WO2014087999A1 - Mobile robot - Google Patents

Mobile robot Download PDF

Info

Publication number
WO2014087999A1
WO2014087999A1 PCT/JP2013/082472 JP2013082472W WO2014087999A1 WO 2014087999 A1 WO2014087999 A1 WO 2014087999A1 JP 2013082472 W JP2013082472 W JP 2013082472W WO 2014087999 A1 WO2014087999 A1 WO 2014087999A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile robot
wheel
rod
magnet
output shaft
Prior art date
Application number
PCT/JP2013/082472
Other languages
French (fr)
Japanese (ja)
Inventor
洋吾 高田
忠雄 川合
洋司 川上
Original Assignee
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学 filed Critical 公立大学法人大阪市立大学
Priority to JP2014551103A priority Critical patent/JP5846516B2/en
Publication of WO2014087999A1 publication Critical patent/WO2014087999A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/006Magnetic wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/60Industrial applications, e.g. pipe inspection vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/80Other vehicles not covered by groups B60Y2200/10 - B60Y2200/60

Definitions

  • the present invention relates to a mobile robot.
  • Non-Patent Document 1 proposes a bridge inspection robot. This robot is configured to inspect the bridge with an on-board camera while running while sandwiching the flange below the main girder of the bridge from both sides.
  • Non-Patent Document 2 discloses a robot equipped with an endless track and a permanent magnet. The robot is attracted to the bridge plate by the permanent magnet, and moves along the bridge plate by the endless track. It is configured. And the bridge is inspected with the installed camera.
  • Non-Patent Document 1 since the robot described in Non-Patent Document 1 travels with a flange in between, it cannot be used on a bridge without a flange. Further, although the robot described in Non-Patent Document 2 uses an endless track, it can move only on a horizontal plane because it is attracted to the bridge steel plate by a permanent magnet arranged on the bottom surface. Therefore, the bridge steel plate provided with a step cannot be used, and it is difficult to use it for an actual bridge inspection like the robot described in Non-Patent Document 1.
  • the currently proposed inspection robot has a problem in practical use and cannot be used depending on the shape of the bridge.
  • a problem is a problem that can occur in general robots that move on a target surface made of metal.
  • the present invention has been made to solve such a problem, and a mobile robot capable of reliably moving along the target surface regardless of the shape of the target surface made of metal.
  • the purpose is to provide.
  • the mobile robot according to the present invention is arranged on two sides of each casing, two or more casing sections arranged at intervals, an output shaft rotatably supported by each casing section, A wheel portion that is rotationally driven by each output shaft, at least one drive portion that rotationally drives the output shaft, a connection portion that connects the adjacent housing portions to each other, and at least a part of which is elastically deformable,
  • the wheel portion includes a base portion connected to the rotating shaft, a plurality of rod-like members projecting radially from the base portion, and a magnet attached to the tip of each rod-like member.
  • each wheel portion is composed of a plurality of rod-like members attached radially and a magnet attached to the tip portion thereof.
  • the mobile robot can be attracted to the target surface made of metal by the magnet. Since any of the magnets is always attracted to the target surface as the wheel portion rotates, it can be prevented that the mobile robot moves away from the target surface even if the mobile robot moves.
  • the rod-shaped members are arranged radially, for example, even when a step is provided on the target surface, the step enters between adjacent rod-shaped members, so that the step can be overcome. Therefore, even if the target surface is not flat but has a complicated uneven shape, the target surface can be moved while being attracted by the magnet, and can be reliably moved on the target surface. For this reason, if a camera, a sensor, or the like is mounted on this mobile robot, even a target surface that cannot be directly inspected by an operator can be inspected by the mobile robot.
  • each housing portion is not restricted by the operation of the adjacent housing, and the motion operation timing of the adjacent housing portion is not limited.
  • the connecting portion can absorb the shift, and smooth operation is possible. For example, the wheel portion rotates while any of the magnets is attracted to the target surface. Therefore, when the mobile robot moves forward, each housing portion moves forward while repeating forward movement and stoppage in small increments. At this time, the mobile robot moves forward as a whole if both of the adjacent front and rear casings are moving forward. For example, when the front casing is stopped, the rear casing moves forward. Even if you try, the mobile robot cannot move forward.
  • the connecting portion can absorb the deviation of the operation between the adjacent housing portions, and can smoothly move.
  • the magnet can be rotatably attached around the axis of the rod-shaped member at the tip of the rod-shaped member.
  • the rod-shaped member can rotate in the turning direction even when the magnet is attracted to the target surface. Therefore, the turning operation can be performed smoothly.
  • the connecting portion can have various configurations, for example, a pair of rod-shaped connecting members formed in a rod shape and a spring member that connects the pair of connecting members. Thereby, the difference in operation between the adjacent casings as described above can be reliably absorbed, and smooth movement is possible.
  • the connecting portion can be configured by a rod-shaped member formed of an elastic material that is deformable in the axial direction.
  • the driving unit can be provided for each wheel unit, and the one driving unit can be configured to rotate and drive one wheel unit independently.
  • each wheel part is driven to rotate independently, a high driving force can be obtained as a whole mobile robot, and the rotation of the left and right wheel parts can be changed. Operation can be performed easily.
  • the mobile robot further includes a communication unit that transmits and receives signals to and from the drive unit, and the communication unit has a function of receiving a signal for driving the drive unit from outside by radio. Can be configured.
  • the mobile robot can be remotely operated from a remote position, and for example, inspection of bridges and the like can be easily performed.
  • a steering mechanism for steering the wheel portion can be provided in at least one housing portion.
  • the case portion can be turned by changing the rotation speeds of the left and right wheel portions, but the turning radius can be further reduced by steering the wheel portions by the steering mechanism.
  • the mobile robot according to the present invention can reliably move along the target surface regardless of the shape of the target surface made of metal.
  • the mobile robot according to the present embodiment is for inspecting a building made of steel (metal) such as a bridge. Although the details will be described later, the mobile robot is attracted to the steel material by the magnet provided on the wheel portion, and the bridge is inspected by moving while maintaining this state. First, the outline will be described. As shown in FIG. 1, the mobile robot is configured by connecting a front housing part 1 and a rear housing part 2 by a connecting part 3. Each of the casing parts 1 and 2 is provided with two wheel parts 41 to 44 arranged on the left and right, respectively, and is configured to move by rotation of a total of four wheel parts 41 to 44.
  • wheel portions 41 to 44 are driven by four independent DC motors 51 to 54, respectively, and drive signals to the motors 51 to 54 are sent from a main controller 6 attached to the rear casing 2. Sent. In addition, an operation signal is transmitted to the main controller 6 from a receiver 7 provided in the rear casing 2. A radio signal for operation is transmitted to the receiver 7 from a transmitter (not shown) outside the robot. In addition, a battery box 8 is provided in the front casing 1 and serves as a power source for the DC motors 51 to 54.
  • the direction in which both housing parts are arranged may be referred to as the front-rear direction, and the direction perpendicular thereto may be referred to as the width direction or the left-right direction.
  • FIG. 2 is a block diagram showing an electrical configuration of the mobile robot.
  • Motor drivers 511 to 541 are electrically connected to the DC motors 51 to 54 that drive the wheel portions 41 to 44.
  • the configurations of the motor drivers 511 to 541 are not particularly limited, and various types can be mentioned. For example, as shown in FIG. 3, the variable speed type using four FETs and two NPN transistors. An H-bridge circuit can be employed. Further, a battery box 8 is provided in the front casing 1, and current is supplied from the battery box 8 to the DC motors 51 to 54 via motor drivers 511 to 541.
  • the motor drivers 511 to 541 are electrically connected to the main controller 6 (for example, a microcomputer), and drive signals for driving the DC motors 51 to 54 are transmitted from the main controller 6.
  • the receiver 7 is connected to the main controller 6, and the receiver 7 that receives a radio signal from the outside transmits an operation signal to the main controller 6. Note that transmission of control signals between devices can be performed not only in one direction but also in two-way communication.
  • the front casing 1 includes a plate-like base 11 extending in the width direction, and the above-described battery box 8 is attached to the center of the base 11.
  • the DC motors 51 and 52 and the gear boxes 61 and 62 described above are disposed on both sides of the battery box 8, respectively.
  • the DC motor 51 and the gear box 61 arranged on the right side of the battery box 8 are referred to as a first motor and a first gear box, and the left side of the battery box 8 is the second motor 52. This is referred to as a second gear box 62.
  • the motor drivers attached to the motors 51 and 52 are referred to as first and second motor drivers 511 and 512, respectively.
  • the first motor 51 is disposed on the right side of the base 11, and a drive shaft (not shown) of the first motor 51 protrudes toward the right end of the base 11.
  • a first motor driver 511 is connected in the vicinity of the first motor 51, and the battery box 8 is electrically connected to the first motor 51 through the first motor driver 511.
  • the drive shaft of the first motor 51 is connected to the first gear box 61.
  • the first gear box 61 is disposed at the right end of the base 11 and includes an output shaft 611. Then, the rotation of the drive shaft of the first motor 51 is decelerated and output from the output shaft 611.
  • the first gear box 61 can have various configurations. In addition to a normal gear, a planetary gear mechanism or a wonder gear mechanism can be used, or these can be appropriately combined.
  • the mysterious gear mechanism is a modified planetary gear mechanism including a sun gear, a planetary gear, a planetary carrier, a fixed gear, and an outer gear.
  • the number is equal to the number of teeth meshing with the outer gear.
  • the reduction gear ratio of this mysterious gear is obtained by the following equation.
  • Z S is the number of teeth of the sun gear
  • Z F is the number of teeth of the fixed gear
  • Z O is the number of teeth of the outer gear.
  • the reduction ratio R gear is calculated to be ⁇ 174, and the gear rotates at a reduced speed in the reverse rotation direction.
  • the motor torque is increased by (174 ⁇ transmission efficiency ⁇ ) times by this reduction mechanism.
  • the transmission efficiency ⁇ can be obtained by the following equation, assuming that the transmission efficiency between individual gears is uniformly ⁇ g in the Kudryavtsev equation.
  • the first gear box 61 is attached with a small gear on the output shaft of the mysterious gear, meshed with the small gear, and attached with an output shaft 611 on the large gear, It protruded from the right end of the base 11.
  • the reduction ratio is 4.5.
  • a wheel portion 41 described later is attached to the tip of the output shaft 611.
  • the second motor 52 and the second gear box 62 are configured in the same manner, and current is supplied to the second motor 52 from the battery box 8 via the second motor driver 521 attached thereto.
  • the second motor 52 and the second gear box 62 are arranged on the left side of the base 11, the output shaft 621 of the second gear box 62 protrudes from the left end of the base 11, and the wheel part 42 is attached to the tip thereof. Yes.
  • the wheel portion 41 includes a cylindrical base portion 411 connected to the output shaft 611, and eight rod-like members 412 that protrude radially from the base portion 411. That is, the bar-shaped member 412 is provided every 45 degrees from the outer peripheral surface of the base 411, and a magnet 413 is attached to the tip of each bar-shaped member 412.
  • the number of rod-like members 412 can be changed as appropriate, and can be 8 to 10 (the angle between adjacent rod-like members 412 is 45 to 36 °), for example.
  • the magnet 413 may not be attracted to the inspection target surface in any of the four wheel portions 41 to 44 depending on the rotational position of the wheel portion 41, as will be described later. If the number is greater than 10, the gap between the rod-like members 412 becomes too narrow, and there is a possibility that a step does not enter the gap.
  • the magnet 413 is formed in a cylindrical shape having an internal space, and a screw (not shown) inserted into the internal space is screwed to the tip of the rod-like member 412. Yes. Thereby, the magnet 413 can rotate around the axis of the rod-shaped member 412.
  • the magnet 413 used here is a permanent magnet. Although the kind is not specifically limited, For example, a neodymium magnet can be used. A rubber adhesive can be applied to the surface of the magnet 413 as necessary. This is for suppressing slippage between the magnet 413 and the steel material.
  • the weight of an object that can be supported by one magnet 413 is larger.
  • the weight that can be supported by one magnet 413 is preferably 1 or more times the weight of the mobile robot, more preferably 2 or more times, It is particularly preferably 3 times or more.
  • this is intended for use under severe conditions where the mobile robot moves while hanging on the target surface. When moving on a horizontal flat surface, the weight of the mobile robot Can be small.
  • the magnet 413 repeats the adsorption and detachment to the surface to be inspected as the wheel portion 41 rotates. Accordingly, if the magnet 413 is attracted too strongly, there is a problem that it cannot be detached.
  • FIG. 6 is a plot of the results obtained using a magnet air gap magnetic flux density / adsorption force calculation tool of Neomag Co., Ltd. When the distance to the magnet is 0.4 mm, the magnetic force is obtained as 14.7N.
  • the case where the magnet 413 is further separated from the steel material is as follows.
  • the force acting on the mobile robot includes a robot weight Fg, a magnet attracting force Fm, and a reaction force Fr from the wheel portion 41 of the front housing unit 1. Since the wheel portion 43 of the rear housing portion 2 tries to rotate around the point A, it is necessary to cause the motor to generate a torque that overcomes the load torque T L of the following equation.
  • the maximum Fr is the weight of the rear housing part 2, and therefore, the output (torque) of each motor is taken into consideration. Can also be set. Thus, the mobile robot can move while adsorbed to the steel material.
  • the load torque T L is smaller than when traveling on a vertical surface. Therefore, if the torque transmitted from each motor to the output shaft is calculated so as to overcome the load torque in consideration of traveling on a vertical surface, the traveling performance of horizontal plane movement does not cause a problem.
  • the front housing unit 1 has been described above, but the rear housing unit 2 has substantially the same configuration. That is, the base, the DC motor, the motor driver, the gear box, and the wheel portion have the same configuration.
  • the battery case 8 is not provided in the rear casing 2, and current is supplied from the battery box 8 of the front casing 1 to the motors 53 and 54 of the rear casing 2 by an electric cable (not shown). Is supplied.
  • a main controller 6 is provided at a position corresponding to the position where the battery box 8 is provided in the front casing 1 (the center of the rear casing), A receiver 7 is provided in the vicinity of the left motor driver 541.
  • the connecting portion 3 includes a pair of connecting members 31 formed in a rod shape, and a spring member 32 sandwiched between the connecting members 31.
  • the spring member 32 can be contracted and expanded in the axial direction of the connecting member 31 and can be bent in the width direction.
  • Both connecting members 31 are formed of a rigid metal or the like, and are connected to the vicinity of the centers of the bases 11 and 21 of both housing parts 1 and 2, respectively.
  • the mobile robot configured as described above moves on the surface of a building made of steel such as a bridge. Although illustration is omitted, if a camera or various sensors (for example, a temperature sensor, an eddy current flaw detection probe, an ultrasonic sensor, a radar exploration system, etc.) are attached to any one of the casings 1 and 2, the surface of the building is Can be inspected.
  • a camera or various sensors for example, a temperature sensor, an eddy current flaw detection probe, an ultrasonic sensor, a radar exploration system, etc.
  • the worker first installs the mobile robot on the inspection target surface. Since the inspection target surface is made of a metal such as steel, one of the magnets 413 is attracted to the inspection target surface in each of the four wheel portions 41 to 44, and the mobile robot is fixed to the inspection target surface. . Then, the operation signal is transmitted from the outside to the receiver 7 of the mobile robot by a wireless transmitter. At this time, the operator can move to the inspection target surface by operating the mobile robot instead of performing installation on the inspection target surface.
  • the main controller 6 processes this signal and sends it to the motor drivers 511 to 514 attached to the motors 51 to 54, respectively.
  • Each of the motor drivers 511 to 514 receives a forward or reverse command signal (hereinafter referred to as an FWD signal or a BWD signal) and a PWM signal for controlling a voltage applied to the motor.
  • FWD signal or a BWD signal a forward or reverse command signal
  • PWM signal for controlling a voltage applied to the motor.
  • the main controller 6 transmits an FWD signal and a PWM signal with a high duty ratio to the motor drivers 511 to 514.
  • the DC motors 51 to 54 rotate in the positive direction at the same rotational speed.
  • the respective wheel portions 41 to 44 rotate, and at least one magnet is attracted to the inspection target surface by the respective wheel portions 41 to 44, so that the mobile robot can move while being attracted to the inspection target surface. Therefore, it is possible to move the mobile robot suspended from the lower surface of the bridge, and to move the vertical surface of the bridge up and down.
  • each of the wheel portions 41 to 44 is composed of the plurality of rod-like members 412 attached radially and the magnet 413 attached to the tip portion thereof.
  • a mobile robot can be attracted
  • the rod-like members 412 are arranged radially, for example, even when a step is provided on the target surface, the step enters between the adjacent rod-like members 412, so that the step can be overcome. . Therefore, even if the target surface is not flat but has a complicated uneven shape, the target surface can be moved while being attracted by the magnet, and the target surface can be moved reliably.
  • the adjacent housing parts 1 and 2 are connected by a connecting part that can be elastically deformed, the respective housing parts 1 and 2 are adjacent to each other without being restricted by the operation of the adjacent housings. Since the connecting part 3 absorbs the shift of the motion operation timing of the part, a smooth operation is possible. For example, since the wheel portions 41 to 44 rotate with any of the magnets attracted to the target surface, when the mobile robot moves forward, both the casing portions 1 and 2 move forward while repeating forward movement and stoppage in small increments. To do. At this time, if both the housing parts are advanced in both directions, the mobile robot advances as a whole. For example, when the front housing part 1 is stopped, the rear housing part 2 is advanced. Even if you try, the mobile robot cannot move forward.
  • both the housing parts 1 and 2 are connected by the connecting part 3 described above, when the front housing part 1 stops and the rear housing part 2 moves forward, While the advancing force of the rear housing part 2 is stored in the spring member 32 in the form of deformation due to the elastic deformation of the spring member 32 in the connecting part 3, only the rear housing part 2 can advance a little.
  • the forward force stored in this way is released when the front housing part 1 moves forward, and the spring member 32 presses the front housing part 1, so that the front housing part 1 moves forward quickly. Can do. Therefore, in this mobile robot, the connecting part 3 can absorb the deviation of the operation between the adjacent casing parts 1 and 2 and can smoothly move.
  • the number of housing units is two, but may be more.
  • three or more casings may be arranged in a straight line, and adjacent casings may be connected by the connecting portion as described above.
  • the motors 51 to 54 as the drive units are provided for the wheel units 41 to 44, respectively, so that the wheel units 41 to 44 are driven independently. It is not limited to. For example, all the wheel portions can be driven by one motor. In this case, it is necessary to provide a coupling mechanism and a steering mechanism that can drive a plurality of wheel portions with one motor. Or you may comprise so that a motor may be provided for each housing
  • the mobile robot may be provided with a steering mechanism for steering the wheel portion.
  • the front housing part 1 is composed of a pair of left and right first and second casings 81, 82, a connecting part that connects the casings 81, 82, and a turning mechanism.
  • Each casing 81, 82 is formed in a block shape and has the same configuration, but a second casing 82 on the left side of FIG. 10 includes a second motor (DC motor) 52 for driving the second wheel portion 42, a second one.
  • a second gear box 62 and a first motor driver 521 are accommodated, and the second wheel portion 42 is connected to an output shaft 512 protruding from the second gear box 62.
  • the first casing 81 is similarly configured and drives the first wheel portion 41.
  • the connecting portion is composed of an upper connecting portion 83 material and a lower connecting member 84 for connecting the upper surfaces and lower surfaces of the casings 81 and 82 to each other.
  • These connecting members 83 and 84 are formed in a plate shape, and both end portions thereof are swingably connected to the first casing 81 and the second casing 82, respectively.
  • a support member 85 is fixed in the vertical gap between the connection members 83 and 84, and the connection member 31 described above is fixed to the support member 85.
  • a servo motor 87 is attached near the center of the upper connecting member 83, and the servo motor 87 is electrically connected to the main controller 62.
  • a steering tie rod 86 is provided in front of the connecting portion, and both ends of the steering tie rod 86 are swingably connected to the casings 81 and 82.
  • the steering tie rod 86 and the servo motor 87 described above are connected by a link mechanism 9.
  • the link mechanism 9 includes first and second link members 91 and 92 that are swingably connected.
  • the first link member 91 having a short length is fixed to the rotation shaft of the servomotor 87, and the second A link member 92 is swingably connected to the end of the steering tie rod 86 on the first casing 81 side.
  • the turning mechanism is based on the Ackermann principle.
  • the first link member 91 when turning to the right, the first link member 91 is rotated to the right by the servo motor 87 based on a command from the main controller 62 as shown in FIG.
  • the second link member 92 pushes the steering tie rod 87 to the right, and both casings 81 and 82 tilt to the right.
  • the first and second wheel portions 41 and 42 tilt to the right, and the mobile robot turns to the right.
  • a steering mechanism is provided in the front casing 1, but a steering mechanism may be provided in the rear casing 2. Further, when the steering mechanisms are provided in both the housing parts 1 and 2, as shown in FIG. 13, the turning radius can be further reduced. Further, the configuration of the steering mechanism is not limited to that described above, and may be a gear mechanism as well as a link mechanism as long as the wheel portion can be tilted, and is not particularly limited. In the case where a plurality of housing parts are provided, a steering mechanism can be provided in at least one housing part.
  • the connecting portion 3 is not particularly limited as long as it is a member that can be elastically deformed at least in the front-rear direction in addition to the connecting member 31 and the spring member 32 as described above.
  • the mobile robot is operated wirelessly, but the main controller may be set so that the mobile robot follows the designated route so as to automatically operate without using the wireless.
  • the positions of the battery box 8, the main controller 6, the receiver 7, the motor drivers 511 to 541, the motors 51 to 54, the gear boxes 61 to 64, and the like shown in the above embodiment can be changed as appropriate. What is necessary is just to be arrange
  • the forms of the housing parts 1 and 2 are not limited to those described above, and may be any form that can support the above-described members such as the battery box 8 and the motors 51 to 54, and other than the above-described bases 11 and 21. An aspect may be sufficient. Moreover, you may divide
  • cameras and various sensors are mounted on the casing units 1 and 2, but various devices can be mounted on the robot.
  • an iron ion detector for detecting corrosion an ultrasonic sensor for detecting internal cracks
  • an electromagnetic ultrasonic sensor (EMAT) for detecting internal cracks a GPS, a mirror, a high-intensity LED light, a laser range sensor, and the like can be mounted.
  • EMAT electromagnetic ultrasonic sensor
  • the mirror can be used for light reflection.
  • a reflection of light can show an area that is hidden behind a steel frame such as a steel slab. If this mirror is photographed with a telephoto camera or the like, visual inspection is possible.
  • the high-intensity LED light is used to make the image clearer when shooting with the camera, thereby enabling shooting with the camera in a place where the sun does not shine.
  • the laser range sensor can be used to create a 3D map of the bridge. For example, since bridges that are likely to collapse are old, it is suspicious whether CAD drawings as well as paper drawings are stored. If there is no actual paper, it is necessary to directly survey the existing bridge. However, since it is extremely difficult to perform surveying artificially, it is desirable to mount a laser range sensor on the mobile robot of the present invention.
  • the mobile robot of the above embodiment has been described as a robot for inspection of a bridge or the like, it is not limited to this, and can be applied to all robots that move on a metal target surface such as steel. Therefore, the present invention can be applied not only to inspection but also to a transfer robot, a narrow area unknown space mapping robot, and the like.
  • Example 10 As an example, the mobile robot shown in the above embodiment as shown in FIG. 10 was produced. Details of each part are as follows.
  • Control system / Main controller PIC18F2320 manufactured by Microchip Technology
  • Receiver RG 411B manufactured by JR PROPO
  • Transmitter JG PROPO XG7
  • Motor driver variable speed H-bridge circuit consisting of the following parts
  • -FET 2 SP8M4
  • C1815 Battery box
  • Battery box 4 AAA batteries
  • Drive system / DC motor input voltage: 3-6V, output: about 10W
  • Gearbox gearbox (reduction ratio is 774 by the combination of the following mechanisms) -Mysterious gear mechanism (reduction ratio 174)
  • -Small gear with 16 teeth and large gear with 72 teeth (3) Number of wheel parts / bar-shaped members 8 pieces, length 62mm (aluminum alloy) ⁇ Magnet (neodymium magnet) Surface magnetic flux density 0.45T, diameter 8mm, thickness 5mm (4) Connecting part / each connecting member: SUS material with an outer diameter of 2 mm and a length of 7 mm / spring member: SP joint made
  • a voltage of 6.0 V was applied to each DC motor to the mobile robot according to the example configured as described above.
  • the vehicle ran at 167 mm / s on the horizontal plane.
  • the vehicle ran at 71 mm / s without slipping on the vertical surface.
  • an additional load was loaded, and the vehicle traveled even when the load was 500 g.
  • the comparative example changed only the structure of the connection part in the said Example. That is, only a connecting member having the same total length without using a spring member is used, so that there is no deformation at the connecting portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Abstract

Provided is a mobile robot capable of reliably moving along an object surface produced from metal regardless of the shape of the object surface. A mobile robot moves over an object surface produced from metal, and is provided with: two or more casing parts which are disposed with a space therebetween; at least one output shaft which is rotatably supported by each of the casing parts; a wheel part which is disposed on each of both sides of each of the casing parts and rotationally driven by each of the output shafts; at least one driving part which rotationally drives the output shaft; and a coupling part which couples the casing parts adjacent to each other and at least part of which is elastically deformable. Each of the wheel parts is provided with a base coupled to the output shaft, a plurality of rod-shaped members radially projecting from the base, and magnets attached to the leading ends of the respective rod-shaped members.

Description

移動ロボットMobile robot
 本発明は、移動ロボットに関する。 The present invention relates to a mobile robot.
 従来より行われている一般的な橋梁の点検作業は、橋梁の下方に作業用足場を設置した上で行われていた。すなわち、橋梁の下方に作業用足場を敷き詰め、作業員が行き来できる環境を構築した上で、その足場から作業者が橋梁の下部を点検する。また、橋梁の下方が道路の場合には、その道路に高所作業車を設置して橋梁の下部の点検を行う。その他、クレーン式点検車を用いて点検作業が行われる場合もある。 Conventionally, general inspection work for bridges has been carried out with a work scaffold installed below the bridge. That is, a working scaffold is laid down below the bridge, and an environment in which workers can come and go is constructed, and the worker inspects the lower part of the bridge from the scaffold. In addition, when the road below the bridge is a road, an aerial work vehicle is installed on the road to inspect the lower part of the bridge. In addition, inspection work may be performed using a crane type inspection vehicle.
 しかしながら、このような作業では、作業用足場の設置、特殊車両の設置などの準備に時間を要するほか、作業者の負担が大きいという問題がある。これを解決するため、例えば、非特許文献1には、橋梁点検ロボットが提案されている。このロボットは、橋梁の主桁下側のフランジを両側から挟み込んで走行しながら、搭載されたカメラで橋梁の点検を行うように構成されている。 However, in such work, there is a problem that it takes time to prepare for installation of a working scaffold, installation of a special vehicle, etc., and the burden on the worker is heavy. In order to solve this, for example, Non-Patent Document 1 proposes a bridge inspection robot. This robot is configured to inspect the bridge with an on-board camera while running while sandwiching the flange below the main girder of the bridge from both sides.
 また、非特許文献2には、無限軌道と永久磁石とを搭載したロボットが開示されており、永久磁石によって橋梁鋼板版にロボットを吸着させつつ、無限軌道によって橋梁鋼板版に沿って移動するように構成されている。そして、搭載されたカメラで橋梁の点検を行っている。 Non-Patent Document 2 discloses a robot equipped with an endless track and a permanent magnet. The robot is attracted to the bridge plate by the permanent magnet, and moves along the bridge plate by the endless track. It is configured. And the bridge is inspected with the installed camera.
 しかしながら、非特許文献1に記載のロボットは、フランジを挟んで走行するため、フランジが設けられていない橋梁では使用することができなかった。また、非特許文献2に記載のロボットは、無限軌道を使用しているものの、底面に配置された永久磁石で橋梁鋼板版に吸着しているため、水平面上しか移動することができない。したがって、段差が設けられた橋梁鋼板では、使用することができず、非特許文献1に記載のロボット同様に、現実の橋梁点検には用いることが難しかった However, since the robot described in Non-Patent Document 1 travels with a flange in between, it cannot be used on a bridge without a flange. Further, although the robot described in Non-Patent Document 2 uses an endless track, it can move only on a horizontal plane because it is attracted to the bridge steel plate by a permanent magnet arranged on the bottom surface. Therefore, the bridge steel plate provided with a step cannot be used, and it is difficult to use it for an actual bridge inspection like the robot described in Non-Patent Document 1.
 このように、現在提案されている点検ロボットには、実用化に問題があり、橋梁の形状によっては使用することができないため、改良が要望されていた。また、このような問題は橋梁の検査のほか、金属で構成された対象面を移動するようなロボット全般に起こりうる問題である。 As described above, the currently proposed inspection robot has a problem in practical use and cannot be used depending on the shape of the bridge. In addition to the inspection of bridges, such a problem is a problem that can occur in general robots that move on a target surface made of metal.
 そこで、本発明は、このような問題を解決するためになされたものであり、金属で構成された対象面の形状にかかわらず、この対象面に沿って確実に移動することが可能な移動ロボットを提供することを目的とする。 Therefore, the present invention has been made to solve such a problem, and a mobile robot capable of reliably moving along the target surface regardless of the shape of the target surface made of metal. The purpose is to provide.
 本発明に係る移動ロボットは、間隔をおいて配置される2以上の筐体部と、前記各筐体部に回転自在に支持される出力シャフトと、前記各筐体の両側に配置され、前記各出力シャフトによって回転駆動される車輪部と、前記出力シャフトを回転駆動する少なくとも1つの駆動部と、前記隣接する前記筐体部同士を連結し、少なくとも一部が弾性変形可能な連結部と、を備え、前記車輪部は、前記回転軸に連結される基部と、前記基部から放射状に突出する複数の棒状部材と、前記各棒状部材の先端に取り付けられた磁石と、を備えている。 The mobile robot according to the present invention is arranged on two sides of each casing, two or more casing sections arranged at intervals, an output shaft rotatably supported by each casing section, A wheel portion that is rotationally driven by each output shaft, at least one drive portion that rotationally drives the output shaft, a connection portion that connects the adjacent housing portions to each other, and at least a part of which is elastically deformable, The wheel portion includes a base portion connected to the rotating shaft, a plurality of rod-like members projecting radially from the base portion, and a magnet attached to the tip of each rod-like member.
 この構成によれば、各車輪部が、放射状に取り付けられた複数の棒状部材とその先端部に取り付けられた磁石とで構成されている。これにより、金属で構成された対象面に磁石によって移動ロボットを吸着させることができる。そして、車輪部の回転に伴って、いずれかの磁石が常に対象面に吸着しているため、移動ロボットが移動しても対象面から離脱するのを防止することができる。さらに、棒状部材は放射状に配置されているため、例えば、対象面に段差が設けられている場合でも、この段差が隣接する棒状部材の間に入り込むため、段差を乗り越えることが可能となる。したがって、対象面が平坦ではなく複雑な凹凸形状を有していても、磁石により吸着した状態で移動することができ、対象面上を確実に移動することができる。そのため、この移動ロボットにカメラ、センサーなどを搭載すれば、作業員が直接検査できないような対象面であっても、移動ロボットによる検査が可能となる。 According to this configuration, each wheel portion is composed of a plurality of rod-like members attached radially and a magnet attached to the tip portion thereof. Thereby, the mobile robot can be attracted to the target surface made of metal by the magnet. Since any of the magnets is always attracted to the target surface as the wheel portion rotates, it can be prevented that the mobile robot moves away from the target surface even if the mobile robot moves. Furthermore, since the rod-shaped members are arranged radially, for example, even when a step is provided on the target surface, the step enters between adjacent rod-shaped members, so that the step can be overcome. Therefore, even if the target surface is not flat but has a complicated uneven shape, the target surface can be moved while being attracted by the magnet, and can be reliably moved on the target surface. For this reason, if a camera, a sensor, or the like is mounted on this mobile robot, even a target surface that cannot be directly inspected by an operator can be inspected by the mobile robot.
 また、隣接する筐体部が弾性変形可能な連結部で連結されているため、各筐体部は、隣接する筐体の動作に拘束されることなく、隣接する筐体部の運動動作タイミングのずれを連結部が吸収でき、スムーズな動作が可能となる。例えば、車輪部は、いずれかの磁石が対象面に吸着した状態で回転するので、移動ロボットが前進する場合、各筐体部は小刻みに前進運動と停止を繰り返しながら前進する。このとき、隣接する前後の筐体部がともに前進していれば、移動ロボットは全体として前進するが、例えば、前側の筐体部が停止しているときに、後側の筐体部が前進しようとしても、移動ロボットは前進できない。 In addition, since the adjacent housing portions are connected by a connecting portion that can be elastically deformed, each housing portion is not restricted by the operation of the adjacent housing, and the motion operation timing of the adjacent housing portion is not limited. The connecting portion can absorb the shift, and smooth operation is possible. For example, the wheel portion rotates while any of the magnets is attracted to the target surface. Therefore, when the mobile robot moves forward, each housing portion moves forward while repeating forward movement and stoppage in small increments. At this time, the mobile robot moves forward as a whole if both of the adjacent front and rear casings are moving forward. For example, when the front casing is stopped, the rear casing moves forward. Even if you try, the mobile robot cannot move forward.
 これに対して、本発明では、隣接する筐体部を弾性変形可能な連結部で連結しているため、前側の筐体部が停止し、後側の筐体部が前進する場合、後側の筐体部の前進力が連結部の弾性変形によって蓄えられながら、この筐体部だけが少し前進することができる。そして、このように蓄えられた前進力は、前側の筐体が前進するときに開放され、前側の筐体部を押圧するので、速やかに前進することができる。したがって、本発明の移動ロボットにおいては、連結部によって、隣接する筐体部間の動作のずれを吸収し、スムーズな移動を行うことができる。 On the other hand, in the present invention, since the adjacent housing parts are connected by the elastically deformable connecting part, when the front housing part stops and the rear housing part moves forward, the rear side While the advancing force of the casing portion is stored by the elastic deformation of the connecting portion, only the casing portion can be advanced a little. The forward force stored in this way is released when the front case moves forward and presses the front case so that it can move forward quickly. Therefore, in the mobile robot of the present invention, the connecting portion can absorb the deviation of the operation between the adjacent housing portions, and can smoothly move.
 上記移動ロボットにおいて、前記磁石は、前記棒状部材の先端部において、当該棒状部材の軸周りに回転可能に取り付けることができる。 In the mobile robot, the magnet can be rotatably attached around the axis of the rod-shaped member at the tip of the rod-shaped member.
 このように構成すると、例えば、移動ロボットが旋回する場合には、磁石が対象面に吸着した状態でも、棒状部材は旋回方向に回転することができる。したがって、旋回動作をスムーズに行うことができる。 With this configuration, for example, when the mobile robot turns, the rod-shaped member can rotate in the turning direction even when the magnet is attracted to the target surface. Therefore, the turning operation can be performed smoothly.
 上記連結部は、種々の構成にすることができるが、例えば、棒状に形成された一対の棒状の連結部材と、当該一対の連結部材を連結するバネ部材とで構成することができる。これにより、上述したような隣接する筐体部間の動作の相違を確実に吸収することができ、スムーズな移動が可能となる。このほか、例えば、軸方向に変形可能な弾性材料で形成された棒状の部材で、連結部を構成することもできる。 The connecting portion can have various configurations, for example, a pair of rod-shaped connecting members formed in a rod shape and a spring member that connects the pair of connecting members. Thereby, the difference in operation between the adjacent casings as described above can be reliably absorbed, and smooth movement is possible. In addition, for example, the connecting portion can be configured by a rod-shaped member formed of an elastic material that is deformable in the axial direction.
 上記移動ロボットにおいては、前記各車輪部に対して前記駆動部をそれぞれ設けることができ、一の前記駆動部によって一の前記車輪部が独立して回転駆動するように構成することができる。 In the above mobile robot, the driving unit can be provided for each wheel unit, and the one driving unit can be configured to rotate and drive one wheel unit independently.
 この構成によれば、各車輪部が独立して回転駆動するため、移動ロボット全体として、高い駆動力を得られるほか、左右の車輪部の回転を変化させることができるため、旋回などの複雑な操作を容易に行うことができる。 According to this configuration, since each wheel part is driven to rotate independently, a high driving force can be obtained as a whole mobile robot, and the rotation of the left and right wheel parts can be changed. Operation can be performed easily.
 上記移動ロボットにおいては、前記駆動部との間で信号の受送信を行う通信部をさらに設け、前記通信部を、前記駆動部を駆動する信号を外部からの無線で受信する機能を有するように構成することができる。 The mobile robot further includes a communication unit that transmits and receives signals to and from the drive unit, and the communication unit has a function of receiving a signal for driving the drive unit from outside by radio. Can be configured.
 このようにすると、移動ロボットを離れた位置から遠隔操作することができ、例えば、橋梁などの検査を容易に行うことができる。このほか、遠隔操作を行うのではなく、所定のルートを経るように自動的に移動するように構成することもできる。 In this way, the mobile robot can be remotely operated from a remote position, and for example, inspection of bridges and the like can be easily performed. In addition to this, it is also possible to configure not to perform remote operation but to automatically move along a predetermined route.
 また、上記移動ロボットにおいては、少なくとも1つの筐体部に、前記車輪部の操舵を行うステアリング機構を設けることができる。筐体部の旋回は、左右の車輪部の回転数を異ならせることで可能ではあるが、ステアリング機構により車輪部を操舵させることで、旋回半径をより小さくすることができる。 In the above mobile robot, a steering mechanism for steering the wheel portion can be provided in at least one housing portion. The case portion can be turned by changing the rotation speeds of the left and right wheel portions, but the turning radius can be further reduced by steering the wheel portions by the steering mechanism.
 本発明に係る移動ロボットによれば、金属で構成された対象面の形状にかかわらず、この対象面に沿って確実に移動することができる。 The mobile robot according to the present invention can reliably move along the target surface regardless of the shape of the target surface made of metal.
本発明の一実施形態に係る移動ロボットの平面図(a)及び車輪部の拡大図(b)である。It is the top view (a) of the mobile robot which concerns on one Embodiment of this invention, and the enlarged view (b) of a wheel part. 図1の移動ロボットの電気的な構成を示すブロック図である。It is a block diagram which shows the electrical structure of the mobile robot of FIG. 図1の移動ロボットに用いられるモータドライバの構成の一例を示す回路図である。It is a circuit diagram which shows an example of a structure of the motor driver used for the mobile robot of FIG. 図1の移動ロボットに用いられる不思議歯車機構の概略構成を示す図である。It is a figure which shows schematic structure of the mysterious gear mechanism used for the mobile robot of FIG. 磁石の磁力を検討するモデル図である。It is a model figure which examines the magnetic force of a magnet. 図5のモデルにおける磁石の磁力と鋼材との距離との関係を示すグラフである。It is a graph which shows the relationship between the magnetic force of the magnet in the model of FIG. 5, and the distance with steel materials. 傾斜した磁石の磁力を検討するモデル図である。It is a model figure which examines the magnetic force of the inclined magnet. 図7のモデルにおける磁石の磁力と鋼材との距離との関係を示すグラフである。It is a graph which shows the relationship between the magnetic force of the magnet in the model of FIG. 7, and the distance with steel materials. 垂直面を登る移動ロボットのモデル図である。It is a model diagram of a mobile robot climbing a vertical plane. ステアリング機構を設けた移動ロボットの斜視図である。It is a perspective view of a mobile robot provided with a steering mechanism. ステアリング機構を設けた移動ロボットの斜視図である。It is a perspective view of a mobile robot provided with a steering mechanism. ステアリング機構を設けた移動ロボットの斜視図である。It is a perspective view of a mobile robot provided with a steering mechanism. ステアリング機構を設けた移動ロボットの斜視図である。It is a perspective view of a mobile robot provided with a steering mechanism. 実施例に係る移動ロボットを示す写真である。It is a photograph which shows the mobile robot which concerns on an Example.
 本実施形態に係る移動ロボットは、橋梁などの鋼材(金属)で構成された建造物の検査を行うためのものである。詳細は後述するが、車輪部に設けられた磁石により、移動ロボットを鋼材に吸着させ、この状態を維持しつつ移動して橋梁の検査を行う。まず、概略を説明すると、図1に示すように、この移動ロボットは、前側筐体部1と後側筐体部2とが連結部3によって連結されることで構成されている。各筐体部1,2には左右に配置された2つの車輪部41~44がそれぞれ設けられており、合計4つの車輪部41~44の回転で移動するように構成されている。これらの車輪部41~44の駆動は、独立した4つのDCモータ51~54によってそれぞれ行われ、各モータ51~54への駆動信号は、後側筐体部2に取り付けられたメインコントローラ6から送信される。また、メインコントローラ6には、後側筐体部2に設けられた受信機7から操作信号が送信される。そして、この受信機7に対しては、ロボット外部の送信機(図示省略)から操作のための無線信号が送信される。また、前側筐体部1には、電池ボックス8が設けられており、これが各DCモータ51~54の電源となる。以下、この移動ロボットについて、さらに詳細に説明する。なお、以下では、説明の便宜上、両筐体部が並ぶ方向を前後方向、それと垂直な方向を幅方向または左右方向と称することがある。 The mobile robot according to the present embodiment is for inspecting a building made of steel (metal) such as a bridge. Although the details will be described later, the mobile robot is attracted to the steel material by the magnet provided on the wheel portion, and the bridge is inspected by moving while maintaining this state. First, the outline will be described. As shown in FIG. 1, the mobile robot is configured by connecting a front housing part 1 and a rear housing part 2 by a connecting part 3. Each of the casing parts 1 and 2 is provided with two wheel parts 41 to 44 arranged on the left and right, respectively, and is configured to move by rotation of a total of four wheel parts 41 to 44. These wheel portions 41 to 44 are driven by four independent DC motors 51 to 54, respectively, and drive signals to the motors 51 to 54 are sent from a main controller 6 attached to the rear casing 2. Sent. In addition, an operation signal is transmitted to the main controller 6 from a receiver 7 provided in the rear casing 2. A radio signal for operation is transmitted to the receiver 7 from a transmitter (not shown) outside the robot. In addition, a battery box 8 is provided in the front casing 1 and serves as a power source for the DC motors 51 to 54. Hereinafter, this mobile robot will be described in more detail. In the following, for convenience of explanation, the direction in which both housing parts are arranged may be referred to as the front-rear direction, and the direction perpendicular thereto may be referred to as the width direction or the left-right direction.
 <1.移動ロボットの電気的構成>
 はじめに、この移動ロボットの電気的な構成について、図2を参照しつつ説明する。図2は、この移動ロボットの電気的な構成を示すブロック図である。各車輪部41~44を駆動するDCモータ51~54には、モータドライバ511~541が電気的に接続されている。モータドライバ511~541の構成は、特には限定されず、種々のものを挙げることができるが、例えば、図3に示すように、4個のFETと2個のNPNトランジスタを用いた速度可変型Hブリッジ回路を採用することができる。また、前側筐体部1には電池ボックス8が設けられており、各DCモータ51~54には、モータドライバ511~541を介して電池ボックス8から電流が供給されている。各モータドライバ511~541は、メインコントローラ6(例えば、マイコン)と電気的に接続されており、メインコントローラ6から各DCモータ51~54を駆動するための駆動信号が送信される。そして、このメインコントローラ6には、上述したように、受信機7が接続されており、外部から無線信号を受けた受信機7は、メインコントローラ6に対して、操作用の信号を送信する。なお、各デバイス間の制御信号の伝達は、一方向だけでなく、双方向の通信が行えるようにすることができる。
<1. Electrical configuration of mobile robot>
First, the electrical configuration of this mobile robot will be described with reference to FIG. FIG. 2 is a block diagram showing an electrical configuration of the mobile robot. Motor drivers 511 to 541 are electrically connected to the DC motors 51 to 54 that drive the wheel portions 41 to 44. The configurations of the motor drivers 511 to 541 are not particularly limited, and various types can be mentioned. For example, as shown in FIG. 3, the variable speed type using four FETs and two NPN transistors. An H-bridge circuit can be employed. Further, a battery box 8 is provided in the front casing 1, and current is supplied from the battery box 8 to the DC motors 51 to 54 via motor drivers 511 to 541. The motor drivers 511 to 541 are electrically connected to the main controller 6 (for example, a microcomputer), and drive signals for driving the DC motors 51 to 54 are transmitted from the main controller 6. As described above, the receiver 7 is connected to the main controller 6, and the receiver 7 that receives a radio signal from the outside transmits an operation signal to the main controller 6. Note that transmission of control signals between devices can be performed not only in one direction but also in two-way communication.
 <2.移動ロボットの機械的構成>
 次に、この移動ロボットの機械的構成について説明する。なお、以下の説明では、具体的な信号の受送信を行うケーブルについては記載を省略しているが、これについては、図2の通り接続されていればよいため、説明を省略する。まず、前側筐体部1から説明する。前側筐体部1は、幅方向に延びる板状の基台11を備え、この基台11の中央に上述した電池ボックス8が取り付けられている。そして、この電池ボックス8の両側には、上述したDCモータ51,52とギヤボックス61、62がそれぞれ配置されている。以下では、説明の便宜のため、電池ボックス8の右側に配置されたDCモータ51及びギヤボックス61を、第1モータ、第1ギヤボックスと称し、電池ボックス8の左側のものを第2モータ52、第2ギヤボックス62と称する。また、各モータ51,52に取り付けられたモータドライバを、それぞれ第1及び第2モータドライバ511,512と称する。
<2. Mechanical configuration of mobile robot>
Next, the mechanical configuration of this mobile robot will be described. In the following description, description of a cable that performs transmission and reception of specific signals is omitted, but description thereof is omitted because it is only necessary to be connected as shown in FIG. First, the front casing 1 will be described. The front casing 1 includes a plate-like base 11 extending in the width direction, and the above-described battery box 8 is attached to the center of the base 11. The DC motors 51 and 52 and the gear boxes 61 and 62 described above are disposed on both sides of the battery box 8, respectively. Hereinafter, for convenience of explanation, the DC motor 51 and the gear box 61 arranged on the right side of the battery box 8 are referred to as a first motor and a first gear box, and the left side of the battery box 8 is the second motor 52. This is referred to as a second gear box 62. The motor drivers attached to the motors 51 and 52 are referred to as first and second motor drivers 511 and 512, respectively.
 第1モータ51は、基台11の右側に配置されており、第1モータ51のドライブシャフト(図示しない)が基台11の右端部に向けて突出している。また、第1モータ51の近傍には第1モータドライバ511が接続されており、電池ボックス8は、この第1モータドライバ511を介して第1モータ51に電気的に接続されている。また、第1モータ51のドライブシャフトは、第1ギヤボックス61に連結されている。第1ギヤボックス61は、基台11の右側の端部に配置されており、出力シャフト611を備えている。そして、第1モータ51のドライブシャフトの回転が減速されて、出力シャフト611から出力される。第1ギヤボックス61は種々の構成が可能であり、通常の歯車のほか、遊星歯車機構、不思議歯車機構を用いたり、これらを適宜組み合わせることもできる。 The first motor 51 is disposed on the right side of the base 11, and a drive shaft (not shown) of the first motor 51 protrudes toward the right end of the base 11. A first motor driver 511 is connected in the vicinity of the first motor 51, and the battery box 8 is electrically connected to the first motor 51 through the first motor driver 511. The drive shaft of the first motor 51 is connected to the first gear box 61. The first gear box 61 is disposed at the right end of the base 11 and includes an output shaft 611. Then, the rotation of the drive shaft of the first motor 51 is decelerated and output from the output shaft 611. The first gear box 61 can have various configurations. In addition to a normal gear, a planetary gear mechanism or a wonder gear mechanism can be used, or these can be appropriately combined.
 ここで、一例を挙げると、図4に示すような不思議歯車と通常の歯車を組み合わせたギヤボックスを用いることができる。同図に示すように、不思議歯車機構は、サンギヤ、プラネタリギヤ、プラネタリキャリア、固定ギヤ、及びアウターギヤを備えた遊星歯車機構を変形したものであり、遊星歯車機構のプラネタリギヤにおいて、固定ギヤと噛み合う歯数が、アウターギヤと噛み合う歯数と等しいものである。この不思議歯車の減速比は、以下の式によって求められる。なお、ZSをはサンギヤの歯数、ZFをは固定ギヤの歯数、ZOはアウターギヤの歯数である。 Here, as an example, a gear box in which a mysterious gear as shown in FIG. 4 is combined with a normal gear can be used. As shown in the figure, the mysterious gear mechanism is a modified planetary gear mechanism including a sun gear, a planetary gear, a planetary carrier, a fixed gear, and an outer gear. The number is equal to the number of teeth meshing with the outer gear. The reduction gear ratio of this mysterious gear is obtained by the following equation. Z S is the number of teeth of the sun gear, Z F is the number of teeth of the fixed gear, and Z O is the number of teeth of the outer gear.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、サンギヤの歯数ZSを8,固定ギヤの歯数ZFを50,アウターギヤの歯数ZO
を48とすると減速比Rgearは-174と算出され、逆回転方向に大幅に減速して回転する。モータトルクは,この減速機構によって(174×伝達効率η)倍に増大する。伝達効率ηは,クドリャフツェフの式において,個々の歯車間の伝達効率を一律ηgとすると,以下の式のように得られる。
For example, the number of teeth Z S of the sun gear is 8, the number of teeth Z F of the fixed gear is 50, the number of teeth of the outer gear Z O
When 48 is 48, the reduction ratio R gear is calculated to be −174, and the gear rotates at a reduced speed in the reverse rotation direction. The motor torque is increased by (174 × transmission efficiency η) times by this reduction mechanism. The transmission efficiency η can be obtained by the following equation, assuming that the transmission efficiency between individual gears is uniformly ηg in the Kudryavtsev equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 例えば、ηg=90%のときは,η=42.3%と算出され,ηg=85%のときは、η=21.6%と算出される。 For example, when ηg = 90%, it is calculated as η = 42.3%, and when ηg = 85%, it is calculated as η = 21.6%.
 また、減速比をさらに向上するため、第1ギヤボックス61には、不思議歯車の出力軸に小歯車を取り付け、この小歯車に大歯車を噛み合わせるとともに、この大歯車に出力シャフト611を取り付け、基台11の右端部から突出させた。一例として、小歯車の歯数を16,大歯車の歯数を72とすると、減速比は4.5となる。これにより、第1ギヤボックス61の減速比は774(=172*4.5)となる。また、出力シャフト611の先端には、後述する車輪部41が取り付けられている。 In order to further improve the reduction ratio, the first gear box 61 is attached with a small gear on the output shaft of the mysterious gear, meshed with the small gear, and attached with an output shaft 611 on the large gear, It protruded from the right end of the base 11. As an example, if the number of teeth of the small gear is 16 and the number of teeth of the large gear is 72, the reduction ratio is 4.5. As a result, the reduction ratio of the first gear box 61 is 774 (= 172 * 4.5). Further, a wheel portion 41 described later is attached to the tip of the output shaft 611.
 一方、第2モータ52及び第2ギヤボックス62も同様に構成されており、第2モータ52には、これに取り付けられた第2モータドライバ521を介して電池ボックス8から電流が供給される。第2モータ52及び第2ギヤボックス62は基台11の左側に配置され、第2ギヤボックス62の出力シャフト621は、基台11の左端部から突出し、その先端に車輪部42が取り付けられている。 On the other hand, the second motor 52 and the second gear box 62 are configured in the same manner, and current is supplied to the second motor 52 from the battery box 8 via the second motor driver 521 attached thereto. The second motor 52 and the second gear box 62 are arranged on the left side of the base 11, the output shaft 621 of the second gear box 62 protrudes from the left end of the base 11, and the wheel part 42 is attached to the tip thereof. Yes.
 次に、車輪部41~44について説明する。4つの車輪部はすべて同じ構成であるので、第1出力シャフト611に取り付けられている車輪部41について説明する。車輪部41は、出力シャフト611に連結された円筒状の基部411と、この基部411から放射状に突出する8本の棒状部材412と、を備えている。すなわち、棒状部材412は、基部411の外周面から45度おきに設けられており、各棒状部材412の先端には、磁石413が取り付けられている。但し、棒状部材412の数は適宜変更可能であり、例えば、8~10本(隣接する棒状部材412間の角度が45~36°)とすることができる。これは、8本より少ないと、後述するように、車輪部41の回転位置によっては、4つの車輪部41~44のいずれにおいても磁石413が検査対象面に吸着していない場合が起こり得るからであり、10本より多いと、棒状部材412間の隙間が狭くなりすぎて、この隙間に段差が入り込まない可能性があることによる。 Next, the wheel portions 41 to 44 will be described. Since all four wheel portions have the same configuration, the wheel portion 41 attached to the first output shaft 611 will be described. The wheel portion 41 includes a cylindrical base portion 411 connected to the output shaft 611, and eight rod-like members 412 that protrude radially from the base portion 411. That is, the bar-shaped member 412 is provided every 45 degrees from the outer peripheral surface of the base 411, and a magnet 413 is attached to the tip of each bar-shaped member 412. However, the number of rod-like members 412 can be changed as appropriate, and can be 8 to 10 (the angle between adjacent rod-like members 412 is 45 to 36 °), for example. This is because if there are fewer than 8, the magnet 413 may not be attracted to the inspection target surface in any of the four wheel portions 41 to 44 depending on the rotational position of the wheel portion 41, as will be described later. If the number is greater than 10, the gap between the rod-like members 412 becomes too narrow, and there is a possibility that a step does not enter the gap.
 図1(b)に示すように、磁石413は、内部空間を有する円筒状に形成されており、この内部空間に挿入されたネジ(図示省略)が、棒状部材412の先端にネジ止めされている。これにより、磁石413は、棒状部材412の軸周りに回転可能となっている。ここで用いられる磁石413は、永久磁石により構成される。その種類は特には限定されないが、例えば、ネオジム磁石を用いることができる。また、磁石413の表面には、必要に応じてゴム接着剤を塗布することができる。これは、磁石413と鋼材との間の滑りを抑制するためのものである。磁石413の鋼材(金属面)への吸着強度としては、例えば、1つの磁石413で支持できる物体の重量が大きいほど好ましい。例えば、ここで用いられる磁石413に要求される性能として、1つの磁石413が支持可能な重量が、移動ロボットの重量の1倍以上であることが好ましく、2倍以上であることがさらに好ましく、3倍以上であることが特に好ましい。但し、これは、移動ロボットが対象面にぶら下がった状態で移動するような過酷な条件での使用を想定したものであり、水平な平坦面の上を移動する場合には、移動ロボットの重量よりも小さくても構わない。 As shown in FIG. 1B, the magnet 413 is formed in a cylindrical shape having an internal space, and a screw (not shown) inserted into the internal space is screwed to the tip of the rod-like member 412. Yes. Thereby, the magnet 413 can rotate around the axis of the rod-shaped member 412. The magnet 413 used here is a permanent magnet. Although the kind is not specifically limited, For example, a neodymium magnet can be used. A rubber adhesive can be applied to the surface of the magnet 413 as necessary. This is for suppressing slippage between the magnet 413 and the steel material. As the adsorption strength of the magnet 413 to the steel material (metal surface), for example, it is preferable that the weight of an object that can be supported by one magnet 413 is larger. For example, as the performance required for the magnet 413 used here, the weight that can be supported by one magnet 413 is preferably 1 or more times the weight of the mobile robot, more preferably 2 or more times, It is particularly preferably 3 times or more. However, this is intended for use under severe conditions where the mobile robot moves while hanging on the target surface. When moving on a horizontal flat surface, the weight of the mobile robot Can be small.
 また、車輪部41は回転をするため、磁石413は車輪部41の回転に伴って、検査対象面への吸着と離脱を繰り返す。したがって、磁石413の吸着が強すぎると、離脱できないという問題が生じるため、この点について検討する。 Further, since the wheel portion 41 rotates, the magnet 413 repeats the adsorption and detachment to the surface to be inspected as the wheel portion 41 rotates. Accordingly, if the magnet 413 is attracted too strongly, there is a problem that it cannot be detached.
 例えば、図5に示すように、直径8mm,厚さ5mmで表面磁束密度が0.45Tのネオジム磁石からなる磁石について検討すると、これが鋼材に吸着した場合、15N以上の力を加えなければ引き離すことができない。そこで、磁石と鋼材との間に距離Lを設けると、図6に示すように、その距離Lに応じて磁力は低下する。なお、図6はネオマグ(株)の磁石空隔磁束密度・吸着力計算ツールを用いて得た結果をプロットしたものである。磁石との間の距離が0.4mmのとき,磁力は14.7Nとして得られる。なお、ここでは、磁石・鋼材間距離が著しく近い場合,理論的に解析困難になるため、0.0mm<L<0.4mmの領域は、0.4mmと同じ14.7Nと仮定しモデル化する。そして、磁石と鋼材が面と面で接触している状態から、車輪部が少し回転(角度α)すると、図7のように磁石と鉄材間の距離が場所によって異なる。例えば、L=cの場合、磁力Fmは以下の式のように積分して得ることができる。c=0.4mmの場合の数値計算した結果を図8に示す。 For example, as shown in FIG. 5, when a magnet composed of a neodymium magnet having a diameter of 8 mm, a thickness of 5 mm, and a surface magnetic flux density of 0.45 T is studied, if this magnet is adsorbed to a steel material, the magnet should be separated unless a force of 15 N or more is applied. I can't. Therefore, when a distance L is provided between the magnet and the steel material, the magnetic force decreases according to the distance L as shown in FIG. FIG. 6 is a plot of the results obtained using a magnet air gap magnetic flux density / adsorption force calculation tool of Neomag Co., Ltd. When the distance to the magnet is 0.4 mm, the magnetic force is obtained as 14.7N. Here, since the analysis becomes theoretically difficult when the distance between the magnet and the steel material is extremely short, the area of 0.0 mm <L <0.4 mm is assumed to be 14.7 N, which is the same as 0.4 mm. To do. And when a wheel part rotates a little (angle (alpha)) from the state which a magnet and steel materials contact in the surface, the distance between a magnet and iron materials changes with places like FIG. For example, when L = c, the magnetic force Fm can be obtained by integration as in the following equation. FIG. 8 shows the result of numerical calculation when c = 0.4 mm.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、rは磁石の半径である。α=22.5°のとき、Fm約1.2Nである。したがって、α=0のときと比較して8%にまで低下しており、鋼材から磁石413を引き離す力は小さい。そのため、車輪部41の基部411に作用させるトルクを調整し、磁石413の下面全体が鋼材に接触しているときに、これを鋼材から離間させる力を付与できれば、その後は、車輪部41の回転により磁石413が鋼材から傾斜するため、磁力が低下していく。 Where r is the radius of the magnet. When α = 22.5 °, Fm is about 1.2N. Therefore, it is reduced to 8% compared to when α = 0, and the force for separating the magnet 413 from the steel material is small. Therefore, if the torque which acts on the base part 411 of the wheel part 41 is adjusted and the whole lower surface of the magnet 413 is in contact with the steel material, and the force which separates this from the steel material can be applied, then the rotation of the wheel part 41 is performed. As a result, the magnet 413 is inclined from the steel material, so that the magnetic force decreases.
 この点について、さらに、鋼材から磁石413が離間する場合について検討すると、以下の通りである。例えば、図9に示すように、移動ロボットが垂直面を上方に移動する場合について検討する。この例では、移動ロボットに作用する力として、ロボットの重量Fg、磁石の吸着力Fm、前側筐体部1の車輪部41からの反作用力Frが存在する。後側筐体部2の車輪部43はポイントAを中心に回転運動をしようとするため、以下の式の負荷トルクTLに打ち勝つトルクをモータに発生させる必要がある。 Regarding this point, the case where the magnet 413 is further separated from the steel material is as follows. For example, as shown in FIG. 9, consider a case in which a mobile robot moves up a vertical plane. In this example, the force acting on the mobile robot includes a robot weight Fg, a magnet attracting force Fm, and a reaction force Fr from the wheel portion 41 of the front housing unit 1. Since the wheel portion 43 of the rear housing portion 2 tries to rotate around the point A, it is necessary to cause the motor to generate a torque that overcomes the load torque T L of the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 例えば、ロボットの重量Fgが450g、各棒状部材412の長さを62mmとすると、図9の状態のときは、Lh=57mm(=62cos(22.5))になっている。Fgは450gの4分の1を支える力なので約1.1Nであ、Fmは図9でα=22.5°のときを読み取って約1.2Nと判る。両筐体部の車輪部が同調している場合は、Fr=0である.そのとき、上記式を用いて、負荷トルクTLは0.120Nmとして算出され
る。したがって、このような負荷トルクに打ち勝つように、各モータから出力シャフトに伝達されるトルクを計算すればよい。なお、両筐体部1,2の車輪部が同調しない場合には、Frは、最大で、後側筐体部2の重量になるので、これを勘案して、各モータの出力(トルク)を設定することもできる。こうして、移動ロボットは鋼材に吸着した状態で移動できる。
For example, if the weight Fg of the robot is 450 g and the length of each rod-like member 412 is 62 mm, Lh = 57 mm (= 62 cos (22.5)) in the state of FIG. Since Fg is a force that supports a quarter of 450 g, it is about 1.1 N, and Fm can be found to be about 1.2 N when α = 22.5 ° is read in FIG. When the wheel parts of both housing parts are synchronized, Fr = 0. At that time, using the above equation, the load torque T L is calculated as 0.120 Nm. Therefore, the torque transmitted from each motor to the output shaft may be calculated so as to overcome such load torque. In addition, when the wheel parts of both the housing parts 1 and 2 are not synchronized, the maximum Fr is the weight of the rear housing part 2, and therefore, the output (torque) of each motor is taken into consideration. Can also be set. Thus, the mobile robot can move while adsorbed to the steel material.
 上記の検討は、垂直な鋼材上を走行する場合であったが、移動ロボットが水平面の上を走行する場合には、以下の式の負荷トルクTLに打ち勝つトルクをモータに発生させる必
要がある。
Figure JPOXMLDOC01-appb-M000005
The above examination was a case where the vehicle travels on a vertical steel material, but when the mobile robot travels on a horizontal plane, it is necessary to generate a torque that overcomes the load torque T L of the following equation in the motor. .
Figure JPOXMLDOC01-appb-M000005
 一方、水平面の下側にぶら下がりながら、走行する場合には、以下の式の負荷トルクTLに打ち勝つトルクをモータに発生させる必要がある。
Figure JPOXMLDOC01-appb-M000006
On the other hand, when the vehicle travels while hanging below the horizontal plane, it is necessary to cause the motor to generate a torque that overcomes the load torque T L of the following expression.
Figure JPOXMLDOC01-appb-M000006
 いずれの場合も、垂直面を走行する場合と比べると、負荷トルクTLは小さくなる。したがって、垂直面での走行を勘案し、その負荷トルクに打ち勝つように、各モータから出力シャフトに伝達されるトルクを計算すれば、水平面移動の走行性能も問題が生じることはない。 In either case, the load torque T L is smaller than when traveling on a vertical surface. Therefore, if the torque transmitted from each motor to the output shaft is calculated so as to overcome the load torque in consideration of traveling on a vertical surface, the traveling performance of horizontal plane movement does not cause a problem.
 以上、前側筐体部1について説明したが、後側筐体部2についてもほぼ同様の構成である。すなわち、基台、DCモータ、モータドライバ、ギヤボックス、及び車輪部については同じ構成である。但し、後側筐体部2には電池ボックス8が設けられておらず、前側筐体部1の電池ボックス8から電気ケーブル(図示しない)によって後側筐体部2のモータ53,54へ電流が供給される。また、図1に示すように、前側筐体部1で電池ボックス8が設けられている位置と対応する位置(後側筐体部の中央部)には、メインコントローラ6が設けられ、また、左側のモータドライバ541に近接して受信機7が設けられている。 The front housing unit 1 has been described above, but the rear housing unit 2 has substantially the same configuration. That is, the base, the DC motor, the motor driver, the gear box, and the wheel portion have the same configuration. However, the battery case 8 is not provided in the rear casing 2, and current is supplied from the battery box 8 of the front casing 1 to the motors 53 and 54 of the rear casing 2 by an electric cable (not shown). Is supplied. In addition, as shown in FIG. 1, a main controller 6 is provided at a position corresponding to the position where the battery box 8 is provided in the front casing 1 (the center of the rear casing), A receiver 7 is provided in the vicinity of the left motor driver 541.
 また、前側筐体部1と後側筐体部2とは連結部3で連結されている。この連結部3は、棒状に形成された一対の連結部材31と、これら連結部材31の間に挟まれるバネ部材32とで構成されている。バネ部材32は、連結部材31の軸方向に収縮、伸長が可能であり、さらに幅方向への曲げも可能である。両連結部材31は、剛性のある金属などで形成され、両筐体部1,2の基台11,21の中央付近に、それぞれ連結されている。 Further, the front housing part 1 and the rear housing part 2 are connected by a connecting part 3. The connecting portion 3 includes a pair of connecting members 31 formed in a rod shape, and a spring member 32 sandwiched between the connecting members 31. The spring member 32 can be contracted and expanded in the axial direction of the connecting member 31 and can be bent in the width direction. Both connecting members 31 are formed of a rigid metal or the like, and are connected to the vicinity of the centers of the bases 11 and 21 of both housing parts 1 and 2, respectively.
 <3.移動ロボットの動作>
 以上のように構成された移動ロボットは、橋梁などの鋼材で構成された建造物の表面を移動する。図示は省略するが、いずれかの筐体部1,2にカメラや各種センサ(例えば、温度センサー、渦電流式探傷プローブ、超音波センサー、レーダー探査システムなど)を取り付ければ、建造物の表面を検査することができる。
<3. Movement of mobile robot>
The mobile robot configured as described above moves on the surface of a building made of steel such as a bridge. Although illustration is omitted, if a camera or various sensors (for example, a temperature sensor, an eddy current flaw detection probe, an ultrasonic sensor, a radar exploration system, etc.) are attached to any one of the casings 1 and 2, the surface of the building is Can be inspected.
 その際、作業者は、まず、移動ロボットを検査対象面に設置する。検査対象面は鋼材などの金属で形成されているため、4つの車輪部41~44それぞれにおいていずれかの磁石413が検査対象面に吸着し、移動ロボットが検査対象面に固定された状態となる。そして、外部から無線の送信機により、操作信号を移動ロボットの受信機7に送信する。このとき、検査対象面への設置を作業者が行うのではなく、移動ロボットを操作して、検査対象面まで移動させることもできる。 At that time, the worker first installs the mobile robot on the inspection target surface. Since the inspection target surface is made of a metal such as steel, one of the magnets 413 is attracted to the inspection target surface in each of the four wheel portions 41 to 44, and the mobile robot is fixed to the inspection target surface. . Then, the operation signal is transmitted from the outside to the receiver 7 of the mobile robot by a wireless transmitter. At this time, the operator can move to the inspection target surface by operating the mobile robot instead of performing installation on the inspection target surface.
 こうして、受信機7が信号を受信すると、この信号はメインコントローラ6に送信される。メインコントローラ6は、この信号を処理し、各モータ51~54に取り付けられたモータドライバ511~514にそれぞれ送信する。各モータドライバ511~514には、正転又は反転の指令信号(以下、FWD信号またはBWD信号という)とモータに掛かる電圧を制御するPWM信号とが送信される。例えば、受信機7が前進信号を受けると、メインコントローラ6から、FWD信号と高Duty比のPWM信号が各モータドライバ511~514に送信される。これにより、各DCモータ51~54は、同じ回転数で正方向に回転する。一方、旋回を行う際には、右側のDCモータ51、53と左側のDCモータ52、54とで異なるDuty比のPWM信号を送信し、左右の車輪部の回転数に差が生じるようにする。これにより、移動ロボットは右側または左側に旋回する。 Thus, when the receiver 7 receives a signal, this signal is transmitted to the main controller 6. The main controller 6 processes this signal and sends it to the motor drivers 511 to 514 attached to the motors 51 to 54, respectively. Each of the motor drivers 511 to 514 receives a forward or reverse command signal (hereinafter referred to as an FWD signal or a BWD signal) and a PWM signal for controlling a voltage applied to the motor. For example, when the receiver 7 receives the forward signal, the main controller 6 transmits an FWD signal and a PWM signal with a high duty ratio to the motor drivers 511 to 514. As a result, the DC motors 51 to 54 rotate in the positive direction at the same rotational speed. On the other hand, when making a turn, PWM signals having different duty ratios are transmitted between the right DC motors 51 and 53 and the left DC motors 52 and 54 so that the rotational speeds of the left and right wheels are different. . As a result, the mobile robot turns to the right or left.
 このとき、各車輪部41~44は回転し、それぞれの車輪部41~44で少なくとも1つの磁石が検査対象面に吸着するため、移動ロボットは、検査対象面に吸着したまま移動できる。したがって、橋梁の下面で移動ロボットが吊り下げられた状態での移動や、橋梁の垂直面の上下動も可能である。 At this time, the respective wheel portions 41 to 44 rotate, and at least one magnet is attracted to the inspection target surface by the respective wheel portions 41 to 44, so that the mobile robot can move while being attracted to the inspection target surface. Therefore, it is possible to move the mobile robot suspended from the lower surface of the bridge, and to move the vertical surface of the bridge up and down.
 <4.特徴>
 以上のように、本実施形態によれば、各車輪部41~44が、放射状に取り付けられた複数の棒状部材412とその先端部に取り付けられた磁石413とで構成されている。これにより、橋梁等の金属で構成された対象面に磁石によって移動ロボットを吸着させることができる。そして、車輪部41~44の回転に伴って、いずれかの磁石413が常に対象面に吸着しているため、移動ロボットが移動しても対象面から離脱するのを防止することができる。さらに、棒状部材412は放射状に配置されているため、例えば、対象面に段差が設けられている場合でも、この段差が隣接する棒状部材412の間に入り込むため、段差を乗り越えることが可能となる。したがって、対象面が平坦ではなく複雑な凹凸形状を有していても、磁石により吸着した状態で移動することができ、対象面を確実に移動することができる。
<4. Features>
As described above, according to the present embodiment, each of the wheel portions 41 to 44 is composed of the plurality of rod-like members 412 attached radially and the magnet 413 attached to the tip portion thereof. Thereby, a mobile robot can be attracted | sucked to the object surface comprised with metals, such as a bridge, with a magnet. Since any one of the magnets 413 is always attracted to the target surface as the wheel portions 41 to 44 rotate, it can be prevented that the mobile robot moves away from the target surface even if it moves. Furthermore, since the rod-like members 412 are arranged radially, for example, even when a step is provided on the target surface, the step enters between the adjacent rod-like members 412, so that the step can be overcome. . Therefore, even if the target surface is not flat but has a complicated uneven shape, the target surface can be moved while being attracted by the magnet, and the target surface can be moved reliably.
 また、隣接する筐体部1,2が弾性変形可能な連結部で連結されているため、各筐体部1,2は、隣接する筐体の動作に拘束されることなく、隣接する筐体部の運動動作タイミングのずれを連結部3が吸収するため、スムーズな動作が可能となる。例えば、車輪部41~44は、いずれかの磁石が対象面に吸着した状態で回転するので、移動ロボットが前進する場合、両筐体部1,2は小刻みに前進運動と停止を繰り返しながら前進する。このとき、両筐体部が1,2ともに前進していれば、移動ロボットは全体として前進するが、例えば、前側筐体部1が停止しているときに、後側筐体部2が前進しようとしても、移動ロボットは前進できない。 Moreover, since the adjacent housing parts 1 and 2 are connected by a connecting part that can be elastically deformed, the respective housing parts 1 and 2 are adjacent to each other without being restricted by the operation of the adjacent housings. Since the connecting part 3 absorbs the shift of the motion operation timing of the part, a smooth operation is possible. For example, since the wheel portions 41 to 44 rotate with any of the magnets attracted to the target surface, when the mobile robot moves forward, both the casing portions 1 and 2 move forward while repeating forward movement and stoppage in small increments. To do. At this time, if both the housing parts are advanced in both directions, the mobile robot advances as a whole. For example, when the front housing part 1 is stopped, the rear housing part 2 is advanced. Even if you try, the mobile robot cannot move forward.
 これに対して、本実施形態では、両筐体部1,2を上述した連結部3で連結しているため、前側筐体部1が停止し、後側筐体部2が前進する場合、後側筐体部2の前進力が、連結部3におけるバネ部材32の弾性変形により、変形という形でバネ部材32に蓄えられながら、後側筐体部2だけが少し前進することができる。そして、このように蓄えられた前進力は、前側筐体部1が前進するときに開放され、バネ部材32が前側筐体部1を押圧するので、前側筐体部1は速やかに前進することができる。したがって、この移動ロボットにおいては、連結部3によって、隣接する筐体部1,2間の動作のずれを吸収し、スムーズな移動を行うことができる。 On the other hand, in this embodiment, since both the housing parts 1 and 2 are connected by the connecting part 3 described above, when the front housing part 1 stops and the rear housing part 2 moves forward, While the advancing force of the rear housing part 2 is stored in the spring member 32 in the form of deformation due to the elastic deformation of the spring member 32 in the connecting part 3, only the rear housing part 2 can advance a little. The forward force stored in this way is released when the front housing part 1 moves forward, and the spring member 32 presses the front housing part 1, so that the front housing part 1 moves forward quickly. Can do. Therefore, in this mobile robot, the connecting part 3 can absorb the deviation of the operation between the adjacent casing parts 1 and 2 and can smoothly move.
 <5.変形例>
 <5.1>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。例えば、上記実施形態では、筐体部の数が2個であるが、これ以上であってもよい。例えば、3以上の筐体を直線状に配置し、隣接する筐体の間を上述したような連結部で連結すればよい。
<5. Modification>
<5.1>
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible unless it deviates from the meaning. For example, in the above-described embodiment, the number of housing units is two, but may be more. For example, three or more casings may be arranged in a straight line, and adjacent casings may be connected by the connecting portion as described above.
 <5.2>
 また、上記実施形態では、各車輪部41~44に対して、それぞれ駆動部としてのモータ51~54を設け、各車輪部41~44が独立して駆動するように構成しているが、これに限定されない。例えば、1つのモータですべての車輪部を駆動することもできる。この場合、1つのモータで複数の車輪部が駆動できるような連結機構、操舵機構を設ける必要がある。あるいは、各筐体部ごとにモータを設け、1つのモータで両車輪部を駆動するように構成してもよい。そして、モータの数に合わせてモータドライバの数も適宜変更することができる。
<5.2>
Further, in the above embodiment, the motors 51 to 54 as the drive units are provided for the wheel units 41 to 44, respectively, so that the wheel units 41 to 44 are driven independently. It is not limited to. For example, all the wheel portions can be driven by one motor. In this case, it is necessary to provide a coupling mechanism and a steering mechanism that can drive a plurality of wheel portions with one motor. Or you may comprise so that a motor may be provided for each housing | casing part and both wheel parts may be driven with one motor. The number of motor drivers can be changed as appropriate according to the number of motors.
 <5.3>
 また、上記移動ロボットに車輪部の操舵を行うためのステアリング機構を設けることもできる。例えば、図10に示すように、前側筐体部1を、左右一対の第1及び第2ケーシング81,82と、これらケーシング81,82を連結する連結部と、旋回機構とで構成する。各ケーシング81,82はブロック状に形成され同様の構成であるが、図10の左側の第2ケーシング82には、第2車輪部42を駆動するための第2モータ(DCモータ)52、第2ギヤボックス62、第1モータドライバ521が収容されており、第2ギヤボックス62から突出する出力シャフト512に第2車輪部42が連結されている。また、第1ケーシング81も同様に構成されており、第1車輪部41を駆動する。
<5.3>
The mobile robot may be provided with a steering mechanism for steering the wheel portion. For example, as shown in FIG. 10, the front housing part 1 is composed of a pair of left and right first and second casings 81, 82, a connecting part that connects the casings 81, 82, and a turning mechanism. Each casing 81, 82 is formed in a block shape and has the same configuration, but a second casing 82 on the left side of FIG. 10 includes a second motor (DC motor) 52 for driving the second wheel portion 42, a second one. A second gear box 62 and a first motor driver 521 are accommodated, and the second wheel portion 42 is connected to an output shaft 512 protruding from the second gear box 62. Further, the first casing 81 is similarly configured and drives the first wheel portion 41.
 連結部は、両ケーシング81,82の上面同士及び下面同士を連結するための上部連結部83材及び下部連結部材84とで、構成されている。これら連結部材83,84は、板状に形成されており、その両端部がそれぞれ第1ケーシング81及び第2ケーシング82に揺動自在に連結されている。そして、両連結部材83,84の上下方向の隙間には、支持部材85が固定されており、この支持部材85に上述した連結部材31が固定されている。また、上部連結部材83の中央付近にはサーボモータ87が取付けられており、このサーボモータ87は、メインコントローラ62と電気的に接続されている。 The connecting portion is composed of an upper connecting portion 83 material and a lower connecting member 84 for connecting the upper surfaces and lower surfaces of the casings 81 and 82 to each other. These connecting members 83 and 84 are formed in a plate shape, and both end portions thereof are swingably connected to the first casing 81 and the second casing 82, respectively. A support member 85 is fixed in the vertical gap between the connection members 83 and 84, and the connection member 31 described above is fixed to the support member 85. A servo motor 87 is attached near the center of the upper connecting member 83, and the servo motor 87 is electrically connected to the main controller 62.
 連結部よりも前方には、ステアリング・タイロッド86が設けられており、その両端は、両ケーシング81,82に揺動自在に連結されている。そして、このステアリング・タイロッド86と上述したサーボモータ87とは、リンク機構9により接続されている。リンク機構9は、揺動自在に連結された第1及び第2リンク部材91,92で構成されており、長さの短い第1リンク部材91がサーボモータ87の回転軸に固定され、第2リンク部材92がステアリング・タイロッド86の第1ケーシング81側の端部に揺動自在に連結されている。なお、旋回を滑らかにするため、上記旋回機構はアッカーマン原理に基づいている。 A steering tie rod 86 is provided in front of the connecting portion, and both ends of the steering tie rod 86 are swingably connected to the casings 81 and 82. The steering tie rod 86 and the servo motor 87 described above are connected by a link mechanism 9. The link mechanism 9 includes first and second link members 91 and 92 that are swingably connected. The first link member 91 having a short length is fixed to the rotation shaft of the servomotor 87, and the second A link member 92 is swingably connected to the end of the steering tie rod 86 on the first casing 81 side. In order to make the turn smooth, the turning mechanism is based on the Ackermann principle.
 以上のような構成により、右に旋回する場合には、図11に示すように、メインコントローラ62からの指令に基づいて、サーボモータ87により第1リンク部材91を右側に回転させる。これにより、第2リンク部材92がステアリング・タイロッド87を右側に押し遣り、両ケーシング81,82が右側に傾く。その結果、第1及び第2車輪部41,42が右側に傾き、移動ロボットは右側に旋回する。このとき、各車輪部41,42の回転数に差が生じるように、回転数を制御することも可能である。 With the above configuration, when turning to the right, the first link member 91 is rotated to the right by the servo motor 87 based on a command from the main controller 62 as shown in FIG. As a result, the second link member 92 pushes the steering tie rod 87 to the right, and both casings 81 and 82 tilt to the right. As a result, the first and second wheel portions 41 and 42 tilt to the right, and the mobile robot turns to the right. At this time, it is also possible to control the number of revolutions so that a difference occurs in the number of revolutions of the wheel portions 41 and 42.
 一方、左側に旋回する場合には、図12に示すように、サーボモータ87により第1リンク部材91を左側に回転させる。これにより、第2リンク部材92がステアリング・タイロッド86を左側に引っ張り、両ケーシング81,82が左側に傾く。その結果、第1及び第2車輪部41,42が左側に傾き、移動ロボットは左側に旋回する。このように、ステアリング機構を設けると、上記実施形態に比べ旋回半径を小さくすることができるため、狭い領域においても旋回が可能となる。 On the other hand, when turning to the left, the first link member 91 is rotated to the left by the servo motor 87 as shown in FIG. As a result, the second link member 92 pulls the steering tie rod 86 to the left, and both the casings 81 and 82 tilt to the left. As a result, the first and second wheel portions 41 and 42 tilt to the left, and the mobile robot turns to the left. As described above, when the steering mechanism is provided, the turning radius can be reduced as compared with the above-described embodiment, and thus turning is possible even in a narrow region.
 なお、上記の例では、前側筐体部1にステアリング機構を設けているが、後側筐体部2にステアリング機構を設けることもできる。また、両筐体部1,2の両方にステアリング機構を設けると、図13に示すように、旋回半径をさらに小さくすることができる。また、ステアリング機構の構成は、上述したものに限定されず、車輪部を傾けることができれば、リンク機構のほか、ギア機構でもよく、特には限定されない。なお、複数の筐体部を有する場合には、少なくとも1つの筐体部にステアリング機構を設けることができる。 In the above example, a steering mechanism is provided in the front casing 1, but a steering mechanism may be provided in the rear casing 2. Further, when the steering mechanisms are provided in both the housing parts 1 and 2, as shown in FIG. 13, the turning radius can be further reduced. Further, the configuration of the steering mechanism is not limited to that described above, and may be a gear mechanism as well as a link mechanism as long as the wheel portion can be tilted, and is not particularly limited. In the case where a plurality of housing parts are provided, a steering mechanism can be provided in at least one housing part.
 <5.4>
 各車輪41~44にロータリエンコーダ(回転検出部)を取付け、各ロータリーエンコーダから送信される信号に基づいて、メインコントローラ62によって各車輪部41~44の回転数を算出することもできる。これにより、各車輪部で負荷に差が生じた場合、各車輪部を同一回転数にするように制御することができる。
 <5.5>
 連結部3は、上記のように連結部材31とバネ部材32で構成するほか、少なくとも前後方向に弾性変形可能な部材であれば、特には限定されない。
<5.4>
It is also possible to attach a rotary encoder (rotation detection unit) to each wheel 41 to 44 and calculate the rotation speed of each wheel unit 41 to 44 by the main controller 62 based on a signal transmitted from each rotary encoder. Thereby, when a difference arises in load in each wheel part, it can control to make each wheel part into the same number of rotations.
<5.5>
The connecting portion 3 is not particularly limited as long as it is a member that can be elastically deformed at least in the front-rear direction in addition to the connecting member 31 and the spring member 32 as described above.
 <5.6>
 上記実施形態では、移動ロボットを無線で操作しているが、無線を使わず、自動運転するように、メインコントローラを設定し、移動ロボットが指定されたルートを通るようにしてもよい。
<5.6>
In the above embodiment, the mobile robot is operated wirelessly, but the main controller may be set so that the mobile robot follows the designated route so as to automatically operate without using the wireless.
 <5.7>
 上記実施形態で示した電池ボックス8、メインコントローラ6、受信機7、モータドライバ511~541、モータ51~54、ギヤボックス61~64などの位置は、適宜変更することができ、いずれかの筐体部に配置されていればよい。また、筐体部1,2の形態も上述したものに限定されず、電池ボックス8、モータ51~54などの上述した部材を支持できる形態であればよく、上述した基台11,21以外の態様であってもよい。また、複数に分割されていてもよい。
<5.7>
The positions of the battery box 8, the main controller 6, the receiver 7, the motor drivers 511 to 541, the motors 51 to 54, the gear boxes 61 to 64, and the like shown in the above embodiment can be changed as appropriate. What is necessary is just to be arrange | positioned at the body part. Further, the forms of the housing parts 1 and 2 are not limited to those described above, and may be any form that can support the above-described members such as the battery box 8 and the motors 51 to 54, and other than the above-described bases 11 and 21. An aspect may be sufficient. Moreover, you may divide | segment into plurality.
 <5.8>
 上記実施形態では、筐体部1,2にカメラや各種センサを搭載することを示したが、ロボットには種々の機器を搭載することができる。例えば、腐食発見用鉄イオン検知器、内部亀裂発見用超音波センサ、内部亀裂発見用電磁超音波センサ(EMAT)、GPS、ミラー、高輝度LEDライト、レーザレンジセンサなどを搭載することができる。
<5.8>
In the above-described embodiment, it has been shown that cameras and various sensors are mounted on the casing units 1 and 2, but various devices can be mounted on the robot. For example, an iron ion detector for detecting corrosion, an ultrasonic sensor for detecting internal cracks, an electromagnetic ultrasonic sensor (EMAT) for detecting internal cracks, a GPS, a mirror, a high-intensity LED light, a laser range sensor, and the like can be mounted.
 このうち、ミラーは、光の反射のために用いることができる。例えば、移動ロボットにミラーを搭載すれば、光の反射を利用して、鋼床版など鉄骨で隠れて見えないところを映すことができる。そして、このミラーを望遠カメラなどで撮影すれば、目視検査が可能となる。 Of these, the mirror can be used for light reflection. For example, if a mirror is mounted on a mobile robot, it is possible to use a reflection of light to show an area that is hidden behind a steel frame such as a steel slab. If this mirror is photographed with a telephoto camera or the like, visual inspection is possible.
 また、高輝度LEDライトは、カメラによる撮影時に、映像を鮮明にするために用いられるものであり、これにより、太陽の光が当たらない場所でのカメラによる撮影が可能となる。 Also, the high-intensity LED light is used to make the image clearer when shooting with the camera, thereby enabling shooting with the camera in a place where the sun does not shine.
 レーザレンジセンサは橋梁の立体地図作成に用いることができる。例えば、崩落が近いとされる橋梁は古いため、CADデータはもちろん紙図面も保管されているかどうか怪しく、実際に無い場合は実在する橋梁を直接測量する必要がある。しかし、人為的に測量を実施するのは極めて困難であるため、レーザレンジセンサを本発明の移動ロボットに搭載することが望まれる。 The laser range sensor can be used to create a 3D map of the bridge. For example, since bridges that are likely to collapse are old, it is suspicious whether CAD drawings as well as paper drawings are stored. If there is no actual paper, it is necessary to directly survey the existing bridge. However, since it is extremely difficult to perform surveying artificially, it is desirable to mount a laser range sensor on the mobile robot of the present invention.
 <5.9>
 上記実施形態の移動ロボットは、橋梁などの点検用のロボットとして説明したが、これに限定されるものではなく、鋼材などの金属製の対象面上を移動するロボット全般に適用することができる。したがって、検査用に限らず、搬送用のロボット、狭領域未知空間マッピングロボットなどにも適用することができる。
<5.9>
Although the mobile robot of the above embodiment has been described as a robot for inspection of a bridge or the like, it is not limited to this, and can be applied to all robots that move on a metal target surface such as steel. Therefore, the present invention can be applied not only to inspection but also to a transfer robot, a narrow area unknown space mapping robot, and the like.
 以下、本発明の実施例、及びそれと対比する比較例について説明する。但し、本発明は以下の実施例には限定されない。 Hereinafter, examples of the present invention and comparative examples for comparison will be described. However, the present invention is not limited to the following examples.
(実施例)
 実施例として、図10に示すような上記実施形態で示した移動ロボットを作製した。各部の詳細は以下の通りである。
(Example)
As an example, the mobile robot shown in the above embodiment as shown in FIG. 10 was produced. Details of each part are as follows.
(1) 制御系
・メインコントローラ(マイクロチップ・テクノロジー社製PIC18F2320)
・受信機(JR PROPO社製 RG411B)
・送信機(JR PROPO社製 XG7)
・モータドライバ(以下の部品からなる速度可変型Hブリッジ回路)
 -FET(SP8M4を2個) 2個
 -NPNトランジスタ(C1815 )
・電池ボックス(単四乾電池 4個)
(2) 駆動系
・DCモータ(入力電圧:3~6V、出力:約10W)
・ギヤボックス(以下の機構の組み合わせで減速比が774)
 -不思議歯車機構(減速比174)
 -歯数16の小径ギヤ及び歯数72の大径ギヤ
(3) 車輪部
・棒状部材の本数8本、長さ62mm(アルミ合金)
・磁石(ネオジム磁石) 表面磁束密度0.45T、直径8mm,厚さ5mm
(4) 連結部
・各連結部材:外径2mm、長さ7mmのSUS材料
・バネ部材:レインボープロダクツ製SPジョイント(材質:ステンレス、素線径:1mm、有効巻き数:19、コイル平均径:9mm)
(5) 全体重量
 550g
(6) 全長、全幅
 各筐体部間の長さ190mm ロボットの全長300mm、全幅160mm
(1) Control system / Main controller (PIC18F2320 manufactured by Microchip Technology)
・ Receiver (RG 411B manufactured by JR PROPO)
・ Transmitter (JG PROPO XG7)
・ Motor driver (variable speed H-bridge circuit consisting of the following parts)
-FET (2 SP8M4) 2 -NPN transistor (C1815)
・ Battery box (4 AAA batteries)
(2) Drive system / DC motor (input voltage: 3-6V, output: about 10W)
・ Gearbox (reduction ratio is 774 by the combination of the following mechanisms)
-Mysterious gear mechanism (reduction ratio 174)
-Small gear with 16 teeth and large gear with 72 teeth
(3) Number of wheel parts / bar-shaped members 8 pieces, length 62mm (aluminum alloy)
・ Magnet (neodymium magnet) Surface magnetic flux density 0.45T, diameter 8mm, thickness 5mm
(4) Connecting part / each connecting member: SUS material with an outer diameter of 2 mm and a length of 7 mm / spring member: SP joint made by Rainbow Products (material: stainless steel, wire diameter: 1 mm, effective number of turns: 19, coil average diameter: 9mm)
(5) Overall weight 550g
(6) Total length, total width 190mm between each chassis part Overall length of robot 300mm, total width 160mm
 以上のように構成された実施例に係る移動ロボットに対し、各DCモータに6.0Vの電圧を印加した。その結果、水平面では、167mm/sで走行した。また、垂直面では、滑ることなく71mm/sで走行した。垂直面では、追加の積載物を積載し、積載荷重が500gであっても走行した。 A voltage of 6.0 V was applied to each DC motor to the mobile robot according to the example configured as described above. As a result, the vehicle ran at 167 mm / s on the horizontal plane. Further, the vehicle ran at 71 mm / s without slipping on the vertical surface. On the vertical plane, an additional load was loaded, and the vehicle traveled even when the load was 500 g.
(比較例)
 比較例は、上記実施例において、連結部の構成のみを変更した。すなわち、バネ部材を設けずに合計長さが同じになるような連結部材のみを使用し、連結部での変形がないようにした。
(Comparative example)
The comparative example changed only the structure of the connection part in the said Example. That is, only a connecting member having the same total length without using a spring member is used, so that there is no deformation at the connecting portion.
 実施例と同じ条件で水平面を走行させたところ、141mm/sで走行し、実施例よりも速度が低かった。一方、垂直面を走行させたところ、積載荷重無しでは滑りながら、速度を計測するのが困難なぐらい、わずかにしか上昇せず、積載荷重を300gにすると、全く走行しなくなった。 When traveling on a horizontal plane under the same conditions as in the example, it traveled at 141 mm / s, and the speed was lower than in the example. On the other hand, when traveling on a vertical surface, it slipped without a load, but increased only slightly so that it was difficult to measure the speed. When the load was 300 g, the vehicle did not travel at all.
 したがって、実施例のように弾性変形可能な連結部を設けることで、水平面、及び垂直面でのスムーズに動作が確認された。 Therefore, smooth operation on the horizontal and vertical surfaces was confirmed by providing the elastically deformable connecting portion as in the example.
1 前側筐体部
2 後側筐体部
3 連結部
31 連結部材
32 バネ部材
41~44 車輪部
411 基部
412 棒状部材
413 磁石
51~54 DCモータ(駆動部)
511~514 モータドライバ(駆動部)
DESCRIPTION OF SYMBOLS 1 Front side housing | casing part 2 Rear side housing | casing part 3 Connection part 31 Connection member 32 Spring member 41-44 Wheel part 411 Base part 412 Rod-like member 413 Magnet 51-54 DC motor (drive part)
511 to 514 Motor driver (drive unit)

Claims (6)

  1.  金属で構成された対象面を移動する移動ロボットであって、
     間隔をおいて配置される2以上の筐体部と、
     前記各筐体部に回転自在に支持される少なくとも1つの出力シャフトと、
     前記各筐体の両側に配置され、前記各出力シャフトによって回転駆動される車輪部と、
     前記出力シャフトを回転駆動する少なくとも1つの駆動部と、
     前記隣接する前記筐体部同士を連結し、少なくとも一部が弾性変形可能な連結部と、を備え、
     前記各車輪部は、
     前記出力シャフトに連結される基部と、
     前記基部から放射状に突出する複数の棒状部材と
     前記各棒状部材の先端に取り付けられた磁石と、
    を備えている、移動ロボット。
    A mobile robot that moves on a target surface made of metal,
    Two or more housing parts arranged at intervals, and
    At least one output shaft rotatably supported by each housing part;
    Wheel portions that are arranged on both sides of each housing and are rotationally driven by each output shaft;
    At least one drive unit for rotationally driving the output shaft;
    The adjacent casing parts are connected to each other, and at least a part thereof is elastically deformable, and includes a connection part,
    Each wheel part is
    A base coupled to the output shaft;
    A plurality of rod-shaped members projecting radially from the base, and a magnet attached to the tip of each rod-shaped member;
    Mobile robot equipped with.
  2.  前記磁石は、前記棒状部材の先端部において、当該棒状部材の軸周りに回転可能に取り付けられている、請求項1に記載の移動ロボット。 2. The mobile robot according to claim 1, wherein the magnet is attached to the tip of the rod-shaped member so as to be rotatable around the axis of the rod-shaped member.
  3.  前記連結部は、棒状に形成された一対の連結部材と、当該一対の連結部材を連結するバネ部材とで構成されている、請求項1または2に記載の移動ロボット。 The mobile robot according to claim 1 or 2, wherein the connecting portion includes a pair of connecting members formed in a rod shape and a spring member that connects the pair of connecting members.
  4.  前記各車輪部に対して前記駆動部がそれぞれ設けられており、一の前記駆動部によって一の前記車輪部が独立して回転駆動するように構成されている、請求項1から3のいずれかに記載の移動ロボット。 The drive unit is provided for each of the wheel units, and one of the wheel units is configured to be independently driven to rotate by the one drive unit. The mobile robot described in 1.
  5.  前記駆動部との間で信号の受送信を行う通信部をさらに備え、
     前記通信部には、前記駆動部を駆動する信号を外部からの無線で受信する機能を有する、請求項1から4のいずれかに記載の移動ロボット。
    A communication unit that transmits and receives signals to and from the drive unit;
    The mobile robot according to claim 1, wherein the communication unit has a function of wirelessly receiving a signal for driving the driving unit from the outside.
  6.  少なくとも1つの前記筐体部は、前記車輪部の操舵を行うステアリング機構を備えている、請求項1から5のいずれかに記載の移動ロボット。 The mobile robot according to any one of claims 1 to 5, wherein at least one of the housing units includes a steering mechanism that steers the wheel unit.
PCT/JP2013/082472 2012-12-04 2013-12-03 Mobile robot WO2014087999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551103A JP5846516B2 (en) 2012-12-04 2013-12-03 Mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012265386 2012-12-04
JP2012-265386 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087999A1 true WO2014087999A1 (en) 2014-06-12

Family

ID=50883417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082472 WO2014087999A1 (en) 2012-12-04 2013-12-03 Mobile robot

Country Status (2)

Country Link
JP (1) JP5846516B2 (en)
WO (1) WO2014087999A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828973B1 (en) * 2015-01-06 2015-12-09 阪神高速技術株式会社 Structure inspection robot
JP5832690B1 (en) * 2015-08-11 2015-12-16 阪神高速技術株式会社 Structure inspection robot
JP2016043726A (en) * 2014-08-20 2016-04-04 阪神高速技術株式会社 Inspection robot
CN105539622A (en) * 2015-12-22 2016-05-04 国网重庆市电力公司电力科学研究院 Climbing robot and system
CN105835970A (en) * 2016-03-18 2016-08-10 中国人民解放军军事交通学院 Hydraulic variant control obstacle-crossing vehicle
CN105923065A (en) * 2016-05-25 2016-09-07 华东理工大学 Multi-mode movement driving robot and operation method thereof
CN109808790A (en) * 2019-02-15 2019-05-28 东北大学秦皇岛分校 A kind of Novel power system driving legged type robot for electricity
CN109850027A (en) * 2019-02-28 2019-06-07 重庆邮电大学 A kind of bionical biped climbing robot based on magnetosensitive rubber pasting material
CN110171498A (en) * 2019-04-19 2019-08-27 北京交通大学 One kind can turn to rolling robot
CN110916572A (en) * 2020-01-21 2020-03-27 金陵科技学院 A wheeled vacuum chuck structure climbing clearance dolly for glass curtain wall
CN111746679A (en) * 2020-07-01 2020-10-09 南京农业大学 Wheel type omnidirectional claw wall-climbing robot and movement method thereof
RU217627U1 (en) * 2022-12-05 2023-04-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) Mobile robot with magnetic propulsion
WO2023137935A1 (en) * 2022-01-21 2023-07-27 北京史河科技有限公司 Reversible dust removal robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121177A (en) * 1983-12-01 1985-06-28 Mitsubishi Electric Corp Mobile device
JPH1024875A (en) * 1996-07-11 1998-01-27 Nippon Kensetsu Kikaika Kyokai Traveling device of wall face running robot
JPH10175575A (en) * 1996-12-19 1998-06-30 Osaka Gas Co Ltd Control device for magnetic attraction moving body
JPH10286694A (en) * 1997-04-14 1998-10-27 Koike Sanso Kogyo Co Ltd Trackless truck
JP2000168305A (en) * 1998-12-07 2000-06-20 Shuji Akiyama Magnetic attraction type wheel
WO2011102527A1 (en) * 2010-02-22 2011-08-25 学校法人日本大学 Mobile robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121177A (en) * 1983-12-01 1985-06-28 Mitsubishi Electric Corp Mobile device
JPH1024875A (en) * 1996-07-11 1998-01-27 Nippon Kensetsu Kikaika Kyokai Traveling device of wall face running robot
JPH10175575A (en) * 1996-12-19 1998-06-30 Osaka Gas Co Ltd Control device for magnetic attraction moving body
JPH10286694A (en) * 1997-04-14 1998-10-27 Koike Sanso Kogyo Co Ltd Trackless truck
JP2000168305A (en) * 1998-12-07 2000-06-20 Shuji Akiyama Magnetic attraction type wheel
WO2011102527A1 (en) * 2010-02-22 2011-08-25 学校法人日本大学 Mobile robot

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043726A (en) * 2014-08-20 2016-04-04 阪神高速技術株式会社 Inspection robot
JP5828973B1 (en) * 2015-01-06 2015-12-09 阪神高速技術株式会社 Structure inspection robot
JP5832690B1 (en) * 2015-08-11 2015-12-16 阪神高速技術株式会社 Structure inspection robot
CN105539622A (en) * 2015-12-22 2016-05-04 国网重庆市电力公司电力科学研究院 Climbing robot and system
CN105835970A (en) * 2016-03-18 2016-08-10 中国人民解放军军事交通学院 Hydraulic variant control obstacle-crossing vehicle
CN105923065B (en) * 2016-05-25 2018-07-31 华东理工大学 Multi-mode drives mobile robot and its operation method
CN105923065A (en) * 2016-05-25 2016-09-07 华东理工大学 Multi-mode movement driving robot and operation method thereof
CN109808790A (en) * 2019-02-15 2019-05-28 东北大学秦皇岛分校 A kind of Novel power system driving legged type robot for electricity
CN109850027A (en) * 2019-02-28 2019-06-07 重庆邮电大学 A kind of bionical biped climbing robot based on magnetosensitive rubber pasting material
CN110171498A (en) * 2019-04-19 2019-08-27 北京交通大学 One kind can turn to rolling robot
CN110916572A (en) * 2020-01-21 2020-03-27 金陵科技学院 A wheeled vacuum chuck structure climbing clearance dolly for glass curtain wall
CN111746679A (en) * 2020-07-01 2020-10-09 南京农业大学 Wheel type omnidirectional claw wall-climbing robot and movement method thereof
WO2023137935A1 (en) * 2022-01-21 2023-07-27 北京史河科技有限公司 Reversible dust removal robot
RU217627U1 (en) * 2022-12-05 2023-04-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) Mobile robot with magnetic propulsion

Also Published As

Publication number Publication date
JP5846516B2 (en) 2016-01-20
JPWO2014087999A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5846516B2 (en) Mobile robot
US9487254B2 (en) Vehicle and method for the independent inspection of hard-to-reach inner spaces
EP3842605A1 (en) Intelligent parking lot and cluster transport robot thereof
JP6079997B2 (en) Group moving body of magnetic adsorption vehicle
CN103246286B (en) The unmanned arrangement travelling Operation Van&#39;s region cable and its control device
WO2018110516A1 (en) Wall-climbing robot
EP1957349A1 (en) Dual tracked mobile robot for motion in rough terrain
US11235821B2 (en) Reconfigurable joint track compound mobile robot
JP2007112168A (en) Spherical moving device
JP2022541998A (en) Coaxial robotic arm and independent panning of sensory housing
US20160194042A1 (en) Three-wheeled mobile robot
JP2016078466A (en) Magnetic type adsorption travel vehicle, and magnet type construction/civil engineering structure inspection device
ITTO20110037A1 (en) MECHANICAL WORK WITHDRAWAL FOR THE OPERATION OF ARTICULATED EXTENSIONS IN VEHICLE APPLICATIONS.
US11630025B2 (en) Robotic inspection device
KR101204147B1 (en) Caster wheel mechanism having dual offset structure and omnidirectional mobile robot using the same
CN213473334U (en) Emergency rescue unmanned vehicle
JP2016033010A (en) Mobile robot
JP3809698B2 (en) Transport device
JP6504749B2 (en) Mobile robot
KR20130135562A (en) Four-wheel drive automated guided vehicle using chain
Tătar et al. In-pipe modular robotic systems for inspection and exploration
JP6775152B2 (en) Unmanned vehicle
JP2591531B2 (en) A work vehicle that can handle uneven terrain
JP2011173453A (en) Vehicle travel control system
KR100513579B1 (en) A Tricycle Type Mobile Robot with Body Angle Adjusting Mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861359

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014551103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861359

Country of ref document: EP

Kind code of ref document: A1