  • the dibenzofuryl group exhibits strong electron resistance and high planarity, and thus exhibits a high glass transition point. For this reason, it is possible to improve the light emission efficiency of the organic electroluminescence element, and to realize a lower driving voltage and a longer life. Moreover, when producing an organic electroluminescent element, improvement of film forming property can be expected.
  • the dibenzofuryl group may be bonded to the L at the 3-position.
  • the dibenzofuryl group is bonded to the L at the 3-position, that is, bonded to the nitrogen atom (N) of the amine site, thereby expanding the ⁇ -electron conjugated system of the entire molecule. Therefore, improvement in hole transportability is expected, and further improvement in light emission efficiency and longer life of the organic electroluminescence element can be realized.
  • An organic electroluminescence device includes the amine derivative in a light emitting layer.
  • an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
  • the organic electroluminescence device includes the amine derivative in one of the laminated films between the light emitting layer and the anode.
  • an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and Ar At least one of 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted fluorenyl group, L is a substituted or unsubstituted arylene group, or substituted or unsubstituted It may be an unsubstituted heteroarylene group.
  • a conjugated group of ⁇ electrons is expanded by bonding a fluorenyl group to an amine moiety via L as a linking group, so that hole transportability and molecular stability are improved.
  • L a linking group
  • the substituted or unsubstituted arylene group or the substituted or unsubstituted heteroarylene group as the linking group L is planarized, whereby the hole transport property of the amine derivative is improved. Thereby, the improvement of the luminous efficiency and lifetime improvement of an organic electroluminescent element are realizable.
  • An organic electroluminescence device includes the amine derivative in a light emitting layer.
  • an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
  • the organic electroluminescence device includes the amine derivative in one of the laminated films between the light emitting layer and the anode.
  • an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
  • An amine derivative according to an embodiment of the present invention is represented by the following general formula (3), wherein Ar 3 is a substituted or unsubstituted fluorenyl group and L is a single bond in the general formula (1). It may be.
  • the hole transport property is improved, and the light emission efficiency of the organic electroluminescence device can be improved and the lifetime can be increased.
  • the substituents of the fluorenyl group are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or It may be a substituted or unsubstituted heteroaryl group.
  • the fluorenyl group may be bonded to L at the 2-position.
  • the fluorenyl group when the fluorenyl group is bonded to the nitrogen atom (N) of the amine moiety at the 2-position, the conjugated system of ⁇ electrons of the whole molecule is expanded, and the hole transport property is improved and Since the stability is improved, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
  • Ar 1 and Ar 2 may each independently be a substituted or unsubstituted aryl group.
  • Ar 1 may be a substituted or unsubstituted aryl group
  • Ar 2 may be a substituted or unsubstituted dibenzoheteroyl group.
  • the amine derivative according to one embodiment of the present invention is a ring-forming carbon of an aryl group in which at least one of Ar 1 and Ar 2 in General Formula (3) is substituted with the silyl group. It may be a triarylsilyl group having 6 to 18 carbon atoms, or a trialkylsilyl group having 1 to 6 carbon atoms in each alkyl group substituted by the silyl group.
  • An organic electroluminescent element material according to an embodiment of the present invention contains the amine derivative.
  • the organic electroluminescent element material according to an embodiment of the present invention may be a hole transport material.
  • An organic electroluminescence device includes a light emitting layer and a hole transport layer disposed between a cathode and an anode, and the hole transport layer includes the amine derivative.
  • an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and Ar At least one of 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, L is a substituted or unsubstituted arylene group, or substituted or unsubstituted It may be an unsubstituted heteroarylene group.
  • the amine derivative according to one embodiment of the present invention has improved hole transportability by introducing a carbazolyl group, and the amine derivative is substituted via a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • the level of HOMO is adjusted, and it is possible to improve the light emission efficiency and extend the lifetime of the organic electroluminescence element.
  • the substituted or unsubstituted carbazolyl group may be bonded to L at the 2-position or 3-position.
  • the carbazolyl group is bonded to L at the 2-position or 3-position, thereby expanding the ⁇ -electron conjugated system of the entire molecule, improving hole transportability and stability of the molecule.
  • L the carbazolyl group
  • An organic electroluminescence device includes the amine derivative in a light emitting layer.
  • an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
  • the organic electroluminescence device includes the amine derivative in one of the laminated films between the light emitting layer and the anode.
  • an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, At least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, L is a substituted or unsubstituted arylene group, or substituted Alternatively, it is an unsubstituted heteroarylene group and is represented by the following general formula (4).
  • R 1 to R 8 are a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • the hole transportability is improved by introducing a carbazolyl group, and the carbazolyl group is bonded to the amine moiety via the linking group L, whereby the HOMO level is adjusted.
  • the HOMO level is adjusted.
  • R 1 to R 8 may be bonded to each other to form a saturated or unsaturated ring.
  • L may be a phenylene group, a biphenylene group or a fluorenylene group.
  • the linking group L is a phenylene group, a biphenylene group, or a fluorenylene group, so that a conjugated system of ⁇ electrons in the whole molecule is expanded. It is possible to improve the emission efficiency and extend the life of the organic electroluminescence element.
  • Ar 1 and Ar 2 in the general formula (4) are aryl groups having 6 to 12 ring carbon atoms.
  • An organic electroluminescence device includes the amine derivative in a light emitting layer.
  • an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
  • the organic electroluminescence device includes the amine derivative in one of the laminated films between the light emitting layer and the anode.
  • an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
  • Ar 1 is an aryl group represented by the following General Formula (5) substituted with a silyl group
  • Ar 2 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • Ar 3 is an aryl group represented by the following general formula (6)
  • L is an arylene group represented by the following general formula (7),
  • o is an integer that satisfies 0 ⁇ o ⁇ 2
  • R 11 , R 12 , and R 13 are each independently an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted ring formation.
  • each R 9 is independently a hydrogen atom, a halogen atom, or a carbon number of 1 or more.
  • An alkyl group having 15 or less, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, m is an integer satisfying 0 ⁇ m ⁇ 5, and in the general formula (7), each R 10 is independent.
  • the amine derivative according to one embodiment of the present invention is an aryl group in which Ar 1 in the general formula (1) is substituted with a silyl group exhibiting strong electron resistance, so that the electron resistance is improved.
  • Ar 1 in the general formula (1) having an arylene group in which n is 2 or more spreads ⁇ electrons and exhibits good hole transport properties. Therefore, the amine derivative according to an embodiment of the present invention can improve the light emission efficiency and extend the life of the organic electroluminescence element.
  • the amine derivative by one Embodiment of this invention has an arylene group whose n is 2 or more in General formula (7), glass transition temperature (Tg) rises and film forming property improves.
  • the glass transition temperature of the amine derivative is preferably 120 ° C. or higher for production.
  • R 11 , R 12 and R 13 may each be a phenyl group.
  • o may be 0 or 1.
  • o in the general formula (5) when o in the general formula (5) is 0 or 1, the ability to prevent the penetration of electrons into the hole transport layer is increased. Deterioration can be suppressed, and the lifetime of the organic electroluminescence element can be extended.
  • n may be 2.
  • n in the general formula (7) is 2, the electron resistance of the amine derivative can be further improved.
  • the material for an organic electroluminescence device contains any of the amine derivatives described above.
  • an organic electroluminescent element material having strong electron resistance and good hole transportability.
  • An organic electroluminescent device includes the organic electroluminescent device material in any one of laminated films disposed between a light emitting layer and an anode.
  • an organic electroluminescence element with improved luminous efficiency and a long lifetime is provided.
  • an organic electroluminescent element with improved luminous efficiency and improved element lifetime, and an organic electroluminescent element material that makes it possible to realize it.
  • an amine derivative having a silyl group is used as a material for a hole transport layer in an organic electroluminescence device, and that the lifetime of the organic electroluminescence device can be extended. It was confirmed.
  • the amine derivative having a silyl group conceived by the present inventors will be described.
  • the organic electroluminescent material of the present invention and the organic electroluminescent element using the same can be implemented in many different modes, and should be interpreted as being limited to the description of the embodiments described below. is not.
  • the organic electroluminescent material according to the present invention is an amine derivative having a silyl group represented by the following general formula (1).
  • Ar 1 , Ar 2 , and Ar 3 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and the Ar 1 , Ar 2 , and Ar At least one of 3 is substituted with a substituted or unsubstituted silyl group.
  • L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • the aryl group and heteroaryl group of the “substituted or unsubstituted aryl group” or “substituted or unsubstituted heteroaryl group” of Ar 1 , Ar 2 , and Ar 3 include phenyl group, naphthyl group, anthracenyl group, phenanthryl Group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, biphenylene group, pyrenyl group, benzothiazolyl group, thiophenyl group, thienothiophenyl group, thienothienothiophenyl group, benzothiophenyl group, dibenzothiophenyl group, dibenzofuryl Group, N-arylcarbazolyl group, N-heteroarylcarbazolyl group, N-alkylcarbazolyl group, phenoxazyl group, phenothiazyl group, pyri
  • At least one of the aryl groups and heteroaryl groups of Ar 1 , Ar 2 , and Ar 3 is substituted with a silyl group.
  • a silyl group it is preferably substituted by one to at least one of Ar 1 and Ar 2, in particular, Ar 1, Ar 2, and be substituted by one to at least one of Ar 3 Further preferred.
  • Ar 1 , Ar 2 , and Ar 3 is a substituted or unsubstituted heteroaryl group, and more preferably a substituted or unsubstituted carbazolyl group, dibenzothiophenyl group, dibenzofuryl group, etc. Dibenzoheteroyl group.
  • Ar 3 is preferably a substituted or unsubstituted heteroaryl group, and Ar 3 is particularly preferably a dibenzoheteroyl group.
  • Ar 1 and Ar 2 are preferably substituted or unsubstituted aryl groups, and particularly preferably Ar 3 is a dibenzoheteroyl group, and Ar 1 And Ar 2 is an aryl group having 6 to 18 ring carbon atoms.
  • the “substituted or unsubstituted arylene group” or “substituted or unsubstituted heteroarylene group” for L is the “substituted or unsubstituted aryl group” or “substituted” mentioned in Ar 1 , Ar 2 , and Ar 3. Or the thing similar to the aryl group and heteroaryl group of "an unsubstituted heteroaryl group” is mentioned.
  • the arylene group and heteroarylene group of the “substituted or unsubstituted arylene group” or “substituted or unsubstituted heteroarylene group” of L include a phenylene group, a naphthylene group, a biphenylylene group, a thienothiophenylene group, and a pyridylene group. preferable. In particular, an arylene group having 6 to 14 ring carbon atoms is preferable, and a phenylene group and a biphenylylene group are more preferable.
  • L being a “single bond” means that in the amine derivative having a silyl group represented by the general formula (1) of the present invention, the nitrogen atom (N) at the amine site and Ar 3 are directly bonded. Represents the state.
  • Examples of the substituent substituted on the aryl group or heteroaryl group of Ar 1 , Ar 2 , and Ar 3 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group.
  • Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group of Ar 1 , Ar 2 , and Ar 3 described above.
  • the alkyl group of the substituent substituted with the aryl group or heteroaryl group of Ar 1 , Ar 2 , and Ar 3 is not particularly limited, but a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, Examples include isobutyl group, t-butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, cycloheptyl group, octyl group, nonyl group, decyl group, etc. it can.
  • the alkoxy group of the substituent of the aryl group or heteroaryl group of Ar 1 , Ar 2 , and Ar 3 is not particularly limited, but is a methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group T-butoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7 -A dimethyloctyloxy group etc. can be illustrated.
  • Examples of the substituent for the arylene group or heteroarylene group of L include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples are the same as the alkyl group, alkoxy group, aryl group and heteroaryl group described as the substituents substituted on the aryl group or heteroaryl group of Ar 1 , Ar 2 and Ar 3 .
  • Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 , Ar 2 , and Ar 3 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples are the same as the alkyl group, alkoxy group, aryl group and heteroaryl group mentioned as the substituents substituted on the aryl group or heteroaryl group of Ar 1 , Ar 2 , and Ar 3. Group and aryl group are preferable, and methyl group and phenyl group are particularly preferable.
  • the silyl group substituted with at least one of Ar 1 , Ar 2 , and Ar 3 is a trialkylsilyl group in which the alkyl group substituted with the silyl group has 1 to 6 carbon atoms, or the silyl group It is preferable that the aryl group to be substituted is a triarylsilyl group having 6 to 18 ring carbon atoms.
  • Examples of the amine derivative having a silyl group of the present invention represented by the formula (1) include compounds exemplified below, but are not limited thereto.
  • the above-mentioned compounds 1, 2, 3, 4, 5, 6, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38, 40, 42, 44, 45, 46, 49, 50, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 74, 77, 79, 85, 87, 88, 89, 92, 96, 98, 101, 102, 107, and 110 are more preferable.
  • the amine derivative having a silyl group of the present invention can be used as a material for an organic electroluminescence device.
  • the amine derivative having a silyl group of the present invention represented by the general formula (1) is a substituted or unsubstituted group of Ar 1 , Ar 2 , and Ar 3 bonded to the nitrogen atom (N) or linker (L) of the amine.
  • At least one of the aryl group and the substituted or unsubstituted heteroaryl group is substituted with a substituted or unsubstituted silyl group exhibiting strong electron resistance.
  • the amine derivative having a silyl group of the present invention is stable with respect to electrons, and can be preferably used as a material for an organic electroluminescence device, particularly as a hole transport layer material adjacent to a light emitting layer.
  • the amine derivative having a silyl group of the present invention as a hole transport layer material, the electron transport resistance of the hole transport layer can be improved, and a hole transport material caused by electrons entering the hole transport layer It is possible to suppress the deterioration of the organic electroluminescence element and extend the life of the organic electroluminescence element.
  • the use of the amine derivative having a silyl group of the present invention is not limited to the hole transport material of the organic electroluminescence element.
  • it can be preferably used for the material of the hole injection layer.
  • an amine derivative having a silyl group is used as the material for the hole injection layer, the deterioration of the hole injection layer caused by electrons can be suppressed. Thus, it is possible to realize a long life of the organic electroluminescence element.
  • Organic electroluminescence element may have a structure as shown in FIG. 1, for example, but is not limited thereto.
  • An organic electroluminescent device 100 shown in FIG. 1 is a schematic cross-sectional view of an embodiment in which the amine derivative of the present invention is used as a material for an organic electroluminescent device, and is disposed on a glass substrate 102 and a glass substrate 102.
  • the hole injection layer 106 disposed on the anode 104, the hole transport layer 108 disposed on the hole injection layer 106, the light emitting layer 110 disposed on the hole transport layer 108, and the light emitting layer 110 And an electron transport layer 112 disposed on the electron transport layer 112 and a cathode 114 disposed on the electron transport layer 112.
  • the electron transport layer 112 also functions as an electron injection layer.
  • the anode 104 may be formed using indium tin oxide (ITO), indium zinc oxide (IZO), or the like.
  • the hole-injection layer 106 includes 4,4 ', 4 "-Tris (N-1-naphtyl-N-phenylamino) triphenylamine (1-TNATA), or 4,4', 4 ''-tris (N- (2 -naphthyl) -N-phenylamino) -triphenylamine (2-TNATA), 4,4-Bis (N, N-di (3-tolyl) amino) -3,3-dimethylbiphenyl (HMTPD), etc.
  • the compounds shown below may be included.
  • the hole transport layer 108 can be formed using the amine derivative having a silyl group of the present invention represented by the general formula (1).
  • the light emitting layer 110 may contain, for example, the following compound as a host material.
  • the compound contained as a host material in the light emitting layer 110 is not limited to the above-mentioned compound, and a known material may be used as the host material.
  • the light emitting layer 110 may include, for example, the following compounds as dopants.
  • the compound doped as a dopant in the light emitting layer 110 is not limited to the above-mentioned compound, and a known material may be used as a dopant according to a desired color region.
  • the dopant is preferably doped by 0.1% to 50% to the material constituting the light emitting layer 110.
  • the electron transport layer 112 may include, for example, Tris (8-hydroxyquinolinato) aluminum (Alq3). Moreover, you may include the compound shown below.
  • the cathode 114 is formed of a metal such as Al, Ag, or Ca, or a transparent material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • a metal such as Al, Ag, or Ca
  • a transparent material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the organic electroluminescent element 100 may include an electron injection layer between the cathode 114 and the electron transport 112.
  • the electron injection layer may include, for example, lithium fluoride (LiF), lithium 8-quinolinate, and the like.
  • the amine derivative having a silyl group of the present invention represented by the general formula (1) can be used as a material for a hole transport layer of an organic electroluminescence element.
  • the use of the amine derivative having a silyl group of the present invention is not limited to the hole transport material of the organic electroluminescence device, and may be included in the hole injection layer as a hole injection material.
  • the amine derivative of the present invention for at least one of the hole injection layer material and the hole transport layer material constituting the organic electroluminescence element such as the hole injection layer 106 and the hole transport layer 108.
  • the lifetime of the organic electroluminescence element can be increased.
  • the amine derivative having a silyl group of the present invention is preferable as a hole transport layer material or a hole injection layer material of an organic electroluminescence device because it has electron resistance, but is not limited thereto. .
  • Example I With respect to the amine derivative having the silyl group of the present invention represented by the general formula (1), examples of the synthesis method of the compounds 1, 3, 61, 63 will be described below. However, the synthesis method described below is an example and does not limit the present invention.
  • Compound 1 of the present invention was synthesized as follows.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane. As a result, a white powdered solid as the target compound 1 was obtained. Obtained 2.26 g, yield 90% (FAB-MS: C51H41NSi, measured value 695).
  • Compound 3 of the present invention was synthesized as follows.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane. As a result, a white powdered solid as the target compound 3 was obtained. 1.00 g, 40% yield was obtained (FAB-MS: C48H35NSSi, measured value 685).
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the obtained solid was recrystallized from dichloromethane / hexane. As a result, a white powdered solid as the target compound 61 was obtained. 1.15 g, yield 89% (FAB-MS: C66H48N2Si, measured value 897).
  • the compound 63 of the present invention was synthesized as follows.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the obtained solid was recrystallized from dichloromethane / hexane. As a result, a white powdered solid as the target compound 63 was obtained. 1.59 g was obtained with a yield of 94% (FAB-MS: C60H44N2Si, measured value 821).
  • Example 1 of an organic electroluminescence element using the above-described compound 1 as a hole transport layer as the organic electroluminescence element material of the present invention will be described.
  • the production of the organic electroluminescence element of Example 1 of the present invention was performed by vacuum deposition, and the following procedure was performed.
  • the ITO film has a thickness of 150 nm.
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material.
  • a film was formed on top.
  • the compound 1 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butylperylene (TBP) was used as the light emitting material.
  • TBP 2,5,8,11-tetra-t-butylperylene
  • Example 2 an organic electroluminescence device was produced in the same manner as in Example 1 except that Compound 3 was used instead of Compound 1 used in Example 1.
  • Example 3 an organic electroluminescence device was produced in the same manner as in Example 1 except that Compound 61 was used instead of Compound 1 used in Example 1.
  • Example 4 an organic electroluminescence device was produced in the same manner as in Example 1 except that Compound 63 was used instead of Compound 1 used in Example 1.
  • Comparative Example 1 and Comparative Example 2 an organic electroluminescent device was prepared in the same manner as in Example 1, using Comparative Compound 1 and Comparative Compound 2 shown below as compounds constituting the material of the hole transport layer of the organic electroluminescent device. Produced.
  • the compound used in Comparative Example 1 and Comparative Example 2 is different from the amine derivative of the present invention in that it has a structure having no silyl group.
  • FIG. 2 shows a schematic diagram of Examples 1 to 4, Comparative Example 1, and Comparative Example 2 of the produced organic electroluminescence element 200.
  • the produced organic electroluminescence device 200 is disposed on the anode 204, the hole injection layer 206 disposed on the anode 204, the hole transport layer 208 disposed on the hole injection layer 206, and the hole transport layer 208.
  • Table 1 shows the element performance of the organic electroluminescent elements 200 of Examples 1 to 4 and Comparative Examples 1 and 2 that were produced.
  • the current efficiency is a value at 10 mA / cm 2
  • the half life is a luminance half time from an initial luminance of 1,000 cd / m 2 .
  • the amine derivative having a silyl group of the present invention represented by the general formula (1) includes a silyl group having electron resistance, and is a material capable of performing stable hole transport with respect to electrons. Therefore, by using the amine derivative having a silyl group of the present invention, it is possible to suppress the deterioration of the device caused by the electrons that have entered the hole transport layer, and to realize a long lifetime of the device.
  • Examples 1 to 4 described above examples in which the amine derivative having a silyl group of the present invention represented by the general formula (1) is used as a hole transport material of an organic electroluminescence element have been described.
  • Use of the amine derivative having a silyl group is not limited to the organic electroluminescence element, and may be used for other light-emitting elements or light-emitting devices.
  • 1 and 2 is used for a passive matrix driving type organic electroluminescence display, it can also be used for an active matrix driving type organic electroluminescence display.
  • the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
  • a preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. And at least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted dibenzofuryl group, and L is a divalent group containing no single bond.
  • Phenyl group, naphthyl group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, dibenzothiophenyl group, dibenzofuryl group, and N-phenylcarbazolyl group are preferable, and phenyl group, biphenyl group, fluorenyl group are particularly preferable.
  • Group, triphenylene group, dibenzothiophenyl group, dibenzofuryl group and N-phenylcarbazolyl group are preferable.
  • the aryl group of Ar 1 and Ar 2 is preferably an aryl group having 6 to 18 ring carbon atoms, and the heteroaryl group of Ar 1 and Ar 2 is a heteroaryl group having 5 to 18 ring atoms. preferable.
  • Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group.
  • Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group mentioned as the specific groups of Ar 1 and Ar 2 described above.
  • Ar 3 in the general formula (1) is a substituted or unsubstituted dibenzofuryl group.
  • Each of the substituents substituted on the dibenzofuryl group is independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl having 5 to 20 ring carbon atoms.
  • L in the general formula (1) is a divalent linking group, and may be a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, specifically May be a divalent group of the groups listed as Ar 1 and Ar 2 described above.
  • L is preferably an arylene group having 6 to 18 ring carbon atoms, and particularly preferably a phenylene group.
  • L does not include a single bond.
  • Examples of the substituent substituted with the arylene group or heteroarylene group of L include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it may be the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 .
  • Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 , and a phenyl group is particularly preferable.
  • the silyl group substituted with at least one of Ar 1 and Ar 2 is preferably a triarylsilyl group in which the number of carbon atoms in the aryl group substituted with the silyl group is 6 or more and 18 or less. .
  • Examples of the amine derivative in which Ar 3 which is a dibenzofuryl group in General Formula (1) is bonded to a divalent linking group L include the compounds exemplified below, but are not limited thereto.
  • the preferred amine derivative of the present invention is that, in the general formula (1), Ar 3 is a substituted or unsubstituted dibenzofuryl group, and this dibenzofuryl group is bonded to the divalent linking group L. .
  • the dibenzofuryl group has strong electron resistance. Therefore, by using an amine derivative in which Ar 3 is a substituted or unsubstituted dibenzofuryl group in the general formula (1) as the hole transport layer material, the electron resistance of the hole transport layer can be improved. It is possible to suppress the deterioration of the hole transport material caused by the electrons that have entered the hole transport layer. Further, by introducing a dibenzofuryl group, the planarity of the amine derivative is increased and the glass transition temperature is increased.
  • the improvement of the light emission efficiency of an organic electroluminescent element, low drive voltage, and lifetime improvement are realizable. Furthermore, as described above, when the dibenzofuryl group and the amine moiety are bonded via the divalent linking group L, the conjugated system of ⁇ electrons in the entire molecule is expanded. Therefore, the hole transport property is improved and the stability of the molecule is also improved, so that the drive voltage, the lifetime, and the light emission efficiency of the organic electroluminescence element can be realized.
  • the preferred amine derivative of the present invention can realize improvement in light emission efficiency, low drive voltage, and long life of the organic electroluminescence device, particularly in the blue to blue-green region.
  • the substituted or unsubstituted dibenzofuryl group that is Ar 3 may be bonded to L at the 2-position, 3-position or 4-position. It is preferably bonded to the linking group L at the 3-position.
  • the substituted or unsubstituted dibenzofuryl group which is Ar 3 is preferably bonded to the para position of the divalent linking group with respect to the nitrogen atom (N) of the amine moiety.
  • the configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
  • the use of the amine derivative of the present invention represented by the general formula (1), in which Ar 3 which is a dibenzofuryl group is bonded to a divalent linking group L, is intended for use in an organic electroluminescence device.
  • It is not limited to the hole transport material, and can be used as a material for a hole injection layer or a light emitting layer, and can be used as a material for a hole injection layer or a light emitting layer.
  • Example II Regarding the amine derivative of the present invention represented by the general formula (1), wherein Ar 3 which is a dibenzofuryl group is bonded to a divalent linking group L, the compounds A-10, A-18, Examples of synthesis methods of A-25, A-35 and A-41 are described below. However, the synthesis method described below is an example and does not limit the present invention.
  • the obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 1.86 g of a white solid compound A-10 (yield 86 %)Obtained.
  • the chemical shift value of Compound A-10 measured by 1 H NMR measurement is 8.00 (d, 1H), 7.96 (d, 1H), 7.78 (d, 1H), 7.64-7.53 (m, 20 H), 7.48 -7.33 (m, 14H), 7.29-7.25 (m, 6H). Further, the molecular weight of Compound A-10 measured by FAB-MS measurement was 822.
  • the obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 0.95 g of a white solid compound A-35 (yield 80 %)Obtained.
  • the chemical shift values of Compound A-35 measured by 1 H NMR measurement are 7.99 (d, 1H), 7.91 (d, 1H), 7.87 (d, 2H), 7.62-7.28 (m, 33H), 7.20 (d , 2H).
  • the molecular weight of Compound A-35 measured by FAB-MS measurement was 745.
  • the obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 1.86 g of a white solid compound A-41 (yield 89 %)Obtained.
  • the chemical shift value of Compound A-41 measured by 1 H NMR measurement is 8.00 (d, 1H), 7.93-7.87 (m, 3H), 7.66-7.53 (m, 17H), 7.50-7.28 (m, 22H ) Met.
  • the molecular weight of compound A-41 measured by FAB-MS measurement was 822.
  • Example 5 shows an organic electroluminescence device using Compound A-10 for the hole transport layer
  • Example 6 shows an organic electroluminescence device using Compound A-18 for the hole transport layer
  • Example 7 is an organic electroluminescence device used for the layer
  • Example 8 is an organic electroluminescence device using Compound A-35 for the hole transport layer
  • Preparation of the organic electroluminescence element of Example 5 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescence element of Example 1 described above, and was performed according to the following procedure.
  • surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance.
  • the ITO film has a thickness of 150 nm.
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material.
  • a film was formed on top.
  • the compound A-10 of the present invention was formed into a film (30 nm) as a hole transport material, and then 2,5,8,11-tetra-t-butylperylene (TBP) as a light-emitting material was 9,9.
  • TBP 2,5,8,11-tetra-t-butylperylene
  • a film doped with 3% of 10-di (2-naphthyl) anthracene (ADN) was formed by co-evaporation (25 nm).
  • the organic electroluminescent devices of Examples 6, 7, 8 and 9 were prepared by using Compound A-18, Compound A-25, Compound A-35 and Compound A-41 instead of Compound A-10 used in Example 5.
  • An organic electroluminescence element was produced in the same manner as in Example 5 except that it was used.
  • Example 5 was used using Comparative Compound 3, Comparative Compound 4 and Comparative Compound 5 shown below as the compounds constituting the material of the hole transport layer of the organic electroluminescence device.
  • An organic electroluminescence device was produced in the same manner as described above.
  • the driving voltage, the light emission efficiency, and the half life were evaluated.
  • the light emission efficiency indicates a value at 10 mA / cm 2
  • the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2.
  • the evaluation results are shown in Table 2.
  • the organic electroluminescence elements of Examples 5 to 9 of the present invention have improved luminous efficiency and longer life than the organic electroluminescence elements of Comparative Examples 3 to 5.
  • the compound A-10 having a structure in which the dibenzofuryl group as Ar 3 is bonded to the divalent linking group L at the 3-position is transported by holes.
  • Example 5 used as the material it can be seen that the luminous efficiency and the lifetime are remarkably improved.
  • Ar 3 in the general formula (1) is a substituted or unsubstituted dibenzofuryl group, and L is not a single bond.
  • an organic electroluminescence device using a preferred amine derivative of the present invention in which Ar 3 is a substituted or unsubstituted dibenzofuryl group and L is a divalent linking group
  • the present invention may be used for a matrix driving type organic electroluminescence display, or may be used for an active matrix driving type organic electroluminescence display.
  • the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
  • a preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. And at least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted dibenzofuryl group, and L is a single bond.
  • Gerare phenyl, naphthyl, biphenyl, a terphenyl group, a a fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group.
  • the aryl group preferably has 6 to 18 ring carbon atoms, and the heteroaryl group preferably has 5 to 18 ring atoms.
  • Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group.
  • Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group mentioned as the specific groups of Ar 1 and Ar 2 described above.
  • Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 , and a phenyl group is particularly preferable.
  • the silyl group substituted with at least one of Ar 1 and Ar 2 is preferably a triarylsilyl group in which the number of carbon atoms in the aryl group substituted with the silyl group is 6 or more and 18 or less. .
  • only one of Ar 1 and Ar 2 may be substituted with a substituted or unsubstituted silyl group.
  • the silyl group exhibits strong electron resistance
  • the amine derivative into which the silyl group is introduced can be used as a hole transport material, thereby improving the electron resistance of the hole transport layer.
  • Ar 3 is a substituted or unsubstituted dibenzofuryl group.
  • the substituents substituted on the dibenzofuryl group are independently a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms.
  • the substituents substituted on the dibenzofuryl group may be bonded to each other to form a saturated or unsaturated ring. However, substituents substituted at the 1-position and 9-position of the dibenzofuryl group are not bonded to each other.
  • L is a single bond.
  • the position of bonding with L of the substituted or unsubstituted dibenzofuryl group which is Ar 3 is not particularly limited, but is preferably the 2-position, 3-position or 4-position, particularly the 3-position. It is preferable that That is, as described above, since L is a single bond in the preferred structure of the amine derivative of the present invention, the substituted or unsubstituted dibenzofuryl group which is Ar 3 is an amine at the 2-position, 3-position or 4-position. It is preferable to combine with the nitrogen atom (N) of the amine site in the derivative, and particularly preferable to bond with the nitrogen atom (N) at the 3-position.
  • the dibenzofuryl group When the dibenzofuryl group is bonded to the nitrogen atom (N) of the amine site at the 3-position, the conjugated system of ⁇ electrons of the whole molecule is expanded, so that the hole transporting property is expected to be improved, and the organic electroluminescence device Further improvement in luminous efficiency and longer life can be expected. Further, since L is a single bond, it is possible to prevent deterioration of film forming property due to an increase in molecular weight.
  • the dibenzofuryl group which is Ar 3 in the preferred structure of the amine derivative of the present invention exhibits strong electron resistance, like the silyl group substituted on at least one of Ar 1 or Ar 2 . Therefore, the amine derivative of the present invention having a dibenzofuryl group is more stable with respect to electrons, and is used as a material for an organic electroluminescent element, in particular, a laminated film between a light emitting layer and an anode. Suppresses deterioration of materials caused by electrons entering the film.
  • the dibenzofuryl group exhibits a high glass transition point due to its high planarity.
  • the amine derivative in which the dibenzofuryl group which is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention, is bonded to L which is a single bond is an organic electroluminescence device in a blue to blue-green region.
  • the light emission efficiency can be improved, and further, the drive voltage can be lowered and the life can be extended.
  • Examples of the amine derivative that is a preferable amine derivative of the present invention, in which the dibenzofuryl group that is Ar 3 in the general formula (1) is bonded to L that is a single bond, include the compounds exemplified below. It is not limited to these.
  • the amine derivative in which the dibenzofuryl group which is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention, is bonded to L which is a single bond, is the organic electroluminescence represented in FIG. 1 as described above. It can be used as a material for the hole transport layer of the element 100.
  • the configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
  • the use of the amine derivative which is a preferable amine derivative of the present invention in which the dibenzofuryl group which is Ar 3 in the general formula (1) is bonded to L which is a single bond is used as a hole transport material of an organic electroluminescence device
  • the present invention can be used as a material for a hole injection layer or a light emitting layer, and can also be used as a material for a hole injection layer or a light emitting layer. As in the case of using as, it is possible to improve the light emission efficiency of the organic electroluminescence element and to extend the life of the organic electroluminescence element.
  • Example III The amine derivatives in which the dibenzofuryl group, which is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention is bonded to L which is a single bond, are the compounds B-1, B-16, B-21. Examples of synthesis methods of B-34 and B-39 are described below. However, the synthesis method described below is an example and does not limit the present invention.
  • the chemical shift values of Compound B-1 measured by 1 H NMR measurement are 7.89 (d, 2H), 7.80 (d, 2H), 7.66-7.51 (m, 14H), 7.50-7.31 (m, 13H), 7.22 (d, 2H), 7.19 (d, 2H). Further, the molecular weight of Compound B-1 measured by FAB-MS measurement was 669.
  • the chemical shift values of Compound B-16 measured by 1 H NMR measurement are 7.88 (d, 1H), 7.80 (d, 1H), 7.67-7.59 (m, 12H), 7.58-7.51 (m, 6H), 7.50-7.39 (m, 11H), 7.39-7.31 (m, 4H), 7.22-7.19 (m, 4H).
  • the molecular weight of compound B-16 measured by FAB-MS measurement was 745.
  • the chemical shift values of Compound B-21 measured by 1 H NMR measurement are 7.88-7.81 (m, 2H), 7.61-7.52 (m, 12H), 7.58-7.51 (m, 6H), 7.50-7.39 (m 11H), 7.39-7.31 (m, 4H), 7.22-7.19 (m, 4H).
  • the molecular weight of Compound B-21 measured by FAB-MS measurement was 745.
  • the chemical shift values of Compound B-34 measured by 1 H NMR measurement are 7.88-7.81 (m, 2H), 7.61-7.52 (m, 12H), 7.58-7.51 (m, 6H), 7.50-7.39 (m 11H), 7.39-7.31 (m, 4H), 7.22-7.19 (m, 4H).
  • the molecular weight of compound B-34 measured by FAB-MS measurement was 745.
  • the chemical shift value of Compound B-39 measured by 1 H NMR measurement is 8.49 (d, 2H), 8.16 (d, 2H), 7.81 (d, 2H), 7.78-7.55 (m, 12H), 749- 7.33 (m, 16H), 7.32-7.25 (m,, 5H), 7.13 (d, 2H).
  • the molecular weight of compound B-39 measured by FAB-MS measurement was 795.
  • Example 10 shows an organic electroluminescence device using Compound B-1 as a hole transport layer
  • Example 11 shows an organic electroluminescence device using Compound B-16 as a hole transport layer
  • Example 12 was an organic electroluminescence device used for the layer
  • Example 13 was an organic electroluminescence device using Compound B-34 for the hole transport layer
  • Organic Electroluminescence device using Compound B-39 for the hole transport layer This is referred to as Example 14.
  • Preparation of the organic electroluminescence element of Example 10 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescence element of Example 1 described above, and was performed in the following procedure.
  • surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance.
  • the ITO film has a thickness of 150 nm.
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material.
  • a film was formed on top.
  • the compound B-1 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butyl-perylene (TBP) as a light-emitting material was used.
  • TBP 2,5,8,11-tetra-t-butyl-perylene
  • ADN 10-di (2-naphthyl) anthracene
  • the organic electroluminescence devices of Examples 11, 12, 13, and 14 were prepared by using Compound B-16, Compound B-21, Compound B-34, and Compound B-39 instead of Compound B-1 used in Example 10.
  • An organic electroluminescence element was produced in the same manner as in Example 10 except that it was used.
  • Comparative Example 6 and Comparative Example 7 an organic electroluminescent device was prepared in the same manner as in Example 10 by using Comparative Compound 6 and Comparative Compound 7 shown below as compounds constituting the material of the hole transport layer of the organic electroluminescent device. Produced.
  • the driving voltage, current efficiency, and half life were evaluated.
  • the light emission efficiency indicates a value at 10 mA / cm 2
  • the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2.
  • the evaluation results are shown in Table 3.
  • the organic electroluminescent elements of Examples 10 to 14 of the present invention have a lower driving voltage and improved luminous efficiency than the organic electroluminescent elements of Comparative Examples 6 and 7. And it can be seen that the life is extended.
  • a compound B-21 in which a substituted or unsubstituted dibenzofuryl group as Ar 3 is bonded to the nitrogen atom (N) of the amine moiety at the 3-position is used.
  • N nitrogen atom
  • an amine derivative in which the dibenzofuryl group which is Ar 3 in General Formula (1) is bonded to L which is a single bond which is a preferred amine derivative of the present invention
  • the example utilized for the hole transport material of a luminescent element was demonstrated, utilization of the amine derivative of this invention is not limited to an organic electroluminescent element, You may utilize for another light emitting element or light-emitting device.
  • an organic electroluminescence device using an amine derivative in which the dibenzofuryl group that is Ar 3 in General Formula (1), which is a preferred amine derivative of the present invention, is bonded to L that is a single bond is a passive matrix drive.
  • the present invention may be used for an organic electroluminescence display of a type, and may be used for an organic electroluminescence display of an active matrix driving type.
  • the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
  • a preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. At least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted fluorenyl group, and L is a substituted or unsubstituted arylene group Or a substituted or unsubstituted heteroarylene group.
  • Gerare phenyl group, naphthyl group, biphenyl group, terphenyl group, fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group.
  • the aryl group preferably has 6 to 18 ring carbon atoms, and the heteroaryl group preferably has 5 to 18 ring atoms.
  • Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group.
  • Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group of Ar 1 and Ar 2 described above.
  • the alkyl group of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 is not particularly limited, but is methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, t -Butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, cycloheptyl group, octyl group, nonyl group, decyl group and the like can be exemplified.
  • the alkoxy group of the substituent substituted by the aryl group or heteroaryl group of Ar 1 and Ar 2 is not particularly limited, but a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, Isobutoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3 , 7-dimethyloctyloxy group and the like can be exemplified.
  • Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted by the aryl group or heteroaryl group of Ar 1 and Ar 2 , and in particular, a phenyl group and a methyl group Is preferred.
  • the silyl group substituted with at least one of Ar 1 and Ar 2 is a triarylsilyl group having 6 to 18 ring carbon atoms of the aryl group substituted with the silyl group or the silyl group.
  • the substituted alkyl group is preferably a trialkylsilyl group having 1 to 6 carbon atoms.
  • only one of Ar 1 and Ar 2 may be substituted with a substituted or unsubstituted silyl group.
  • LUMO is prevented from being localized around the amine site, and the energy gap is reduced. Can be prevented.
  • Ar 3 is a substituted or unsubstituted fluorenyl group.
  • the substituents substituted on the fluorenyl group are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 18 ring atoms.
  • the substituent substituted on the fluorenyl group is preferably a substituted or unsubstituted aryl group, and particularly preferably a phenyl group is substituted at the 9-position.
  • L is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • aryl group and heteroarylene group of the “substituted or unsubstituted arylene group” and “substituted or unsubstituted heteroarylene group” which are L the “substituted or unsubstituted group” mentioned in Ar 1 and Ar 2
  • arylene group and heteroarylene group of the “substituted or unsubstituted arylene group” and “substituted or unsubstituted heteroarylene group” of L an aryl group having 6 to 18 ring carbon atoms and 5 or more ring atoms.
  • a heteroarylene group of 18 or less is preferable, and a phenylene group and a biphenylylene group are particularly preferable.
  • a substituted or unsubstituted fluorenyl group is Ar 3 is a position of the 2-position, it is preferable to bind to L in para-position to the nitrogen atom of the amine moiety (N). When the fluorenyl group is bonded to L at the 2-position, appropriate HOMO and LUMO levels can be realized.
  • Ar 3 is a substituted or unsubstituted fluorenyl group
  • L is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • Ar 1 and Ar 2 in which at least one silyl group is substituted via L, which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, wherein Ar 3 is a substituted or unsubstituted fluorenyl group;
  • the use of the amine derivative of the present invention as a material for the hole transport layer disposed between the light emitting layer and the anode improves the light emission efficiency of the organic electroluminescence device, and further reduces the driving voltage and length. It is possible to achieve a long life. In particular, in the blue to blue-green region, it is possible to improve the light emission efficiency of the organic electroluminescence element, and to realize a lower driving voltage and longer life.
  • the derivatives include, but are not limited to, compounds exemplified below.
  • the amine derivative can be used as a material for the hole transport layer of the organic electroluminescence device 100 shown in FIG. 1 as described above.
  • the configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
  • an amine derivative which is a preferred amine derivative of the present invention in which the fluorenyl group which is Ar 3 in the general formula (1) is bonded to L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group
  • L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group
  • the use of is not limited to the hole transport material of the organic electroluminescence device, but can also be used as the material of the hole injection layer or the light emitting layer. Also when used as a material for the organic electroluminescence element, it is possible to improve the light emission efficiency of the organic electroluminescence element and to extend the life of the organic electroluminescence element, as in the case of using as the material for the hole transport layer.
  • Example IV Regarding the amine derivative which is a preferred amine derivative of the present invention, the fluorenyl group which is Ar 3 in the general formula (1) is bonded to L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. Examples of methods for synthesizing Compound C-1, Compound C-2, Compound C-4, and Compound C-6 are described below. However, the synthesis method described below is an example and does not limit the present invention.
  • Example 15 shows an organic electroluminescence device using Compound C-1 as a hole transport layer
  • Example 16 shows an organic electroluminescence device using Compound C-2 as a hole transport layer
  • the organic electroluminescence device used for the layer is Example 17, and the organic electroluminescence device using Compound C-6 for the hole transport layer is Example 18.
  • Preparation of the organic electroluminescence element of Example 15 of the present invention was performed by vacuum evaporation in the same manner as the organic electroluminescence element of Example 1 described above, and was performed according to the following procedure.
  • surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance.
  • the ITO film has a thickness of 150 nm.
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material.
  • a film was formed on top.
  • the compound C-1 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butyl-perylene (TBP) as a light emitting material was used.
  • TBP 2,5,8,11-tetra-t-butyl-perylene
  • ADN 10-di (2-naphthyl) anthracene
  • the organic electroluminescence devices of Examples 16, 17 and 18 were prepared except that Compound C-2, Compound C-4 and Compound C-6 were used instead of Compound C-1 used in Example 15.
  • An organic electroluminescence device was produced in the same manner as in Example 15.
  • Comparative Example 8 an organic electroluminescence element was produced in the same manner as in Example 15 using Comparative Compound 8 shown below as a compound constituting the material of the hole transport layer of the organic electroluminescence element.
  • the driving voltage, current efficiency, and half-life were evaluated for the organic electroluminescence elements 200 produced in Examples 15 to 18 and Comparative Example 8.
  • the light emission efficiency indicates a value at 10 mA / cm 2
  • the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2.
  • the evaluation results are shown in Table 4.
  • the organic electroluminescent elements of Examples 15 to 18 of the present invention have a lower driving voltage, improved luminous efficiency, and longer life compared to the organic electroluminescent elements of Comparative Example 8.
  • the driving voltage of The decrease, the improvement of the luminous efficiency, and the improvement of the luminous lifetime were remarkable.
  • the substituted or unsubstituted fluorenyl group which is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention is substituted or unsubstituted arylene group, or substituted or
  • an amine derivative bonded to L, which is an unsubstituted heteroarylene group is used as a hole transport material of an organic electroluminescence device.
  • the use of the amine derivative of the present invention is limited to an organic electroluminescence device. Instead, it may be used for other light emitting elements or light emitting devices.
  • the organic electroluminescence device using the preferred amine derivative of the present invention may be used for a passive matrix driving type organic electroluminescence display or an active matrix driving type organic electroluminescence display. .
  • the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
  • a preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. And at least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted fluorenyl group, and L is a single bond.
  • a preferred structure of the amine derivative represented by the general formula (1) is represented by the following general formula (3).
  • Gerare phenyl group, naphthyl group, biphenyl group, terphenyl group, fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group.
  • the aryl group an aryl group having 6 to 18 ring carbon atoms is preferable, and a phenyl group, a biphenyl group, and a triphenylene group are particularly preferable.
  • the heteroaryl group is preferably a heteroaryl group having 5 to 18 ring atoms, and particularly preferably a dibenzofuryl group or an N-phenylcarbazolyl group.
  • Ar 1 and Ar 2 may each independently be a substituted or unsubstituted aryl group.
  • Ar 1 may be a substituted or unsubstituted aryl group, and
  • Ar 2 may be a substituted or unsubstituted dibenzoheterol group.
  • Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include a halogen atom, an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group.
  • Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group mentioned as the specific groups of Ar 1 and Ar 2 described above.
  • a fluorine atom may be sufficient.
  • the alkyl group is not particularly limited, but is methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, t-butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group.
  • alkoxy group examples include, but are not limited to, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n It may be a -hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group or the like.
  • Ar 3 in the general formula (1) is a substituted or unsubstituted fluorenyl group.
  • the hole transport property of the amine derivative of the present invention is improved. Therefore, by using the preferred amine derivative of the present invention in which a fluorenyl group is introduced as a material for the hole transport layer disposed between the anode and the light emitting layer, the luminous efficiency of the organic electroluminescence device can be further improved and increased. Life expectancy can be realized.
  • the substituents of the fluorenyl group are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • the alkyl group substituted for the fluorenyl group of Ar 3 an alkyl group having 1 to 10 carbon atoms is preferable, and examples thereof include a methyl group.
  • the aryl group substituted on the Ar 3 fluorenyl group is preferably an aryl group having 6 to 12 ring carbon atoms, and examples thereof include a phenyl group and a naphthyl group.
  • the heteroaryl group substituted on the fluorenyl group of Ar 3 is preferably a heteroaryl group having 4 to 12 ring carbon atoms, and examples thereof include a dibenzofuryl group.
  • Examples of the substituent substituted with the alkyl group, aryl group, or heteroaryl group substituted with the fluorenyl group include an alkyl group, an alkoxy group, an aryl group, a heteroaryl group, and a halogen atom.
  • Illustrative specific examples of the aryl group and heteroaryl group may be the same as the aryl group and heteroaryl group listed as specific groups for Ar 1 and Ar 2 described above. Although it does not specifically limit as a halogen atom, A fluorine atom may be sufficient.
  • Specific examples of the alkyl group may be the same as the alkyl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 .
  • L is a single bond.
  • the bonding position with L in the substituted or unsubstituted fluorenyl group that is Ar 3, that is, the bonding position with the nitrogen atom (N) in the fluorenyl group is not particularly limited, but may be bonded at the 2-position. preferable.
  • a substituted or unsubstituted fluorenyl group which is Ar 3 is bonded to the nitrogen atom (N) of the amine moiety at the 2-position, whereby Since the conjugated system spreads, the hole transportability is improved, and the stability of the molecule is improved, the emission efficiency and the life of the organic electroluminescent element can be improved.
  • Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, the alkoxy group, the aryl group, and the heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 .
  • the substituted silyl group substituted with at least one of Ar 1 and Ar 2 is a triarylsilyl group having 6 to 18 ring carbon atoms in the aryl group substituted with the silyl group,
  • the alkyl group substituted with the silyl group is a trialkylsilyl group having 1 to 6 carbon atoms.
  • Examples of the amine derivative represented by the general formula (3), which is a preferred amine derivative of the present invention, include compounds exemplified below, but are not limited thereto.
  • Ar 3 in the general formula (1) is a substituted or unsubstituted fluorenyl group.
  • L which is a single bond
  • the substituted or unsubstituted fluorenyl group which is Ar 3 is bonded to the nitrogen atom (N) of the amine portion
  • hole transportability is improved. Therefore, by arranging this amine derivative as an organic electroluminescent material between the light emitting layer and the anode, it is possible to improve the light emission efficiency of the organic electroluminescent element and to achieve a long lifetime.
  • the amine derivative of the present invention can improve the light emission efficiency of the organic electroluminescence device and achieve a long lifetime in the blue to blue-green region.
  • the amine derivative of the present invention represented by the general formula (3) representing the preferred structure of the amine derivative of the present invention is used as a material for the hole transport layer of the organic electroluminescence device 100 represented in FIG. 1 as described above. be able to.
  • the configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
  • the use of the amine derivative of the present invention represented by the general formula (3) representing the preferred structure of the amine derivative of the present invention is not limited to the hole transport material of the organic electroluminescence device, It can also be used as a layer material or a light emitting layer material, and when used as a hole injection layer material or a light emitting layer material, the organic electroluminescence is the same as when used as a hole transport layer material. It is possible to improve the light emission efficiency of the element and to extend the life of the organic electroluminescence element.
  • Example V With respect to the amine derivative of the present invention represented by the general formula (3), examples of methods for synthesizing the compounds D-1, D-3 and D-26 will be described below. However, the synthesis method described below is an example and does not limit the present invention.
  • Compound D-1 is the same as Compound 1 in Example 1 described above.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane to give the target compound, D-1, as a white powder. 2.26 g of a solid was obtained with a yield of 90% (FAB-MS: C51H41NSi, measured value 695).
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane to give the target compound D-3 as a white powder. 1.38 g of a solid was obtained with a yield of 70% (FAB-MS: C61H45NSi, measured value 819).
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane to give the target compound, D-26, as a white powder. 1.06 g of a solid was obtained with a yield of 75% (FAB-MS: C57H45NSi, measured value 771).
  • Example 19 shows an organic electroluminescence device using Compound D-1 for the hole transport layer
  • Example 20 shows an organic electroluminescence device using Compound D-3 for the hole transport layer
  • the organic electroluminescence element used for the layer is referred to as Example 21.
  • Compound D-1 is the same as Compound 1 in Example 1 described above.
  • Preparation of the organic electroluminescent element of Example 19 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescent element of Example 1 described above, and was performed in the following procedure.
  • surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance.
  • the ITO film has a thickness of 150 nm.
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material.
  • a film was formed on top.
  • the compound D-1 of the present invention was formed as a hole transporting material (30 nm), then 2,5,8,11-tetra-t-butylperylene (TBP) was used as the light emitting material.
  • TBP 2,5,8,11-tetra-t-butylperylene
  • the organic electroluminescence devices of Examples 20 and 21 were prepared in the same manner as in Example 19 except that Compound D-3 and Compound D-26 were used instead of Compound D-1 used in Example 19. A luminescence element was produced.
  • Comparative Example 9 and Comparative Example 10 as the compound constituting the material of the hole transport layer of the organic electroluminescence device, as in Example I described above, the following Comparative Compound 9 and Comparative Compound 10 were used. An organic electroluminescence element was produced in the same manner as in Example 19.
  • Comparative Example 9 and Comparative Example 10 With respect to the organic electroluminescence elements 200 prepared in Examples 19 to 21, Comparative Example 9 and Comparative Example 10, the driving voltage, current efficiency, and half life were evaluated.
  • the current efficiency indicates a value at 10 mA / cm 2
  • the half life indicates a luminance half time from an initial luminance of 1,000 cd / m 2 .
  • the evaluation results are shown in Table 5.
  • the organic electroluminescence elements of Examples 19 to 21 of the present invention have improved luminous efficiency and longer life than the organic electroluminescence elements of Comparative Example 9 and Comparative Example 10. I understand that. Moreover, it turns out that the organic electroluminescent element of Example 19 thru
  • the preferred amine derivative of the present invention represented by the general formula (3) is used as the hole transport material of the organic electroluminescence device.
  • the use of the derivative is not limited to the organic electroluminescence element, and may be used for other light emitting elements or light emitting devices.
  • the organic electroluminescence device using the amine derivative having a silyl group of the present invention represented by the general formula (3) may be used for a passive matrix driving type organic electroluminescence display, and an active matrix driving device may be used.
  • the present invention may be used for a type of organic electroluminescence display.
  • the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
  • a preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. And at least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, and L is a substituted or unsubstituted arylene group Or a substituted or unsubstituted heteroarylene group.
  • Gerare phenyl group, naphthyl group, biphenyl group, terphenyl group, fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group.
  • the aryl group preferably has 6 to 18 ring carbon atoms, and the heteroaryl group preferably has 5 to 18 ring atoms.
  • Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group.
  • Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group of Ar 1 and Ar 2 described above.
  • the alkyl group of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 is not particularly limited, but is methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, t -Butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, cycloheptyl group, octyl group, nonyl group, decyl group and the like can be exemplified.
  • the alkoxy group of the substituent substituted by the aryl group or heteroaryl group of Ar 1 and Ar 2 is not particularly limited, but a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, Isobutoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3 , 7-dimethyloctyloxy group and the like can be exemplified.
  • Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted by the aryl group or heteroaryl group of Ar 1 and Ar 2 , and in particular, a phenyl group and a methyl group Is preferred.
  • the silyl group substituted with at least one of Ar 1 and Ar 2 is a triarylsilyl group having 6 to 18 ring carbon atoms of the aryl group substituted with the silyl group or the silyl group.
  • the substituted alkyl group is preferably a triarylmethyl group having 1 to 6 carbon atoms.
  • Ar 3 in the general formula (1) is a substituted or unsubstituted carbazolyl group.
  • the substituents substituted on the carbazolyl group are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 18 ring atoms.
  • the substituent substituted on the carbazolyl group is preferably a substituted or unsubstituted aryl group, and particularly preferably a phenyl group is substituted at the 9-position of the carbazolyl group.
  • a phenyl group is substituted at the 9-position of the carbazolyl group.
  • L is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • aryl group and heteroarylene group of the “substituted or unsubstituted arylene group” and “substituted or unsubstituted heteroarylene group” which are L, the “substituted or unsubstituted group” mentioned in Ar 1 and Ar 2 And the aryl group and the heteroaryl group of the “substituted aryl group” or “substituted or unsubstituted heteroaryl group”.
  • arylene group and heteroarylene group of the “substituted or unsubstituted arylene group” and “substituted or unsubstituted heteroarylene group” of L an aryl group having 6 to 18 ring carbon atoms and 5 or more ring atoms.
  • a heteroarylene group of 18 or less is preferable, and a phenylene group is particularly preferable.
  • L is a phenylene group, an appropriate energy level can be realized.
  • a substituted or unsubstituted carbazolyl group that is Ar 3 is a linked or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group at the 1st to 4th positions. Bonded to the group L.
  • the substituted or unsubstituted carbazolyl group which is Ar 3 is bonded to L at the 2-position or 3-position, and more preferably is bonded to L at the 3-position.
  • HOMO is expanded and hole transportability is improved.
  • the bonding position with L is the 3-position of the carbazolyl group, LUMO does not ride on the carbazolyl group, which contributes to extending the lifetime of the organic electroluminescence device.
  • Ar 3 is a substituted or unsubstituted carbazolyl group in the general formula (1)
  • L is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • the conjugated system of ⁇ electrons is expanded, so that the hole transport property is improved and the HOMO level is adjusted to increase the luminous efficiency of the organic electroluminescence device.
  • N nitrogen atom
  • the conjugated system of ⁇ electrons is expanded, so that the hole transport property is improved and the HOMO level is adjusted to increase the luminous efficiency of the organic electroluminescence device.
  • in the blue to blue-green region it is possible to improve the light emission efficiency of the organic electroluminescence element, and to realize a lower driving voltage and longer life.
  • the derivatives include, but are not limited to, compounds exemplified below.
  • the amine derivative can be used as a material for the hole transport layer of the organic electroluminescence device 100 shown in FIG. 1 as described above.
  • the configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
  • amines in the general formula (1) is a carbazolyl group is Ar 3 is bonded to L is substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group derivatives
  • the use of is not limited to the hole transport material of the organic electroluminescence device, but can also be used as the material of the hole injection layer or the light emitting layer. Also when used as a material for the organic electroluminescence element, it is possible to improve the light emission efficiency of the organic electroluminescence element and to extend the life of the organic electroluminescence element, as in the case of using as the material for the hole transport layer.
  • Example VI Regarding the amine derivative which is a preferred amine derivative of the present invention, the carbazolyl group which is Ar 3 in the general formula (1) is bonded to L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, Examples of methods for synthesizing Compound E-1, Compound E-2 and Compound E-3 are described below. However, the synthesis method described below is an example and does not limit the present invention. Compound E-1 is the same as Compound 61 in Example 3 described above, and Compound E-2 is the same as Compound 63 in Example 4 described above.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the obtained solid was recrystallized from dichloromethane / hexane to give a white powder represented by the target compound E-1.
  • a solid was obtained in a yield of 89% (FAB-MS: C66H48N2Si, measured value 897).
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the obtained solid was recrystallized from dichloromethane / hexane to obtain a white powder represented by the target compound E-2.
  • a solid solid was obtained in an amount of 1.59 g with a yield of 94% (FAB-MS: C60H44N2Si, measured value 821).
  • the obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator.
  • the obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the resulting solid was recrystallized from dichloromethane / hexane to give a white powder represented by the target compound E-3. 2.00 g of a solid was obtained in a yield of 97% (FAB-MS: C60H44N2Si, measured value 821).
  • Example 22 shows an organic electroluminescence device using Compound E-1 for the hole transport layer
  • Example 23 shows an organic electroluminescence device using Compound E-2 for the hole transport layer
  • the organic electroluminescent element used for the layer is referred to as Example 24.
  • Compound E-1 is the same as Compound 61 in Example 3 described above
  • Compound E-2 is the same as Compound 63 in Example 4 described above.
  • the production of the organic electroluminescence element of Example 22 of the present invention was performed by vacuum vapor deposition in the same manner as the organic electroluminescence element of Example 1 described above, and was performed according to the following procedure.
  • surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance.
  • the ITO film has a thickness of 150 nm.
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material.
  • a film was formed on top.
  • the compound E-1 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butyl-perylene (TBP) as a light emitting material , 10-di (2-naphthyl) anthracene (ADN) was doped at a rate of 3% by co-evaporation (25 nm).
  • TBP 2,5,8,11-tetra-t-butyl-perylene
  • ADN 2-naphthyl anthracene
  • the organic electroluminescent devices of Examples 23 and 24 were prepared in the same manner as in Example 22 except that Compound E-2 and Compound E-3 were used instead of Compound E-1 used in Example 22. A luminescence element was produced.
  • Example 22 was used using Comparative Compound 11, Comparative Compound 12, and Comparative Compound 13 shown below as the compounds constituting the material of the hole transport layer of the organic electroluminescence device.
  • An organic electroluminescence device was produced in the same manner as described above.
  • the driving voltage, current efficiency, and half life were evaluated.
  • the light emission efficiency indicates a value at 10 mA / cm 2
  • the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2.
  • the evaluation results are shown in Table 6.
  • the organic electroluminescent elements of Examples 22 to 24 of the present invention have a lower driving voltage than the organic electroluminescent elements of Comparative Example 11, Comparative Example 12, and Comparative Example 13, It can be seen that the luminous efficiency is improved and the life is extended.
  • the substituted or unsubstituted carbazolyl group which is Ar 3 in General Formula (1) which is a preferred amine derivative of the present invention, is a substituted or unsubstituted arylene group, or a substituted or unsubstituted arylene group.
  • an amine derivative bonded to L, which is an unsubstituted heteroarylene group is used as a hole transport material of an organic electroluminescence device.
  • the use of the amine derivative of the present invention is limited to an organic electroluminescence device. Instead, it may be used for other light emitting elements or light emitting devices.
  • the organic electroluminescence device using the preferred amine derivative of the present invention may be used for a passive matrix driving type organic electroluminescence display or an active matrix driving type organic electroluminescence display. .
  • the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
  • a preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. At least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, and L is a substituted or unsubstituted arylene group, Or a divalent linking group containing a substituted or unsubstituted heteroarylene group.
  • a preferred structure of the amine derivative represented by the general formula (1) is represented by the following general formula (4).
  • Gerare phenyl, naphthyl, biphenyl, a terphenyl group, a a fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group.
  • the aryl group preferably has 6 to 18 ring carbon atoms, and the heteroaryl group preferably has 5 to 18 ring atoms.
  • Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include a halogen atom, an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group.
  • Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group mentioned as the specific groups of Ar 1 and Ar 2 described above.
  • a fluorine atom may be sufficient.
  • the alkyl group is not particularly limited, but is methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, t-butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group.
  • alkoxy group examples include, but are not limited to, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n It may be a -hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group or the like.
  • Ar 3 is a substituted or unsubstituted carbazolyl group, and the carbazolyl group is bonded to L at the 9-position.
  • R 1 to R 8 in the general formula (4) are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring atom having 5 to 30 ring atoms.
  • the aryl group or heteroaryl group substituted by R 1 to R 8 of the carbazolyl group may be the same as the substituted or unsubstituted aryl group and heteroaryl group of Ar 1 and Ar 2 described above.
  • the alkyl group substituted by R 1 to R 8 of the carbazolyl group may be the same as the alkyl group substituted by the aryl group and heteroaryl group of Ar 1 and Ar 2 described above.
  • the substituent substituted with R 1 to R 8 of the carbazolyl group described above may be the same as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 described above, for example. .
  • R 1 to R 8 in the general formula (4) may be bonded to each other to form a saturated or unsaturated ring.
  • L is a divalent linking group, preferably a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • the substituted or unsubstituted arylene group of L preferably has 6 to 18 ring carbon atoms.
  • the substituted or unsubstituted heteroarylene group for L preferably has 5 to 18 ring-forming atoms.
  • Examples of the arylene group and heteroarylene group of the “substituted or unsubstituted arylene group” or “substituted or unsubstituted heteroarylene group” of L include a phenylene group, a naphthylene group, a biphenylylene group, an anthracenylene group, a triphenylene group, a fluorenylene group, and the like. And a phenylene group, a biphenylene group, and a fluorenylene group are preferable.
  • Ar 1 and Ar 2 in the general formula (4) may be an aryl group having 6 to 12 ring carbon atoms.
  • Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, the alkoxy group, the aryl group, and the heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 .
  • the substituted silyl group substituted with at least one of Ar 1 and Ar 2 is a triarylsilyl group having 6 to 18 ring carbon atoms in the aryl group substituted with the silyl group,
  • the alkyl group substituted with the silyl group is a trialkylsilyl group having 1 to 6 carbon atoms.
  • Examples of the amine derivative represented by the general formula (4), which is a preferred amine derivative of the present invention, include compounds exemplified below, but are not limited thereto.
  • Ar 3 in the general formula (1) is a substituted or unsubstituted carbazolyl group.
  • a carbazolyl group into the amine derivative of the present invention, hole transportability is improved.
  • a more appropriate HOMO level can be realized by introducing a carbazolyl group. Further, when the carbazolyl group is bonded to the amine moiety via the linking group L, the HOMO level is further adjusted.
  • the amine derivative of the present invention can improve the light emission efficiency of the organic electroluminescence device in the blue to blue-green region, and can realize a low driving voltage and a long life.
  • the amine derivative of the present invention represented by the general formula (4) representing the preferred structure of the amine derivative of the present invention is used as a material for the hole transport layer of the organic electroluminescence device 100 represented in FIG. 1 as described above. be able to.
  • the configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
  • the use of the amine derivative of the present invention represented by the general formula (4) representing the preferred structure of the amine derivative of the present invention is not limited to the hole transport material of the organic electroluminescence device, and hole injection It can also be used as a layer material or a light emitting layer material, and when used as a hole injection layer material or a light emitting layer material, the organic electroluminescence is the same as when used as a hole transport layer material. It is possible to improve the light emission efficiency of the element and to extend the life of the organic electroluminescence element.
  • Example VII Examples of methods for synthesizing the compounds F-10, F-26, F-38 and F-39 for the amine derivative of the present invention represented by the general formula (4) will be described below. However, the synthesis method described below is an example and does not limit the present invention.
  • the obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 2.50 g of a white solid compound F-1 (yield 81 %)Obtained.
  • the chemical shift value of Compound F-1 measured by 1 H NMR measurement is 8.15 (d, 2H), 7.81 (d, 2H), 7.66-7.51 (m, 14H), 7.51-7.34 (m, 18H), 7.34-7.26 (m, 6H), 7.17 (d, 2H).
  • the molecular weight of Compound F-1 measured by FAB-MS measurement was 821.
  • the chemical shift value of Compound F-23 measured by 1 H NMR measurement is 8.30 (d, 2H), 7.98 (d, 2H), 7.82 (d, 1H), 7.75-7.18 (m, 39H), 7.37- 7.23 (m, 6H) and 7.15 (d, 2H).
  • the molecular weight of compound F-23 measured by FAB-MS measurement was 984.
  • the chemical shift value of Compound F-26 measured by 1 H NMR measurement is 8.07 (d, 2H), 7.75 (d, 2H), 7.67-7.52 (m, 12H), 7.51-7.33 (m, 18H), 7.33-7.20 (m, 8H), 7.16 (d, 2H).
  • the molecular weight of compound F-26 measured by FAB-MS measurement was 821.
  • the chemical shift value of compound F-38 measured by 1 H NMR measurement is 8.09 (d, 2H), 7.76 (d, 2H), 7.65-7.51 (m, 10H), 7.51-7.35 (m, 18H), 7.32-7.21 (m, 6H), 7.18 (d, 2H).
  • the molecular weight of Compound F-38 measured by FAB-MS measurement was 744.
  • the chemical shift value of Compound F-39 measured by 1 H NMR measurement is 8.18 (d, 2H), 7.82 (d, 2H), 7.68-7.51 (m, 14H), 7.51-7.35 (m, 20H), 7.35-7.28 (m, 8H), 7.16 (d, 2H). Further, the molecular weight of the compound F-39 measured by FAB-MS measurement was 896.
  • an organic electroluminescence device material of the present invention an organic electroluminescence device using the compound F-1, the compound F-23, the compound F-26, the compound F-38, and the compound F-39 described above for the hole transport layer.
  • An organic electroluminescence device using Compound F-1 as a hole transport layer is Example 25
  • an organic electroluminescence device using Compound F-23 as a hole transport layer is Example 26, and a compound F-26 is transported as a hole.
  • Example 27 was an organic electroluminescence device used for the layer
  • Example 28 was an organic electroluminescence device using Compound F-38 for the hole transport layer
  • Organic Electroluminescence device was a compound F-39 used for the hole transport layer This is referred to as Example 29.
  • Preparation of the organic electroluminescence element of Example 25 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescence element of Example 1 described above, and was performed according to the following procedure.
  • surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance.
  • the ITO film has a thickness of 150 nm.
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material.
  • a film was formed on top.
  • the compound F-1 of the present invention was formed as a hole transporting material (30 nm), then 2,5,8,11-tetra-t-butyl-perylene (TBP) was used as the light emitting material.
  • TBP 2,5,8,11-tetra-t-butyl-perylene
  • ADN 10-di (2-naphthyl) anthracene
  • the organic electroluminescence devices of Examples 26, 27, 28 and 29 were prepared by using Compound F-23, Compound F-26, Compound F-38 and Compound F-39 instead of Compound F-1 used in Example 25.
  • An organic electroluminescence element was produced in the same manner as in Example 25 except that it was used.
  • Comparative Example 14 and Comparative Example 15 an organic electroluminescent device was prepared in the same manner as in Example 25, using Comparative Compound 14 and Comparative Compound 15 shown below as the compounds constituting the material of the hole transport layer of the organic electroluminescent device. Produced.
  • the driving voltage, current efficiency, and half life were evaluated.
  • the light emission efficiency indicates a value at 10 mA / cm 2
  • the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2.
  • Table 7 shows the evaluation results.
  • the organic electroluminescence elements of Examples 25 to 29 of the present invention have improved luminous efficiency and longer life than the organic electroluminescence elements of Comparative Example 14 and Comparative Example 15. I understand that. In addition, it can be seen that the driving voltages of the organic electroluminescence elements of Examples 25 to 29 of the present invention are lower than those of the organic electroluminescence elements of Comparative Examples 14 and 15.
  • Examples 25 to 29 described above examples in which the preferred amine derivative of the present invention represented by the general formula (4) is used as a hole transport material of an organic electroluminescence device have been described.
  • the use of the derivative is not limited to the organic electroluminescence element, and may be used for other light emitting elements or light emitting devices.
  • the organic electroluminescence device using the amine derivative having a silyl group of the present invention represented by the general formula (4) may be used for a passive matrix driving type organic electroluminescence display, and is active matrix driving.
  • the present invention may be used for a type of organic electroluminescence display.
  • the inventors of the present invention arrange an amine derivative having the structure described below among the amine derivatives having the silyl group represented by the general formula (1) as an organic electroluminescent material between the light emitting layer and the anode. As a result, it was confirmed that a remarkable improvement was obtained in the luminous efficiency and lifetime of the organic electroluminescence device.
  • a preferred structure of the amine derivative having a silyl group represented by the general formula (1) is represented by the following general formula (8).
  • Ar 1 is an aryl group represented by the following general formula (5) substituted with a silyl group.
  • o is an integer that satisfies 0 ⁇ o ⁇ 2
  • R 11 , R 12 , and R 13 are each independently an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted ring formation.
  • R 11 , R 12 and R 13 may be connected to each other to form a ring.
  • o is preferably 0 or 1.
  • R 11 , R 12 and R 13 are each a methyl group, a normal alkyl group having 6 or less carbon atoms, a phenyl group, a biphenylyl group, a terphenyl group, a quaterphenyl group, and a naphthyl group.
  • Tg glass transition temperature
  • a preferred amine derivative having a silyl group of the present invention represented by the general formula (8) is represented by the above general formula (1), wherein Ar 2 in the amine derivative has 6 to 30 ring carbon atoms. A substituted or unsubstituted aryl group.
  • Ar 2 in the amine derivative is also represented by Ar 2 in the amine derivative represented by the general formula (8).
  • Examples of the aryl group of Ar 2 include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a biphenyl group, a terphenyl group, and a quaterphenyl group.
  • a preferred amine derivative having a silyl group of the present invention represented by the general formula (8) is represented by the above general formula (1), and Ar 3 in the amine derivative is represented by the following general formula (6).
  • each R 9 is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, m Is an integer satisfying 0 ⁇ m ⁇ 5.
  • each R 10 is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • l is 0 ⁇ m ⁇ 4
  • n is an integer that satisfies 2 ⁇ n ⁇ 5.
  • n is preferably 2 or 3.
  • n is 2 or 3
  • the electron resistance of the amine derivative can be further improved.
  • Examples of the amine derivative having a silyl group of the present invention represented by the general formula (8) include compounds exemplified below, but are not limited thereto.
  • Ph represents a phenyl group
  • Me represents a methyl group.
  • the amine derivative having a silyl group of the present invention represented by the general formula (8) is an aryl in which Ar 1 in the amine derivative of the present invention represented by the general formula (1) is substituted with a silyl group exhibiting strong electron resistance. It is a group. Therefore, the amine derivative having a silyl group of the present invention represented by the general formula (8) is stable to electrons and is used as a material for an organic electroluminescence element, particularly as a hole transport layer material adjacent to a light emitting layer. When used, the electron resistance of the hole transport layer can be improved, the deterioration of the hole transport material caused by the electrons entering the hole transport layer is suppressed, and the lifetime of the organic electroluminescent element is extended. It becomes possible.
  • the amine derivative having a silyl group of the present invention represented by the general formula (8) has an arylene group in which n is 2 or more in the general formula (7).
  • the amine derivative having a silyl group of the present invention represented by the general formula (8) has an arylene group in which n is 2 or more in the general formula (7), thereby increasing the glass transition temperature (Tg).
  • Tg glass transition temperature
  • the film forming property is improved.
  • the amine derivative having a silyl group of the present invention represented by the general formula (8) in the case of an arylene group in which n is 2 in the general formula (7), an aryl group represented by the general formula (6) In addition, at least one terphenyl group is bonded to the N atom of the amine.
  • a compound having a terphenylamine skeleton has very high hole resistance and electron resistance. Therefore, when n in the general formula (7) is 2, the amine derivative having a silyl group of the present invention represented by the general formula (8) is an organic electroluminescent element material, particularly a positive electrode adjacent to the light emitting layer.
  • the resistance to electrons flowing from the light emitting layer to the hole transport layer side is further improved, the luminous efficiency of the organic electroluminescent device is improved, and the lifetime of the organic electroluminescent device is further increased. Life can be extended.
  • the amine derivative having a silyl group of the present invention represented by the general formula (8) can be used as a material for the hole transport layer of the organic electroluminescence device 100 represented in FIG. 1 as described above.
  • the configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
  • the use of the amine derivative having a silyl group of the present invention represented by the general formula (8) is the same as that of the amine derivative having a silyl group represented by the general formula (1).
  • the material is not limited to a transport material, and can also be used as a material for a hole injection layer.
  • the amine derivative having a silyl group represented by the general formula (8) is used as the material for the hole injection layer, the luminous efficiency of the organic electroluminescence device is improved in the same manner as when the amine derivative is used as the material for the hole transport layer. Thus, the lifetime of the organic electroluminescence element can be extended.
  • Example VIII With respect to the amine derivative having the silyl group of the present invention represented by the general formula (8), examples of synthesis methods of the compound G-8, the compound G-9, the compound G-13, and the compound G-18 will be described below. However, the synthesis method described below is an example and does not limit the present invention.
  • Example 30 of the organic electroluminescence device using the above-mentioned compound G-8 for the hole transport layer as the organic electroluminescence device material of the present invention will be described.
  • Preparation of the organic electroluminescent element of Example 30 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescent element of Example 1 described above, and was performed in the following procedure.
  • surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance.
  • the ITO film has a thickness of 150 nm.
  • 4,4 ′, 4 ′′ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material.
  • a film was formed on top.
  • the compound G-8 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butyl-perylene (TBP) was used as the light emitting material.
  • TBP 2,5,8,11-tetra-t-butyl-perylene
  • ADN 10-di (2-naphthyl) anthracene
  • Example 31 an organic electroluminescence device was produced in the same manner as in Example 30, except that Compound G-9 was used instead of Compound G-8 used in Example 30.
  • Example 32 an organic electroluminescence device was produced in the same manner as in Example 30, except that Compound G-13 was used instead of Compound G-8 used in Example 30.
  • Example 33 an organic electroluminescence device was produced in the same manner as in Example 30, except that Compound G-18 was used instead of Compound G-8 used in Example 30.
  • Example 30 was performed using the following Comparative Compound 16, Comparative Compound 17, and Comparative Compound 18 as the compounds constituting the material of the hole transport layer of the organic electroluminescence device.
  • An organic electroluminescence device was produced in the same manner as described above.
  • the driving voltage, luminous efficiency, half life, and glass transition temperature (Tg) were evaluated.
  • the light emission efficiency indicates a value at 10 mA / cm 2
  • the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2.
  • the evaluation results are shown in Table 8.
  • the organic electroluminescence elements of Examples 30 to 33 of the present invention have improved luminous efficiency as compared with the organic electroluminescence elements of Comparative Example 16, Comparative Example 17, and Comparative Example 18, It can be seen that the life has been extended.
  • the amine derivative having a silyl group of the present invention represented by the general formula (8) has strong electron resistance due to the presence of the silyl group having electron resistance. Further, in the general formula (7), n is 2
  • the electron resistance is improved and the hole transport property is improved, so that the light emission efficiency and the life of the organic electroluminescent element can be improved.
  • the hole transportability is improved while suppressing the deterioration of the device caused by the electrons entering the hole transport layer. Therefore, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
  • Examples 30 to 33 described above examples in which the amine derivative having a silyl group of the present invention represented by the general formula (8) is used as a hole transport material of an organic electroluminescence device have been described.
  • the use of the amine derivative having a silyl group of the invention is not limited to an organic electroluminescence element, and may be used for other light emitting elements or light emitting devices.
  • the organic electroluminescence device using the amine derivative having a silyl group of the present invention represented by the general formula (8) may be used for a passive matrix driving type organic electroluminescence display, and is active matrix driving.
  • the present invention may be used for a type of organic electroluminescence display.
  • the amine derivative of the present invention can improve the light emission efficiency and extend the life of an organic electroluminescence device, and can be used for various applications such as an organic electroluminescence display and illumination.

Abstract

Provided is an amine derivative represented by general formula (1). (In general formula (1), Ar1, Ar2, and Ar3 each independently are a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group, at least one of Ar1, Ar2, and Ar3 is substituted by a substituted or unsubstituted silyl group, and L represents a linking group, substituted or unsubstituted arylene group, or substituted or unsubstituted heteroarylene group.)

Description

アミン誘導体、有機発光材料及びそれを用いた有機エレクトロルミネッセンス素子AMINE DERIVATIVE, ORGANIC LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
 本発明は、有機発光材料、特に、正孔輸送材料等の有機発光材料として好適に使用される新規なアミン誘導体と、それを用いた有機エレクトロルミネッセンス素子に関する。 The present invention relates to a novel amine derivative suitably used as an organic light-emitting material, particularly an organic light-emitting material such as a hole transport material, and an organic electroluminescence device using the same.
 近年、発光材料を表示部の発光素子に用いた有機エレクトロルミネッセンス表示装置の開発が盛んになってきている。有機エレクトロルミネッセンス表示装置は、液晶表示装置等とは異なり、陽極及び陰極から注入された正孔及び電子を発光層において再結合させることにより、発光層における有機化合物を含む発光材料を発光させて表示を実現するいわゆる自発光型の表示装置である。 In recent years, development of organic electroluminescence display devices using a light emitting material for a light emitting element of a display portion has been actively performed. Unlike a liquid crystal display device or the like, an organic electroluminescent display device displays a light emitting material containing an organic compound in a light emitting layer by emitting light and recombining holes and electrons injected from an anode and a cathode in the light emitting layer. This is a so-called self-luminous display device.
 有機エレクトロルミネッセンス素子は、近年、発光層と前記発光層にキャリア(正孔、電子)を輸送する層など、特性の異なる複数の層で構成されたものが提案されている。 In recent years, organic electroluminescent elements have been proposed which are composed of a plurality of layers having different characteristics, such as a light emitting layer and a layer for transporting carriers (holes, electrons) to the light emitting layer.
 有機エレクトロルミネッセンス素子の発光特性の向上及び長寿命化のために、正孔輸送層は、優れた正孔輸送能力とキャリア耐性が要求される。このような観点から、種々の正孔輸送材料が提案されている。 In order to improve the light emission characteristics and extend the lifetime of the organic electroluminescence element, the hole transport layer is required to have excellent hole transport ability and carrier resistance. From such a viewpoint, various hole transport materials have been proposed.
 有機エレクトロルミネッセンス素子の各層に用いられる材料としては、芳香族アミン系化合物等の様々な化合物などが知られている。例えば、特許文献1及び特許文献6では、カルバゾール誘導体が正孔輸送材料又は正孔注入材料として提案されている。また、特許文献2では、ターフェニル基を有するアミン化合物が正孔輸送材料及び発光層中のホスト材料として提案されている。特許文献3では、フルオレニル基を有するアミン化合物が正孔輸送材料又は正孔注入材料として提案されている。特許文献4では、ジベンゾフリル基を有するアミン誘導体が正孔輸送材料または発光層のホスト材料として提案されている。特許文献5では、シリル基を有するアミン誘導体が正孔輸送材料として提案されている。特許文献7及び特許文献8では、縮合環が置換したカルバゾール誘導体が提案されている。特許文献9では、トリアリールアミン誘導体が発光層材料、または正孔注入輸送材料として提案されている。特許文献10では、トリ(p-ターフェニル-4-イル)アミン化合物が正孔輸送材料として提案されている。特許文献11では、ジアミン化合物が正孔輸送材料として提案されている。特許文献12及び特許文献13では、シリル基を有するアミン化合物が発光層材料として提案されている。特許文献14では、シリル基を有するアミン化合物が電子阻止層材料、または発光層材料として提案されている。しかしながら、これらの材料を用いた有機エレクトロルミネッセンス素子も充分な発光寿命を有しているとは言い難く、現在では一層、高効率で低電圧駆動が可能であり、発光寿命の長い有機エレクトロルミネッセンス素子が望まれている。 Various materials such as aromatic amine compounds are known as materials used for each layer of the organic electroluminescence element. For example, in Patent Document 1 and Patent Document 6, a carbazole derivative is proposed as a hole transport material or a hole injection material. In Patent Document 2, an amine compound having a terphenyl group is proposed as a hole transport material and a host material in a light emitting layer. In Patent Document 3, an amine compound having a fluorenyl group is proposed as a hole transport material or a hole injection material. In Patent Document 4, an amine derivative having a dibenzofuryl group is proposed as a hole transport material or a host material of a light emitting layer. In Patent Document 5, an amine derivative having a silyl group is proposed as a hole transport material. In Patent Document 7 and Patent Document 8, carbazole derivatives substituted with a condensed ring are proposed. In Patent Document 9, a triarylamine derivative is proposed as a light emitting layer material or a hole injecting and transporting material. In Patent Document 10, a tri (p-terphenyl-4-yl) amine compound is proposed as a hole transport material. In Patent Document 11, a diamine compound is proposed as a hole transport material. In Patent Document 12 and Patent Document 13, an amine compound having a silyl group is proposed as a light emitting layer material. In Patent Document 14, an amine compound having a silyl group is proposed as an electron blocking layer material or a light emitting layer material. However, it is difficult to say that organic electroluminescence elements using these materials also have a sufficient light emission lifetime. At present, the organic electroluminescence elements can be driven with higher efficiency and lower voltage and have a longer light emission life. Is desired.
米国特許出願公開第2007/0231503号明細書US Patent Application Publication No. 2007/0231503 国際公開第2012/091471号International Publication No. 2012/091471 国際公開第2010/110553号International Publication No. 2010/110553 欧州特許出願公開第2421064号明細書European Patent Application No. 2421064 米国特許出願公開第2008/0106188号明細書US Patent Application Publication No. 2008/0106188 国際公開第2007/148660号International Publication No. 2007/148660 特開2009-194042号公報JP 2009-194042 A 特開2010-195708号公報JP 2010-195708 A 特許第3278252号公報Japanese Patent No. 3278252 国際公開第2008/015963号International Publication No. 2008/015963 欧州特許出願公開第02042481号明細書European Patent Application No. 02042481 特開2007-230951号公報JP 2007-230951 A 米国特許出願公開第2007/207346号明細書US Patent Application Publication No. 2007/207346 国際公開第2010/052932号International Publication No. 2010/052932
 前述したように、有機エレクトロルミネッセンス素子を表示装置に応用するにあたり、有機発光材料には長寿命化が求められている。しかしながら、これまで提案されている化合物を正孔注入層又は正孔輸送層に用いた素子は、電子耐性が十分で無かったため、素子寿命の向上が求められていた。 As described above, when an organic electroluminescent element is applied to a display device, the organic light emitting material is required to have a long lifetime. However, since the device using the compound proposed so far in the hole injection layer or the hole transport layer has not been sufficiently resistant to electrons, an improvement in device lifetime has been demanded.
 有機エレクトロルミネッセンス素子の素子寿命の前記問題点は、発光層と正孔輸送層との界面近傍での正孔と電子とが再結合して発光する際、再結合できなかった電子が正孔輸送層に侵入して電子が正孔輸送材料に損傷を与え、素子を劣化させることに起因している。 The problem with the lifetime of organic electroluminescence devices is that when holes and electrons recombine in the vicinity of the interface between the light emitting layer and the hole transport layer to emit light, the electrons that could not be recombined are transported by holes. This is due to the electrons entering the layer and damaging the hole transport material, degrading the device.
 本発明は、上述の課題を鑑み、正孔輸送層に侵入した電子が原因となる素子の劣化機構を抑制することによって、素子寿命が向上された有機エレクトロルミネッセンス素子、及びそれを実現する有機発光材料を提供することを課題とする。 In view of the above-described problems, the present invention provides an organic electroluminescence device having an improved device lifetime by suppressing a deterioration mechanism of the device caused by electrons entering the hole transport layer, and an organic light emitting device that realizes the organic electroluminescence device It is an object to provide materials.
 本発明の一実施形態によるアミン誘導体は、以下の一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000006

一般式(1)中、Ar、Ar、及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、Ar、Ar、及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されている。Lは、単結合、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基を表す。
An amine derivative according to an embodiment of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006

In General Formula (1), Ar 1 , Ar 2 , and Ar 3 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and Ar 1 , Ar 2 , and Ar 3 At least one of them is substituted with a substituted or unsubstituted silyl group. L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
 本発明の一実施形態によると、アミン誘導体は、一般式(1)におけるArが強電子耐性を示すシリル基で置換されたアリール基であるため、電子耐性が向上し、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to one embodiment of the present invention, the amine derivative is an aryl group in which Ar 1 in the general formula (1) is substituted with a silyl group exhibiting strong electron resistance. Therefore, the electron resistance is improved, and the organic electroluminescent element is improved. Improvement of luminous efficiency and long life can be realized.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Ar、Ar、及びArのうち少なくとも1つは、置換若しくは無置換のヘテロアリール基であってもよい。 In the amine derivative according to one embodiment of the present invention, in the general formula (1), at least one of Ar 1 , Ar 2 , and Ar 3 may be a substituted or unsubstituted heteroaryl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基であってもよい。 In the amine derivative according to an embodiment of the present invention, in the general formula (1), Ar 1 and Ar 2 may each independently be a substituted or unsubstituted aryl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Ar及びArはそれぞれ独立に、環形成炭素数6~18からなるアリール基であり、Arは置換若しくは無置換のジベンゾヘテロール基であってもよい。 In the amine derivative according to an embodiment of the present invention, in the general formula (1), Ar 1 and Ar 2 are each independently an aryl group having 6 to 18 ring carbon atoms, and Ar 3 is substituted or unsubstituted. It may be a dibenzoheteroyl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンスエレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to one embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Ar、Ar、及びArのうち少なくとも1つを置換しているシリル基が、該シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基又は該シリル基に置換されるアルキル基の炭素数がそれぞれ1以上6以下のトリアルキルシリル基であってもよい。 The amine derivative according to one embodiment of the present invention is an aryl derivative in which in the general formula (1), a silyl group that substitutes at least one of Ar 1 , Ar 2 , and Ar 3 is substituted with the silyl group. The group may be a triarylsilyl group having 6 to 18 ring carbon atoms, or a trialkylsilyl group having 1 to 6 carbon atoms in the alkyl group substituted by the silyl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Ar及びArが、それぞれ一つのシリル基で置換されていてもよい。 In the amine derivative according to an embodiment of the present invention, in the general formula (1), Ar 1 and Ar 2 may each be substituted with one silyl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Ar、Ar、及びArが、それぞれ一つのシリル基で置換されていてもよい。 In the amine derivative according to an embodiment of the present invention, Ar 1 , Ar 2 , and Ar 3 in the general formula (1) may be substituted with one silyl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Lは、単結合又は環形成炭素数6~14のアリーレン基であってもよい。 In the amine derivative according to one embodiment of the present invention, in the general formula (1), L may be a single bond or an arylene group having 6 to 14 ring carbon atoms.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Arは、置換若しくは無置換のジベンゾフリル基であってもよい。 In the amine derivative according to an embodiment of the present invention, Ar 3 in the general formula (1) may be a substituted or unsubstituted dibenzofuryl group.
 本発明の一実施形態によるアミン誘導体は、ジベンゾフリル基が導入されることにより、さらに電子耐性が向上し、ガラス転移温度が高くなる。このため、有機エレクトロルミネッセンス素子の発光効率の向上、低電圧化及び長寿命化を実現することができる。 In the amine derivative according to one embodiment of the present invention, the introduction of a dibenzofuryl group further improves the electron resistance and increases the glass transition temperature. For this reason, the improvement of the luminous efficiency of an organic electroluminescent element, low voltage, and lifetime improvement are realizable.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Lが単結合を含まなくてもよい。 In the amine derivative according to one embodiment of the present invention, L in the general formula (1) may not include a single bond.
 本発明の一実施形態によるアミン誘導体は、Lが単結合ではなく、2価の連結基であることにより、分子全体のπ電子の共役系が拡がるため、正孔輸送性が向上し、さらに分子の安定性が向上することにより、有機エレクトロルミネッセンス素子の発光効率の向上、低電圧化及び長寿命化を実現することができる。 In the amine derivative according to an embodiment of the present invention, since L is not a single bond but a divalent linking group, the conjugated system of π electrons in the whole molecule is expanded, so that the hole transport property is improved. By improving the stability, it is possible to improve the light emission efficiency, lower the voltage, and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、前記一般式(1)において、Lがフェニレン基であり、Arであるジベンゾフリル基が3位の位置でLに結合してもよい。 In the amine derivative according to an embodiment of the present invention, in the general formula (1), L is a phenylene group, and a dibenzofuryl group that is Ar 3 may be bonded to L at the 3-position.
 本発明の一実施形態によると、正孔輸送性が向上することにより、有機エレクトロルミネッセンス素子の発光効率の向上、低電圧化及び長寿命化を実現することができる。 According to one embodiment of the present invention, the hole transportability is improved, whereby the light emission efficiency of the organic electroluminescence device can be improved, the voltage can be lowered, and the life can be extended.
 前記一般式(1)で表される本発明の一実施形態によるアミン誘導体は、以下の一般式(2)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000007
The amine derivative according to one embodiment of the present invention represented by the general formula (1) may be a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000007
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上、低電圧化及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency, lower the voltage, and extend the life of the organic electroluminescence element.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、前記いずれかに記載のアミン誘導体を発光層中に含む。 An organic electroluminescence device according to an embodiment of the present invention includes any one of the above-described amine derivatives in a light emitting layer.
 本発明の一実施形態によると、発光効率の向上、低電圧化及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to an embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency, lower voltage, and longer life is provided.
 本発明の一実施形態意による有機エレクトロルミネッセンス素子は、前記いずれかに記載のアミン誘導体を発光層と陽極との間の積層膜のうちの一つの膜中に含む。 An organic electroluminescence device according to an embodiment of the present invention includes any one of the above-described amine derivatives in one of the laminated films between the light emitting layer and the anode.
 本発明の一実施形態によると、発光効率の向上、低電圧化及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to an embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency, lower voltage, and longer life is provided.
 本発明の一実施形態による前記アミン誘導体は、一般式(1)中、前記Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、前記Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、前記Arは置換若しくは無置換のジベンゾフリル基であり、前記Lは単結合であってもよい。 In the amine derivative according to an embodiment of the present invention, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, At least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted dibenzofuryl group, and L may be a single bond. .
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。ジベンゾフリル基は、強電子耐性を示し、また、平面性が高いため、高いガラス転移点を示す。そのため、有機エレクトロルミネッセンス素子の発光効率を向上させ、さらに低駆動電圧化及び長寿命化を実現することが可能となる。また、有機エレクトロルミネッセンス素子を作成する際に、製膜性の向上を期待することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element. The dibenzofuryl group exhibits strong electron resistance and high planarity, and thus exhibits a high glass transition point. For this reason, it is possible to improve the light emission efficiency of the organic electroluminescence element, and to realize a lower driving voltage and a longer life. Moreover, when producing an organic electroluminescent element, improvement of film forming property can be expected.
 前記一般式(1)において、前記ジベンゾフリル基は3位の位置で前記Lに結合していてもよい。 In the general formula (1), the dibenzofuryl group may be bonded to the L at the 3-position.
 本発明の一実施形態によると、ジベンゾフリル基が3位の位置で前記Lと結合する、即ち、アミン部位の窒素原子(N)と結合することにより、分子全体のπ電子の共役系が拡がるため、正孔輸送性の向上が見込まれ、有機エレクトロルミネッセンス素子のさらなる発光効率の向上及び長寿命化を実現することができる。 According to one embodiment of the present invention, the dibenzofuryl group is bonded to the L at the 3-position, that is, bonded to the nitrogen atom (N) of the amine site, thereby expanding the π-electron conjugated system of the entire molecule. Therefore, improvement in hole transportability is expected, and further improvement in light emission efficiency and longer life of the organic electroluminescence element can be realized.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、前記アミン誘導体を発光層中に含む。 An organic electroluminescence device according to an embodiment of the present invention includes the amine derivative in a light emitting layer.
 本発明の一実施形態によると、発光効率の向上及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to one embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、前記アミン誘導体を発光層と陽極との間の積層膜中のうちの一つの膜中に含む。 The organic electroluminescence device according to one embodiment of the present invention includes the amine derivative in one of the laminated films between the light emitting layer and the anode.
 本発明の一実施形態によると、発光効率の向上及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to one embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
 本発明の一実施形態による前記アミン誘導体は、一般式(1)中、Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arは置換若しくは無置換のフルオレニル基であり、Lは、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基であってもよい。 In the amine derivative according to one embodiment of the present invention, in general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and Ar At least one of 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted fluorenyl group, L is a substituted or unsubstituted arylene group, or substituted or unsubstituted It may be an unsubstituted heteroarylene group.
 本発明の一実施形態によるアミン誘導体は、連結基であるLを介してフルオレニル基をアミン部位に結合することにより、π電子の共役系が拡がり、正孔輸送性及び分子の安定性が向上する。また、フルオレニル基を導入することにより、連結基Lである置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基が平面化することにより、アミン誘導体の正孔輸送性が向上する。これにより、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 In the amine derivative according to one embodiment of the present invention, a conjugated group of π electrons is expanded by bonding a fluorenyl group to an amine moiety via L as a linking group, so that hole transportability and molecular stability are improved. . Further, by introducing a fluorenyl group, the substituted or unsubstituted arylene group or the substituted or unsubstituted heteroarylene group as the linking group L is planarized, whereby the hole transport property of the amine derivative is improved. Thereby, the improvement of the luminous efficiency and lifetime improvement of an organic electroluminescent element are realizable.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、前記アミン誘導体を発光層中に含む。 An organic electroluminescence device according to an embodiment of the present invention includes the amine derivative in a light emitting layer.
 本発明の一実施形態によると、発光効率の向上及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to one embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、前記アミン誘導体を発光層と陽極との間の積層膜中のうちの一つの膜中に含む。 The organic electroluminescence device according to one embodiment of the present invention includes the amine derivative in one of the laminated films between the light emitting layer and the anode.
 本発明の一実施形態によると、発光効率の向上及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to one embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
 本発明の一実施形態によるアミン誘導体は、一般式(1)中、Arは置換若しくは無置換のフルオレニル基であり、Lは単結合である以下の一般式(3)で表されるアミン誘導体であってもよい。
Figure JPOXMLDOC01-appb-C000008
An amine derivative according to an embodiment of the present invention is represented by the following general formula (3), wherein Ar 3 is a substituted or unsubstituted fluorenyl group and L is a single bond in the general formula (1). It may be.
Figure JPOXMLDOC01-appb-C000008
 本発明の一実施形態によると、正孔輸送性が向上し、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to one embodiment of the present invention, the hole transport property is improved, and the light emission efficiency of the organic electroluminescence device can be improved and the lifetime can be increased.
 本発明の一実施形態による前記アミン誘導体は、一般式(3)中、前記フルオレニル基の置換基はそれぞれ独立に、水素原子、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であってもよい。 In the amine derivative according to an embodiment of the present invention, in the general formula (3), the substituents of the fluorenyl group are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or It may be a substituted or unsubstituted heteroaryl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態による前記アミン誘導体において、フルオレニル基は2位の位置でLと結合してもよい。 In the amine derivative according to an embodiment of the present invention, the fluorenyl group may be bonded to L at the 2-position.
 本発明の一実施形態によると、フルオレニル基が2位でアミン部位の窒素原子(N)と結合することにより、分子全体のπ電子の共役系が拡がり、正孔輸送性が向上するとともに分子の安定性が向上するため、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to one embodiment of the present invention, when the fluorenyl group is bonded to the nitrogen atom (N) of the amine moiety at the 2-position, the conjugated system of π electrons of the whole molecule is expanded, and the hole transport property is improved and Since the stability is improved, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、一般式(3)中、Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基であってもよい。 In the amine derivative according to one embodiment of the present invention, in general formula (3), Ar 1 and Ar 2 may each independently be a substituted or unsubstituted aryl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、一般式(3)中、Arは置換若しくは無置換のアリール基であり、Arは置換若しくは無置換のジベンゾヘテロール基であってもよい。 In the amine derivative according to an embodiment of the present invention, in general formula (3), Ar 1 may be a substituted or unsubstituted aryl group, and Ar 2 may be a substituted or unsubstituted dibenzoheteroyl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、一般式(3)中、Ar及びArのうち、何れか一方のみが置換若しくは無置換のシリル基で置換されていてもよい。 In the amine derivative according to one embodiment of the present invention, only one of Ar 1 and Ar 2 in General Formula (3) may be substituted with a substituted or unsubstituted silyl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、一般式(3)中、Ar及びArのうち少なくとも1つを置換しているシリル基が、該シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基、又は該シリル基に置換されるアルキル基の炭素数がそれぞれ1以上6以下のトリアルキルシリル基であってもよい。 The amine derivative according to one embodiment of the present invention is a ring-forming carbon of an aryl group in which at least one of Ar 1 and Ar 2 in General Formula (3) is substituted with the silyl group. It may be a triarylsilyl group having 6 to 18 carbon atoms, or a trialkylsilyl group having 1 to 6 carbon atoms in each alkyl group substituted by the silyl group.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態による有機エレクトロルミネッセンス素子用材料は、前記アミン誘導体を含有する。 An organic electroluminescent element material according to an embodiment of the present invention contains the amine derivative.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態による前記有機エレクトロルミネッセンス素子用材料は、正孔輸送材料であってもよい。 The organic electroluminescent element material according to an embodiment of the present invention may be a hole transport material.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、陰極と陽極との間に配置された発光層及び正孔輸送層を含み、正孔輸送層は、前記アミン誘導体を含有する。 An organic electroluminescence device according to an embodiment of the present invention includes a light emitting layer and a hole transport layer disposed between a cathode and an anode, and the hole transport layer includes the amine derivative.
 本発明の一実施形態によると、発光効率の向上及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to one embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
 本発明の一実施形態による前記アミン誘導体は、一般式(1)中、Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arは置換若しくは無置換のカルバゾリル基であり、Lは、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基であってもよい。 In the amine derivative according to one embodiment of the present invention, in general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and Ar At least one of 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, L is a substituted or unsubstituted arylene group, or substituted or unsubstituted It may be an unsubstituted heteroarylene group.
 本発明の一実施形態によるアミン誘導体は、カルバゾリル基を導入することにより正孔輸送性が向上し、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基であるLを介してアミン部位と結合することによりHOMOの準位が調整されて、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 The amine derivative according to one embodiment of the present invention has improved hole transportability by introducing a carbazolyl group, and the amine derivative is substituted via a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. By combining with the site, the level of HOMO is adjusted, and it is possible to improve the light emission efficiency and extend the lifetime of the organic electroluminescence element.
 本発明の一実施形態による前記アミン誘導体は、前記置換若しくは無置換のカルバゾリル基が2位又は3位の位置でLと結合してもよい。 In the amine derivative according to an embodiment of the present invention, the substituted or unsubstituted carbazolyl group may be bonded to L at the 2-position or 3-position.
 本発明の一実施形態によると、カルバゾリル基が2位又は3位の位置でLと結合することにより、分子全体のπ電子の共役系が拡がり、正孔輸送性が向上するとともに分子の安定性が向上し、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to one embodiment of the present invention, the carbazolyl group is bonded to L at the 2-position or 3-position, thereby expanding the π-electron conjugated system of the entire molecule, improving hole transportability and stability of the molecule. Thus, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、前記アミン誘導体を発光層中に含む。 An organic electroluminescence device according to an embodiment of the present invention includes the amine derivative in a light emitting layer.
 本発明の一実施形態によると、発光効率の向上及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to one embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、前記アミン誘導体を発光層と陽極との間の積層膜中のうちの一つの膜中に含む。 The organic electroluminescence device according to one embodiment of the present invention includes the amine derivative in one of the laminated films between the light emitting layer and the anode.
 本発明の一実施形態によると、発光効率の向上及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to one embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
 本発明の一実施形態による前記アミン誘導体は、一般式(1)中、前記Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、前記Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arは置換若しくは無置換のカルバゾリル基であり、Lは置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基であり、以下の一般式(4)で表される。
Figure JPOXMLDOC01-appb-C000009

一般式(4)中、R~Rは水素原子、置換若しくは無置換の環形成炭素数6以上30以下のアリール基、置換若しくは無置換の環形成原子数5以上30以下のヘテロアリール基、置換若しくは無置換の炭素数1以上15以下のアルキル基、置換若しくは無置換のシリル基、シアノ基、ハロゲン原子、又は重水素原子である。
In the amine derivative according to an embodiment of the present invention, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, At least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, L is a substituted or unsubstituted arylene group, or substituted Alternatively, it is an unsubstituted heteroarylene group and is represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000009

In general formula (4), R 1 to R 8 are a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms. A substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted silyl group, a cyano group, a halogen atom, or a deuterium atom.
 本発明の一実施形態に係るアミン誘導体は、カルバゾリル基を導入することにより正孔輸送性が向上し、連結基Lを介してカルバゾリル基がアミン部位と結合することにより、HOMOの準位が調整されることにより、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 In the amine derivative according to one embodiment of the present invention, the hole transportability is improved by introducing a carbazolyl group, and the carbazolyl group is bonded to the amine moiety via the linking group L, whereby the HOMO level is adjusted. As a result, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、一般式(4)において、R~Rが互いに結合して飽和又は不飽和の環を形成してもよい。 In the amine derivative according to one embodiment of the present invention, in the general formula (4), R 1 to R 8 may be bonded to each other to form a saturated or unsaturated ring.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態によるアミン誘導体は、一般式(4)において、Lがフェニレン基、ビフェニレン基又はフルオレニレン基であってもよい。 In the amine derivative according to one embodiment of the present invention, in the general formula (4), L may be a phenylene group, a biphenylene group or a fluorenylene group.
 本発明の一実施形態によるアミン誘導体は、連結基Lがフェニレン基、ビフェニレン基又はフルオレニレン基であることにより、分子全体のπ電子の共役系が拡がるため、正孔輸送性及び分子の安定性が向上し、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 In the amine derivative according to an embodiment of the present invention, the linking group L is a phenylene group, a biphenylene group, or a fluorenylene group, so that a conjugated system of π electrons in the whole molecule is expanded. It is possible to improve the emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態による前記アミン誘導体は、Lがフルオレニレン基である場合、一般式(4)におけるAr及びArは環形成炭素数6以上12以下のアリール基である。 In the amine derivative according to an embodiment of the present invention, when L is a fluorenylene group, Ar 1 and Ar 2 in the general formula (4) are aryl groups having 6 to 12 ring carbon atoms.
 本発明の一実施形態によると、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 According to an embodiment of the present invention, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、前記アミン誘導体を発光層中に含む。 An organic electroluminescence device according to an embodiment of the present invention includes the amine derivative in a light emitting layer.
 本発明の一実施形態によると、発光効率の向上及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to one embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
 本発明の一実施形態による有機エレクトロルミネッセンス素子は、前記アミン誘導体を発光層と陽極との間の積層膜中のうちの一つの膜中に含む。 The organic electroluminescence device according to one embodiment of the present invention includes the amine derivative in one of the laminated films between the light emitting layer and the anode.
 本発明の一実施形態によると、発光効率の向上及び長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to one embodiment of the present invention, an organic electroluminescence device that achieves improved luminous efficiency and longer life is provided.
 一般式(1)中、Arはシリル基で置換された以下の一般式(5)で表わされるアリール基であり、Arは環形成炭素数6以上30以下の置換若しくは無置換のアリール基であり、Arは以下の一般式(6)で表わされるアリール基であり、Lは以下の一般式(7)で表わされるアリーレン基であり、
Figure JPOXMLDOC01-appb-C000010

一般式(5)において、oは0≦o≦2を満たす整数であり、R11、R12、R13はそれぞれ独立的に炭素数1以上15以下のアルキル基、置換若しくは無置換の環形成炭素数6以上30以下のアリール基、または環形成炭素数1以上30以下のヘテロアリール基であり、一般式(6)において、Rはそれぞれ独立的に水素原子、ハロゲン原子、炭素数1以上15以下のアルキル基、置換若しくは無置換の環形成炭素数6以上30以下のアリール基であり、mは0≦m≦5を満たす整数であり、一般式(7)において、R10はそれぞれ独立的に水素原子、ハロゲン原子、炭素数1以上15以下のアルキル基、置換若しくは無置換の環形成炭素数6以上30以下のアリール基であり、lは0≦m≦4であり、nは2≦n≦5を満たす整数であってもよい。
In General Formula (1), Ar 1 is an aryl group represented by the following General Formula (5) substituted with a silyl group, and Ar 2 is a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. Ar 3 is an aryl group represented by the following general formula (6), L is an arylene group represented by the following general formula (7),
Figure JPOXMLDOC01-appb-C000010

In general formula (5), o is an integer that satisfies 0 ≦ o ≦ 2, and R 11 , R 12 , and R 13 are each independently an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted ring formation. An aryl group having 6 to 30 carbon atoms, or a heteroaryl group having 1 to 30 ring carbon atoms, and in general formula (6), each R 9 is independently a hydrogen atom, a halogen atom, or a carbon number of 1 or more. An alkyl group having 15 or less, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, m is an integer satisfying 0 ≦ m ≦ 5, and in the general formula (7), each R 10 is independent. A hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, l is 0 ≦ m ≦ 4, and n is 2 ≤ n ≤ 5 It may be an integer.
 本発明の一実施形態によるアミン誘導体は、一般式(1)におけるArが強電子耐性を示すシリル基で置換されたアリール基であるため、電子耐性が向上し、さらに、一般式(7)中でnが2以上であるアリーレン基を有することにより、π電子が広がり、良好な正孔輸送性を示す。そのため、本発明の一実施形態によるアミン誘導体は、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。また、本発明の一実施形態によるアミン誘導体は、一般式(7)中でnが2以上であるアリーレン基を有することにより、ガラス転移温度(Tg)が上昇し、製膜性が向上する。アミン誘導体のガラス転移温度は120℃以上あることが、製造上好ましい。 The amine derivative according to one embodiment of the present invention is an aryl group in which Ar 1 in the general formula (1) is substituted with a silyl group exhibiting strong electron resistance, so that the electron resistance is improved. Among them, having an arylene group in which n is 2 or more spreads π electrons and exhibits good hole transport properties. Therefore, the amine derivative according to an embodiment of the present invention can improve the light emission efficiency and extend the life of the organic electroluminescence element. Moreover, the amine derivative by one Embodiment of this invention has an arylene group whose n is 2 or more in General formula (7), glass transition temperature (Tg) rises and film forming property improves. The glass transition temperature of the amine derivative is preferably 120 ° C. or higher for production.
 一般式(5)において、R11、R12、R13は、それぞれフェニル基であってもよい。 In the general formula (5), R 11 , R 12 and R 13 may each be a phenyl group.
 本発明の一実施形態によるアミン誘導体は、一般式(5)におけるR11、R12、R13がフェニル基であることにより、ガラス転移温度(Tg)が上昇し、製膜性が向上する。 In the amine derivative according to one embodiment of the present invention, when R 11 , R 12 and R 13 in the general formula (5) are phenyl groups, the glass transition temperature (Tg) is increased and the film forming property is improved.
 一般式(5)において、oは、0または1であってもよい。 In the general formula (5), o may be 0 or 1.
 本発明の一実施形態によるアミン誘導体は、一般式(5)におけるoが、0または1であることにより、電子の正孔輸送層への侵入を阻止する能力が高くなり、正孔輸送材料の劣化を抑制し、有機エレクトロルミネッセンス素子の長寿命化を実現することができる。 In the amine derivative according to one embodiment of the present invention, when o in the general formula (5) is 0 or 1, the ability to prevent the penetration of electrons into the hole transport layer is increased. Deterioration can be suppressed, and the lifetime of the organic electroluminescence element can be extended.
 一般式(7)において、nは、2であってもよい。 In the general formula (7), n may be 2.
 本発明の一実施形態によると、一般式(7)におけるnが2であることにより、アミン誘導体の電子耐性をさらに向上させることができる。 According to one embodiment of the present invention, when n in the general formula (7) is 2, the electron resistance of the amine derivative can be further improved.
 本発明の一実施形態による有機エレクトロルミネッセンス素子用材料は、前記いずれかに記載のアミン誘導体を含む。 The material for an organic electroluminescence device according to one embodiment of the present invention contains any of the amine derivatives described above.
 本発明の一実施形態によると、強電子耐性を有し、良好な正孔輸送性を示す有機エレクトロルミネッセンス素子用材料が提供される。 According to one embodiment of the present invention, there is provided an organic electroluminescent element material having strong electron resistance and good hole transportability.
 本発明の一実施形態意による有機エレクトロルミネッセンス素子は、前記有機エレクトロルミネッセンス素子用材料を発光層と陽極との間に配置された積層膜の何れか一つに含む。 An organic electroluminescent device according to an embodiment of the present invention includes the organic electroluminescent device material in any one of laminated films disposed between a light emitting layer and an anode.
 本発明の一実施形態によると、発光効率が向上され、長寿命化が実現された有機エレクトロルミネッセンス素子が提供される。 According to an embodiment of the present invention, an organic electroluminescence element with improved luminous efficiency and a long lifetime is provided.
 本発明によれば、発光効率が向上され、素子寿命が向上された有機エレクトロルミネッセンス素子、及びそれを実現可能にする有機エレクトロルミネッセンス素子用材料を提供することができる。 According to the present invention, it is possible to provide an organic electroluminescent element with improved luminous efficiency and improved element lifetime, and an organic electroluminescent element material that makes it possible to realize it.
本発明の有機エレクトロルミネッセンス素子の構造の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the structure of the organic electroluminescent element of this invention. 本発明の有機エレクトロルミネッセンス材料を使用して作製した有機エレクトロルミネッセンス素子の概略図である。It is the schematic of the organic electroluminescent element produced using the organic electroluminescent material of this invention.
 本願発明者は、上述の課題を検討した結果、有機エレクトロルミネッセンス素子における正孔輸送層の材料として、シリル基を有するアミン誘導体を用いることに想到し、有機エレクトロルミネッセンス素子の長寿命化を達成できることを確認した。以下、本願発明者が想到したシリル基を有するアミン誘導体について説明する。但し、本発明の有機エレクトロルミネッセンス材料及びそれを用いた有機エレクトロルミネッセンス素子は、多くの異なる態様で実施することが可能であり、以下に示す実施の形態の記載内容に限定して解釈されるものではない。 As a result of examining the above-mentioned problems, the present inventor has conceived that an amine derivative having a silyl group is used as a material for a hole transport layer in an organic electroluminescence device, and that the lifetime of the organic electroluminescence device can be extended. It was confirmed. Hereinafter, the amine derivative having a silyl group conceived by the present inventors will be described. However, the organic electroluminescent material of the present invention and the organic electroluminescent element using the same can be implemented in many different modes, and should be interpreted as being limited to the description of the embodiments described below. is not.
 本発明に係る有機エレクトロルミネッセンス材料は、以下の一般式(1)で表されるシリル基を有するアミン誘導体である。
Figure JPOXMLDOC01-appb-C000011

一般式(1)中、Ar、Ar、及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、前記Ar、Ar、及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されていることを特徴とする。Lは、単結合、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基を表す。
The organic electroluminescent material according to the present invention is an amine derivative having a silyl group represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000011

In the general formula (1), Ar 1 , Ar 2 , and Ar 3 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and the Ar 1 , Ar 2 , and Ar At least one of 3 is substituted with a substituted or unsubstituted silyl group. L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
 Ar、Ar、及びArの「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基としては、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ビフェニレン基、ピレニル基、ベンゾチアゾリル基、チオフェニル基、チエノチオフェニル基、チエノチエノチオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ジベンゾフリル基、N-アリールカルバゾリル基、N-ヘテロアリールカルバゾリル基、N-アルキルカルバゾリル基、フェノキサジル基、フェノチアジル基、ピリジル基、ピリミジル基、トリアジル基、キノリニル基、キノキサリル基が挙げられ、Ar、Ar、及びArのアリール基又はヘテロアリール基としては、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ジベンゾチオフェニル基、ジベンゾフリル基、N-フェニルカルバゾリル基が好ましく、特に、フェニル基、ビフェニル基、フルオレニル基、トリフェニレン基、ジベンゾチオフェニル基、ジベンゾフリル基、N-フェニルカルバゾリル基が好ましい。ここで、上述したように、Ar、Ar、及びArのアリール基及びヘテロアリール基のうち、少なくとも1つはシリル基で置換されている。また、シリル基は、Ar及びArの少なくとも1つに1つずつ置換されることが好ましく、特に、Ar、Ar、及びArの少なくとも1つに1つずつ置換されることがさらに好ましい。 The aryl group and heteroaryl group of the “substituted or unsubstituted aryl group” or “substituted or unsubstituted heteroaryl group” of Ar 1 , Ar 2 , and Ar 3 include phenyl group, naphthyl group, anthracenyl group, phenanthryl Group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, biphenylene group, pyrenyl group, benzothiazolyl group, thiophenyl group, thienothiophenyl group, thienothienothiophenyl group, benzothiophenyl group, dibenzothiophenyl group, dibenzofuryl Group, N-arylcarbazolyl group, N-heteroarylcarbazolyl group, N-alkylcarbazolyl group, phenoxazyl group, phenothiazyl group, pyridyl group, pyrimidyl group, triazyl group, quinolinyl group, quinoxalyl group , Ar 1 , Ar 2 , and Ar 3 aryl group or heteroaryl group includes phenyl group, naphthyl group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N-phenylcarbazolyl In particular, a phenyl group, a biphenyl group, a fluorenyl group, a triphenylene group, a dibenzothiophenyl group, a dibenzofuryl group, and an N-phenylcarbazolyl group are preferable. Here, as described above, at least one of the aryl groups and heteroaryl groups of Ar 1 , Ar 2 , and Ar 3 is substituted with a silyl group. Further, a silyl group, it is preferably substituted by one to at least one of Ar 1 and Ar 2, in particular, Ar 1, Ar 2, and be substituted by one to at least one of Ar 3 Further preferred.
 Ar、Ar、及びArのうち、少なくとも1つが置換もしくは無置換のヘテロアリール基であることが好ましく、さらに好ましくは、置換若しくは無置換のカルバゾリル基、ジベンゾチオフェニル基、ジベンゾフリル基などのジベンゾヘテロール基である。限定されるわけではないが、Arが置換もしくは無置換のヘテロアリール基であることが好ましく、Arがジベンゾヘテロール基であることが特に好ましい。Arが置換もしくは無置換のヘテロアリール基であるとき、Ar及びArは置換若しくは無置換のアリール基であることが好ましく、特に好ましくは、Arがジベンゾヘテロール基であり、Ar及びArは、環形成炭素数6~18のアリール基である。 It is preferable that at least one of Ar 1 , Ar 2 , and Ar 3 is a substituted or unsubstituted heteroaryl group, and more preferably a substituted or unsubstituted carbazolyl group, dibenzothiophenyl group, dibenzofuryl group, etc. Dibenzoheteroyl group. Although not limited, Ar 3 is preferably a substituted or unsubstituted heteroaryl group, and Ar 3 is particularly preferably a dibenzoheteroyl group. When Ar 3 is a substituted or unsubstituted heteroaryl group, Ar 1 and Ar 2 are preferably substituted or unsubstituted aryl groups, and particularly preferably Ar 3 is a dibenzoheteroyl group, and Ar 1 And Ar 2 is an aryl group having 6 to 18 ring carbon atoms.
 Lの「置換若しくは無置換のアリーレン基」又は「置換若しくは無置換のヘテロアリーレン基」としては、Ar、Ar、及びArで挙げられた「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基と同様のものが挙げられる。Lの「置換若しくは無置換のアリーレン基」又は「置換若しくは無置換のヘテロアリーレン基」のアリーレン基及びヘテロアリーレン基としては、フェニレン基、ナフチレン基、ビフェニリレン基、チエノチオフェニレン基、及びピリジレン基が好ましい。特に環形成炭素数6~14のアリーレン基が好ましく、フェニレン基及びビフェニリレン基がより好ましい。また、Lが「単結合」であるということは、本発明の一般式(1)で表されるシリル基を有するアミン誘導体において、アミン部位の窒素原子(N)とArとが直接結合している状態を表す。 The “substituted or unsubstituted arylene group” or “substituted or unsubstituted heteroarylene group” for L is the “substituted or unsubstituted aryl group” or “substituted” mentioned in Ar 1 , Ar 2 , and Ar 3. Or the thing similar to the aryl group and heteroaryl group of "an unsubstituted heteroaryl group" is mentioned. The arylene group and heteroarylene group of the “substituted or unsubstituted arylene group” or “substituted or unsubstituted heteroarylene group” of L include a phenylene group, a naphthylene group, a biphenylylene group, a thienothiophenylene group, and a pyridylene group. preferable. In particular, an arylene group having 6 to 14 ring carbon atoms is preferable, and a phenylene group and a biphenylylene group are more preferable. In addition, L being a “single bond” means that in the amine derivative having a silyl group represented by the general formula (1) of the present invention, the nitrogen atom (N) at the amine site and Ar 3 are directly bonded. Represents the state.
 Ar、Ar、及びArのアリール基又はヘテロアリール基に置換される置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。アリール基及びヘテロアリール基の例示される具体例は、上記のAr、Ar、及びArのアリール基及びヘテロアリール基と同じである。 Examples of the substituent substituted on the aryl group or heteroaryl group of Ar 1 , Ar 2 , and Ar 3 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group of Ar 1 , Ar 2 , and Ar 3 described above.
 Ar、Ar、及びArのアリール基又はヘテロアリール基に置換される置換基のアルキル基は特に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、t-ブチル基、シクロブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、ノニル基、デシル基等を例示することができる。 The alkyl group of the substituent substituted with the aryl group or heteroaryl group of Ar 1 , Ar 2 , and Ar 3 is not particularly limited, but a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, Examples include isobutyl group, t-butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, cycloheptyl group, octyl group, nonyl group, decyl group, etc. it can.
 Ar、Ar、及びArのアリール基又はヘテロアリール基の置換基のアルコキシ基は特に限定されないが、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基等を例示することができる。 The alkoxy group of the substituent of the aryl group or heteroaryl group of Ar 1 , Ar 2 , and Ar 3 is not particularly limited, but is a methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group T-butoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7 -A dimethyloctyloxy group etc. can be illustrated.
 Lのアリーレン基又はヘテロアリーレン基の置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。例示される具体例は、Ar、Ar、及びArのアリール基又はヘテロアリール基に置換される置換基として述べたアルキル基、アルコキシ基、アリール基、ヘテロアリール基と同じである。 Examples of the substituent for the arylene group or heteroarylene group of L include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples are the same as the alkyl group, alkoxy group, aryl group and heteroaryl group described as the substituents substituted on the aryl group or heteroaryl group of Ar 1 , Ar 2 and Ar 3 .
 Ar、Ar、及びArの少なくとも1つに置換されるシリル基の置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。例示される具体例は、Ar、Ar、及びArのアリール基又はヘテロアリール基に置換される置換基として述べたアルキル基、アルコキシ基、アリール基、ヘテロアリール基と同じであり、アルキル基及びアリール基が好ましく、特に、メチル基及びフェニル基が好ましい。また、Ar、Ar、及びArの少なくとも1つに置換されるシリル基は、該シリル基に置換されるアルキル基の炭素数がそれぞれ1以上6以下のトリアルキルシリル基又は該シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基であることが好ましい。 Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 , Ar 2 , and Ar 3 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples are the same as the alkyl group, alkoxy group, aryl group and heteroaryl group mentioned as the substituents substituted on the aryl group or heteroaryl group of Ar 1 , Ar 2 , and Ar 3. Group and aryl group are preferable, and methyl group and phenyl group are particularly preferable. In addition, the silyl group substituted with at least one of Ar 1 , Ar 2 , and Ar 3 is a trialkylsilyl group in which the alkyl group substituted with the silyl group has 1 to 6 carbon atoms, or the silyl group It is preferable that the aryl group to be substituted is a triarylsilyl group having 6 to 18 ring carbon atoms.
 式(1)で表される本発明のシリル基を有するアミン誘導体としては、以下に例示する化合物が挙げられるが、これらに限定されるものではない。 Examples of the amine derivative having a silyl group of the present invention represented by the formula (1) include compounds exemplified below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019

Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031

Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032

Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036

Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037

Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038

Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043

Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044

Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045

Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046

Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047

Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048

Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049

Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050

Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051

Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052

Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053

Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054

Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055

Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056

Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 式(1)で表される本発明のシリル基を有するアミン誘導体としては、好ましくは、上記の化合物1、2、3、4、5、6、8、15、16、17、18、19、20、21、22、23、24、25、26、27,28、29、30、31、32、37、38、40、42、44、45、46、49、50、53、54、55、56、57、59、60、61、62、63、64、74、77、79、85、87、88、89、92、96、98、101、102、107、及び110が挙げられ、さらに好ましくは、化合物1、2、3、4、6、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、37、40、44、45、46、49、53、54、55、56、57、59、60、61、62、63、77、85、87、88、89、96、101、102、107、及び110が挙げられる。 As the amine derivative having a silyl group of the present invention represented by the formula (1), the above-mentioned compounds 1, 2, 3, 4, 5, 6, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38, 40, 42, 44, 45, 46, 49, 50, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 74, 77, 79, 85, 87, 88, 89, 92, 96, 98, 101, 102, 107, and 110 are more preferable. Are compounds 1, 2, 3, 4, 6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37. , 40, 44, 45, 46, 49, 53, 54, 55, 56, 5 , 59,60,61,62,63,77,85,87,88,89,96,101,102,107, and 110 and the like.
 本発明の前記シリル基を有するアミン誘導体は、いずれも有機エレクトロルミネッセンス素子用材料として利用することができる。一般式(1)で表される本発明のシリル基を有するアミン誘導体は、アミンの窒素原子(N)又はリンカー(L)に結合したAr、Ar、及びArの置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基のうち少なくとも1つが電子強耐性を示す置換若しくは無置換のシリル基で置換されている。そのため、本発明のシリル基を有するアミン誘導体は、電子に対して安定であり、有機エレクトロルミネッセンス素子用材料、特に、発光層に隣接する正孔輸送層材料として好ましく使用されることができる。本発明のシリル基を有するアミン誘導体を正孔輸送層材料として用いることにより、正孔輸送層の電子耐性を向上させることができ、正孔輸送層に侵入した電子が原因となる正孔輸送材料の劣化を抑制し、有機エレクトロルミネッセンス素子の長寿命化を実現することが可能となる。 Any of the amine derivatives having a silyl group of the present invention can be used as a material for an organic electroluminescence device. The amine derivative having a silyl group of the present invention represented by the general formula (1) is a substituted or unsubstituted group of Ar 1 , Ar 2 , and Ar 3 bonded to the nitrogen atom (N) or linker (L) of the amine. At least one of the aryl group and the substituted or unsubstituted heteroaryl group is substituted with a substituted or unsubstituted silyl group exhibiting strong electron resistance. Therefore, the amine derivative having a silyl group of the present invention is stable with respect to electrons, and can be preferably used as a material for an organic electroluminescence device, particularly as a hole transport layer material adjacent to a light emitting layer. By using the amine derivative having a silyl group of the present invention as a hole transport layer material, the electron transport resistance of the hole transport layer can be improved, and a hole transport material caused by electrons entering the hole transport layer It is possible to suppress the deterioration of the organic electroluminescence element and extend the life of the organic electroluminescence element.
 また、本発明のシリル基を有するアミン誘導体の用途は、有機エレクトロルミネッセンス素子の正孔輸送材料に限定されるわけではない。例えば、正孔注入層の材料にも好ましく用いることが可能である。シリル基を有するアミン誘導体を正孔注入層の材料として用いる場合も、電子が原因となる正孔注入層の劣化を抑制することができるため、正孔輸送層の材料として使用した場合と同様に、有機エレクトロルミネッセンス素子の長寿命化を実現することが可能となる。 Further, the use of the amine derivative having a silyl group of the present invention is not limited to the hole transport material of the organic electroluminescence element. For example, it can be preferably used for the material of the hole injection layer. When an amine derivative having a silyl group is used as the material for the hole injection layer, the deterioration of the hole injection layer caused by electrons can be suppressed. Thus, it is possible to realize a long life of the organic electroluminescence element.
[有機エレクトロルミネッセンス素子]
 有機エレクトロルミネッセンス素子は、例えば、図1に示すような構造を有していてもよいが、これに限定されるわけではない。
[Organic electroluminescence device]
The organic electroluminescence element may have a structure as shown in FIG. 1, for example, but is not limited thereto.
 図1に示す有機エレクトロルミネッセンス素子100は、本発明のアミン誘導体が有機エレクトロルミネッセンス素子用材料として利用される一実施形態の概略断面図であって、ガラス基板102、ガラス基板102上に配置された陽極104、陽極104上に配置された正孔注入層106、正孔注入層106上に配置された正孔輸送層108、正孔輸送層108上に配置された発光層110、発光層110上に配置された電子輸送層112、及び電子輸送層112上に配置された陰極114を含んでもよい。ここで、電子輸送層112は、電子注入層としても機能するものとする。 An organic electroluminescent device 100 shown in FIG. 1 is a schematic cross-sectional view of an embodiment in which the amine derivative of the present invention is used as a material for an organic electroluminescent device, and is disposed on a glass substrate 102 and a glass substrate 102. On the anode 104, the hole injection layer 106 disposed on the anode 104, the hole transport layer 108 disposed on the hole injection layer 106, the light emitting layer 110 disposed on the hole transport layer 108, and the light emitting layer 110 And an electron transport layer 112 disposed on the electron transport layer 112 and a cathode 114 disposed on the electron transport layer 112. Here, the electron transport layer 112 also functions as an electron injection layer.
 陽極104は、酸化インジウムスズ(ITO)やインジウム亜鉛酸化物(IZO)等を用いて形成されてもよい。 The anode 104 may be formed using indium tin oxide (ITO), indium zinc oxide (IZO), or the like.
 正孔注入層106は、4,4',4"-Tris (N-1-naphtyl-N-phenylamino) triphenylamine (1-TNATA)、または4,4',4''-tris(N-(2-naphthyl)-N-phenylamino)-triphenylamine (2-TNATA)、4,4 -Bis(N,N -di(3-tolyl)amino)-3,3-dimethylbiphenyl (HMTPD)等を含んでもよく、例えば、以下に示す化合物を含んでもよい。
Figure JPOXMLDOC01-appb-C000058
The hole-injection layer 106 includes 4,4 ', 4 "-Tris (N-1-naphtyl-N-phenylamino) triphenylamine (1-TNATA), or 4,4', 4 ''-tris (N- (2 -naphthyl) -N-phenylamino) -triphenylamine (2-TNATA), 4,4-Bis (N, N-di (3-tolyl) amino) -3,3-dimethylbiphenyl (HMTPD), etc. The compounds shown below may be included.
Figure JPOXMLDOC01-appb-C000058
 正孔輸送層108には、一般式(1)で表される本発明のシリル基を有するアミン誘導体を用いて形成することができる。 The hole transport layer 108 can be formed using the amine derivative having a silyl group of the present invention represented by the general formula (1).
 発光層110には、ホスト材料として、例えば以下に示す化合物を含んでもよい。
Figure JPOXMLDOC01-appb-C000059

但し、発光層110にホスト材料として含まれる化合物は、上述の化合物に限定されず、公知の材料をホスト材料として使用してもよい。
The light emitting layer 110 may contain, for example, the following compound as a host material.
Figure JPOXMLDOC01-appb-C000059

However, the compound contained as a host material in the light emitting layer 110 is not limited to the above-mentioned compound, and a known material may be used as the host material.
 また、発光層110には、ドーパントとして、例えば以下に示す化合物を含んでもよい。
Figure JPOXMLDOC01-appb-C000060

但し、発光層110にドーパントとしてドープされる化合物は、上述の化合物に限定されず、所望の色領域に応じて公知の材料をドーパントとして使用してもよい。ドーパントは、発光層110を構成する材料に0.1%~50%ドープされることが好ましい。
In addition, the light emitting layer 110 may include, for example, the following compounds as dopants.
Figure JPOXMLDOC01-appb-C000060

However, the compound doped as a dopant in the light emitting layer 110 is not limited to the above-mentioned compound, and a known material may be used as a dopant according to a desired color region. The dopant is preferably doped by 0.1% to 50% to the material constituting the light emitting layer 110.
 電子輸送層112は、例えば、Tris(8-hydroxyquinolinato)aluminium(Alq3)などを含んでもよい。また、以下に示す化合物を含んでもよい。
Figure JPOXMLDOC01-appb-C000061
The electron transport layer 112 may include, for example, Tris (8-hydroxyquinolinato) aluminum (Alq3). Moreover, you may include the compound shown below.
Figure JPOXMLDOC01-appb-C000061
 陰極114は、Al、Ag、Caなどの金属や酸化インジウムスズ(ITO)やインジウム亜鉛酸化物(IZO)等の透明材料により形成される。 The cathode 114 is formed of a metal such as Al, Ag, or Ca, or a transparent material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
 図1に示す有機エレクトロルミネッセンス素子100では、記載を省略したが、有機エレクトロルミネッセンス素子100は、陰極114と電子輸送112との間に電子注入層含んでもよい。電子注入層は、例えば、フッ化リチウム(LiF)、リチウム8-キノリナート等を含んでもよい。 Although the description is omitted in the organic electroluminescent element 100 shown in FIG. 1, the organic electroluminescent element 100 may include an electron injection layer between the cathode 114 and the electron transport 112. The electron injection layer may include, for example, lithium fluoride (LiF), lithium 8-quinolinate, and the like.
 上述したように、一般式(1)で表される本発明のシリル基を有するアミン誘導体は、有機エレクトロルミネッセンス素子の正孔輸送層の材料として用いることができる。しかしながら、本発明のシリル基を有するアミン誘導体の用途は、有機エレクトロルミネッセンス素子の正孔輸送材料に限定されるわけではなく、正孔注入材料として正孔注入層に含まれてもよい。 As described above, the amine derivative having a silyl group of the present invention represented by the general formula (1) can be used as a material for a hole transport layer of an organic electroluminescence element. However, the use of the amine derivative having a silyl group of the present invention is not limited to the hole transport material of the organic electroluminescence device, and may be included in the hole injection layer as a hole injection material.
 前記正孔注入層106及び正孔輸送層108等、有機エレクトロルミネッセンス素子を構成する正孔注入層材料及び正孔輸送層材料のうち、少なくともいずれかの材料に本発明のアミン誘導体を用いることによって、有機エレクトロルミネッセンス素子の長寿命化を達成することができる。 By using the amine derivative of the present invention for at least one of the hole injection layer material and the hole transport layer material constituting the organic electroluminescence element such as the hole injection layer 106 and the hole transport layer 108. In addition, the lifetime of the organic electroluminescence element can be increased.
 上述したように、本発明のシリル基を有するアミン誘導体は、電子耐性を有するため、有機エレクトロルミネッセンス素子の正孔輸送層材料又は正孔注入層材料として好ましいが、これらに限定されるわけではない。例えば、発光層内のホスト材料として用いてもよい。 As described above, the amine derivative having a silyl group of the present invention is preferable as a hole transport layer material or a hole injection layer material of an organic electroluminescence device because it has electron resistance, but is not limited thereto. . For example, you may use as a host material in a light emitting layer.
[実施例I]
 一般式(1)で表される本発明のシリル基を有するアミン誘導体について、前記化合物1、3、61、63の合成法の例を以下に述べる。但し、以下に述べる合成法は一例であって、本発明を限定するものでは無い。
[Example I]
With respect to the amine derivative having the silyl group of the present invention represented by the general formula (1), examples of the synthesis method of the compounds 1, 3, 61, 63 will be described below. However, the synthesis method described below is an example and does not limit the present invention.
(化合物1の合成)
 以下の化学反応式は、一般式(1)で表される本発明のシリル基を有するアミン誘導体である化合物1の合成プロセスを図示したものである。
Figure JPOXMLDOC01-appb-C000062
(Synthesis of Compound 1)
The following chemical reaction formula illustrates the synthesis process of Compound 1, which is an amine derivative having a silyl group of the present invention represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000062
 本発明の化合物1は、以下のようにして合成を実施した。 Compound 1 of the present invention was synthesized as follows.
 反応容器に化合物(i)(1.57g, 4.33mmol)、化合物(ii)(1.50g, 3.61mmol)、Pd(dba)・CHCl(0.37g, 0.36mmol)、トルエン(36mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.93mL, 1.44mmol、 1.56M)、ナトリウムt-ブトキシド(1.04g, 10.8mmol)を加え、容器内を窒素置換し、その後80℃で4時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン)により精製し、得られた固体をトルエン/ヘキサンで再結晶したところ、目的物である化合物1である白色粉末状固体を2.26g、収率90%で得た(FAB-MS:C51H41NSi,測定値695)。 Compound (i) (1.57 g, 4.33 mmol), compound (ii) (1.50 g, 3.61 mmol), Pd 2 (dba) 3 .CHCl 3 (0.37 g, 0.36 mmol), Toluene (36 mL) was added. Next, tri (t-butyl) phosphine (0.93 mL, 1.44 mmol, 1.56 M) and sodium t-butoxide (1.04 g, 10.8 mmol) were added, and the inside of the container was purged with nitrogen. For 4 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane. As a result, a white powdered solid as the target compound 1 was obtained. Obtained 2.26 g, yield 90% (FAB-MS: C51H41NSi, measured value 695).
(化合物3の合成)
 以下の化学反応式は、本発明のアミン誘導体である化合物3の合成プロセスを図示したものである。
Figure JPOXMLDOC01-appb-C000063
(Synthesis of Compound 3)
The following chemical reaction formula illustrates the synthesis process of Compound 3, which is an amine derivative of the present invention.
Figure JPOXMLDOC01-appb-C000063
 本発明の化合物3は、以下のようにして合成を実施した。 Compound 3 of the present invention was synthesized as follows.
 反応容器に化合物(iii)(1.52g, 4.33mmol)、化合物(ii)(1.50g, 3.61mmol)、Pd(dba)・CHCl(0.37g, 0.36mmol)、トルエン(36mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.93mL, 1.44mmol、 1.56M)、ナトリウムt-ブトキシド(1.04g, 10.8mmol)を加え、容器内を窒素置換し、その後80℃で4時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン)により精製し、得られた固体をトルエン/ヘキサンで再結晶したところ、目的物である化合物3である白色粉末状固体を1.00g、収率40%で得た(FAB-MS:C48H35NSSi,測定値685)。 In a reaction vessel, compound (iii) (1.52 g, 4.33 mmol), compound (ii) (1.50 g, 3.61 mmol), Pd 2 (dba) 3 .CHCl 3 (0.37 g, 0.36 mmol), Toluene (36 mL) was added. Next, tri (t-butyl) phosphine (0.93 mL, 1.44 mmol, 1.56 M) and sodium t-butoxide (1.04 g, 10.8 mmol) were added, and the inside of the container was purged with nitrogen. For 4 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane. As a result, a white powdered solid as the target compound 3 was obtained. 1.00 g, 40% yield was obtained (FAB-MS: C48H35NSSi, measured value 685).
(化合物61の合成)
 以下の化学反応式は、本発明のアミン誘導体である化合物61の合成プロセスを図示したものである。
Figure JPOXMLDOC01-appb-C000064
(Synthesis of Compound 61)
The following chemical reaction formula illustrates the synthesis process of Compound 61, which is an amine derivative of the present invention.
Figure JPOXMLDOC01-appb-C000064
 本発明の化合物61は、以下のようにして合成を実施した。 Compound 61 of the present invention was synthesized as follows.
反応容器に化合物(iv)(0.70g, 1.44mmol)、化合物(v)(0.71g, 1.44mmol)、Pd(dba)(0.04g, 0.07mmol)、トルエン(30mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.14mL, 0.28mmol、2.00M)、ナトリウムt-ブトキシド(0.21g, 2.16mmol)を加え、容器内を窒素置換し、その後還流下で6時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン)により精製し、得られた固体をジクロロメタン/ヘキサンで再結晶したところ、目的物である化合物61である白色粉末状固体を1.15g、収率89%で得た(FAB-MS:C66H48N2Si,測定値897)。 Compound (iv) (0.70 g, 1.44 mmol), compound (v) (0.71 g, 1.44 mmol), Pd (dba) 2 (0.04 g, 0.07 mmol), toluene (30 mL) in a reaction vessel added. Next, tri (t-butyl) phosphine (0.14 mL, 0.28 mmol, 2.00 M) and sodium t-butoxide (0.21 g, 2.16 mmol) were added, and the inside of the container was purged with nitrogen, and then refluxed. For 6 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the obtained solid was recrystallized from dichloromethane / hexane. As a result, a white powdered solid as the target compound 61 was obtained. 1.15 g, yield 89% (FAB-MS: C66H48N2Si, measured value 897).
(化合物63の合成)
 以下の化学反応式は、本発明のアミン誘導体である化合物63の合成プロセスを図示したものである。
Figure JPOXMLDOC01-appb-C000065
(Synthesis of Compound 63)
The following chemical reaction formula illustrates the synthesis process of Compound 63, which is an amine derivative of the present invention.
Figure JPOXMLDOC01-appb-C000065
 本発明の化合物63は、以下のようにして合成した。 The compound 63 of the present invention was synthesized as follows.
 反応容器に化合物(iv)(1.00g, 2.06mmol)、化合物(ii)(0.85g, 2.06mmol)、Pd(dba)(0.06g, 0.10mmol)、トルエン(10mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.03mL, 0.06mmol、2.00M)、ナトリウムt-ブトキシド(0.30g, 3.08mmol)を加え、容器内を窒素置換し、その後還流下で4時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン)により精製し、得られた固体をジクロロメタン/ヘキサンで再結晶したところ、目的物である化合物63である白色粉末状固体を1.59g、収率94%で得た(FAB-MS:C60H44N2Si,測定値821)。 Compound (iv) (1.00 g, 2.06 mmol), compound (ii) (0.85 g, 2.06 mmol), Pd (dba) 2 (0.06 g, 0.10 mmol), toluene (10 mL) in a reaction vessel added. Next, tri (t-butyl) phosphine (0.03 mL, 0.06 mmol, 2.00 M) and sodium t-butoxide (0.30 g, 3.08 mmol) were added, and the inside of the container was purged with nitrogen. For 4 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the obtained solid was recrystallized from dichloromethane / hexane. As a result, a white powdered solid as the target compound 63 was obtained. 1.59 g was obtained with a yield of 94% (FAB-MS: C60H44N2Si, measured value 821).
 以下、本発明の有機エレクトロルミネッセンス素子材料として、上述した化合物1を正孔輸送層に用いた有機エレクトロルミネッセンス素子の実施例1について説明する。 Hereinafter, Example 1 of an organic electroluminescence element using the above-described compound 1 as a hole transport layer as the organic electroluminescence element material of the present invention will be described.
本発明の実施例1の有機エレクトロルミネッセンス素子の作製は真空蒸着により行い、次のような手順で行った。先ず、あらかじめパターニングして洗浄処理を施したITO-ガラス基板に、オゾンによる表面処理を行った。尚、前記ITO膜の膜厚は、150nmである。オゾン処理後すぐに、正孔注入材料として4,4’,4’’-トリス(N,N-(2-ナフチル)フェニルアミノ)トリフェニルアミン(2-TNATA,膜厚60nm)を前記ITO膜上に成膜した。 The production of the organic electroluminescence element of Example 1 of the present invention was performed by vacuum deposition, and the following procedure was performed. First, surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance. The ITO film has a thickness of 150 nm. Immediately after the ozone treatment, 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material. A film was formed on top.
 次に、正孔輸送材料として本発明の化合物1を成膜し(30nm)、次に、発光材料として2,5,8,11-テトラ-t-ブチルペリレン(TBP)を、9,10-ジ(2-ナフチル)アントラセン(ADN)に対して3%の割合でドープした膜を共蒸着によって成膜した(25nm)。 Next, the compound 1 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butylperylene (TBP) was used as the light emitting material. A film doped with 3% of di (2-naphthyl) anthracene (ADN) was formed by co-evaporation (25 nm).
 さらに、次に、電子輸送材料としてトリス(8-キノリノラト)アルミニウム(Alq)を成膜し(25nm)、次に、電子注入材料としてフッ化リチウム(LiF)(1.0nm)及び陰極としてアルミニウム(100nm)を順次積層し、図2に示す有機エレクトロルミネッセンス素子200を作製した。 Next, a film of tris (8-quinolinolato) aluminum (Alq 3 ) was formed as an electron transport material (25 nm), then lithium fluoride (LiF) (1.0 nm) as an electron injection material and aluminum as a cathode (100 nm) were sequentially laminated to produce an organic electroluminescent element 200 shown in FIG.
 実施例2として、実施例1で用いた化合物1の代わりに化合物3を用いた以外は、実施例1と同様に有機エレクトロルミネッセンス素子を作製した。 As Example 2, an organic electroluminescence device was produced in the same manner as in Example 1 except that Compound 3 was used instead of Compound 1 used in Example 1.
 実施例3として、実施例1で用いた化合物1の代わりに化合物61を用いた以外は、実施例1と同様に有機エレクトロルミネッセンス素子を作製した。 As Example 3, an organic electroluminescence device was produced in the same manner as in Example 1 except that Compound 61 was used instead of Compound 1 used in Example 1.
 実施例4として、実施例1で用いた化合物1の代わりに化合物63を用いた以外は、実施例1と同様に有機エレクトロルミネッセンス素子を作製した。 As Example 4, an organic electroluminescence device was produced in the same manner as in Example 1 except that Compound 63 was used instead of Compound 1 used in Example 1.
 比較例1及び比較例2として、有機エレクトロルミネッセンス素子の正孔輸送層の材料を構成する化合物として以下に示す比較化合物1及び比較化合物2を用いて、実施例1と同様に有機エレクトロルミネッセンス素子を作製した。尚、比較例1及び比較例2で用いた化合物は、シリル基を備えない構造を有する点において、本発明のアミン誘導体と異なる。
Figure JPOXMLDOC01-appb-C000066
As Comparative Example 1 and Comparative Example 2, an organic electroluminescent device was prepared in the same manner as in Example 1, using Comparative Compound 1 and Comparative Compound 2 shown below as compounds constituting the material of the hole transport layer of the organic electroluminescent device. Produced. In addition, the compound used in Comparative Example 1 and Comparative Example 2 is different from the amine derivative of the present invention in that it has a structure having no silyl group.
Figure JPOXMLDOC01-appb-C000066
 作製した有機エレクトロルミネッセンス素子200の実施例1乃至実施例4、比較例1、及び比較例2の概略図を図2に示す。作製した有機エレクトロルミネッセンス素子200は、陽極204、陽極204上に配置された正孔注入層206、正孔注入層206上に配置された正孔輸送層208、正孔輸送層208上に配置された発光層210、発光層210上に配置された電子輸送層212及び電子注入層214、電子注入層214上に配置された陰極216を含む。 FIG. 2 shows a schematic diagram of Examples 1 to 4, Comparative Example 1, and Comparative Example 2 of the produced organic electroluminescence element 200. The produced organic electroluminescence device 200 is disposed on the anode 204, the hole injection layer 206 disposed on the anode 204, the hole transport layer 208 disposed on the hole injection layer 206, and the hole transport layer 208. A light emitting layer 210, an electron transport layer 212 and an electron injection layer 214 disposed on the light emitting layer 210, and a cathode 216 disposed on the electron injection layer 214.
 作製した実施例1乃至実施例4、比較例1及び比較例2の有機エレクトロルミネッセンス素子200の素子性能を以下の表1に示す。尚、電流効率は10mA/cmにおける値を示し、半減寿命は初期輝度1,000cd/mからの輝度半減時間を示す。
Figure JPOXMLDOC01-appb-T000067
Table 1 below shows the element performance of the organic electroluminescent elements 200 of Examples 1 to 4 and Comparative Examples 1 and 2 that were produced. The current efficiency is a value at 10 mA / cm 2 , and the half life is a luminance half time from an initial luminance of 1,000 cd / m 2 .
Figure JPOXMLDOC01-appb-T000067
 尚、作製した有機エレクトロルミネッセンス素子200の電界発光特性の評価には、浜松ホトニクス製C9920-11輝度配向特性測定装置を用いた。 Note that a C9920-11 luminance orientation characteristic measuring apparatus manufactured by Hamamatsu Photonics was used for the evaluation of the electroluminescence characteristics of the produced organic electroluminescence element 200.
 表1によれば、本発明の実施例1乃至実施例4の有機エレクトロルミネッセンス素子は、比較例1及び比較例2の有機エレクトロルミネッセンス素子に比して、長寿命化していることが分かる。 According to Table 1, it can be seen that the organic electroluminescence elements of Examples 1 to 4 of the present invention have a longer lifetime than the organic electroluminescence elements of Comparative Example 1 and Comparative Example 2.
 一般式(1)で表される本発明のシリル基を有するアミン誘導体は、電子耐性を有するシリル基を備えており、電子に対して安定な正孔輸送を行うことができる材料である。そのため、本発明のシリル基を有するアミン誘導体を用いることにより、正孔輸送層に侵入した電子が原因となる素子の劣化を抑制することができ、素子の長寿命化を実現することができる。 The amine derivative having a silyl group of the present invention represented by the general formula (1) includes a silyl group having electron resistance, and is a material capable of performing stable hole transport with respect to electrons. Therefore, by using the amine derivative having a silyl group of the present invention, it is possible to suppress the deterioration of the device caused by the electrons that have entered the hole transport layer, and to realize a long lifetime of the device.
 前述した実施例1~4においては、一般式(1)で表される本発明のシリル基を有するアミン誘導体を有機エレクトロルミネッセンス素子の正孔輸送材料に利用した例を説明したが、本発明のシリル基を有するアミン誘導体の利用は有機エレクトロルミネッセンス素子に限定されず、その他の発光素子又は発光装置に利用されてもよい。また、図1及び図2に示す有機エレクトロルミネッセンス素子は、パッシブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されるが、アクティブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用することもできる。 In Examples 1 to 4 described above, examples in which the amine derivative having a silyl group of the present invention represented by the general formula (1) is used as a hole transport material of an organic electroluminescence element have been described. Use of the amine derivative having a silyl group is not limited to the organic electroluminescence element, and may be used for other light-emitting elements or light-emitting devices. 1 and 2 is used for a passive matrix driving type organic electroluminescence display, it can also be used for an active matrix driving type organic electroluminescence display.
本願発明者らは、一般式(1)で表されるアミン誘導体のうち、特に、以下に述べる構造を有するアミン誘導体を有機エレクトロルミネッセンス材料として発光層と陽極との間に配置することにより、有機エレクトロルミネッセンス素子の発光効率、駆動電圧及び寿命に著しい改善が得られることを確認した。 Among the amine derivatives represented by the general formula (1), the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
 一般式(1)で表されるアミン誘導体の好ましい構造は、一般式(1)において、Ar及びArがそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arは置換若しくは無置換のジベンゾフリル基であり、Lは単結合を含まない2価の連結基である。 A preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. And at least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted dibenzofuryl group, and L is a divalent group containing no single bond. The linking group of
 ここで、Ar及びArの「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基としては、前述したように、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ビフェニレン基、ピレニル基、ベンゾチアゾリル基、チオフェニル基、チエノチオフェニル基、チエノチエノチオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ジベンゾフリル基、N-アリールカルバゾリル基、N-ヘテロアリールカルバゾリル基、N-アルキルカルバゾリル基、フェノキサジル基、フェノチアジル基、ピリジル基、ピリミジル基、トリアジル基、キノリニル基、キノキサリル基などが挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ジベンゾチオフェニル基、ジベンゾフリル基、N-フェニルカルバゾリル基が好ましく、特に、フェニル基、ビフェニル基、フルオレニル基、トリフェニレン基、ジベンゾチオフェニル基、ジベンゾフリル基、N-フェニルカルバゾリル基が好ましい。Ar及びArのアリール基としては、環形成炭素数6以上18以下のアリール基が好ましく、Ar及びArのヘテロアリール基としては、環形成原子数5以上18以下のヘテロアリール基が好ましい。 Here, as described above, as the aryl group and heteroaryl group of the “substituted or unsubstituted aryl group” or “substituted or unsubstituted heteroaryl group” of Ar 1 and Ar 2 , as described above, a phenyl group, a naphthyl group, Anthracenyl group, phenanthryl group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, biphenylene group, pyrenyl group, benzothiazolyl group, thiophenyl group, thienothiophenyl group, thienothienothiophenyl group, benzothiophenyl group, dibenzothiophenyl group Group, dibenzofuryl group, N-arylcarbazolyl group, N-heteroarylcarbazolyl group, N-alkylcarbazolyl group, phenoxazyl group, phenothiazyl group, pyridyl group, pyrimidyl group, triazyl group, quinolinyl group, quinoxalyl Group etc. Phenyl group, naphthyl group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, dibenzothiophenyl group, dibenzofuryl group, and N-phenylcarbazolyl group are preferable, and phenyl group, biphenyl group, fluorenyl group are particularly preferable. Group, triphenylene group, dibenzothiophenyl group, dibenzofuryl group and N-phenylcarbazolyl group are preferable. The aryl group of Ar 1 and Ar 2 is preferably an aryl group having 6 to 18 ring carbon atoms, and the heteroaryl group of Ar 1 and Ar 2 is a heteroaryl group having 5 to 18 ring atoms. preferable.
 Ar及びArのアリール基またはヘテロアリール基に置換される置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。アリール基及びヘテロアリール基の例示される具体例は、上述のAr及びArの具体的な基として挙げたアリール基及びヘテロアリール基と同じである。 Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group mentioned as the specific groups of Ar 1 and Ar 2 described above.
 本発明のアミン誘導体の好ましい構造において、一般式(1)におけるArは置換若しくは無置換のジベンゾフリル基である。ジベンゾフリル基に置換する置換基はそれぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6以上30以下のアリール基、又は置換若しくは無置換の環形成炭素数5以上20以下のヘテロアリール基、置換若しくは無置換の炭素数1以上8以下のアルキル基である。 In a preferred structure of the amine derivative of the present invention, Ar 3 in the general formula (1) is a substituted or unsubstituted dibenzofuryl group. Each of the substituents substituted on the dibenzofuryl group is independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl having 5 to 20 ring carbon atoms. And a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms.
 さらに、アミン誘導体の好ましい構造において、一般式(1)におけるLは2価の連結基であり、置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基であってもよく、具体的には、上述したAr及びArとして挙げた基の2価基であってもよい。Lとしては、環形成炭素数6以上18以下のアリーレン基が好ましく、フェニレン基が特に好ましい。一般式(1)で表されるアミン誘導体の好ましい構造において、Lは単結合を含まない。置換若しくは無置換のジベンゾフリル基であるArとアミン部位とを2価の連結基、特に、フェニル基を介して結合することにより、分子全体のπ電子の共役系が拡がる。そのため、正孔輸送性が向上し、有機エレクトロルミネッセンス素子の低駆動電圧化、長寿命化、及び発光効率の向上に寄与する。また、分子の安定性が向上することにより、有機エレクトロルミネッセンス素子の劣化が抑制され、素子の長寿命化に寄与することができる。 Further, in a preferred structure of the amine derivative, L in the general formula (1) is a divalent linking group, and may be a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, specifically May be a divalent group of the groups listed as Ar 1 and Ar 2 described above. L is preferably an arylene group having 6 to 18 ring carbon atoms, and particularly preferably a phenylene group. In a preferred structure of the amine derivative represented by the general formula (1), L does not include a single bond. By linking Ar 3 which is a substituted or unsubstituted dibenzofuryl group and an amine moiety via a divalent linking group, particularly a phenyl group, the conjugated system of π electrons of the whole molecule is expanded. Therefore, the hole transport property is improved, which contributes to lowering the driving voltage, extending the lifetime, and improving the light emission efficiency of the organic electroluminescence element. Further, by improving the stability of the molecule, deterioration of the organic electroluminescence element can be suppressed, which can contribute to the extension of the lifetime of the element.
 Lのアリーレン基又はヘテロアリーレン基に置換される置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。具体的には、Ar及びArのアリール基又はヘテロアリール基に置換される置換基として述べたアルキル基、アルコキシ基、アリール基、ヘテロアリール基と同じであってもよい。 Examples of the substituent substituted with the arylene group or heteroarylene group of L include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it may be the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 .
 Ar及びArのうち少なくとも1つに置換されるシリル基の置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。具体的には、Ar及びArのアリール基又はヘテロアリール基に置換される置換基として述べたアルキル基、アルコキシ基、アリール基、ヘテロアリール基と同じであり、特に、フェニル基が好ましい。また、Ar及びArのうち少なくとも1つに置換されるシリル基は、該シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基であることが好ましい。 Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 , and a phenyl group is particularly preferable. The silyl group substituted with at least one of Ar 1 and Ar 2 is preferably a triarylsilyl group in which the number of carbon atoms in the aryl group substituted with the silyl group is 6 or more and 18 or less. .
 一般式(1)においてジベンゾフリル基であるArが2価の連結基Lに結合しているアミン誘導体としては、以下に例示する化合物が挙げられるが、これらに限定されるものではない。 Examples of the amine derivative in which Ar 3 which is a dibenzofuryl group in General Formula (1) is bonded to a divalent linking group L include the compounds exemplified below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068

Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069

Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070

Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072

Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073

Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074

Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075

Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076

Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077

Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078

Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079

Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080

Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 上述したように、本発明の好ましいアミン誘導体は、一般式(1)において、Arが置換若しくは無置換のジベンゾフリル基であり、このジベンゾフリル基が2価の連結基Lに結合している。ジベンゾフリル基は強電子耐性を有する。そのため、一般式(1)において、Arが置換若しくは無置換のジベンゾフリル基であるアミン誘導体を正孔輸送層材料として用いることにより、正孔輸送層の電子耐性を向上させることができ、正孔輸送層に侵入した電子が原因となる正孔輸送材料の劣化を抑制することができる。また、ジベンゾフリル基を導入することにより、アミン誘導体の平面性が高くなり、ガラス転移温度が高くなる。このため、有機エレクトロルミネッセンス素子の発光効率の向上、低駆動電圧化及び長寿命化を実現することができる。さらに、上述したように、2価の連結基Lを介してジベンゾフリル基とアミン部位とが結合することにより、分子全体のπ電子の共役系が拡がる。そのため、正孔輸送性が向上し、分子の安定性も向上するため、有機エレクトロルミネッセンス素子の低駆動電圧化、長寿命化、及び発光効率を実現することができる。本発明の好ましいアミン誘導体は、特に、青色~青緑色領域において、有機エレクトロルミネッセンス素子の発光効率の向上、低駆動電圧化及び長寿命化を実現することができる。 As described above, the preferred amine derivative of the present invention is that, in the general formula (1), Ar 3 is a substituted or unsubstituted dibenzofuryl group, and this dibenzofuryl group is bonded to the divalent linking group L. . The dibenzofuryl group has strong electron resistance. Therefore, by using an amine derivative in which Ar 3 is a substituted or unsubstituted dibenzofuryl group in the general formula (1) as the hole transport layer material, the electron resistance of the hole transport layer can be improved. It is possible to suppress the deterioration of the hole transport material caused by the electrons that have entered the hole transport layer. Further, by introducing a dibenzofuryl group, the planarity of the amine derivative is increased and the glass transition temperature is increased. For this reason, the improvement of the light emission efficiency of an organic electroluminescent element, low drive voltage, and lifetime improvement are realizable. Furthermore, as described above, when the dibenzofuryl group and the amine moiety are bonded via the divalent linking group L, the conjugated system of π electrons in the entire molecule is expanded. Therefore, the hole transport property is improved and the stability of the molecule is also improved, so that the drive voltage, the lifetime, and the light emission efficiency of the organic electroluminescence element can be realized. The preferred amine derivative of the present invention can realize improvement in light emission efficiency, low drive voltage, and long life of the organic electroluminescence device, particularly in the blue to blue-green region.
 また、一般式(1)で表されるアミン誘導体の好ましい構造において、Arである置換若しくは無置換のジベンゾフリル基は、2位、3位又は4位の位置でLと結合してもよく、3位の位置で連結基Lに結合していることが好ましい。また、Arである置換若しくは無置換のジベンゾフリル基は、好ましくは、アミン部位の窒素原子(N)に対して、2価の連結基のpara位に結合される。2価の連結基のpara位にジベンゾフリル基が結合されることにより、分子全体のπ電子共役長が最も拡がり、有機エレクトロルミネッセンス素子の長寿命化に寄与することができる。 In the preferred structure of the amine derivative represented by the general formula (1), the substituted or unsubstituted dibenzofuryl group that is Ar 3 may be bonded to L at the 2-position, 3-position or 4-position. It is preferably bonded to the linking group L at the 3-position. Moreover, the substituted or unsubstituted dibenzofuryl group which is Ar 3 is preferably bonded to the para position of the divalent linking group with respect to the nitrogen atom (N) of the amine moiety. When the dibenzofuryl group is bonded to the para position of the divalent linking group, the π-electron conjugate length of the entire molecule is most expanded, which can contribute to the extension of the lifetime of the organic electroluminescence device.
 ジベンゾフリル基であるArが2価の連結基Lに結合していることを特徴とする一般式(1)で表される本発明のアミン誘導体は、上述したような図1で表された有機エレクトロルミネッセンス素子100の正孔輸送層の材料として用いることができる。尚、図1に示された有機エレクトロルミネッセンス素子100の構成は、本発明の有機エレクトロルミネッセンス素子の一実施形態であり、これに限定されるわけではなく種々の変更が可能である。 The amine derivative of the present invention represented by the general formula (1), characterized in that Ar 3 which is a dibenzofuryl group is bonded to a divalent linking group L, is represented in FIG. 1 as described above. It can be used as a material for the hole transport layer of the organic electroluminescence device 100. The configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
 また、ジベンゾフリル基であるArが2価の連結基Lに結合していることを特徴とする一般式(1)で表される本発明のアミン誘導体の用途は、有機エレクトロルミネッセンス素子の正孔輸送材料に限定されるわけではなく、正孔注入層の材料又は発光層の材料としても用いることが可能であり、正孔注入層の材料又は発光層の材料として用いる場合も、正孔輸送層の材料として使用した場合と同様に、有機エレクトロルミネッセンス素子の発光効率を向上させ、有機エレクトロルミネッセンス素子の低駆動電圧化及び長寿命化を実現することが可能となる。 In addition, the use of the amine derivative of the present invention represented by the general formula (1), in which Ar 3 which is a dibenzofuryl group is bonded to a divalent linking group L, is intended for use in an organic electroluminescence device. It is not limited to the hole transport material, and can be used as a material for a hole injection layer or a light emitting layer, and can be used as a material for a hole injection layer or a light emitting layer. As in the case of using as a material for the layer, it is possible to improve the light emission efficiency of the organic electroluminescent element and to realize a low driving voltage and a long life of the organic electroluminescent element.
[実施例II]
 ジベンゾフリル基であるArが2価の連結基Lに結合していることを特徴とする一般式(1)で表される本発明のアミン誘導体について、前記化合物A-10、A-18、A-25、A-35及びA-41の合成法の例を以下に述べる。但し、以下に述べる合成法は一例であって、本発明を限定するものでは無い。
Example II
Regarding the amine derivative of the present invention represented by the general formula (1), wherein Ar 3 which is a dibenzofuryl group is bonded to a divalent linking group L, the compounds A-10, A-18, Examples of synthesis methods of A-25, A-35 and A-41 are described below. However, the synthesis method described below is an example and does not limit the present invention.
(化合物A-10の合成)
 本発明の化合物A-10は、以下のようにして合成を実施した。
(Synthesis of Compound A-10)
Compound A-10 of the present invention was synthesized as follows.
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(vi)1.50g、化合物(vii)1.90g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.11g、トリ-t-ブチルホスフィン((t-Bu)3P)0.15 g、ナトリウムt-ブトキシド0.54gを加えて、45mLのトルエン溶媒中で6時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物A-10を1.86g(収率86%)得た。
Figure JPOXMLDOC01-appb-C000082
In an argon atmosphere, in a 100 mL three-necked flask, compound (vi) 1.50 g, compound (vii) 1.90 g, bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ) 0.11 g, tri-t- Butylphosphine ((t-Bu) 3 P) 0.15 g and sodium t-butoxide 0.54 g were added, and the mixture was heated to reflux in 45 mL of toluene solvent for 6 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 1.86 g of a white solid compound A-10 (yield 86 %)Obtained.
Figure JPOXMLDOC01-appb-C000082
 1HNMR測定で測定された化合物A-10のケミカルシフト値は、8.00 (d, 1H), 7.96 (d, 1H), 7.78 (d, 1H), 7.64-7.53 (m, 20 H), 7.48-7.33 (m, 14H), 7.29-7.25 (m, 6H)であった。また、FAB-MS測定により測定された化合物A-10の分子量は、822であった。 The chemical shift value of Compound A-10 measured by 1 H NMR measurement is 8.00 (d, 1H), 7.96 (d, 1H), 7.78 (d, 1H), 7.64-7.53 (m, 20 H), 7.48 -7.33 (m, 14H), 7.29-7.25 (m, 6H). Further, the molecular weight of Compound A-10 measured by FAB-MS measurement was 822.
(化合物A-18の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(viii)2.50g、化合物(ii)2.52g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.25 g、トリ-t-ブチルホスフィン((t-Bu)3P)0.10 g、ナトリウムt-ブトキシド1.85gを加えて、60mLのトルエン溶媒中で8時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物A-18を3.31g(収率73%)得た。
Figure JPOXMLDOC01-appb-C000083
(Synthesis of Compound A-18)
In a 100 mL three-necked flask under an argon atmosphere, compound (viii) 2.50 g, compound (ii) 2.52 g, bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ) 0.25 g, tri-t- 0.10 g of butylphosphine ((t-Bu) 3 P) and 1.85 g of sodium t-butoxide were added, and the mixture was heated to reflux for 8 hours in 60 mL of a toluene solvent. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane), and then recrystallized with a mixed solvent of toluene / hexane to obtain 3.31 g of a white solid compound A-18 (yield 73). %)Obtained.
Figure JPOXMLDOC01-appb-C000083
 1H NMR測定で測定された化合物A-18のケミカルシフト値は、8.13 (d, 1H), 7.98 (d, 1H), 7.69-7.24 (m, 35H), 7.16 (d, 2H)であった。また、FAB-MS測定により測定された化合物A-18の分子量は、745であった。 The chemical shift values of Compound A-18 measured by 1 H NMR measurement were 8.13 (d, 1H), 7.98 (d, 1H), 7.69-7.24 (m, 35H), 7.16 (d, 2H). . Further, the molecular weight of Compound A-18 measured by FAB-MS measurement was 745.
(化合物A-25の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに化合物(vii)1.22g、化合物(ix)0.80g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)88mg、トリ-t-ブチルホスフィン((t-Bu)3P)0.12g、ナトリウムt-ブトキシド0.43gを加えて、38mLのトルエン溶媒中で7時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物A-25を1.49g(収率79%)得た。
Figure JPOXMLDOC01-appb-C000084
(Synthesis of Compound A-25)
Compound (vii) 1.22 g, compound (ix) 0.80 g, bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ) 88 mg, tri-t-butylphosphine in a 100 mL three-necked flask under argon atmosphere 0.12 g of ((t-Bu) 3 P) and 0.43 g of sodium t-butoxide were added, and the mixture was heated to reflux in 38 mL of toluene solvent for 7 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 1.49 g (yield 79) of white solid compound A-25. %)Obtained.
Figure JPOXMLDOC01-appb-C000084
 1H NMR測定で測定された化合物A-25のケミカルシフト値は、8.01(d, 1H), 7.93-7.86(m, 3H), 7.76-7.53(m, 17H), 7.50-7.28(m, 22H) であった。また、FAB-MS測定により測定された化合物A-25の分子量は、822であった。 The chemical shift values of Compound A-25 measured by 1 H NMR measurement are 8.01 (d, 1H), 7.93-7.86 (m, 3H), 7.76-7.53 (m, 17H), 7.50-7.28 (m, 22H ) Met. The molecular weight of Compound A-25 measured by FAB-MS measurement was 822.
(化合物A-35の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(x)0.8g、化合物(xi)0.54g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.06g、トリ-t-ブチルホスフィン((t-Bu)3P)0.12g、ナトリウムt-ブトキシド0.3gを加えて、30mLのトルエン溶媒中で7時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物A-35を0.95g(収率80%)得た。
Figure JPOXMLDOC01-appb-C000085
(Synthesis of Compound A-35)
In an argon atmosphere, in a 100 mL three-necked flask, 0.8 g of compound (x), 0.54 g of compound (xi), 0.06 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- Butylphosphine ((t-Bu) 3 P) (0.12 g) and sodium t-butoxide (0.3 g) were added, and the mixture was heated to reflux in 30 mL of toluene solvent for 7 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 0.95 g of a white solid compound A-35 (yield 80 %)Obtained.
Figure JPOXMLDOC01-appb-C000085
 1H NMR測定で測定された化合物A-35のケミカルシフト値は7.99 (d, 1H), 7.91 (d, 1H), 7.87 (d, 2H), 7.62-7.28 (m, 33H), 7.20 (d, 2H)であった。また、FAB-MS測定により測定された化合物A-35の分子量は、745であった。 The chemical shift values of Compound A-35 measured by 1 H NMR measurement are 7.99 (d, 1H), 7.91 (d, 1H), 7.87 (d, 2H), 7.62-7.28 (m, 33H), 7.20 (d , 2H). The molecular weight of Compound A-35 measured by FAB-MS measurement was 745.
(化合物A-41の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに化合物(vii)1.50g、化合物(xi)0.87g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.11g、トリ-t-ブチルホスフィン((t-Bu)3P)0.15g、ナトリウムt-ブトキシド0.54gを加えて、45mLのトルエン溶媒中で7時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物A-41を1.86g(収率89%)得た。
Figure JPOXMLDOC01-appb-C000086
(Synthesis of Compound A-41)
In a 100 mL three-necked flask under argon atmosphere, 1.50 g of compound (vii), 0.87 g of compound (xi), 0.11 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t-butyl Phosphine ((t-Bu) 3 P) (0.15 g) and sodium t-butoxide (0.54 g) were added, and the mixture was heated to reflux in 45 mL of a toluene solvent for 7 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 1.86 g of a white solid compound A-41 (yield 89 %)Obtained.
Figure JPOXMLDOC01-appb-C000086
 1H NMR測定で測定された化合物A-41のケミカルシフト値は、8.00 (d, 1H), 7.93-7.87 (m, 3H), 7.66-7.53 (m, 17H), 7.50-7.28 (m, 22H) であった。また、FAB-MS測定により測定された化合物A-41の分子量は、822であった。 The chemical shift value of Compound A-41 measured by 1 H NMR measurement is 8.00 (d, 1H), 7.93-7.87 (m, 3H), 7.66-7.53 (m, 17H), 7.50-7.28 (m, 22H ) Met. The molecular weight of compound A-41 measured by FAB-MS measurement was 822.
 以下、本発明の有機エレクトロルミネッセンス素子材料として、上述した化合物A-10、化合物A-18、化合物A-25、化合物A-35及び化合物A-41を正孔輸送層に用いた有機エレクトロルミネッセンス素子について説明する。化合物A-10を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例5、化合物A-18を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例6、化合物A-25を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例7、化合物A-35を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例8、化合物A-41を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例9とする。 Hereinafter, as the organic electroluminescence device material of the present invention, an organic electroluminescence device using the compound A-10, compound A-18, compound A-25, compound A-35 and compound A-41 described above for the hole transport layer. Will be described. Example 5 shows an organic electroluminescence device using Compound A-10 for the hole transport layer, Example 6 shows an organic electroluminescence device using Compound A-18 for the hole transport layer, and transports Compound A-25 as a hole transport Example 7 is an organic electroluminescence device used for the layer, Example 8 is an organic electroluminescence device using Compound A-35 for the hole transport layer, and is an organic electroluminescence device using Compound A-41 for the hole transport layer This is referred to as Example 9.
 本発明の実施例5の有機エレクトロルミネッセンス素子の作製は、上述した実施例1の有機エレクトロルミネッセンス素子と同様に真空蒸着により行い、次のような手順で行った。先ず、あらかじめパターニングして洗浄処理を施したITO-ガラス基板に、オゾンによる表面処理を行った。尚、前記ITO膜の膜厚は、150nmである。オゾン処理後すぐに、正孔注入材料として4,4’,4’’-トリス(N,N-(2-ナフチル)フェニルアミノ)トリフェニルアミン(2-TNATA,膜厚60nm)を前記ITO膜上に成膜した。 Preparation of the organic electroluminescence element of Example 5 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescence element of Example 1 described above, and was performed according to the following procedure. First, surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance. The ITO film has a thickness of 150 nm. Immediately after the ozone treatment, 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material. A film was formed on top.
 次に、正孔輸送材料として本発明の化合物A-10を成膜し(30nm)、次に、発光材料として2,5,8,11-テトラ-t-ブチルペリレン(TBP)を、9,10-ジ(2-ナフチル)アントラセン(ADN)に対して3%の割合でドープした膜を共蒸着によって成膜した(25nm)。 Next, the compound A-10 of the present invention was formed into a film (30 nm) as a hole transport material, and then 2,5,8,11-tetra-t-butylperylene (TBP) as a light-emitting material was 9,9. A film doped with 3% of 10-di (2-naphthyl) anthracene (ADN) was formed by co-evaporation (25 nm).
 次に、電子輸送材料としてトリス(8-キノリノラト)アルミニウム(Alq3)を成膜し(25nm)、次に、電子注入材料としてフッ化リチウム(LiF)(1.0nm)及び陰極としてアルミニウム(100nm)を順次積層し、図2に示す有機エレクトロルミネッセンス素子200を作製した。 Next, a film of tris (8-quinolinolato) aluminum (Alq3) was formed as an electron transport material (25 nm), then lithium fluoride (LiF) (1.0 nm) as an electron injection material and aluminum (100 nm) as a cathode Were sequentially laminated to produce an organic electroluminescent element 200 shown in FIG.
 実施例6、7、8及び9の有機エレクトロルミネッセンス素子作製は、実施例5で用いた化合物A-10の代わりに化合物A-18、化合物A-25、化合物A-35、化合物A-41を用いたこと以外は、実施例5と同様に有機エレクトロルミネッセンス素子を作製した。 The organic electroluminescent devices of Examples 6, 7, 8 and 9 were prepared by using Compound A-18, Compound A-25, Compound A-35 and Compound A-41 instead of Compound A-10 used in Example 5. An organic electroluminescence element was produced in the same manner as in Example 5 except that it was used.
 比較例3、比較例4及び比較例5として、有機エレクトロルミネッセンス素子の正孔輸送層の材料を構成する化合物として以下に示す比較化合物3、比較化合物4、比較化合物5を用いて、実施例5と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000087
As Comparative Example 3, Comparative Example 4 and Comparative Example 5, Example 5 was used using Comparative Compound 3, Comparative Compound 4 and Comparative Compound 5 shown below as the compounds constituting the material of the hole transport layer of the organic electroluminescence device. An organic electroluminescence device was produced in the same manner as described above.
Figure JPOXMLDOC01-appb-C000087
 実施例5~実施例9、比較例3~比較例5で作成した有機エレクトロルミネッセンス素子200について、駆動電圧、発光効率、半減寿命を評価した。なお、発光効率は10mA/cmにおける値を示し、半減寿命は初期輝度1,000cd/mからの輝度半減時間を示す。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000088
With respect to the organic electroluminescence elements 200 prepared in Examples 5 to 9 and Comparative Examples 3 to 5, the driving voltage, the light emission efficiency, and the half life were evaluated. Incidentally, the light emission efficiency indicates a value at 10 mA / cm 2, the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000088
 表2によれば、本発明の実施例5乃至実施例9の有機エレクトロルミネッセンス素子は、比較例3乃至比較例5の有機エレクトロルミネッセンス素子に比して、発光効率が向上し、長寿命化していることが分かる。特に、一般式(1)で表されるアミン誘導体において、Arであるジベンゾフリル基が3位の位置で2価の連結基Lに結合している構成を有する化合物A-10を正孔輸送材料として用いた実施例5では、発光効率及び寿命が著しく改善されていることが分かる。これは、強電子耐性を示すジベンゾフリル基が、連結基Lに3位の位置で結合していることにより、分子全体のπ電子が拡がり、正孔輸送能及び分子の安定性が向上し、有機エレクトロルミネッセンス素子の発光効率の向上、低駆動電圧化及び長寿命化が実現できたと考えられる。 According to Table 2, the organic electroluminescence elements of Examples 5 to 9 of the present invention have improved luminous efficiency and longer life than the organic electroluminescence elements of Comparative Examples 3 to 5. I understand that. In particular, in the amine derivative represented by the general formula (1), the compound A-10 having a structure in which the dibenzofuryl group as Ar 3 is bonded to the divalent linking group L at the 3-position is transported by holes. In Example 5 used as the material, it can be seen that the luminous efficiency and the lifetime are remarkably improved. This is because the dibenzofuryl group exhibiting strong electron resistance is bonded to the linking group L at the 3-position, so that the π electrons of the whole molecule are expanded, the hole transport ability and the stability of the molecule are improved, It is thought that the improvement of the light emission efficiency of the organic electroluminescence element, the reduction of the driving voltage and the extension of the lifetime were realized.
 前述した実施例5乃至実施例9においては、本発明の好ましいアミン誘導体である、一般式(1)においてArが置換若しくは無置換のジベンゾフリル基であり、Lが単結合ではない2価の連結基であるアミン誘導体を有機エレクトロルミネッセンス素子の正孔輸送材料に利用した例を説明したが、本発明のアミン誘導体の利用は有機エレクトロルミネッセンス素子に限定されず、その他の発光素子又は発光装置に利用されてもよい。また、一般式(1)において、Arが置換若しくは無置換のジベンゾフリル基であり、Lが2価の連結基である、本発明の好ましいアミン誘導体を用いた有機エレクトロルミネッセンス素子は、パッシブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよく、アクティブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよい。 In the above-described Examples 5 to 9, which is a preferred amine derivative of the present invention, Ar 3 in the general formula (1) is a substituted or unsubstituted dibenzofuryl group, and L is not a single bond. Although the example which utilized the amine derivative which is a coupling group for the hole transport material of an organic electroluminescent element was demonstrated, utilization of the amine derivative of this invention is not limited to an organic electroluminescent element, Other light emitting elements or light-emitting devices are used. It may be used. In addition, in the general formula (1), an organic electroluminescence device using a preferred amine derivative of the present invention, in which Ar 3 is a substituted or unsubstituted dibenzofuryl group and L is a divalent linking group, The present invention may be used for a matrix driving type organic electroluminescence display, or may be used for an active matrix driving type organic electroluminescence display.
 本願発明者らは、一般式(1)で表されるアミン誘導体のうち、特に、以下に述べる構造を有するアミン誘導体を有機エレクトロルミネッセンス材料として発光層と陽極との間に配置することにより、有機エレクトロルミネッセンス素子の発光効率、駆動電圧及び寿命に著しい改善が得られることを確認した。 Among the amine derivatives represented by the general formula (1), the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
 一般式(1)で表されるアミン誘導体の好ましい構造は、一般式(1)において、Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arは置換若しくは無置換のジベンゾフリル基であり、Lは単結合である。 A preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. And at least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted dibenzofuryl group, and L is a single bond.
 ここで、Ar及びArの「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基としては、前述したように、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ビフェニレン基、ピレニル基、ベンゾチアゾリル基、チオフェニル基、チエノチオフェニル基、チエノチエノチオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ジベンゾフリル基、N-アリールカルバゾリル基、N-ヘテロアリールカルバゾリル基、N-アルキルカルバゾリル基、フェノキサジル基、フェノチアジル基、ピリジル基、ピリミジル基、トリアジル基、キノリニル基、キノキサリル基などが挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ジベンゾチオフェニル基、ジベンゾフリル基、N-フェニルカルバゾリル基が好ましい。アリール基としては、環形成炭素数6以上18以下であることが好ましく、ヘテロアリール基としては、環形成原子数5以上18以下であることが好ましい。 Here, as described above, as the aryl group and heteroaryl group of the “substituted or unsubstituted aryl group” or “substituted or unsubstituted heteroaryl group” of Ar 1 and Ar 2 , as described above, a phenyl group, a naphthyl group, Anthracenyl group, phenanthryl group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, biphenylene group, pyrenyl group, benzothiazolyl group, thiophenyl group, thienothiophenyl group, thienothienothiophenyl group, benzothiophenyl group, dibenzothiophenyl group Group, dibenzofuryl group, N-arylcarbazolyl group, N-heteroarylcarbazolyl group, N-alkylcarbazolyl group, phenoxazyl group, phenothiazyl group, pyridyl group, pyrimidyl group, triazyl group, quinolinyl group, quinoxalyl Group etc. Gerare, phenyl, naphthyl, biphenyl, a terphenyl group, a a fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group. The aryl group preferably has 6 to 18 ring carbon atoms, and the heteroaryl group preferably has 5 to 18 ring atoms.
 Ar及びArのアリール基またはヘテロアリール基に置換される置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。アリール基及びヘテロアリール基の例示される具体例は、上述のAr及びArの具体的な基として挙げたアリール基及びヘテロアリール基と同じである。 Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group mentioned as the specific groups of Ar 1 and Ar 2 described above.
 Ar及びArのうち少なくとも1つに置換されるシリル基の置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。具体的には、Ar及びArのアリール基又はヘテロアリール基に置換される置換基として述べたアルキル基、アルコキシ基、アリール基、ヘテロアリール基と同じであり、特に、フェニル基が好ましい。また、Ar及びArのうち少なくとも1つに置換されるシリル基は、該シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基であることが好ましい。 Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 , and a phenyl group is particularly preferable. The silyl group substituted with at least one of Ar 1 and Ar 2 is preferably a triarylsilyl group in which the number of carbon atoms in the aryl group substituted with the silyl group is 6 or more and 18 or less. .
 尚、本発明の好ましいアミン誘導体において、Ar及びArのうち、どちらか一方のみが置換若しくは無置換のシリル基に置換されていてもよい。上述したように、シリル基は強電子耐性を示すため、シリル基を導入したアミン誘導体は、正孔輸送材料として用いられることにより、正孔輸送層の電子耐性を向上させることができる。 In the preferred amine derivative of the present invention, only one of Ar 1 and Ar 2 may be substituted with a substituted or unsubstituted silyl group. As described above, since the silyl group exhibits strong electron resistance, the amine derivative into which the silyl group is introduced can be used as a hole transport material, thereby improving the electron resistance of the hole transport layer.
 本発明のアミン誘導体の好ましい構造において、Arは置換若しくは無置換のジベンゾフリル基である。ジベンゾフリル基に置換する置換基は、独立に、水素原子、置換もしくは無置換の環形成炭素数6以上18以下のアリール基である。ジベンゾフリル基に置換する置換基は、互いに結合して、飽和又は不飽和の環を形成してもよい。但し、ジベンゾフリル基の1位と9位との位置に置換する置換基同士は互いに結合されない。 In a preferred structure of the amine derivative of the present invention, Ar 3 is a substituted or unsubstituted dibenzofuryl group. The substituents substituted on the dibenzofuryl group are independently a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms. The substituents substituted on the dibenzofuryl group may be bonded to each other to form a saturated or unsaturated ring. However, substituents substituted at the 1-position and 9-position of the dibenzofuryl group are not bonded to each other.
 本発明のアミン誘導体の好ましい構造において、Lは単結合である。ここで、Arである置換若しくは無置換のジベンゾフリル基のLとの結合位置は、特に限定されないが、2位、3位又は4位の位置であることが好ましく、特に、3位の位置であることが好ましい。即ち、上述したように、本発明のアミン誘導体の好ましい構造においてLは単結合であるため、Arである置換若しくは無置換のジベンゾフリル基は、2位、3位又は4位の位置でアミン誘導体におけるアミン部位の窒素原子(N)と結合することが好ましく、特に、3位の位置で窒素原子(N)と結合することが好ましい。ジベンゾフリル基が3位の位置でアミン部位の窒素原子(N)と結合することにより、分子全体のπ電子の共役系が拡がるため、正孔輸送性の向上が見込まれ、有機エレクトロルミネッセンス素子のさらなる発光効率の向上及び長寿命化が期待できる。また、Lが単結合であるため、分子量の増加による製膜性の劣化を防止することができる。 In a preferred structure of the amine derivative of the present invention, L is a single bond. Here, the position of bonding with L of the substituted or unsubstituted dibenzofuryl group which is Ar 3 is not particularly limited, but is preferably the 2-position, 3-position or 4-position, particularly the 3-position. It is preferable that That is, as described above, since L is a single bond in the preferred structure of the amine derivative of the present invention, the substituted or unsubstituted dibenzofuryl group which is Ar 3 is an amine at the 2-position, 3-position or 4-position. It is preferable to combine with the nitrogen atom (N) of the amine site in the derivative, and particularly preferable to bond with the nitrogen atom (N) at the 3-position. When the dibenzofuryl group is bonded to the nitrogen atom (N) of the amine site at the 3-position, the conjugated system of π electrons of the whole molecule is expanded, so that the hole transporting property is expected to be improved, and the organic electroluminescence device Further improvement in luminous efficiency and longer life can be expected. Further, since L is a single bond, it is possible to prevent deterioration of film forming property due to an increase in molecular weight.
 本発明のアミン誘導体の好ましい構造における、Arであるジベンゾフリル基は、Ar又はArの少なくとも一方に置換するシリル基と同様に強電子耐性を示す。そのため、ジベンゾフリル基を有する本発明のアミン誘導体は、電子に対してさらに安定であり、有機エレクトロルミネッセンス素子用材料、特に、発光層と陽極との間の積層膜の材料として用いることにより、積層膜に侵入した電子が原因となる材料の劣化を抑制する。また、ジベンゾフリル基は、平面性が高いことにより、高いガラス転移点を示す。その結果、有機エレクトロルミネッセンス素子の発光効率を向上させ、さらに低駆動電圧化及び長寿命化を実現することが可能となる。特に、本発明の好ましいアミン誘導体である、一般式(1)においてArであるジベンゾフリル基が単結合であるLに結合しているアミン誘導体は、青色~青緑色領域において、有機エレクトロルミネッセンス素子の発光効率を向上させ、さらに低駆動電圧化及び長寿命化を実現することができる。 The dibenzofuryl group which is Ar 3 in the preferred structure of the amine derivative of the present invention exhibits strong electron resistance, like the silyl group substituted on at least one of Ar 1 or Ar 2 . Therefore, the amine derivative of the present invention having a dibenzofuryl group is more stable with respect to electrons, and is used as a material for an organic electroluminescent element, in particular, a laminated film between a light emitting layer and an anode. Suppresses deterioration of materials caused by electrons entering the film. The dibenzofuryl group exhibits a high glass transition point due to its high planarity. As a result, it is possible to improve the light emission efficiency of the organic electroluminescence element, and to realize a lower driving voltage and a longer life. In particular, the amine derivative in which the dibenzofuryl group which is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention, is bonded to L which is a single bond, is an organic electroluminescence device in a blue to blue-green region. The light emission efficiency can be improved, and further, the drive voltage can be lowered and the life can be extended.
 上述した本発明の好ましいアミン誘導体である、一般式(1)においてArであるジベンゾフリル基が単結合であるLに結合しているアミン誘導体としては、以下に例示する化合物が挙げられるが、これらに限定されるものではない。 Examples of the amine derivative that is a preferable amine derivative of the present invention, in which the dibenzofuryl group that is Ar 3 in the general formula (1) is bonded to L that is a single bond, include the compounds exemplified below. It is not limited to these.
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089

Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090

Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091

Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092

Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093

Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094

Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095

Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096

Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097

Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 本発明の好ましいアミン誘導体である、一般式(1)においてArであるジベンゾフリル基が単結合であるLに結合しているアミン誘導体は、上述したような図1で表された有機エレクトロルミネッセンス素子100の正孔輸送層の材料として用いることができる。尚、図1に示された有機エレクトロルミネッセンス素子100の構成は、本発明の有機エレクトロルミネッセンス素子の一実施形態であり、これに限定されるわけではなく種々の変更が可能である。 The amine derivative in which the dibenzofuryl group which is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention, is bonded to L which is a single bond, is the organic electroluminescence represented in FIG. 1 as described above. It can be used as a material for the hole transport layer of the element 100. The configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
 また、本発明の好ましいアミン誘導体である、一般式(1)においてArであるジベンゾフリル基が単結合であるLに結合しているアミン誘導体の用途は、有機エレクトロルミネッセンス素子の正孔輸送材料に限定されるわけではなく、正孔注入層の材料又は発光層の材料としても用いることが可能であり、正孔注入層の材料又は発光層の材料として用いる場合も、正孔輸送層の材料として使用した場合と同様に、有機エレクトロルミネッセンス素子の発光効率を向上させ、有機エレクトロルミネッセンス素子の長寿命化を実現することが可能となる。 Moreover, the use of the amine derivative which is a preferable amine derivative of the present invention in which the dibenzofuryl group which is Ar 3 in the general formula (1) is bonded to L which is a single bond is used as a hole transport material of an organic electroluminescence device However, the present invention can be used as a material for a hole injection layer or a light emitting layer, and can also be used as a material for a hole injection layer or a light emitting layer. As in the case of using as, it is possible to improve the light emission efficiency of the organic electroluminescence element and to extend the life of the organic electroluminescence element.
[実施例III]
 本発明の好ましいアミン誘導体である、一般式(1)においてArであるジベンゾフリル基が単結合であるLに結合しているアミン誘導体について、前記化合物B-1、B-16、B-21、B-34及びB-39の合成法の例を以下に述べる。但し、以下に述べる合成法は一例であって、本発明を限定するものでは無い。
Example III
The amine derivatives in which the dibenzofuryl group, which is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention is bonded to L which is a single bond, are the compounds B-1, B-16, B-21. Examples of synthesis methods of B-34 and B-39 are described below. However, the synthesis method described below is an example and does not limit the present invention.
(化合物B-1の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(xii)1.50gと化合物(x)1.90g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.11g、トリ-t-ブチルホスフィン((t-Bu)3P)0.15g、ナトリウムt-ブトキシド0.54gを加えて、45mLのトルエン溶媒中で80℃で6時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物B-1を2.50g(収率88%)得た。
Figure JPOXMLDOC01-appb-C000099
(Synthesis of Compound B-1)
In a 100 mL three-necked flask under an argon atmosphere, 1.50 g of compound (xii), 1.90 g of compound (x), 0.11 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- Butylphosphine ((t-Bu) 3 P) (0.15 g) and sodium t-butoxide (0.54 g) were added, and the mixture was heated to reflux for 6 hours at 80 ° C. in 45 mL of toluene solvent. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 2.50 g of Compound B-1 as a white solid (yield 88 %)Obtained.
Figure JPOXMLDOC01-appb-C000099
 1H NMR測定で測定された化合物B-1のケミカルシフト値は、7.89(d, 2H), 7.80(d, 2H), 7.66-7.51(m, 14H), 7.50-7.31(m, 13H), 7.22(d, 2H), 7.19(d, 2H)であった。また、FAB-MS測定により測定された化合物B-1の分子量は、669であった。 The chemical shift values of Compound B-1 measured by 1 H NMR measurement are 7.89 (d, 2H), 7.80 (d, 2H), 7.66-7.51 (m, 14H), 7.50-7.31 (m, 13H), 7.22 (d, 2H), 7.19 (d, 2H). Further, the molecular weight of Compound B-1 measured by FAB-MS measurement was 669.
(化合物B-16の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(xiii)2.00gと化合物(v)3.08g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.31g、トリ-t-ブチルホスフィン((t-Bu)3P)0.13g、ナトリウムt-ブトキシド1.15gを加えて、110mLのトルエン溶媒中で80℃で8時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物B-16を1.42g(収率68%)得た。
Figure JPOXMLDOC01-appb-C000100
(Synthesis of Compound B-16)
In an argon atmosphere, in a 100 mL three-necked flask, 2.00 g of compound (xiii), 3.08 g of compound (v), 0.31 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- Butylphosphine ((t-Bu) 3 P) (0.13 g) and sodium t-butoxide (1.15 g) were added, and the mixture was heated to reflux for 8 hours at 80 ° C. in 110 mL of toluene solvent. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 1.42 g of compound B-16 as a white solid (yield 68). %)Obtained.
Figure JPOXMLDOC01-appb-C000100
 1H NMR測定で測定された化合物B-16のケミカルシフト値は、7.88(d, 1H), 7.80(d, 1H), 7.67-7.59(m, 12H), 7.58-7.51(m, 6H), 7.50-7.39(m, 11H), 7.39-7.31(m, 4H), 7.22-7.19(m, 4H)であった。また、FAB-MS測定により測定された化合物B-16の分子量は、745であった。 The chemical shift values of Compound B-16 measured by 1 H NMR measurement are 7.88 (d, 1H), 7.80 (d, 1H), 7.67-7.59 (m, 12H), 7.58-7.51 (m, 6H), 7.50-7.39 (m, 11H), 7.39-7.31 (m, 4H), 7.22-7.19 (m, 4H). The molecular weight of compound B-16 measured by FAB-MS measurement was 745.
(化合物B-21の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(vii)2.09gと化合物(xiv)0.94g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.18g、トリ-t-ブチルホスフィン((t-Bu)3P)0.38g、ナトリウムt-ブトキシド0.74gを加えて、120mLのトルエン溶媒中で80℃で7時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物B-21を2.29g(収率85%)得た。
Figure JPOXMLDOC01-appb-C000101
(Synthesis of Compound B-21)
In a 100 mL three-necked flask under an argon atmosphere, 2.09 g of compound (vii), 0.94 g of compound (xiv), 0.18 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- 0.38 g of butylphosphine ((t-Bu) 3 P) and 0.74 g of sodium t-butoxide were added, and the mixture was heated to reflux at 120 ° C. for 7 hours in 120 mL of a toluene solvent. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 2.29 g of a white solid compound B-21 (yield: 85). %)Obtained.
Figure JPOXMLDOC01-appb-C000101
 1H NMR測定で測定された化合物B-21のケミカルシフト値は、7.88-7.81(m, 2H), 7.61-7.52(m, 12H), 7.58-7.51(m, 6H), 7.50-7.39(m, 11H), 7.39-7.31(m, 4H), 7.22-7.19(m, 4H)であった。また、FAB-MS測定により測定された化合物B-21の分子量は、745であった。 The chemical shift values of Compound B-21 measured by 1 H NMR measurement are 7.88-7.81 (m, 2H), 7.61-7.52 (m, 12H), 7.58-7.51 (m, 6H), 7.50-7.39 (m 11H), 7.39-7.31 (m, 4H), 7.22-7.19 (m, 4H). In addition, the molecular weight of Compound B-21 measured by FAB-MS measurement was 745.
(化合物B-34の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(vii)1.11gと化合物(xv)0.47g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.10g、トリ-t-ブチルホスフィン((t-Bu)3P)0.19g、ナトリウムt-ブトキシド0.37gを加えて、60mLのトルエン溶媒中で80℃で7時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物B-34を0.98g(収率69%)得た。
Figure JPOXMLDOC01-appb-C000102
(Synthesis of Compound B-34)
In a 100 mL three-necked flask under an argon atmosphere, 1.11 g of compound (vii), 0.47 g of compound (xv), 0.10 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- 0.19 g of butylphosphine ((t-Bu) 3 P) and 0.37 g of sodium t-butoxide were added, and the mixture was heated to reflux in 80 mL of toluene solvent at 80 ° C. for 7 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 0.98 g of a white solid compound B-34 (yield 69). %)Obtained.
Figure JPOXMLDOC01-appb-C000102
 1H NMR測定で測定された化合物B-34のケミカルシフト値は、7.88-7.81(m, 2H), 7.61-7.52(m, 12H), 7.58-7.51(m, 6H), 7.50-7.39(m, 11H), 7.39-7.31(m, 4H), 7.22-7.19(m, 4H)であった。また、FAB-MS測定により測定された化合物B-34の分子量は、745であった。 The chemical shift values of Compound B-34 measured by 1 H NMR measurement are 7.88-7.81 (m, 2H), 7.61-7.52 (m, 12H), 7.58-7.51 (m, 6H), 7.50-7.39 (m 11H), 7.39-7.31 (m, 4H), 7.22-7.19 (m, 4H). The molecular weight of compound B-34 measured by FAB-MS measurement was 745.
(化合物B-39の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(xvi)1.50gと化合物(xv)0.59g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.11g、トリ-t-ブチルホスフィン((t-Bu)3P)0.15g、ナトリウムt-ブトキシド0.54gを加えて、45mLのトルエン溶媒中で80℃で7時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物B-39を1.36g(収率72%)得た。
Figure JPOXMLDOC01-appb-C000103
(Synthesis of Compound B-39)
In a 100 mL three-necked flask under an argon atmosphere, 1.50 g of compound (xvi), 0.59 g of compound (xv), 0.11 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- 0.15 g of butylphosphine ((t-Bu) 3 P) and 0.54 g of sodium t-butoxide were added, and the mixture was heated to reflux at 80 ° C. for 7 hours in 45 mL of a toluene solvent. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 1.36 g of a white solid compound B-39 (yield: 72). %)Obtained.
Figure JPOXMLDOC01-appb-C000103
 1H NMR測定で測定された化合物B-39のケミカルシフト値は、8.49(d, 2H), 8.16(d, 2H), 7.81(d, 2H), 7.78-7.55(m, 12H), 749-7.33(m, 16H), 7.32-7.25(m, ,5H), 7.13(d, 2H)であった。また、FAB-MS測定により測定された化合物B-39の分子量は、795であった。 The chemical shift value of Compound B-39 measured by 1 H NMR measurement is 8.49 (d, 2H), 8.16 (d, 2H), 7.81 (d, 2H), 7.78-7.55 (m, 12H), 749- 7.33 (m, 16H), 7.32-7.25 (m,, 5H), 7.13 (d, 2H). The molecular weight of compound B-39 measured by FAB-MS measurement was 795.
 以下、本発明の有機エレクトロルミネッセンス素子材料として、上述した化合物B-1、化合物B-16、化合物B-21、化合物B-34及び化合物B-39を正孔輸送層に用いた有機エレクトロルミネッセンス素子について説明する。化合物B-1を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例10、化合物B-16を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例11、化合物B-21を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例12、化合物B-34を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例13、化合物B-39を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例14とする。 Hereinafter, as the organic electroluminescence device material of the present invention, an organic electroluminescence device using the compound B-1, the compound B-16, the compound B-21, the compound B-34, and the compound B-39 described above for the hole transport layer. Will be described. Example 10 shows an organic electroluminescence device using Compound B-1 as a hole transport layer, Example 11 shows an organic electroluminescence device using Compound B-16 as a hole transport layer, and transports Compound B-21 as a hole transport Example 12 was an organic electroluminescence device used for the layer, Example 13 was an organic electroluminescence device using Compound B-34 for the hole transport layer, and Organic Electroluminescence device using Compound B-39 for the hole transport layer This is referred to as Example 14.
 本発明の実施例10の有機エレクトロルミネッセンス素子の作製は、上述した実施例1の有機エレクトロルミネッセンス素子と同様に真空蒸着により行い、次のような手順で行った。先ず、あらかじめパターニングして洗浄処理を施したITO-ガラス基板に、オゾンによる表面処理を行った。尚、前記ITO膜の膜厚は、150nmである。オゾン処理後すぐに、正孔注入材料として4,4’,4’’-トリス(N,N-(2-ナフチル)フェニルアミノ)トリフェニルアミン(2-TNATA,膜厚60nm)を前記ITO膜上に成膜した。 Preparation of the organic electroluminescence element of Example 10 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescence element of Example 1 described above, and was performed in the following procedure. First, surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance. The ITO film has a thickness of 150 nm. Immediately after the ozone treatment, 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material. A film was formed on top.
 次に、正孔輸送材料として本発明の化合物B-1を成膜し(30nm)、次に、発光材料として2,5,8,11-テトラ-t-ブチル-ペリレン(TBP)を、9,10-ジ(2-ナフチル)アントラセン(ADN)に対して3%の割合でドープした膜を共蒸着によって成膜した(25nm)。 Next, the compound B-1 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butyl-perylene (TBP) as a light-emitting material was used. , 10-di (2-naphthyl) anthracene (ADN) was doped at a rate of 3% by co-evaporation (25 nm).
 次に、電子輸送材料としてトリス(8-キノリノラト)アルミニウム(Alq3)を成膜し(25nm)、次に、電子注入材料としてフッ化リチウム(LiF)(1.0nm)及び陰極としてアルミニウム(100nm)を順次積層し、図2に示す有機エレクトロルミネッセンス素子200を作製した。 Next, a film of tris (8-quinolinolato) aluminum (Alq3) was formed as an electron transport material (25 nm), then lithium fluoride (LiF) (1.0 nm) as an electron injection material and aluminum (100 nm) as a cathode Were sequentially laminated to produce an organic electroluminescent element 200 shown in FIG.
 実施例11、12、13及び14の有機エレクトロルミネッセンス素子作製は、実施例10で用いた化合物B-1の代わりに化合物B-16、化合物B-21、化合物B-34、化合物B-39を用いたこと以外は、実施例10と同様に有機エレクトロルミネッセンス素子を作製した。 The organic electroluminescence devices of Examples 11, 12, 13, and 14 were prepared by using Compound B-16, Compound B-21, Compound B-34, and Compound B-39 instead of Compound B-1 used in Example 10. An organic electroluminescence element was produced in the same manner as in Example 10 except that it was used.
 比較例6及び比較例7として、有機エレクトロルミネッセンス素子の正孔輸送層の材料を構成する化合物として以下に示す比較化合物6、比較化合物7を用いて、実施例10と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000104
As Comparative Example 6 and Comparative Example 7, an organic electroluminescent device was prepared in the same manner as in Example 10 by using Comparative Compound 6 and Comparative Compound 7 shown below as compounds constituting the material of the hole transport layer of the organic electroluminescent device. Produced.
Figure JPOXMLDOC01-appb-C000104
 実施例10~実施例14、比較例6、比較例7で作成した有機エレクトロルミネッセンス素子200について、駆動電圧、電流効率、半減寿命を評価した。なお、発光効率は10mA/cmにおける値を示し、半減寿命は初期輝度1,000cd/mからの輝度半減時間を示す。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000105
With respect to the organic electroluminescent elements 200 prepared in Examples 10 to 14, Comparative Example 6, and Comparative Example 7, the driving voltage, current efficiency, and half life were evaluated. Incidentally, the light emission efficiency indicates a value at 10 mA / cm 2, the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000105
 表3によれば、本発明の実施例10乃至実施例14の有機エレクトロルミネッセンス素子は、比較例6及び比較例7の有機エレクトロルミネッセンス素子に比して、駆動電圧が低下し、発光効率が向上し、長寿命化していることが分かる。特に、本発明のアミン誘導体の好ましい構造において、Arである置換若しくは無置換のジベンゾフリル基が、3位の位置でアミン部位の窒素原子(N)と結合している化合物B-21を使用した実施例12では、駆動電圧の低下、発光効率の向上、及び発光寿命の向上が顕著であった。 According to Table 3, the organic electroluminescent elements of Examples 10 to 14 of the present invention have a lower driving voltage and improved luminous efficiency than the organic electroluminescent elements of Comparative Examples 6 and 7. And it can be seen that the life is extended. In particular, in the preferred structure of the amine derivative of the present invention, a compound B-21 in which a substituted or unsubstituted dibenzofuryl group as Ar 3 is bonded to the nitrogen atom (N) of the amine moiety at the 3-position is used. In Example 12, the reduction in drive voltage, the improvement in light emission efficiency, and the improvement in the light emission lifetime were significant.
 前述した実施例10乃至実施例14においては、本発明の好ましいアミン誘導体である、一般式(1)においてArであるジベンゾフリル基が単結合であるLに結合しているアミン誘導体を有機エレクトロルミネッセンス素子の正孔輸送材料に利用した例を説明したが、本発明のアミン誘導体の利用は有機エレクトロルミネッセンス素子に限定されず、その他の発光素子又は発光装置に利用されてもよい。また、本発明の好ましいアミン誘導体である、一般式(1)においてArであるジベンゾフリル基が単結合であるLに結合しているアミン誘導体を用いた有機エレクトロルミネッセンス素子は、パッシブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよく、アクティブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよい。 In Example 10 to Example 14 described above, an amine derivative in which the dibenzofuryl group which is Ar 3 in General Formula (1) is bonded to L which is a single bond, which is a preferred amine derivative of the present invention, is an organic electro Although the example utilized for the hole transport material of a luminescent element was demonstrated, utilization of the amine derivative of this invention is not limited to an organic electroluminescent element, You may utilize for another light emitting element or light-emitting device. In addition, an organic electroluminescence device using an amine derivative in which the dibenzofuryl group that is Ar 3 in General Formula (1), which is a preferred amine derivative of the present invention, is bonded to L that is a single bond is a passive matrix drive. The present invention may be used for an organic electroluminescence display of a type, and may be used for an organic electroluminescence display of an active matrix driving type.
 本願発明者らは、一般式(1)で表されるアミン誘導体のうち、特に、以下に述べる構造を有するアミン誘導体を有機エレクトロルミネッセンス材料として発光層と陽極との間に配置することにより、有機エレクトロルミネッセンス素子の発光効率、駆動電圧及び寿命に著しい改善が得られることを確認した。 Among the amine derivatives represented by the general formula (1), the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
 一般式(1)で表されるアミン誘導体の好ましい構造は、一般式(1)において、Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arは置換若しくは無置換のフルオレニル基であり、Lは、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基である。 A preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. At least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted fluorenyl group, and L is a substituted or unsubstituted arylene group Or a substituted or unsubstituted heteroarylene group.
 ここで、Ar及びArの「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基としては、前述したように、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ビフェニレン基、ピレニル基、ベンゾチアゾリル基、チオフェニル基、チエノチオフェニル基、チエノチエノチオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ジベンゾフリル基、N-アリールカルバゾリル基、N-ヘテロアリールカルバゾリル基、N-アルキルカルバゾリル基、フェノキサジル基、フェノチアジル基、ピリジル基、ピリミジル基、トリアジル基、キノリニル基、キノキサリル基などが挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ジベンゾチオフェニル基、ジベンゾフリル基、N-フェニルカルバゾリル基が好ましい。アリール基としては、環形成炭素数6以上18以下であることが好ましく、ヘテロアリール基としては、環形成原子数5以上18以下であることが好ましい。 Here, as described above, as the aryl group and heteroaryl group of the “substituted or unsubstituted aryl group” or “substituted or unsubstituted heteroaryl group” of Ar 1 and Ar 2 , as described above, a phenyl group, a naphthyl group, Anthracenyl group, phenanthryl group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, biphenylene group, pyrenyl group, benzothiazolyl group, thiophenyl group, thienothiophenyl group, thienothienothiophenyl group, benzothiophenyl group, dibenzothiophenyl group Group, dibenzofuryl group, N-arylcarbazolyl group, N-heteroarylcarbazolyl group, N-alkylcarbazolyl group, phenoxazyl group, phenothiazyl group, pyridyl group, pyrimidyl group, triazyl group, quinolinyl group, quinoxalyl Group etc. Gerare, phenyl group, naphthyl group, biphenyl group, terphenyl group, fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group. The aryl group preferably has 6 to 18 ring carbon atoms, and the heteroaryl group preferably has 5 to 18 ring atoms.
 Ar及びArのアリール基またはヘテロアリール基に置換される置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。アリール基及びヘテロアリール基の例示される具体例は、上記のAr及びArのアリール基及びヘテロアリール基と同じである。Ar及びArのアリール基又はヘテロアリール基に置換される置換基のアルキル基は特に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、t-ブチル基、シクロブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、ノニル基、デシル基等を例示することができる。また、Ar、及びArのアリール基又はヘテロアリール基に置換される置換基のアルコキシ基は特に限定されないが、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基等を例示することができる。 Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group of Ar 1 and Ar 2 described above. The alkyl group of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 is not particularly limited, but is methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, t -Butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, cycloheptyl group, octyl group, nonyl group, decyl group and the like can be exemplified. In addition, the alkoxy group of the substituent substituted by the aryl group or heteroaryl group of Ar 1 and Ar 2 is not particularly limited, but a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, Isobutoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3 , 7-dimethyloctyloxy group and the like can be exemplified.
 Ar及びArのうち少なくとも1つに置換されるシリル基の置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。具体的には、Ar及びArのアリール基又はヘテロアリール基に置換される置換基として述べたアルキル基、アルコキシ基、アリール基、ヘテロアリール基と同じであり、特に、フェニル基及びメチル基が好ましい。また、Ar及びArのうち少なくとも1つに置換されるシリル基は、該シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基又は該シリル基に置換されるアルキル基の炭素数がそれぞれ1以上6以下のトリアルキルシリル基であることが好ましい。 Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted by the aryl group or heteroaryl group of Ar 1 and Ar 2 , and in particular, a phenyl group and a methyl group Is preferred. In addition, the silyl group substituted with at least one of Ar 1 and Ar 2 is a triarylsilyl group having 6 to 18 ring carbon atoms of the aryl group substituted with the silyl group or the silyl group. The substituted alkyl group is preferably a trialkylsilyl group having 1 to 6 carbon atoms.
 尚、本発明の好ましいアミン誘導体において、Ar及びArのうち、どちらか一方のみが置換若しくは無置換のシリル基に置換されていてもよい。Ar及びArのうち、どちらか一方のみが置換若しくは無置換のシリル基に置換されることにより、LUMOがアミン部位の周辺に局在化することを抑制し、エネルギーギャップが小さくなることを防止することができる。 In the preferred amine derivative of the present invention, only one of Ar 1 and Ar 2 may be substituted with a substituted or unsubstituted silyl group. When only one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, LUMO is prevented from being localized around the amine site, and the energy gap is reduced. Can be prevented.
 本発明のアミン誘導体の好ましい構造において、Arは置換若しくは無置換のフルオレニル基である。フルオレニル基に置換する置換基はそれぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6以上18以下のアリール基、又は置換若しくは無置換の環形成原子数5以上18以下のヘテロアリール基、置換若しくは無置換の炭素数1以上10以下のアルキル基である。フルオレニル基に置換する置換基としては、置換若しくは無置換のアリール基が好ましく、特に、9位の位置にフェニル基が置換されていることが好ましい。 In a preferred structure of the amine derivative of the present invention, Ar 3 is a substituted or unsubstituted fluorenyl group. The substituents substituted on the fluorenyl group are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 18 ring atoms. A substituted or unsubstituted alkyl group having 1 to 10 carbon atoms. The substituent substituted on the fluorenyl group is preferably a substituted or unsubstituted aryl group, and particularly preferably a phenyl group is substituted at the 9-position.
 本発明のアミン誘導体の好ましい構造において、Lは、置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基である。ここで、Lである「置換若しくは無置換のアリーレン基」及び「置換若しくは無置換のヘテロアリーレン基」のアリール基及びヘテロアリーレン基としては、Ar及びArで挙げられた「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基と同様のものが挙げられる。Lの「置換若しくは無置換のアリーレン基」及び「置換若しくは無置換のヘテロアリーレン基」のアリーレン基及びヘテロアリーレン基としては、環形成炭素数6以上18以下のアリール基、環形成原子数5以上18以下のヘテロアリーレン基が好ましく、特に、フェニレン基及びビフェニリレン基が好ましい。尚、Arである置換若しくは無置換のフルオレニル基は、2位の位置で、アミン部位の窒素原子(N)に対してpara位でLと結合することが好ましい。フルオレニル基が2位の位置でLと結合することにより、適切なHOMO準位及びLUMO準位を実現することができる。 In a preferred structure of the amine derivative of the present invention, L is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. Here, as the aryl group and heteroarylene group of the “substituted or unsubstituted arylene group” and “substituted or unsubstituted heteroarylene group” which are L, the “substituted or unsubstituted group” mentioned in Ar 1 and Ar 2 And the aryl group and the heteroaryl group of the “substituted aryl group” or “substituted or unsubstituted heteroaryl group”. As the arylene group and heteroarylene group of the “substituted or unsubstituted arylene group” and “substituted or unsubstituted heteroarylene group” of L, an aryl group having 6 to 18 ring carbon atoms and 5 or more ring atoms. A heteroarylene group of 18 or less is preferable, and a phenylene group and a biphenylylene group are particularly preferable. Incidentally, a substituted or unsubstituted fluorenyl group is Ar 3 is a position of the 2-position, it is preferable to bind to L in para-position to the nitrogen atom of the amine moiety (N). When the fluorenyl group is bonded to L at the 2-position, appropriate HOMO and LUMO levels can be realized.
 本発明の好ましいアミン誘導体は、一般式(1)において、Arが置換若しくは無置換のフルオレニル基であり、Lが置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基である。Arである置換若しくは無置換のフルオレニル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基であるLを介して、少なくとも一方にシリル基が置換されたAr及びArと結合するアミン部位の窒素原子(N)と結合していることにより、π電子の共役系が拡がり、正孔輸送性及び分子の安定性が向上する。また、フルオレニル基を導入することにより、連結基Lである置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基が平面化することにより、アミン誘導体の正孔輸送性が向上する。これにより、本発明のアミン誘導体を発光層と陽極との間に配置された正孔輸送層の材料として使用することにより、有機エレクトロルミネッセンス素子の発光効率を向上させ、さらに低駆動電圧化及び長寿命化を実現することが可能となる。特に、青色~青緑色領域において、有機エレクトロルミネッセンス素子の発光効率を向上させ、さらに低駆動電圧化及び長寿命化を実現することができる。 In a preferred amine derivative of the present invention, in general formula (1), Ar 3 is a substituted or unsubstituted fluorenyl group, and L is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. Ar 1 and Ar 2 in which at least one silyl group is substituted via L, which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, wherein Ar 3 is a substituted or unsubstituted fluorenyl group; By bonding with the nitrogen atom (N) of the amine site to be bonded, the conjugated system of π electrons is expanded, and the hole transport property and the molecular stability are improved. Further, by introducing a fluorenyl group, the substituted or unsubstituted arylene group or the substituted or unsubstituted heteroarylene group as the linking group L is planarized, whereby the hole transport property of the amine derivative is improved. Thus, the use of the amine derivative of the present invention as a material for the hole transport layer disposed between the light emitting layer and the anode improves the light emission efficiency of the organic electroluminescence device, and further reduces the driving voltage and length. It is possible to achieve a long life. In particular, in the blue to blue-green region, it is possible to improve the light emission efficiency of the organic electroluminescence element, and to realize a lower driving voltage and longer life.
 上述した本発明の好ましいアミン誘導体である、一般式(1)においてArである置換若しくは無置換のフルオレニル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換であるLに結合しているアミン誘導体としては、以下に例示する化合物が挙げられるが、これらに限定されるものではない。 An amine in which the substituted or unsubstituted fluorenyl group which is Ar 3 in the general formula (1) is bonded to the substituted or unsubstituted arylene group or the substituted or unsubstituted L, which is a preferable amine derivative of the present invention described above. Examples of the derivatives include, but are not limited to, compounds exemplified below.
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106

Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107

Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108

Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109

Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
 本発明の好ましいアミン誘導体である、一般式(1)においてArである置換若しくは無置換のフルオレニル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基であるLに結合しているアミン誘導体は、上述したような図1で表された有機エレクトロルミネッセンス素子100の正孔輸送層の材料として用いることができる。尚、図1に示された有機エレクトロルミネッセンス素子100の構成は、本発明の有機エレクトロルミネッセンス素子の一実施形態であり、これに限定されるわけではなく種々の変更が可能である。 A substituted or unsubstituted fluorenyl group that is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention, is bonded to L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. The amine derivative can be used as a material for the hole transport layer of the organic electroluminescence device 100 shown in FIG. 1 as described above. The configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
 また、本発明の好ましいアミン誘導体である、一般式(1)においてArであるフルオレニル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基であるLに結合しているアミン誘導体の用途は、有機エレクトロルミネッセンス素子の正孔輸送材料に限定されるわけではなく、正孔注入層の材料又は発光層の材料としても用いることが可能であり、正孔注入層の材料又は発光層の材料として用いる場合も、正孔輸送層の材料として使用した場合と同様に、有機エレクトロルミネッセンス素子の発光効率を向上させ、有機エレクトロルミネッセンス素子の長寿命化を実現することが可能となる。 Further, an amine derivative which is a preferred amine derivative of the present invention, in which the fluorenyl group which is Ar 3 in the general formula (1) is bonded to L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group The use of is not limited to the hole transport material of the organic electroluminescence device, but can also be used as the material of the hole injection layer or the light emitting layer. Also when used as a material for the organic electroluminescence element, it is possible to improve the light emission efficiency of the organic electroluminescence element and to extend the life of the organic electroluminescence element, as in the case of using as the material for the hole transport layer.
[実施例IV]
 本発明の好ましいアミン誘導体である、一般式(1)においてArであるフルオレニル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基であるLに結合しているアミン誘導体について、前記化合物C-1、化合物C-2、化合物C-4、化合物C-6の合成法の例を以下に述べる。但し、以下に述べる合成法は一例であって、本発明を限定するものでは無い。
[Example IV]
Regarding the amine derivative which is a preferred amine derivative of the present invention, the fluorenyl group which is Ar 3 in the general formula (1) is bonded to L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. Examples of methods for synthesizing Compound C-1, Compound C-2, Compound C-4, and Compound C-6 are described below. However, the synthesis method described below is an example and does not limit the present invention.
(化合物C-1の合成)
 先ず、アルゴン雰囲気下、300mLシュレンクフラスコに4-ブロモテトラフェニルシラン7.0g、酸化銅(I)0.241g、N-メチルピロリドン34.16mL、28%アンモニア水11.40mLを加え、40℃で10分加熱攪拌を行った。その後、80℃に昇温し、12時間加熱攪拌を行った。反応溶液を水に注ぎこみ、酢酸エチルで抽出した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、化合物(xvii)を5.8g得た。
Figure JPOXMLDOC01-appb-C000111
(Synthesis of Compound C-1)
First, under an argon atmosphere, 7.0 g of 4-bromotetraphenylsilane, 0.241 g of copper (I) oxide, 34.16 mL of N-methylpyrrolidone, and 11.40 mL of 28% aqueous ammonia are added to a 300 mL Schlenk flask and stirred at 40 ° C. for 10 minutes. Went. Thereafter, the temperature was raised to 80 ° C., and the mixture was heated and stirred for 12 hours. The reaction solution was poured into water and extracted with ethyl acetate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 5.8 g of compound (xvii).
Figure JPOXMLDOC01-appb-C000111
 次に、アルゴン雰囲気下、200mL三つ口フラスコに化合物(xvii)4.0gと4-ブロモビフェニル2.65g、Pd(dba)・CHCl0.59g、トリ-t-ブチルホスフィン((t-Bu)3P)0.46g、ナトリウムt-ブトキシド2.19gを加えて、120mLトルエン溶媒中で80℃、3時間加熱攪拌した。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物(x)を5.34g得た。
Figure JPOXMLDOC01-appb-C000112
Then, under an argon atmosphere, Compound a 200mL three-necked flask (xvii) 4.0 g of 4-bromobiphenyl 2.65g, Pd 2 (dba) 3 · CHCl 3 0.59g, tri -t- butylphosphine ((t-Bu ) 3 P) was added 0.46 g, sodium t- butoxide 2.19 g, 80 ° C. in 120mL toluene solvent was heated and stirred for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 5.34 g of compound (x).
Figure JPOXMLDOC01-appb-C000112
 また、アルゴン雰囲気下で、100mL四つ口フラスコに9,9-ジメチルフルオレン-2-ボロン酸2.65g、4-ブロモヨードベンゼン3.0g、トルエン21.6mL、エタノール10.6mL、2M炭酸ナトリウム水溶液10.6mL、テトラキス(トリフェニルホスフィン)パラジウム(0)0.193gを加え、80℃で3時間加熱攪拌を行った。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物(xviii)を3.3g得た。
Figure JPOXMLDOC01-appb-C000113

 
Also, in an argon atmosphere, in a 100 mL four-necked flask, 2.65 g of 9,9-dimethylfluorene-2-boronic acid, 3.0 g of 4-bromoiodobenzene, 21.6 mL of toluene, 10.6 mL of ethanol, 10.6 mL of 2M aqueous sodium carbonate solution, Tetrakis (triphenylphosphine) palladium (0) (0.193 g) was added, and the mixture was heated and stirred at 80 ° C. for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 3.3 g of compound (xviii).
Figure JPOXMLDOC01-appb-C000113

 次に、アルゴン雰囲気下、100mL三つ口フラスコに化合物(xviii)1.04gと化合物(x)1.50g、Pd(dba)・CHCl0.15g、トリ-t-ブチルホスフィン((t-Bu)3P)0.12g、ナトリウムt-ブトキシド0.57gを加えて、30mLトルエン溶媒中で80℃、3時間加熱攪拌した。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物C-1を2.10g得た。
Figure JPOXMLDOC01-appb-C000114
Next, under an argon atmosphere, a 100 mL three-necked flask was charged with 1.04 g of compound (xviii), 1.50 g of compound (x), 0.15 g of Pd 2 (dba) 3 .CHCl 3 , tri-t-butylphosphine ((t-Bu ) 3 P) was added 0.12 g, sodium t- butoxide 0.57 g, 80 ° C. in 30mL toluene solvent was heated and stirred for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 2.10 g of compound C-1.
Figure JPOXMLDOC01-appb-C000114
(化合物C-2の合成)
 先ず、アルゴン雰囲気下で、100mL四つ口フラスコに9,9-ビフェニルフルオレン-2-ボロン酸4.03g、4-ブロモヨードベンゼン3.0g、トルエン21.6mL、エタノール10.6mL、2M炭酸ナトリウム水溶液10.6mL、テトラキス(トリフェニルホスフィン)パラジウム(0) 0.193gを加え、80℃で3時間加熱攪拌を行った。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物(xix)を3.5g得た。
Figure JPOXMLDOC01-appb-C000115
(Synthesis of Compound C-2)
First, under an argon atmosphere, in a 100 mL four-necked flask, 9,9-biphenylfluorene-2-boronic acid 4.03 g, 4-bromoiodobenzene 3.0 g, toluene 21.6 mL, ethanol 10.6 mL, 2M aqueous sodium carbonate solution 10.6 mL, Tetrakis (triphenylphosphine) palladium (0) (0.193 g) was added, and the mixture was heated and stirred at 80 ° C. for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 3.5 g of compound (xix).
Figure JPOXMLDOC01-appb-C000115
 次に、アルゴン雰囲気下、100mL四つ口フラスコに化合物(xix)1.17gと化合物(x)1.50g、Pd(dba)・CHCl0.15g、トリ-t-ブチルホスフィン((t-Bu)3P)0.12g、ナトリウムt-ブトキシド0.57gを加えて、30mLトルエン溶媒中で80℃、3時間加熱攪拌した。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物C-2を2.30g得た。
Figure JPOXMLDOC01-appb-C000116
Next, 1.17 g of compound (xix), 1.50 g of compound (x), 0.15 g of Pd 2 (dba) 3 .CHCl 3 , tri-t-butylphosphine ((t-Bu) were placed in a 100 mL four-necked flask under an argon atmosphere. ) 3 P) was added 0.12 g, sodium t- butoxide 0.57 g, 80 ° C. in 30mL toluene solvent was heated and stirred for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 2.30 g of compound C-2.
Figure JPOXMLDOC01-appb-C000116
(化合物C-4の合成)
 先ず、アルゴン雰囲気下で、100mL四つ口フラスコに2-ブロモ-9,9-ジメチルフルオレン2.00g、4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)アニリン1.76g、トルエン14.7mL、エタノール7.3mL、2Mリン酸ナトリウム水溶液3.6mL、テトラキス(トリフェニルホスフィン)パラジウム(0)0.254gを加え、80℃で3時間加熱攪拌を行った。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物(xx)を1.25g得た。
Figure JPOXMLDOC01-appb-C000117

 
(Synthesis of Compound C-4)
First, in an argon atmosphere, a 100 mL four-necked flask was charged with 2.00 g of 2-bromo-9,9-dimethylfluorene, 4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2- Yl) 1.76 g of aniline, 14.7 mL of toluene, 7.3 mL of ethanol, 3.6 mL of 2M aqueous sodium phosphate solution, and 0.254 g of tetrakis (triphenylphosphine) palladium (0) were added, and the mixture was heated and stirred at 80 ° C. for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 1.25 g of compound (xx).
Figure JPOXMLDOC01-appb-C000117

 次に、アルゴン雰囲気下、200mL四つ口フラスコに化合物(xx)1.25gと4-ブロモビフェニル1.02g、Pd(dba)・CHCl0.13g、トリ-t-ブチルホスフィン((t-Bu)3P)0.18g、ナトリウムt-ブトキシド0.84gを加えて、43.8mLトルエン溶媒中で80℃、3時間加熱攪拌した。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物(xxi)を1.63g得た。
Figure JPOXMLDOC01-appb-C000118
Next, in an argon atmosphere, 1.25 g of compound (xx), 1.02 g of 4-bromobiphenyl, 0.13 g of Pd 2 (dba) 3 .CHCl 3 , tri-t-butylphosphine ((t-Bu ) 3 P) was added 0.18 g, sodium t- butoxide 0.84 g, 80 ° C. in 43.8mL of toluene solvent was heated and stirred for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 1.63 g of compound (xxi).
Figure JPOXMLDOC01-appb-C000118
 次に、アルゴン雰囲気下、100mL四つ口フラスコに化合物(xxi)1.63gと(4-ブロモフェニル)トリメチルシラン0.85g、Pd(dba)・CHCl0.11g、トリ-t-ブチルホスフィン((t-Bu)3P)0.15g、ナトリウムt-ブトキシド0.72gを加えて、37mLトルエン溶媒中で80℃、3時間加熱攪拌した。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物C-4を2.00g得た。
Figure JPOXMLDOC01-appb-C000119
Next, under an argon atmosphere, a 100 mL four-necked flask was charged with 1.63 g of compound (xxi), 0.85 g of (4-bromophenyl) trimethylsilane, 0.11 g of Pd 2 (dba) 3 .CHCl 3 , tri-t-butylphosphine ( (t-Bu) 3 P) (0.15 g) and sodium t-butoxide (0.72 g) were added, and the mixture was heated with stirring in a 37 mL toluene solvent at 80 ° C. for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 2.00 g of compound C-4.
Figure JPOXMLDOC01-appb-C000119
(化合物C-6の合成)
 先ず、アルゴン雰囲気下、200mL四つ口フラスコに化合物(xx)1.00gと4-ブロモテトラフェニルシラン1.46g、Pd(dba)・CHCl0.1g、トリ-t-ブチルホスフィン((t-Bu)3P)0.14g、ナトリウムt-ブトキシド0.67gを加えて、35.0mLトルエン溶媒中で80℃、3時間加熱攪拌した。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物(xxii)を2.05g得た。
Figure JPOXMLDOC01-appb-C000120
(Synthesis of Compound C-6)
First, 1.00 g of compound (xx), 1.46 g of 4-bromotetraphenylsilane, 0.1 g of Pd 2 (dba) 3 .CHCl 3 , tri-t-butylphosphine ((t- Bu) 3 P) 0.14 g and sodium t-butoxide 0.67 g were added, and the mixture was heated with stirring in 35.0 mL toluene solvent at 80 ° C. for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 2.05 g of compound (xxii).
Figure JPOXMLDOC01-appb-C000120
 次に、アルゴン雰囲気下、100mL四つ口フラスコに化合物(xxii)2.05gと1-(4-ブロモフェニル)ナフタレン0.94g、Pd(dba)・CHCl0.10g、トリ-t-ブチルホスフィン((t-Bu)3P)0.13g、ナトリウムt-ブトキシド0.64gを加えて、33mLトルエン溶媒中で80℃、3時間加熱攪拌した。トルエンで抽出し、有機層を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し、化合物C-6を2.52g得た。
Figure JPOXMLDOC01-appb-C000121
Next, in an argon atmosphere, in a 100 mL four-necked flask, 2.05 g of compound (xxii), 0.94 g of 1- (4-bromophenyl) naphthalene, 0.10 g of Pd 2 (dba) 3 .CHCl 3 , tri-t-butylphosphine 0.13 g of ((t-Bu) 3 P) and 0.64 g of sodium t-butoxide were added, and the mixture was heated and stirred in a 33 mL toluene solvent at 80 ° C. for 3 hours. Extraction was performed with toluene, and the organic layer was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 2.52 g of compound C-6.
Figure JPOXMLDOC01-appb-C000121
 以下、本発明の有機エレクトロルミネッセンス素子材料として、上述した化合物C-1、化合物C-2、化合物C-4及び化合物C-6を正孔輸送層に用いた有機エレクトロルミネッセンス素子について説明する。化合物C-1を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例15、化合物C-2を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例16、化合物C-4を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例17、化合物C-6を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例18とする。 Hereinafter, as the organic electroluminescence device material of the present invention, an organic electroluminescence device using the above-mentioned compound C-1, compound C-2, compound C-4 and compound C-6 for the hole transport layer will be described. Example 15 shows an organic electroluminescence device using Compound C-1 as a hole transport layer, Example 16 shows an organic electroluminescence device using Compound C-2 as a hole transport layer, and transports Compound C-4 as a hole transport The organic electroluminescence device used for the layer is Example 17, and the organic electroluminescence device using Compound C-6 for the hole transport layer is Example 18.
 本発明の実施例15の有機エレクトロルミネッセンス素子の作製は、上述した実施例1の有機エレクトロルミネッセンス素子と同様に真空蒸着により行い、次のような手順で行った。先ず、あらかじめパターニングして洗浄処理を施したITO-ガラス基板に、オゾンによる表面処理を行った。尚、前記ITO膜の膜厚は、150nmである。オゾン処理後すぐに、正孔注入材料として4,4’,4’’-トリス(N,N-(2-ナフチル)フェニルアミノ)トリフェニルアミン(2-TNATA,膜厚60nm)を前記ITO膜上に成膜した。 Preparation of the organic electroluminescence element of Example 15 of the present invention was performed by vacuum evaporation in the same manner as the organic electroluminescence element of Example 1 described above, and was performed according to the following procedure. First, surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance. The ITO film has a thickness of 150 nm. Immediately after the ozone treatment, 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material. A film was formed on top.
 次に、正孔輸送材料として本発明の化合物C-1を成膜し(30nm)、次に、発光材料として2,5,8,11-テトラ-t-ブチル-ペリレン(TBP)を、9,10-ジ(2-ナフチル)アントラセン(ADN)に対して3%の割合でドープした膜を共蒸着によって成膜した(25nm)。 Next, the compound C-1 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butyl-perylene (TBP) as a light emitting material was used. , 10-di (2-naphthyl) anthracene (ADN) was doped at a rate of 3% by co-evaporation (25 nm).
 次に、電子輸送材料としてトリス(8-キノリノラト)アルミニウム(Alq3)を成膜し(25nm)、次に、電子注入材料としてフッ化リチウム(LiF)(1.0nm)及び陰極としてアルミニウム(100nm)を順次積層し、図2に示す有機エレクトロルミネッセンス素子200を作製した。 Next, a film of tris (8-quinolinolato) aluminum (Alq3) was formed as an electron transport material (25 nm), then lithium fluoride (LiF) (1.0 nm) as an electron injection material and aluminum (100 nm) as a cathode Were sequentially laminated to produce an organic electroluminescent element 200 shown in FIG.
 実施例16、17及び18の有機エレクトロルミネッセンス素子作製は、実施例15で用いた化合物C-1の代わりに化合物C-2、化合物C-4、化合物C-6を用いたこと以外は、実施例15と同様に有機エレクトロルミネッセンス素子を作製した。 The organic electroluminescence devices of Examples 16, 17 and 18 were prepared except that Compound C-2, Compound C-4 and Compound C-6 were used instead of Compound C-1 used in Example 15. An organic electroluminescence device was produced in the same manner as in Example 15.
 比較例8として、有機エレクトロルミネッセンス素子の正孔輸送層の材料を構成する化合物として以下に示す比較化合物8を用いて、実施例15と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000122
As Comparative Example 8, an organic electroluminescence element was produced in the same manner as in Example 15 using Comparative Compound 8 shown below as a compound constituting the material of the hole transport layer of the organic electroluminescence element.
Figure JPOXMLDOC01-appb-C000122
 実施例15~実施例18、比較例8で作成した有機エレクトロルミネッセンス素子200について、駆動電圧、電流効率、半減寿命を評価した。なお、発光効率は10mA/cmにおける値を示し、半減寿命は初期輝度1,000cd/mからの輝度半減時間を示す。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000123
The driving voltage, current efficiency, and half-life were evaluated for the organic electroluminescence elements 200 produced in Examples 15 to 18 and Comparative Example 8. Incidentally, the light emission efficiency indicates a value at 10 mA / cm 2, the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000123
 表4によれば、本発明の実施例15乃至実施例18の有機エレクトロルミネッセンス素子は、比較例8の有機エレクトロルミネッセンス素子に比して、駆動電圧が低下し、発光効率が向上し、長寿命化していることが分かる。特に、本発明のアミン誘導体の好ましい構造において、Arである置換若しくは無置換のフルオレニル基の9位にフェニル基がそれぞれ置換している化合物C-2を使用した実施例16では、駆動電圧の低下、発光効率の向上、及び発光寿命の向上が顕著であった。 According to Table 4, the organic electroluminescent elements of Examples 15 to 18 of the present invention have a lower driving voltage, improved luminous efficiency, and longer life compared to the organic electroluminescent elements of Comparative Example 8. You can see that In particular, in Example 16 using the compound C-2 in which the phenyl group is substituted at the 9-position of the substituted or unsubstituted fluorenyl group which is Ar 3 in the preferred structure of the amine derivative of the present invention, the driving voltage of The decrease, the improvement of the luminous efficiency, and the improvement of the luminous lifetime were remarkable.
 前述した実施例15乃至実施例18においては、本発明の好ましいアミン誘導体である、一般式(1)においてArである置換若しくは無置換のフルオレニル基が置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基であるLに結合しているアミン誘導体を有機エレクトロルミネッセンス素子の正孔輸送材料に利用した例を説明したが、本発明のアミン誘導体の利用は有機エレクトロルミネッセンス素子に限定されず、その他の発光素子又は発光装置に利用されてもよい。また、本発明の好ましいアミン誘導体を用いた有機エレクトロルミネッセンス素子は、パッシブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよく、アクティブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよい。 In Examples 15 to 18, the substituted or unsubstituted fluorenyl group which is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention, is substituted or unsubstituted arylene group, or substituted or Although an example in which an amine derivative bonded to L, which is an unsubstituted heteroarylene group, is used as a hole transport material of an organic electroluminescence device has been described, the use of the amine derivative of the present invention is limited to an organic electroluminescence device. Instead, it may be used for other light emitting elements or light emitting devices. In addition, the organic electroluminescence device using the preferred amine derivative of the present invention may be used for a passive matrix driving type organic electroluminescence display or an active matrix driving type organic electroluminescence display. .
 本願発明者らは、一般式(1)で表されるアミン誘導体のうち、特に、以下に述べる構造を有するアミン誘導体を有機エレクトロルミネッセンス材料として発光層と陽極との間に配置することにより、有機エレクトロルミネッセンス素子の発光効率、駆動電圧及び寿命に著しい改善が得られることを確認した。 Among the amine derivatives represented by the general formula (1), the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
 一般式(1)で表されるアミン誘導体の好ましい構造は、一般式(1)において、Ar及びArがそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arは置換若しくは無置換のフルオレニル基であり、Lは単結合である。一般式(1)で表されるアミン誘導体の好ましい構造を以下の一般式(3)に表す。
Figure JPOXMLDOC01-appb-C000124
A preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. And at least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted fluorenyl group, and L is a single bond. A preferred structure of the amine derivative represented by the general formula (1) is represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000124
 ここで、Ar及びArの「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基としては、前述したように、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ビフェニレン基、ピレニル基、ベンゾチアゾリル基、チオフェニル基、チエノチオフェニル基、チエノチエノチオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ジベンゾフリル基、N-アリールカルバゾリル基、N-ヘテロアリールカルバゾリル基、N-アルキルカルバゾリル基、フェノキサジル基、フェノチアジル基、ピリジル基、ピリミジル基、トリアジル基、キノリニル基、キノキサリル基などが挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ジベンゾチオフェニル基、ジベンゾフリル基、N-フェニルカルバゾリル基が好ましい。アリール基としては、環形成炭素数6以上18以下のアリール基が好ましく、フェニル基、ビフェニル基、トリフェニレン基が特に好ましい。また、ヘテロアリール基としては、環形成原子数5以上18以下のヘテロアリール基が好ましく、ジベンゾフリル基、N-フェニルカルバゾリル基が特に好ましい。 Here, as described above, as the aryl group and heteroaryl group of the “substituted or unsubstituted aryl group” or “substituted or unsubstituted heteroaryl group” of Ar 1 and Ar 2 , as described above, a phenyl group, a naphthyl group, Anthracenyl group, phenanthryl group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, biphenylene group, pyrenyl group, benzothiazolyl group, thiophenyl group, thienothiophenyl group, thienothienothiophenyl group, benzothiophenyl group, dibenzothiophenyl group Group, dibenzofuryl group, N-arylcarbazolyl group, N-heteroarylcarbazolyl group, N-alkylcarbazolyl group, phenoxazyl group, phenothiazyl group, pyridyl group, pyrimidyl group, triazyl group, quinolinyl group, quinoxalyl Group etc. Gerare, phenyl group, naphthyl group, biphenyl group, terphenyl group, fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group. As the aryl group, an aryl group having 6 to 18 ring carbon atoms is preferable, and a phenyl group, a biphenyl group, and a triphenylene group are particularly preferable. Further, the heteroaryl group is preferably a heteroaryl group having 5 to 18 ring atoms, and particularly preferably a dibenzofuryl group or an N-phenylcarbazolyl group.
 Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基であってもよい。また、Arが置換若しくは無置換のアリール基であり、Arが置換若しくは無置換のジベンゾヘテロール基であってもよい。 Ar 1 and Ar 2 may each independently be a substituted or unsubstituted aryl group. Ar 1 may be a substituted or unsubstituted aryl group, and Ar 2 may be a substituted or unsubstituted dibenzoheterol group.
 Ar及びArのアリール基またはヘテロアリール基に置換される置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。アリール基及びヘテロアリール基の例示される具体例は、上述のAr及びArの具体的な基として挙げたアリール基及びヘテロアリール基と同じである。ハロゲン原子としては、特に限定されないが、フッ素原子であってもよい。アルキル基としては、特に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、t-ブチル基、シクロブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、ノニル基、デシル基等であってもよい。アルコキシ基としては、特に限定されないが、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基等であってもよい。 Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include a halogen atom, an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group mentioned as the specific groups of Ar 1 and Ar 2 described above. Although it does not specifically limit as a halogen atom, A fluorine atom may be sufficient. The alkyl group is not particularly limited, but is methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, t-butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group. A hexyl group, a cyclohexyl group, a heptyl group, a cycloheptyl group, an octyl group, a nonyl group, a decyl group, and the like. Examples of the alkoxy group include, but are not limited to, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n It may be a -hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group or the like.
 一般式(3)で表される本発明の好ましいアミン誘導体において、一般式(1)のArは置換若しくは無置換のフルオレニル基である。フルオレニル基が導入されることにより、本発明のアミン誘導体の正孔輸送性が向上する。そのため、フルオレニル基が導入された本発明の好ましいアミン誘導体を陽極と発光層との間に配置された正孔輸送層の材料として使用することにより、有機エレクトロルミネッセンス素子のさらなる発光効率の向上及び長寿命化を実現することができる。フルオレニル基の置換基としてはそれぞれ独立に、水素原子、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基である。Arのフルオレニル基に置換するアルキル基としては、炭素数1以上10以下のアルキル基が好ましく、例えば、メチル基などが挙げられる。Arのフルオレニル基に置換するアリール基としては、環形成炭素数6以上12以下のアリール基が好ましく、例えば、フェニル基やナフチル基などが挙げられる。Arのフルオレニル基に置換するヘテロアリール基としては、環形成炭素数4以上12以下のヘテロアリール基が好ましく、例えば、ジベンゾフリル基などが挙げられる。 In a preferred amine derivative of the present invention represented by the general formula (3), Ar 3 in the general formula (1) is a substituted or unsubstituted fluorenyl group. By introducing a fluorenyl group, the hole transport property of the amine derivative of the present invention is improved. Therefore, by using the preferred amine derivative of the present invention in which a fluorenyl group is introduced as a material for the hole transport layer disposed between the anode and the light emitting layer, the luminous efficiency of the organic electroluminescence device can be further improved and increased. Life expectancy can be realized. The substituents of the fluorenyl group are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. As the alkyl group substituted for the fluorenyl group of Ar 3 , an alkyl group having 1 to 10 carbon atoms is preferable, and examples thereof include a methyl group. The aryl group substituted on the Ar 3 fluorenyl group is preferably an aryl group having 6 to 12 ring carbon atoms, and examples thereof include a phenyl group and a naphthyl group. The heteroaryl group substituted on the fluorenyl group of Ar 3 is preferably a heteroaryl group having 4 to 12 ring carbon atoms, and examples thereof include a dibenzofuryl group.
 フルオレニル基に置換するアルキル基、アリール基、又はヘテロアリール基に置換される置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲン原子が挙げられる。アリール基及びヘテロアリール基の例示される具体例は、上述のAr及びArの具体的な基として挙げたアリール基及びヘテロアリール基と同じであってもよい。ハロゲン原子としては、特に限定されないが、フッ素原子であってもよい。アルキル基の具体例としては、Ar及びArのアリール基またはヘテロアリール基に置換される置換基として述べたアルキル基と同じであってもよい。 Examples of the substituent substituted with the alkyl group, aryl group, or heteroaryl group substituted with the fluorenyl group include an alkyl group, an alkoxy group, an aryl group, a heteroaryl group, and a halogen atom. Illustrative specific examples of the aryl group and heteroaryl group may be the same as the aryl group and heteroaryl group listed as specific groups for Ar 1 and Ar 2 described above. Although it does not specifically limit as a halogen atom, A fluorine atom may be sufficient. Specific examples of the alkyl group may be the same as the alkyl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 .
 上述したように、本発明の好ましいアミン誘導体である一般式(3)で表されるアミン誘導体において、Lは単結合である。Arである置換若しくは無置換のフルオレニル基におけるLとの結合位置、即ち、フルオレニル基における窒素原子(N)との結合位置は、特に限定はされないが、2位の位置で結合されることが好ましい。本発明の好ましいアミン誘導体である一般式(3)において、Arである置換若しくは無置換のフルオレニル基が2位でアミン部位の窒素原子(N)と結合することにより、分子全体のπ電子の共役系が拡がり、正孔輸送性が向上するとともに分子の安定性が向上するため、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 As described above, in the amine derivative represented by the general formula (3) which is a preferred amine derivative of the present invention, L is a single bond. The bonding position with L in the substituted or unsubstituted fluorenyl group that is Ar 3, that is, the bonding position with the nitrogen atom (N) in the fluorenyl group is not particularly limited, but may be bonded at the 2-position. preferable. In the general formula (3) which is a preferred amine derivative of the present invention, a substituted or unsubstituted fluorenyl group which is Ar 3 is bonded to the nitrogen atom (N) of the amine moiety at the 2-position, whereby Since the conjugated system spreads, the hole transportability is improved, and the stability of the molecule is improved, the emission efficiency and the life of the organic electroluminescent element can be improved.
 Ar及びArのうち少なくとも1つに置換されるシリル基の置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。具体的には、Ar及びArのアリール基又はヘテロアリール基に置換される置換基として述べたアルキル基、アルコキシ基、アリール基、ヘテロアリール基と同じである。特に、Ar及びArのうち少なくとも1つに置換される置換されたシリル基としては、該シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基、又は該シリル基に置換されるアルキル基の炭素数がそれぞれ1以上6以下のトリアルキルシリル基であることが好ましい。 Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, the alkoxy group, the aryl group, and the heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 . In particular, the substituted silyl group substituted with at least one of Ar 1 and Ar 2 is a triarylsilyl group having 6 to 18 ring carbon atoms in the aryl group substituted with the silyl group, Alternatively, it is preferable that the alkyl group substituted with the silyl group is a trialkylsilyl group having 1 to 6 carbon atoms.
 本発明の好ましいアミン誘導体である一般式(3)で表されるアミン誘導体において、Ar及びArのうち、どちらか一方のみが置換若しくは無置換のシリル基に置換されていてもよい。 In the amine derivative represented by the general formula (3) which is a preferred amine derivative of the present invention, only one of Ar 1 and Ar 2 may be substituted with a substituted or unsubstituted silyl group.
 本発明の好ましいアミン誘導体である一般式(3)で表されるアミン誘導体としては、以下に例示する化合物が挙げられるが、これらに限定されるものではない。 Examples of the amine derivative represented by the general formula (3), which is a preferred amine derivative of the present invention, include compounds exemplified below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125

Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126

Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127

Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128

Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129

Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130

Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131

Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132

Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133

Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134

Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135

Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136

Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137

Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138

Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139

Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140

Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141

Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
 上述したように、本発明のアミン誘導体の好ましい構造において、一般式(1)におけるArが置換若しくは無置換のフルオレニル基である。このフルオレニル基が単結合であるLに結合する、即ち、Arである置換若しくは無置換のフルオレニル基がアミン部の窒素原子(N)と結合することにより、正孔輸送性が向上する。そのため、このアミン誘導体を有機エレクトロルミネッセンス材料として発光層と陽極との間に配置することにより、有機エレクトロルミネッセンス素子の発光効率を向上させ、長寿命化を実現することができる。特に、本発明のアミン誘導体は、青色~青緑色領域において、有機エレクトロルミネッセンス素子の発光効率を向上させ、長寿命化を実現することができる。 As described above, in the preferred structure of the amine derivative of the present invention, Ar 3 in the general formula (1) is a substituted or unsubstituted fluorenyl group. When the fluorenyl group is bonded to L which is a single bond, that is, the substituted or unsubstituted fluorenyl group which is Ar 3 is bonded to the nitrogen atom (N) of the amine portion, hole transportability is improved. Therefore, by arranging this amine derivative as an organic electroluminescent material between the light emitting layer and the anode, it is possible to improve the light emission efficiency of the organic electroluminescent element and to achieve a long lifetime. In particular, the amine derivative of the present invention can improve the light emission efficiency of the organic electroluminescence device and achieve a long lifetime in the blue to blue-green region.
 本発明のアミン誘導体の好ましい構造を表す一般式(3)で表される本発明のアミン誘導体は、上述したような図1で表された有機エレクトロルミネッセンス素子100の正孔輸送層の材料として用いることができる。尚、図1に示された有機エレクトロルミネッセンス素子100の構成は、本発明の有機エレクトロルミネッセンス素子の一実施形態であり、これに限定されるわけではなく種々の変更が可能である。 The amine derivative of the present invention represented by the general formula (3) representing the preferred structure of the amine derivative of the present invention is used as a material for the hole transport layer of the organic electroluminescence device 100 represented in FIG. 1 as described above. be able to. The configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
 また、本発明のアミン誘導体の好ましい構造を表す一般式(3)で表される本発明のアミン誘導体の用途は、有機エレクトロルミネッセンス素子の正孔輸送材料に限定されるわけではなく、正孔注入層の材料又は発光層の材料としても用いることが可能であり、正孔注入層の材料又は発光層の材料として用いる場合も、正孔輸送層の材料として使用した場合と同様に、有機エレクトロルミネッセンス素子の発光効率を向上させ、有機エレクトロルミネッセンス素子の長寿命化を実現することが可能となる。 Moreover, the use of the amine derivative of the present invention represented by the general formula (3) representing the preferred structure of the amine derivative of the present invention is not limited to the hole transport material of the organic electroluminescence device, It can also be used as a layer material or a light emitting layer material, and when used as a hole injection layer material or a light emitting layer material, the organic electroluminescence is the same as when used as a hole transport layer material. It is possible to improve the light emission efficiency of the element and to extend the life of the organic electroluminescence element.
[実施例V]
 一般式(3)で表される本発明のアミン誘導体について、前記化合物D-1、D-3及びD-26の合成法の例を以下に述べる。但し、以下に述べる合成法は一例であって、本発明を限定するものでは無い。尚、化合物D-1は、前述した実施例1における化合物1と同一である。
[Example V]
With respect to the amine derivative of the present invention represented by the general formula (3), examples of methods for synthesizing the compounds D-1, D-3 and D-26 will be described below. However, the synthesis method described below is an example and does not limit the present invention. Compound D-1 is the same as Compound 1 in Example 1 described above.
(化合物D-1の合成)
 反応容器に化合物(i)(1.57g, 4.33mmol)、化合物(ii)(1.50g, 3.61mmol)、Pd(dba)・CHCl(0.37g, 0.36mmol)、トルエン(36mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.93mL, 1.44mmol、 1.56M)、ナトリウムt-ブトキシド(1.04g, 10.8mmol)を加え、容器内を窒素置換し、その後80℃で4時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン)により精製し、得られた固体をトルエン/ヘキサンで再結晶したところ、目的物である化合物D-1である白色粉末状固体を2.26g、収率90%で得た(FAB-MS:C51H41NSi,測定値695)。
Figure JPOXMLDOC01-appb-C000143
(Synthesis of Compound D-1)
Compound (i) (1.57 g, 4.33 mmol), compound (ii) (1.50 g, 3.61 mmol), Pd 2 (dba) 3 .CHCl 3 (0.37 g, 0.36 mmol), Toluene (36 mL) was added. Next, tri (t-butyl) phosphine (0.93 mL, 1.44 mmol, 1.56 M) and sodium t-butoxide (1.04 g, 10.8 mmol) were added, and the inside of the container was purged with nitrogen. For 4 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane to give the target compound, D-1, as a white powder. 2.26 g of a solid was obtained with a yield of 90% (FAB-MS: C51H41NSi, measured value 695).
Figure JPOXMLDOC01-appb-C000143
(化合物D-3の合成)
 反応容器に化合物(xxiii)(1.40g, 2.89mmol)、化合物(ii)(1.00g, 2.41mmol)、Pd(dba)・CHCl(0.25g, 0.24mmol)、トルエン(28mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.62mL, 0.96mmol、 1.56M)、ナトリウムt-ブトキシド(0.69g, 7.22mmol)を加え、容器内を窒素置換し、その後100℃で8時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン)により精製し、得られた固体をトルエン/ヘキサンで再結晶したところ、目的物である化合物D-3である白色粉末状固体を1.38g、収率70%で得た(FAB-MS:C61H45NSi,測定値819)。
Figure JPOXMLDOC01-appb-C000144
(Synthesis of Compound D-3)
Compound (xxiii) (1.40 g, 2.89 mmol), compound (ii) (1.00 g, 2.41 mmol), Pd 2 (dba) 3 .CHCl 3 (0.25 g, 0.24 mmol), Toluene (28 mL) was added. Next, tri (t-butyl) phosphine (0.62 mL, 0.96 mmol, 1.56 M) and sodium t-butoxide (0.69 g, 7.22 mmol) were added, and the inside of the container was purged with nitrogen. For 8 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane to give the target compound D-3 as a white powder. 1.38 g of a solid was obtained with a yield of 70% (FAB-MS: C61H45NSi, measured value 819).
Figure JPOXMLDOC01-appb-C000144
(化合物D-26の合成)
 反応容器に化合物(i)(0.79g, 2.20mmol)、化合物(v)(0.90g, 1.83mmol)、Pd(dba)・CHCl(0.19g, 0.18mmol)、トルエン(18mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.47mL, 0.73mmol、 1.56M)、ナトリウムt-ブトキシド(0.53g, 5.49mmol)を加え、容器内を窒素置換し、その後100℃で12時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン)により精製し、得られた固体をトルエン/ヘキサンで再結晶したところ、目的物である化合物D-26である白色粉末状固体を1.06g、収率75%で得た(FAB-MS:C57H45NSi,測定値771)。
Figure JPOXMLDOC01-appb-C000145
(Synthesis of Compound D-26)
Compound (i) (0.79 g, 2.20 mmol), compound (v) (0.90 g, 1.83 mmol), Pd 2 (dba) 3 .CHCl 3 (0.19 g, 0.18 mmol), Toluene (18 mL) was added. Next, tri (t-butyl) phosphine (0.47 mL, 0.73 mmol, 1.56 M) and sodium t-butoxide (0.53 g, 5.49 mmol) were added, and the inside of the container was purged with nitrogen. For 12 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the obtained solid was recrystallized from toluene / hexane to give the target compound, D-26, as a white powder. 1.06 g of a solid was obtained with a yield of 75% (FAB-MS: C57H45NSi, measured value 771).
Figure JPOXMLDOC01-appb-C000145
 以下、本発明の有機エレクトロルミネッセンス素子材料として、上述した化合物D-1、化合物D-3及び化合物D-26を正孔輸送層に用いた有機エレクトロルミネッセンス素子について説明する。化合物D-1を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例19、化合物D-3を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例20、化合物D-26を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例21とする。尚、上述したように、化合物D-1は、前述した実施例1における化合物1と同一である。 Hereinafter, as the organic electroluminescence device material of the present invention, an organic electroluminescence device using the above-mentioned compound D-1, compound D-3, and compound D-26 in the hole transport layer will be described. Example 19 shows an organic electroluminescence device using Compound D-1 for the hole transport layer, Example 20 shows an organic electroluminescence device using Compound D-3 for the hole transport layer, and transports Compound D-26 for hole transport The organic electroluminescence element used for the layer is referred to as Example 21. As described above, Compound D-1 is the same as Compound 1 in Example 1 described above.
 本発明の実施例19の有機エレクトロルミネッセンス素子の作製は、上述した実施例1の有機エレクトロルミネッセンス素子と同様に真空蒸着により行い、次のような手順で行った。先ず、あらかじめパターニングして洗浄処理を施したITO-ガラス基板に、オゾンによる表面処理を行った。尚、前記ITO膜の膜厚は、150nmである。オゾン処理後すぐに、正孔注入材料として4,4’,4’’-トリス(N,N-(2-ナフチル)フェニルアミノ)トリフェニルアミン(2-TNATA,膜厚60nm)を前記ITO膜上に成膜した。 Preparation of the organic electroluminescent element of Example 19 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescent element of Example 1 described above, and was performed in the following procedure. First, surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance. The ITO film has a thickness of 150 nm. Immediately after the ozone treatment, 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material. A film was formed on top.
 次に、正孔輸送材料として本発明の化合物D-1を成膜し(30nm)、次に、発光材料として2,5,8,11-テトラ-t-ブチルペリレン(TBP)を、9,10-ジ(2-ナフチル)アントラセン(ADN)に対して3%の割合でドープした膜を共蒸着によって成膜した(25nm)。 Next, the compound D-1 of the present invention was formed as a hole transporting material (30 nm), then 2,5,8,11-tetra-t-butylperylene (TBP) was used as the light emitting material. A film doped with 3% of 10-di (2-naphthyl) anthracene (ADN) was formed by co-evaporation (25 nm).
 次に、電子輸送材料としてトリス(8-キノリノラト)アルミニウム(Alq3)を成膜し(25nm)、次に、電子注入材料としてフッ化リチウム(LiF)(1.0nm)及び陰極としてアルミニウム(100nm)を順次積層し、図2に示す有機エレクトロルミネッセンス素子200を作製した。 Next, a film of tris (8-quinolinolato) aluminum (Alq3) was formed as an electron transport material (25 nm), then lithium fluoride (LiF) (1.0 nm) as an electron injection material and aluminum (100 nm) as a cathode Were sequentially laminated to produce an organic electroluminescent element 200 shown in FIG.
 実施例20及び21の有機エレクトロルミネッセンス素子作製は、実施例19で用いた化合物D-1の代わりに化合物D-3、化合物D-26を用いたこと以外は、実施例19と同様に有機エレクトロルミネッセンス素子を作製した。 The organic electroluminescence devices of Examples 20 and 21 were prepared in the same manner as in Example 19 except that Compound D-3 and Compound D-26 were used instead of Compound D-1 used in Example 19. A luminescence element was produced.
 比較例9及び比較例10として、有機エレクトロルミネッセンス素子の正孔輸送層の材料を構成する化合物として、前述の実施例Iと同様に、以下に示す比較化合物9、比較化合物10を用いて、実施例19と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000146
As Comparative Example 9 and Comparative Example 10, as the compound constituting the material of the hole transport layer of the organic electroluminescence device, as in Example I described above, the following Comparative Compound 9 and Comparative Compound 10 were used. An organic electroluminescence element was produced in the same manner as in Example 19.
Figure JPOXMLDOC01-appb-C000146
 実施例19~21、比較例9及び比較例10で作成した有機エレクトロルミネッセンス素子200について、駆動電圧、電流効率、半減寿命を評価した。なお、電流効率は10mA/cmにおける値を示し、半減寿命は初期輝度1,000cd/mからの輝度半減時間を示す。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000147
With respect to the organic electroluminescence elements 200 prepared in Examples 19 to 21, Comparative Example 9 and Comparative Example 10, the driving voltage, current efficiency, and half life were evaluated. The current efficiency indicates a value at 10 mA / cm 2 , and the half life indicates a luminance half time from an initial luminance of 1,000 cd / m 2 . The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000147
 表5によれば、本発明の実施例19乃至実施例21の有機エレクトロルミネッセンス素子は、比較例9及び比較例10の有機エレクトロルミネッセンス素子に比して、発光効率が向上し、長寿命化していることが分かる。また、本発明の実施例19乃至実施例21の有機エレクトロルミネッセンス素子は、比較例9及び比較例10の有機エレクトロルミネッセンス素子に比して、駆動電圧も低くなっていることが分かる。 According to Table 5, the organic electroluminescence elements of Examples 19 to 21 of the present invention have improved luminous efficiency and longer life than the organic electroluminescence elements of Comparative Example 9 and Comparative Example 10. I understand that. Moreover, it turns out that the organic electroluminescent element of Example 19 thru | or Example 21 of this invention has a low drive voltage compared with the organic electroluminescent element of the comparative example 9 and the comparative example 10. FIG.
 前述した実施例19乃至実施例21においては、一般式(3)で表される本発明の好ましいアミン誘導体を有機エレクトロルミネッセンス素子の正孔輸送材料に利用した例を説明したが、本発明のアミン誘導体の利用は有機エレクトロルミネッセンス素子に限定されず、その他の発光素子又は発光装置に利用されてもよい。また、一般式(3)で表される本発明のシリル基を有するアミン誘導体を用いた有機エレクトロルミネッセンス素子は、パッシブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよく、アクティブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよい。 In the above-described Examples 19 to 21, the example in which the preferred amine derivative of the present invention represented by the general formula (3) is used as the hole transport material of the organic electroluminescence device has been described. The use of the derivative is not limited to the organic electroluminescence element, and may be used for other light emitting elements or light emitting devices. Further, the organic electroluminescence device using the amine derivative having a silyl group of the present invention represented by the general formula (3) may be used for a passive matrix driving type organic electroluminescence display, and an active matrix driving device may be used. The present invention may be used for a type of organic electroluminescence display.
 本願発明者らは、一般式(1)で表されるアミン誘導体のうち、特に、以下に述べる構造を有するアミン誘導体を有機エレクトロルミネッセンス材料として発光層と陽極との間に配置することにより、有機エレクトロルミネッセンス素子の発光効率、駆動電圧及び寿命に著しい改善が得られることを確認した。 Among the amine derivatives represented by the general formula (1), the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
 一般式(1)で表されるアミン誘導体の好ましい構造は、一般式(1)において、Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arは置換若しくは無置換のカルバゾリル基であり、Lは、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基である。 A preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. And at least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, and L is a substituted or unsubstituted arylene group Or a substituted or unsubstituted heteroarylene group.
 ここで、Ar及びArの「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基としては、前述したように、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ビフェニレン基、ピレニル基、ベンゾチアゾリル基、チオフェニル基、チエノチオフェニル基、チエノチエノチオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ジベンゾフリル基、N-アリールカルバゾリル基、N-ヘテロアリールカルバゾリル基、N-アルキルカルバゾリル基、フェノキサジル基、フェノチアジル基、ピリジル基、ピリミジル基、トリアジル基、キノリニル基、キノキサリル基などが挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ジベンゾチオフェニル基、ジベンゾフリル基、N-フェニルカルバゾリル基が好ましい。アリール基としては、環形成炭素数6以上18以下であることが好ましく、ヘテロアリール基としては、環形成原子数5以上18以下であることが好ましい。 Here, as described above, as the aryl group and heteroaryl group of the “substituted or unsubstituted aryl group” or “substituted or unsubstituted heteroaryl group” of Ar 1 and Ar 2 , as described above, a phenyl group, a naphthyl group, Anthracenyl group, phenanthryl group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, biphenylene group, pyrenyl group, benzothiazolyl group, thiophenyl group, thienothiophenyl group, thienothienothiophenyl group, benzothiophenyl group, dibenzothiophenyl group Group, dibenzofuryl group, N-arylcarbazolyl group, N-heteroarylcarbazolyl group, N-alkylcarbazolyl group, phenoxazyl group, phenothiazyl group, pyridyl group, pyrimidyl group, triazyl group, quinolinyl group, quinoxalyl Group etc. Gerare, phenyl group, naphthyl group, biphenyl group, terphenyl group, fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group. The aryl group preferably has 6 to 18 ring carbon atoms, and the heteroaryl group preferably has 5 to 18 ring atoms.
 Ar及びArのアリール基またはヘテロアリール基に置換される置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。アリール基及びヘテロアリール基の例示される具体例は、上記のAr及びArのアリール基及びヘテロアリール基と同じである。Ar及びArのアリール基又はヘテロアリール基に置換される置換基のアルキル基は特に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、t-ブチル基、シクロブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、ノニル基、デシル基等を例示することができる。また、Ar、及びArのアリール基又はヘテロアリール基に置換される置換基のアルコキシ基は特に限定されないが、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基等を例示することができる。 Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group of Ar 1 and Ar 2 described above. The alkyl group of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 is not particularly limited, but is methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, t -Butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, cycloheptyl group, octyl group, nonyl group, decyl group and the like can be exemplified. In addition, the alkoxy group of the substituent substituted by the aryl group or heteroaryl group of Ar 1 and Ar 2 is not particularly limited, but a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, Isobutoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3 , 7-dimethyloctyloxy group and the like can be exemplified.
 Ar及びArのうち少なくとも1つに置換されるシリル基の置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。具体的には、Ar及びArのアリール基又はヘテロアリール基に置換される置換基として述べたアルキル基、アルコキシ基、アリール基、ヘテロアリール基と同じであり、特に、フェニル基及びメチル基が好ましい。また、Ar及びArのうち少なくとも1つに置換されるシリル基は、該シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基又は該シリル基に置換されるアルキル基の炭素数がそれぞれ1以上6以下のトリアリールメチル基であることが好ましい。 Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, alkoxy group, aryl group, and heteroaryl group described as the substituent substituted by the aryl group or heteroaryl group of Ar 1 and Ar 2 , and in particular, a phenyl group and a methyl group Is preferred. In addition, the silyl group substituted with at least one of Ar 1 and Ar 2 is a triarylsilyl group having 6 to 18 ring carbon atoms of the aryl group substituted with the silyl group or the silyl group. The substituted alkyl group is preferably a triarylmethyl group having 1 to 6 carbon atoms.
 本発明のアミン誘導体の好ましい構造において、一般式(1)におけるArは置換若しくは無置換のカルバゾリル基である。カルバゾリル基に置換する置換基はそれぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6以上18以下のアリール基、又は置換若しくは無置換の環形成原子数5以上18以下のヘテロアリール基、置換若しくは無置換の炭素数1以上10以下のアルキル基である。カルバゾリル基に置換する置換基としては、置換若しくは無置換のアリール基が好ましく、特に、カルバゾリル基の9位の位置にフェニル基が置換されていることが好ましい。カルバゾリル基の9位にフェニル基が置換されることにより、イオン化ポテンシャルが調整されて、アミン誘導体の正孔輸送性が向上する。また、カルバゾリル基の9位のアミンが第3級アミンになることにより、アミン誘導体の耐久性が向上し、有機エレクトロルミネッセンス素子の長寿命化に寄与する。 In a preferred structure of the amine derivative of the present invention, Ar 3 in the general formula (1) is a substituted or unsubstituted carbazolyl group. The substituents substituted on the carbazolyl group are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 18 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 18 ring atoms. A substituted or unsubstituted alkyl group having 1 to 10 carbon atoms. The substituent substituted on the carbazolyl group is preferably a substituted or unsubstituted aryl group, and particularly preferably a phenyl group is substituted at the 9-position of the carbazolyl group. By substituting the phenyl group at the 9-position of the carbazolyl group, the ionization potential is adjusted and the hole transport property of the amine derivative is improved. In addition, when the amine at the 9-position of the carbazolyl group becomes a tertiary amine, the durability of the amine derivative is improved, which contributes to extending the lifetime of the organic electroluminescence device.
 本発明のアミン誘導体の好ましい構造において、Lは、置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基である。一般式(1)におけるArであるカルバゾリル基を連結基であるLを介してアミン部位と結合させることにより、分子全体のπ電子の共役系が拡がり、正孔輸送性及び分子の安定性が向上する。ここで、Lである「置換若しくは無置換のアリーレン基」及び「置換若しくは無置換のヘテロアリーレン基」のアリール基及びヘテロアリーレン基としては、Ar及びArで挙げられた「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基と同様のものが挙げられる。Lの「置換若しくは無置換のアリーレン基」及び「置換若しくは無置換のヘテロアリーレン基」のアリーレン基及びヘテロアリーレン基としては、環形成炭素数6以上18以下のアリール基、環形成原子数5以上18以下のヘテロアリーレン基が好ましく、特に、フェニレン基が好ましい。Lがフェニレン基であることにより、適切なエネルギー準位を実現することができる。 In a preferred structure of the amine derivative of the present invention, L is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. By binding the carbazolyl group, which is Ar 3 in the general formula (1), to the amine moiety via L as a linking group, the conjugated system of π electrons of the whole molecule is expanded, and the hole transport property and the stability of the molecule are improved. improves. Here, as the aryl group and heteroarylene group of the “substituted or unsubstituted arylene group” and “substituted or unsubstituted heteroarylene group” which are L, the “substituted or unsubstituted group” mentioned in Ar 1 and Ar 2 And the aryl group and the heteroaryl group of the “substituted aryl group” or “substituted or unsubstituted heteroaryl group”. As the arylene group and heteroarylene group of the “substituted or unsubstituted arylene group” and “substituted or unsubstituted heteroarylene group” of L, an aryl group having 6 to 18 ring carbon atoms and 5 or more ring atoms. A heteroarylene group of 18 or less is preferable, and a phenylene group is particularly preferable. When L is a phenylene group, an appropriate energy level can be realized.
 本発明のアミン誘導体の好ましい構造において、Arである置換若しくは無置換のカルバゾリル基は、1位乃至4位の位置で置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基である連結基Lと結合する。好ましくは、Arである置換若しくは無置換のカルバゾリル基は2位又は3位の位置でLと結合し、さらに好ましくは、3位の位置でLと結合する。Arである置換若しくは無置換のカルバゾリル基は2位又は3位の位置でLと結合することにより、HOMOが拡張し、正孔輸送性が向上する。特に、Lとの結合位置がカルバゾリル基の3位の位置である場合、LUMOがカルバゾリル基に乗らないため、有機エレクトロルミネッセンス素子の長寿命化に寄与する。 In a preferred structure of the amine derivative of the present invention, a substituted or unsubstituted carbazolyl group that is Ar 3 is a linked or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group at the 1st to 4th positions. Bonded to the group L. Preferably, the substituted or unsubstituted carbazolyl group which is Ar 3 is bonded to L at the 2-position or 3-position, and more preferably is bonded to L at the 3-position. When the substituted or unsubstituted carbazolyl group as Ar 3 is bonded to L at the 2-position or 3-position, HOMO is expanded and hole transportability is improved. In particular, when the bonding position with L is the 3-position of the carbazolyl group, LUMO does not ride on the carbazolyl group, which contributes to extending the lifetime of the organic electroluminescence device.
 本発明の好ましいアミン誘導体は、一般式(1)において、Arが置換若しくは無置換のカルバゾリル基であり、Lが置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基である。Arである置換若しくは無置換のカルバゾリル基が導入されることにより、アミン誘導体の正孔輸送性が向上する。さらに、置換若しくは無置換のカルバゾリル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基であるLを介して、少なくとも一方にシリル基が置換されたAr及びArと結合するアミン部位の窒素原子(N)と結合していることにより、π電子の共役系が拡がることにより、正孔輸送性が向上するとともに、HOMOの準位が調整されて有機エレクトロルミネッセンス素子の発光効率を向上させ、さらに低駆動電圧化及び長寿命化を実現することが可能となる。特に、青色~青緑色領域において、有機エレクトロルミネッセンス素子の発光効率を向上させ、さらに低駆動電圧化及び長寿命化を実現することができる。 In the general amine derivative of the present invention, Ar 3 is a substituted or unsubstituted carbazolyl group in the general formula (1), and L is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. By introducing a substituted or unsubstituted carbazolyl group which is Ar 3 , the hole transport property of the amine derivative is improved. Further, the substituted or unsubstituted carbazolyl group is bonded to Ar 1 and Ar 2 substituted with at least one silyl group via L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. By binding to the nitrogen atom (N) of the amine site, the conjugated system of π electrons is expanded, so that the hole transport property is improved and the HOMO level is adjusted to increase the luminous efficiency of the organic electroluminescence device. In addition, it is possible to realize a low driving voltage and a long life. In particular, in the blue to blue-green region, it is possible to improve the light emission efficiency of the organic electroluminescence element, and to realize a lower driving voltage and longer life.
 上述した本発明の好ましいアミン誘導体である、一般式(1)においてArである置換若しくは無置換のカルバゾリル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換であるLに結合しているアミン誘導体としては、以下に例示する化合物が挙げられるが、これらに限定されるものではない。 An amine having a substituted or unsubstituted carbazolyl group represented by Ar 3 in the general formula (1) bonded to a substituted or unsubstituted arylene group or a substituted or unsubstituted L, which is a preferred amine derivative of the present invention described above. Examples of the derivatives include, but are not limited to, compounds exemplified below.
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148

Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149

Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150

Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151

Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
 本発明の好ましいアミン誘導体である、一般式(1)においてArである置換若しくは無置換のカルバゾリル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基であるLに結合しているアミン誘導体は、上述したような図1で表された有機エレクトロルミネッセンス素子100の正孔輸送層の材料として用いることができる。尚、図1に示された有機エレクトロルミネッセンス素子100の構成は、本発明の有機エレクトロルミネッセンス素子の一実施形態であり、これに限定されるわけではなく種々の変更が可能である。 A substituted or unsubstituted carbazolyl group which is Ar 3 in the general formula (1), which is a preferred amine derivative of the present invention, is bonded to L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. The amine derivative can be used as a material for the hole transport layer of the organic electroluminescence device 100 shown in FIG. 1 as described above. The configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
 また、本発明の好ましいアミン誘導体である、一般式(1)においてArであるカルバゾリル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換のヘテロアリーレン基であるLに結合しているアミン誘導体の用途は、有機エレクトロルミネッセンス素子の正孔輸送材料に限定されるわけではなく、正孔注入層の材料又は発光層の材料としても用いることが可能であり、正孔注入層の材料又は発光層の材料として用いる場合も、正孔輸送層の材料として使用した場合と同様に、有機エレクトロルミネッセンス素子の発光効率を向上させ、有機エレクトロルミネッセンス素子の長寿命化を実現することが可能となる。 Further, it is preferred amine derivative of the present invention, amines in the general formula (1) is a carbazolyl group is Ar 3 is bonded to L is substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group derivatives The use of is not limited to the hole transport material of the organic electroluminescence device, but can also be used as the material of the hole injection layer or the light emitting layer. Also when used as a material for the organic electroluminescence element, it is possible to improve the light emission efficiency of the organic electroluminescence element and to extend the life of the organic electroluminescence element, as in the case of using as the material for the hole transport layer.
[実施例VI]
 本発明の好ましいアミン誘導体である、一般式(1)においてArであるカルバゾリル基が置換若しくは無置換のアリーレン基又は置換若しくは無置換ヘテロアリーレン基であるLに結合しているアミン誘導体について、前記化合物E-1、化合物E-2及び化合物E-3の合成法の例を以下に述べる。但し、以下に述べる合成法は一例であって、本発明を限定するものでは無い。尚、化合物E-1は、前述した実施例3における化合物61と同一であり、化合物E-2は、前述した実施例4における化合物63と同一である。
[Example VI]
Regarding the amine derivative which is a preferred amine derivative of the present invention, the carbazolyl group which is Ar 3 in the general formula (1) is bonded to L which is a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group, Examples of methods for synthesizing Compound E-1, Compound E-2 and Compound E-3 are described below. However, the synthesis method described below is an example and does not limit the present invention. Compound E-1 is the same as Compound 61 in Example 3 described above, and Compound E-2 is the same as Compound 63 in Example 4 described above.
(化合物E-1の合成)
 反応容器に化合物(iv)(0.70g, 1.44mmol)、化合物(v)(0.71g, 1.44mmol)、Pd(dba)(0.04g, 0.07mmol)、トルエン(30mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.14mL, 0.28mmol、2.00M)、ナトリウムt-ブトキシド(0.21g, 2.16mmol)を加え、容器内を窒素置換し、その後還流下で6時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン)により精製し、得られた固体をジクロロメタン/ヘキサンで再結晶したところ、目的物である化合物E-1で示される白色粉末状固体を1.15g、収率89%で得た(FAB-MS:C66H48N2Si,測定値897)。
Figure JPOXMLDOC01-appb-C000153
(Synthesis of Compound E-1)
Compound (iv) (0.70 g, 1.44 mmol), compound (v) (0.71 g, 1.44 mmol), Pd (dba) 2 (0.04 g, 0.07 mmol), toluene (30 mL) in a reaction vessel added. Next, tri (t-butyl) phosphine (0.14 mL, 0.28 mmol, 2.00 M) and sodium t-butoxide (0.21 g, 2.16 mmol) were added, and the inside of the container was purged with nitrogen, and then refluxed. For 6 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the obtained solid was recrystallized from dichloromethane / hexane to give a white powder represented by the target compound E-1. A solid was obtained in a yield of 89% (FAB-MS: C66H48N2Si, measured value 897).
Figure JPOXMLDOC01-appb-C000153
(化合物E-2の合成)
 反応容器に化合物(iv)(1.00g, 2.06mmol)、化合物(ii)(0.85g, 2.06mmol)、Pd(dba)(0.06g, 0.10mmol)、トルエン(10mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.03mL, 0.06mmol、2.00M)、ナトリウムt-ブトキシド(0.30g, 3.08mmol)を加え、容器内を窒素置換し、その後還流下で4時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン)により精製し、得られた固体をジクロロメタン/ヘキサンで再結晶したところ、目的物である化合物E-2で示される白色粉末状固体を1.59g、収率94%で得た(FAB-MS:C60H44N2Si,測定値821)。
Figure JPOXMLDOC01-appb-C000154
(Synthesis of Compound E-2)
Compound (iv) (1.00 g, 2.06 mmol), compound (ii) (0.85 g, 2.06 mmol), Pd (dba) 2 (0.06 g, 0.10 mmol), toluene (10 mL) in a reaction vessel added. Next, tri (t-butyl) phosphine (0.03 mL, 0.06 mmol, 2.00 M) and sodium t-butoxide (0.30 g, 3.08 mmol) were added, and the inside of the container was purged with nitrogen. For 4 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the obtained solid was recrystallized from dichloromethane / hexane to obtain a white powder represented by the target compound E-2. A solid solid was obtained in an amount of 1.59 g with a yield of 94% (FAB-MS: C60H44N2Si, measured value 821).
Figure JPOXMLDOC01-appb-C000154
(化合物E-3の合成)
 反応容器に化合物(xxiv)(1.00g, 2.51mmol)、化合物(x)(1.26g, 2.51mmol)、Pd(dba)・CHCl(0.13g, 0.13mmol)、トルエン(25mL)加えた。次に、トリ(t-ブチル)ホスフィン(0.33mL, 0.50mmol、1.5M)、ナトリウムt-ブトキシド(0.48g, 5.02mmol)を加え、容器内を窒素置換し、その後還流下で3時間撹拌した。放冷後、反応溶液に水を加えて有機層の抽出を行った。得られた有機層を無水硫酸マグネシウムで乾燥させ、ろ過後に、ろ液をロータリーエバポレーターで濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/ヘキサン)により精製し、得られた固体をジクロロメタン/ヘキサンで再結晶したところ、目的物である化合物E-3で示される白色粉末状固体を2.00g、収率97%で得た(FAB-MS:C60H44N2Si,測定値821)。
Figure JPOXMLDOC01-appb-C000155
(Synthesis of Compound E-3)
In a reaction vessel, compound (xxiv) (1.00 g, 2.51 mmol), compound (x) (1.26 g, 2.51 mmol), Pd 2 (dba) 3 .CHCl 3 (0.13 g, 0.13 mmol), Toluene (25 mL) was added. Next, tri (t-butyl) phosphine (0.33 mL, 0.50 mmol, 1.5 M) and sodium t-butoxide (0.48 g, 5.02 mmol) were added, and the inside of the container was purged with nitrogen, and then refluxed. For 3 hours. After standing to cool, water was added to the reaction solution to extract the organic layer. The obtained organic layer was dried over anhydrous magnesium sulfate, and after filtration, the filtrate was concentrated by a rotary evaporator. The obtained crude product was purified by silica gel column chromatography (developing solvent: toluene / hexane), and the resulting solid was recrystallized from dichloromethane / hexane to give a white powder represented by the target compound E-3. 2.00 g of a solid was obtained in a yield of 97% (FAB-MS: C60H44N2Si, measured value 821).
Figure JPOXMLDOC01-appb-C000155
 以下、本発明の有機エレクトロルミネッセンス素子材料として、上述した化合物E-1、化合物E-2、及び化合物E-3を正孔輸送層に用いた有機エレクトロルミネッセンス素子について説明する。化合物E-1を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例22、化合物E-2を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例23、化合物E-3を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例24とする。尚、上述したように、化合物E-1は、前述した実施例3における化合物61と同一であり、化合物E-2は、前述した実施例4における化合物63と同一である。 Hereinafter, an organic electroluminescence device using the above-described compound E-1, compound E-2, and compound E-3 in the hole transport layer as the organic electroluminescence device material of the present invention will be described. Example 22 shows an organic electroluminescence device using Compound E-1 for the hole transport layer, Example 23 shows an organic electroluminescence device using Compound E-2 for the hole transport layer, and transports Compound E-3 for hole transport The organic electroluminescent element used for the layer is referred to as Example 24. As described above, Compound E-1 is the same as Compound 61 in Example 3 described above, and Compound E-2 is the same as Compound 63 in Example 4 described above.
 本発明の実施例22の有機エレクトロルミネッセンス素子の作製は、上述した実施例1の有機エレクトロルミネッセンス素子と同様に真空蒸着により行い、次のような手順で行った。先ず、あらかじめパターニングして洗浄処理を施したITO-ガラス基板に、オゾンによる表面処理を行った。尚、前記ITO膜の膜厚は、150nmである。オゾン処理後すぐに、正孔注入材料として4,4’,4’’-トリス(N,N-(2-ナフチル)フェニルアミノ)トリフェニルアミン(2-TNATA,膜厚60nm)を前記ITO膜上に成膜した。 The production of the organic electroluminescence element of Example 22 of the present invention was performed by vacuum vapor deposition in the same manner as the organic electroluminescence element of Example 1 described above, and was performed according to the following procedure. First, surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance. The ITO film has a thickness of 150 nm. Immediately after the ozone treatment, 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material. A film was formed on top.
 次に、正孔輸送材料として本発明の化合物E-1を成膜し(30nm)、次に、発光材料として2,5,8,11-テトラ-t-ブチル-ペリレン(TBP)を、9,10-ジ(2-ナフチル)アントラセン(ADN)に対して3%の割合でドープした膜を共蒸着によって成膜した(25nm)。 Next, the compound E-1 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butyl-perylene (TBP) as a light emitting material , 10-di (2-naphthyl) anthracene (ADN) was doped at a rate of 3% by co-evaporation (25 nm).
 次に、電子輸送材料としてトリス(8-キノリノラト)アルミニウム(Alq3)を成膜し(25nm)、次に、電子注入材料としてフッ化リチウム(LiF)(1.0nm)及び陰極としてアルミニウム(100nm)を順次積層し、図2に示す有機エレクトロルミネッセンス素子200を作製した。 Next, a film of tris (8-quinolinolato) aluminum (Alq3) was formed as an electron transport material (25 nm), then lithium fluoride (LiF) (1.0 nm) as an electron injection material and aluminum (100 nm) as a cathode Were sequentially laminated to produce an organic electroluminescent element 200 shown in FIG.
 実施例23及び24の有機エレクトロルミネッセンス素子作製は、実施例22で用いた化合物E-1の代わりに化合物E-2、化合物E-3を用いたこと以外は、実施例22と同様に有機エレクトロルミネッセンス素子を作製した。 The organic electroluminescent devices of Examples 23 and 24 were prepared in the same manner as in Example 22 except that Compound E-2 and Compound E-3 were used instead of Compound E-1 used in Example 22. A luminescence element was produced.
 比較例11、比較例12及び比較例13として、有機エレクトロルミネッセンス素子の正孔輸送層の材料を構成する化合物として以下に示す比較化合物11、比較化合物12、比較化合物13を用いて、実施例22と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000156
As Comparative Example 11, Comparative Example 12, and Comparative Example 13, Example 22 was used using Comparative Compound 11, Comparative Compound 12, and Comparative Compound 13 shown below as the compounds constituting the material of the hole transport layer of the organic electroluminescence device. An organic electroluminescence device was produced in the same manner as described above.
Figure JPOXMLDOC01-appb-C000156
 実施例22~実施例24、比較例11~比較例13で作成した有機エレクトロルミネッセンス素子200について、駆動電圧、電流効率、半減寿命を評価した。なお、発光効率は10mA/cmにおける値を示し、半減寿命は初期輝度1,000cd/mからの輝度半減時間を示す。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000157
With respect to the organic electroluminescence elements 200 prepared in Examples 22 to 24 and Comparative Examples 11 to 13, the driving voltage, current efficiency, and half life were evaluated. Incidentally, the light emission efficiency indicates a value at 10 mA / cm 2, the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2. The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000157
 表6によれば、本発明の実施例22乃至実施例24の有機エレクトロルミネッセンス素子は、比較例11、比較例12及び比較例13の有機エレクトロルミネッセンス素子に比して、駆動電圧が低下し、発光効率が向上し、長寿命化していることが分かる。 According to Table 6, the organic electroluminescent elements of Examples 22 to 24 of the present invention have a lower driving voltage than the organic electroluminescent elements of Comparative Example 11, Comparative Example 12, and Comparative Example 13, It can be seen that the luminous efficiency is improved and the life is extended.
 前述した実施例22乃至実施例24においては、本発明の好ましいアミン誘導体である、一般式(1)においてArである置換若しくは無置換のカルバゾリル基が置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基であるLに結合しているアミン誘導体を有機エレクトロルミネッセンス素子の正孔輸送材料に利用した例を説明したが、本発明のアミン誘導体の利用は有機エレクトロルミネッセンス素子に限定されず、その他の発光素子又は発光装置に利用されてもよい。また、本発明の好ましいアミン誘導体を用いた有機エレクトロルミネッセンス素子は、パッシブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよく、アクティブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよい。 In Examples 22 to 24 described above, the substituted or unsubstituted carbazolyl group which is Ar 3 in General Formula (1), which is a preferred amine derivative of the present invention, is a substituted or unsubstituted arylene group, or a substituted or unsubstituted arylene group. Although an example in which an amine derivative bonded to L, which is an unsubstituted heteroarylene group, is used as a hole transport material of an organic electroluminescence device has been described, the use of the amine derivative of the present invention is limited to an organic electroluminescence device. Instead, it may be used for other light emitting elements or light emitting devices. In addition, the organic electroluminescence device using the preferred amine derivative of the present invention may be used for a passive matrix driving type organic electroluminescence display or an active matrix driving type organic electroluminescence display. .
 本願発明者らは、一般式(1)で表されるアミン誘導体のうち、特に、以下に述べる構造を有するアミン誘導体を有機エレクトロルミネッセンス材料として発光層と陽極との間に配置することにより、有機エレクトロルミネッセンス素子の発光効率、駆動電圧及び寿命に著しい改善が得られることを確認した。 Among the amine derivatives represented by the general formula (1), the inventors of the present application particularly arrange an amine derivative having the structure described below as an organic electroluminescent material between the light emitting layer and the anode, thereby It was confirmed that a remarkable improvement was obtained in the luminous efficiency, driving voltage and lifetime of the electroluminescence element.
 一般式(1)で表されるアミン誘導体の好ましい構造は、一般式(1)において、Ar及びArがそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arが置換若しくは無置換のカルバゾリル基であり、Lが置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基を含む2価の連結基である。一般式(1)で表されるアミン誘導体の好ましい構造を以下の一般式(4)に表す。
Figure JPOXMLDOC01-appb-C000158
A preferred structure of the amine derivative represented by the general formula (1) is that, in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. At least one of Ar 1 and Ar 2 is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, and L is a substituted or unsubstituted arylene group, Or a divalent linking group containing a substituted or unsubstituted heteroarylene group. A preferred structure of the amine derivative represented by the general formula (1) is represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000158
 ここで、Ar及びArの「置換若しくは無置換のアリール基」又は「置換若しくは無置換のヘテロアリール基」のアリール基及びヘテロアリール基としては、前述したように、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ビフェニレン基、ピレニル基、ベンゾチアゾリル基、チオフェニル基、チエノチオフェニル基、チエノチエノチオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ジベンゾフリル基、N-アリールカルバゾリル基、N-ヘテロアリールカルバゾリル基、N-アルキルカルバゾリル基、フェノキサジル基、フェノチアジル基、ピリジル基、ピリミジル基、トリアジル基、キノリニル基、キノキサリル基などが挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フルオレニル基、トリフェニレン基、ジベンゾチオフェニル基、ジベンゾフリル基、N-フェニルカルバゾリル基が好ましい。アリール基としては、環形成炭素数6以上18以下であることが好ましく、ヘテロアリール基としては、環形成原子数5以上18以下であることが好ましい。 Here, as described above, as the aryl group and heteroaryl group of the “substituted or unsubstituted aryl group” or “substituted or unsubstituted heteroaryl group” of Ar 1 and Ar 2 , as described above, a phenyl group, a naphthyl group, Anthracenyl group, phenanthryl group, biphenyl group, terphenyl group, fluorenyl group, triphenylene group, biphenylene group, pyrenyl group, benzothiazolyl group, thiophenyl group, thienothiophenyl group, thienothienothiophenyl group, benzothiophenyl group, dibenzothiophenyl group Group, dibenzofuryl group, N-arylcarbazolyl group, N-heteroarylcarbazolyl group, N-alkylcarbazolyl group, phenoxazyl group, phenothiazyl group, pyridyl group, pyrimidyl group, triazyl group, quinolinyl group, quinoxalyl Group etc. Gerare, phenyl, naphthyl, biphenyl, a terphenyl group, a a fluorenyl group, a triphenylene group, dibenzothiophenyl group, dibenzofuryl group, N- phenylcarbazolyl group. The aryl group preferably has 6 to 18 ring carbon atoms, and the heteroaryl group preferably has 5 to 18 ring atoms.
 Ar及びArのアリール基またはヘテロアリール基に置換される置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。アリール基及びヘテロアリール基の例示される具体例は、上述のAr及びArの具体的な基として挙げたアリール基及びヘテロアリール基と同じである。ハロゲン原子としては、特に限定されないが、フッ素原子であってもよい。アルキル基としては、特に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、t-ブチル基、シクロブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、ノニル基、デシル基等であってもよい。アルコキシ基としては、特に限定されないが、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基等であってもよい。 Examples of the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 include a halogen atom, an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Illustrative examples of the aryl group and heteroaryl group are the same as the aryl group and heteroaryl group mentioned as the specific groups of Ar 1 and Ar 2 described above. Although it does not specifically limit as a halogen atom, A fluorine atom may be sufficient. The alkyl group is not particularly limited, but is methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, t-butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group. A hexyl group, a cyclohexyl group, a heptyl group, a cycloheptyl group, an octyl group, a nonyl group, a decyl group, and the like. Examples of the alkoxy group include, but are not limited to, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group, neopentyloxy group, n It may be a -hexyloxy group, n-heptyloxy group, n-octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group or the like.
 Arは置換若しくは無置換のカルバゾリル基であり、該カルバゾリル基は9位の位置でLと結合する。一般式(4)におけるR乃至Rはそれぞれ独立に、水素原子、置換若しくは無置換の環形成炭素数6以上30以下のアリール基、又は置換若しくは無置換の環形成原子数5以上30以下のヘテロアリール基、置換若しくは無置換の炭素数1以上15以下のアルキル基、置換若しくは無置換のシリル基、シアノ基、ハロゲン原子、又は重水素原子である。カルバゾリル基のR乃至Rに置換されるアリール基又はヘテロアリール基としては、上述したAr及びArの置換若しくは無置換のアリール基及びヘテロアリール基と同じであってもよい。カルバゾリル基のR乃至Rに置換されるアルキル基としては、上述したAr及びArのアリール基及びヘテロアリール基に置換されるアルキル基と同じであってもよい。以上に述べたカルバゾリル基のR乃至Rに置換される置換基には、例えば、上述したAr及びArのアリール基またはヘテロアリール基に置換される置換基と同じであってもよい。尚、一般式(4)におけるR乃至Rは、互いに結合して、飽和又は不飽和の環を形成してもよい。 Ar 3 is a substituted or unsubstituted carbazolyl group, and the carbazolyl group is bonded to L at the 9-position. R 1 to R 8 in the general formula (4) are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring atom having 5 to 30 ring atoms. A heteroaryl group, a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted silyl group, a cyano group, a halogen atom, or a deuterium atom. The aryl group or heteroaryl group substituted by R 1 to R 8 of the carbazolyl group may be the same as the substituted or unsubstituted aryl group and heteroaryl group of Ar 1 and Ar 2 described above. The alkyl group substituted by R 1 to R 8 of the carbazolyl group may be the same as the alkyl group substituted by the aryl group and heteroaryl group of Ar 1 and Ar 2 described above. The substituent substituted with R 1 to R 8 of the carbazolyl group described above may be the same as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 described above, for example. . R 1 to R 8 in the general formula (4) may be bonded to each other to form a saturated or unsaturated ring.
 Lは、2価の連結基であり、好ましくは、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基である。Lの置換若しくは無置換のアリーレン基は、環形成炭素数6以上18以下であることが好ましい。Lの置換若しくは無置換のヘテロアリーレン基は、環形成原子数5以上18以下であることが好ましい。Lの「置換若しくは無置換のアリーレン基」又は「置換若しくは無置換のヘテロアリーレン基」のアリーレン基及びヘテロアリーレン基としては、フェニレン基、ナフチレン基、ビフェニリレン基、アントラセニレン基、トリフェニレン基、フルオレニレン基などが挙げられ、フェニレン基、ビフェニレン基、フルオレニレン基が好ましい。 L is a divalent linking group, preferably a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group. The substituted or unsubstituted arylene group of L preferably has 6 to 18 ring carbon atoms. The substituted or unsubstituted heteroarylene group for L preferably has 5 to 18 ring-forming atoms. Examples of the arylene group and heteroarylene group of the “substituted or unsubstituted arylene group” or “substituted or unsubstituted heteroarylene group” of L include a phenylene group, a naphthylene group, a biphenylylene group, an anthracenylene group, a triphenylene group, a fluorenylene group, and the like. And a phenylene group, a biphenylene group, and a fluorenylene group are preferable.
 尚、Lがフルオレニレン基である場合、一般式(4)におけるAr及びArは環形成炭素数6以上12以下のアリール基であってもよい。 In addition, when L is a fluorenylene group, Ar 1 and Ar 2 in the general formula (4) may be an aryl group having 6 to 12 ring carbon atoms.
 Ar及びArのうち少なくとも1つに置換されるシリル基の置換基としては、アルキル基、アルコキシ基、アリール基、ヘテロアリール基が挙げられる。具体的には、Ar及びArのアリール基又はヘテロアリール基に置換される置換基として述べたアルキル基、アルコキシ基、アリール基、ヘテロアリール基と同じである。特に、Ar及びArのうち少なくとも1つに置換される置換されたシリル基としては、該シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基、又は該シリル基に置換されるアルキル基の炭素数がそれぞれ1以上6以下のトリアルキルシリル基であることが好ましい。 Examples of the substituent of the silyl group that is substituted with at least one of Ar 1 and Ar 2 include an alkyl group, an alkoxy group, an aryl group, and a heteroaryl group. Specifically, it is the same as the alkyl group, the alkoxy group, the aryl group, and the heteroaryl group described as the substituent substituted with the aryl group or heteroaryl group of Ar 1 and Ar 2 . In particular, the substituted silyl group substituted with at least one of Ar 1 and Ar 2 is a triarylsilyl group having 6 to 18 ring carbon atoms in the aryl group substituted with the silyl group, Alternatively, it is preferable that the alkyl group substituted with the silyl group is a trialkylsilyl group having 1 to 6 carbon atoms.
 本発明の好ましいアミン誘導体である一般式(4)で表されるアミン誘導体としては、以下に例示する化合物が挙げられるが、これらに限定されるものではない。 Examples of the amine derivative represented by the general formula (4), which is a preferred amine derivative of the present invention, include compounds exemplified below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000159

Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160

Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161

Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162

Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163

Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164

Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165

Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166

Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167

Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168

Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169

Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000170

Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000171

Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000172
 本発明のアミン誘導体の好ましい構造において、一般式(1)におけるArが置換若しくは無置換のカルバゾリル基である。本発明のアミン誘導体にカルバゾリル基を導入することにより、正孔輸送性が向上する。さらに、Ar及びArの少なくとも一方に置換されるシリル基を有する本発明のアミン誘導体において、カルバゾリル基を導入することにより、より適切なHOMO準位を実現することができる。また、連結基Lを介してカルバゾリル基がアミン部位と結合することにより、さらにHOMOの準位が調整される。したがって、このアミン誘導体を有機エレクトロルミネッセンス材料として発光層と陽極との間に配置することにより、有機エレクトロルミネッセンス素子の発光効率を向上させ、低駆動電圧化及び長寿命化を実現することができる。特に、本発明のアミン誘導体は、青色~青緑色領域において、有機エレクトロルミネッセンス素子の発光効率を向上させ、低駆動電圧化及び長寿命化を実現することができる。 In a preferred structure of the amine derivative of the present invention, Ar 3 in the general formula (1) is a substituted or unsubstituted carbazolyl group. By introducing a carbazolyl group into the amine derivative of the present invention, hole transportability is improved. Furthermore, in the amine derivative of the present invention having a silyl group substituted on at least one of Ar 1 and Ar 2 , a more appropriate HOMO level can be realized by introducing a carbazolyl group. Further, when the carbazolyl group is bonded to the amine moiety via the linking group L, the HOMO level is further adjusted. Therefore, by disposing the amine derivative as an organic electroluminescent material between the light emitting layer and the anode, the light emission efficiency of the organic electroluminescent element can be improved, and a low driving voltage and a long life can be realized. In particular, the amine derivative of the present invention can improve the light emission efficiency of the organic electroluminescence device in the blue to blue-green region, and can realize a low driving voltage and a long life.
 本発明のアミン誘導体の好ましい構造を表す一般式(4)で表される本発明のアミン誘導体は、上述したような図1で表された有機エレクトロルミネッセンス素子100の正孔輸送層の材料として用いることができる。尚、図1に示された有機エレクトロルミネッセンス素子100の構成は、本発明の有機エレクトロルミネッセンス素子の一実施形態であり、これに限定されるわけではなく種々の変更が可能である。 The amine derivative of the present invention represented by the general formula (4) representing the preferred structure of the amine derivative of the present invention is used as a material for the hole transport layer of the organic electroluminescence device 100 represented in FIG. 1 as described above. be able to. The configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
 また、本発明のアミン誘導体の好ましい構造を表す一般式(4)で表される本発明のアミン誘導体の用途は、有機エレクトロルミネッセンス素子の正孔輸送材料に限定されるわけではなく、正孔注入層の材料又は発光層の材料としても用いることが可能であり、正孔注入層の材料又は発光層の材料として用いる場合も、正孔輸送層の材料として使用した場合と同様に、有機エレクトロルミネッセンス素子の発光効率を向上させ、有機エレクトロルミネッセンス素子の長寿命化を実現することが可能となる。 In addition, the use of the amine derivative of the present invention represented by the general formula (4) representing the preferred structure of the amine derivative of the present invention is not limited to the hole transport material of the organic electroluminescence device, and hole injection It can also be used as a layer material or a light emitting layer material, and when used as a hole injection layer material or a light emitting layer material, the organic electroluminescence is the same as when used as a hole transport layer material. It is possible to improve the light emission efficiency of the element and to extend the life of the organic electroluminescence element.
[実施例VII]
 一般式(4)で表される本発明のアミン誘導体について、前記化合物F-10、F-26、F-38及びF-39の合成法の例を以下に述べる。但し、以下に述べる合成法は一例であって、本発明を限定するものでは無い。
[Example VII]
Examples of methods for synthesizing the compounds F-10, F-26, F-38 and F-39 for the amine derivative of the present invention represented by the general formula (4) will be described below. However, the synthesis method described below is an example and does not limit the present invention.
(化合物F-1の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(xxv)1.50gと化合物(x)1.90g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.11g、トリ-t-ブチルホスフィン((t-Bu)3P)0.15g、ナトリウムt-ブトキシド0.54gを加えて、45mLのトルエン溶媒中で6時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物F-1を2.50g(収率81%)得た。
Figure JPOXMLDOC01-appb-C000173
(Synthesis of Compound F-1)
In a 100 mL three-necked flask under an argon atmosphere, 1.50 g of compound (xxv), 1.90 g of compound (x), 0.11 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- Butylphosphine ((t-Bu) 3 P) (0.15 g) and sodium t-butoxide (0.54 g) were added, and the mixture was heated to reflux in 45 mL of toluene solvent for 6 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 2.50 g of a white solid compound F-1 (yield 81 %)Obtained.
Figure JPOXMLDOC01-appb-C000173
 1H NMR測定で測定された化合物F-1のケミカルシフト値は、8.15(d, 2H), 7.81(d, 2H), 7.66-7.51(m, 14H), 7.51-7.34(m, 18H), 7.34-7.26(m, 6H), 7.17(d, 2H)であった。また、FAB-MS測定により測定された化合物F-1の分子量は、821であった。 The chemical shift value of Compound F-1 measured by 1 H NMR measurement is 8.15 (d, 2H), 7.81 (d, 2H), 7.66-7.51 (m, 14H), 7.51-7.34 (m, 18H), 7.34-7.26 (m, 6H), 7.17 (d, 2H). In addition, the molecular weight of Compound F-1 measured by FAB-MS measurement was 821.
(化合物F-23の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(xxvi)1.20gと化合物(x)1.07g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.06g、トリ-t-ブチルホスフィン((t-Bu)3P)0.09g、ナトリウムt-ブトキシド0.31gを加えて、36mLのトルエン溶媒中で8時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物F-23を1.60g(収率76%)得た。
Figure JPOXMLDOC01-appb-C000174

 
(Synthesis of Compound F-23)
In a 100 mL three-necked flask under an argon atmosphere, 1.20 g of compound (xxvi), 1.07 g of compound (x), 0.06 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- After adding 0.09 g of butylphosphine ((t-Bu) 3 P) and 0.31 g of sodium t-butoxide, the mixture was heated to reflux in 36 mL of toluene solvent for 8 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 1.60 g of a white solid compound F-23 (yield 76). %)Obtained.
Figure JPOXMLDOC01-appb-C000174

 1H NMR測定で測定された化合物F-23のケミカルシフト値は、8.30(d, 2H), 7.98(d, 2H), 7.82(d, 1H), 7.75-7.18(m, 39H), 7.37-7.23(m, 6H), 7.15(d, 2H)であった。また、FAB-MS測定により測定された化合物F-23の分子量は、984であった。 The chemical shift value of Compound F-23 measured by 1 H NMR measurement is 8.30 (d, 2H), 7.98 (d, 2H), 7.82 (d, 1H), 7.75-7.18 (m, 39H), 7.37- 7.23 (m, 6H) and 7.15 (d, 2H). The molecular weight of compound F-23 measured by FAB-MS measurement was 984.
(化合物F-26の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(xxvii)1.50gと化合物(vii)2.70g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.13g、トリ-t-ブチルホスフィン((t-Bu)3P)0.19g、ナトリウムt-ブトキシド0.67gを加えて、45mLのトルエン溶媒中で7時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物F-26を3.29g(収率86%)得た。
Figure JPOXMLDOC01-appb-C000175
(Synthesis of Compound F-26)
In a 100 mL three-necked flask under an argon atmosphere, 1.50 g of compound (xxvii), 2.70 g of compound (vii), 0.13 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- 0.19 g of butylphosphine ((t-Bu) 3 P) and 0.67 g of sodium t-butoxide were added, and the mixture was heated to reflux in 45 mL of toluene solvent for 7 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 3.29 g (yield 86) of white solid compound F-26. %)Obtained.
Figure JPOXMLDOC01-appb-C000175
 1H NMR測定で測定された化合物F-26のケミカルシフト値は、8.07(d, 2H), 7.75(d, 2H), 7.67-7.52(m, 12H), 7.51-7.33(m, 18H), 7.33-7.20(m, 8H), 7.16(d, 2H)であった。また、FAB-MS測定により測定された化合物F-26の分子量は、821であった。 The chemical shift value of Compound F-26 measured by 1 H NMR measurement is 8.07 (d, 2H), 7.75 (d, 2H), 7.67-7.52 (m, 12H), 7.51-7.33 (m, 18H), 7.33-7.20 (m, 8H), 7.16 (d, 2H). The molecular weight of compound F-26 measured by FAB-MS measurement was 821.
(化合物F-38の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(xxvii)1.50gと化合物(x)2.35g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.13g、トリ-t-ブチルホスフィン((t-Bu)3P)0.19g、ナトリウムt-ブトキシド0.67gを加えて、45mLのトルエン溶媒中で7時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物F-38を2.74g(収率79%)得た。
Figure JPOXMLDOC01-appb-C000176
(Synthesis of Compound F-38)
In a 100 mL three-necked flask under an argon atmosphere, 1.50 g of compound (xxvii), 2.35 g of compound (x), 0.13 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- 0.19 g of butylphosphine ((t-Bu) 3 P) and 0.67 g of sodium t-butoxide were added, and the mixture was heated to reflux in 45 mL of toluene solvent for 7 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 2.74 g of compound F-38 as a white solid (yield 79 %)Obtained.
Figure JPOXMLDOC01-appb-C000176
 1H NMR測定で測定された化合物F-38のケミカルシフト値は、8.09(d, 2H), 7.76(d, 2H), 7.65-7.51(m, 10H), 7.51-7.35(m, 18H), 7.32-7.21(m, 6H), 7.18 (d, 2H)であった。また、FAB-MS測定により測定された化合物F-38の分子量は、744であった。 The chemical shift value of compound F-38 measured by 1 H NMR measurement is 8.09 (d, 2H), 7.76 (d, 2H), 7.65-7.51 (m, 10H), 7.51-7.35 (m, 18H), 7.32-7.21 (m, 6H), 7.18 (d, 2H). In addition, the molecular weight of Compound F-38 measured by FAB-MS measurement was 744.
(化合物F-39の合成)
 アルゴン雰囲気下、100mLの三つ口フラスコに、化合物(xxv)1.50gと化合物(vii)2.18g、ビス(ジベンジリデンアセトン)パラジウム(0)(Pd(dba)2)0.11g、トリ-t-ブチルホスフィン((t-Bu)3P)0.15g、ナトリウムt-ブトキシド0.54gを加えて、45mLのトルエン溶媒中で7時間加熱還流した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタンとヘキサンの混合溶媒を使用)で精製後、トルエン/ヘキサン混合溶媒で再結晶を行い、白色固体の化合物F-39を2.97g(収率88%)得た。
Figure JPOXMLDOC01-appb-C000177
(Synthesis of Compound F-39)
In a 100 mL three-necked flask under an argon atmosphere, 1.50 g of compound (xxv), 2.18 g of compound (vii), 0.11 g of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ), tri-t- Butylphosphine ((t-Bu) 3 P) (0.15 g) and sodium t-butoxide (0.54 g) were added, and the mixture was heated to reflux in 45 mL of toluene solvent for 7 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography (using a mixed solvent of dichloromethane and hexane) and then recrystallized with a mixed solvent of toluene / hexane to obtain 2.97 g of Compound F-39 as a white solid (yield 88). %)Obtained.
Figure JPOXMLDOC01-appb-C000177
 1H NMR測定で測定された化合物F-39のケミカルシフト値は、8.18(d, 2H), 7.82(d, 2H), 7.68-7.51(m, 14H), 7.51-7.35(m, 20H), 7.35-7.28(m, 8H), 7.16(d, 2H)であった。また、FAB-MS測定により測定された化合物F-39の分子量は、896であった。 The chemical shift value of Compound F-39 measured by 1 H NMR measurement is 8.18 (d, 2H), 7.82 (d, 2H), 7.68-7.51 (m, 14H), 7.51-7.35 (m, 20H), 7.35-7.28 (m, 8H), 7.16 (d, 2H). Further, the molecular weight of the compound F-39 measured by FAB-MS measurement was 896.
 以下、本発明の有機エレクトロルミネッセンス素子材料として、上述した化合物F-1、化合物F-23、化合物F-26、化合物F-38及び化合物F-39を正孔輸送層に用いた有機エレクトロルミネッセンス素子について説明する。化合物F-1を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例25、化合物F-23を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例26、化合物F-26を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例27、化合物F-38を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例28、化合物F-39を正孔輸送層に用いた有機エレクトロルミネッセンス素子を実施例29とする。 Hereinafter, as an organic electroluminescence device material of the present invention, an organic electroluminescence device using the compound F-1, the compound F-23, the compound F-26, the compound F-38, and the compound F-39 described above for the hole transport layer. Will be described. An organic electroluminescence device using Compound F-1 as a hole transport layer is Example 25, an organic electroluminescence device using Compound F-23 as a hole transport layer is Example 26, and a compound F-26 is transported as a hole. Example 27 was an organic electroluminescence device used for the layer, Example 28 was an organic electroluminescence device using Compound F-38 for the hole transport layer, and Organic Electroluminescence device was a compound F-39 used for the hole transport layer This is referred to as Example 29.
 本発明の実施例25の有機エレクトロルミネッセンス素子の作製は、上述した実施例1の有機エレクトロルミネッセンス素子と同様に真空蒸着により行い、次のような手順で行った。先ず、あらかじめパターニングして洗浄処理を施したITO-ガラス基板に、オゾンによる表面処理を行った。尚、前記ITO膜の膜厚は、150nmである。オゾン処理後すぐに、正孔注入材料として4,4’,4’’-トリス(N,N-(2-ナフチル)フェニルアミノ)トリフェニルアミン(2-TNATA,膜厚60nm)を前記ITO膜上に成膜した。 Preparation of the organic electroluminescence element of Example 25 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescence element of Example 1 described above, and was performed according to the following procedure. First, surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance. The ITO film has a thickness of 150 nm. Immediately after the ozone treatment, 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material. A film was formed on top.
 次に、正孔輸送材料として本発明の化合物F-1を成膜し(30nm)、次に、発光材料として2,5,8,11-テトラ-t-ブチル-ペリレン(TBP)を、9,10-ジ(2-ナフチル)アントラセン(ADN)に対して3%の割合でドープした膜を共蒸着によって成膜した(25nm)。 Next, the compound F-1 of the present invention was formed as a hole transporting material (30 nm), then 2,5,8,11-tetra-t-butyl-perylene (TBP) was used as the light emitting material. , 10-di (2-naphthyl) anthracene (ADN) was doped at a rate of 3% by co-evaporation (25 nm).
 次に、電子輸送材料としてトリス(8-キノリノラト)アルミニウム(Alq3)を成膜し(25nm)、次に、電子注入材料としてフッ化リチウム(LiF)(1.0nm)及び陰極としてアルミニウム(100nm)を順次積層し、図2に示す有機エレクトロルミネッセンス素子200を作製した。 Next, a film of tris (8-quinolinolato) aluminum (Alq3) was formed as an electron transport material (25 nm), then lithium fluoride (LiF) (1.0 nm) as an electron injection material and aluminum (100 nm) as a cathode Were sequentially laminated to produce an organic electroluminescent element 200 shown in FIG.
 実施例26、27、28及び29の有機エレクトロルミネッセンス素子作製は、実施例25で用いた化合物F-1の代わりに化合物F-23、化合物F-26、化合物F-38、化合物F-39を用いたこと以外は、実施例25と同様に有機エレクトロルミネッセンス素子を作製した。 The organic electroluminescence devices of Examples 26, 27, 28 and 29 were prepared by using Compound F-23, Compound F-26, Compound F-38 and Compound F-39 instead of Compound F-1 used in Example 25. An organic electroluminescence element was produced in the same manner as in Example 25 except that it was used.
 比較例14及び比較例15として、有機エレクトロルミネッセンス素子の正孔輸送層の材料を構成する化合物として以下に示す比較化合物14、比較化合物15を用いて、実施例25と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000178
As Comparative Example 14 and Comparative Example 15, an organic electroluminescent device was prepared in the same manner as in Example 25, using Comparative Compound 14 and Comparative Compound 15 shown below as the compounds constituting the material of the hole transport layer of the organic electroluminescent device. Produced.
Figure JPOXMLDOC01-appb-C000178
 実施例25~実施例29、比較例14及び比較例15で作成した有機エレクトロルミネッセンス素子200について、駆動電圧、電流効率、半減寿命を評価した。なお、発光効率は10mA/cmにおける値を示し、半減寿命は初期輝度1,000cd/mからの輝度半減時間を示す。評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000179
With respect to the organic electroluminescence elements 200 prepared in Examples 25 to 29, Comparative Example 14, and Comparative Example 15, the driving voltage, current efficiency, and half life were evaluated. Incidentally, the light emission efficiency indicates a value at 10 mA / cm 2, the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2. Table 7 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000179
 表7によれば、本発明の実施例25乃至実施例29の有機エレクトロルミネッセンス素子は、比較例14及び比較例15の有機エレクトロルミネッセンス素子に比して、発光効率が向上し、長寿命化していることが分かる。また、本発明の実施例25乃至実施例29の有機エレクトロルミネッセンス素子は、比較例14及び比較例15の有機エレクトロルミネッセンス素子に比して、駆動電圧も低くなっていることが分かる。 According to Table 7, the organic electroluminescence elements of Examples 25 to 29 of the present invention have improved luminous efficiency and longer life than the organic electroluminescence elements of Comparative Example 14 and Comparative Example 15. I understand that. In addition, it can be seen that the driving voltages of the organic electroluminescence elements of Examples 25 to 29 of the present invention are lower than those of the organic electroluminescence elements of Comparative Examples 14 and 15.
 前述した実施例25乃至実施例29においては、一般式(4)で表される本発明の好ましいアミン誘導体を有機エレクトロルミネッセンス素子の正孔輸送材料に利用した例を説明したが、本発明のアミン誘導体の利用は有機エレクトロルミネッセンス素子に限定されず、その他の発光素子又は発光装置に利用されてもよい。また、一般式(4)で表される本発明のシリル基を有するアミン誘導体を用いた有機エレクトロルミネッセンス素子は、パッシブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよく、アクティブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよい。 In Examples 25 to 29 described above, examples in which the preferred amine derivative of the present invention represented by the general formula (4) is used as a hole transport material of an organic electroluminescence device have been described. The use of the derivative is not limited to the organic electroluminescence element, and may be used for other light emitting elements or light emitting devices. In addition, the organic electroluminescence device using the amine derivative having a silyl group of the present invention represented by the general formula (4) may be used for a passive matrix driving type organic electroluminescence display, and is active matrix driving. The present invention may be used for a type of organic electroluminescence display.
 本願発明者らは、一般式(1)で表されるシリル基を有するアミン誘導体のうち、特に、以下に述べる構造を有するアミン誘導体を有機エレクトロルミネッセンス材料として発光層と陽極との間に配置することにより、有機エレクトロルミネッセンス素子の発光効率と寿命に著しい改善が得られることを確認した。 The inventors of the present invention arrange an amine derivative having the structure described below among the amine derivatives having the silyl group represented by the general formula (1) as an organic electroluminescent material between the light emitting layer and the anode. As a result, it was confirmed that a remarkable improvement was obtained in the luminous efficiency and lifetime of the organic electroluminescence device.
 一般式(1)で表されるシリル基を有するアミン誘導体の好ましい構造は、以下の一般式(8)で表される。
Figure JPOXMLDOC01-appb-C000180
A preferred structure of the amine derivative having a silyl group represented by the general formula (1) is represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000180
即ち、上述の一般式(1)で表されるアミン誘導体において、Arはシリル基で置換された以下の一般式(5)で表わされるアリール基である。
Figure JPOXMLDOC01-appb-C000181

一般式(5)において、oは0≦o≦2を満たす整数であり、R11、R12、R13はそれぞれ独立的に炭素数1以上15以下のアルキル基、置換若しくは無置換の環形成炭素数6以上30以下のアリール基、または環形成炭素数1以上30以下のヘテロアリール基である。R11、R12、R13は、互いに連結して環を形成してもよい。
That is, in the amine derivative represented by the above general formula (1), Ar 1 is an aryl group represented by the following general formula (5) substituted with a silyl group.
Figure JPOXMLDOC01-appb-C000181

In general formula (5), o is an integer that satisfies 0 ≦ o ≦ 2, and R 11 , R 12 , and R 13 are each independently an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted ring formation. An aryl group having 6 to 30 carbon atoms or a heteroaryl group having 1 to 30 ring carbon atoms. R 11 , R 12 and R 13 may be connected to each other to form a ring.
 一般式(5)において、oは0または1であることが好ましい。oが、0または1であることにより、本発明のアミン誘導体の電子の正孔輸送層への侵入を阻止する能力が高くなり、劣化が抑制され、有機エレクトロルミネッセンス素子の長寿命化を実現することができる。また、一般式(5)において、R11、R12、R13はそれぞれ、メチル基、炭素数が6以下のノルマルアルキル基、フェニル基、ビフェニリル基、ターフェニル基、クアテルフェニル基、ナフチル基、カルバゾリル基、ジベンゾフラン基であることが好ましい。特に、R11、R12、R13がそれぞれフェニル基であるとき、ガラス転移温度(Tg)が上昇し、製膜性が向上する。 In the general formula (5), o is preferably 0 or 1. When o is 0 or 1, the ability of the amine derivative of the present invention to prevent electrons from penetrating into the hole transport layer is enhanced, deterioration is suppressed, and the lifetime of the organic electroluminescence device is increased. be able to. In the general formula (5), R 11 , R 12 and R 13 are each a methyl group, a normal alkyl group having 6 or less carbon atoms, a phenyl group, a biphenylyl group, a terphenyl group, a quaterphenyl group, and a naphthyl group. , A carbazolyl group, and a dibenzofuran group. In particular, when R 11 , R 12 , and R 13 are each a phenyl group, the glass transition temperature (Tg) is increased, and the film forming property is improved.
 また、一般式(8)で表される本発明のシリル基を有する好ましいアミン誘導体は、上述の一般式(1)で表されるにおいてアミン誘導体におけるArが環形成炭素数6以上30以下の置換若しくは無置換のアリール基である。尚、上述の一般式(1)で表されるにおいてアミン誘導体におけるArは、一般式(8)で表されるアミン誘導体においてもArで示している。 In addition, a preferred amine derivative having a silyl group of the present invention represented by the general formula (8) is represented by the above general formula (1), wherein Ar 2 in the amine derivative has 6 to 30 ring carbon atoms. A substituted or unsubstituted aryl group. In addition, in the amine derivative represented by the above general formula (1), Ar 2 in the amine derivative is also represented by Ar 2 in the amine derivative represented by the general formula (8).
 Arのアリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、ビフェニル基、ターフェニル基、クアテルフェニル基などがあげられる。 Examples of the aryl group of Ar 2 include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a biphenyl group, a terphenyl group, and a quaterphenyl group.
 また、一般式(8)で表される本発明のシリル基を有する好ましいアミン誘導体は、上述の一般式(1)で表されるにおいてアミン誘導体におけるArが以下の一般式(6)で表わされるアリール基である。
Figure JPOXMLDOC01-appb-C000182

一般式(6)において、Rはそれぞれ独立的に水素原子、ハロゲン原子、炭素数1以上15以下のアルキル基、置換若しくは無置換の環形成炭素数6以上30以下のアリール基であり、mは0≦m≦5を満たす整数である。
A preferred amine derivative having a silyl group of the present invention represented by the general formula (8) is represented by the above general formula (1), and Ar 3 in the amine derivative is represented by the following general formula (6). An aryl group.
Figure JPOXMLDOC01-appb-C000182

In the general formula (6), each R 9 is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, m Is an integer satisfying 0 ≦ m ≦ 5.
 さらに、一般式(8)で表される本発明のシリル基を有する好ましいアミン誘導体は、上述の一般式(1)で表されるにおいてアミン誘導体におけるLが以下の一般式(7)で表わされるアリーレン基である。
Figure JPOXMLDOC01-appb-C000183

一般式(7)において、R10はそれぞれ独立的に水素原子、ハロゲン原子、炭素数1以上15以下のアルキル基、置換若しくは無置換の環形成炭素数6以上30以下のアリール基である。lは0≦m≦4であり、nは2≦n≦5を満たす整数である。ここで、一般式(7)で表されるアリーレン基に置換するR10の種類とその個数lは、アリーレン基ごとに異なっていてもよい。一般式(7)において、nは2または3であることが好ましい。nが2または3であることにより、アミン誘導体の電子耐性をさらに向上させることができる。また、分子量の増大により、高いガラス転移温度を得ることが容易になる。
Further, the preferred amine derivative having a silyl group of the present invention represented by the general formula (8) is represented by the above general formula (1), and L in the amine derivative is represented by the following general formula (7). An arylene group.
Figure JPOXMLDOC01-appb-C000183

In the general formula (7), each R 10 is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms. l is 0 ≦ m ≦ 4, and n is an integer that satisfies 2 ≦ n ≦ 5. Here, the kind of R 10 substituted for the arylene group represented by the general formula (7) and the number l thereof may be different for each arylene group. In the general formula (7), n is preferably 2 or 3. When n is 2 or 3, the electron resistance of the amine derivative can be further improved. Moreover, it becomes easy to obtain a high glass transition temperature by increasing the molecular weight.
 一般式(8)で表される本発明のシリル基を有するアミン誘導体としては、以下に例示する化合物が挙げられるが、これらに限定されるものではない。尚、以下に例示する化合物において、Phはフェニル基を表し、Meはメチル基を表す。 Examples of the amine derivative having a silyl group of the present invention represented by the general formula (8) include compounds exemplified below, but are not limited thereto. In the compounds exemplified below, Ph represents a phenyl group, and Me represents a methyl group.
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000189
 一般式(8)で表される本発明のシリル基を有するアミン誘導体は、一般式(1)で表される本発明のアミン誘導体におけるArが電子強耐性を示すシリル基で置換されたアリール基である。そのため、一般式(8)で表される本発明のシリル基を有するアミン誘導体は、電子に対して安定であり、有機エレクトロルミネッセンス素子用材料、特に、発光層に隣接する正孔輸送層材料として使用すると、正孔輸送層の電子耐性を向上させることができ、正孔輸送層に侵入した電子が原因となる正孔輸送材料の劣化を抑制し、有機エレクトロルミネッセンス素子の長寿命化を実現することが可能となる。 The amine derivative having a silyl group of the present invention represented by the general formula (8) is an aryl in which Ar 1 in the amine derivative of the present invention represented by the general formula (1) is substituted with a silyl group exhibiting strong electron resistance. It is a group. Therefore, the amine derivative having a silyl group of the present invention represented by the general formula (8) is stable to electrons and is used as a material for an organic electroluminescence element, particularly as a hole transport layer material adjacent to a light emitting layer. When used, the electron resistance of the hole transport layer can be improved, the deterioration of the hole transport material caused by the electrons entering the hole transport layer is suppressed, and the lifetime of the organic electroluminescent element is extended. It becomes possible.
 また、一般式(8)で表される本発明のシリル基を有するアミン誘導体は、一般式(7)中でnが2以上であるアリーレン基を有することにより、π電子が広がり、正孔輸送性が向上し、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。また、一般式(8)で表される本発明のシリル基を有するアミン誘導体は、一般式(7)中でnが2以上であるアリーレン基を有することにより、ガラス転移温度(Tg)が上昇し、製膜性が向上する。 Further, the amine derivative having a silyl group of the present invention represented by the general formula (8) has an arylene group in which n is 2 or more in the general formula (7). Thus, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element. Further, the amine derivative having a silyl group of the present invention represented by the general formula (8) has an arylene group in which n is 2 or more in the general formula (7), thereby increasing the glass transition temperature (Tg). In addition, the film forming property is improved.
 さらに、一般式(8)で表される本発明のシリル基を有するアミン誘導体において、一般式(7)中でnが2であるアリーレン基の場合、一般式(6)で表わされるアリール基を含めて、アミンのN原子に少なくとも1つのターフェニル基が結合されていることになる。ターフェニルアミン骨格を有する化合物は、非常に高い正孔耐性及び電子耐性を有する。そのため、一般式(7)におけるnが2であるとき、一般式(8)で表される本発明のシリル基を有するアミン誘導体は、有機エレクトロルミネッセンス素子用材料、特に、発光層に隣接する正孔輸送層材料として使用されることにより、発光層から正孔輸送層側に流入する電子に対する耐性がさらに向上し、有機エレクトロルミネッセンス素子の発光効率を向上させ、有機エレクトロルミネッセンス素子の寿命をさらに長寿命化させることができる。 Furthermore, in the amine derivative having a silyl group of the present invention represented by the general formula (8), in the case of an arylene group in which n is 2 in the general formula (7), an aryl group represented by the general formula (6) In addition, at least one terphenyl group is bonded to the N atom of the amine. A compound having a terphenylamine skeleton has very high hole resistance and electron resistance. Therefore, when n in the general formula (7) is 2, the amine derivative having a silyl group of the present invention represented by the general formula (8) is an organic electroluminescent element material, particularly a positive electrode adjacent to the light emitting layer. By being used as a hole transport layer material, the resistance to electrons flowing from the light emitting layer to the hole transport layer side is further improved, the luminous efficiency of the organic electroluminescent device is improved, and the lifetime of the organic electroluminescent device is further increased. Life can be extended.
 一般式(8)で表される本発明のシリル基を有するアミン誘導体は、上述したような図1で表された有機エレクトロルミネッセンス素子100の正孔輸送層の材料として用いることができる。尚、図1に示された有機エレクトロルミネッセンス素子100の構成は、本発明の有機エレクトロルミネッセンス素子の一実施形態であり、これに限定されるわけではなく種々の変更が可能である。 The amine derivative having a silyl group of the present invention represented by the general formula (8) can be used as a material for the hole transport layer of the organic electroluminescence device 100 represented in FIG. 1 as described above. The configuration of the organic electroluminescence element 100 shown in FIG. 1 is an embodiment of the organic electroluminescence element of the present invention, and is not limited to this, and various modifications are possible.
 また、一般式(8)で表される本発明のシリル基を有するアミン誘導体の用途は、一般式(1)で表されるシリル基を有するアミン誘導体と同様に、有機エレクトロルミネッセンス素子の正孔輸送材料に限定されるわけではなく、正孔注入層の材料としても用いることが可能である。一般式(8)で表されるシリル基を有するアミン誘導体を正孔注入層の材料として用いる場合も、正孔輸送層の材料として使用した場合と同様に、有機エレクトロルミネッセンス素子の発光効率を向上させ、有機エレクトロルミネッセンス素子の長寿命化を実現することが可能となる。 Moreover, the use of the amine derivative having a silyl group of the present invention represented by the general formula (8) is the same as that of the amine derivative having a silyl group represented by the general formula (1). The material is not limited to a transport material, and can also be used as a material for a hole injection layer. When the amine derivative having a silyl group represented by the general formula (8) is used as the material for the hole injection layer, the luminous efficiency of the organic electroluminescence device is improved in the same manner as when the amine derivative is used as the material for the hole transport layer. Thus, the lifetime of the organic electroluminescence element can be extended.
[実施例VIII]
 一般式(8)で表される本発明のシリル基を有するアミン誘導体について、前記化合物G-8、化合物G-9、化合物G-13、化合物G-18の合成法の例を以下に述べる。但し、以下に述べる合成法は一例であって、本発明を限定するものでは無い。
[Example VIII]
With respect to the amine derivative having the silyl group of the present invention represented by the general formula (8), examples of synthesis methods of the compound G-8, the compound G-9, the compound G-13, and the compound G-18 will be described below. However, the synthesis method described below is an example and does not limit the present invention.
(化合物G-8の合成)
 本発明の化合物G-8は、以下のようにして合成を実施した。
(Synthesis of Compound G-8)
Compound G-8 of the present invention was synthesized as follows.
 アルゴン雰囲気下、300mLの三つ口フラスコに、4-アミノターフェニル3gと4-ブロモテトラフェニルシラン5.08g、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))0.34g、ナトリウムt-ブトキシド2.34g、トルエン120mlを加えた後、トリ(t-ブチル)ホスフィンの2Mトルエン溶液0.5mlを加えて、室温で24時間攪拌した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた固体をカラムクロマトグラフィーで精製し、以下に示す白色固体の前駆体G-8aを5.0g得た(収率73%)。
Figure JPOXMLDOC01-appb-C000190
In a 300 mL three-necked flask under an argon atmosphere, 3 g of 4-aminoterphenyl and 5.08 g of 4-bromotetraphenylsilane, tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba 3 )) 34 g, sodium t-butoxide, 2.34 g and 120 ml of toluene were added, 0.5 ml of a 2M solution of tri (t-butyl) phosphine was added, and the mixture was stirred at room temperature for 24 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained solid was purified by column chromatography to obtain 5.0 g of a white solid precursor G-8a shown below (yield 73%).
Figure JPOXMLDOC01-appb-C000190
 アルゴン雰囲気下、300mLの三つ口フラスコに、前駆体A-8aを5.0gと4-ブロモビフェニル2.0g、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))0.23g、ナトリウムt-ブトキシド1.65g、トルエン100mlを加えた後、トリ(t-ブチル)ホスフィンの2Mトルエン溶液0.35mlを加えて、80で12時間加熱攪拌した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた固体をカラムクロマトグラフィーで精製し、以下に示す白色固体の化合物G-8を2.5g得た(収率73%)(FAB-MS測定値;731.3)。
Figure JPOXMLDOC01-appb-C000191
In a 300 mL three-necked flask under an argon atmosphere, 5.0 g of precursor A-8a, 2.0 g of 4-bromobiphenyl, tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba 3 )) 0 0.23 g, 1.65 g of sodium t-butoxide and 100 ml of toluene were added, then 0.35 ml of a 2M toluene solution of tri (t-butyl) phosphine was added, and the mixture was stirred with heating at 80 for 12 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The resulting solid was purified by column chromatography to obtain 2.5 g of the following white solid compound G-8 (yield: 73%) (FAB-MS measurement value: 731.3).
Figure JPOXMLDOC01-appb-C000191
(化合物G-9の合成)
 本発明の化合物G-9は、以下のようにして合成を実施した。
(Synthesis of Compound G-9)
Compound G-9 of the present invention was synthesized as follows.
 アルゴン雰囲気下、300mLの三つ口フラスコに、上述した前駆体A-8aを5.0gと1-ブロモ-4-フェニルアントラセン2.4g、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))0.23g、ナトリウムt-ブトキシド1.65g、トルエン100mlを加えた後、トリ(t-ブチル)ホスフィンの2Mトルエン溶液0.35mlを加えて、80℃で12時間加熱攪拌した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた固体をカラムクロマトグラフィーで精製し、以下に示す白色固体の化合物G-9を4.4g得た(収率60%)(FAB-MS測定値;781.3)。
Figure JPOXMLDOC01-appb-C000192
Under an argon atmosphere, in a 300 mL three-necked flask, 5.0 g of the precursor A-8a described above, 2.4 g of 1-bromo-4-phenylanthracene, tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (Dba 3 )) 0.23 g, sodium t-butoxide 1.65 g, and toluene 100 ml were added, then 0.35 ml of a 2M toluene solution of tri (t-butyl) phosphine was added, and the mixture was heated and stirred at 80 ° C. for 12 hours. . After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained solid was purified by column chromatography to obtain 4.4 g of the following white solid compound G-9 (yield 60%) (FAB-MS measurement value: 781.3).
Figure JPOXMLDOC01-appb-C000192
(化合物G-13の合成)
 本発明の化合物G-13は、以下のようにして合成を実施した。
(Synthesis of Compound G-13)
Compound G-13 of the present invention was synthesized as follows.
 アルゴン雰囲気下、300mLの三つ口フラスコに、4-アミノターフェニル2.5gと4-ブロモビフェニル2.3g、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))0.34g、ナトリウムt-ブトキシド2.34g、トルエン120mlを加えた後、トリ(t-ブチル)ホスフィンの2Mトルエン溶液0.5mlを加えて、室温で24時間攪拌した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた固体をカラムクロマトグラフィーで精製し、以下に示す白色固体の前駆体G-13aを3.0g得た(収率76%)。
Figure JPOXMLDOC01-appb-C000193
In a 300 mL three-necked flask under an argon atmosphere, 2.5 g of 4-aminoterphenyl and 2.3 g of 4-bromobiphenyl, tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (dba 3 )) 34 g, sodium t-butoxide, 2.34 g and 120 ml of toluene were added, 0.5 ml of a 2M solution of tri (t-butyl) phosphine was added, and the mixture was stirred at room temperature for 24 hours. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained solid was purified by column chromatography to obtain 3.0 g of a white solid precursor G-13a shown below (76% yield).
Figure JPOXMLDOC01-appb-C000193
 アルゴン雰囲気下、300mLの三つ口フラスコに、前駆体G-13aを3.0gと4-ブロモ(4’-トリメチルシリル)ビフェニル2.3g、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))0.23g、ナトリウムt-ブトキシド1.65g、トルエン100mlを加えた後、トリ(t-ブチル)ホスフィンの2Mトルエン溶液0.35mlを加えて、80℃で12時間加熱攪拌した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた固体をカラムクロマトグラフィーで精製し、以下に示す白色固体の化合物G-13を4.3g得た(収率91%)(FAB-MS測定値;621.3)。
Figure JPOXMLDOC01-appb-C000194
In a 300 mL three-necked flask under an argon atmosphere, 3.0 g of precursor G-13a, 2.3 g of 4-bromo (4′-trimethylsilyl) biphenyl, tris (dibenzylideneacetone) dipalladium (0) (Pd 2 (Dba 3 )) 0.23 g, sodium t-butoxide 1.65 g, and toluene 100 ml were added, then 0.35 ml of a 2M toluene solution of tri (t-butyl) phosphine was added, and the mixture was heated and stirred at 80 ° C. for 12 hours. . After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained solid was purified by column chromatography to obtain 4.3 g of a white solid compound G-13 shown below (yield 91%) (FAB-MS measurement value: 621.3).
Figure JPOXMLDOC01-appb-C000194
(化合物G-18の合成)
 本発明の化合物G-18は、以下のようにして合成を実施した。
(Synthesis of Compound G-18)
Compound G-18 of the present invention was synthesized as follows.
 アルゴン雰囲気下、300mLの三つ口フラスコに、前駆体G-13aを3.0gと4-ブロモ(4’-トリフェニルシリル)ビフェニル3.7g、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))0.23g、ナトリウムt-ブトキシド1.65g、トルエン100mlを加えた後、トリ(t-ブチル)ホスフィンの2Mトルエン溶液0.35mlを加えて、80℃で12時間加熱攪拌した。空冷後、水を加えて有機層を分取し溶媒留去した。得られた固体をカラムクロマトグラフィーで精製し、以下に示す白色固体の化合物G-18を6.1g得た(収率90%)(FAB-MS測定値;807.3)。
Figure JPOXMLDOC01-appb-C000195
In an argon atmosphere, in a 300 mL three-necked flask, 3.0 g of precursor G-13a, 3.7 g of 4-bromo (4′-triphenylsilyl) biphenyl, tris (dibenzylideneacetone) dipalladium (0) ( After adding 0.23 g of Pd 2 (dba 3 )), 1.65 g of sodium t-butoxide and 100 ml of toluene, add 0.35 ml of a 2M toluene solution of tri (t-butyl) phosphine, and heat at 80 ° C. for 12 hours. Stir. After air cooling, water was added to separate the organic layer, and the solvent was distilled off. The obtained solid was purified by column chromatography to obtain 6.1 g of a white solid compound G-18 shown below (yield 90%) (FAB-MS measurement value: 807.3).
Figure JPOXMLDOC01-appb-C000195
 以下、本発明の有機エレクトロルミネッセンス素子材料として、上述した化合物G-8を正孔輸送層に用いた有機エレクトロルミネッセンス素子の実施例30について説明する。 Hereinafter, Example 30 of the organic electroluminescence device using the above-mentioned compound G-8 for the hole transport layer as the organic electroluminescence device material of the present invention will be described.
 本発明の実施例30の有機エレクトロルミネッセンス素子の作製は、上述した実施例1の有機エレクトロルミネッセンス素子と同様に真空蒸着により行い、次のような手順で行った。先ず、あらかじめパターニングして洗浄処理を施したITO-ガラス基板に、オゾンによる表面処理を行った。尚、前記ITO膜の膜厚は、150nmである。オゾン処理後すぐに、正孔注入材料として4,4’,4’’-トリス(N,N-(2-ナフチル)フェニルアミノ)トリフェニルアミン(2-TNATA,膜厚60nm)を前記ITO膜上に成膜した。 Preparation of the organic electroluminescent element of Example 30 of the present invention was performed by vacuum deposition in the same manner as the organic electroluminescent element of Example 1 described above, and was performed in the following procedure. First, surface treatment with ozone was performed on an ITO-glass substrate that had been patterned and cleaned in advance. The ITO film has a thickness of 150 nm. Immediately after the ozone treatment, 4,4 ′, 4 ″ -tris (N, N- (2-naphthyl) phenylamino) triphenylamine (2-TNATA, film thickness 60 nm) was used as the hole injection material. A film was formed on top.
 次に、正孔輸送材料として本発明の化合物G-8を成膜し(30nm)、次に、発光材料として2,5,8,11-テトラ-t-ブチル-ペリレン(TBP)を、9,10-ジ(2-ナフチル)アントラセン(ADN)に対して3%の割合でドープした膜を共蒸着によって成膜した(25nm)。 Next, the compound G-8 of the present invention was formed as a hole transporting material (30 nm), and then 2,5,8,11-tetra-t-butyl-perylene (TBP) was used as the light emitting material. , 10-di (2-naphthyl) anthracene (ADN) was doped at a rate of 3% by co-evaporation (25 nm).
 次に、電子輸送材料としてトリス(8-キノリノラト)アルミニウム(Alq3)を成膜し(25nm)、次に、電子注入材料としてフッ化リチウム(LiF)(1.0nm)及び陰極としてアルミニウム(100nm)を順次積層し、図2に示す有機エレクトロルミネッセンス素子200を作製した。 Next, a film of tris (8-quinolinolato) aluminum (Alq3) was formed as an electron transport material (25 nm), then lithium fluoride (LiF) (1.0 nm) as an electron injection material and aluminum (100 nm) as a cathode Were sequentially laminated to produce an organic electroluminescent element 200 shown in FIG.
 実施例31として、実施例30で用いた化合物G-8の代わりに化合物G-9を用いたこと以外は、実施例30と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000196
As Example 31, an organic electroluminescence device was produced in the same manner as in Example 30, except that Compound G-9 was used instead of Compound G-8 used in Example 30.
Figure JPOXMLDOC01-appb-C000196
 実施例32として、実施例30で用いた化合物G-8の代わりに化合物G-13を用いたこと以外は、実施例30と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000197
As Example 32, an organic electroluminescence device was produced in the same manner as in Example 30, except that Compound G-13 was used instead of Compound G-8 used in Example 30.
Figure JPOXMLDOC01-appb-C000197
 実施例33として、実施例30で用いた化合物G-8の代わりに化合物G-18を用いたこと以外は、実施例30と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000198
As Example 33, an organic electroluminescence device was produced in the same manner as in Example 30, except that Compound G-18 was used instead of Compound G-8 used in Example 30.
Figure JPOXMLDOC01-appb-C000198
 比較例16、比較例17及び比較例18として、有機エレクトロルミネッセンス素子の正孔輸送層の材料を構成する化合物として以下に示す比較化合物16、比較化合物17、比較化合物18を用いて、実施例30と同様に有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000199
As Comparative Example 16, Comparative Example 17 and Comparative Example 18, Example 30 was performed using the following Comparative Compound 16, Comparative Compound 17, and Comparative Compound 18 as the compounds constituting the material of the hole transport layer of the organic electroluminescence device. An organic electroluminescence device was produced in the same manner as described above.
Figure JPOXMLDOC01-appb-C000199
 実施例30~実施例33、比較例16~比較例18で作成した有機エレクトロルミネッセンス素子200について、駆動電圧、発光効率、半減寿命、ガラス転移温度(Tg)を評価した。なお、発光効率は10mA/cmにおける値を示し、半減寿命は初期輝度1,000cd/mからの輝度半減時間を示す。評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000200
With respect to the organic electroluminescence elements 200 prepared in Examples 30 to 33 and Comparative Examples 16 to 18, the driving voltage, luminous efficiency, half life, and glass transition temperature (Tg) were evaluated. Incidentally, the light emission efficiency indicates a value at 10 mA / cm 2, the half-life shows a luminance half-life from the initial luminance 1,000 cd / m 2. The evaluation results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000200
 表8によれば、本発明の実施例30乃至実施例33の有機エレクトロルミネッセンス素子は、比較例16、比較例17及び比較例18の有機エレクトロルミネッセンス素子に比して、発光効率が向上し、長寿命化していることが分かる。 According to Table 8, the organic electroluminescence elements of Examples 30 to 33 of the present invention have improved luminous efficiency as compared with the organic electroluminescence elements of Comparative Example 16, Comparative Example 17, and Comparative Example 18, It can be seen that the life has been extended.
 一般式(8)で表される本発明のシリル基を有するアミン誘導体は、電子耐性を有するシリル基を備えていることにより強電子耐性を有し、さらに、一般式(7)においてnが2以上であるアリーレン基を有することにより電子耐性が向上されるとともに正孔輸送性が向上されており、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。一般式(8)で表される本発明のシリル基を有するアミン誘導体を用いることにより、正孔輸送層に侵入した電子が原因となる素子の劣化を抑制しつつ、正孔輸送性を向上させることができ、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができる。 The amine derivative having a silyl group of the present invention represented by the general formula (8) has strong electron resistance due to the presence of the silyl group having electron resistance. Further, in the general formula (7), n is 2 By having the arylene group as described above, the electron resistance is improved and the hole transport property is improved, so that the light emission efficiency and the life of the organic electroluminescent element can be improved. By using the amine derivative having the silyl group of the present invention represented by the general formula (8), the hole transportability is improved while suppressing the deterioration of the device caused by the electrons entering the hole transport layer. Therefore, it is possible to improve the light emission efficiency and extend the life of the organic electroluminescence element.
 前述した実施例30~実施例33においては、一般式(8)で表される本発明のシリル基を有するアミン誘導体を有機エレクトロルミネッセンス素子の正孔輸送材料に利用した例を説明したが、本発明のシリル基を有するアミン誘導体の利用は有機エレクトロルミネッセンス素子に限定されず、その他の発光素子又は発光装置に利用されてもよい。また、一般式(8)で表される本発明のシリル基を有するアミン誘導体を用いた有機エレクトロルミネッセンス素子は、パッシブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよく、アクティブ・マトリクス駆動方式の有機エレクトロルミネッセンスディスプレイに利用されてもよい。 In Examples 30 to 33 described above, examples in which the amine derivative having a silyl group of the present invention represented by the general formula (8) is used as a hole transport material of an organic electroluminescence device have been described. The use of the amine derivative having a silyl group of the invention is not limited to an organic electroluminescence element, and may be used for other light emitting elements or light emitting devices. In addition, the organic electroluminescence device using the amine derivative having a silyl group of the present invention represented by the general formula (8) may be used for a passive matrix driving type organic electroluminescence display, and is active matrix driving. The present invention may be used for a type of organic electroluminescence display.
 本発明のアミン誘導体は、有機エレクトロルミネッセンス素子の発光効率の向上及び長寿命化を実現することができ、有機エレクトロルミネッセンスディスプレイや照明などの様々な用途に利用できる。
 
The amine derivative of the present invention can improve the light emission efficiency and extend the life of an organic electroluminescence device, and can be used for various applications such as an organic electroluminescence display and illumination.

Claims (47)

  1. 以下の一般式(1)で表される3つのAr基のうち少なくとも1つはシリル基を有するアミン誘導体。
    Figure JPOXMLDOC01-appb-C000001

    [前記一般式(1)中、Ar、Ar、及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、前記Ar、Ar、及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換され、Lは、単結合、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基を表す。]
    An amine derivative in which at least one of the three Ar groups represented by the following general formula (1) has a silyl group.
    Figure JPOXMLDOC01-appb-C000001

    [In the general formula (1), Ar 1 , Ar 2 , and Ar 3 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and the Ar 1 , Ar 2 , And at least one of Ar 3 is substituted with a substituted or unsubstituted silyl group, and L represents a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group. ]
  2.  前記一般式(1)において、前記Ar、Ar、及びArのうち少なくとも1つは、置換若しくは無置換のヘテロアリール基である請求項1に記載のアミン誘導体。 2. The amine derivative according to claim 1, wherein in the general formula (1), at least one of the Ar 1 , Ar 2 , and Ar 3 is a substituted or unsubstituted heteroaryl group.
  3.  前記一般式(1)において、前記Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基である請求項1に記載のアミン誘導体。 The amine derivative according to claim 1, wherein in the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group.
  4.  前記一般式(1)において、前記Ar及びArはそれぞれ独立に、環形成炭素数6~18からなるアリール基であり、前記Arは置換若しくは無置換のジベンゾヘテロール基である請求項2に記載のアミン誘導体。 In the general formula (1), the Ar 1 and Ar 2 are each independently an aryl group having 6 to 18 ring carbon atoms, and the Ar 3 is a substituted or unsubstituted dibenzoheteroyl group. 2. The amine derivative according to 2.
  5.  前記一般式(1)において、前記Ar、Ar、及びArのうち少なくとも1つを置換しているシリル基が、前記シリル基に置換するアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基又は前記シリル基に置換するアルキル基の炭素数がそれぞれ1以上6以下のトリアルキルシリル基である請求項1に記載のアミン誘導体。 In the general formula (1), the silyl group substituting at least one of Ar 1 , Ar 2 , and Ar 3 has 6 or more ring-forming carbon atoms in the aryl group that substitutes for the silyl group. The amine derivative according to claim 1, wherein the triarylsilyl group or the alkyl group substituted on the silyl group is a trialkylsilyl group having 1 to 6 carbon atoms.
  6.  前記一般式(1)において、前記Ar及びArが、それぞれ一つのシリル基で置換されている請求項1に記載のアミン誘導体。 The amine derivative according to claim 1, wherein in the general formula (1), the Ar 1 and Ar 2 are each substituted with one silyl group.
  7.  前記一般式(1)において、前記Ar、Ar、及びArが、それぞれ一つのシリル基で置換されている請求項1に記載のアミン誘導体。 The amine derivative according to claim 1, wherein in the general formula (1), each of Ar 1 , Ar 2 , and Ar 3 is substituted with one silyl group.
  8.  前記一般式(1)において、前記Lは、単結合又は環形成炭素数6~14のアリーレン基である請求項1に記載のシリル基を有するアミン誘導体。 The amine derivative having a silyl group according to claim 1, wherein, in the general formula (1), L is a single bond or an arylene group having 6 to 14 ring carbon atoms.
  9.  前記一般式(1)において、前記Arは、置換若しくは無置換のジベンゾフリル基であることを特徴とする請求項4に記載のアミン誘導体。 The amine derivative according to claim 4, wherein in the general formula (1), Ar 3 is a substituted or unsubstituted dibenzofuryl group.
  10.  前記一般式(1)において、前記Lは、単結合を含まないことを特徴とする請求項9に記載のアミン誘導体。 The amine derivative according to claim 9, wherein, in the general formula (1), the L does not include a single bond.
  11.  前記一般式(1)において、
    前記Lはフェニレン基であり、
    前記ジベンゾフリル基は3位の位置で前記Lに結合していることを特徴とする請求項10に記載のアミン誘導体。
    In the general formula (1),
    L is a phenylene group;
    The amine derivative according to claim 10, wherein the dibenzofuryl group is bonded to the L at the 3-position.
  12.  前記一般式(1)で表されるアミン誘導体は、以下の一般式(2)で表される化合物であることを特徴とする請求項11に記載のアミン誘導体。
    Figure JPOXMLDOC01-appb-C000002
    The amine derivative according to claim 11, wherein the amine derivative represented by the general formula (1) is a compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
  13.  請求項10に記載のアミン誘導体を発光層中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the amine derivative according to claim 10 in a light emitting layer.
  14.  請求項10に記載のアミン誘導体を発光層と陽極との間の積層膜中のうちの一つの膜中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the amine derivative according to claim 10 in one of the laminated films between the light emitting layer and the anode.
  15.  前記一般式(1)中、前記Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、前記Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、前記Arは置換若しくは無置換のジベンゾフリル基であり、前記Lは単結合である請求項1に記載のアミン誘導体。 In the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and at least one of Ar 1 and Ar 2 The amine derivative according to claim 1, wherein is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted dibenzofuryl group, and L is a single bond.
  16.  前記一般式(1)において、前記ジベンゾフリル基は3位の位置で前記Lに結合していることを特徴とする請求項15に記載のアミン誘導体。 The amine derivative according to claim 15, wherein in the general formula (1), the dibenzofuryl group is bonded to the L at the 3-position.
  17.  請求項15に記載のアミン誘導体を発光層中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the amine derivative according to claim 15 in a light emitting layer.
  18.  請求項15に記載のアミン誘導体を発光層と陽極との間の積層膜中のうちの一つの膜中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the amine derivative according to claim 15 in one of the laminated films between the light emitting layer and the anode.
  19.  前記一般式(1)中、前記Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、前記Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、前記Arは置換若しくは無置換のフルオレニル基であり、前記Lは、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基である請求項1に記載のアミン誘導体。 In the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and at least one of Ar 1 and Ar 2 Is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted fluorenyl group, and L is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group. The amine derivative according to claim 1.
  20.  請求項19に記載のアミン誘導体を発光層中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescent device comprising the amine derivative according to claim 19 in a light emitting layer.
  21.  請求項19に記載のアミン誘導体を発光層と陽極との間の積層膜中のうちの一つの膜中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the amine derivative according to claim 19 in one of the laminated films between the light emitting layer and the anode.
  22.  前記一般式(1)中、前記Arは置換若しくは無置換のフルオレニル基であり、前記Lは単結合である以下の一般式(3)で表される請求項1に記載のアミン誘導体。
    Figure JPOXMLDOC01-appb-C000003
    The amine derivative according to claim 1, wherein, in the general formula (1), the Ar 3 is a substituted or unsubstituted fluorenyl group, and the L is a single bond.
    Figure JPOXMLDOC01-appb-C000003
  23.  前記一般式(3)で表されるアミン誘導体において、前記フルオレニル基の置換基はそれぞれ独立に、水素原子、置換若しくは無置換のアルキル基、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基である請求項22に記載のアミン誘導体。 In the amine derivative represented by the general formula (3), the substituents of the fluorenyl group are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted group. The amine derivative according to claim 22, which is a heteroaryl group.
  24.  前記フルオレニル基は2位の位置で前記Lと結合する請求項22又は23に記載のアミン誘導体。 The amine derivative according to claim 22 or 23, wherein the fluorenyl group is bonded to the L at the 2-position.
  25.  前記一般式(3)中、Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基である請求項22乃至24の何れか一項に記載のアミン誘導体。 The amine derivative according to any one of claims 22 to 24, wherein in the general formula (3), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group.
  26.  前記一般式(3)中、Arは置換若しくは無置換のアリール基であり、Arは置換若しくは無置換のジベンゾヘテロール基である請求項22乃至24の何れか一項に記載のアミン誘導体。 The amine derivative according to any one of claims 22 to 24, wherein Ar 1 in the general formula (3) is a substituted or unsubstituted aryl group, and Ar 2 is a substituted or unsubstituted dibenzoheteroyl group. .
  27.  前記一般式(3)中、Ar及びArのうち、何れか一方のみが置換若しくは無置換のシリル基で置換されている請求項22乃至26の何れか一項に記載のアミン誘導体。 27. The amine derivative according to any one of claims 22 to 26, wherein only one of Ar 1 and Ar 2 in the general formula (3) is substituted with a substituted or unsubstituted silyl group.
  28.  前記一般式(3)中、Ar及びArのうち少なくとも1つを置換しているシリル基が、前記シリル基に置換されるアリール基の環形成炭素数がそれぞれ6以上18以下のトリアリールシリル基、又は前記シリル基に置換されるアルキル基の炭素数がそれぞれ1以上6以下のトリアルキルシリル基である請求項22乃至27の何れか一項に記載のアミン誘導体。 In the general formula (3), a silyl group substituting at least one of Ar 1 and Ar 2 is a triaryl having 6 to 18 ring carbon atoms in the aryl group substituted with the silyl group. The amine derivative according to any one of claims 22 to 27, wherein the silyl group or the alkyl group substituted with the silyl group is a trialkylsilyl group having 1 to 6 carbon atoms.
  29.  請求項22乃至28の何れか一項に記載のアミン誘導体を含有する有機エレクトロルミネッセンス素子用材料。 An organic electroluminescent element material containing the amine derivative according to any one of claims 22 to 28.
  30.  請求項29に記載の有機エレクトロルミネッセンス素子用材料が正孔輸送材料である有機エレクトロルミネッセンス素子用材料。 An organic electroluminescent element material, wherein the organic electroluminescent element material according to claim 29 is a hole transport material.
  31.  陰極と陽極との間に配置された発光層及び正孔輸送層を含み、
     前記正孔輸送層は、請求項22乃至28の何れか一項に記載のアミン誘導体を含有する有機エレクトロルミネッセンス素子。
    Comprising a light emitting layer and a hole transport layer disposed between the cathode and the anode;
    The said hole transport layer is an organic electroluminescent element containing the amine derivative as described in any one of Claims 22 thru | or 28.
  32.  前記一般式(1)中、前記Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、前記Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、前記Arは置換若しくは無置換のカルバゾリル基であり、前記Lは、置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基である請求項1に記載のアミン誘導体。 In the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and at least one of Ar 1 and Ar 2 Is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, and L is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group. The amine derivative according to claim 1.
  33.  前記置換若しくは無置換のカルバゾリル基は、2位又は3位の位置で前記Lと結合する請求項32に記載のアミン誘導体。 The amine derivative according to claim 32, wherein the substituted or unsubstituted carbazolyl group is bonded to the L at the 2-position or 3-position.
  34.  請求項32に記載のアミン誘導体を発光層中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescence element comprising the amine derivative according to claim 32 in a light emitting layer.
  35.  請求項32に記載のアミン誘導体を発光層と陽極との間の積層膜中のうちの一つの膜中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the amine derivative according to claim 32 in one of the laminated films between the light emitting layer and the anode.
  36.  前記一般式(1)中、前記Ar及びArはそれぞれ独立に、置換若しくは無置換のアリール基、又は置換若しくは無置換のヘテロアリール基であり、前記Ar及びArのうち少なくとも1つは置換若しくは無置換のシリル基で置換されており、Arは置換若しくは無置換のカルバゾリル基であり、Lは置換若しくは無置換のアリーレン基、又は置換若しくは無置換のヘテロアリーレン基である以下の一般式(4)で表される請求項1に記載のアミン誘導体。
    Figure JPOXMLDOC01-appb-C000004

    [前記一般式(4)中、R~Rは水素原子、置換若しくは無置換の環形成炭素数6以上30以下のアリール基、置換若しくは無置換の環形成原子数5以上30以下のヘテロアリール基、置換若しくは無置換の炭素数1以上15以下のアルキル基、置換若しくは無置換のシリル基、シアノ基、ハロゲン原子、又は重水素原子である。]
    In the general formula (1), Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and at least one of Ar 1 and Ar 2 Is substituted with a substituted or unsubstituted silyl group, Ar 3 is a substituted or unsubstituted carbazolyl group, L is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group The amine derivative of Claim 1 represented by General formula (4).
    Figure JPOXMLDOC01-appb-C000004

    [In the general formula (4), R 1 to R 8 represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted hetero ring having 5 to 30 ring atoms. An aryl group, a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted silyl group, a cyano group, a halogen atom, or a deuterium atom. ]
  37.  前記R~Rは、互いに結合して飽和又は不飽和の環を形成する請求項36に記載のアミン誘導体。 The amine derivative according to claim 36, wherein R 1 to R 8 are bonded to each other to form a saturated or unsaturated ring.
  38.  前記Lがフェニレン基、ビフェニレン基又はフルオレニレン基である請求項37に記載のアミン誘導体。 The amine derivative according to claim 37, wherein the L is a phenylene group, a biphenylene group or a fluorenylene group.
  39.  前記Lがフルオレニレン基である場合、前記Ar及びArは環形成炭素数6以上12以下のアリール基である請求項38に記載のアミン誘導体。 39. The amine derivative according to claim 38, wherein when L is a fluorenylene group, the Ar 1 and Ar 2 are aryl groups having 6 to 12 ring carbon atoms.
  40.  請求項36に記載のアミン誘導体を発光層中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescent device comprising the amine derivative according to claim 36 in a light emitting layer.
  41.  請求項36に記載のアミン誘導体を発光層と陽極との間の積層膜中のうちの一つの膜中に含む有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the amine derivative according to claim 36 in one of the laminated films between the light emitting layer and the anode.
  42.  前記一般式(1)中、Arはシリル基で置換された以下の一般式(5)で表わされるアリール基であり、Arは環形成炭素数6以上30以下の置換若しくは無置換のアリール基であり、Arは以下の一般式(6)で表わされるアリール基であり、Lは以下の一般式(7)で表わされるアリーレン基であり、
    Figure JPOXMLDOC01-appb-C000005

    前記一般式(5)において、oは0≦o≦2を満たす整数であり、R11、R12、R13はそれぞれ独立的に炭素数1以上15以下のアルキル基、置換若しくは無置換の環形成炭素数6以上30以下のアリール基、または環形成炭素数1以上30以下のヘテロアリール基であり、
    前記一般式(6)において、Rはそれぞれ独立的に水素原子、ハロゲン原子、炭素数1以上15以下のアルキル基、置換若しくは無置換の環形成炭素数6以上30以下のアリール基であり、mは0≦m≦5を満たす整数であり、
    前記一般式(7)において、R10はそれぞれ独立的に水素原子、ハロゲン原子、炭素数1以上15以下のアルキル基、置換若しくは無置換の環形成炭素数6以上30以下のアリール基であり、lは0≦m≦4であり、nは2≦n≦5を満たす整数であることを特徴とする請求項1に記載のアミン誘導体。
    In the general formula (1), Ar 1 is an aryl group represented by the following general formula (5) substituted with a silyl group, and Ar 2 is a substituted or unsubstituted aryl having 6 to 30 ring carbon atoms. Ar 3 is an aryl group represented by the following general formula (6), L is an arylene group represented by the following general formula (7),
    Figure JPOXMLDOC01-appb-C000005

    In the general formula (5), o is an integer satisfying 0 ≦ o ≦ 2, and R 11 , R 12 , and R 13 are each independently an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted ring. An aryl group having 6 to 30 carbon atoms or a heteroaryl group having 1 to 30 ring carbon atoms,
    In the general formula (6), each R 9 is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, m is an integer satisfying 0 ≦ m ≦ 5,
    In the general formula (7), each R 10 is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 15 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, The amine derivative according to claim 1, wherein l is 0 ≦ m ≦ 4 and n is an integer satisfying 2 ≦ n ≦ 5.
  43.  前記R11、R12、R13は、それぞれフェニル基であることを特徴とする請求項42に記載のアミン誘導体。 The amine derivative according to claim 42, wherein each of R 11 , R 12 , and R 13 is a phenyl group.
  44.  前記oは、0または1であることを特徴とする請求項43に記載のアミン誘導体。 44. The amine derivative according to claim 43, wherein said o is 0 or 1.
  45.  前記nが2であることを特徴とする請求項44に記載のアミン誘導体。 45. The amine derivative according to claim 44, wherein said n is 2.
  46.  請求項42に記載のアミン誘導体を含有する有機エレクトロルミネッセンス素子用材料。 43. A material for an organic electroluminescence device comprising the amine derivative according to claim 42.
  47.  請求項46に記載の有機エレクトロルミネッセンス素子用材料を発光層と陽極との間に配置された積層膜の何れか一つに含むことを特徴とする有機エレクトロルミネッセンス素子。
     
    47. An organic electroluminescent device comprising the organic electroluminescent device material according to claim 46 in any one of a laminated film disposed between a light emitting layer and an anode.
PCT/JP2013/082647 2012-12-05 2013-12-04 Amine derivative, organic light-emitting material, and organic electroluminescence element using same WO2014088047A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157002270A KR20150090021A (en) 2012-12-05 2013-12-04 Amine derivatives, material for organic electroluminescent device and organic electroluminescent device using the same
KR1020177018061A KR20170081718A (en) 2012-12-05 2013-12-04 Amine derivatives, material for organic electroluminescent device and organic electroluminescent device using the same
US14/731,180 US9780317B2 (en) 2012-12-05 2015-06-04 Amine derivative, organic luminescent material and organic electroluminescent device using the amine derivative or the organic luminescent material
US15/716,613 US10629830B2 (en) 2012-12-05 2017-09-27 Organic electroluminescent device

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2012-266773 2012-12-05
JP2012266773 2012-12-05
JP2013-247962 2013-11-29
JP2013247909A JP6307687B2 (en) 2012-12-05 2013-11-29 AMINE DERIVATIVE, ORGANIC LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
JP2013247787A JP6307690B2 (en) 2012-12-05 2013-11-29 AMINE DERIVATIVE, ORGANIC LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
JP2013247962A JP6373573B2 (en) 2012-12-05 2013-11-29 AMINE DERIVATIVE, ORGANIC LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
JP2013247741A JP6452102B2 (en) 2012-12-05 2013-11-29 AMINE DERIVATIVE, ORGANIC LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
JP2013248003A JP2014131987A (en) 2012-12-05 2013-11-29 Amine derivative, organic luminescence material and organic electroluminescent device using the same
JP2013-247442 2013-11-29
JP2013-247699 2013-11-29
JP2013-247787 2013-11-29
JP2013247699A JP6307689B2 (en) 2012-12-05 2013-11-29 AMINE DERIVATIVE, ORGANIC LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
JP2013-247741 2013-11-29
JP2013-248003 2013-11-29
JP2013-247909 2013-11-29
JP2013247442A JP6307686B2 (en) 2012-12-05 2013-11-29 AMINE DERIVATIVE, ORGANIC LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/731,180 Continuation US9780317B2 (en) 2012-12-05 2015-06-04 Amine derivative, organic luminescent material and organic electroluminescent device using the amine derivative or the organic luminescent material

Publications (1)

Publication Number Publication Date
WO2014088047A1 true WO2014088047A1 (en) 2014-06-12

Family

ID=50883464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082647 WO2014088047A1 (en) 2012-12-05 2013-12-04 Amine derivative, organic light-emitting material, and organic electroluminescence element using same

Country Status (1)

Country Link
WO (1) WO2014088047A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093810A1 (en) * 2014-09-25 2016-03-31 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
JP2016084333A (en) * 2014-10-29 2016-05-19 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Amine derivative, material for organic electroluminescence element and organic electroluminescence element using same
JP2016102071A (en) * 2014-11-27 2016-06-02 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Monoamine derivative and organic electroluminescent device
JP2016192464A (en) * 2015-03-31 2016-11-10 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organic electroluminescent element, organic electroluminescent element employing the same
WO2016199743A1 (en) * 2015-06-11 2016-12-15 保土谷化学工業株式会社 Arylamine compound and organic electroluminescent element
KR20160149987A (en) * 2015-06-17 2016-12-28 삼성디스플레이 주식회사 Mono amine derivatives and organic electroluminescent device including the same
JP2017008023A (en) * 2015-06-17 2017-01-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Monoamine derivative and organic electroluminescent element
JPWO2014104144A1 (en) * 2012-12-26 2017-01-12 出光興産株式会社 Oxygen-containing fused-ring amine compound, sulfur-containing fused-ring amine compound, and organic electroluminescence device
JP2017523153A (en) * 2014-06-27 2017-08-17 ヒソン・マテリアル・リミテッドHeesung Material Ltd. Heterocyclic compound and organic light emitting device using the same
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
EP3299374A1 (en) * 2016-09-22 2018-03-28 Samsung Display Co., Ltd. Amine compound and organic electroluminescence device including the same
US10205102B2 (en) 2015-06-17 2019-02-12 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device including the same
EP3305773A4 (en) * 2015-05-27 2019-04-10 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element using same, and electronic device therefor
TWI683464B (en) * 2014-12-05 2020-01-21 日商保土谷化學工業股份有限公司 Organic electroluminescent device
US10777747B2 (en) 2016-12-05 2020-09-15 Samsung Display Co., Ltd. Amine compound and organic electroluminescence device including the same
JP2021503502A (en) * 2018-08-24 2021-02-12 エルジー・ケム・リミテッド A compound, a coating composition containing the compound, an organic light emitting device using the compound, and a method for producing the same.
WO2021060239A1 (en) * 2019-09-26 2021-04-01 出光興産株式会社 Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
CN112745231A (en) * 2019-10-29 2021-05-04 东进世美肯株式会社 Novel compound and organic light-emitting element comprising same
CN114975839A (en) * 2022-07-26 2022-08-30 吉林奥来德光电材料股份有限公司 Organic electroluminescent device, organic electroluminescent device and photoelectric equipment

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323634A (en) * 1992-05-26 1993-12-07 Konica Corp Electrophotographic sensitive body
JP2005516059A (en) * 2002-01-28 2005-06-02 センシエント イマジング テクノロジイズ ゲーエムベーハー Triarylamine derivatives and their use in organic electroluminescence and electrophotographic devices
JP2007520470A (en) * 2004-03-19 2007-07-26 エルジー・ケム・リミテッド Novel hole injection or transport material and organic light emitting device using the same
JP2007230951A (en) * 2006-03-02 2007-09-13 Canon Inc Silyl compound, luminescent material and organic electroluminescent element using the same
WO2010044130A1 (en) * 2008-10-17 2010-04-22 三井化学株式会社 Aromatic amine derivative and organic electroluminescent device using the same
WO2010052932A1 (en) * 2008-11-07 2010-05-14 保土谷化学工業株式会社 Compound having triphenylsilyl group and triarylamine structure and organic electroluminescent element
JP2010143841A (en) * 2008-12-17 2010-07-01 Idemitsu Kosan Co Ltd Aromatic amine derivative, and organic electroluminescent device using the same
WO2010122810A1 (en) * 2009-04-24 2010-10-28 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element comprising same
JP2011037838A (en) * 2009-07-14 2011-02-24 Chisso Corp Benzofluorene compound, material for luminous layer and organic electroluminescent device using the compound
JP2012505205A (en) * 2008-10-08 2012-03-01 エルジー・ケム・リミテッド Novel compound and organic electronic device using the same
WO2012056674A1 (en) * 2010-10-25 2012-05-03 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element using same
KR20120066149A (en) * 2010-12-14 2012-06-22 엘지디스플레이 주식회사 Hole transporting material and organic light emitting diode comprising the same
JP2013093432A (en) * 2011-10-26 2013-05-16 Konica Minolta Holdings Inc Organic electroluminescent element material, organic electroluminescent element, display and lighting system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323634A (en) * 1992-05-26 1993-12-07 Konica Corp Electrophotographic sensitive body
JP2005516059A (en) * 2002-01-28 2005-06-02 センシエント イマジング テクノロジイズ ゲーエムベーハー Triarylamine derivatives and their use in organic electroluminescence and electrophotographic devices
JP2007520470A (en) * 2004-03-19 2007-07-26 エルジー・ケム・リミテッド Novel hole injection or transport material and organic light emitting device using the same
JP2007230951A (en) * 2006-03-02 2007-09-13 Canon Inc Silyl compound, luminescent material and organic electroluminescent element using the same
JP2012505205A (en) * 2008-10-08 2012-03-01 エルジー・ケム・リミテッド Novel compound and organic electronic device using the same
WO2010044130A1 (en) * 2008-10-17 2010-04-22 三井化学株式会社 Aromatic amine derivative and organic electroluminescent device using the same
WO2010052932A1 (en) * 2008-11-07 2010-05-14 保土谷化学工業株式会社 Compound having triphenylsilyl group and triarylamine structure and organic electroluminescent element
JP2010143841A (en) * 2008-12-17 2010-07-01 Idemitsu Kosan Co Ltd Aromatic amine derivative, and organic electroluminescent device using the same
WO2010122810A1 (en) * 2009-04-24 2010-10-28 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element comprising same
JP2011037838A (en) * 2009-07-14 2011-02-24 Chisso Corp Benzofluorene compound, material for luminous layer and organic electroluminescent device using the compound
WO2012056674A1 (en) * 2010-10-25 2012-05-03 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element using same
KR20120066149A (en) * 2010-12-14 2012-06-22 엘지디스플레이 주식회사 Hole transporting material and organic light emitting diode comprising the same
JP2013093432A (en) * 2011-10-26 2013-05-16 Konica Minolta Holdings Inc Organic electroluminescent element material, organic electroluminescent element, display and lighting system

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014104144A1 (en) * 2012-12-26 2017-01-12 出光興産株式会社 Oxygen-containing fused-ring amine compound, sulfur-containing fused-ring amine compound, and organic electroluminescence device
US10644244B2 (en) 2014-06-27 2020-05-05 Lt Materials Co., Ltd. Heterocyclic compound and organic light emitting device using same
JP2017523153A (en) * 2014-06-27 2017-08-17 ヒソン・マテリアル・リミテッドHeesung Material Ltd. Heterocyclic compound and organic light emitting device using the same
US10118889B2 (en) 2014-09-19 2018-11-06 Idemitsu Kosan Co., Ltd. Compound
US9902687B2 (en) 2014-09-19 2018-02-27 Idemitsu Kosan Co., Ltd. Compound
US10435350B2 (en) 2014-09-19 2019-10-08 Idemitsu Kosan Co., Ltd. Organic electroluminecence device
US10333076B2 (en) 2014-09-25 2019-06-25 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
KR102488020B1 (en) * 2014-09-25 2023-01-13 삼성디스플레이 주식회사 Material for organic electroluminescent device and organic electroluminescent device using the same
US20160093810A1 (en) * 2014-09-25 2016-03-31 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US10333075B2 (en) 2014-09-25 2019-06-25 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US9972787B2 (en) * 2014-09-25 2018-05-15 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
KR20160037059A (en) * 2014-09-25 2016-04-05 삼성디스플레이 주식회사 Material for organic electroluminescent device and organic electroluminescent device using the same
JP2016084333A (en) * 2014-10-29 2016-05-19 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Amine derivative, material for organic electroluminescence element and organic electroluminescence element using same
JP2016102071A (en) * 2014-11-27 2016-06-02 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Monoamine derivative and organic electroluminescent device
TWI683464B (en) * 2014-12-05 2020-01-21 日商保土谷化學工業股份有限公司 Organic electroluminescent device
JP2016192464A (en) * 2015-03-31 2016-11-10 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organic electroluminescent element, organic electroluminescent element employing the same
EP3305773A4 (en) * 2015-05-27 2019-04-10 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element using same, and electronic device therefor
US11380846B2 (en) 2015-05-27 2022-07-05 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element comprising the same and electronic device thereof
TWI721990B (en) * 2015-06-11 2021-03-21 日商保土谷化學工業股份有限公司 Arylamine compounds and organic electroluminescence devices
JPWO2016199743A1 (en) * 2015-06-11 2018-04-12 保土谷化学工業株式会社 Arylamine compound and organic electroluminescence device
WO2016199743A1 (en) * 2015-06-11 2016-12-15 保土谷化学工業株式会社 Arylamine compound and organic electroluminescent element
CN107709285A (en) * 2015-06-11 2018-02-16 保土谷化学工业株式会社 Novel arylamine compound and organic electroluminescence device
EP3309141A4 (en) * 2015-06-11 2019-01-16 Hodogaya Chemical Co., Ltd. Arylamine compound and organic electroluminescent element
KR102560940B1 (en) * 2015-06-17 2023-08-01 삼성디스플레이 주식회사 Mono amine derivatives and organic electroluminescent device including the same
US10693079B2 (en) * 2015-06-17 2020-06-23 Samsung Display Co., Ltd. Mono amine derivatives and organic electroluminescent device including the same
US10205102B2 (en) 2015-06-17 2019-02-12 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device including the same
JP2017008023A (en) * 2015-06-17 2017-01-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Monoamine derivative and organic electroluminescent element
KR20160149987A (en) * 2015-06-17 2016-12-28 삼성디스플레이 주식회사 Mono amine derivatives and organic electroluminescent device including the same
US11165029B2 (en) 2016-09-22 2021-11-02 Samsung Display Co., Ltd. Amine compound and organic electroluminescence device including the same
EP3299374A1 (en) * 2016-09-22 2018-03-28 Samsung Display Co., Ltd. Amine compound and organic electroluminescence device including the same
US10777747B2 (en) 2016-12-05 2020-09-15 Samsung Display Co., Ltd. Amine compound and organic electroluminescence device including the same
JP2021503502A (en) * 2018-08-24 2021-02-12 エルジー・ケム・リミテッド A compound, a coating composition containing the compound, an organic light emitting device using the compound, and a method for producing the same.
WO2021060239A1 (en) * 2019-09-26 2021-04-01 出光興産株式会社 Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
CN114423733A (en) * 2019-09-26 2022-04-29 出光兴产株式会社 Compound, material for organic electroluminescent element, and electronic device
CN112745231A (en) * 2019-10-29 2021-05-04 东进世美肯株式会社 Novel compound and organic light-emitting element comprising same
CN114975839A (en) * 2022-07-26 2022-08-30 吉林奥来德光电材料股份有限公司 Organic electroluminescent device, organic electroluminescent device and photoelectric equipment
CN114975839B (en) * 2022-07-26 2022-10-28 吉林奥来德光电材料股份有限公司 Organic electroluminescent device, organic electroluminescent device and photoelectric equipment

Similar Documents

Publication Publication Date Title
JP6807341B2 (en) Amine derivatives, organic luminescent materials and organic electroluminescent devices using them
WO2014088047A1 (en) Amine derivative, organic light-emitting material, and organic electroluminescence element using same
JP7251711B2 (en) organic light emitting device
JP5617398B2 (en) Benzofluorene compound, light emitting layer material and organic electroluminescent device using the compound
KR20180112721A (en) Compound and organic light emitting device comprising the same
KR101792175B1 (en) Spiro compound and organic electroluminescent devices comprising the same
KR20120117693A (en) New compounds and organic light-emitting diode including the same
KR20170082459A (en) An electroluminescent compound and an electroluminescent device comprising the same
KR20210067968A (en) organic light emitting device
KR20190037174A (en) Multicyclic compound and organic light emitting device comprising the same
JP2015149317A (en) Material for organic electroluminescent element and organic electroluminescent element using the same
KR101741322B1 (en) Multicyclic compound including nitrogen and organic electronic device using the same
KR20110107680A (en) Spiro compound and organic electroluminescent devices comprising the same
KR102225901B1 (en) Multicyclic compound and organic light emitting device comprising the same
KR20200080188A (en) Compound and organic light emitting device comprising the same
KR101837049B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
KR20200134149A (en) Compound and organic light emitting device comprising the same
KR102388877B1 (en) Compound and organic light emitting device comprising the same
JP7180832B2 (en) Compound and organic light-emitting device comprising the same
KR20210020837A (en) Organic light emitting device
KR20110108494A (en) Anthracene derivatives and organic light-emitting diode including the same
TW201730147A (en) Aromatic compound and organic light emitting diode including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157002270

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861418

Country of ref document: EP

Kind code of ref document: A1