WO2014087778A1 - Tumor cell selective anticancer agent including hydroxyalkylated cyclodextrin - Google Patents

Tumor cell selective anticancer agent including hydroxyalkylated cyclodextrin Download PDF

Info

Publication number
WO2014087778A1
WO2014087778A1 PCT/JP2013/079901 JP2013079901W WO2014087778A1 WO 2014087778 A1 WO2014087778 A1 WO 2014087778A1 JP 2013079901 W JP2013079901 W JP 2013079901W WO 2014087778 A1 WO2014087778 A1 WO 2014087778A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyd
cyclodextrin
anticancer
pharmaceutical composition
cells
Prior art date
Application number
PCT/JP2013/079901
Other languages
French (fr)
Japanese (ja)
Inventor
有馬 英俊
晋也 木村
寧 久保田
徹美 入江
Original Assignee
国立大学法人熊本大学
国立大学法人佐賀大学
日本食品加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人熊本大学, 国立大学法人佐賀大学, 日本食品加工株式会社 filed Critical 国立大学法人熊本大学
Priority to JP2014547196A priority Critical patent/JP5703426B2/en
Publication of WO2014087778A1 publication Critical patent/WO2014087778A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/724Cyclodextrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Definitions

  • the present invention relates to a novel tumor cell selective anticancer agent and a pharmaceutical composition containing the same. More specifically, the present invention relates to a tumor cell selective anticancer agent comprising a hydroxyalkylated cyclodextrin or a derivative thereof, and a pharmaceutical composition containing the same.
  • Cancer is the number one cause of death in Japan. Although the survival rate has improved for some cancers, there is still insufficient treatment for advanced cancer, and the development of more effective treatments is desired. In addition, many anticancer agents have a problem of acting on normal cells. For example, current anticancer agents such as doxorubicin, paclitaxel, taxol and the like exhibit strong side effects on normal cells and thus cause serious side effects.
  • molecular targeted drugs have been widely used. Compared to conventional anticancer drugs, this molecular targeted drug has advantages such as superior anticancer activity and relatively low side effects, while molecular targeted drugs are resistant to medical costs. It has been pointed out that no activity can be obtained.
  • molecular target drugs such as Iressa and Gleevec that selectively inhibit tumor angiogenesis and suppress the growth of cancer cells are widely used, but these also cause side effects such as drug-induced pneumonia.
  • the treatment cost is extremely high. Therefore, anticancer agents having excellent anticancer activity such as low cost and high cancer selectivity compared to existing molecular target drugs are eagerly desired.
  • Cyclodextrin is a cyclic oligosaccharide that has hemolytic action on isolated human erythrocytes and its strength is in the order of ⁇ -CyD> ⁇ -CyD> ⁇ -CyD, and its derivative hydroxypropyl Cyclodextrins (HP-CyD) also exhibit hemolytic action in the order of HP- ⁇ -CyD> HP- ⁇ -CyD ⁇ HP- ⁇ -CyD, but they are weaker than CyD, and CyD and HP-CyD are similar.
  • CyD and HP-CyD have in vitro cytotoxic effects on cultured cells, and the inclusion of cell membrane components, particularly cholesterol and phospholipid inclusion complex Explaining that it exhibits similar toxic effects on different cell types, such as red blood cells and cultured cells, It is tell (Non-Patent Document 1).
  • Cyclodextrins are classified as unimolecular host molecules that incorporate various drugs into their hydrophobic cavities to form inclusion complexes.
  • the supramolecular inclusion properties of CyD are used in many fields such as food, cosmetics, clinical diagnostics, membrane science, and polymer chemistry.
  • the functionality and biocompatibility of CyD Is used to stabilize pharmaceuticals by complex formation, adjust solubility, improve bioavailability, etc., and is actually used in pharmaceuticals at home and abroad.
  • CyD derivatives include, for example, Methyl- ⁇ -CyD (M- ⁇ -CyD) and 2,6-Di-O-methyl- ⁇ -CyD (DM- ⁇ -CyD).
  • M- ⁇ -CyD Methyl- ⁇ -CyD
  • DM- ⁇ -CyD 2,6-Di-O-methyl- ⁇ -CyD
  • DOX anticancer drug doxorubicin
  • Non-patent Document 2 shows that M- ⁇ -CyD accumulates in the kidney when administered intraperitoneally (Non-patent Document 2), M- ⁇ -CyD is safe against normal cells because it has no tumor selectivity There is concern about sex. Furthermore, M- ⁇ -CyD has a high hemolytic activity, so there are concerns about safety to normal cells.
  • HP- ⁇ -CyD hydroxypropyl- ⁇ -cyclodextrin
  • HP- ⁇ -CyD hydroxypropyl- ⁇ -cyclodextrin
  • itraconazole 200 mg per vial and HP- ⁇ -CyD 8.0 g as a solubilizing agent for itraconazole with extremely low water solubility are used.
  • one to two vials are infused intravenously per day.
  • HP- ⁇ -CyD has been proposed for use as a stabilizer or solubilizer carrier molecule for various anticancer agents, and several times the amount of HP- ⁇ -CyD was added to the drug.
  • Formulation examples are disclosed (for example, Patent Documents 1 to 3)
  • Patent Documents 1 to 3 there are no reports on the effects of HP- ⁇ -CyD on cancer cells, on the effects of HP- ⁇ -CyD on cancer cells in vivo, and on the anticancer activity.
  • folic acid-modified methylated- ⁇ -cyclodextrin obtained by modifying folic acid on methyl- ⁇ -cyclodextrin by the present inventors is used as a KB cell ( FR-expressing cells) showed concentration-dependent cytotoxicity, but A549 cells (FR low-expressing cells) showed little cytotoxicity, combined with anticancer drug doxorubicin (DOX) It has been reported that the cytotoxicity of FA-M- ⁇ -CyD is significantly enhanced compared to DOX alone (Non-patent Document 3). Furthermore, it has been reported that FA-M- ⁇ -CyD exhibited antitumor activity in a mouse model of bile cancer and improved the survival rate of mice (Non-patent Document 4).
  • An object of this invention is to provide the pharmaceutical composition which contains the compound with the novel anticancer effect
  • One of the objects of the present invention is also to provide a pharmaceutical composition comprising a compound having an anticancer activity against leukemia cells as an active ingredient.
  • hydroxyalkylated cyclodextrins particularly hydroxypropyl- ⁇ -cyclodextrin
  • has an antitumor action, tumor growth inhibitory action or anticancer action Completed the invention. That is, the present inventors have shown that hydroxyalkylated cyclodextrins, particularly hydroxypropyl- ⁇ -cyclodextrin, is excellent in cancer cell selectivity, particularly leukemia cell selectivity, and is useful as a novel anticancer agent. As a result, the present invention was completed.
  • the present invention includes the following.
  • a pharmaceutical composition comprising a hydroxyalkylated cyclodextrin selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin or a derivative thereof as an anticancer active ingredient.
  • the pharmaceutical composition according to the above (1) which contains only hydroxyalkylated cyclodextrin as an anticancer active ingredient.
  • An anticancer injection comprising an anticancer active ingredient and a pharmaceutically acceptable additive, wherein the anticancer active ingredient is hydroxypropyl- ⁇ -cyclodextrin or a derivative thereof.
  • Anti-cancer injection characterized.
  • Cancer injection Any one of the above (9) to (11), wherein the hydroxypropyl- ⁇ -cyclodextrin is administered at a dose of 0.5 g / kg to 5 g / kg per day.
  • the anticancer injection described in 1.
  • a hydroxyalkylated cyclodextrin selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin or a derivative thereof as an anticancer active ingredient.
  • Hydroxyalkylated cyclodextrin selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin of the present invention (preferably hydroxypropylcyclodextrin, more preferably hydroxypropyl- ⁇ -cyclodextrin)
  • a pharmaceutical composition containing a derivative thereof as an active ingredient for anticancer activity is useful as an anticancer agent, particularly as an anticancer agent for leukemia cells.
  • HP- ⁇ -CyD human leukemia cells
  • BaF3 p190 BCR-ABL mouse leukemia cells
  • Hepatocyte normal human hepatocytes
  • the X axis shows the HP- ⁇ -CyD concentration added to the medium
  • the Y axis shows the relative value (%) of the number of colonies compared to the HP- ⁇ -CyD-free medium. It is the result of measuring the cholesterol leakage action of HP- ⁇ -CyD or M- ⁇ -CyD on BaF3 p190 cells and BV173 cells.
  • the X axis indicates the HP- ⁇ -CyD concentration added to the medium, and the Y axis indicates the percentage of cells that have undergone apoptosis. It is the result of examining the effect on the mouse survival rate of HP- ⁇ -CyD using a mouse leukemia cell transplant cancer mouse model. It is the result of having investigated the effect with respect to a mouse
  • FIG. 3 is a graph showing changes in serum HP- ⁇ -CyD concentration after subcutaneous administration to mice. Based on the results shown in FIG.
  • the hydroxyalkylated cyclodextrin referred to in the present invention is a hydroxyalkylated cyclodextrin selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin, and cyclodextrin ( ⁇ -cyclodextrin, ⁇ -Cyclodextrin and ⁇ -cyclodextrin) are compounds in which the hydroxyl groups are randomly substituted with hydroxypropyl, hydroxybutyl or hydroxyethyl groups.
  • hydroxypropyl- ⁇ -cyclodextrin is a compound in which hydroxyl groups at positions 2, 3, and 6 of 7 glucoses of ⁇ -cyclodextrin are randomly substituted with hydroxypropyl groups.
  • Hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, or hydroxyethylcyclodextrin used in the present invention can be synthesized by a known method, but hydroxypropylcyclodextrin is also commercially available.
  • the hydroxyalkylated cyclodextrin is preferably hydroxypropylcyclodextrin, more preferably hydroxypropyl- ⁇ -cyclodextrin.
  • the hydroxyalkylated cyclodextrin is preferably hydroxyalkylated- ⁇ -cyclodextrin, more preferably hydroxypropyl- ⁇ -cyclodextrin.
  • the hydroxyalkylated cyclodextrin derivative referred to in the present invention includes those obtained by covalently bonding other compounds to any of the above hydroxyalkylated cyclodextrins.
  • bond is not specifically limited, For example, the compound which has the binding ability to various receptors, and the compound which has antitumor property or anticancer property can be mentioned.
  • hydroxypropyl- ⁇ -cyclodextrin modified with folic acid folic acid-modified HP- ⁇ -CyD
  • hydroxypropyl- ⁇ -cyclodextrin modified with transferrin transferrin-modified HP- ⁇ -CyD
  • Hydroxypropyl- ⁇ -cyclodextrin modified with EGF EGF-modified HP- ⁇ -CyD
  • hydroxypropyl- ⁇ -cyclodextrin modified with arginine-glycine-aspartic acid (RGD) peptide RGD peptide-modified HP- ⁇ -CyD
  • hydroxypropyl- ⁇ -cyclodextrin modified with an antibody that specifically recognizes cancer cells cell-specific antibody modification-HP- ⁇ -CyD
  • Folic acid modification-HP- ⁇ -CyD is a compound in which folic acid is covalently bonded to glucose of hydroxypropyl- ⁇ -cyclodextrin, and the site to which folic acid is bonded is not particularly limited, and the hydroxypropyl group is not bonded. It can bind to the position of the hydroxyl group of glucose. Further, the ratio of folic acid binding is not particularly limited.
  • the hydroxyalkylated cyclodextrin derivative includes other compounds such as folic acid and those having a covalent bond with a compound having antitumor or anticancer properties, but not including them.
  • Active ingredient means a substance having medicinal activity included in a pharmaceutical composition and / or an agent used for medicinal use, for example, a medicinal product in order to show a target effect or effect.
  • Pharmaceutical products generally consist of active ingredients and pharmaceutically acceptable additives. Therefore, in the present specification, the active ingredient is used as a substance exhibiting anticancer activity in the pharmaceutical composition in relation to the use as the pharmaceutical composition of the present invention, that is, the use as an anticancer agent. Means the substance to be made.
  • the term “active ingredient” or “anticancer active ingredient” refers to an anticancer agent contained in a pharmaceutical composition for anticancer purposes, which is contained in order to achieve the purpose. It means a substance that shows activity.
  • the present invention is a pharmaceutical composition comprising a specific hydroxyalkylated cyclodextrin or a derivative thereof as an active ingredient for anticancer action.
  • the specific hydroxyalkylated cyclodextrin used in the present invention is selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin, preferably hydroxypropylcyclodextrin or hydroxyalkylated- ⁇ -cyclodextrin Dextrin, more preferably hydroxypropyl- ⁇ -cyclodextrin.
  • HP- ⁇ -CyD hydroxypropyl- ⁇ -cyclodextrin
  • the pharmaceutical composition of the present invention is a pharmaceutical composition having anticancer activity, and is characterized by containing HP- ⁇ -CyD as an active ingredient having anticancer activity. That is, HP- ⁇ -CyD is not included as a solubilizer and / or stabilizer of other components in a pharmaceutical composition having anticancer activity, but HP as an active component itself having anticancer activity. - ⁇ -CyD is included.
  • compositions containing HP- ⁇ -CyD as a solubilizer and / or stabilizer for other ingredients are excluded from the pharmaceutical composition of the present invention.
  • the pharmaceutical composition of the present invention contains HP- ⁇ -CyD as an active ingredient having an anti-cancer action, it can also contain other active ingredients having an anti-cancer action.
  • HP- ⁇ -CyD is included as a main active ingredient having an anti-cancer activity, and more preferably only HP- ⁇ -CyD is included as an active ingredient having an anticancer action.
  • the composition of the present invention is not limited to this, but preferably takes the form of an injectable preparation.
  • the injectable preparation of the present invention can be administered intravenously, intramuscularly, subcutaneously, into an organ, intraperitoneally, or a lesion such as a tumor.
  • the pharmaceutical composition of the present invention can take any form of a water-soluble preparation or a lyophilized preparation, preferably an aqueous injection or a freeze-dried injection upon use.
  • the composition of the present invention may contain sugars, preservatives, stabilizers and antistatic agents which are usually used for injections.
  • the composition of the present invention may also contain a pharmacologically acceptable pH adjuster.
  • the pH adjuster used in the present invention is not particularly limited as long as it is a pharmacologically acceptable substance that can be used for pharmaceutical purposes, but preferably sodium hydroxide, carbonate buffer, phosphate buffer, Citrate buffer, acetate buffer and hydrochloric acid. These pH adjusters may be used alone or in combination of two or more.
  • the composition of the present invention can also contain an osmotic pressure adjusting agent or an isotonic agent, and can contain at least one kind such as sodium chloride and dextrose.
  • HP- ⁇ -CyD will be described as an example of the specific hydroxyalkylated cyclodextrin of the present invention or a derivative thereof, one embodiment of the present invention is not limited thereto.
  • It is an anticancer agent containing HP- ⁇ -CyD as the only active ingredient, preferably as the only active ingredient, and is a pharmaceutical composition in the form of an injection.
  • the injection of the present invention can contain, in addition to HP- ⁇ -CyD, an osmotic pressure adjusting agent and a pH adjusting agent used for the injection, and can further contain additives usually used for the injection. .
  • one aspect of the present invention is an anti-cancer injection containing HP- ⁇ -CyD and a pharmaceutically acceptable additive, and another aspect is HP- ⁇ -CyD and a pharmaceutically acceptable agent.
  • An anti-cancer injection comprising only acceptable additives (including only HP- ⁇ -CyD as an active ingredient having anti-cancer activity). These injections may be in the form of water-soluble preparations or lyophilized preparations.
  • the cancer to which the composition of the present invention can be used is not particularly limited, and can be used for any cancer, such as breast cancer, small cell lung cancer, colon cancer, malignant lymphoma, leukemia, testicular tumor. , Ovarian cancer, pancreatic cancer, lung cancer, pharyngeal cancer, laryngeal cancer, tongue cancer, gingival cancer, esophageal cancer, stomach cancer, bile duct cancer, kidney cancer, bladder cancer, uterine cancer, prostate Can include cancer.
  • it is leukemia.
  • the effective dose of the specific hydroxyalkylated cyclodextrin of the present invention is the nature of the cancer, the degree of disease, the treatment policy, the degree of metastasis, the amount of tumor, the body weight
  • the pharmaceutically effective amount is generally based on factors such as clinically observed symptoms, disease progression, etc. It is determined.
  • the daily dose is, for example, 0.5 g / kg to 10 g / kg (30 g to 600 g for an adult with a body weight of 60 kg), preferably 1 g / kg to 10 g / kg, when administered to humans.
  • Administration may be carried out once or divided into several times, and may be administered continuously over time by infusion or the like, preferably several hours to about 10 hours by infusion. Should be administered.
  • the administration may be daily or intermittent, and can be appropriately selected depending on the condition of the administration subject, but is preferably intermittent administration.
  • Example 1 Measurement of cytotoxic activity of hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CyD) Human leukemia cells (BV173: Ph1-positive human leukemia cells, obtained from DSMZ, Germany), mouse leukemia cells (BaF3 p190 BCR-ABL: Prepare a mouse proB cell with the p190 BCR-ABL fusion gene introduced (provided by the University of Frankfurt, Germany, Dr Martin Rutardt) and normal human hepatocytes in a 96-well plate BV173 and hepatocyte are seeded at 10 4 cells / 100 ⁇ L, BaF3 p190 is seeded at a concentration of 2.5 ⁇ 10 3 cells / 100 ⁇ L, and HP- ⁇ -CyD final concentrations are 0, 0.5, 1.5, 5, 15, and 25 mM, respectively.
  • HP- ⁇ -CyD hydroxypropyl- ⁇ -cyclodextrin
  • Example 2 Measurement of cytotoxic activity of HP- ⁇ -CyD against hematopoietic progenitor cells Bone marrow mononuclear cells were isolated from 10-week-old C57BL6 / N mice (male), and the final HP- ⁇ -CyD concentration was 0, 5 , 15 and 25 mM mouse hematopoietic colony assay medium (Mouse Methocult # 03434). After 8 days, the number of colonies was counted and compared under a microscope. The results are shown in FIG.
  • Example 3 Effect of HP- ⁇ -CyD on cholesterol leakage The effect of HP- ⁇ -CyD on cholesterol leakage was examined using BaF3 p190 cells and BV173 cells. For each cell, 1 mL of a 1 ⁇ 10 7 cell suspension was transferred to a 15 mL centrifuge tube and centrifuged to remove the supernatant. Add 5 mL of HBSS solution containing HP- ⁇ -CyD or methyl- ⁇ -cyclodextrin (M- ⁇ -CyD) at various concentrations (no addition, 5 mM, 10 mM) to the cells and suspend lightly to make a total volume in a 100 mm dish. It was collected. After incubation at 37 ° C.
  • M- ⁇ -CyD methyl- ⁇ -cyclodextrin
  • Example 4 Effect of HP- ⁇ -CyD on intracellular cholesterol level Using BaF3 p190 cells and BV173 cells, the effect of HP- ⁇ -CyD on intracellular cholesterol levels was examined. 1 mL was transferred to a cell suspension of 1 ⁇ 10 7 cells / mL BaF3 p190 BCR-ABL or BV173, centrifuged, and the supernatant was removed. Add 5 mL of CyDs solution (HP- ⁇ -CyD 5, 10 mM, M- ⁇ -CyD 5, 10 mM in HBSS) of various concentrations to the cells, suspend lightly, and incubate in a 100 mm culture dish (37 (C, 1 h).
  • CyDs solution HP- ⁇ -CyD 5, 10 mM, M- ⁇ -CyD 5, 10 mM in HBSS
  • Example 5 Measurement of apoptosis induction of HP- ⁇ -CyD Mouse leukemia cells (BaF3 p190 BCR-ABL) and human leukemia cells (BV173) were used. BaF3 p190 was seeded at a concentration of 2.5 ⁇ 10 4 cells / mL and BV173 at a concentration of 10 5 cells / mL into a 6-well plate.In RPMI-1640 medium; GibcoBRL, Oaisley, Scotland, HP- ⁇ -CyD was added at a final concentration of 0, The cells were added to 5, 10, 15, and 25 mM, and cultured at 37 ° C. under 5% CO 2 .
  • Example 6 Confirmation of effect of HP- ⁇ -CyD on mouse survival rate using mouse mouse leukemia cell transplanted cancer mouse model 5-6 weeks old Balb / cA Jcl nu / nu (male) was treated with leukemia cells (BaF3 p190 BCR-ABL) was infused from the tail vein at 10 6 cells / 200 ⁇ L. According to the dose of HP- ⁇ -CyD, it was divided into 3 groups (0, 50, 150 mM), and 200 ⁇ L was intraperitoneally administered twice a day on Day 3-22. The results are shown in FIG. The HP- ⁇ -CyD administration group significantly prolonged the survival time compared with the non-treatment group.
  • Comparative Example 1 Confirmation of the effect of imatinib and bafetinib on mouse survival using a mouse model of mouse leukemia cell transplantation cancer
  • imatinib and buffetinib bulk powder dissolved in 0.5% methylcellulose were orally administered (directly into the stomach using a sonde).
  • bafetinib (NS-187): 100 mg / kg / dose and imatinib: 200 mg / kg / dose were administered twice a day for 11 days after Day 2 after leukemia cell transplantation. The results are shown in FIG. All mice died on the 16th day for imatinib and on the 26th day for buffetinib.
  • Example 7 Effective blood concentration of HP- ⁇ -CyD The minimum effective blood concentration at which HP- ⁇ -CyD exhibits an anti-leukemia effect under in vivo conditions was estimated. From previous studies, in vitro cell culture systems have been found to induce CML-causing gene human bcr-abl in BV173 cells established from human chronic myeloid leukemia (CML) and BaF3 cells, which are mouse Pro B cells. When using BaF3 / BCR-ABL cells into which the gene was introduced, the 50% effective inhibitory concentration (IC 50 ) of HP- ⁇ -CyD was 4.68 ⁇ 0.98 mM and 6.01 ⁇ 1.04 mM, respectively.
  • CML chronic myeloid leukemia
  • HP- ⁇ -CyD isotonic solution (pH 7.4) was subcutaneously administered to BALB / c mice (8-9 weeks old, average body weight: 22.7 ⁇ 0.6 g). Blood was collected from the mouse abdominal vena cava 30 minutes, 1 hour and 2 hours after administration of HP- ⁇ -CyD isotonic solution. The blood was centrifuged (4000 ⁇ g, 4 ° C.) to obtain serum.
  • the result of having predicted the time transition of the serum concentration when assuming subcutaneous administration and intravenous administration is shown.
  • the maximum serum concentration for subcutaneous administration was estimated to be 566 mg / L (0.4 mM), and the maximum serum concentration for intravenous administration was estimated to be 3352 mg / L (2.47 mM).
  • HP- ⁇ -CyD In nude mice transplanted intravenously with BaF3 / BCR-ABL cells, 50 mM HP- ⁇ -CyD was administered intraperitoneally twice a day, so the serum concentration transition was intermediate between subcutaneous and intravenous administration. It is expected to take a large value. Furthermore, since it has been shown to be effective at about 5 mM in in vitro cell lines, considering that the effect of HP- ⁇ -CyD is time- and concentration-dependent, the minimum effective serum concentration is 1 It is assumed to be around mM (1400 mg / L).
  • the minimum dose at which the anti-leukemic effect of HP- ⁇ -CyD is expected in humans was estimated.
  • the infusion rate (dose) can be calculated as 155.4 mg / h / kg.
  • Instillation for 8 hours a day to a patient weighing 60 kg at this infusion rate yields a total volume of 74.6 g / body. This amount is much higher than in other drugs using HP- ⁇ -CyD as an additive.
  • the formulation that contains the largest amount of HP- ⁇ -CyD is Itrizole®.
  • Itrizole Injection contains 8 g of HP- ⁇ -CyD in one vial to dissolve itraconazole, which has extremely low water solubility, and can be administered twice a day, so HP- ⁇ per day -The maximum dose of CyD is 16g.
  • the amount of HP- ⁇ -CyD which is proposed for use as a stabilizer or solubilizer carrier molecule in anticancer drugs, is several times the amount of medicinal ingredients, and HP- The maximum dose of ⁇ -CyD is even lower.
  • the estimated dose of HP- ⁇ -CyD for the anti-leukemic effect obtained from the simulation results is about 70 g per day, far from the dose of HP- ⁇ -CyD as a conventional formulation additive. As a result.
  • the pharmaceutical composition of the present invention is useful as an anticancer agent.

Abstract

The purpose of the present invention is to provide an anticancer agent which includes as an active ingredient a compound having excellent tumor cell selectivity and novel anticancer effects. The purpose of the present invention is particularly to provide an anticancer agent that is effective against leukemia and is highly safe. By the present invention, a pharmaceutical composition is provided which includes hydroxyalkylated cyclodextrin as an active ingredient having anticancer activity. The present invention particularly provides an anticancer agent for leukemia which includes hydroxypropyl-β-cyclodextrin as an active ingredient having anticancer activity.

Description

ヒドロキシアルキル化シクロデキストリンを含む腫瘍細胞選択的抗がん剤Tumor cell selective anticancer agent containing hydroxyalkylated cyclodextrin
 本発明は新たな腫瘍細胞選択的抗がん剤及びそれを含む医薬組成物に関する。より具体的には、本発明は、ヒドロキシアルキル化シクロデキストリンまたはその誘導体からなる腫瘍細胞選択的抗がん剤、及びそれを含む医薬組成物に関する。 The present invention relates to a novel tumor cell selective anticancer agent and a pharmaceutical composition containing the same. More specifically, the present invention relates to a tumor cell selective anticancer agent comprising a hydroxyalkylated cyclodextrin or a derivative thereof, and a pharmaceutical composition containing the same.
 がんは、わが国における死亡原因第1位の疾患である。一部のがんでは生存率は改善しているものの、進行がんでは未だ十分な治療法がなく、より有効な治療法の開発が望まれている。また多くの抗がん剤は正常細胞にも作用するという問題がある。例えば、ドキソルビシン、パクリタキセル、タキソール等の現状の抗がん剤は、正常細胞にも強い障害性を示すことから、深刻な副作用を惹起する。 Cancer is the number one cause of death in Japan. Although the survival rate has improved for some cancers, there is still insufficient treatment for advanced cancer, and the development of more effective treatments is desired. In addition, many anticancer agents have a problem of acting on normal cells. For example, current anticancer agents such as doxorubicin, paclitaxel, taxol and the like exhibit strong side effects on normal cells and thus cause serious side effects.
 近年、がん化学療法は大きく進歩しており、分子標的薬が広く用いられるようになってきた。この分子標的薬は従来の抗がん剤と比較して、抗がん活性に優れること、副作用発現が比較的低いとされるなどの利点がある一方、分子標的薬は医療コストに見合う抗がん活性が得られないことが指摘されている。例えば、最近では、腫瘍の血管新生を選択的に阻害しがん細胞の増殖を抑制するイレッサやグリベックなどの分子標的薬が汎用されているが、これらも薬剤性肺炎等の副作用を惹起すること、また治療コストが極めて高いことが課題となっている。そのため、既存の分子標的薬よりも低コストでがん選択性が高いなどの優れた抗がん活性を有する抗がん剤が切望されている。 In recent years, cancer chemotherapy has made great progress, and molecular targeted drugs have been widely used. Compared to conventional anticancer drugs, this molecular targeted drug has advantages such as superior anticancer activity and relatively low side effects, while molecular targeted drugs are resistant to medical costs. It has been pointed out that no activity can be obtained. For example, recently, molecular target drugs such as Iressa and Gleevec that selectively inhibit tumor angiogenesis and suppress the growth of cancer cells are widely used, but these also cause side effects such as drug-induced pneumonia. In addition, the treatment cost is extremely high. Therefore, anticancer agents having excellent anticancer activity such as low cost and high cancer selectivity compared to existing molecular target drugs are eagerly desired.
 シクロデキストリン(CyD)は環状のオリゴ糖で、単離したヒト赤血球に対して溶血作用を示しその強さはβ-CyD>α-CyD>γ-CyDの順であり、その誘導体であるヒドロキシプロピルシクロデキストリン(HP-CyD)も、HP-β-CyD>HP-α-CyD≒HP-γ-CyDの順に溶血作用を示すが、それらはCyDより弱いこと、また、CyDおよびHP-CyDは同様のパターンで培養細胞に対しても細胞毒性を示すこと、そして、このようなCyDおよびHP-CyDのインビトロでの細胞毒性の効果は、細胞膜成分、特にコレステロールとリン脂質の包接複合体が細胞膜の破壊を引き起こすためと考えられており、赤血球や培養細胞など異なる細胞種に対して同様の毒性効果を示すことを説明していること、が報告されている(非特許文献1)。 Cyclodextrin (CyD) is a cyclic oligosaccharide that has hemolytic action on isolated human erythrocytes and its strength is in the order of β-CyD> α-CyD> γ-CyD, and its derivative hydroxypropyl Cyclodextrins (HP-CyD) also exhibit hemolytic action in the order of HP-β-CyD> HP-α-CyD≈HP-γ-CyD, but they are weaker than CyD, and CyD and HP-CyD are similar. In addition, CyD and HP-CyD have in vitro cytotoxic effects on cultured cells, and the inclusion of cell membrane components, particularly cholesterol and phospholipid inclusion complex Explaining that it exhibits similar toxic effects on different cell types, such as red blood cells and cultured cells, It is tell (Non-Patent Document 1).
 シクロデキストリン(CyD)は、種々の薬物をその疎水空洞内に取り込み包接複合体を形成する単分子的ホスト分子に分類される。CyDの超分子的な包接特性は、食品、化粧品、臨床検査薬、膜学、高分子化学など多方面で利用されており、薬剤学・製剤学領域では、CyDの機能性や生体適合性を利用して、複合体形成による医薬品の安定化、溶解性の調節、バイオアベイラビリティの向上などへの応用が試みられ、国内外にて実際に製剤で使用されている。 Cyclodextrins (CyD) are classified as unimolecular host molecules that incorporate various drugs into their hydrophobic cavities to form inclusion complexes. The supramolecular inclusion properties of CyD are used in many fields such as food, cosmetics, clinical diagnostics, membrane science, and polymer chemistry. In the pharmacology / pharmaceutics field, the functionality and biocompatibility of CyD. Is used to stabilize pharmaceuticals by complex formation, adjust solubility, improve bioavailability, etc., and is actually used in pharmaceuticals at home and abroad.
 近年、機能性や生体適合性を高めた種々のCyD誘導体が開発され、薬物送達システム(Drug delivery system :DDS)の応用に関する基礎的研究が行われている。CyD誘導体として、例えば、Methyl-β-CyD(M-β-CyD)や2,6-Di-O-methyl-α-CyD(DM-α-CyD)があり、Grosseらは、ヒト乳がん細胞MCF7またはヒト卵巣がん細胞A2780を移植したヌードマウスにおいてM-β-CyDを腹腔内に2ヶ月に渡って投与(300~800mg/kg)すると、抗がん剤であるドキソルビシン(DOX)投与(2mg/kg)と同様に、コントロールに比べ腫瘍の増大を抑制する効果を示すことを報告している(非特許文献2)。しかし、M-β-CyDを腹腔内に投与すると腎臓に多く蓄積するという報告(非特許文献2)に示されるように、M-β-CyDは腫瘍選択的を有さないため正常細胞に対する安全性が懸念される。さらに、M-β-CyDは溶血活性が高いことからも正常細胞への安全性が懸念されている。 In recent years, various CyD derivatives with improved functionality and biocompatibility have been developed, and basic research on the application of drug delivery systems (Drug delivery systems: DDS) has been conducted. CyD derivatives include, for example, Methyl-β-CyD (M-β-CyD) and 2,6-Di-O-methyl-α-CyD (DM-α-CyD). Grosse et al. Alternatively, when M-β-CyD was administered intraperitoneally for 2 months (300 to 800 mg / kg) in nude mice transplanted with human ovarian cancer cells A2780, anticancer drug doxorubicin (DOX) was administered (2 mg). / Kg), it has been reported to show an effect of suppressing tumor growth compared to control (Non-patent Document 2). However, as shown in a report that non-patent document 2 shows that M-β-CyD accumulates in the kidney when administered intraperitoneally (Non-patent Document 2), M-β-CyD is safe against normal cells because it has no tumor selectivity There is concern about sex. Furthermore, M-β-CyD has a high hemolytic activity, so there are concerns about safety to normal cells.
 一方、環状オリゴ糖の一種であるヒドロキシプロピル-β-シクロデキストリン(HP-β-CyD)は、静脈内投与可能な可溶化剤として知られ、臨床使用されており、正常細胞に対する安全性は高い。例えば、抗真菌剤であるイトラコナゾールを含む注射剤(イトリゾール(登録商標)注1%)では、1バイアル注にイトラコナゾール200mgと、水溶性が極めて低いイトラコナゾールの溶解剤としてHP-β-CyD8.0gを含み、成人には、1日あたり1~2バイアルが点滴静注される。
 また、HP-β-CyDは、種々の抗がん剤の安定化剤や可溶化剤キャリア分子としての使用が提案されており、薬剤に対して数倍量のHP-β-CyDを加えた製剤例が開示されている(例えば、特許文献1~3)
 しかしながら、HP-β-CyDのがん細胞特異的な影響に関する報告や、インビボでのHP-β-CyDのがん細胞に対する影響や抗がん作用についての報告はない。
On the other hand, hydroxypropyl-β-cyclodextrin (HP-β-CyD), which is a kind of cyclic oligosaccharide, is known as a solubilizer that can be administered intravenously and is clinically used, and has high safety against normal cells. . For example, for an injection containing itraconazole, an antifungal agent (Itrisol (registered trademark) Note 1%), itraconazole 200 mg per vial and HP-β-CyD 8.0 g as a solubilizing agent for itraconazole with extremely low water solubility are used. For adults, one to two vials are infused intravenously per day.
In addition, HP-β-CyD has been proposed for use as a stabilizer or solubilizer carrier molecule for various anticancer agents, and several times the amount of HP-β-CyD was added to the drug. Formulation examples are disclosed (for example, Patent Documents 1 to 3)
However, there are no reports on the effects of HP-β-CyD on cancer cells, on the effects of HP-β-CyD on cancer cells in vivo, and on the anticancer activity.
 またM-β-CyD誘導体として、本発明者らにより、メチル-β-シクロデキストリンに葉酸を修飾した、葉酸修飾メチル化-β-シクロデキストリン(FA-M-β-CyD)が、KB細胞(FR高発現細胞)に対して濃度依存的に細胞障害性を示したが、A549細胞(FR低発現細胞)に対しては殆ど細胞障害性を示さないこと、抗がん剤ドキソルビシン(DOX)併用によるFA-M-β-CyDの細胞障害性は、DOX単独より有意に増強されることが報告されている(非特許文献3)。さらに、FA-M-β-CyDが、胆がんマウスモデルにおいて抗腫瘍活性を示し、マウスの生存率を改善したことが報告されている(非特許文献4)。 Further, as an M-β-CyD derivative, folic acid-modified methylated-β-cyclodextrin (FA-M-β-CyD) obtained by modifying folic acid on methyl-β-cyclodextrin by the present inventors is used as a KB cell ( FR-expressing cells) showed concentration-dependent cytotoxicity, but A549 cells (FR low-expressing cells) showed little cytotoxicity, combined with anticancer drug doxorubicin (DOX) It has been reported that the cytotoxicity of FA-M-β-CyD is significantly enhanced compared to DOX alone (Non-patent Document 3). Furthermore, it has been reported that FA-M-β-CyD exhibited antitumor activity in a mouse model of bile cancer and improved the survival rate of mice (Non-patent Document 4).
特表2010-529964号公報Special table 2010-529964 特表2010-526072号公報Special table 2010-526072 gazette 特表2006-512329号公報JP-T-2006-512329
 本発明は、腫瘍細胞選択性が優れた新規な抗がん作用をもつ化合物を有効成分として含む医薬組成物を提供することを目的とする。
 本発明の目的の一つはまた、白血病細胞に対して抗がん作用をもつ化合物を有効成分として含む医薬組成物を提供することである。
An object of this invention is to provide the pharmaceutical composition which contains the compound with the novel anticancer effect | action which was excellent in tumor cell selectivity as an active ingredient.
One of the objects of the present invention is also to provide a pharmaceutical composition comprising a compound having an anticancer activity against leukemia cells as an active ingredient.
 発明者らは鋭意検討を重ねた結果、ヒドロキシアルキル化シクロデキストリン類、特には、ヒドロキシプロピル-β-シクロデキストリンが、抗腫瘍作用、腫瘍増殖抑制作用または抗がん作用を有することを見いだし、本発明を完成した。つまり、本発明者らは、ヒドロキシアルキル化シクロデキストリン類、特には、ヒドロキシプロピル-β-シクロデキストリンが、がん細胞選択性、特には白血病細胞選択性に優れ、新規抗がん剤として有用であるとことを見いだし、本発明を完成した。 As a result of intensive studies, the inventors have found that hydroxyalkylated cyclodextrins, particularly hydroxypropyl-β-cyclodextrin, has an antitumor action, tumor growth inhibitory action or anticancer action. Completed the invention. That is, the present inventors have shown that hydroxyalkylated cyclodextrins, particularly hydroxypropyl-β-cyclodextrin, is excellent in cancer cell selectivity, particularly leukemia cell selectivity, and is useful as a novel anticancer agent. As a result, the present invention was completed.
 本発明は、以下を含むものである。
(1)ヒドロキシプロピルシクロデキストリン、ヒドロキシブチルシクロデキストリン、およびヒドロキシエチルシクロデキストリンからなる群より選ばれるヒドロキシアルキル化シクロデキストリンまたはその誘導体を抗がん性有効成分として含む医薬組成物。
(2)抗がん性有効成分としてヒドロキシアルキル化シクロデキストリンのみを含む前記(1)に記載の医薬組成物。
(3)前記ヒドロキシアルキル化シクロデキストリンが、ヒドロキシプロピルシクロデキストリンである、前記(1)または(2)に記載の医薬組成物。
(4)前記ヒドロキシアルキル化シクロデキストリンが、ヒドロキシプロピル-β-シクロデキストリンである前記(3)に記載の医薬組成物。
(5)注射剤である、前記(1)~(4)のいずれか一つに記載の医薬組成物。
(6)前記ヒドロキシアルキル化シクロデキストリンが、1日あたり、0.5g/kg~10g/kgの投与量で投与されることを特徴とする前記(1)~(5)のいずれか一つに記載の医薬組成物。
(7)前記ヒドロキシアルキル化シクロデキストリンが、1日あたり、1g/kg~5g/kgの投与量で投与されることを特徴とする前記(6)に記載の医薬組成物。
(8)前記医薬組成物が白血病治療薬である前記(1)~(7)のいずれか一つに記載の医薬組成物。
(9)抗がん性有効成分と医薬上許容される添加剤からなる抗がん注射剤であって、該抗がん性有効成分がヒドロキシプロピル-β-シクロデキストリンまたはその誘導体であることを特徴とする抗がん注射剤。
(10)前記抗がん性有効成分としてヒドロキシプロピル-β-シクロデキストリンのみが含まれることを特徴とする前記(9)に記載の抗がん注射剤。
(11)前記抗がん性有効成分としてヒドロキシプロピル-β-シクロデキストリンのみが、前記添加剤として浸透圧調整剤とpH調整剤のみが含まれることを特徴とする前記(9)に記載の抗がん注射剤。
(12)前記ヒドロキシプロピル-β-シクロデキストリンが、1日あたり、0.5g/kg~5g/kgの投与量で投与されることを特徴とする前記(9)~(11)のいずれか一つに記載の抗がん注射剤。
(13)前記ヒドロキシアルキル化シクロデキストリンが、1日あたり、1g/kg~5g/kgの投与量で投与されることを特徴とする前記(12)に記載の医薬組成物。
(14)前記抗がん注射剤が白血病治療薬である、前記(9)~(13)のいずれか一つに記載の抗がん注射剤。
The present invention includes the following.
(1) A pharmaceutical composition comprising a hydroxyalkylated cyclodextrin selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin or a derivative thereof as an anticancer active ingredient.
(2) The pharmaceutical composition according to the above (1), which contains only hydroxyalkylated cyclodextrin as an anticancer active ingredient.
(3) The pharmaceutical composition according to (1) or (2), wherein the hydroxyalkylated cyclodextrin is hydroxypropylcyclodextrin.
(4) The pharmaceutical composition according to (3), wherein the hydroxyalkylated cyclodextrin is hydroxypropyl-β-cyclodextrin.
(5) The pharmaceutical composition according to any one of (1) to (4), which is an injection.
(6) In any one of the above (1) to (5), the hydroxyalkylated cyclodextrin is administered at a dose of 0.5 g / kg to 10 g / kg per day. The pharmaceutical composition as described.
(7) The pharmaceutical composition according to the above (6), wherein the hydroxyalkylated cyclodextrin is administered at a dose of 1 g / kg to 5 g / kg per day.
(8) The pharmaceutical composition according to any one of (1) to (7), wherein the pharmaceutical composition is a therapeutic agent for leukemia.
(9) An anticancer injection comprising an anticancer active ingredient and a pharmaceutically acceptable additive, wherein the anticancer active ingredient is hydroxypropyl-β-cyclodextrin or a derivative thereof. Anti-cancer injection characterized.
(10) The anticancer injection according to (9), wherein only the hydroxypropyl-β-cyclodextrin is contained as the anticancer active ingredient.
(11) The anticancer agent according to (9), wherein only the hydroxypropyl-β-cyclodextrin is contained as the anticancer active ingredient, and only the osmotic pressure adjusting agent and the pH adjusting agent are contained as the additive. Cancer injection.
(12) Any one of the above (9) to (11), wherein the hydroxypropyl-β-cyclodextrin is administered at a dose of 0.5 g / kg to 5 g / kg per day. The anticancer injection described in 1.
(13) The pharmaceutical composition according to (12), wherein the hydroxyalkylated cyclodextrin is administered at a dose of 1 g / kg to 5 g / kg per day.
(14) The anticancer injection according to any one of (9) to (13), wherein the anticancer injection is a leukemia therapeutic agent.
(15)ヒドロキシプロピルシクロデキストリン、ヒドロキシブチルシクロデキストリン、およびヒドロキシエチルシクロデキストリンからなる群より選ばれるヒドロキシアルキル化シクロデキストリンまたはその誘導体を抗がん性有効成分として用いる癌の治療方法。
(16)前記ヒドロキシアルキル化シクロデキストリンが、ヒドロキシプロピル-β-シクロデキストリンである前記(15)に記載の癌の治療方法。
(17)前記ヒドロキシアルキル化シクロデキストリンが、1日あたり、0.5g/kg~5g/kgの投与量で投与されることを特徴とする前記(15)または(16)に記載の癌の治療方法。
(18)前記ヒドロキシアルキル化シクロデキストリンが、1日あたり、1g/kg~5g/kgの投与量で投与されることを特徴とする前記(17)に記載の癌の治療方法。
(19)前記(15)~(18)のいずれか一つに記載の癌の治療方法を用いて白血病を治療する方法。
(15) A method for treating cancer using a hydroxyalkylated cyclodextrin selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin or a derivative thereof as an anticancer active ingredient.
(16) The method for treating cancer according to (15), wherein the hydroxyalkylated cyclodextrin is hydroxypropyl-β-cyclodextrin.
(17) The cancer treatment according to (15) or (16), wherein the hydroxyalkylated cyclodextrin is administered at a dose of 0.5 g / kg to 5 g / kg per day. Method.
(18) The method for treating cancer according to (17), wherein the hydroxyalkylated cyclodextrin is administered at a dose of 1 g / kg to 5 g / kg per day.
(19) A method of treating leukemia using the cancer treatment method according to any one of (15) to (18).
 本発明のヒドロキシプロピルシクロデキストリン、ヒドロキシブチルシクロデキストリン、およびヒドロキシエチルシクロデキストリンからなる群より選ばれるヒドロキシアルキル化シクロデキストリン(好ましくは、ヒドロキシプロピルシクロデキストリン、さらに好ましくは、ヒドロキシプロピル-β-シクロデキストリン)またはその誘導体を抗がん作用の有効成分として含む医薬組成物は、抗がん剤として、特には白血病細胞の抗がん剤として有用である。 Hydroxyalkylated cyclodextrin selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin of the present invention (preferably hydroxypropylcyclodextrin, more preferably hydroxypropyl-β-cyclodextrin) Alternatively, a pharmaceutical composition containing a derivative thereof as an active ingredient for anticancer activity is useful as an anticancer agent, particularly as an anticancer agent for leukemia cells.
HP-β-CyDのヒト白血病細胞(BV173)、マウス白血病細胞(BaF3 p190 BCR-ABL)及び正常ヒト肝細胞(Hepatocyte)に対する細胞障害活性を測定した結果である。It is the result of measuring the cytotoxic activity of HP-β-CyD on human leukemia cells (BV173), mouse leukemia cells (BaF3 p190 BCR-ABL) and normal human hepatocytes (Hepatocyte). HP-β-CyDのマウス造血前駆細胞に対する細胞障害活性を測定した結果である。X軸は、培地に添加したHP-β-CyD濃度を示しており、Y軸は、HP-β-CyD無添加培地と比較したコロニー数の相対値(%)を示している。It is the result of measuring the cytotoxic activity of HP-β-CyD on mouse hematopoietic progenitor cells. The X axis shows the HP-β-CyD concentration added to the medium, and the Y axis shows the relative value (%) of the number of colonies compared to the HP-β-CyD-free medium. HP-β-CyDまたはM-β-CyDの、BaF3 p190細胞およびBV173細胞に対するコレステロール漏出作用を測定した結果である。図中の各点は、3回の実験の、mean±S.E.を示している。It is the result of measuring the cholesterol leakage action of HP-β-CyD or M-β-CyD on BaF3 p190 cells and BV173 cells. Each point in the figure represents mean ± S.D. Of three experiments. E. Is shown. HP-β-CyDまたはM-β-CyDの、BaF3 p190細胞およびBV173細胞に対する細胞内コレステロール量に対する影響を測定した結果である。上段が、BaF p190細胞に対する影響を測定した結果であり、下段がBV173細胞に対する影響を測定した結果である。It is the result of having measured the influence with respect to the amount of intracellular cholesterol with respect to BaF3 p190 cell and BV173 cell of HP-β-CyD or M-β-CyD. The upper row shows the results of measuring the influence on BaF p190 cells, and the lower row shows the results of measuring the influence on BV173 cells. HP-β-CyDのマウス白血病細胞(BaF3 p190 BCR-ABL)およびヒト白血病細胞(BV173)に対するアポトーシス誘導を測定した結果である。X軸は、培地に添加したHP-β-CyD濃度を示しており、Y軸は、アポトーシスを起こした細胞の割合を示している。It is the result of measuring apoptosis induction of mouse leukemia cells (BaF3 p190 BCR-ABL) and human leukemia cells (BV173) by HP-β-CyD. The X axis indicates the HP-β-CyD concentration added to the medium, and the Y axis indicates the percentage of cells that have undergone apoptosis. マウス白血病細胞移植がんマウスモデルを用いた、HP-β-CyDのマウス生存率に対する効果を検討した結果である。It is the result of examining the effect on the mouse survival rate of HP-β-CyD using a mouse leukemia cell transplant cancer mouse model. マウス白血病細胞移植がんマウスモデルを用いた、抗がん剤であるイマチニブ及びバフェチニブのマウス生存率に対する効果を検討した結果である。It is the result of having investigated the effect with respect to a mouse | mouth survival rate of the anticancer agent imatinib and the buffetinib using a mouse leukemia cell transplant cancer mouse model. マウスに皮下投与後の血清中のHP-β-CyDの濃度推移を示す図である。FIG. 3 is a graph showing changes in serum HP-β-CyD concentration after subcutaneous administration to mice. 図8の結果をもとに、50mM HP-β-CyD(14mgHP-β-CyD/20gマウス=0.7g/kg)をマウスに1日2回皮下投与および静脈内投与したと仮定した場合の血清中濃度の時間推移を推測した図である。右図が静脈内投与で、左図が皮下投与である。Based on the results shown in FIG. 8, it is assumed that 50 mM HP-β-CyD (14 mg HP-β-CyD / 20 g mouse = 0.7 g / kg) was subcutaneously and intravenously administered to mice twice a day. It is the figure which estimated the time transition of serum concentration. The right figure shows intravenous administration and the left figure shows subcutaneous administration.
 以下、本発明を詳細に説明するが、本発明は以下に記載の態様に限定されるものではない。
 本発明でいうヒドロキシアルキル化シクロデキストリンとは、ヒドロキシプロピルシクロデキストリン、ヒドロキシブチルシクロデキストリン、およびヒドロキシエチルシクロデキストリンからなる群より選ばれるヒドロキシアルキル化シクロデキストリンであり、シクロデキストリン(α-シクロデキストリン、β-シクロデキストリン、およびγ-シクロデキストリン)の水酸基が、ランダムに、ヒドロキシプロピル基、ヒドロキシブチル基またはヒドロキシエチル基に置換された化合物である。例えば、ヒドロキシプロピル-β-シクロデキストリンとは、β-シクロデキストリンの7個のグルコースの2、3および6位の水酸基がランダムにヒドロキシプロピル基に置換された化合物である。
 本発明で用いるヒドロキシプロピルシクロデキストリン、ヒドロキシブチルシクロデキストリン、またはヒドロキシエチルシクロデキストリンは、公知の方法で合成することができるが、ヒドロキシプロピルシクロデキストリンは市販もされている。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the embodiments described below.
The hydroxyalkylated cyclodextrin referred to in the present invention is a hydroxyalkylated cyclodextrin selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin, and cyclodextrin (α-cyclodextrin, β -Cyclodextrin and γ-cyclodextrin) are compounds in which the hydroxyl groups are randomly substituted with hydroxypropyl, hydroxybutyl or hydroxyethyl groups. For example, hydroxypropyl-β-cyclodextrin is a compound in which hydroxyl groups at positions 2, 3, and 6 of 7 glucoses of β-cyclodextrin are randomly substituted with hydroxypropyl groups.
Hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, or hydroxyethylcyclodextrin used in the present invention can be synthesized by a known method, but hydroxypropylcyclodextrin is also commercially available.
 本発明においては、ヒドロキシアルキル化シクロデキストリンは、好ましくはヒドロキシプロピルシクロデキストリンであり、さらに好ましくは、ヒドロキシプロピル-β-シクロデキストリンである。別の観点からは、本発明においては、ヒドロキシアルキル化シクロデキストリンは、好ましくはヒドロキシアルキル化-β-シクロデキストリンであり、さらに好ましくは、ヒドロキシプロピル-β-シクロデキストリンである。 In the present invention, the hydroxyalkylated cyclodextrin is preferably hydroxypropylcyclodextrin, more preferably hydroxypropyl-β-cyclodextrin. From another point of view, in the present invention, the hydroxyalkylated cyclodextrin is preferably hydroxyalkylated-β-cyclodextrin, more preferably hydroxypropyl-β-cyclodextrin.
 本発明でいうヒドロキシアルキル化シクロデキストリン誘導体とは、上記のいずれかのヒドロキシアルキル化シクロデキストリンに、他の化合物を共有結合したものを含む。結合する他の化合物は、特に限定はされないが、例えば、各種レセプターへの結合能を有する化合物や抗腫瘍性または抗がん性を有する化合物を挙げることができる。具体的な例として、例えば、葉酸修飾したヒドロキシプロピル-β-シクロデキストリン(葉酸修飾-HP-β-CyD)、トランスフェリンで修飾したヒドロキシプロピル-β-シクロデキストリン(トランスフェリン修飾-HP-β-CyD)、EGFで修飾したヒドロキシプロピル-β-シクロデキストリン(EGF修飾-HP-β-CyD)、アルギニン-グリシン-アスパラギン酸(RGD)ペプチドで修飾したヒドロキシプロピル-β-シクロデキストリン(RGDペプチド修飾-HP-β-CyD)、がん細胞を特異的に認識する抗体で修飾したヒドロキシプロピル-β-シクロデキストリン(細胞特異的抗体修飾-HP-β-CyD)をあげることができる。葉酸修飾-HP-β-CyDは、ヒドロキシプロピル-β-シクロデキストリンのグルコースに葉酸が共有結合された化合物であり、葉酸が結合する部位は特に限定されず、ヒドロキシプロピル基が結合していない、グルコースの水酸基の位置に結合できる。また、葉酸が結合する割合は特に限定されない。
 なお、ヒドロキシアルキル化シクロデキストリン誘導体は、他の化合物、例えば、葉酸や抗腫瘍性または抗がん性を有する化合物を共有結合したものは含まれるが、包接したものは含まれない。
The hydroxyalkylated cyclodextrin derivative referred to in the present invention includes those obtained by covalently bonding other compounds to any of the above hydroxyalkylated cyclodextrins. Although the other compound to couple | bond is not specifically limited, For example, the compound which has the binding ability to various receptors, and the compound which has antitumor property or anticancer property can be mentioned. Specific examples include, for example, hydroxypropyl-β-cyclodextrin modified with folic acid (folic acid-modified HP-β-CyD), hydroxypropyl-β-cyclodextrin modified with transferrin (transferrin-modified HP-β-CyD) Hydroxypropyl-β-cyclodextrin modified with EGF (EGF-modified HP-β-CyD), hydroxypropyl-β-cyclodextrin modified with arginine-glycine-aspartic acid (RGD) peptide (RGD peptide-modified HP- β-CyD), and hydroxypropyl-β-cyclodextrin modified with an antibody that specifically recognizes cancer cells (cell-specific antibody modification-HP-β-CyD). Folic acid modification-HP-β-CyD is a compound in which folic acid is covalently bonded to glucose of hydroxypropyl-β-cyclodextrin, and the site to which folic acid is bonded is not particularly limited, and the hydroxypropyl group is not bonded. It can bind to the position of the hydroxyl group of glucose. Further, the ratio of folic acid binding is not particularly limited.
The hydroxyalkylated cyclodextrin derivative includes other compounds such as folic acid and those having a covalent bond with a compound having antitumor or anticancer properties, but not including them.
 「有効成分」とは、医薬組成物および/または医薬用途に用いられる剤、例えば、医薬品において、目的とする効能または効果を示すために含まれる薬効活性をもつ物質を意味する。医薬品は、一般に、有効成分と、医薬上許容される添加剤からなる。従って、本明細書において、有効成分というときは、本発明の医薬組成物としての用途、すなわち抗がん剤としての用途との関係で、該医薬組成物において抗がん活性を示す物質として使用される物質を意味する。言い換えれば、本明細書において、「有効成分」または「抗がん性有効成分」とは、抗がん性を目的とした医薬組成物において、その目的を達成するために含有される、抗がん活性を示す物質を意味する。 “Active ingredient” means a substance having medicinal activity included in a pharmaceutical composition and / or an agent used for medicinal use, for example, a medicinal product in order to show a target effect or effect. Pharmaceutical products generally consist of active ingredients and pharmaceutically acceptable additives. Therefore, in the present specification, the active ingredient is used as a substance exhibiting anticancer activity in the pharmaceutical composition in relation to the use as the pharmaceutical composition of the present invention, that is, the use as an anticancer agent. Means the substance to be made. In other words, in the present specification, the term “active ingredient” or “anticancer active ingredient” refers to an anticancer agent contained in a pharmaceutical composition for anticancer purposes, which is contained in order to achieve the purpose. It means a substance that shows activity.
 本発明は、特定のヒドロキシアルキル化シクロデキストリンまたはその誘導体を抗がん作用の有効成分として含む医薬組成物である。本発明で用いる特定のヒドロキシアルキル化シクロデキストリンとは、ヒドロキシプロピルシクロデキストリン、ヒドロキシブチルシクロデキストリン、およびヒドロキシエチルシクロデキストリンからなる群より選ばれ、好ましくはヒドロキシプロピルシクロデキストリンまたはヒドロキシアルキル化-β-シクロデキストリンであり、さらに好ましくは、ヒドロキシプロピル-β-シクロデキストリンである。 The present invention is a pharmaceutical composition comprising a specific hydroxyalkylated cyclodextrin or a derivative thereof as an active ingredient for anticancer action. The specific hydroxyalkylated cyclodextrin used in the present invention is selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin, preferably hydroxypropylcyclodextrin or hydroxyalkylated-β-cyclodextrin Dextrin, more preferably hydroxypropyl-β-cyclodextrin.
 ヒドロキシプロピル-β-シクロデキストリン(HP-β-CyD)を例に、以下、本発明の態様を説明するが、本発明の態様がHP-β-CyDに限定されるものではない。
 本発明の医薬組成物とは、抗がん作用を有する医薬組成物であり、かつ、組成物中に、抗がん活性を有する有効成分としてHP-β-CyDを含むことを特徴とする。すなわち、抗がん作用を有する医薬組成物中に、他の成分の可溶化剤および/または安定化剤としてHP-β-CyDを含むのではなく、抗がん活性を有する有効成分そのものとしてHP-β-CyDを含むことを特徴とする。言い換えれば、HP-β-CyDを他の成分の可溶化剤および/または安定化剤として含む医薬組成物は本発明の医薬組成物から除かれる。
 本発明の医薬組成物は、抗がん作用を有する有効成分としてHP-β-CyDを含む限り、他の抗がん作用を有する有効成分を含むこともできるが、好ましくは、抗がん作用を有する主要な有効成分としてHP-β-CyDを含み、さらに好ましくは、抗がん作用を有する有効成分としてHP-β-CyDのみを含む。
Hereinafter, embodiments of the present invention will be described using hydroxypropyl-β-cyclodextrin (HP-β-CyD) as an example, but the embodiments of the present invention are not limited to HP-β-CyD.
The pharmaceutical composition of the present invention is a pharmaceutical composition having anticancer activity, and is characterized by containing HP-β-CyD as an active ingredient having anticancer activity. That is, HP-β-CyD is not included as a solubilizer and / or stabilizer of other components in a pharmaceutical composition having anticancer activity, but HP as an active component itself having anticancer activity. -Β-CyD is included. In other words, pharmaceutical compositions containing HP-β-CyD as a solubilizer and / or stabilizer for other ingredients are excluded from the pharmaceutical composition of the present invention.
As long as the pharmaceutical composition of the present invention contains HP-β-CyD as an active ingredient having an anti-cancer action, it can also contain other active ingredients having an anti-cancer action. HP-β-CyD is included as a main active ingredient having an anti-cancer activity, and more preferably only HP-β-CyD is included as an active ingredient having an anticancer action.
 本発明の組成物は、これに限定されないが、好ましくは、注射用製剤の形態をとる。本発明の注射用製剤は、静脈内、筋肉内、皮下、臓器内、腹腔内、あるいは腫瘍等の病巣に投与することができる。また本発明の医薬組成物は、水溶性製剤または凍結乾燥製剤のいずれの形態をとることができ、好ましくは、水性注射剤、または凍結乾燥した用時溶解型注射剤をあげることができる。 The composition of the present invention is not limited to this, but preferably takes the form of an injectable preparation. The injectable preparation of the present invention can be administered intravenously, intramuscularly, subcutaneously, into an organ, intraperitoneally, or a lesion such as a tumor. In addition, the pharmaceutical composition of the present invention can take any form of a water-soluble preparation or a lyophilized preparation, preferably an aqueous injection or a freeze-dried injection upon use.
 本発明の組成物は、通常注射剤に用いられる糖類、防腐剤、安定化剤、静電防止剤を含んでもよい。本発明の組成物はまた、薬理学的に許容できるpH調整剤を含有することができる。本発明に用いられるpH調整剤は、医薬用途に使用でき、薬理学的に許容できる物質であれば特に限定されるものではないが、好ましくは水酸化ナトリウム、炭酸緩衝液、リン酸緩衝液、クエン酸緩衝液、酢酸緩衝液及び塩酸である。これらのpH調整剤は1種単独でも、2種以上を混合して用いてもよい。本発明に組成物はまた、浸透圧調整剤または等張化剤を含むことができ、例えば、塩化ナトリウムやデキストロース等の少なくとも1種を含むことができる。 The composition of the present invention may contain sugars, preservatives, stabilizers and antistatic agents which are usually used for injections. The composition of the present invention may also contain a pharmacologically acceptable pH adjuster. The pH adjuster used in the present invention is not particularly limited as long as it is a pharmacologically acceptable substance that can be used for pharmaceutical purposes, but preferably sodium hydroxide, carbonate buffer, phosphate buffer, Citrate buffer, acetate buffer and hydrochloric acid. These pH adjusters may be used alone or in combination of two or more. The composition of the present invention can also contain an osmotic pressure adjusting agent or an isotonic agent, and can contain at least one kind such as sodium chloride and dextrose.
 注射剤を例に本発明の態様を説明するが、本発明の態様は以下に限定されるものではない。また、本発明の特定のヒドロキシアルキル化シクロデキストリンまたはその誘導体としてHP-β-CyDを例に説明するが、それに限定されるものではない
 本発明の一つの態様は、抗がん活性を有する主要な有効成分として、好ましくは唯一の有効成分として、HP-β-CyDを含有する抗がん剤であって、注射剤の形態をとる医薬組成物である。本発明の注射剤は、HP-β-CyDに加えて注射剤に用いられる浸透圧調整剤やpH調整剤を含むことができ、更には、注射剤に通常用いられる添加剤を含むこともできる。
 従って、本発明の一つの態様は、HP-β-CyDおよび医薬上許容される添加剤を含む抗がん注射剤であり、また、別の一つの態様は、HP-β-CyDおよび医薬上許容される添加剤のみからなる抗がん注射剤(抗がん活性を有する有効成分としてHP-β-CyDのみを含む)である。これらの注射剤は、水溶性製剤または凍結乾燥製剤のいずれの形態もあり得る。
The embodiment of the present invention will be described by taking an injection as an example, but the embodiment of the present invention is not limited to the following. Further, although HP-β-CyD will be described as an example of the specific hydroxyalkylated cyclodextrin of the present invention or a derivative thereof, one embodiment of the present invention is not limited thereto. It is an anticancer agent containing HP-β-CyD as the only active ingredient, preferably as the only active ingredient, and is a pharmaceutical composition in the form of an injection. The injection of the present invention can contain, in addition to HP-β-CyD, an osmotic pressure adjusting agent and a pH adjusting agent used for the injection, and can further contain additives usually used for the injection. .
Accordingly, one aspect of the present invention is an anti-cancer injection containing HP-β-CyD and a pharmaceutically acceptable additive, and another aspect is HP-β-CyD and a pharmaceutically acceptable agent. An anti-cancer injection comprising only acceptable additives (including only HP-β-CyD as an active ingredient having anti-cancer activity). These injections may be in the form of water-soluble preparations or lyophilized preparations.
 本発明の組成物を用いることができるがんは特に限定されず、いずれのがんに対しても用いることができ、例えば、乳がん、小細胞肺がん、大腸がん、悪性リンパ腫、白血病、精巣腫瘍、卵巣がん、膵臓がん、肺がん、咽頭がん、喉頭がん、舌がん、歯肉がん、食道がん、胃がん、胆管がん、腎がん、膀胱がん、子宮がん、前立腺がんなどを挙げることができる。好ましくは、白血病である。 The cancer to which the composition of the present invention can be used is not particularly limited, and can be used for any cancer, such as breast cancer, small cell lung cancer, colon cancer, malignant lymphoma, leukemia, testicular tumor. , Ovarian cancer, pancreatic cancer, lung cancer, pharyngeal cancer, laryngeal cancer, tongue cancer, gingival cancer, esophageal cancer, stomach cancer, bile duct cancer, kidney cancer, bladder cancer, uterine cancer, prostate Can include cancer. Preferably, it is leukemia.
 本発明の組成物を抗がん剤として用いる場合、本発明の特定のヒドロキシアルキル化シクロデキストリンの有効投与量は、癌の性質、病気の程度、治療方針、転移の程度、腫瘍の量、体重、年齢、性別及び患者の(遺伝的)人種的背景に依存して適宜選択できるが、薬学的有効量は、一般に、臨床上観察される症状、病気の進行の度合い等の要因に基づいて決定される。1日あたりの投与量は、例えば、ヒトに投与する場合は、0.5g/kg~10g/kg(体重60kgの成人では、30g~600g)、好ましくは1g/kg~10g/kg、より好ましくは1g/kg~5g/kg、さらに好ましくは1.2~5g/kg、である。投与は、1回で投与しても複数回に分けて投与してもよく、また、点滴等により時間をかけて連続的に投与してもよいが、好ましくは点滴により数時間~約10時間をかけて投与するのがよい。また、投与は、連日であっても間歇投与であってもよく、投与対象の状態に応じて適宜選択できるが、好ましくは、間歇投与である。 When the composition of the present invention is used as an anticancer agent, the effective dose of the specific hydroxyalkylated cyclodextrin of the present invention is the nature of the cancer, the degree of disease, the treatment policy, the degree of metastasis, the amount of tumor, the body weight Depending on the age, sex, and (genetic) racial background of the patient, the pharmaceutically effective amount is generally based on factors such as clinically observed symptoms, disease progression, etc. It is determined. The daily dose is, for example, 0.5 g / kg to 10 g / kg (30 g to 600 g for an adult with a body weight of 60 kg), preferably 1 g / kg to 10 g / kg, when administered to humans. Is 1 g / kg to 5 g / kg, more preferably 1.2 to 5 g / kg. Administration may be carried out once or divided into several times, and may be administered continuously over time by infusion or the like, preferably several hours to about 10 hours by infusion. Should be administered. The administration may be daily or intermittent, and can be appropriately selected depending on the condition of the administration subject, but is preferably intermittent administration.
 以下、実施例により本発明を説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実験動物を用いた実験は、国立大学法人熊本大学動物実験委員会の許可を得て熊本大学動物実験指針の下で、または、佐賀大学動物実験安全管理規則に則り佐賀大学動物実験委員会の承認を得て行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
Experiments using laboratory animals must be approved by the Kumamoto University Animal Experiment Committee with the permission of the National University Corporation Kumamoto University Animal Experiment Guidelines, or in accordance with the Saga University Animal Experiment Safety Control Rules. Was approved.
実施例1:ヒドロキシプロピル-β-シクロデキストリン(HP-β-CyD)の細胞障害活性の測定
 ヒト白血病細胞(BV173:Ph1-陽性ヒト白血病細胞、ドイツ・DSMZより入手)、マウス白血病細胞(BaF3 p190 BCR-ABL:マウスproB細胞に p190 BCR-ABL融合遺伝子を導入した株、ドイツ・フランクフルト大学、Dr Martin Rutardt より供与を受けた)、及び正常ヒト肝細胞(Hepatocyte)を用意し、96ウェルプレートにBV173とhepatocyteは104細胞/100μL、BaF3 p190は2.5×103細胞/100μLの濃度で撒き、HP-β-CyD終濃度がそれぞれ0、0.5、1.5、5、15、25mMになるよう各ウェルへ加え、37℃、5%CO2 下で培養した。24、48、72時間後に、各ウェルへ生細胞数測定試薬(ナカライテスク#07553)を10μLずつ加え、2時間後にマルチラベルプレートカウンターで吸光度(450nm)を測定し、生細胞数実測の代用とした。結果を図1に示す。
Example 1 : Measurement of cytotoxic activity of hydroxypropyl-β-cyclodextrin (HP-β-CyD) Human leukemia cells (BV173: Ph1-positive human leukemia cells, obtained from DSMZ, Germany), mouse leukemia cells (BaF3 p190 BCR-ABL: Prepare a mouse proB cell with the p190 BCR-ABL fusion gene introduced (provided by the University of Frankfurt, Germany, Dr Martin Rutardt) and normal human hepatocytes in a 96-well plate BV173 and hepatocyte are seeded at 10 4 cells / 100 μL, BaF3 p190 is seeded at a concentration of 2.5 × 10 3 cells / 100 μL, and HP-β-CyD final concentrations are 0, 0.5, 1.5, 5, 15, and 25 mM, respectively. And cultured at 37 ° C. under 5% CO 2 . After 24, 48 and 72 hours, add 10 μL of viable cell count reagent (Nacalai Tesque # 07553) to each well and measure the absorbance (450 nm) with a multi-label plate counter 2 hours later. did. The results are shown in FIG.
 各細胞株につき、上記MTTアッセイを3回繰り返した。得られた吸光度をCalcusyn (Biosoft)へプロットし、50%細胞増殖阻害濃度(IC50)を算出した。結果は以下の表1に示す。 The above MTT assay was repeated three times for each cell line. The obtained absorbance was plotted on Calcusyn (Biosoft), and 50% cell growth inhibitory concentration (IC 50 ) was calculated. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の結果より、白血病細胞株は、正常肝細胞と比較しHP-β-CyDへの感受性が高い傾向があることが示された。すなわち、HP-β-CyDの腫瘍細胞特異的な作用が示唆された。 From the above results, it was shown that leukemia cell lines tend to be more sensitive to HP-β-CyD than normal hepatocytes. That is, the tumor cell specific action of HP-β-CyD was suggested.
実施例2:造血前駆細胞に対するHP-β-CyDの細胞障害活性の測定
 10週齢のC57BL6/Nマウス(雄)より骨髄単核球を分離し、HP-β-CyD最終濃度が0、5、15、25mMになるよう調整したマウス造血コロニーアッセイ培地(Mouse Methocult #03434)に加えた。8日後、顕微鏡下にコロニー数をカウントし比較した。結果を図2に示す。
 HP-β-CyD 25mM添付した培地では無添加培地と比較しコロニー数が約50%に減少したが、HP-β-CyD 15mMまではコロニー数に大きな差はなく、正常造血前駆細胞の生存にHP-β-CyDは悪影響を及ぼさないことが示唆された。
Example 2 : Measurement of cytotoxic activity of HP-β-CyD against hematopoietic progenitor cells Bone marrow mononuclear cells were isolated from 10-week-old C57BL6 / N mice (male), and the final HP-β-CyD concentration was 0, 5 , 15 and 25 mM mouse hematopoietic colony assay medium (Mouse Methocult # 03434). After 8 days, the number of colonies was counted and compared under a microscope. The results are shown in FIG.
In the medium with HP-β-CyD 25mM, the number of colonies was reduced to about 50% compared to the medium without addition, but there was no significant difference in the number of colonies up to HP-β-CyD 15mM, and normal hematopoietic progenitor cells survived. It was suggested that HP-β-CyD has no adverse effect.
実施例3:コレステロール漏出に及ぼすHP-β-CyDの影響
 BaF3 p190細胞およびBV173細胞を用いて、コレステロール漏出に及ぼすHP-β-CyDの影響を検討した。それぞれの細胞について、1x107細胞の細胞懸濁液 1mLを15mL遠沈管に移し、遠心して、上清を除去した。細胞に、各種濃度(添加なし、5mM、10mM)のHP-β-CyDまたはメチル-β-シクロデキストリン(M-β-CyD)を含有するHBSS溶液を5mL添加し軽く懸濁し全量を100mm dishに回収した。37℃で1時間インキュベーションした後、上清4mLを採取し遠心(4℃、3,000rpm、5min)した。遠心上清を500μL採取してコレステロールE-テストワコー(登録商標)にてコレステロール量を定量した。結果を図3に示す。
 HP-β-CyDを添加した場合も、ポジティブコントロールであるM-β-CyDに比べては少ないが、コレステロールの漏出が確認された。
Example 3 : Effect of HP-β-CyD on cholesterol leakage The effect of HP-β-CyD on cholesterol leakage was examined using BaF3 p190 cells and BV173 cells. For each cell, 1 mL of a 1 × 10 7 cell suspension was transferred to a 15 mL centrifuge tube and centrifuged to remove the supernatant. Add 5 mL of HBSS solution containing HP-β-CyD or methyl-β-cyclodextrin (M-β-CyD) at various concentrations (no addition, 5 mM, 10 mM) to the cells and suspend lightly to make a total volume in a 100 mm dish. It was collected. After incubation at 37 ° C. for 1 hour, 4 mL of the supernatant was collected and centrifuged (4 ° C., 3,000 rpm, 5 min). 500 μL of the centrifuged supernatant was collected and the amount of cholesterol was quantified with cholesterol E-Test Wako (registered trademark). The results are shown in FIG.
Even when HP-β-CyD was added, the leakage of cholesterol was confirmed, although it was less than the positive control M-β-CyD.
実施例4:細胞内コレステロール量に対するHP-β-CyDの影響
 BaF3 p190細胞およびBV173細胞を用いて、細胞内コレステロール量に及ぼすHP-β-CyDの影響を検討した。 1x107 細胞/mLのBaF3 p190 BCR-ABLまたはBV173 の細胞懸濁液に1mLを15mL遠沈管に移し、遠心して、上清を除去した。細胞に、各種濃度の CyDs 溶液 (HP-β-CyD 5、10 mM、M-β-CyD 5、10 mM in HBSS)を5 mL添加して軽く懸濁し、100 mm 培養皿にてインキュベーション (37℃, 1 h)した。上清 4 mL を採取し、遠心後 (4℃, 3,000 rpm, 5 min)、上清 500 μL を採取し、コレステロールE-テストワコー(Wako)を用いて培養上清中に漏出したコレステロール量を定量した。さらに、細胞を回収し、可溶化後、細胞内コレステロール量を定量した。結果を図4に示す。HP-β-CyDでは、濃度依存的に細胞質からのコレステロール(総コレステロール(TC)および遊離コレステロール(FC))の漏出が確認され、アポトーシス誘導が示唆された。
Example 4 : Effect of HP-β-CyD on intracellular cholesterol level Using BaF3 p190 cells and BV173 cells, the effect of HP-β-CyD on intracellular cholesterol levels was examined. 1 mL was transferred to a cell suspension of 1 × 10 7 cells / mL BaF3 p190 BCR-ABL or BV173, centrifuged, and the supernatant was removed. Add 5 mL of CyDs solution (HP-β- CyD 5, 10 mM, M-β- CyD 5, 10 mM in HBSS) of various concentrations to the cells, suspend lightly, and incubate in a 100 mm culture dish (37 (C, 1 h). Collect 4 mL of the supernatant, centrifuge (4 ℃, 3,000 rpm, 5 min), collect 500 μL of the supernatant, and measure the amount of cholesterol leaked into the culture supernatant using Cholesterol E-Test Wako (Wako). Quantified. Furthermore, the cells were collected and solubilized, and the amount of intracellular cholesterol was quantified. The results are shown in FIG. With HP-β-CyD, leakage of cholesterol (total cholesterol (TC) and free cholesterol (FC)) from the cytoplasm was confirmed in a concentration-dependent manner, suggesting apoptosis induction.
実施例5:HP-β-CyDのアポトーシス誘導の測定
 マウス白血病細胞(BaF3 p190 BCR-ABL)およびヒト白血病細胞(BV173)を用いた。BaF3 p190は2.5×104細胞/mL、BV173は105細胞/mLの濃度で6ウェルプレートへ撒き、RPMI-1640培地; GibcoBRL, Oaisley, Scotland にて、HP-β-CyDを最終濃度0、5、10、15、25mMになるよう加え、37℃ 5%CO2下で培養した。12時間、24時間後に細胞を回収し、flow cytometer(BD FACSCaliburTM:Becton Dickinson社)を用い、Annexin V陽性細胞率を、アネキシンV(Beckman Coulter社)を用いて測定した。結果を図5に示す。HP-β-CyD濃度依存的にアポトーシス細胞の増加が確認できた。
Example 5 : Measurement of apoptosis induction of HP-β-CyD Mouse leukemia cells (BaF3 p190 BCR-ABL) and human leukemia cells (BV173) were used. BaF3 p190 was seeded at a concentration of 2.5 × 10 4 cells / mL and BV173 at a concentration of 10 5 cells / mL into a 6-well plate.In RPMI-1640 medium; GibcoBRL, Oaisley, Scotland, HP-β-CyD was added at a final concentration of 0, The cells were added to 5, 10, 15, and 25 mM, and cultured at 37 ° C. under 5% CO 2 . After 12 hours and 24 hours, the cells were collected, and the flow rate of Annexin V positive cells was measured using Annexin V (Beckman Coulter) using a flow cytometer (BD FACSCalibur : Becton Dickinson). The results are shown in FIG. An increase in apoptotic cells was confirmed depending on the HP-β-CyD concentration.
実施例6:マウス白血病細胞移植がんマウスモデルを用いたHP-β-CyDのマウス生存率に対する効果の確認
 5-6週齢のBalb/cA Jcl nu/nu(雄)に、白血病細胞(BaF3 p190 BCR-ABL)を尾静脈より106細胞/200μL輸注した。HP-β-CyD投与量により3群(0、50、150mM)にわけ、Day3-22に1日2回 200μLずつを腹腔内投与した。結果を図6に示す。HP-β-CyD投与群は無治療群と比較し、有意に生存期間を延長した。
Example 6 : Confirmation of effect of HP-β-CyD on mouse survival rate using mouse mouse leukemia cell transplanted cancer mouse model 5-6 weeks old Balb / cA Jcl nu / nu (male) was treated with leukemia cells (BaF3 p190 BCR-ABL) was infused from the tail vein at 10 6 cells / 200 μL. According to the dose of HP-β-CyD, it was divided into 3 groups (0, 50, 150 mM), and 200 μL was intraperitoneally administered twice a day on Day 3-22. The results are shown in FIG. The HP-β-CyD administration group significantly prolonged the survival time compared with the non-treatment group.
比較例1:マウス白血病細胞移植がんマウスモデルを用いたイマチニブ(imatinib)およびバフェチニブ(bafetinib)のマウス生存率に対する効果の確認
 実施例6と同様にして、5-6週齢のBalb/cA Jcl nu/nu(雄)に、白血病細胞(BaF3 p190 BCR-ABL)を尾静脈より106細胞/200μL輸注した。その後、イマチニブおよびバフェチニブの原末を0.5 %のメチルセルロースに溶解したものを、経口投与(ゾンデを使用し、直接胃内へ投与)した。投与は、それぞれ、bafetinib (NS-187):100 mg/kg/dose、imatinib : 200 mg/kg/doseとなるようにし、1日2回、白血病細胞移植後 Day2 から11日間投与した。結果を図7に示す。イマチニブは16日目、バフェチニブは26日目に全てのマウスが死亡した。
Comparative Example 1 : Confirmation of the effect of imatinib and bafetinib on mouse survival using a mouse model of mouse leukemia cell transplantation cancer In the same manner as in Example 6, 5-6 weeks old Balb / cA Jcl in nu / nu (males) and 10 6 cells / 200 [mu] L transfusion than leukemia cells (BaF3 p190 BCR-ABL) the tail vein. Subsequently, imatinib and buffetinib bulk powder dissolved in 0.5% methylcellulose were orally administered (directly into the stomach using a sonde). Administration was such that bafetinib (NS-187): 100 mg / kg / dose and imatinib: 200 mg / kg / dose were administered twice a day for 11 days after Day 2 after leukemia cell transplantation. The results are shown in FIG. All mice died on the 16th day for imatinib and on the 26th day for buffetinib.
実施例7:HP-β-CyDの有効血中濃度
 HP-β-CyDが、in vivo条件下で抗白血病効果を示す最小有効血中濃度を推定した。これまでの検討から、in vitro細胞培養系においては、ヒト慢性骨髄性白血病(chronic myeloid leukemia, CML)から樹立されたBV173細胞およびマウスPro B細胞であるBaF3細胞にCMLの原因遺伝子ヒトbcr-ablを遺伝子導入したBaF3/BCR-ABL細胞を用いた場合、HP-β-CyDの50%有効阻止濃度(IC50)は、それぞれ4.68±0.98 mMおよび6.01±1.04 mMであった。さらに、in vivo条件下、6週齢のヌードマウスに1x106個のBaF3/BCR-ABL細胞を経静脈的に移植し、HP-β-CyDを移植後3日後から20日間1日2回腹腔内投与した際に、50 mM および150 mM HP-β-CyD投与群で、コントロール群(生理食塩水)に比べて有意に生存期間が延長した。そこで、50 mM HP-β-CyD投与群におけるHP-β-CyDの血清中濃度を予測し、抗白血病効果を示す最小有効血中濃度を推定した。
Example 7: Effective blood concentration of HP-β-CyD The minimum effective blood concentration at which HP-β-CyD exhibits an anti-leukemia effect under in vivo conditions was estimated. From previous studies, in vitro cell culture systems have been found to induce CML-causing gene human bcr-abl in BV173 cells established from human chronic myeloid leukemia (CML) and BaF3 cells, which are mouse Pro B cells. When using BaF3 / BCR-ABL cells into which the gene was introduced, the 50% effective inhibitory concentration (IC 50 ) of HP-β-CyD was 4.68 ± 0.98 mM and 6.01 ± 1.04 mM, respectively. Furthermore, under in vivo conditions, 1x10 6 BaF3 / BCR-ABL cells were intravenously transplanted into 6-week-old nude mice, and HP-β-CyD was intraperitoneally administered twice a day for 20 days from 3 days after transplantation. When administered internally, survival time was significantly prolonged in the 50 mM and 150 mM HP-β-CyD administration groups compared to the control group (saline). Therefore, the serum concentration of HP-β-CyD in the 50 mM HP-β-CyD administration group was predicted, and the minimum effective blood concentration showing anti-leukemic effect was estimated.
 実験には、BALB/cマウス(生後8~9週齢、平均体重: 22.7±0.6 g)に2000 mg/kgのHP-β-CyD等張液(pH 7.4)を皮下投与した。
 HP-β-CyD等張液を投与後30分、1時間および2時間でマウス腹部大静脈より採血した。血液は遠心分離(4000×g, 4℃)し、血清を得た。血清(100μL)に20%トリクロロ酢酸水溶液(40μL)を添加後、遠心分離(10000× g, 4℃)して上清(80μL)を回収し、1 M Na2CO3 水溶液(40μL)を加えた後にフィルターろ過(Millipore社製、Millex(登録商標)-HP PES φ13 mm、pore size 0.45μm)したものを、HPLCにて測定した。
 血清中HP-β-CyD濃度の測定は、高速液体クロマトグラフィー(HPLC)を用い、ポストカラム法にて行った。(Frijlink HW, J Chromatogr,487,99-105(1989), 415,325-333(1987)。HPLCの機器設定、移動相組成などの測定条件を以下に示す。HPLC機種・型番: SHIMADZU LC-10A (UV-VIS DETECTOR: SPD-10A)、Column: Shodex SB802HQ (水系SEC )、Mobile phase: 0.9 % NaCl (pH 4.3)w/w、Post-column solution: phenolphthalein : NaHCO3 = 1 : 99 (v/v)、Flow: 0.45-0.6 mL/min、Column tempareture: 40℃、Injection volume: 10μL、Detector: 546 nm。本実験条件における定量限界は、200μg/mL HP-β-CyDであった。
 図8は、HP-β-CyD (2000 mg/kg)を皮下投与後の血清中HP-β-CyD濃度推移を表している。これまでの報告から、HP-β-CyDは血中移行後、細胞外液中に分布し、糸球体濾過速度と同等の速度で尿中に排泄されることが知られている。そこで、HP-β-CyDの分布容積(Vd)をマウス細胞外液量(4.6 mL)および消失速度定数(ke)をマウス糸球体濾過速度(3.7 h-1)と仮定して、皮下投与後のHP-β-CyDの吸収速度(ka)を推定した。その結果、HP-β-CyDの皮下投与後の吸収速度は、1.1 h-1と算出された。図8中の曲線は、既知のVd値、ke値および本研究で得られたka値を用いて作成したシミュレーション曲線である。
In the experiment, 2000 mg / kg HP-β-CyD isotonic solution (pH 7.4) was subcutaneously administered to BALB / c mice (8-9 weeks old, average body weight: 22.7 ± 0.6 g).
Blood was collected from the mouse abdominal vena cava 30 minutes, 1 hour and 2 hours after administration of HP-β-CyD isotonic solution. The blood was centrifuged (4000 × g, 4 ° C.) to obtain serum. Add 20% trichloroacetic acid aqueous solution (40μL) to serum (100μL), then centrifuge (10000 × g, 4 ° C) to collect supernatant (80μL), add 1 M Na 2 CO 3 aqueous solution (40μL) Thereafter, filter filtration (Millipore, Millex (registered trademark) -HP PES φ13 mm, pore size 0.45 μm) was measured by HPLC.
The serum HP-β-CyD concentration was measured by high performance liquid chromatography (HPLC) by the post-column method. (Frijlink HW, J Chromatogr, 487, 99-105 (1989), 415, 325-333 (1987). Measurement conditions such as HPLC instrument settings and mobile phase composition are shown below. HPLC model / model: SHIMADZU LC-10A ( UV-VIS DETECTOR: SPD-10A), Column: Shodex SB802HQ (aqueous SEC), Mobile phase: 0.9% NaCl (pH 4.3) w / w, Post-column solution: phenolphthalein: NaHCO3 = 1: 99 (v / v) , Flow: 0.45-0.6 mL / min, Column tempareture: 40 ° C., Injection volume: 10 μL, Detector: 546 nm The limit of quantification in this experimental condition was 200 μg / mL HP-β-CyD.
FIG. 8 shows changes in serum HP-β-CyD concentration after subcutaneous administration of HP-β-CyD (2000 mg / kg). From previous reports, it is known that HP-β-CyD is distributed in the extracellular fluid after moving into the blood and excreted in urine at a rate equivalent to the glomerular filtration rate. Assuming that the volume of distribution of HP-β-CyD (Vd) is the amount of extracellular fluid in mice (4.6 mL) and the disappearance rate constant (ke) is the glomerular filtration rate (3.7 h -1 ), The absorption rate (ka) of HP-β-CyD was estimated. As a result, the absorption rate after subcutaneous administration of HP-β-CyD was calculated to be 1.1 h −1 . The curves in FIG. 8 are simulation curves created using known Vd values, ke values, and ka values obtained in this study.
 次いで、50 mM HP-β-CyDをマウスに1日2回腹腔内投与した際の血清中濃度をシミュレーションした。
 図9は、図8から得られたka値および既知のVd値およびke値を用いて、50 mM HP-β-CyD(14 mg/20 g = 0.7 g/kg)をマウスに1日2回皮下投与および静脈内投与したと仮定した際の血清中濃度の時間推移を予測した結果を示す。皮下投与の場合の最高血清中濃度は566 mg/L(0.4 mM)、静脈内投与の場合の最高血清中濃度は3452 mg/L(2.47 mM)と推測された。
 BaF3/BCR-ABL細胞を経静脈的に移植したヌードマウスには、50 mM HP-β-CyDを1日2回腹腔内投与したので、血清中濃度推移は皮下投与と静脈内投与の中間的な値をとるものと予測される。さらに、in vitro細胞系では5 mM程度で有効であることが示されているので、HP-β-CyDの効果が時間・濃度依存的であることも考慮すると、血清中最小有効濃度は、1 mM(1400 mg/L)付近であると想定される。
Subsequently, the serum concentration when 50 mM HP-β-CyD was intraperitoneally administered to mice twice a day was simulated.
FIG. 9 shows that 50 mM HP-β-CyD (14 mg / 20 g = 0.7 g / kg) was given to mice twice a day using ka values obtained from FIG. 8 and known Vd values and ke values. The result of having predicted the time transition of the serum concentration when assuming subcutaneous administration and intravenous administration is shown. The maximum serum concentration for subcutaneous administration was estimated to be 566 mg / L (0.4 mM), and the maximum serum concentration for intravenous administration was estimated to be 3352 mg / L (2.47 mM).
In nude mice transplanted intravenously with BaF3 / BCR-ABL cells, 50 mM HP-β-CyD was administered intraperitoneally twice a day, so the serum concentration transition was intermediate between subcutaneous and intravenous administration. It is expected to take a large value. Furthermore, since it has been shown to be effective at about 5 mM in in vitro cell lines, considering that the effect of HP-β-CyD is time- and concentration-dependent, the minimum effective serum concentration is 1 It is assumed to be around mM (1400 mg / L).
 次に、ヒトにおいてHP-β-CyDの抗白血病効果が期待される最小投与量を推定した。
 今回得られた新知見をヒトに当てはめると、抗白血病効果を示すHP-β-CyDの定常状態における血清中最小有効濃度(Css = 1400 mg/L)=点滴速度(mg/h)/CL(111 mL/h/kg)から、点滴速度(投与量)は、155.4 mg/h/kgと計算できる。この点滴速度で体重60 kgの患者に1日8時間点滴すると、総量で74.6 g/bodyとなる。この量は、HP-β-CyDを添加剤として用いる他の薬剤における量に比べると、遥かに多い量である。たとえば、抗がん剤ではないが、現在市販されている医薬品の中で、HP-β-CyDを最大に含有している製剤はイトリゾール(登録商標)注である。イトリゾール注は、水溶性が極めて低いイトラコナゾールを溶解するために、1バイアル中にHP-β-CyDを8g含んでおり、最大で1日2回投与が可能であるので、1日当たりのHP-β-CyDの最大投与量は16gとなる。また、抗がん剤において薬効成分の安定化剤や可溶化剤キャリア分子としての使用が提案されているHP-β-CyDの添加量は、薬効成分の数倍量となり、1日当たりのHP-β-CyDの最大投与量は更に少ない量となる。今回のシミュレーション結果から得られた、抗白血病効果に対するHP-β-CyDの推定投与量は、1日当たりの約70gとなり、従来の製剤添加物としてのHP-β-CyDの投与量から大きくからかけ離れている結果となった。
Next, the minimum dose at which the anti-leukemic effect of HP-β-CyD is expected in humans was estimated.
When the new findings obtained in this study are applied to humans, the effective serum concentration of HP-β-CyD, which exhibits anti-leukemic effects, in the steady state (Css = 1400 mg / L) = infusion rate (mg / h) / CL ( 111 mL / h / kg), the infusion rate (dose) can be calculated as 155.4 mg / h / kg. Instillation for 8 hours a day to a patient weighing 60 kg at this infusion rate yields a total volume of 74.6 g / body. This amount is much higher than in other drugs using HP-β-CyD as an additive. For example, among the currently marketed pharmaceuticals that are not anticancer agents, the formulation that contains the largest amount of HP-β-CyD is Itrizole®. Itrizole Injection contains 8 g of HP-β-CyD in one vial to dissolve itraconazole, which has extremely low water solubility, and can be administered twice a day, so HP-β per day -The maximum dose of CyD is 16g. In addition, the amount of HP-β-CyD, which is proposed for use as a stabilizer or solubilizer carrier molecule in anticancer drugs, is several times the amount of medicinal ingredients, and HP- The maximum dose of β-CyD is even lower. The estimated dose of HP-β-CyD for the anti-leukemic effect obtained from the simulation results is about 70 g per day, far from the dose of HP-β-CyD as a conventional formulation additive. As a result.
 上記の記載は、本発明の目的及び対象を単に説明するものであり、添付の特許請求の範囲を限定するものではない。添付の特許請求の範囲から離れることなしに、記載された実施態様に対しての、種々の変更及び置換は、本明細書に記載された教示より当業者にとって明らかである。 The above description merely explains the objects and objects of the present invention, and does not limit the scope of the appended claims. Various changes and substitutions to the described embodiments will be apparent to those skilled in the art from the teachings described herein without departing from the scope of the appended claims.
 本発明の医薬組成物は、抗がん剤として有用である。 The pharmaceutical composition of the present invention is useful as an anticancer agent.

Claims (14)

  1.  ヒドロキシプロピルシクロデキストリン、ヒドロキシブチルシクロデキストリン、およびヒドロキシエチルシクロデキストリンからなる群より選ばれるヒドロキシアルキル化シクロデキストリンまたはその誘導体を抗がん性有効成分として含む医薬組成物。 A pharmaceutical composition comprising a hydroxyalkylated cyclodextrin selected from the group consisting of hydroxypropylcyclodextrin, hydroxybutylcyclodextrin, and hydroxyethylcyclodextrin or a derivative thereof as an anticancer active ingredient.
  2.  抗がん性有効成分としてヒドロキシアルキル化シクロデキストリンのみを含む請求項1に記載の医薬組成物。 The pharmaceutical composition according to claim 1, comprising only hydroxyalkylated cyclodextrin as an anticancer active ingredient.
  3.  前記ヒドロキシアルキル化シクロデキストリンが、ヒドロキシプロピルシクロデキストリンである、請求項1または2に記載の医薬組成物。 The pharmaceutical composition according to claim 1 or 2, wherein the hydroxyalkylated cyclodextrin is hydroxypropylcyclodextrin.
  4.  前記ヒドロキシアルキル化シクロデキストリンが、ヒドロキシプロピル-β-シクロデキストリンである請求項3に記載の医薬組成物。 The pharmaceutical composition according to claim 3, wherein the hydroxyalkylated cyclodextrin is hydroxypropyl-β-cyclodextrin.
  5.  注射剤である、請求項1~4のいずれか一つに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 4, which is an injection.
  6.  前記ヒドロキシアルキル化シクロデキストリンが、1日あたり、0.5g/kg~10g/kgの投与量で投与されることを特徴とする請求項1~5のいずれか一つに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 5, wherein the hydroxyalkylated cyclodextrin is administered at a dose of 0.5 g / kg to 10 g / kg per day.
  7.  前記ヒドロキシアルキル化シクロデキストリンが、1日あたり、1g/kg~5g/kgの投与量で投与されることを特徴とする請求項6に記載の医薬組成物。 The pharmaceutical composition according to claim 6, wherein the hydroxyalkylated cyclodextrin is administered at a dose of 1 g / kg to 5 g / kg per day.
  8.  前記医薬組成物が白血病治療薬である請求項1~7のいずれか一つに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 7, wherein the pharmaceutical composition is a therapeutic agent for leukemia.
  9.  抗がん性有効成分と医薬上許容される添加剤からなる抗がん注射剤であって、該抗がん性有効成分がヒドロキシプロピル-β-シクロデキストリンまたはその誘導体であることを特徴とする抗がん注射剤。 An anticancer injection comprising an anticancer active ingredient and a pharmaceutically acceptable additive, wherein the anticancer active ingredient is hydroxypropyl-β-cyclodextrin or a derivative thereof Anticancer injection.
  10.  前記抗がん性有効成分としてヒドロキシプロピル-β-シクロデキストリンのみが含まれることを特徴とする請求項9に記載の抗がん注射剤。 10. The anticancer injection according to claim 9, wherein only the hydroxypropyl-β-cyclodextrin is contained as the anticancer active ingredient.
  11.  前記抗がん性有効成分としてヒドロキシプロピル-β-シクロデキストリンのみが、前記添加剤として浸透圧調整剤とpH調整剤のみが含まれることを特徴とする請求項9に記載の抗がん注射剤。 10. The anticancer injection according to claim 9, wherein only the hydroxypropyl-β-cyclodextrin is contained as the anticancer active ingredient, and only the osmotic pressure adjusting agent and the pH adjusting agent are contained as the additives. .
  12.  前記ヒドロキシプロピル-β-シクロデキストリンが、1日あたり、0.5g/kg~5g/kgの投与量で投与されることを特徴とする請求項9~11のいずれか一つに記載の抗がん注射剤。 The anti-tumor agent according to any one of claims 9 to 11, wherein the hydroxypropyl-β-cyclodextrin is administered at a dose of 0.5 g / kg to 5 g / kg per day. Injection.
  13.  前記ヒドロキシアルキル化シクロデキストリンが、1日あたり、1g/kg~5g/kgの投与量で投与されることを特徴とする請求項12に記載の医薬組成物。 The pharmaceutical composition according to claim 12, wherein the hydroxyalkylated cyclodextrin is administered at a dose of 1 g / kg to 5 g / kg per day.
  14.  前記抗がん注射剤が白血病治療薬である、請求項9~13のいずれか一つに記載の抗がん注射剤。 The anticancer injection according to any one of claims 9 to 13, wherein the anticancer injection is a leukemia therapeutic agent.
PCT/JP2013/079901 2012-12-07 2013-11-05 Tumor cell selective anticancer agent including hydroxyalkylated cyclodextrin WO2014087778A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014547196A JP5703426B2 (en) 2012-12-07 2013-11-05 Tumor cell selective anticancer agent containing hydroxyalkylated cyclodextrin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-268666 2012-12-07
JP2012268666 2012-12-07

Publications (1)

Publication Number Publication Date
WO2014087778A1 true WO2014087778A1 (en) 2014-06-12

Family

ID=50883205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079901 WO2014087778A1 (en) 2012-12-07 2013-11-05 Tumor cell selective anticancer agent including hydroxyalkylated cyclodextrin

Country Status (2)

Country Link
JP (1) JP5703426B2 (en)
WO (1) WO2014087778A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047697A1 (en) * 2014-09-25 2016-03-31 山口 龍二 ANTITUMOR AGENT INCLUDING β-CYCLODEXTRIN
EP3432880A4 (en) * 2016-03-20 2019-12-11 Asdera LLC Use of cyclodextrins to reduce endocytosis in malignant and neurodegenerative disorders
WO2020157651A1 (en) * 2019-01-30 2020-08-06 University Of The Witwatersrand, Johannesburg 2-HYDROXYPROPYL-β-CYCLODEXTRIN (HPβCD) FOR USE IN THE TREATMENT OF BREAST CANCER
CN111655291A (en) * 2017-08-28 2020-09-11 阿斯德拉有限责任公司 Use of cyclodextrins in diseases and conditions involving phospholipid dysregulation
JP2020535235A (en) * 2017-09-28 2020-12-03 アスデラ エルエルシー Use of cyclodextrin in diseases and disorders involving phospholipid dysregulation
WO2023008570A1 (en) 2021-07-30 2023-02-02 国立大学法人佐賀大学 Pharmaceutical composition for treating cancer

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CASALOU. C. ET AL.: "Cholesterol regulates VEGFR-1 (FLT-1) expression and signaling in acute leukemia cells", MOL. CANCER RES., vol. 9, no. 2, 2011, pages 215 - 224 *
FEDIDA-METULA, S. ET AL.: "Lipid rafts couple store-operated Ca2+ entry to constitutive activation of PKB/Akt in a Ca2+/calmodulin-,Src- and PP2A-mediated pathway and promote melanoma tumor growth", CARCINOGENESIS, vol. 33, no. 4, April 2012 (2012-04-01), pages 740 - 750 *
GROSSE, P.Y. ET AL.: "Antiproliferative effect of methyl-beta-cyclodextrin in vitro and in human tumour xenografted athymic nude mice", BR. J. CANCER, vol. 78, no. 9, 1998, pages 1165 - 1169 *
LI, Y.C. ET AL.: "Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents", AM. J. PATHOL., vol. 168, no. 4, 2006, pages 1107 - 1118 *
OH, H.Y. ET AL.: "Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction", PROSTATE, vol. 67, no. 10, 2007, pages 1061 - 1069 *
OH, H.Y. ET AL.: "Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 393, no. 2, 2010, pages 319 - 324 *
YAN, J. ET AL.: "Methyl-p-cyclodextrin induces programmed cell death in chronic myeloid leukemia cells and, combined with imatinib, produces a synergistic downregulation of ERK/SPK1 signaling", ANTI-CANCER DRUGS, vol. 23, no. 1, January 2012 (2012-01-01), pages 22 - 31 *
YOKOO, M. ET AL.: "2442 Antiproliferative Effect of 2-Hydroxypropyl-Beta-Cyclodextrin (HP-P-CyD) Against Chronic Myeloid Leukemia In Vitro and In Vivo", 54TH ASH ANNUAL MEETING AND EXPOSITION, Retrieved from the Internet <URL:https://ash.confex.com/ash/2012/webprogram/Paper49415.html> [retrieved on 20140128] *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047697A1 (en) * 2014-09-25 2016-03-31 山口 龍二 ANTITUMOR AGENT INCLUDING β-CYCLODEXTRIN
JP6034542B2 (en) * 2014-09-25 2016-11-30 山口 龍二 Antitumor agent containing β-cyclodextrin
EP3432880A4 (en) * 2016-03-20 2019-12-11 Asdera LLC Use of cyclodextrins to reduce endocytosis in malignant and neurodegenerative disorders
CN111655291A (en) * 2017-08-28 2020-09-11 阿斯德拉有限责任公司 Use of cyclodextrins in diseases and conditions involving phospholipid dysregulation
JP2020535235A (en) * 2017-09-28 2020-12-03 アスデラ エルエルシー Use of cyclodextrin in diseases and disorders involving phospholipid dysregulation
EP3687549A4 (en) * 2017-09-28 2021-07-14 Asdera LLC Use of cyclodextrins in diseases and disorders involving phospholipid dysregulation
US11471478B2 (en) 2017-09-28 2022-10-18 Asdera Llc Use of cyclodextrins in diseases and disorders involving phospholipid dysregulation
WO2020157651A1 (en) * 2019-01-30 2020-08-06 University Of The Witwatersrand, Johannesburg 2-HYDROXYPROPYL-β-CYCLODEXTRIN (HPβCD) FOR USE IN THE TREATMENT OF BREAST CANCER
CN113474049A (en) * 2019-01-30 2021-10-01 约翰内斯堡威特沃特斯兰德大学 2-hydroxypropyl-beta-cyclodextrin (HP beta CD) for use in the treatment of breast cancer
WO2023008570A1 (en) 2021-07-30 2023-02-02 国立大学法人佐賀大学 Pharmaceutical composition for treating cancer

Also Published As

Publication number Publication date
JPWO2014087778A1 (en) 2017-01-05
JP5703426B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5703426B2 (en) Tumor cell selective anticancer agent containing hydroxyalkylated cyclodextrin
Wang et al. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel
Zheng et al. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo
Liang et al. Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers
Vogus et al. A hyaluronic acid conjugate engineered to synergistically and sequentially deliver gemcitabine and doxorubicin to treat triple negative breast cancer
Gao et al. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides
Xia et al. Functionalized selenium nanoparticles for targeted delivery of doxorubicin to improve non-small-cell lung cancer therapy
DK2691116T3 (en) Nanoparticles loaded with chemotherapeutic antitumor drug
Gu et al. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma
Bukchin et al. Glucosylated nanomicelles target glucose-avid pediatric patient-derived sarcomas
Zhu et al. Suppress orthotopic colon cancer and its metastasis through exact targeting and highly selective drug release by a smart nanomicelle
Zhou et al. GE11 peptide-installed chimaeric polymersomes tailor-made for high-efficiency EGFR-targeted protein therapy of orthotopic hepatocellular carcinoma
Haider et al. Recent advances in tumor microenvironment associated therapeutic strategies and evaluation models
CN109771663B (en) Preparation and application of acid-responsive anticancer nano-drug
Xu et al. Platelets membrane camouflaged irinotecan-loaded gelatin nanogels for in vivo colorectal carcinoma therapy
Oh et al. Delivery of tumor-homing TRAIL sensitizer with long-acting TRAIL as a therapy for TRAIL-resistant tumors
JP6229865B2 (en) A micelle comprising an epirubicin-conjugated block copolymer and an anticancer agent, and a pharmaceutical composition applicable to the treatment of cancer or resistant cancer or metastatic cancer comprising the micelle
Liu et al. E-Selectin-binding peptide–modified bovine serum albumin nanoparticles for the treatment of acute lung injury
Wang et al. Novel fibronectin-targeted nanodisk drug delivery system displayed superior efficacy against prostate cancer compared with nanospheres
Zhang et al. Tumor-targeted delivery of honokiol via polysialic acid modified zein nanoparticles prevents breast cancer progression and metastasis
Ji et al. Enhanced antitumor effect of icariin nanoparticles coated with iRGD functionalized erythrocyte membrane
EP2491951B1 (en) Block copolymer for intraperitoneal administration containing anti-cancer agent, micelle preparation, and cancer therapeutic agent comprising the micelle preparation as active ingredient
JP2017193591A (en) Tumor cell selective anticancer agent
Zhang et al. Therapeutic carrier based on solanesol and hyaluronate for synergistic tumor treatment
Campisi et al. ONCOFID™-P a hyaluronic acid paclitaxel conjugate for the treatment of refractory bladder cancer and peritoneal carcinosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860643

Country of ref document: EP

Kind code of ref document: A1