WO2014087898A1 - Liquid-crystal display device - Google Patents

Liquid-crystal display device Download PDF

Info

Publication number
WO2014087898A1
WO2014087898A1 PCT/JP2013/081905 JP2013081905W WO2014087898A1 WO 2014087898 A1 WO2014087898 A1 WO 2014087898A1 JP 2013081905 W JP2013081905 W JP 2013081905W WO 2014087898 A1 WO2014087898 A1 WO 2014087898A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
wiring
ghost
source
Prior art date
Application number
PCT/JP2013/081905
Other languages
French (fr)
Japanese (ja)
Inventor
亮 山川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014087898A1 publication Critical patent/WO2014087898A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling

Definitions

  • the present invention relates to a liquid crystal display device having a ghost correction function for correcting a ghost generated in a liquid crystal panel.
  • a ghost generated when a video signal to be displayed is written by being shifted by one line from a position (line) to be displayed causes a reduction in display quality.
  • the amount of generation of the ghost varies depending on the amount of blunting of the gate signal and the source signal.
  • the amount of bluntness of each signal tends to increase as the distance from the signal supply source side increases. That is, since the amount of ghost generation varies depending on the distance from the gate driver and the source driver, there are locations where the amount of ghost generation is large and portions within the liquid crystal panel.
  • the region X is far from the source driver 1011 and close to the gate driver 1012. Therefore, the rear ghost is maximum, and in the region Y, the rear ghost is minimum because it is close to the source driver 1011 and far from the gate driver 1012.
  • each signal is supplied to the liquid crystal panel 1010 at the timing shown in FIG. 15A, and as shown in FIG. 15B, the source line to be driven and the source line
  • the ghost generated in the shifted source line is conspicuous.
  • each signal is supplied to the liquid crystal panel 1010 at the timing shown in FIG. 16A, and as shown in FIG. ghosts generated in the source line that are shifted from the source line are not noticeable.
  • the generation amount of the ghost is different, that is, the fact that the generation amount of the ghost has an in-plane distribution significantly deteriorates the display quality as a liquid crystal display.
  • the ghost correction coefficient is changed according to the luminance level difference between the front and rear lines, so that the ghost is appropriately corrected according to the characteristics of the liquid crystal panel and the luminance difference between the front and rear lines. is doing.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2003-150131 (published on May 23, 2003)
  • the present invention has been made in view of the above-described problems, and its purpose is to simplify the correction parameter (ghost correction coefficient), thereby suppressing an increase in development period and cost necessary for generating the correction parameter. It is an object of the present invention to provide a liquid crystal display device that can be used.
  • a liquid crystal display device includes a liquid crystal panel including a plurality of display pixels and a plurality of driving wirings for driving the display pixels.
  • a liquid crystal display device including a driving circuit that applies a driving voltage for driving to the display pixel via the driving wiring a dullness of a signal generated by the driving voltage applied to the driving wiring is reduced in the liquid crystal panel. It is uniform in the plane.
  • FIG. 1 It is a schematic block diagram of the liquid crystal display device which concerns on Embodiment 2 of this invention. The relationship between the temperature of the liquid crystal panel and the occurrence of ghost is shown, (a) is a timing chart showing an example of ghost occurrence at normal temperature, (b) is a timing chart showing ghost occurrence at low temperature, (C) is a timing chart showing generation of a ghost at a high temperature. It is a schematic block diagram of the liquid crystal display device which concerns on Embodiment 3 of this invention. It is a figure which shows the ghost correction amount of the both ends of the liquid crystal panel shown in FIG. It is a figure which shows the ghost correction amount of the center part of the liquid crystal panel shown in FIG. It is a schematic block diagram of the liquid crystal display device shown in FIG.
  • FIG. 1 is a schematic block diagram of the liquid crystal display device which concerns on Embodiment 4 of this invention. It is a figure which shows an example of the ghost generation
  • (A) is the timing chart of each signal which shows the state of the ghost generation by the relationship between the dullness of the source signal and the dullness of the gate signal, and (b) is an example of the ghost generation at the timing chart shown in (a).
  • FIG. (A) is the timing chart of each signal which shows the state of the ghost generation by the relationship between the dullness of the source signal and the dullness of the gate signal, and (b) is a ghost generation example in the timing chart shown in (a).
  • FIG. 1 is a plan view showing a schematic structure of a liquid crystal display device 101 according to the present embodiment.
  • the liquid crystal display device 101 includes a liquid crystal panel 10, a source driver (drive circuit) 11, and a gate driver 12.
  • liquid crystal panel 10 a plurality of source wirings (driving wirings) and a plurality of gate wirings are arranged orthogonally, and pixel electrodes (display pixels: not shown) are formed at intersections of the respective wirings.
  • This is an active matrix type liquid crystal panel, and an image is displayed in the active area 10a.
  • the source driver 11 applies a driving voltage to the pixel electrode, supplies a source signal to the source wiring of the liquid crystal panel 10, and the gate driver 12 applies a gate signal to the gate wiring of the liquid crystal panel 10. Supply.
  • the source driver 11 of the liquid crystal panel 10 is connected to the source wiring 13 formed in the active area 10 a of the liquid crystal panel 10.
  • the lead-out wiring 13a led out from each source wiring 13 and the connection terminal 11a of the source driver 11 are connected so as to correspond to each other.
  • the wiring resistance of the lead-out wiring 13a in the central portion A of the liquid crystal panel 10 is formed to be higher than the wiring resistance of the lead-out wiring 13a in the end portion (other than the central portion A) of the liquid crystal panel 10. Yes.
  • the wiring resistance is increased by making the length of the lead-out wiring 13a in the central portion A longer than the length of the lead-out wiring 13a in the end portion B.
  • the dullness of the gate signal is small in the end region C close to the gate driver 12 and large in the central region D.
  • the dullness of the source signal is smaller near the source driver 11 and larger near the source driver 11. Therefore, in the end region C, the source signal is greatly dull, but the gate signal is also dull, so that the amount of post-ghost is maximized (FIG. 3). Further, in the central region D, the gate signal is greatly dull, but the source signal is dull, so that the amount of post-ghost is minimized (FIG. 5).
  • the amount of ghost generation varies from region to region.
  • the wiring resistance of the lead-out wiring 13a is made different between the central portion A and the end portion B as described above.
  • FIG. 2 is a timing chart showing a ghost occurrence state in the central region D.
  • FIG. 3 is a timing chart showing a ghost occurrence state in the end region C.
  • the central region D has a high wiring resistance of the lead-out wiring 13a as in the central part A shown in FIG. 1, as shown in FIG. 2, the central region D is in a state equivalent to the maximum rear ghost shown in FIG. The amount of after-ghost is generated.
  • the in-plane variation of the ghost generation amount can be minimized at the design stage of the liquid crystal display device 101.
  • FIG. 4 shows ghost correction parameters when the post-ghost shown in FIGS. 2 and 3 occurs.
  • the horizontal axis indicates the signal line
  • the vertical axis indicates the scanning line
  • the ghost correction parameter may be set for each scanning line.
  • the ghost correction parameter is simplified by minimizing the in-plane variation of the ghost generation amount at the design stage of the liquid crystal display device 101. As a result, the calculation amount of the ghost correction process is suppressed, and the capacity of the IC required for the correction circuit can be reduced.
  • the wiring resistance of the lead-out wiring 13a of the source wiring 13 is increased in the central portion A of the liquid crystal panel 10.
  • the ghost generation amount is approximately the same as that of the end B where the normal ghost generation amount is maximum.
  • the in-plane distribution of the ghost generation amount is uniform even if the ghost parameters are the same.
  • FIG. 7 is a schematic configuration diagram of the liquid crystal display device 201 according to the present embodiment.
  • liquid crystal display device 201 what is different from the first embodiment is how to set the wiring resistance of the lead-out wiring 13a of the source wiring 13.
  • the wiring resistance in the central portion A is increased in order to make the in-plane ghost generation amount uniform.
  • the wiring resistance of the lead-out wiring 13a of the source wiring 13 at the end B is set to be lower than the wiring resistance of the lead-out wiring 13a of the source wiring 13 at the center A (other than the panel end and other than the end B). ing.
  • the wiring resistance is lowered by making the wiring of the lead-out wiring 13a at the end B thicker than the wiring of the lead-out wiring 13a at the center A.
  • the wiring resistance of the lead-out wiring 13a in the central portion A of the liquid crystal panel 10 is the end portion of the liquid crystal panel 10 (other than the central portion A).
  • the wiring resistance of the lead-out wiring 13a is higher.
  • the in-plane distribution of the ghost generation amount is made uniform by making the generation amount of the post-ghost in the central portion A and the end portion B substantially the same.
  • FIG. 8 is a diagram for explaining that the amount of ghost generation varies depending on the temperature.
  • FIG. 8A shows a state in which the source signal and the gate signal are dull at room temperature.
  • the ghost after the source signal Sout n increases and the ghost before the source signal Sout n + 1 decreases as shown in FIG.
  • the ghost after the source signal Sout n decreases, and the ghost before the source signal Sout n + 1 increases.
  • FIG. 9 is a schematic configuration diagram of the liquid crystal display device 301 according to the present embodiment.
  • the liquid crystal display device 301 has a configuration in which the LED light sources 1 are disposed on both ends of the liquid crystal panel 10 and the light guide plate 2 is disposed on the back surface of the liquid crystal panel 10.
  • the temperature closer to the LED light source 1 is higher, the temperature at the end E near the LED light source 1 is higher than that at the center F far from the LED light source 1 in the liquid crystal panel 10.
  • the ghost correction parameter is changed for each location according to the backlight layout.
  • the ghost correction parameter is set weak in the vicinity of the backlight light source (edge E) where the panel is likely to become hot.
  • the ghost correction parameter is set to be stronger in the vicinity of the center of the panel (central portion F) where the panel tends to be relatively low in temperature.
  • ghost correction parameters look-up tables
  • ghost correction parameters that define voltages for ghost correction based on the luminance of the previous frame and the luminance of the next frame, respectively.
  • a ghost correction circuit (not shown) that performs ghost correction so as to eliminate ghost generated in the source signal flowing through the source wiring 13 is provided, and the LED light sources 1 are disposed on both ends of the liquid crystal panel 10;
  • the ghost correction circuit has a source that flows in the source wiring 13 disposed near the center of the liquid crystal panel 10.
  • the ghost correction strength for the signal is set to be higher than the ghost correction strength for the source signal flowing in the source wiring arranged on the end side of the liquid crystal panel.
  • the liquid crystal display device 301 realizes the ghost correction processing with, for example, a block configuration as shown in FIG.
  • the liquid crystal display device 301 includes a liquid crystal panel unit 311, a backlight unit 312, an image data acquisition unit 313, an image processing unit 314, a liquid crystal controller 315, and a synchronization circuit 316 as shown in FIG.
  • the liquid crystal panel unit 311 includes a liquid crystal panel 10 and a liquid crystal driver 312 for driving the liquid crystal panel 10.
  • the liquid crystal driver 312 includes the source driver 11 shown in FIG.
  • the liquid crystal driver 312 drives the liquid crystal panel 10 based on a control signal from the liquid crystal controller 315.
  • the backlight unit 312 includes an LED light source 1, an LED driver 322 for driving the LED light source 1, and an LED controller 321 for outputting a control signal for controlling the LED driver 322.
  • the LED controller 321 outputs a control signal generated based on the LED data signal from the image processing unit 314 to the LED driver 322 and also outputs it to the synchronization circuit 316.
  • the image data acquisition unit 313 acquires image data of an image to be displayed on the liquid crystal panel 10 from an external device or the like, and outputs the image data to the subsequent image processing unit 314.
  • the image data acquired here is a color video signal.
  • the image processing unit 314 includes a Y / C separation circuit 341, a signal adjustment circuit 342, a color demodulation circuit 343, a contrast adjustment circuit 344, a gamma correction circuit 345, and a signal generation circuit 346.
  • the Y / C separation circuit 341 separates the color video signal from the image data acquisition unit 313 into a luminance signal (Y) and a color signal (C).
  • the separated luminance signal (Y) and color signal (C) are output to the color demodulation circuit 343 after predetermined adjustment by the signal adjustment circuit 342.
  • the color demodulation circuit 343 converts the adjusted luminance signal (Y) and color signal (C) into R, G, and B signals that are the three primary colors of light.
  • the R, G, and B signals are subjected to contrast adjustment by the contrast adjustment circuit 344, are subjected to gamma correction by the gamma correction circuit 345, and are output to the signal generation circuit 346.
  • the signal generation circuit 346 generates an LED data signal to be displayed on the liquid crystal panel 10 from the R, G, and B signals subjected to gamma correction, and outputs the LED data signal to the liquid crystal controller 315. Output.
  • the liquid crystal controller 315 constitutes a ghost correction circuit including a drive voltage value determination circuit 351, a ghost voltage value determination circuit 352, and a memory 353.
  • the driving voltage value determining circuit 351 determines a driving voltage value for driving the liquid crystal panel 10 from the LCD data signal from the image processing unit 314 and outputs the driving voltage value to the ghost voltage value determining circuit 352.
  • the ghost voltage value determination circuit 352 refers to the ghost voltage determination LUT 353a (ghost correction parameter table) stored in the memory 353 based on the drive voltage value from the drive voltage value determination circuit 351, and determines the ghost voltage value.
  • the ghost voltage value is output to the liquid crystal driver 312 of the liquid crystal panel unit 311 in synchronization with the synchronization signal output from the synchronization circuit 316.
  • FIG. 13 is a schematic configuration diagram of the liquid crystal display device 401 according to the present embodiment.
  • the liquid crystal display device 401 includes an area-driven LED light source 3 as shown in FIG.
  • a plurality of LEDs are arranged on the back surface of the liquid crystal panel 10, and lighting of each LED is controlled according to driving of a predetermined area of the liquid crystal panel 10.
  • G indicates a state where the LED is turned off
  • H indicates a state where the LED is turned on.
  • the ghost correction parameter is changed for each location according to the backlight layout.
  • the ghost correction parameter is set to be weak in an area corresponding to backlight lighting where the panel is likely to become hot.
  • the ghost correction parameter is set to be stronger in the region corresponding to the backlight extinguishing where the panel tends to be relatively low in temperature.
  • the timing controller has at least two kinds of ghost correction parameters (lookup table) of strong / weak, and in the timing controller, the backlight control unit and the source driver drive unit work together to select the optimum ghost parameter, This embodiment can be realized.
  • a ghost correction circuit (not shown) that performs ghost correction so as to eliminate ghost generated in the source signal flowing through the source wiring 13 is provided, and the LED light source 3 is provided for each predetermined area of the liquid crystal panel 10.
  • the ghost correction circuit flows in the source wiring 13 corresponding to the light irradiated area of the liquid crystal panel 10 and the ghost correction intensity for the source signal is It is set higher than the ghost correction intensity for the source signal flowing through the source wiring 13 corresponding to the area not irradiated with light.
  • the above-described ghost correction processing can be realized with the same block configuration (FIG. 12) as the liquid crystal display device 301 of the third embodiment.
  • a liquid crystal display device includes a liquid crystal panel 10 including a plurality of display pixels and a plurality of driving wirings (source wirings 13) for driving the display pixels, and driving the display pixels.
  • the dullness of the signal (source signal) generated by the driving voltage applied to the liquid crystal panel 10 is made uniform in the plane of the liquid crystal panel 10.
  • the amount of ghost generation can be made uniform in the plane by making the signal (source signal) blunt in the plane of the liquid crystal panel 10.
  • the liquid crystal display device includes a lead-out wiring in the central portion A of the liquid crystal panel 10 among the lead-out wirings 13a led out from the drive circuit (source driver 11) to the drive wiring (source wiring 13).
  • the wiring resistance of 13a is made higher than the wiring resistance of the lead-out wiring 13a other than the central portion A of the liquid crystal panel 10.
  • the dullness of the signal (source signal) can be made uniform in the plane of the liquid crystal panel 10, so that the amount of ghost generation can be made uniform in the plane.
  • the liquid crystal display device includes a lead-out line at the end B of the liquid crystal panel 10 among the lead-out lines 13a drawn from the drive circuit (source driver 11) to the drive line (source line 13).
  • the wiring resistance of 13a is made lower than the wiring resistance of the lead-out wiring 13a other than the end B of the liquid crystal panel 10.
  • the dullness of the signal (source signal) can be made uniform in the plane of the liquid crystal panel 10, so that the amount of ghost generation can be made uniform in the plane.
  • the driving circuit is the source driver 11 and the driving wiring is the source wiring 13
  • the source wiring 13 in the central portion A of the liquid crystal panel 10 is used.
  • the wiring resistance of the extraction wiring 13a is set higher than the wiring resistance of the extraction wiring 13a of the source wiring 13 other than the central portion A of the liquid crystal panel 10.
  • the driving circuit is the source driver 11 and the driving wiring is the source wiring 13
  • the source wiring 13 at the end B of the liquid crystal panel 10 is The wiring resistance of the extraction wiring 13 a is set lower than the wiring resistance of the extraction wiring 13 a of the source wiring 13 other than the end B of the liquid crystal panel 10.
  • the liquid crystal display device includes an LED light source 1 as a backlight and a ghost correction circuit (liquid crystal controller 315) that performs ghost correction so as to eliminate ghost generated in a source signal flowing through the source wiring 13.
  • the backlight LED light source 1 is an edge-type backlight that is disposed at both ends of the liquid crystal panel 10 and irradiates light through the light guide plate 2 disposed on the back surface of the liquid crystal panel 10.
  • the ghost correction circuit distributes the ghost correction intensity with respect to the source signal flowing through the source wiring 13 arranged near the central portion (central region F) of the liquid crystal panel 10 to the end portion (end region E) side of the liquid crystal panel 10. The ghost correction strength for the source signal flowing in the source wiring 13 is increased.
  • the ghost characteristics can be controlled to be substantially constant over the entire panel.
  • the liquid crystal display device includes the LED light source 3 as a backlight and a ghost correction circuit that performs ghost correction so as to eliminate ghost generated in the source signal flowing through the source wiring 13.
  • the (LED light source 3) is an area active type backlight that performs light irradiation for each predetermined area of the liquid crystal panel 10
  • the ghost correction circuit corresponds to an area of the liquid crystal panel 10 that is irradiated with light.
  • the ghost correction intensity for the source signal flowing in the source wiring 13 is set higher than the ghost correction intensity for the source signal flowing in the source wiring 13 corresponding to the area where no light is irradiated in the liquid crystal panel 10.
  • the ghost characteristics can be controlled to be substantially constant over the entire panel.
  • the present invention can be used for all liquid crystal display devices having a ghost correction function.
  • LED light source (backlight) 2 Light guide plate 3 LED light source (backlight) 10 Liquid crystal panel 10a Active area 11 Source driver (drive circuit) 11a Connection terminal 12 Gate driver (drive circuit) 13 Source wiring (drive wiring) 13a Lead wiring 101 Liquid crystal display device 201 Liquid crystal display device 301 Liquid crystal display device 315 Liquid crystal controller (ghost correction circuit) 401 Liquid crystal display device A Central part B End part C End part area D Central area E End part F Central part

Abstract

This liquid-crystal display device (101) makes source signal dullness, which arises from a drive voltage which is imparted to source wiring (13) of a liquid-crystal panel (10), uniform within the screen of the liquid-crystal panel (10). It is thus possible, by simplifying a ghost correction parameter, to suppress increases in development time and expenditures required for ghost correction parameter creation.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶パネルに発生するゴーストを補正するためのゴースト補正機能を有する液晶表示装置に関する。 The present invention relates to a liquid crystal display device having a ghost correction function for correcting a ghost generated in a liquid crystal panel.
 液晶表示装置において、表示すべき映像信号が表示すべき箇所(ライン)から1ラインずれて書き込まれることによって生じるゴーストは、表示品位を低下させる原因になる。 In a liquid crystal display device, a ghost generated when a video signal to be displayed is written by being shifted by one line from a position (line) to be displayed causes a reduction in display quality.
 上記ゴーストは、ゲート信号、ソース信号の鈍り量によって発生量が変化する。通常、各信号の鈍り量は、信号供給源側から遠い程、多くなる傾向にある。つまり、ゲートドライバ、ソースドライバからの距離によってゴーストの発生量が変化するため、液晶パネル内でゴーストの発生量の多い箇所と少ない箇所が存在することになる。 The amount of generation of the ghost varies depending on the amount of blunting of the gate signal and the source signal. Usually, the amount of bluntness of each signal tends to increase as the distance from the signal supply source side increases. That is, since the amount of ghost generation varies depending on the distance from the gate driver and the source driver, there are locations where the amount of ghost generation is large and portions within the liquid crystal panel.
 例えば、図14に示すように、液晶パネル1001の液晶パネル1010を駆動する場合、図中、下側から上側に向かってスキャンするとき、領域Xでは、ソースドライバ1011に遠く、ゲートドライバ1012に近いため、後ゴーストが最大となり、領域Yでは、ソースドライバ1011に近く、ゲートドライバ1012に遠いため、後ゴーストが最小となる。 For example, as shown in FIG. 14, when driving the liquid crystal panel 1010 of the liquid crystal panel 1001, when scanning from the lower side to the upper side in the drawing, the region X is far from the source driver 1011 and close to the gate driver 1012. Therefore, the rear ghost is maximum, and in the region Y, the rear ghost is minimum because it is close to the source driver 1011 and far from the gate driver 1012.
 上記領域Xにおいて、各信号は、図15の(a)に示すタイミングで液晶パネル1010に供給され、図15の(b)に示すように、駆動すべきソースラインと、このソースラインに対してずれたソースラインに発生したゴーストが目立っている。 In the region X, each signal is supplied to the liquid crystal panel 1010 at the timing shown in FIG. 15A, and as shown in FIG. 15B, the source line to be driven and the source line The ghost generated in the shifted source line is conspicuous.
 これに対して、上記領域Yにおいて、各信号は、図16の(a)に示すタイミングで液晶パネル1010に供給され、図16の(b)に示すように、駆動すべきソースラインと、このソースラインに対してずれたソースラインに発生したゴーストは目立っていない。 On the other hand, in the region Y, each signal is supplied to the liquid crystal panel 1010 at the timing shown in FIG. 16A, and as shown in FIG. Ghosts generated in the source line that are shifted from the source line are not noticeable.
 このように、液晶パネル1010の面内において、ゴーストの発生量が異なること、すなわち、ゴースト発生量が面内分布をもつことは、液晶ディスプレイとしての表示品位を著しく悪化させることになる。 Thus, in the plane of the liquid crystal panel 1010, the generation amount of the ghost is different, that is, the fact that the generation amount of the ghost has an in-plane distribution significantly deteriorates the display quality as a liquid crystal display.
 そこで、ゴーストの発生を低減させるためのゴースト補正回路が提案されている。 Therefore, a ghost correction circuit for reducing the occurrence of ghosts has been proposed.
 例えば特許文献1に開示されたゴースト補正回路では、ゴースト補正係数を前後ラインの輝度レベル差に応じて変化させることにより、液晶パネルの特性および前後ラインの輝度差に応じて、ゴーストを適正に補正している。 For example, in the ghost correction circuit disclosed in Patent Document 1, the ghost correction coefficient is changed according to the luminance level difference between the front and rear lines, so that the ghost is appropriately corrected according to the characteristics of the liquid crystal panel and the luminance difference between the front and rear lines. is doing.
日本国公開特許公報「特開2003-150131号公報(2003年5月23日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-150131” (published on May 23, 2003)
 しかしながら、上述のような従来技術では、液晶パネルのゴーストの補正箇所ごとに、ゴースト補正係数を設定しているため、液晶パネルのサイズが大きくなればなるほどゴースト補正係数の数が多くなり、補正回路を実現するのに必要なICの容量増大を招くという問題が生じる。 However, in the prior art as described above, a ghost correction coefficient is set for each ghost correction point on the liquid crystal panel. Therefore, the larger the size of the liquid crystal panel, the larger the number of ghost correction coefficients, and the correction circuit. As a result, there arises a problem that the capacity of the IC required for realizing the above is increased.
 また、ゴースト補正係数の数が多くなれば、ゴースト補正係数の作成に必要な開発期間・費用を増大させるという問題が生じる。 Also, if the number of ghost correction coefficients increases, there will be a problem of increasing the development period and cost necessary for creating the ghost correction coefficients.
 本発明は、上記の各問題点に鑑みなされたものであって、その目的は、補正パラメータ(ゴースト補正係数)を単純化することにより、補正パラメータ作成に必要な開発期間・費用の増大を抑制することが可能な液晶表示装置を提供することにある。 The present invention has been made in view of the above-described problems, and its purpose is to simplify the correction parameter (ghost correction coefficient), thereby suppressing an increase in development period and cost necessary for generating the correction parameter. It is an object of the present invention to provide a liquid crystal display device that can be used.
 上記の課題を解決するために、本発明の一態様に係る液晶表示装置は、複数の表示画素と該表示画素を駆動するための複数の駆動用配線を含んだ液晶パネルと、上記表示画素を駆動するための駆動電圧を上記駆動用配線を介して上記表示画素に印加する駆動回路とを含んだ液晶表示装置において、上記駆動用配線に印加する駆動電圧によって生じる信号の鈍りを、上記液晶パネルの面内で均一にしている。 In order to solve the above problems, a liquid crystal display device according to one embodiment of the present invention includes a liquid crystal panel including a plurality of display pixels and a plurality of driving wirings for driving the display pixels. In a liquid crystal display device including a driving circuit that applies a driving voltage for driving to the display pixel via the driving wiring, a dullness of a signal generated by the driving voltage applied to the driving wiring is reduced in the liquid crystal panel. It is uniform in the plane.
 本発明の一態様によれば、ゴースト補正パラメータを単純化することにより、ゴースト補正パラメータ作成に必要な開発期間・費用の増大を抑制することができるという効果を奏する。 According to one aspect of the present invention, by simplifying the ghost correction parameter, there is an effect that it is possible to suppress an increase in development period and cost necessary for creating the ghost correction parameter.
本発明の実施形態1に係る液晶表装置の概略構成図である。It is a schematic block diagram of the liquid crystal surface device which concerns on Embodiment 1 of this invention. ソース信号の鈍りとゲート信号の鈍りとの関係によるゴースト発生の状態を示す各信号のタイミングチャートである。It is a timing chart of each signal which shows the state of ghost generation by the relation between the dullness of the source signal and the dullness of the gate signal. ソース信号の鈍りとゲート信号の鈍りとの関係によるゴースト発生の状態を示す各信号のタイミングチャートである。It is a timing chart of each signal which shows the state of ghost generation by the relation between the dullness of the source signal and the dullness of the gate signal. 図1に示す液晶パネルにおける各ソースラインにおけるゴースト補正係数の一例を示す図である。It is a figure which shows an example of the ghost correction coefficient in each source line in the liquid crystal panel shown in FIG. ソース信号の鈍りとゲート信号の鈍りとの関係によるゴースト発生の状態を示す各信号のタイミングチャートである。It is a timing chart of each signal which shows the state of ghost generation by the relation between the dullness of the source signal and the dullness of the gate signal. 一般的な液晶パネルにおける各ソースラインにおけるゴースト補正係数の一例を示す図である。It is a figure which shows an example of the ghost correction coefficient in each source line in a common liquid crystal panel. 本発明の実施形態2に係る液晶表示装置の概略構成図である。It is a schematic block diagram of the liquid crystal display device which concerns on Embodiment 2 of this invention. 液晶パネルの温度とゴースト発生との関係を示し、(a)は、常温の場合のゴースト発生例を示すタイミングチャートであり、(b)は、低温の場合のゴースト発生を示すタイミングチャートであり、(c)は、高温の場合のゴースト発生を示すタイミングチャートである。The relationship between the temperature of the liquid crystal panel and the occurrence of ghost is shown, (a) is a timing chart showing an example of ghost occurrence at normal temperature, (b) is a timing chart showing ghost occurrence at low temperature, (C) is a timing chart showing generation of a ghost at a high temperature. 本発明の実施形態3に係る液晶表示装置の概略構成図である。It is a schematic block diagram of the liquid crystal display device which concerns on Embodiment 3 of this invention. 図9に示す液晶パネルの両端側のゴースト補正量を示す図である。It is a figure which shows the ghost correction amount of the both ends of the liquid crystal panel shown in FIG. 図9に示す液晶パネルの中央部のゴースト補正量を示す図である。It is a figure which shows the ghost correction amount of the center part of the liquid crystal panel shown in FIG. 図9に示す液晶表示装置の概略構成ブロック図である。It is a schematic block diagram of the liquid crystal display device shown in FIG. 本発明の実施形態4に係る液晶表示装置の概略構成図である。It is a schematic block diagram of the liquid crystal display device which concerns on Embodiment 4 of this invention. 液晶パネルにおけるゴースト発生箇所の一例を示す図である。It is a figure which shows an example of the ghost generation | occurrence | production location in a liquid crystal panel. (a)は、ソース信号の鈍りとゲート信号の鈍りとの関係によるゴースト発生の状態を示す各信号のタイミングチャートであり、(b)は、(a)に示すタイミングチャートのときのゴースト発生例を示す図である。(A) is the timing chart of each signal which shows the state of the ghost generation by the relationship between the dullness of the source signal and the dullness of the gate signal, and (b) is an example of the ghost generation at the timing chart shown in (a). FIG. (a)は、ソース信号の鈍りとゲート信号の鈍りとの関係によるゴースト発生の状態を示す各信号のタイミングチャートであり、(b)は、(a)に示すタイミングチャートのときのゴースト発生例を示す図である。(A) is the timing chart of each signal which shows the state of the ghost generation by the relationship between the dullness of the source signal and the dullness of the gate signal, and (b) is a ghost generation example in the timing chart shown in (a). FIG.
 〔実施の形態1〕
 本発明の一実施の形態について説明すれば、以下の通りである。
[Embodiment 1]
An embodiment of the present invention will be described as follows.
 (液晶表示装置101の概略説明)
 図1は、本実施の形態に係る液晶表示装置101の概略構造を示す平面図である。
(General description of the liquid crystal display device 101)
FIG. 1 is a plan view showing a schematic structure of a liquid crystal display device 101 according to the present embodiment.
 上記液晶表示装置101は、液晶パネル10と、ソースドライバ(駆動回路)11、ゲートドライバ12とを備えている。 The liquid crystal display device 101 includes a liquid crystal panel 10, a source driver (drive circuit) 11, and a gate driver 12.
 上記液晶パネル10は、複数のソース配線(駆動用配線)と複数のゲート配線とが直交して配され、各配線の交差部に画素電極(表示画素:図示せず)が形成された、所謂アクティブマトリクス型の液晶パネルであり、アクティブエリア10aにおいて映像が表示される。 In the liquid crystal panel 10, a plurality of source wirings (driving wirings) and a plurality of gate wirings are arranged orthogonally, and pixel electrodes (display pixels: not shown) are formed at intersections of the respective wirings. This is an active matrix type liquid crystal panel, and an image is displayed in the active area 10a.
 上記ソースドライバ11は、上記画素電極に駆動電圧を印加するものであって、上記液晶パネル10のソース配線にソース信号を供給し、上記ゲートドライバ12は、上記液晶パネル10のゲート配線にゲート信号を供給する。 The source driver 11 applies a driving voltage to the pixel electrode, supplies a source signal to the source wiring of the liquid crystal panel 10, and the gate driver 12 applies a gate signal to the gate wiring of the liquid crystal panel 10. Supply.
 (ソースドライバとソース配線との接続関係)
 上記液晶表示装置101において、液晶パネル10のソースドライバ11は、液晶パネル10のアクティブエリア10aに形成されているソース配線13に接続されている。ここでは、各ソース配線13から引き出された引き出し配線13aと、ソースドライバ11の接続端子11aとがそれぞれ対応するように接続されている。
(Connection between source driver and source wiring)
In the liquid crystal display device 101, the source driver 11 of the liquid crystal panel 10 is connected to the source wiring 13 formed in the active area 10 a of the liquid crystal panel 10. Here, the lead-out wiring 13a led out from each source wiring 13 and the connection terminal 11a of the source driver 11 are connected so as to correspond to each other.
 上記液晶パネル10の中央部Aにおける、上記引き出し配線13aの配線抵抗は、上記液晶パネル10の端部(中央部A以外)における、上記引き出し配線13aの配線抵抗よりも高くなるように形成されている。ここでは、中央部Aにおける引き出し配線13aの配線の長さを、端部Bおける引き出し配線13aの配線の長さよりも長くすることで、配線抵抗を高くしている。 The wiring resistance of the lead-out wiring 13a in the central portion A of the liquid crystal panel 10 is formed to be higher than the wiring resistance of the lead-out wiring 13a in the end portion (other than the central portion A) of the liquid crystal panel 10. Yes. Here, the wiring resistance is increased by making the length of the lead-out wiring 13a in the central portion A longer than the length of the lead-out wiring 13a in the end portion B.
 通常、上記液晶パネル10において、ゲート信号の鈍りは、ゲートドライバ12に近い端部領域Cで小さく、中央領域Dで大きくなっている。一方、ソース信号の鈍りは、ソースドライバ11に近い方が小さく、遠い方が大きくなっている。従って、端部領域Cでは、ソース信号の鈍りは大きいが、ゲート信号の鈍りも小さいため、後ゴーストの発生量が最大となる(図3)。また、中央領域Dでは、ゲート信号の鈍りが大きいが、ソース信号の鈍りは小さいため、後ゴーストの発生量が最小となる(図5)。このように、液晶パネル10の面内において、ゴースト発生量が領域によって異なる。 Usually, in the liquid crystal panel 10, the dullness of the gate signal is small in the end region C close to the gate driver 12 and large in the central region D. On the other hand, the dullness of the source signal is smaller near the source driver 11 and larger near the source driver 11. Therefore, in the end region C, the source signal is greatly dull, but the gate signal is also dull, so that the amount of post-ghost is maximized (FIG. 3). Further, in the central region D, the gate signal is greatly dull, but the source signal is dull, so that the amount of post-ghost is minimized (FIG. 5). Thus, in the plane of the liquid crystal panel 10, the amount of ghost generation varies from region to region.
 つまり、ゴースト発生量が面内分布をもつことは、液晶ディスプレイとしての表示品位を著しく悪化させることになる。 That is, having the in-plane distribution of the ghost generation amount significantly deteriorates the display quality as a liquid crystal display.
 本実施例では、ゴースト発生量の面内分布を均一にするために、上記のように、引き出し配線13aの配線抵抗を中央部Aと端部Bとで異ならせている。 In this embodiment, in order to make the in-plane distribution of the ghost generation amount uniform, the wiring resistance of the lead-out wiring 13a is made different between the central portion A and the end portion B as described above.
 (ゴースト発生について)
 図2は、中央領域Dにおけるゴースト発生状態を示すタイミングチャートである。
(About ghosting)
FIG. 2 is a timing chart showing a ghost occurrence state in the central region D.
 図3は、端部領域Cにおけるゴースト発生状態を示すタイミングチャートである。 FIG. 3 is a timing chart showing a ghost occurrence state in the end region C.
 上述したように、通常、液晶パネル10において、中央領域Dのほうが端部領域Cよりも後ゴーストが小さいので、図5に示すようなタイミングチャートとなっている。 As described above, since the rear ghost is usually smaller in the central region D than in the end region C in the liquid crystal panel 10, the timing chart is as shown in FIG.
 しかしながら、中央領域Dは、図1に示す中央部Aのように、引き出し配線13aの配線抵抗を高くしているため、図2に示すように、図3に示す後ゴースト最大と同等の状態の後ゴースト発生量となっている。 However, since the central region D has a high wiring resistance of the lead-out wiring 13a as in the central part A shown in FIG. 1, as shown in FIG. 2, the central region D is in a state equivalent to the maximum rear ghost shown in FIG. The amount of after-ghost is generated.
 つまり、ゴースト発生量の面内ばらつきを、液晶表示装置101の設計段階で最小化することができる。 That is, the in-plane variation of the ghost generation amount can be minimized at the design stage of the liquid crystal display device 101.
 図4は、図2及び図3に示す後ゴーストが発生した場合のゴースト補正パラメータを示している。 FIG. 4 shows ghost correction parameters when the post-ghost shown in FIGS. 2 and 3 occurs.
 図4では、横軸に信号ライン、縦軸に走査ラインを示し、ゴースト補正パラメータは、各走査ライン毎に設定すればよいことを示している。 In FIG. 4, the horizontal axis indicates the signal line, the vertical axis indicates the scanning line, and the ghost correction parameter may be set for each scanning line.
 このように、本実施の形態では、ゴースト発生量の面内ばらつきを、液晶表示装置101の設計段階で最小化することによりゴースト補正パラメータを単純化させる。これによりゴースト補正処理の計算量を抑制し、補正回路に必要なICの容量を低減させることを可能としている。 As described above, in this embodiment, the ghost correction parameter is simplified by minimizing the in-plane variation of the ghost generation amount at the design stage of the liquid crystal display device 101. As a result, the calculation amount of the ghost correction process is suppressed, and the capacity of the IC required for the correction circuit can be reduced.
 具体的には、液晶パネル10の中央部Aではソース配線13の引き出し配線13aの配線抵抗を大きくする。これにより、ゲート信号の鈍りの大きくなる中央部Aでソース信号の鈍りを大きくすることで、通常ゴースト発生量が最大となる端部Bと同程度のゴースト発生量となるようにする。結果としてゴースト補正量が端部と中央部で同等程度となるため、ゴーストパラメータを同一にしてもゴースト発生量の面内分布が均一となる。 Specifically, the wiring resistance of the lead-out wiring 13a of the source wiring 13 is increased in the central portion A of the liquid crystal panel 10. Thus, by increasing the dullness of the source signal at the central portion A where the dullness of the gate signal is large, the ghost generation amount is approximately the same as that of the end B where the normal ghost generation amount is maximum. As a result, since the ghost correction amount is approximately the same at the end portion and the central portion, the in-plane distribution of the ghost generation amount is uniform even if the ghost parameters are the same.
 これに対して、通常、中央部A(中央領域D)では、図5に示すように、ゲートドライバ12からの距離が遠いため、ゲート鈍りが大きいが、ソースドライバ11からの距離が近いため、ソース鈍りが小さい。従って、中央部Aでは、後ゴーストが最小となっている。 On the other hand, in the central part A (central region D), as shown in FIG. 5, the distance from the gate driver 12 is far, so the gate dullness is large, but the distance from the source driver 11 is short. Source dullness is small. Therefore, in the central portion A, the rear ghost is minimum.
 この場合、中央部Aと端部Bとで後ゴーストの発生量が異なるため、図6に示すように、ゴースト補正パラメータが複雑になり、ゴースト補正処理の計算量を多くなり、補正回路に必要なICの容量を増大させることになる。 In this case, since the generation amount of the rear ghost is different between the central portion A and the end portion B, as shown in FIG. 6, the ghost correction parameter becomes complicated, the calculation amount of the ghost correction processing increases, and is necessary for the correction circuit. This increases the capacity of the IC.
 〔実施の形態2〕
 本発明の他の実施の形態について説明すれば、以下の通りである。なお、説明の便宜上、前記実施の形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described as follows. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals and explanation thereof is omitted.
 図7は、本実施の形態に係る液晶表示装置201の概略構成図である。 FIG. 7 is a schematic configuration diagram of the liquid crystal display device 201 according to the present embodiment.
 上記液晶表示装置201において、前記実施の形態1と異なるのは、ソース配線13の引き出し配線13aの配線抵抗の設定の仕方である。 In the liquid crystal display device 201, what is different from the first embodiment is how to set the wiring resistance of the lead-out wiring 13a of the source wiring 13.
 前記実施の形態1では、面内のゴースト発生量を均一化するために、中央部Aの配線抵抗を高める構成としていたが、本実施の形態に係る液晶表示装置201では、図7に示すように、端部Bにおけるソース配線13の引き出し配線13aの配線抵抗を、中央部A(パネル端以外、端部B以外)におけるソース配線13の引き出し配線13aの配線抵抗よりも低くなるように設定している。 In the first embodiment, the wiring resistance in the central portion A is increased in order to make the in-plane ghost generation amount uniform. However, in the liquid crystal display device 201 according to the present embodiment, as shown in FIG. In addition, the wiring resistance of the lead-out wiring 13a of the source wiring 13 at the end B is set to be lower than the wiring resistance of the lead-out wiring 13a of the source wiring 13 at the center A (other than the panel end and other than the end B). ing.
 ここでは、端部Bの引き出し配線13aの配線を、中央部Aの引き出し配線13aの配線よりも太くすることで、配線抵抗を低くしている。 Here, the wiring resistance is lowered by making the wiring of the lead-out wiring 13a at the end B thicker than the wiring of the lead-out wiring 13a at the center A.
 上記構成の液晶表示装置201においても、前記実施の形態1と同じく、上記液晶パネル10の中央部Aにおける、上記引き出し配線13aの配線抵抗は、上記液晶パネル10の端部(中央部A以外)における、上記引き出し配線13aの配線抵抗よりも高くなるように形成されていることになる。 Also in the liquid crystal display device 201 having the above configuration, as in the first embodiment, the wiring resistance of the lead-out wiring 13a in the central portion A of the liquid crystal panel 10 is the end portion of the liquid crystal panel 10 (other than the central portion A). Thus, the wiring resistance of the lead-out wiring 13a is higher.
 よって、前記実施の形態1と同様に、中央部Aと端部Bにおける後ゴーストの発生量をほぼ同じにすることで、ゴースト発生量の面内分布を均一化させている。 Therefore, in the same manner as in the first embodiment, the in-plane distribution of the ghost generation amount is made uniform by making the generation amount of the post-ghost in the central portion A and the end portion B substantially the same.
 なお、前記実施の形態1、2では、ゴースト発生を液晶表示装置の設計段階で均一化する例について説明した。 In the first and second embodiments, an example in which ghost generation is made uniform at the design stage of the liquid crystal display device has been described.
 しかしながら、ゴースト発生量は、液晶表示装置の温度によっても異なる。従って、液晶表示装置の温度を考慮してゴースト補正を行う必要がある。 However, the amount of ghost generation varies depending on the temperature of the liquid crystal display device. Therefore, it is necessary to perform ghost correction in consideration of the temperature of the liquid crystal display device.
 図8は、温度によるゴースト発生量が異なることを説明するための図である。 FIG. 8 is a diagram for explaining that the amount of ghost generation varies depending on the temperature.
 図8の(a)は、常温におけるソース信号、ゲート信号の鈍りの状態を示している。この状態で、温度が下がると、図8の(b)に示すように、ソース信号Soutの後ゴーストが増大し、ソース信号Soutn+1の前ゴーストが減少する。一方、温度が上がると、図8の(c)に示すように、ソース信号Soutの後ゴーストが減少し、ソース信号Soutn+1の前ゴーストが増加する。 FIG. 8A shows a state in which the source signal and the gate signal are dull at room temperature. When the temperature decreases in this state, the ghost after the source signal Sout n increases and the ghost before the source signal Sout n + 1 decreases as shown in FIG. On the other hand, when the temperature rises, as shown in FIG. 8C, the ghost after the source signal Sout n decreases, and the ghost before the source signal Sout n + 1 increases.
 従って、温度に応じて変化するゴースト発生量を考慮して、ゴースト補正を行う必要がある。 Therefore, it is necessary to perform ghost correction in consideration of the amount of ghost generation that varies with temperature.
 〔実施の形態3〕
 本発明のさらに他の実施の形態について説明すれば、以下の通りである。なお、説明の便宜上、前記実施の形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The following will describe still another embodiment of the present invention. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals and explanation thereof is omitted.
 図9は、本実施の形態に係る液晶表示装置301の概略構成図である。 FIG. 9 is a schematic configuration diagram of the liquid crystal display device 301 according to the present embodiment.
 上記液晶表示装置301は、液晶パネル10の両端側にLED光源1を配置し、当該液晶パネル10の背面に導光板2を配置した構成となっている。 The liquid crystal display device 301 has a configuration in which the LED light sources 1 are disposed on both ends of the liquid crystal panel 10 and the light guide plate 2 is disposed on the back surface of the liquid crystal panel 10.
 上記LED光源1から照射された光は、導光板2に入射され、当該導光板2内部で拡散され、液晶パネル10を背面側からバックライトを照射するようになっている。所謂、エッジライト型のバックライトシステムを構成している。 The light emitted from the LED light source 1 enters the light guide plate 2, is diffused inside the light guide plate 2, and illuminates the backlight on the liquid crystal panel 10 from the back side. This constitutes a so-called edge light type backlight system.
 LED光源1に近い程、温度が高いので、液晶パネル10において、LED光源1に近い端部Eは、LED光源1から遠い中央部Fよりも温度が高くなっている。 Since the temperature closer to the LED light source 1 is higher, the temperature at the end E near the LED light source 1 is higher than that at the center F far from the LED light source 1 in the liquid crystal panel 10.
 つまり、端部Eでは、温度が高いため、図8の(c)に示すように、後ゴーストが発生しにくいため、図10に示すように、弱めにゴースト補正を行う。 That is, since the temperature at the end E is high, as shown in FIG. 8 (c), the post-ghost is hardly generated, so that the ghost correction is performed weakly as shown in FIG.
 一方、中央部Fでは、端部Eよりも温度が低いため、図8の(b)に示すように、後ゴーストが発生しやすいため、図11に示すように、強めにゴースト補正を行う。 On the other hand, since the temperature at the center portion F is lower than that at the end portion E, a rear ghost is likely to occur as shown in FIG. 8B, so that the ghost correction is performed strongly as shown in FIG.
 具体的には、バックライトのレイアウトに応じて、場所ごとにゴースト補正パラメータを変化させる。例えば、パネルが高温になり易い、バックライト光源付近(端部E)では、ゴースト補正パラメータを弱く設定する。一方、パネルが比較的低温になり易い、パネルのセンター付近(中央部F)では、ゴースト補正パラメータを強めに設定する。これにより、液晶パネル10の温度分布が不均一な場合でも、ゴースト特性がパネル全体でほぼ一定となるよう、制御することができる。 More specifically, the ghost correction parameter is changed for each location according to the backlight layout. For example, the ghost correction parameter is set weak in the vicinity of the backlight light source (edge E) where the panel is likely to become hot. On the other hand, the ghost correction parameter is set to be stronger in the vicinity of the center of the panel (central portion F) where the panel tends to be relatively low in temperature. Thereby, even when the temperature distribution of the liquid crystal panel 10 is non-uniform, it is possible to control the ghost characteristics to be substantially constant over the entire panel.
 例えば、端部Eと中央部Fの二種類のゴースト補正パラメータ(ルックアップテーブル)を有し、それぞれ、前フレームの輝度と次フレームの輝度をもとにゴースト補正する電圧を規定するゴースト補正パラメータテーブルを有することで、本実施の形態を実現できる。 For example, there are two types of ghost correction parameters (look-up tables) of the end portion E and the central portion F, and ghost correction parameters that define voltages for ghost correction based on the luminance of the previous frame and the luminance of the next frame, respectively. By having a table, the present embodiment can be realized.
 具体的には、上記ソース配線13に流れるソース信号に生じるゴーストを無くすようにゴースト補正を行うゴースト補正回路(図示せず)を備え、LED光源1が上記液晶パネル10の両端側に配置され、当該液晶パネル10の背面に配置された導光板を介して光照射を行うエッジ型バックライトである場合、上記ゴースト補正回路は、液晶パネル10の中央部付近に配されたソース配線13に流れるソース信号に対するゴースト補正強度を、当該液晶パネルの端部側に配されたソース配線に流れるソース信号に対するゴースト補正強度よりも高くなるように設定する。 Specifically, a ghost correction circuit (not shown) that performs ghost correction so as to eliminate ghost generated in the source signal flowing through the source wiring 13 is provided, and the LED light sources 1 are disposed on both ends of the liquid crystal panel 10; In the case of an edge-type backlight that irradiates light through a light guide plate disposed on the back surface of the liquid crystal panel 10, the ghost correction circuit has a source that flows in the source wiring 13 disposed near the center of the liquid crystal panel 10. The ghost correction strength for the signal is set to be higher than the ghost correction strength for the source signal flowing in the source wiring arranged on the end side of the liquid crystal panel.
 上記液晶表示装置301は、例えば、図12に示すようなブロック構成によって、上記ゴースト補正処理を実現している。 The liquid crystal display device 301 realizes the ghost correction processing with, for example, a block configuration as shown in FIG.
 すなわち、上記液晶表示装置301は、図12に示すように、液晶パネルユニット311、バックライトユニット312、画像データ取得部313、画像処理部314、液晶コントローラ315、同期回路316を含んでいる。 That is, the liquid crystal display device 301 includes a liquid crystal panel unit 311, a backlight unit 312, an image data acquisition unit 313, an image processing unit 314, a liquid crystal controller 315, and a synchronization circuit 316 as shown in FIG.
 上記液晶パネルユニット311は、液晶パネル10と、この液晶パネル10を駆動するための液晶ドライバ312とを含んでいる。この液晶ドライバ312には、図9に示すソースドライバ11が含まれている。上記液晶ドライバ312は、液晶コントローラ315からの制御信号に基づいて、液晶パネル10を駆動する。 The liquid crystal panel unit 311 includes a liquid crystal panel 10 and a liquid crystal driver 312 for driving the liquid crystal panel 10. The liquid crystal driver 312 includes the source driver 11 shown in FIG. The liquid crystal driver 312 drives the liquid crystal panel 10 based on a control signal from the liquid crystal controller 315.
 上記バックライトユニット312は、LED光源1と、このLED光源1を駆動するためのLEDドライバ322と、このLEDドライバ322を制御するための制御信号を出力するLEDコントローラ321とを含んでいる。 The backlight unit 312 includes an LED light source 1, an LED driver 322 for driving the LED light source 1, and an LED controller 321 for outputting a control signal for controlling the LED driver 322.
 上記LEDコントローラ321は、画像処理部314からのLEDデータ信号に基づいて生成した制御信号を上記LEDドライバ322に出力するとともに、同期回路316にも出力する。 The LED controller 321 outputs a control signal generated based on the LED data signal from the image processing unit 314 to the LED driver 322 and also outputs it to the synchronization circuit 316.
 上記画像データ取得部313は、外部機器などから液晶パネル10に表示すべき画像の画像データを取得し、後段の画像処理部314に出力する。ここで取得する画像データは、カラー映像信号とする。 The image data acquisition unit 313 acquires image data of an image to be displayed on the liquid crystal panel 10 from an external device or the like, and outputs the image data to the subsequent image processing unit 314. The image data acquired here is a color video signal.
 上記画像処理部314は、Y/C分離回路341、信号調整回路342、色復調回路343、コントラスト調整回路344、ガンマ補正回路345、信号生成回路346を含んでいる。 The image processing unit 314 includes a Y / C separation circuit 341, a signal adjustment circuit 342, a color demodulation circuit 343, a contrast adjustment circuit 344, a gamma correction circuit 345, and a signal generation circuit 346.
 上記Y/C分離回路341は、上記画像データ取得部313からのカラー映像信号を輝度信号(Y)と色信号(C)とに分離する。分離された輝度信号(Y)と色信号(C)は、信号調整回路342にて所定の調整が行われた後、色復調回路343に出力される。 The Y / C separation circuit 341 separates the color video signal from the image data acquisition unit 313 into a luminance signal (Y) and a color signal (C). The separated luminance signal (Y) and color signal (C) are output to the color demodulation circuit 343 after predetermined adjustment by the signal adjustment circuit 342.
 上記色復調回路343では、調整された輝度信号(Y)と色信号(C)を、光の3原色であるR,G,B信号に変換する。R,G,B信号は、コントラスト調整回路344にてコントラスト調整が行われた後、ガンマ補正回路345にてガンマ補正が行われ、信号生成回路346に出力される。 The color demodulation circuit 343 converts the adjusted luminance signal (Y) and color signal (C) into R, G, and B signals that are the three primary colors of light. The R, G, and B signals are subjected to contrast adjustment by the contrast adjustment circuit 344, are subjected to gamma correction by the gamma correction circuit 345, and are output to the signal generation circuit 346.
 上記信号生成回路346は、ガンマ補正されたR,G,B信号から、液晶パネル10に表示させるLEDデータ信号を生成し、液晶コントローラ315に出力する一方、バックライトユニと312のLEDコントローラ321に出力する。 The signal generation circuit 346 generates an LED data signal to be displayed on the liquid crystal panel 10 from the R, G, and B signals subjected to gamma correction, and outputs the LED data signal to the liquid crystal controller 315. Output.
 上記液晶コントローラ315は、駆動電圧値決定回路351、ゴースト電圧値決定回路352、メモリ353を含むゴースト補正回路を構成している。 The liquid crystal controller 315 constitutes a ghost correction circuit including a drive voltage value determination circuit 351, a ghost voltage value determination circuit 352, and a memory 353.
 上記駆動電圧値決定回路351は、画像処理部314からのLCDデータ信号から液晶パネル10を駆動するための駆動電圧値を決定し、ゴースト電圧値決定回路352に出力する。 The driving voltage value determining circuit 351 determines a driving voltage value for driving the liquid crystal panel 10 from the LCD data signal from the image processing unit 314 and outputs the driving voltage value to the ghost voltage value determining circuit 352.
 上記ゴースト電圧値決定回路352は、上記駆動電圧値決定回路351からの駆動電圧値から、上記メモリ353に格納されたゴースト電圧決定用LUT353a(ゴースト補正パラメータテーブル)を参照して、ゴースト電圧値を決定し、ゴースト電圧値を上記同期回路316から出力される同期信号に同期して液晶パネルユニット311の液晶ドライバ312に出力する。 The ghost voltage value determination circuit 352 refers to the ghost voltage determination LUT 353a (ghost correction parameter table) stored in the memory 353 based on the drive voltage value from the drive voltage value determination circuit 351, and determines the ghost voltage value. The ghost voltage value is output to the liquid crystal driver 312 of the liquid crystal panel unit 311 in synchronization with the synchronization signal output from the synchronization circuit 316.
 〔実施形態4〕
 本発明のさらに他の実施の形態について説明すれば、以下の通りである。なお、説明の便宜上、前記実施の形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
The following will describe still another embodiment of the present invention. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals and explanation thereof is omitted.
 図13は、本実施の形態に係る液晶表示装置401の概略構成図である。 FIG. 13 is a schematic configuration diagram of the liquid crystal display device 401 according to the present embodiment.
 上記液晶表示装置401は、図13に示すように、エリア駆動型のLED光源3を備えている。 The liquid crystal display device 401 includes an area-driven LED light source 3 as shown in FIG.
 上記LED光源3は、複数のLEDが液晶パネル10の背面に配置され、液晶パネル10の所定のエリアの駆動に応じて、各LEDの点灯が制御される。 In the LED light source 3, a plurality of LEDs are arranged on the back surface of the liquid crystal panel 10, and lighting of each LED is controlled according to driving of a predetermined area of the liquid crystal panel 10.
 図13において、GはLEDが消灯している状態、HはLEDが点灯している状態を示している。 In FIG. 13, G indicates a state where the LED is turned off, and H indicates a state where the LED is turned on.
 ここで、Hに対応する液晶パネル10の領域は、Gに対応する液晶パネル10の領域よりも温度が高くなっているため、弱めのゴースト補正を行う(図10参照)。 Here, since the temperature of the region of the liquid crystal panel 10 corresponding to H is higher than that of the region of the liquid crystal panel 10 corresponding to G, weak ghost correction is performed (see FIG. 10).
 一方、Gに対応する液晶パネル10の領域は、Hに対応する液晶パネル10の領域よりも温度が低くなっているため、強めのゴースト補正を行う(図11参照)。 On the other hand, since the temperature of the region of the liquid crystal panel 10 corresponding to G is lower than that of the region of the liquid crystal panel 10 corresponding to H, stronger ghost correction is performed (see FIG. 11).
 上記の場合においても、前記実施の形態3と同様に、バックライトのレイアウトに応じて、場所ごとにゴースト補正パラメータを変化させる。例えば、パネルが高温になり易い、バックライト点灯に対応する領域では、ゴースト補正パラメータを弱く設定する。一方、パネルが比較的低温になり易い、バックライト消灯に対応する領域では、ゴースト補正パラメータを強めに設定する。これにより、液晶パネル10の温度分布が不均一な場合でも、ゴースト特性がパネル全体でほぼ一定となるよう、制御することができる。 Also in the above case, as in the third embodiment, the ghost correction parameter is changed for each location according to the backlight layout. For example, the ghost correction parameter is set to be weak in an area corresponding to backlight lighting where the panel is likely to become hot. On the other hand, the ghost correction parameter is set to be stronger in the region corresponding to the backlight extinguishing where the panel tends to be relatively low in temperature. Thereby, even when the temperature distribution of the liquid crystal panel 10 is non-uniform, it is possible to control the ghost characteristics to be substantially constant over the entire panel.
 例えば、強め/弱めの少なくとも二種類以上のゴースト補正パラメータ(ルックアップテーブル)を有し、タイミングコントローラにおいて、バックライト制御部とソースドライバ駆動部が連動して最適なゴーストパラメータを選択することで、本実施の形態を実現できる。 For example, it has at least two kinds of ghost correction parameters (lookup table) of strong / weak, and in the timing controller, the backlight control unit and the source driver drive unit work together to select the optimum ghost parameter, This embodiment can be realized.
 具体的には、上記ソース配線13に流れるソース信号に生じるゴーストを無くすようにゴースト補正を行うゴースト補正回路(図示せず)とを備え、上記LED光源3が上記液晶パネル10の所定のエリア毎に光照射を行うエリアアクティブ型バックライトである場合、上記ゴースト補正回路は、上記液晶パネル10の光照射されているエリアに対応する、上記ソース配線13に流れソース信号に対するゴースト補正強度を、当該光照射されていないエリアに対応するソース配線13に流れるソース信号に対するゴースト補正強度よりも高くする。 Specifically, a ghost correction circuit (not shown) that performs ghost correction so as to eliminate ghost generated in the source signal flowing through the source wiring 13 is provided, and the LED light source 3 is provided for each predetermined area of the liquid crystal panel 10. In the case of an area active type backlight that irradiates light, the ghost correction circuit flows in the source wiring 13 corresponding to the light irradiated area of the liquid crystal panel 10 and the ghost correction intensity for the source signal is It is set higher than the ghost correction intensity for the source signal flowing through the source wiring 13 corresponding to the area not irradiated with light.
 なお、本実施の形態にかかる液晶表示装置401においても、前記実施の形態3の液晶表示装置301と同様のブロック構成(図12)によって、上述のゴースト補正処理を実現できる。 In the liquid crystal display device 401 according to the present embodiment, the above-described ghost correction processing can be realized with the same block configuration (FIG. 12) as the liquid crystal display device 301 of the third embodiment.
 〔まとめ〕
 本発明の一態様に係る液晶表示装置は、複数の表示画素と該表示画素を駆動するための複数の駆動用配線(ソース配線13)を含んだ液晶パネル10と、上記表示画素を駆動するための駆動電圧を上記駆動用配線(ソース配線13)を介して上記表示画素に印加する駆動回路(ソースドライバ11)とを含んだ液晶表示装置101~401において、上記駆動用配線(ソース配線13)に印加する駆動電圧によって生じる信号(ソース信号)の鈍りを、上記液晶パネル10の面内で均一にしている。
[Summary]
A liquid crystal display device according to one embodiment of the present invention includes a liquid crystal panel 10 including a plurality of display pixels and a plurality of driving wirings (source wirings 13) for driving the display pixels, and driving the display pixels. In the liquid crystal display devices 101 to 401 including the driving circuit (source driver 11) for applying the driving voltage to the display pixel via the driving wiring (source wiring 13), the driving wiring (source wiring 13). The dullness of the signal (source signal) generated by the driving voltage applied to the liquid crystal panel 10 is made uniform in the plane of the liquid crystal panel 10.
 上記構成によれば、信号(ソース信号)の鈍りを、液晶パネル10の面内で均一にすることで、ゴースト発生量を面内で均一にすることができる。 According to the above configuration, the amount of ghost generation can be made uniform in the plane by making the signal (source signal) blunt in the plane of the liquid crystal panel 10.
 これにより、ゴースト補正パラメータを単純化できるため、ゴースト補正パラメータ作成に必要な開発期間・費用の増大を抑制することが可能となる。 This makes it possible to simplify the ghost correction parameter, thereby suppressing an increase in development period and cost necessary for creating the ghost correction parameter.
 本発明の一態様に係る液晶表示装置は、上記駆動回路(ソースドライバ11)から上記駆動用配線(ソース配線13)まで引き出した引き出し配線13aのうち、上記液晶パネル10の中央部Aの引き出し配線13aの配線抵抗を、当該液晶パネル10の中央部A以外の引き出し配線13aの配線抵抗よりも高くする。 The liquid crystal display device according to one embodiment of the present invention includes a lead-out wiring in the central portion A of the liquid crystal panel 10 among the lead-out wirings 13a led out from the drive circuit (source driver 11) to the drive wiring (source wiring 13). The wiring resistance of 13a is made higher than the wiring resistance of the lead-out wiring 13a other than the central portion A of the liquid crystal panel 10.
 これにより、信号(ソース信号)の鈍りを、液晶パネル10の面内で均一にすることができるので、ゴースト発生量を面内で均一にすることができる。 Thereby, the dullness of the signal (source signal) can be made uniform in the plane of the liquid crystal panel 10, so that the amount of ghost generation can be made uniform in the plane.
 本発明の一態様に係る液晶表示装置は、上記駆動回路(ソースドライバ11)から上記駆動用配線(ソース配線13)まで引き出した引き出し配線13aのうち、上記液晶パネル10の端部Bの引き出し配線13aの配線抵抗を、当該液晶パネル10の端部B以外の引き出し配線13aの配線抵抗よりも低くする。 The liquid crystal display device according to one embodiment of the present invention includes a lead-out line at the end B of the liquid crystal panel 10 among the lead-out lines 13a drawn from the drive circuit (source driver 11) to the drive line (source line 13). The wiring resistance of 13a is made lower than the wiring resistance of the lead-out wiring 13a other than the end B of the liquid crystal panel 10.
 これにより、信号(ソース信号)の鈍りを、液晶パネル10の面内で均一にすることができるので、ゴースト発生量を面内で均一にすることができる。 Thereby, the dullness of the signal (source signal) can be made uniform in the plane of the liquid crystal panel 10, so that the amount of ghost generation can be made uniform in the plane.
 本発明の一態様に係る液晶表示装置は、上記駆動回路が、ソースドライバ11であり、上記駆動用配線が、ソース配線13であるとき、上記液晶パネル10の中央部Aにおける、ソース配線13の引き出し配線13aの配線抵抗を、当該液晶パネル10中央部A以外のソース配線13の引き出し配線13aの配線抵抗よりも高くする。 In the liquid crystal display device according to one embodiment of the present invention, when the driving circuit is the source driver 11 and the driving wiring is the source wiring 13, the source wiring 13 in the central portion A of the liquid crystal panel 10 is used. The wiring resistance of the extraction wiring 13a is set higher than the wiring resistance of the extraction wiring 13a of the source wiring 13 other than the central portion A of the liquid crystal panel 10.
 本発明の一態様に係る液晶表示装置は、上記駆動回路が、ソースドライバ11であり、上記駆動用配線が、ソース配線13であるとき、上記液晶パネル10の端部Bにおける、ソース配線13の引き出し配線13aの配線抵抗を、液晶パネル10端部B以外のソース配線13の引き出し配線13aの配線抵抗よりも低くする。 In the liquid crystal display device according to one embodiment of the present invention, when the driving circuit is the source driver 11 and the driving wiring is the source wiring 13, the source wiring 13 at the end B of the liquid crystal panel 10 is The wiring resistance of the extraction wiring 13 a is set lower than the wiring resistance of the extraction wiring 13 a of the source wiring 13 other than the end B of the liquid crystal panel 10.
 本発明の一態様に係る液晶表示装置は、バックライトとしてのLED光源1と、上記ソース配線13に流れるソース信号に生じるゴーストを無くすようにゴースト補正を行うゴースト補正回路(液晶コントローラ315)とを備え、上記バックライト(LED光源1)が上記液晶パネル10の両端に配置され、当該液晶パネル10の背面に配置された導光板2を介して光照射を行うエッジ型バックライトである場合、上記ゴースト補正回路は、液晶パネル10の中央部(中央領域F)付近に配されたソース配線13に流れるソース信号に対するゴースト補正強度を、当該液晶パネル10の端部(端部領域E)側に配されたソース配線13に流れるソース信号に対するゴースト補正強度よりも高くする。 The liquid crystal display device according to one embodiment of the present invention includes an LED light source 1 as a backlight and a ghost correction circuit (liquid crystal controller 315) that performs ghost correction so as to eliminate ghost generated in a source signal flowing through the source wiring 13. And the backlight (LED light source 1) is an edge-type backlight that is disposed at both ends of the liquid crystal panel 10 and irradiates light through the light guide plate 2 disposed on the back surface of the liquid crystal panel 10. The ghost correction circuit distributes the ghost correction intensity with respect to the source signal flowing through the source wiring 13 arranged near the central portion (central region F) of the liquid crystal panel 10 to the end portion (end region E) side of the liquid crystal panel 10. The ghost correction strength for the source signal flowing in the source wiring 13 is increased.
 上記構成によれば、液晶パネル10の温度分布が不均一な場合でも、ゴースト特性をパネル全体でほぼ一定となるように制御することができる。 According to the above configuration, even when the temperature distribution of the liquid crystal panel 10 is not uniform, the ghost characteristics can be controlled to be substantially constant over the entire panel.
 本発明の一態様に係る液晶表示装置は、バックライトとしてのLED光源3と、上記ソース配線13に流れるソース信号に生じるゴーストを無くすようにゴースト補正を行うゴースト補正回路とを備え、上記バックライト(LED光源3)が上記液晶パネル10の所定のエリア毎に光照射を行うエリアアクティブ型バックライトである場合、上記ゴースト補正回路は、上記液晶パネル10において光が照射されているエリアに対応する、上記ソース配線13に流れソース信号に対するゴースト補正強度を、当該液晶パネル10において光が照射されていないエリアに対応するソース配線13に流れるソース信号に対するゴースト補正強度よりも高くする。 The liquid crystal display device according to an aspect of the present invention includes the LED light source 3 as a backlight and a ghost correction circuit that performs ghost correction so as to eliminate ghost generated in the source signal flowing through the source wiring 13. When the (LED light source 3) is an area active type backlight that performs light irradiation for each predetermined area of the liquid crystal panel 10, the ghost correction circuit corresponds to an area of the liquid crystal panel 10 that is irradiated with light. The ghost correction intensity for the source signal flowing in the source wiring 13 is set higher than the ghost correction intensity for the source signal flowing in the source wiring 13 corresponding to the area where no light is irradiated in the liquid crystal panel 10.
 上記構成によれば、液晶パネル10の温度分布が不均一な場合でも、ゴースト特性をパネル全体でほぼ一定となるように制御することができる。 According to the above configuration, even when the temperature distribution of the liquid crystal panel 10 is not uniform, the ghost characteristics can be controlled to be substantially constant over the entire panel.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、ゴースト補正機能を有する液晶表示装置全般に利用することができる。 The present invention can be used for all liquid crystal display devices having a ghost correction function.
1 LED光源(バックライト)
2 導光板
3 LED光源(バックライト)
10 液晶パネル
10a アクティブエリア
11 ソースドライバ(駆動回路)
11a 接続端子
12 ゲートドライバ(駆動回路)
13 ソース配線(駆動用配線)
13a 引き出し配線
101 液晶表示装置
201 液晶表示装置
301 液晶表示装置
315 液晶コントローラ(ゴースト補正回路)
401 液晶表示装置
A 中央部
B 端部
C 端部領域
D 中央領域
E 端部
F 中央部
1 LED light source (backlight)
2 Light guide plate 3 LED light source (backlight)
10 Liquid crystal panel 10a Active area 11 Source driver (drive circuit)
11a Connection terminal 12 Gate driver (drive circuit)
13 Source wiring (drive wiring)
13a Lead wiring 101 Liquid crystal display device 201 Liquid crystal display device 301 Liquid crystal display device 315 Liquid crystal controller (ghost correction circuit)
401 Liquid crystal display device A Central part B End part C End part area D Central area E End part F Central part

Claims (7)

  1.  複数の表示画素と該表示画素を駆動するための複数の駆動用配線を含んだ液晶パネルと、
     上記表示画素を駆動するための駆動電圧を上記駆動用配線を介して上記表示画素に印加する駆動回路とを含んだ液晶表示装置において、
     上記駆動用配線に印加する駆動電圧によって生じる信号の鈍りを、上記液晶パネルの面内で均一にしたことを特徴とする液晶表示装置。
    A liquid crystal panel including a plurality of display pixels and a plurality of drive wirings for driving the display pixels;
    In a liquid crystal display device including a driving circuit for applying a driving voltage for driving the display pixel to the display pixel through the driving wiring,
    A liquid crystal display device characterized in that a dullness of a signal generated by a driving voltage applied to the driving wiring is made uniform in a plane of the liquid crystal panel.
  2.  上記駆動回路から上記駆動用配線まで引き出した引き出し配線のうち、上記液晶パネルの中央部の引き出し配線の配線抵抗は、当該液晶パネルの中央部以外の引き出し配線の配線抵抗よりも高いことを特徴とする請求項1に記載の液晶表示装置。 Among the lead wires drawn from the drive circuit to the drive wire, the lead wire has a higher wiring resistance than the lead wires other than the central portion of the liquid crystal panel. The liquid crystal display device according to claim 1.
  3.  上記駆動回路から上記駆動用配線まで引き出した引き出し配線のうち、上記液晶パネルの端部の引き出し配線の配線抵抗は、当該液晶パネルの端部以外の引き出し配線の配線抵抗よりも低いことを特徴とする請求項1または2に記載の液晶表示装置。 Of the lead wires drawn from the drive circuit to the drive wires, the lead wire at the end of the liquid crystal panel has a lower wiring resistance than the lead wires other than the end of the liquid crystal panel. The liquid crystal display device according to claim 1.
  4.  上記駆動回路が、ソースドライバであり、
     上記駆動用配線が、ソース配線であるとき、
     上記液晶パネルの中央部における、ソース配線の引き出し配線の配線抵抗は、当該液晶パネル中央部以外のソース配線の引き出し配線の配線抵抗よりも高いことを特徴とする請求項1に記載の液晶表示装置。
    The drive circuit is a source driver,
    When the driving wiring is a source wiring,
    2. The liquid crystal display device according to claim 1, wherein a wiring resistance of a source wiring leading wiring in a central portion of the liquid crystal panel is higher than a wiring resistance of a source wiring leading wiring other than the central portion of the liquid crystal panel. .
  5.  上記駆動回路が、ソースドライバであり、
     上記駆動用配線が、ソース配線であるとき、
     上記液晶パネルの端部における、ソース配線の引き出し線の配線抵抗は、パネル端部以外のソース配線の引き出し配線の配線抵抗よりも低いことを特徴とする請求項1または4に記載の液晶表示装置。
    The drive circuit is a source driver,
    When the driving wiring is a source wiring,
    5. The liquid crystal display device according to claim 1, wherein a wiring resistance of a lead line of a source wiring at an end portion of the liquid crystal panel is lower than a wiring resistance of a lead wiring of a source wiring other than the panel end portion. .
  6.  上記液晶パネルの背面から光を照射するバックライトと、
     上記ソース配線に流れるソース信号に生じるゴーストを無くすようにゴースト補正を行うゴースト補正回路とを備え、
     上記バックライトが上記液晶パネルの両端に配置され、当該液晶パネルの背面に配置された導光板を介して光照射を行うエッジ型バックライトである場合、
     上記ゴースト補正回路は、
     上記液晶パネルの中央部付近に配されたソース配線に流れるソース信号に対するゴースト補正強度を、当該液晶パネルの端部側に配されたソース配線に流れるソース信号に対するゴースト補正強度よりも高くすることを特徴とする請求項4または5に記載の液晶表示装置。
    A backlight that emits light from the back of the liquid crystal panel;
    A ghost correction circuit that performs ghost correction so as to eliminate ghost generated in the source signal flowing in the source wiring,
    When the backlight is an edge-type backlight that is disposed at both ends of the liquid crystal panel and performs light irradiation through a light guide plate disposed on the back of the liquid crystal panel,
    The ghost correction circuit is
    The ghost correction intensity for the source signal flowing in the source wiring arranged near the center of the liquid crystal panel is set to be higher than the ghost correction intensity for the source signal flowing in the source wiring arranged on the end side of the liquid crystal panel. The liquid crystal display device according to claim 4, wherein the liquid crystal display device is a liquid crystal display device.
  7.  上記液晶パネルの背面から光を照射するバックライトと、
     上記ソース配線に流れるソース信号に生じるゴーストを無くすようにゴースト補正を行うゴースト補正回路とを備え、
     上記バックライトが上記液晶パネルの所定のエリア毎に光照射を行うエリアアクティブ型バックライトである場合、
     上記ゴースト補正回路は、
     上記液晶パネルの光照射されているエリアに対応する、上記ソース配線に流れるソース信号に対するゴースト補正強度を、当該液晶パネルの光照射されていないエリアに対応するソース配線に流れるソース信号に対するゴースト補正強度よりも高くすることを特徴とする請求項4または5に記載の液晶表示装置。
    A backlight that emits light from the back of the liquid crystal panel;
    A ghost correction circuit that performs ghost correction so as to eliminate ghost generated in the source signal flowing in the source wiring,
    When the backlight is an area active type backlight that performs light irradiation for each predetermined area of the liquid crystal panel,
    The ghost correction circuit is
    The ghost correction intensity for the source signal flowing through the source wiring corresponding to the area of the liquid crystal panel irradiated with light is the ghost correction intensity for the source signal flowing through the source wiring corresponding to the area of the liquid crystal panel not irradiated with light. The liquid crystal display device according to claim 4, wherein the liquid crystal display device is higher than the upper limit.
PCT/JP2013/081905 2012-12-04 2013-11-27 Liquid-crystal display device WO2014087898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-265781 2012-12-04
JP2012265781 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087898A1 true WO2014087898A1 (en) 2014-06-12

Family

ID=50883317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081905 WO2014087898A1 (en) 2012-12-04 2013-11-27 Liquid-crystal display device

Country Status (1)

Country Link
WO (1) WO2014087898A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145798A (en) * 2004-11-19 2006-06-08 Hitachi Displays Ltd Image signal display device
JP2007041229A (en) * 2005-08-02 2007-02-15 Toshiba Matsushita Display Technology Co Ltd Active matrix type liquid crystal display device
WO2010131359A1 (en) * 2009-05-15 2010-11-18 株式会社 東芝 Image display device
JP2011248215A (en) * 2010-05-28 2011-12-08 Hitachi Consumer Electronics Co Ltd Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145798A (en) * 2004-11-19 2006-06-08 Hitachi Displays Ltd Image signal display device
JP2007041229A (en) * 2005-08-02 2007-02-15 Toshiba Matsushita Display Technology Co Ltd Active matrix type liquid crystal display device
WO2010131359A1 (en) * 2009-05-15 2010-11-18 株式会社 東芝 Image display device
JP2011248215A (en) * 2010-05-28 2011-12-08 Hitachi Consumer Electronics Co Ltd Liquid crystal display device

Similar Documents

Publication Publication Date Title
JP5070331B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE HAVING THE SAME
US20080224986A1 (en) Color sequential display having backlight timing delay control unit and method thereof
JP2010175913A (en) Image display apparatus
JP5498532B2 (en) Video display device
TWI680446B (en) Liquid crystal display device and driving methed thereof
US20110267541A1 (en) Display apparatus
JP2007140503A (en) Liquid crystal display device and drive method thereof
JP2008209508A (en) Light source device and liquid crystal display device
JP2006323073A (en) Liquid crystal display device
JP2008281673A (en) Image display device
JP2018120024A (en) Display device
US7184001B2 (en) Method and apparatus for frame processing in a liquid crystal display
JP5788133B2 (en) Display device
WO2015174144A1 (en) Backlight device and liquid crystal display device provided with same
JP2009205127A (en) Method of controlling liquid crystal display device, liquid crystal display device and electronic apparatus
JP2007179010A (en) Liquid crystal display device and driving method of the same
JP6976687B2 (en) Display device
WO2011086798A1 (en) Display device and television receiver device
WO2014087898A1 (en) Liquid-crystal display device
JP5775553B2 (en) Liquid crystal display
JP7222835B2 (en) Display device
US20160293117A1 (en) Liquid crystal displays and methods for adjusting brightness and contrast thereof
WO2013153974A1 (en) Liquid crystal display device
JP2009294499A (en) Liquid crystal display device and liquid crystal display controller
JP2022029716A (en) Liquid crystal display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP