WO2014088038A1 - Ultrasound vibrator unit, dispersion device having ultrasound vibrator unit, and dispersion method using dispersion device - Google Patents

Ultrasound vibrator unit, dispersion device having ultrasound vibrator unit, and dispersion method using dispersion device Download PDF

Info

Publication number
WO2014088038A1
WO2014088038A1 PCT/JP2013/082615 JP2013082615W WO2014088038A1 WO 2014088038 A1 WO2014088038 A1 WO 2014088038A1 JP 2013082615 W JP2013082615 W JP 2013082615W WO 2014088038 A1 WO2014088038 A1 WO 2014088038A1
Authority
WO
WIPO (PCT)
Prior art keywords
output end
ultrasonic
face
ultrasonic transducer
dispersion
Prior art date
Application number
PCT/JP2013/082615
Other languages
French (fr)
Japanese (ja)
Inventor
政七 岸
Original Assignee
タイレックス工業株式会社
株式会社ソニックテクノロジ-
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タイレックス工業株式会社, 株式会社ソニックテクノロジ- filed Critical タイレックス工業株式会社
Priority to JP2014551127A priority Critical patent/JP6209167B2/en
Publication of WO2014088038A1 publication Critical patent/WO2014088038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/55Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/85Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with a vibrating element inside the receptacle

Definitions

  • the area of the first output end face is preferably 0.5 to 2.0 times the area of the second output end face. More preferably, the area of the first output end face is 0.7 to 1.4 times the area of the second output end face.
  • the dispersing device 20 includes a main body 21, a container 22 provided in the main body 21 for holding the target solution 24, and an ultrasonic wave that radiates ultrasonic waves to the target solution 24 to disperse the suspension.
  • the ultrasonic transducer unit 30 and a holding unit 26 that is located above the container 22 and holds the ultrasonic transducer unit 30 from below are provided.
  • the ultrasonic transducer unit 30 is released from the ultrasonic transducer unit 30 because one end side of the ultrasonic transducer unit 30 is positioned in the target solution 24 held in the container 22.
  • the target solution 24 can be dispersed by ultrasonic waves.
  • the first output end surface 36 a and the second output end surface 38 a are both substantially circular in outer diameter, and the center of the first output end surface 36 a and the center of the second output end surface 38 a are on the central axis of the ultrasonic radiation member 34. Located in. For this reason, when the ultrasonic radiation member 34 is visually recognized from the second output end face 38a side, the second output end face 38a appears to overlap the center of the first output end face 36a as shown in FIG. 2B.
  • FIG. 3 is a schematic diagram schematically showing the ultrasonic waves radiated from the ultrasonic transducer unit.
  • FIG. 3A shows the state of the ultrasonic waves radiated from the ultrasonic transducer unit 30, and FIG.
  • the state of the ultrasonic wave radiated from the ultrasonic transducer unit 10 having the conventional flat (without step) ultrasonic radiation unit 12 is schematically shown, and the dotted line in FIG.
  • the emitted ultrasonic wave is schematically shown.
  • the ultrasonic transducer unit 30 has a distance (c in FIG. 4) from the side surface of the container to the side surface 38 b of the second radiating unit 38 that is emitted from the ultrasonic transducer 32.
  • the distance is fixed to an integral multiple of the half wavelength ( ⁇ / 2) at which the sound wave vibrates. For this reason, when the ultrasonic waves radiated from the side surface 38 b of the second radiating portion 38 are reflected by the side surface of the container 22, they interfere with each other and have a high dispersion effect on the target solution 24 held in the container 22. .
  • the second output end face 38a is substantially circular and the outer periphery of the first output end face 36a is also substantially circular, ultrasonic waves are radiated uniformly and radially from the side surfaces of the first radiating portion 36 and the second radiating portion 38. can do. By doing so, the entire target solution 24 can be uniformly dispersed.
  • 38.46 mm which is the distance from the bottom surface of the container to the second output end face of the ultrasonic transducer, is a half wavelength ( ⁇ / 2) of the wavelength 76.93 mm, and the second output of the ultrasonic transducer.
  • 19.23 mm which is the distance from the side surface of the end surface to the inner side surface of the container, is a quarter wavelength ( ⁇ / 4) of a wavelength of 76.93 mm.
  • the power was 400 W and the power consumption was 0.187 kWh.
  • Comparative Example 1 4 mol (about 319.4 g) of anatase type titanium oxide (Ishihara Sangyo Co., Ltd., product number: ST-01) was suspended in about 2,875 mL of water to obtain a 10 wt% titanium oxide suspension.
  • the titanium oxide suspension was irradiated with ultrasonic waves in the same manner as in Example 1 except that the ultrasonic wave emission time was 100 minutes. The power at this time was 200 W and the power consumption was 0.333 kWh.
  • the average particle size of the suspension after ultrasonic irradiation was measured with a concentrated particle size analyzer (manufactured by Otsuka Electronics, product number FPAR-1000), and found to be 2,000 nm.
  • Example 1 Comparing the results of Example 1 and Comparative Example 1, the power consumption required to disperse the anatase-type titanium oxide until the average particle system of the same degree is 56% of that of Comparative Example 1 in Example 1. I understand that. From this, it can be said that Example 1 has 1.8 times the power efficiency as compared with Comparative Example 1. Furthermore, it can be seen that the time required for the treatment is 28% in Example 1 compared to Comparative Example 1. From this, it can be said that Example 1 has 3.6 times the time efficiency as compared with Comparative Example 1.
  • Example 2 4 mol (about 319.4 g) of anatase type titanium oxide (Ishihara Sangyo Co., Ltd., product number: ST-01) was suspended in about 2,875 mL of water to obtain a 10 wt% titanium oxide suspension.
  • the titanium oxide suspension was irradiated with ultrasonic waves in the same manner as in Example 1 except that the ultrasonic wave was emitted for 48 minutes.
  • the power at this time was 400 W and the power consumption was 0.320 kWh.
  • the average particle size of the suspension after ultrasonic irradiation was measured with a concentrated particle size analyzer (manufactured by Otsuka Electronics Co., Ltd., product number FPAR-1000) and found to be 5,000 nm.
  • the average particle size of the suspension after ultrasonic irradiation was measured with a concentrated particle size analyzer (manufactured by Otsuka Electronics Co., Ltd., product number FPAR-1000) and found to be 5,000 nm.
  • Example 1 Comparing the results of Example 2 and Comparative Example 2, the amount of electric power required to disperse the anatase-type titanium oxide until the average particle system of the same level is obtained.
  • Example 1 is 61.5% of Comparative Example 1. It turns out that it is. From this, it can be said that Example 2 has 1.63 times the power efficiency as compared with Comparative Example 2. Furthermore, it can be seen that the time required for the processing is 31% in Example 1 compared to Comparative Example 1. From this, it can be said that Example 1 has a time efficiency of 3.25 times that of Comparative Example 1.
  • Example 3 An appropriate amount of water is put into a glass beaker (made by Shibata Kagaku Co., Ltd.) having a depth of 150 mm and an inner diameter of the bottom surface of 105 mm, and an ultrasonic wave having an amplitude of 30 ⁇ m, a frequency of 19.5 kHz, and a wavelength of 76.92 mm is emitted. Was photographed. This photograph is shown in FIG. 5A.
  • Example 3 Photographing was performed in the same manner as in Example 3 except that an ultrasonic transducer unit having a flat ultrasonic radiation surface of the ultrasonic radiation unit was used. This photograph is shown in FIG. 5B.
  • the ultrasonic transducer unit 30 is positioned by placing the locking portion 33 of the ultrasonic transducer unit 30 on the upper surface of the holding portion 26. May be fixed.
  • the locking part 33 may be clamped using a clamping member, or the holding part 26 and the locking part 33 may be fixed with a screw or the like. By doing so, it is possible to prevent the ultrasonic transducer unit 30 from moving and unintentionally changing the distance between the ultrasonic radiation member 34 and the bottom surface or side surface of the container 22.
  • the container 22 is a cylindrical container, but the bottom surface of the container 22 may be movable up and down. In this way, the distance between the second output end surface 38a and the bottom surface of the container 22 can be changed while the ultrasonic transducer unit 30 is fixed.
  • it can be used as an ultrasonic vibrator for a dispersing device that disperses a target solution using ultrasonic waves.
  • SYMBOLS 10 DESCRIPTION OF SYMBOLS 10 ... Conventional type ultrasonic transducer unit, 12 ... Ultrasonic radiation part, 20 ... Dispersing device, 21 ... Main body part, 22 ... Container, 24 ... Target solution, 26 ... Holding part, 30 ... Ultrasonic vibrator unit, 32 ... Ultrasonic vibrator, 33 ... Locking portion, 34 ... Ultrasonic radiation member, 36 ... First radiation portion, 36a ... First output end surface, 38 ... Second radiation portion, 38a ... Second output end surface, 38b ... side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

[Problem] To make it possible to provide an ultrasound vibrator unit capable of satisfactorily dispersing a subject solution, a dispersion unit having the ultrasound vibrator unit, and a dispersion method in which the dispersion device is used. [Solution] When ultrasound having a wavelength (λ) generated by an ultrasound vibrator (32) is transmitted to an ultrasound radiation member (34) and radiated from a first output end surface (36a) and a second output end surface (38a), the distances from the first output end surface (36a) and the second output end surface (38a) to the ultrasound vibrator (32) differ by a distance corresponding to one quarter of the wavelength (λ/4), and a phase difference of π/2 (90°) is therefore generated between the ultrasound radiated from the first output end surface (36a) and the ultrasound radiated from the second output end surface (38a). Dispersion can thereby be performed in a satisfactory manner.

Description

超音波振動子ユニット、超音波振動子ユニットを有する分散装置及びこの分散装置を用いた分散方法Ultrasonic transducer unit, dispersion device having ultrasonic transducer unit, and dispersion method using this dispersion device
 本発明は、超音波振動子ユニット、超音波振動子ユニットを有する分散装置及びこの分散装置を用いた分散方法に関する。 The present invention relates to an ultrasonic transducer unit, a dispersing device having an ultrasonic transducer unit, and a dispersing method using the dispersing device.
 従来、超音波振動子から放射された振動を増幅する超音波振動子用ホーンを備えた種々の超音波振動子ユニットが知られている。例えば、特許文献1では、超音波振動子用ホーンの振動方向(軸方向)と平行な方向の溝を、所定の深さで、ホーンの外周に加工した超音波振動子用ホーンを備えた超音波振動子ユニットが記載されている。こうすることにより、この超音波振動子ユニットでは、超音波加工機等の安定な稼働と、振動子の損傷等を防止することを可能としている。 Conventionally, various ultrasonic transducer units including an ultrasonic transducer horn that amplifies vibration radiated from an ultrasonic transducer are known. For example, in Patent Document 1, an ultrasonic transducer horn including an ultrasonic transducer horn in which a groove in a direction parallel to the vibration direction (axial direction) of the ultrasonic transducer horn is processed at a predetermined depth on the outer periphery of the horn. A sonic transducer unit is described. In this way, in this ultrasonic transducer unit, it is possible to stably operate an ultrasonic processing machine and prevent damage to the transducer.
特開平07-060190号公報Japanese Unexamined Patent Publication No. 07-060190
 しかしながら、このような超音波振動子ユニットを懸濁液の分散(特に、ナノスケールの微粒子が懸濁した懸濁液の分散)に使用した場合には、放射される超音波の出力が足りず、十分に分散することができないという課題がある。又は、分散に必要な十分な出力の超音波を放射しようとすると、高いエネルギーが必要となり、エネルギー効率(電力効率)が悪かったり、長時間の照射が必要になり、時間効率(分散仕事効率)が悪くなったりするという課題がある。 However, when such an ultrasonic transducer unit is used for dispersion of a suspension (particularly dispersion of a suspension in which nano-scale fine particles are suspended), the output of the emitted ultrasonic wave is insufficient. There is a problem that it cannot be sufficiently dispersed. Or, when trying to radiate an ultrasonic wave with sufficient output necessary for dispersion, high energy is required, energy efficiency (power efficiency) is poor, or long-time irradiation is required, and time efficiency (dispersion work efficiency) There is a problem of getting worse.
 本発明は、このような課題に鑑みなされたものであり、十分な出力の超音波を放射することで、懸濁液(特に、ナノスケールの微粒子が懸濁した懸濁液)を好適に分散することができる超音波振動子ユニット、超音波振動子ユニットを有する分散装置及びこの分散装置を用いた分散方法を提供することを主目的とする。 The present invention has been made in view of such problems, and suitably suspends a suspension (in particular, a suspension in which nano-scale microparticles are suspended) by emitting ultrasonic waves with sufficient output. It is a main object of the present invention to provide an ultrasonic transducer unit, a dispersion device having the ultrasonic transducer unit, and a dispersion method using the dispersion device.
 本発明は、上述の主目的を達成するために以下の手段を採った。 The present invention adopts the following means in order to achieve the main object described above.
 本発明の超音波振動子ユニットは、
 波長λの超音波を発生させる超音波振動子と、前記超音波振動子に連接し、前記超音波振動子によって発生した超音波振動を出力する超音波放射部と、を備えた超音波振動子ユニットであって、
 前記超音波放射部は、第一出力端面を有する柱状の第一放射部と、前記第一出力端面から柱状に延出し、第二出力端面を有する第二放射部と、
 を備え、
 前記第一出力端面と前記第二出力端面とは、互いに平行で、かつ、4半分波長(λ/4)の整数倍の距離離れている、
 ものである。
The ultrasonic transducer unit of the present invention is
An ultrasonic transducer comprising: an ultrasonic transducer that generates an ultrasonic wave having a wavelength λ; and an ultrasonic radiation unit that is connected to the ultrasonic transducer and outputs the ultrasonic vibration generated by the ultrasonic transducer. A unit,
The ultrasonic radiation portion has a columnar first radiation portion having a first output end surface, a columnar first radiation portion extending from the first output end surface, and a second radiation portion having a second output end surface;
With
The first output end face and the second output end face are parallel to each other and separated by a distance that is an integral multiple of a quarter wavelength (λ / 4).
Is.
 この超音波振動子ユニットは、超音波振動子によって発生した超音波が連接する超音波放射部に伝わり、主に第二出力端面及び第一出力端面から出力される。このとき、第一出力端面は、第二出力端面と比較して超音波放出方向に4半分波長(λ/4)だけ超音波放出方向に突出しているため、第一出力端面から放射される超音波と第二出力端面から放射される超音波は4半分波長(λ/4)に相当する位相が90°(π/2)ずれることになる。このように、一つの超音波振動子から放出された超音波が超音波放射部に伝わり、第一出力端面から放射される超音波と第二出力端面から放射される超音波との位相が90°ずれることにより、同一出力で超音波を放射した場合に、第一出力端面から放射される超音波と第二出力端面から放射される超音波との超音波間の音圧の差を最大にすることができる。こうすることにより、超音波間の圧力差が同一位相の超音波を放出する場合と比較して、高い分散効率を有することができる。なお、ここで分散効率が良いとは、対象液中に含まれる粒子の平均粒径が所望の大きさとするために必要な電力効率(エネルギー効率)や、分散仕事効率が高いことを意味する。 This ultrasonic transducer unit is transmitted to the ultrasonic radiation unit where the ultrasonic waves generated by the ultrasonic transducer are connected, and is output mainly from the second output end surface and the first output end surface. At this time, the first output end face protrudes in the ultrasonic emission direction by a quarter wavelength (λ / 4) in the ultrasonic emission direction as compared with the second output end face. The phase corresponding to the quarter wavelength (λ / 4) is shifted by 90 ° (π / 2) between the sound wave and the ultrasonic wave radiated from the second output end face. In this way, the ultrasonic wave emitted from one ultrasonic transducer is transmitted to the ultrasonic radiation unit, and the phase of the ultrasonic wave emitted from the first output end face and the ultrasonic wave emitted from the second output end face is 90. When the ultrasonic waves are emitted with the same output, the difference in sound pressure between the ultrasonic waves emitted from the first output end face and the ultrasonic waves emitted from the second output end face is maximized. can do. By doing so, it is possible to have a high dispersion efficiency as compared with the case where ultrasonic waves having the same phase in pressure difference between the ultrasonic waves are emitted. Here, good dispersion efficiency means high power efficiency (energy efficiency) and high dispersion work efficiency necessary for making the average particle size of particles contained in the target liquid a desired size.
 本発明の超音波振動子ユニットにおいて、前記第二出力端面は、略円形であり、前記第一出力端面の外径は、前記第二出力端面の外径と相似形であってもよい。こうすれば、第一出力端面から放射された超音波と第二出力端面から放射された超音波との位相差により、隣接する超音波間の音圧の差によって超音波の進行方向に対して垂直方向の振動が発生した際に、超音波放射部を中心に周囲に均一に超音波が広がることになる。このため、この超音波振動子ユニットを使用して対象溶液を分散する場合には、超音波振動子ユニットを対象溶液の中央に載置することにより、対象溶液全体に均等な超音波を照射することができるため、対象溶液全体を均一に分散することができる。 In the ultrasonic transducer unit of the present invention, the second output end face may be substantially circular, and the outer diameter of the first output end face may be similar to the outer diameter of the second output end face. In this way, due to the phase difference between the ultrasonic wave radiated from the first output end face and the ultrasonic wave radiated from the second output end face, the difference in sound pressure between adjacent ultrasonic waves causes the ultrasonic traveling direction. When vertical vibration occurs, the ultrasonic waves spread uniformly around the ultrasonic radiation portion. For this reason, when using the ultrasonic transducer unit to disperse the target solution, the ultrasonic transducer unit is placed in the center of the target solution to irradiate the entire target solution with uniform ultrasonic waves. Therefore, the entire target solution can be uniformly dispersed.
 本発明の超音波振動子ユニットにおいて、前記第一出力端面の面積は、前記第二出力端面の面積の0.5倍~2.0倍が好ましい。前記第一出力端面の面積は、前記第二出力端面の面積の0.7倍~1.4倍が、なお好ましい。 In the ultrasonic transducer unit of the present invention, the area of the first output end face is preferably 0.5 to 2.0 times the area of the second output end face. More preferably, the area of the first output end face is 0.7 to 1.4 times the area of the second output end face.
 本発明の分散装置は、
 上述したいずれかの超音波振動子ユニットと、
 円筒形の容器と、
 前記第二出力端面と前記容器の底面との距離が2半分波長(λ/2)の整数倍の距離となる位置に前記超音波振動子ユニットを保持する固定部材と、
 を備えたものである。
The dispersing device of the present invention
Any of the ultrasonic transducer units described above;
A cylindrical container;
A fixing member that holds the ultrasonic transducer unit at a position where the distance between the second output end surface and the bottom surface of the container is a distance that is an integral multiple of a half wavelength (λ / 2);
It is equipped with.
 この分散装置は、上述したいずれかの超音波振動子ユニットを有しているため、上述した効果を得ることができる。加えて、超音波振動子ユニットが固定部材によって第二出力端面と容器の底面との距離が2半分波長(λ/2)の整数倍の距離となる位置に前記超音波振動子ユニットが保持されているため、第二出力端面から放射された超音波は、容器の底面によって反射され、互いに増幅することになる。こうすることにより、同じ出力で超音波を放射した際に、容器に保持された対象物に対してより強いエネルギーを与えることができるため、より分散効率や分散仕事効率を高めることができる。 Since this dispersion apparatus has any of the ultrasonic transducer units described above, the above-described effects can be obtained. In addition, the ultrasonic transducer unit is held at a position where the distance between the second output end surface and the bottom surface of the container is an integral multiple of a half wavelength (λ / 2) by the fixing member. Therefore, the ultrasonic waves radiated from the second output end surface are reflected by the bottom surface of the container and are amplified together. By doing so, when ultrasonic waves are radiated with the same output, stronger energy can be given to the object held in the container, so that the dispersion efficiency and work efficiency can be further increased.
 本発明の分散装置において、前記固定部材は、前記第二放射部の側面と前記容器の側面との距離が2半分波長(λ/2)の整数倍となる位置に前記超音波振動ユニットを保持してもよい。こうすれば、第一出力端面から放射された超音波と第二出力端面から放射された超音波との位相差により、隣接する超音波間の音圧の差によって垂直方向の振動が発生した際に、この振動が容器の側面によって反射され、互いに増幅することになる。こうすることにより、同じ出力で超音波を放射した際に、対象溶液に対してより強いエネルギーを与えることができるため、より分散効率や、分散仕事効率を高めることができる。 In the dispersion device of the present invention, the fixing member holds the ultrasonic vibration unit at a position where the distance between the side surface of the second radiating portion and the side surface of the container is an integral multiple of a half wavelength (λ / 2). May be. In this way, when a vertical vibration occurs due to the difference in sound pressure between adjacent ultrasonic waves due to the phase difference between the ultrasonic wave emitted from the first output end face and the ultrasonic wave emitted from the second output end face. In addition, this vibration is reflected by the side surfaces of the container and amplifies each other. By carrying out like this, when an ultrasonic wave is radiated | emitted with the same output, since a stronger energy can be given with respect to a target solution, a dispersion | distribution efficiency and a dispersion | distribution work efficiency can be improved more.
 本発明の分散方法は、上述したいずれかの分散装置を用いて溶液を分散する分散方法であって、
 (1)前記第一出力端面が液面下となる位置まで前記容器に溶液を注入する注入ステップと、
 (2)前記超音波振動子から波長λの超音波を前記溶液に放射する放射ステップと、
 を含む、
 分散方法である。
The dispersion method of the present invention is a dispersion method in which a solution is dispersed using any of the dispersion devices described above.
(1) An injection step of injecting the solution into the container to a position where the first output end face is below the liquid level;
(2) a radiation step of radiating an ultrasonic wave having a wavelength λ from the ultrasonic transducer to the solution;
including,
Dispersion method.
 この分散方法は、上述したいずれかの分散装置を用いて対象溶液を分散するため、上述したいずれかの分散装置と同様の効果、例えば、上述した超音波振動子ユニットと同様の効果に加えて、第二出力端面から放射された超音波は、容器の底面によって反射され、互いに増幅することから、同じ出力で超音波を放射した際に、対象溶液に対してより強いエネルギーを与えることができるという効果を得ることができる。なお、本発明の分散方法において、上述したいずれかの分散装置の機能を実現するようなステップを追加しても良い。 Since this dispersion method disperses the target solution using any of the above-described dispersing devices, in addition to the same effects as any of the above-described dispersing devices, for example, the same effects as the above-described ultrasonic transducer unit. The ultrasonic waves radiated from the second output end face are reflected by the bottom surface of the container and amplify each other, so that when the ultrasonic waves are emitted with the same output, stronger energy can be given to the target solution. The effect that can be obtained. In the distribution method of the present invention, a step for realizing the function of any of the above-described distribution apparatuses may be added.
図1は、分散装置20の構成の概略を示す模式図である。FIG. 1 is a schematic diagram showing an outline of the configuration of the dispersion apparatus 20. 図2は、超音波振動子ユニット30の構成の概略を示す模式図である。FIG. 2 is a schematic diagram showing an outline of the configuration of the ultrasonic transducer unit 30. 図3は、超音波放射部32の形状の違いによる超音波の違いを模式的に示した模式図であり、図3Aは超音波放射部32から放射された超音波の様子を,図3Bは平坦な超音波放射部から放射された超音波の様子を、それぞれ示したものである。FIG. 3 is a schematic diagram schematically showing the difference in the ultrasonic wave due to the difference in the shape of the ultrasonic radiation unit 32. FIG. 3A shows the state of the ultrasonic wave emitted from the ultrasonic radiation unit 32, and FIG. The state of the ultrasonic wave radiated | emitted from the flat ultrasonic radiation part is each shown. 図4は、超音波振動子ユニット30の取り付け位置を説明するための模式図である。FIG. 4 is a schematic diagram for explaining the attachment position of the ultrasonic transducer unit 30. 図5は、超音波放射部32の形状の違いによる超音波の違いを示した写真であり、図5Aは超音波放射部32と同様の形状を有する超音波放射部から放射された超音波の様子を、図5Bは平坦な超音波放射部から放射された超音波の様子を、それぞれ示したものである。FIG. 5 is a photograph showing the difference in the ultrasonic wave due to the difference in the shape of the ultrasonic radiation unit 32, and FIG. 5A shows the ultrasonic wave emitted from the ultrasonic radiation unit having the same shape as the ultrasonic radiation unit 32. FIG. 5B shows the state of the ultrasonic waves radiated from the flat ultrasonic radiation portion.
 ここで、図1及び図2を用いて、本発明の実施の形態の一例である分散装置20の構成を詳しく説明する。ここで、図1は、本発明の実施の形態の一例である分散装置20の構成の概略を示す模式図であり、図2は、超音波振動子ユニット30の構成の概略を示す模式図である。なお、分散装置20の使用方法の一例を説明することにより、本発明の分散装置を用いた分散方法の一例も明らかにしている。 Here, with reference to FIG. 1 and FIG. 2, the configuration of the dispersion apparatus 20 which is an example of the embodiment of the present invention will be described in detail. Here, FIG. 1 is a schematic diagram showing an outline of a configuration of a dispersion apparatus 20 which is an example of an embodiment of the present invention, and FIG. 2 is a schematic diagram showing an outline of a configuration of an ultrasonic transducer unit 30. is there. Note that an example of a method of using the dispersion apparatus 20 will also clarify an example of a dispersion method using the dispersion apparatus of the present invention.
 分散装置20は、図1に示すように、本体部21と、本体部21に設けられ対象溶液24を保持する容器22と、対象溶液24に超音波を放射して懸濁液を分散する超音波振動子ユニット30と、容器22の上部に位置し、超音波振動子ユニット30を下方側から保持する保持部26と、を備えている。この分散装置20において、超音波振動子ユニット30が容器22に保持された対象溶液24の中に超音波振動子ユニット30の一端側が位置決めされているため、超音波振動子ユニット30から放出された超音波により、対象溶液24を分散することができる。 As shown in FIG. 1, the dispersing device 20 includes a main body 21, a container 22 provided in the main body 21 for holding the target solution 24, and an ultrasonic wave that radiates ultrasonic waves to the target solution 24 to disperse the suspension. The ultrasonic transducer unit 30 and a holding unit 26 that is located above the container 22 and holds the ultrasonic transducer unit 30 from below are provided. In this dispersion apparatus 20, the ultrasonic transducer unit 30 is released from the ultrasonic transducer unit 30 because one end side of the ultrasonic transducer unit 30 is positioned in the target solution 24 held in the container 22. The target solution 24 can be dispersed by ultrasonic waves.
 超音波振動子ユニット30は、図2に示すように、ただ一つの超音波振動子32と超音波放射部材34とが連接して設けられたチタン合金製あるいはチタン合金とセラミックからなる部材であり、超音波振動子32で発生した波長λの超音波が連接する超音波放射部材34に伝えられ、超音波放射部材34から放出される。また、超音波振動子32と超音波放射部34との間の位置には、側面から側方に突出する係止部33が設けられている。 As shown in FIG. 2, the ultrasonic transducer unit 30 is a member made of a titanium alloy or made of a titanium alloy and a ceramic in which only one ultrasonic transducer 32 and an ultrasonic radiation member 34 are connected to each other. Then, the ultrasonic wave having the wavelength λ generated by the ultrasonic transducer 32 is transmitted to the connected ultrasonic radiation member 34 and emitted from the ultrasonic radiation member 34. Further, a locking portion 33 that protrudes laterally from the side surface is provided at a position between the ultrasonic transducer 32 and the ultrasonic radiation portion 34.
 超音波振動子32は、波長λの超音波を発生する公知の超音波振動子(ギンセン社製、品番:GSD600AT)であり、超音波振動子32で発生した超音波は、超音波振動子32に連接する超音波放射部材34に伝えられる。 The ultrasonic transducer 32 is a known ultrasonic transducer (product number: GSD600AT, manufactured by Ginsen) that generates an ultrasonic wave having a wavelength λ. The ultrasonic wave generated by the ultrasonic transducer 32 is the ultrasonic transducer 32. Is transmitted to the ultrasonic radiation member 34 connected to.
 超音波放射部材34は、チタン合金(大同特殊鋼株式会社製、ATSMB348-00-GR5)であり、図2Aに示すように、略円柱形状の第一放射部36と第一放射部36よりも半径の短い略円柱形状の第二放射部38とを有し、二段の段差を有する2つの略円筒形状の部材が組み合わさったような形状を有している。具体的には、略円筒形状の第一放射部36の一端側の中央部が超音波の放射方向に延出されて第二放射部38が形成されており、このとき、第一放射部36の一端側に設けられた第一出力端面36aと第二放射部38の一端側に設けられた第二出力端面38aとが略平行となるように延出されている。こうすることにより、超音波振動子32から第一出力端面36a及び第二出力端面38aまでの距離が異なるため、超音波が第一出力端面36aから放出される場合と第二出力端面38aから放出される場合とで位相差が生じることになる。言い換えると、一つの超音波振動子32から発生した超音波を位相差を有する状態で放射することができる。 The ultrasonic radiating member 34 is a titanium alloy (ATSMB348-00-GR5, manufactured by Daido Steel Co., Ltd.), and has a substantially cylindrical first radiating portion 36 and a first radiating portion 36 as shown in FIG. 2A. The second radiating portion 38 has a substantially cylindrical shape with a short radius, and has a shape such that two substantially cylindrical members having two steps are combined. Specifically, a central portion on one end side of the substantially cylindrical first radiating portion 36 is extended in the radiation direction of ultrasonic waves to form a second radiating portion 38, and at this time, the first radiating portion 36 is formed. The first output end face 36a provided on one end side of the second output end face 38a and the second output end face 38a provided on one end side of the second radiating portion 38 are extended so as to be substantially parallel. By doing so, since the distance from the ultrasonic transducer 32 to the first output end face 36a and the second output end face 38a is different, ultrasonic waves are emitted from the first output end face 36a and from the second output end face 38a. There will be a phase difference between the two cases. In other words, the ultrasonic waves generated from one ultrasonic transducer 32 can be emitted in a state having a phase difference.
 ここで、第一出力端面36aと第二出力端面38aとの関係について、更に詳しく説明する。第一出力端面36aと第二出力端面38aは、いずれも外径が略円形であって、第一出力端面36aの中心と第二出力端面38aの中心は、超音波放射部材34の中心軸上に位置する。このため、第二出力端面38a側から超音波放射部材34を視認すると、図2Bに示すように、第一出力端面36aの中心に第二出力端面38aが重なっているように見える。このため、第一出力端面36aから放射された超音波と第二出力端面38aから放射された超音波との位相差により生じた垂直方向の振動が、超音波放射部材34の周囲に均一に広がることになり、超音波放射部材34の周囲を均一に分散することができる。加えて、図2Bに示すように、略円形の第二出力端面38aの中心が第一出力端面36aの中心に重なるように配置されているため、第二出力端面38aと第一出力端面36aとの境界線を長くすることができる。言い換えると、第一出力端面36aから照射された超音波と第二出力端面38aから照射された超音波とが隣接する隣接領域を広くすることができる。このため、第二出力端面38aの形状が他の形状である場合と比較して、分散効率や分散仕事効率をより高めることができる。 Here, the relationship between the first output end face 36a and the second output end face 38a will be described in more detail. The first output end surface 36 a and the second output end surface 38 a are both substantially circular in outer diameter, and the center of the first output end surface 36 a and the center of the second output end surface 38 a are on the central axis of the ultrasonic radiation member 34. Located in. For this reason, when the ultrasonic radiation member 34 is visually recognized from the second output end face 38a side, the second output end face 38a appears to overlap the center of the first output end face 36a as shown in FIG. 2B. For this reason, the vertical vibration generated by the phase difference between the ultrasonic wave radiated from the first output end face 36 a and the ultrasonic wave radiated from the second output end face 38 a spreads uniformly around the ultrasonic radiation member 34. As a result, the periphery of the ultrasonic radiation member 34 can be uniformly dispersed. In addition, as shown in FIG. 2B, since the center of the substantially circular second output end face 38a is arranged so as to overlap the center of the first output end face 36a, the second output end face 38a and the first output end face 36a The boundary line can be lengthened. In other words, the adjacent region where the ultrasonic wave irradiated from the first output end face 36a and the ultrasonic wave irradiated from the second output end face 38a are adjacent to each other can be widened. For this reason, compared with the case where the shape of the 2nd output end surface 38a is another shape, a dispersion | distribution efficiency and a dispersion | distribution work efficiency can be improved more.
 次に、第一出力端面36aと第二出力端面38aとの距離(図2A中のaに相当する長さ)の関係について、詳しく説明する。第一出力端面36aと第二出力端面38aとの距離は、超音波振動子32で発生する超音波の4半分波長(λ/4)であることが好ましい。こうすることにより、第一出力端面36aから放射された超音波と第二出力端面38aから放射された超音波との位相差が90°(π/2)ずれることにより、超音波間の圧力差を最大にすることができ、超音波の波長に対する第一出力端面36aと第二出力端面38aとの距離の差が4半分波長(λ/4)でない場合と比較して、効率よく垂直方向への振動を発生させ、分散効率や分散仕事効率をより高めることができる。 Next, the relationship between the distance between the first output end face 36a and the second output end face 38a (the length corresponding to a in FIG. 2A) will be described in detail. The distance between the first output end face 36a and the second output end face 38a is preferably a quarter wavelength (λ / 4) of the ultrasonic wave generated by the ultrasonic transducer 32. By doing this, the phase difference between the ultrasonic wave radiated from the first output end face 36a and the ultrasonic wave radiated from the second output end face 38a is shifted by 90 ° (π / 2), thereby causing a pressure difference between the ultrasonic waves. And the difference in the distance between the first output end face 36a and the second output end face 38a with respect to the wavelength of the ultrasonic wave is not a quarter wavelength (λ / 4) efficiently in the vertical direction. Can be generated, and the dispersion efficiency and work efficiency can be further increased.
 続いて、第一出力端面36aの面積と第二出力端面38aの面積との関係について、更に詳しく説明する。第一出力端面36aと第二出力端面38aとの面積比は、1:1の面積比である。こうすることにより、同一の超音波振動子から放出された超音波を効率良く放出し、優れた分散性能を得ることができる。 Subsequently, the relationship between the area of the first output end face 36a and the area of the second output end face 38a will be described in more detail. The area ratio between the first output end face 36a and the second output end face 38a is an area ratio of 1: 1. By so doing, it is possible to efficiently emit ultrasonic waves emitted from the same ultrasonic transducer and obtain excellent dispersion performance.
 ここで、この超音波振動子ユニット30から放射された超音波の様子について、従来型の超音波振動子ユニット10(超音波放射部に段差を有しない超音波振動子ユニット)との比較を図3に模式的に示す。図3は、超音波振動子ユニットから放射された超音波を模式的に示した模式図であり、図3Aは、超音波振動子ユニット30から放射された超音波の様子を、図3Bは、従来型の平坦な(段差を有しない)超音波放射部12を有する超音波振動子ユニット10から放射された超音波の様子を、それぞれ模式的に示したものであり、図3中の点線は放出された超音波を模式的に示したものであり、この点線が密に描かれている部分は超音波高圧域を、粗に描かれている部分は超音波低圧域を、それぞれ示している。なお、超音波振動子ユニット10は、第二放射部38を有しないこと、言い換えると、超音波放射部12の超音波放射面が平坦であること以外は超音波振動子ユニット30と同様であるため、同様の部材については同様の番号を付して、説明を省略する。 Here, the state of the ultrasonic wave radiated from the ultrasonic transducer unit 30 is compared with the conventional ultrasonic transducer unit 10 (the ultrasonic transducer unit having no step in the ultrasonic radiation unit). This is schematically shown in FIG. FIG. 3 is a schematic diagram schematically showing the ultrasonic waves radiated from the ultrasonic transducer unit. FIG. 3A shows the state of the ultrasonic waves radiated from the ultrasonic transducer unit 30, and FIG. The state of the ultrasonic wave radiated from the ultrasonic transducer unit 10 having the conventional flat (without step) ultrasonic radiation unit 12 is schematically shown, and the dotted line in FIG. The emitted ultrasonic wave is schematically shown. The portion where the dotted line is drawn densely indicates the ultrasonic high-pressure region, and the portion drawn coarsely indicates the ultrasonic low-pressure region. . Note that the ultrasonic transducer unit 10 is the same as the ultrasonic transducer unit 30 except that it does not have the second radiating portion 38, in other words, the ultrasonic radiating surface of the ultrasonic radiating portion 12 is flat. Therefore, the same number is attached | subjected about the same member, and description is abbreviate | omitted.
 超音波振動子ユニット30から放射された超音波は、図3Aに示すように、超音波振動子ユニット30から超音波が照射されると、第一出力端面36aと第二出力端面38aとの距離が4半分波長(λ/4)であるため、第一出力端面36aの正面に放射される超音波と第二出力端面38aの正面に放射される超音波との位相差が90°(π/2)ずれることになる。このため、第一出力端面36aと第二出力端面38aとの境界位置で垂直方向(図3A中の左右方向)に振動が生じ、第一出力端面36a及び第二出力端面38aの正面方向(図3A中の下方向)だけでなく、容器22の全体に超音波を放射することができる。一方で、超音波放射部34に段差を有しない超音波振動子ユニットを用いた場合には、図3Bに示すように、このような効果は得られない。このことからも、超音波放射部34に段差を設けることにより、段差を有しない場合と比較して、分散効率や分散仕事効率をより高められることが分かる。 As shown in FIG. 3A, when the ultrasonic wave radiated from the ultrasonic transducer unit 30 is irradiated from the ultrasonic transducer unit 30, the distance between the first output end surface 36a and the second output end surface 38a. Is a quarter wavelength (λ / 4), the phase difference between the ultrasonic wave radiated in front of the first output end face 36a and the ultrasonic wave radiated in front of the second output end face 38a is 90 ° (π / 2) It will shift. For this reason, vibration occurs in the vertical direction (left-right direction in FIG. 3A) at the boundary position between the first output end surface 36a and the second output end surface 38a, and the front direction of the first output end surface 36a and the second output end surface 38a (see FIG. The ultrasonic waves can be radiated not only in the downward direction in 3A but also the entire container 22. On the other hand, when an ultrasonic transducer unit having no step is used for the ultrasonic radiation portion 34, such an effect cannot be obtained as shown in FIG. 3B. From this, it can be seen that the provision of a step in the ultrasonic radiation portion 34 can further increase the dispersion efficiency and the distributed work efficiency as compared with the case where there is no step.
 容器22は、図1に示すように、円筒形状の容器(例えば、ステンレス製の容器)である。なお、容器22はこれに限定されるものではなく、円筒形状で対象溶液24を保持可能な容器であれば、公知の種々の容器を使用することが可能である。例えば、金属製又はプラスチック製の容器であってもよいし、ガラス製の容器やビーカーであっても良い。 The container 22 is a cylindrical container (for example, a stainless steel container) as shown in FIG. The container 22 is not limited to this, and various known containers can be used as long as they are cylindrical and can hold the target solution 24. For example, a metal or plastic container, a glass container or a beaker may be used.
 保持部26は、容器22の壁面の上部に設けられた内側に突出する突出部であり、上面は水平に形成されている。この保持部26は、容器22の壁側から内側方向に均等の長さだけ突出しており、上面に係止部33を載置すると、超音波振動子ユニット30を容器22の中央部(容器22の側面から超音波放射部34までの距離が略等距離となる位置)に位置決めすることができる。 The holding part 26 is a protruding part that protrudes inwardly provided at the upper part of the wall surface of the container 22, and the upper surface is formed horizontally. The holding portion 26 protrudes by an equal length inward from the wall side of the container 22, and when the locking portion 33 is placed on the upper surface, the ultrasonic transducer unit 30 is placed in the central portion of the container 22 (container 22. Can be positioned at a position where the distance from the side surface to the ultrasonic radiation portion 34 is substantially equal.
 ここで、超音波振動子ユニット30の固定位置と容器22の大きさの関係について、図4を用いて詳しく説明する。図4は、超音波振動子ユニット30の固定位置を説明するための説明図であり、図4は、対象溶液24中に保持された超音波振動子ユニット30を側面から示した模式図である。 Here, the relationship between the fixed position of the ultrasonic transducer unit 30 and the size of the container 22 will be described in detail with reference to FIG. FIG. 4 is an explanatory diagram for explaining a fixing position of the ultrasonic transducer unit 30, and FIG. 4 is a schematic view showing the ultrasonic transducer unit 30 held in the target solution 24 from the side. .
 超音波振動子ユニット30は、図4に示すように、容器22の底面から第二出力端面38aまでの距離(図4中のb)が、超音波振動子32から放出される超音波の振動数(λ/2)の整数倍となる距離となる位置に固定されている。このため、第二出力端面38aから放射された超音波が容器22の底面で反射した場合には、互いに干渉し、容器22に保持された対象溶液24に対して高い分散効果を有する。 As shown in FIG. 4, the ultrasonic transducer unit 30 has a distance (b in FIG. 4) from the bottom surface of the container 22 to the second output end surface 38a. The position is fixed at a distance that is an integral multiple of the number (λ / 2). For this reason, when the ultrasonic waves radiated from the second output end surface 38 a are reflected from the bottom surface of the container 22, they interfere with each other and have a high dispersion effect on the target solution 24 held in the container 22.
 また、超音波振動子ユニット30は、図4に示すように、容器の側面から第二放射部38の側面38bまでの距離(図4中c)が、超音波振動子32から放出される超音波の振動する2半分波長(λ/2)の整数倍となる距離に固定されている。このため、第二放射部38の側面38bから放射された超音波が容器22の側面で反射した場合には、互いに干渉し、容器22に保持された対象溶液24に対して高い分散効果を有する。 In addition, as shown in FIG. 4, the ultrasonic transducer unit 30 has a distance (c in FIG. 4) from the side surface of the container to the side surface 38 b of the second radiating unit 38 that is emitted from the ultrasonic transducer 32. The distance is fixed to an integral multiple of the half wavelength (λ / 2) at which the sound wave vibrates. For this reason, when the ultrasonic waves radiated from the side surface 38 b of the second radiating portion 38 are reflected by the side surface of the container 22, they interfere with each other and have a high dispersion effect on the target solution 24 held in the container 22. .
 最後に、この分散装置20を用いて対象物を液体中に分散する分散方法について説明する。この分散装置20を用いて分散する際には、まず、対象物を液体中に懸濁して、対象溶液24を生成する。次に、この対象溶液24を容器22で保持する。このとき、対象溶液24の液面は、超音波放射部材34よりも上方(第一出力端面36aが完全に液中に位置する位置)となるように、対象溶液24を保持する。この状態で、超音波振動子32で超音波を発生させ、超音波放射部材34から超音波を放射する。 Finally, a dispersion method for dispersing an object in a liquid using the dispersion apparatus 20 will be described. When dispersing using the dispersing device 20, first, an object is suspended in a liquid to generate an object solution 24. Next, the target solution 24 is held in the container 22. At this time, the target solution 24 is held such that the liquid level of the target solution 24 is above the ultrasonic radiation member 34 (the position where the first output end face 36a is completely located in the liquid). In this state, an ultrasonic wave is generated by the ultrasonic vibrator 32 and the ultrasonic wave is emitted from the ultrasonic radiation member 34.
 以上詳述した実施の形態の分散装置20によれば、一つの超音波振動子32によって発生した波長λの超音波が超音波放射部材34に伝わり、第一出力端面36a及び第二出力端面38aから放射される際、第一出力端面36a及び第二出力端面38aから超音波振動子32までの距離は4半分波長(λ/4)だけ異なるため、第一出力端面36aから放射される超音波と第二出力端面38aから放射される超音波とでは、90°(π/2)の位相差が生じる。こうすることにより、同一出力で超音波を放射した場合に、超音波間の音圧の差を最大にすることができ、同一位相の超音波を放出する場合と比較して、高い分散効率を有することができる。 According to the dispersion device 20 of the embodiment described in detail above, the ultrasonic wave having the wavelength λ generated by one ultrasonic transducer 32 is transmitted to the ultrasonic radiation member 34, and the first output end face 36a and the second output end face 38a. Since the distance from the first output end face 36a and the second output end face 38a to the ultrasonic transducer 32 differs by a quarter wavelength (λ / 4), the ultrasonic waves emitted from the first output end face 36a And the ultrasonic wave radiated from the second output end face 38a has a phase difference of 90 ° (π / 2). In this way, when ultrasonic waves are radiated with the same output, the difference in sound pressure between the ultrasonic waves can be maximized, and a higher dispersion efficiency can be achieved compared to the case of emitting ultrasonic waves with the same phase. Can have.
 また、第二出力端面38aは略円形であり、第一出力端面36aの外周も略円形であるため、第一放射部36及び第二放射部38の側面側から放射状に均等に超音波が放射することができる。こうすることにより、対象溶液24の全体を均一に分散することができる。 Further, since the second output end face 38a is substantially circular and the outer periphery of the first output end face 36a is also substantially circular, ultrasonic waves are radiated uniformly and radially from the side surfaces of the first radiating portion 36 and the second radiating portion 38. can do. By doing so, the entire target solution 24 can be uniformly dispersed.
 更に、第一出力端面36aの面積と、第二出力端面38aの面積と、を略等しくすることで放射電力を等しく保ち、優れた分散性能を有する。 Furthermore, by making the area of the first output end face 36a and the area of the second output end face 38a substantially equal, the radiated power can be kept equal and excellent dispersion performance can be obtained.
 更にまた、超音波振動子ユニット30は、容器22の底面から第二出力端面38aの距離が超音波振動子32で発生する超音波の2半分波長(λ/2)の整数倍となる位置に超音波振動子ユニット30が固定されているため、第二出力端面38aから放射された超音波が容器22の底面によって反射された際に互いに干渉し、より高い分散性を有する。 Furthermore, the ultrasonic transducer unit 30 is located at a position where the distance from the bottom surface of the container 22 to the second output end surface 38a is an integral multiple of the half wavelength (λ / 2) of the ultrasonic wave generated by the ultrasonic transducer 32. Since the ultrasonic transducer unit 30 is fixed, the ultrasonic waves radiated from the second output end face 38a interfere with each other when reflected by the bottom surface of the container 22, and have higher dispersibility.
 そして、超音波振動子ユニット30は、容器22の側面から第二放射部38の側面38bまでの距離が超音波振動子32で発生する超音波の2半分波長(λ/2)の整数倍となる位置に超音波振動子ユニット30が固定されているため、第二放射部38の側面38bから放射された超音波が容器22の底面によって互いに干渉し、より高い分散性を有する。 In the ultrasonic transducer unit 30, the distance from the side surface of the container 22 to the side surface 38 b of the second radiating unit 38 is an integral multiple of a half wavelength (λ / 2) of the ultrasonic wave generated by the ultrasonic transducer 32. Since the ultrasonic transducer unit 30 is fixed at a certain position, the ultrasonic waves radiated from the side surface 38b of the second radiating portion 38 interfere with each other by the bottom surface of the container 22 and have higher dispersibility.
 (実施例1)
 アナターゼ型酸化チタン(石原産業株式会社製、品番:ST-01)4モル(約319.4g)を約2,875mLの水に懸濁し、10重量%の酸化チタン懸濁液を得た。この酸化チタン懸濁液を高さ145mm, 直径104mmのステンレス製容器(株式会社ギンセン社製)に適量入れ、容器の底面の中心上の位置であり、底面から高さ38.46mmの位置に超音波振動子の先端面が位置するように超音波振動子を固定した。この超音波振動子の第2出力端面の直径は25.45mm、第1出力端面の直径は36.0mmであり、当該容器の底面の中心上に超音波振動子を固定した際の超音波振動子の第1出力端面の側面から容器の内側側面までの距離は19.23mmとなる位置に固定される。この状態で、振幅が30μm、周波数19.5Hz, 波長が76.92mmの超音波を28分間放射した。この状態において、容器の底面から超音波振動子の第2出力端面の距離である38.46mmは、波長76.93mmの2半分波長(λ/2)であり、超音波振動子の第2出力端面の側面から容器の内側側面までの距離である19.23mmは、波長76.93mmの4半分波長(λ/4)である。このときの電力は400W、消費電力は0.187kWhであった。
(Example 1)
4 mol (about 319.4 g) of anatase type titanium oxide (Ishihara Sangyo Co., Ltd., product number: ST-01) was suspended in about 2,875 mL of water to obtain a 10 wt% titanium oxide suspension. An appropriate amount of this titanium oxide suspension is put into a stainless steel container (made by Ginsen Co., Ltd.) having a height of 145 mm and a diameter of 104 mm, and the position is above the center of the bottom surface of the container and exceeds the height of 38.46 mm from the bottom surface. The ultrasonic transducer was fixed so that the tip surface of the ultrasonic transducer was located. The diameter of the second output end face of this ultrasonic vibrator is 25.45 mm, the diameter of the first output end face is 36.0 mm, and the ultrasonic vibration when the ultrasonic vibrator is fixed on the center of the bottom surface of the container. The distance from the side surface of the first output end surface of the child to the inner side surface of the container is fixed at a position where the distance is 19.23 mm. In this state, an ultrasonic wave having an amplitude of 30 μm, a frequency of 19.5 Hz, and a wavelength of 76.92 mm was emitted for 28 minutes. In this state, 38.46 mm, which is the distance from the bottom surface of the container to the second output end face of the ultrasonic transducer, is a half wavelength (λ / 2) of the wavelength 76.93 mm, and the second output of the ultrasonic transducer. 19.23 mm, which is the distance from the side surface of the end surface to the inner side surface of the container, is a quarter wavelength (λ / 4) of a wavelength of 76.93 mm. At this time, the power was 400 W and the power consumption was 0.187 kWh.
 超音波放射後の懸濁液の平均粒径を濃厚系粒径アナライザー(大塚電子株式会社製、品番:FPAR-1000)で測定したところ、2,000nmであった。 The average particle size of the suspension after ultrasonic irradiation was measured with a concentrated particle size analyzer (manufactured by Otsuka Electronics Co., Ltd., product number: FPAR-1000) and found to be 2,000 nm.
 (比較例1)
 アナターゼ型酸化チタン(石原産業株式会社製、品番:ST-01)4モル(約319.4g)を約2,875mLの水に懸濁し、10重量%の酸化チタン懸濁液を得た。この酸化チタン懸濁液を超音波の放射時間を100分間としたこと以外は実施例1と同様にして、超音波を放射した。このときの電力は200W、消費電力は0.333kWhであった。
(Comparative Example 1)
4 mol (about 319.4 g) of anatase type titanium oxide (Ishihara Sangyo Co., Ltd., product number: ST-01) was suspended in about 2,875 mL of water to obtain a 10 wt% titanium oxide suspension. The titanium oxide suspension was irradiated with ultrasonic waves in the same manner as in Example 1 except that the ultrasonic wave emission time was 100 minutes. The power at this time was 200 W and the power consumption was 0.333 kWh.
 超音波放射後の懸濁液の平均粒径を濃厚系粒径アナライザー(大塚電子製、品番FPAR-1000)で測定したところ、2,000nmであった。 The average particle size of the suspension after ultrasonic irradiation was measured with a concentrated particle size analyzer (manufactured by Otsuka Electronics, product number FPAR-1000), and found to be 2,000 nm.
 実施例1と比較例1との結果を比較すると、アナターゼ型酸化チタンを同程度の平均粒系となるまで分散するために必要な消費電力は、実施例1が比較例1の56%であることが分かる。このことから、実施例1は、比較例1と比較して、1.8倍の電力効率を有していると言える。さらに、処理に要する時間は、実施例1が比較例1の28%であることが分かる。このことから、実施例1は、比較例1と比較して、3.6倍の時間効率を有していると言える。 Comparing the results of Example 1 and Comparative Example 1, the power consumption required to disperse the anatase-type titanium oxide until the average particle system of the same degree is 56% of that of Comparative Example 1 in Example 1. I understand that. From this, it can be said that Example 1 has 1.8 times the power efficiency as compared with Comparative Example 1. Furthermore, it can be seen that the time required for the treatment is 28% in Example 1 compared to Comparative Example 1. From this, it can be said that Example 1 has 3.6 times the time efficiency as compared with Comparative Example 1.
 (実施例2)
 アナターゼ型酸化チタン(石原産業株式会社製、品番:ST-01)4モル(約319.4g)を約2,875mLの水に懸濁し、10重量%の酸化チタン懸濁液を得た。この酸化チタン懸濁液を超音波の放射時間を48分間としたこと以外は実施例1と同様にして、超音波を放射した。このときの電力は400W、消費電力は0.320kWhであった。
(Example 2)
4 mol (about 319.4 g) of anatase type titanium oxide (Ishihara Sangyo Co., Ltd., product number: ST-01) was suspended in about 2,875 mL of water to obtain a 10 wt% titanium oxide suspension. The titanium oxide suspension was irradiated with ultrasonic waves in the same manner as in Example 1 except that the ultrasonic wave was emitted for 48 minutes. The power at this time was 400 W and the power consumption was 0.320 kWh.
 超音波放射後の懸濁液の平均粒径を濃厚系粒径アナライザー(大塚電子株式会社製、品番FPAR-1000)で測定したところ、5,000nmであった。 The average particle size of the suspension after ultrasonic irradiation was measured with a concentrated particle size analyzer (manufactured by Otsuka Electronics Co., Ltd., product number FPAR-1000) and found to be 5,000 nm.
(比較例2)
 アナターゼ型酸化チタン(石原産業株式会社製、品番:ST-01)4モル(約319.4g)を約2,875mLの水に懸濁し、10重量%の酸化チタン懸濁液を得た。この酸化チタン懸濁液を超音波の放射時間を156分間としたこと以外は実施例1と同様にして、超音波を放射した。このときの電力は200W、消費電力は0.520kWhであった。
(Comparative Example 2)
4 mol (about 319.4 g) of anatase type titanium oxide (Ishihara Sangyo Co., Ltd., product number: ST-01) was suspended in about 2,875 mL of water to obtain a 10 wt% titanium oxide suspension. The titanium oxide suspension was irradiated with ultrasonic waves in the same manner as in Example 1 except that the ultrasonic wave was emitted for 156 minutes. The power at this time was 200 W, and the power consumption was 0.520 kWh.
 超音波放射後の懸濁液の平均粒径を濃厚系粒径アナライザー(大塚電子製、品番FPAR-1000)で測定したところ、5,000nmであった。 The average particle size of the suspension after ultrasonic irradiation was measured with a concentrated particle size analyzer (manufactured by Otsuka Electronics Co., Ltd., product number FPAR-1000) and found to be 5,000 nm.
 実施例2と比較例2との結果を比較すると、アナターゼ型酸化チタンを同程度の平均粒系となるまで分散するために必要な電力量は、実施例1が比較例1の61.5%であることが分かる。このことから、実施例2は、比較例2と比較して、1.63倍の電力効率を有していると言える。さらに、処理に要する時間は、実施例1が比較例1の31%であることが分かる。このことから、実施例1は、比較例1と比較して、3.25倍の時間効率を有していると言える。 Comparing the results of Example 2 and Comparative Example 2, the amount of electric power required to disperse the anatase-type titanium oxide until the average particle system of the same level is obtained. Example 1 is 61.5% of Comparative Example 1. It turns out that it is. From this, it can be said that Example 2 has 1.63 times the power efficiency as compared with Comparative Example 2. Furthermore, it can be seen that the time required for the processing is 31% in Example 1 compared to Comparative Example 1. From this, it can be said that Example 1 has a time efficiency of 3.25 times that of Comparative Example 1.
 (実施例3)
 深さが150mm、底面の内径が105mmのガラス製ビーカー(柴田科学株式会社製)に水を適量入れ、振幅が30μm、周波数19.5kHz, 波長が76.92mmの超音波を放射し、この状態を写真撮影した。この写真を図5Aに示す。
(Example 3)
An appropriate amount of water is put into a glass beaker (made by Shibata Kagaku Co., Ltd.) having a depth of 150 mm and an inner diameter of the bottom surface of 105 mm, and an ultrasonic wave having an amplitude of 30 μm, a frequency of 19.5 kHz, and a wavelength of 76.92 mm is emitted. Was photographed. This photograph is shown in FIG. 5A.
 (比較例3)
 超音波放射部の超音波放射面が平坦な超音波振動子ユニットを用いたこと以外は実施例3と同様にして写真撮影を行った。この写真を図5Bに示す。
(Comparative Example 3)
Photographing was performed in the same manner as in Example 3 except that an ultrasonic transducer unit having a flat ultrasonic radiation surface of the ultrasonic radiation unit was used. This photograph is shown in FIG. 5B.
 実施例3で撮影した写真と比較例3で撮影した写真とを比較すると、図5に示すように、超音波放射部に段差を有しない図5Bと比較して、超音波放射部に段差を有する図5Aの写真には、図5Bよりも太い渦状のうねりが見られ、超音波放射面の正面方向だけで無く、広い範囲で液体が拡散される様子が見られる。このことから、超音波放射部に段差を設けることにより、段差を有しない場合と比較して、分散効率や分散仕事率をより高めることができると言える。 When the photograph taken in Example 3 and the photograph taken in Comparative Example 3 are compared, as shown in FIG. 5, the ultrasonic radiation portion has a step as compared with FIG. In the photograph shown in FIG. 5A, a swirl having a thicker shape than that in FIG. 5B is seen, and not only the front direction of the ultrasonic radiation surface but also the liquid is diffused over a wide range. From this, it can be said that by providing a step in the ultrasonic radiation portion, the dispersion efficiency and the dispersion power can be further increased as compared with the case where there is no step.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施の形態では、超音波振動子ユニット30の係止部33を保持部26の上面に載置することで超音波振動子ユニット30を位置決めするものとしたが、係止部33を固定してもよい。係止部33を固定する方法としては、例えば、挟持部材を用いて係止部33を挟持してもよいし、保持部26と係止部33とをビス等で固定しても良い。こうすれば、超音波振動子ユニット30が移動し、超音波放射部材34と容器22の底面又は側面との距離とが意図せず変わってしまうことを未然に防止することができる。 For example, in the above-described embodiment, the ultrasonic transducer unit 30 is positioned by placing the locking portion 33 of the ultrasonic transducer unit 30 on the upper surface of the holding portion 26. May be fixed. As a method of fixing the locking part 33, for example, the locking part 33 may be clamped using a clamping member, or the holding part 26 and the locking part 33 may be fixed with a screw or the like. By doing so, it is possible to prevent the ultrasonic transducer unit 30 from moving and unintentionally changing the distance between the ultrasonic radiation member 34 and the bottom surface or side surface of the container 22.
 上述した実施の形態では、容器22は円筒形状の容器であるものとしたが、容器22の底面は上下に移動可能であってもよい。こうすれば、超音波振動子ユニット30を固定した状態で、第二出力端面38aと容器22の底面との距離を変更することができる。 In the embodiment described above, the container 22 is a cylindrical container, but the bottom surface of the container 22 may be movable up and down. In this way, the distance between the second output end surface 38a and the bottom surface of the container 22 can be changed while the ultrasonic transducer unit 30 is fixed.
 上述した実施の形態では、第一出力端面36aと第二出力端面38aの面積比が1:1であるものとしたが、第一出力端面38aの面積は第二出力端面の面積の0.5倍~2.0倍が好ましく、0.7倍~1.4倍がより好ましい。こうすることにより、優れた分散性能が得られる。 In the embodiment described above, the area ratio between the first output end face 36a and the second output end face 38a is 1: 1, but the area of the first output end face 38a is 0.5 of the area of the second output end face. Double to 2.0 times are preferable, and 0.7 to 1.4 times are more preferable. In this way, excellent dispersion performance can be obtained.
 上述した実施の形態で示すように、超音波を用いて対象溶液を分散させる分散装置用の超音波振動子として利用することができる。 As shown in the above-described embodiment, it can be used as an ultrasonic vibrator for a dispersing device that disperses a target solution using ultrasonic waves.
 10…従来型の超音波振動子ユニット、12…超音波放射部、20…分散装置、21…本体部、22…容器、24…対象溶液、26…保持部、30…超音波振動子ユニット、32…超音波振動子、33…係止部、34…超音波放射部材、36…第一放射部、36a…第一出力端面、38…第二放射部、38a…第二出力端面、38b…側面。 DESCRIPTION OF SYMBOLS 10 ... Conventional type ultrasonic transducer unit, 12 ... Ultrasonic radiation part, 20 ... Dispersing device, 21 ... Main body part, 22 ... Container, 24 ... Target solution, 26 ... Holding part, 30 ... Ultrasonic vibrator unit, 32 ... Ultrasonic vibrator, 33 ... Locking portion, 34 ... Ultrasonic radiation member, 36 ... First radiation portion, 36a ... First output end surface, 38 ... Second radiation portion, 38a ... Second output end surface, 38b ... side.

Claims (7)

  1.  波長λの超音波を発生させる超音波振動子と、前記超音波振動子に連接し、前記超音波振動子によって発生した超音波振動を出力する超音波放射部と、を備えた超音波振動子ユニットであって、
     前記超音波放射部は、第一出力端面を有する柱状の第一放射部と、前記第一出力端面から柱状に延出し、第二出力端面を有する第二放射部と、
     を備え、
     前記第一出力端面と前記第二出力端面とは、互いに平行で、かつ、4半分波長(λ/4)の整数倍の距離離れている、
     超音波振動子ユニット。
    An ultrasonic transducer comprising: an ultrasonic transducer that generates an ultrasonic wave having a wavelength λ; and an ultrasonic radiation unit that is connected to the ultrasonic transducer and outputs the ultrasonic vibration generated by the ultrasonic transducer. A unit,
    The ultrasonic radiation portion has a columnar first radiation portion having a first output end surface, a columnar first radiation portion extending from the first output end surface, and a second radiation portion having a second output end surface;
    With
    The first output end face and the second output end face are parallel to each other and separated by a distance that is an integral multiple of a quarter wavelength (λ / 4).
    Ultrasonic transducer unit.
  2.  前記第二出力端面は、略円形であり、
     前記第一出力端面の外径は、前記第二出力端面の外径と相似形である、
     請求項1に記載の超音波振動子ユニット。
    The second output end surface is substantially circular,
    The outer diameter of the first output end face is similar to the outer diameter of the second output end face.
    The ultrasonic transducer unit according to claim 1.
  3.  前記第一出力端面の面積は、前記第二出力端面の面積の0.5倍~2.0倍である、
     請求項1又は2に記載の超音波振動子ユニット
    The area of the first output end face is 0.5 to 2.0 times the area of the second output end face.
    The ultrasonic transducer unit according to claim 1 or 2.
  4.  前記第一出力端面の面積は、前記第二出力端面の面積の0.7倍~1.4倍である、
     請求項1~3のいずれか1項に記載の超音波振動子ユニット。
    The area of the first output end face is 0.7 to 1.4 times the area of the second output end face.
    The ultrasonic transducer unit according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載の超音波振動子ユニットと、
     円筒形の容器と、
     前記第二出力端面と前記容器の底面との距離が2半分波長(λ/2)の整数倍の距離となる位置に前記超音波振動子ユニットを保持する固定部材と、
     を備えた、
     分散装置。
    The ultrasonic transducer unit according to any one of claims 1 to 4,
    A cylindrical container;
    A fixing member that holds the ultrasonic transducer unit at a position where the distance between the second output end surface and the bottom surface of the container is a distance that is an integral multiple of a half wavelength (λ / 2);
    With
    Distributed device.
  6.  前記固定部材は、前記第二放射部の側面と前記容器の側面との距離が2半分波長(λ/2)の整数倍となる位置に前記超音波振動子ユニットを保持する、
     請求項5に記載の分散装置。
    The fixing member holds the ultrasonic transducer unit at a position where a distance between a side surface of the second radiating portion and a side surface of the container is an integral multiple of a half wavelength (λ / 2).
    The dispersion apparatus according to claim 5.
  7.  請求項5又は6に記載の分散装置を用いて溶液を分散する分散方法であって、
     (1)前記第一出力端面が液面下となる位置まで前記容器に溶液を注入する注入ステップと、
     (2)前記超音波振動子から波長λの超音波を前記溶液に放射する放射ステップと、
     を含む、
     分散方法。
     
    A dispersion method for dispersing a solution using the dispersion apparatus according to claim 5,
    (1) An injection step of injecting the solution into the container to a position where the first output end face is below the liquid level;
    (2) a radiation step of radiating an ultrasonic wave having a wavelength λ from the ultrasonic transducer to the solution;
    including,
    Distribution method.
PCT/JP2013/082615 2012-12-05 2013-12-04 Ultrasound vibrator unit, dispersion device having ultrasound vibrator unit, and dispersion method using dispersion device WO2014088038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551127A JP6209167B2 (en) 2012-12-05 2013-12-04 Ultrasonic transducer unit, dispersion device having ultrasonic transducer unit, and dispersion method using this dispersion device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012266631 2012-12-05
JP2012-266631 2012-12-05
JP2013-126593 2013-06-17
JP2013126593 2013-06-17

Publications (1)

Publication Number Publication Date
WO2014088038A1 true WO2014088038A1 (en) 2014-06-12

Family

ID=50883455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082615 WO2014088038A1 (en) 2012-12-05 2013-12-04 Ultrasound vibrator unit, dispersion device having ultrasound vibrator unit, and dispersion method using dispersion device

Country Status (2)

Country Link
JP (1) JP6209167B2 (en)
WO (1) WO2014088038A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104858122A (en) * 2015-04-15 2015-08-26 清华大学 Method and system for elastic wave mode separation
CN105749792A (en) * 2016-05-20 2016-07-13 昆明纳太科技有限公司 Ultrasonic dispersing device and ultrasonic dispersing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459032A (en) * 1990-06-21 1992-02-25 Nippon Steel Corp Ultrasonic emulsifier
JPH0910666A (en) * 1995-04-24 1997-01-14 Ricoh Co Ltd Method for mixing two or more kinds of resin raw liquids and its mixer
JP2001106538A (en) * 1999-08-31 2001-04-17 Samsung Electronics Co Ltd Device for ultrasonically dispersing silica sol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529313B2 (en) * 2001-03-27 2010-08-25 パナソニック電工株式会社 Ultrasonic generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459032A (en) * 1990-06-21 1992-02-25 Nippon Steel Corp Ultrasonic emulsifier
JPH0910666A (en) * 1995-04-24 1997-01-14 Ricoh Co Ltd Method for mixing two or more kinds of resin raw liquids and its mixer
JP2001106538A (en) * 1999-08-31 2001-04-17 Samsung Electronics Co Ltd Device for ultrasonically dispersing silica sol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104858122A (en) * 2015-04-15 2015-08-26 清华大学 Method and system for elastic wave mode separation
CN105749792A (en) * 2016-05-20 2016-07-13 昆明纳太科技有限公司 Ultrasonic dispersing device and ultrasonic dispersing method thereof

Also Published As

Publication number Publication date
JP6209167B2 (en) 2017-10-04
JPWO2014088038A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
EP0619104B1 (en) Ultrasonic irradiation apparatus
EP2524651B1 (en) Ultrasonic transducer
US9259594B2 (en) Apparatus and methods for deep tissue laser therapy
WO2016009788A1 (en) Ultrasonic vibrator for medical treatment
KR20170133000A (en) Dispersionizer for nano particle by using ultrasonic streaming and shockwave
WO2003012800A2 (en) High power ultrasound reactor for the production of nano-powder materials
Jiang et al. Ultrasonic sharp autofocusing with acoustic metasurface
JP6209167B2 (en) Ultrasonic transducer unit, dispersion device having ultrasonic transducer unit, and dispersion method using this dispersion device
US9024274B2 (en) Targets for generating ions and treatment apparatuses including the targets
WO2014047177A3 (en) Focusing electromagnetic radiation using ultrasonic modulation system
US20100010394A1 (en) Noninvasively low-frequency ultrasonic apparatus for the brain therapy
Yasuda et al. Efficient generation of cavitation bubbles in gel phantom by ultrasound exposure with negative-followed by positive-peak-pressure-emphasized waves
CN104271228A (en) Nanoparticle dispersion, nanoparticle-carrying powder, and processes for manufacturing same
Cui et al. Laser enhanced high-intensity focused ultrasound thrombolysis: an in vitro study
JP2014231047A (en) Electrostatic atomizer
JP2009165503A (en) Ultrasonic vibration device and beauty appliance
US10056221B2 (en) Apparatus for generating charged particles
JP2017523891A (en) A method and apparatus for enhancing the effects of alternating ultrasonic transmissions without cavitation.
Kim et al. Dispersion effect of nanoparticle according to ultrasound exposure using focused ultrasound field
JP2012066218A (en) Ultrasonic wave generator
CN205198706U (en) Millimeter wave therapy device
CN204485082U (en) A kind of portable wave therapeutic instrument
CN203694435U (en) Ultrasonic transmission device for interventional treatment
JP2011056428A (en) Apparatus for manufacturing metal-supported material and method of manufacturing metal-supported material
JP5531192B2 (en) Ultrasonic generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 23-10-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13860737

Country of ref document: EP

Kind code of ref document: A1