WO2014087026A1 - Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos - Google Patents

Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos Download PDF

Info

Publication number
WO2014087026A1
WO2014087026A1 PCT/ES2012/000307 ES2012000307W WO2014087026A1 WO 2014087026 A1 WO2014087026 A1 WO 2014087026A1 ES 2012000307 W ES2012000307 W ES 2012000307W WO 2014087026 A1 WO2014087026 A1 WO 2014087026A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
sulfate
treatment
sludge
precipitation
Prior art date
Application number
PCT/ES2012/000307
Other languages
English (en)
French (fr)
Inventor
Jordi Arellano Ortiz
Original Assignee
Jordi Arellano Ortiz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jordi Arellano Ortiz filed Critical Jordi Arellano Ortiz
Priority to EP12889400.3A priority Critical patent/EP2955161A1/en
Priority to PCT/ES2012/000307 priority patent/WO2014087026A1/es
Publication of WO2014087026A1 publication Critical patent/WO2014087026A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds

Definitions

  • the present invention relates to the treatment of residues, solids, liquids or gaseous, containing sulfates, for example, wastewater with sulfate contents exceeding the limit allowed by the legislation in force in the country of application. Specifically, the present invention relates to a method of treating sulfate-laden waste, as well as the recovery of sludge obtained.
  • Sulfate treatment processes can be classified into four categories: chemical treatments with mineral precipitation
  • barium salts If barium salts are used, it is neutralized with carbonate barium salts, barium hydroxide or sulphide, obtaining insoluble Ba sulfate. Sulfate levels are reduced to about 200 ppm. It is a relatively expensive system given the cost of reagents. The corresponding reactions are: BaC0 3 + H 2 S0 4 - BaS0 4 + H 2 C0 3
  • the SAVMIN method consists in the elimination of sulfates by precipitation of Ethnite. This is achieved by the reaction of aluminum hydroxide with the sulfate ion in the presence of lime. Low levels of output sulfates are obtained but for waters with low sulfate levels. On the other hand, investment costs are also high.
  • the corresponding reactions are: 3S0 4 H 2 + 6Ca (OH) 2 + 2AI (OH) 3 + 19H 2 0 ⁇ 3CaO-3CaS0 4 AI 2 0 3 -31 H 2 0
  • the CESR method also uses the elimination of sulfates by precipitation of etringite but using in this case calcium aluminate (CaAI 2 0) as a reagent. Sulfates are reduced below 200ppm but with a high production cost.
  • the reaction of the process can be written as:
  • the membranes are used in two important water treatment processes: reverse osmosis and electrodialysis. These processes achieve high purities with quality for mouth water. In return, investments, maintenance and operating costs are high. In addition, these systems generate a salt concentrate, continuously, more or less concentrated depending on the initial sulfate concentration and the level of quality required, difficult and expensive management.
  • ion exchange resins are composed of a high concentration of polar, acidic or basic groups, incorporated into a matrix of a synthetic polymer (styrenic resins, acrylic resins, etc.) and act by taking ions from the solutions (usually water) and yielding equivalent amounts of other ions .
  • ion exchange resins are composed of a high concentration of polar, acidic or basic groups, incorporated into a matrix of a synthetic polymer (styrenic resins, acrylic resins, etc.) and act by taking ions from the solutions (usually water) and yielding equivalent amounts of other ions .
  • the main advantage of ion exchange resins is that they can recover their original exchange capacity, by treating with a regenerating solution.
  • the ion exchange resins have a fixed radical and a mobile ion or replacement ion.
  • the mobile ion is the ion that is exchanged for ions that wish to be removed from the solution and this exchange only works between ions of equal electrical charge: cations for cations and anions for anions.
  • ion exchange resins operate in columns, to favor the exchange process, similar to distillation or distillation in trays.
  • the exchange reaction moves in the resin bed, generally towards the lower levels.
  • the weak-based anionic resins remove the anions of strong acids, such as sulfates, nitrates and chlorides, with great efficiency.
  • Bioreactor artificial wetlands for wastewater treatment
  • alkalinity producing systems anoxic drainage through limestone and vertical flow systems
  • vertical reactive barriers All of them, except the bioreactor, are passive treatment systems and therefore of low treatment speed.
  • they are influenced by the use of substrates with the presence of other anaerobic bacteria, with the toxicity due to the presence of H2S and the dissolution of metals, which even at trace level seem to inhibit the reduction of sulfates.
  • Precipitation by barium salts has the disadvantage of the high cost of the reagents in addition to the risk in the use of a highly toxic heavy metal, which in general discourages its use.
  • the other two SAVMIN and CESR methods present high investment and / or production costs, either due to the complexity of the system or due to the cost of reagents.
  • the purpose of the present invention is to solve all these inconveniences simultaneously.
  • the object of the present invention is a method for the treatment of sulfates-containing residues, whether solid, liquid or gaseous, and of recovery of the by-products obtained, again, characterized in that it comprises a phase, or main reaction , to add variable proportions of tricalcium aluminate (3CaO AI203), the sulfates being eliminated by precipitation, obtaining a by-product that incorporates the precipitates.
  • the method comprises a pretreatment phase of said residues, in which varying proportions of calcium hydroxide, calcium oxide and / or calcium carbonate are added, prior to the reaction, obtaining a precipitate containing calcium sulfate or sulfate of hydrated calcium.
  • Said by-products may consist of sludges containing etringite or some other phase of calcium sulfoaluminate.
  • the invention contemplates the possibility of the additional phase of conditioning said sludges.
  • Said sludge can be valued as a component for the manufacture of cement or, alternatively or in addition, as a coagulant-neutralizer in a sewage treatment plant, the inventors having observed that, surprisingly in both uses, the characteristics of the cement significantly improve, in one case, and the functionality of the coagulant-neutralizer, in the other case.
  • the inventors have found after many tests that the mixture provided with C3A with specific amounts of Ca sources improves sulfate precipitation, and this may be due to the less partially, both the excellent efficiency of precipitation, and the good characteristics of sludge as a component of cement and coagulant.
  • the proposed method uses tricalcium aluminate as a reagent instead of calcium aluminate, in the CESR method or aluminum hydroxide in SAVMIN.
  • the advantages that this entails are in its better reactivity and greater economy of the product, in the case of CESR.
  • Calcium aluminate is the main component of aluminous cement that is synthesized by fusion at temperatures of the order of 1600 ° C while tricalcium aluminate is synthesized at temperatures of about 300 ° C lower, that is to say about 1300 ° C and by synthesis in solid state. This implies a greater economy in the product.
  • the reactivity of tricalcium aluminate is much higher since it reacts with sulfates just by entering tact, thus being used as part of the reaction of the Portland cement retarding process.
  • the present invention allows to solve the aforementioned drawbacks in an efficient way.
  • the process consists of weighing the raw materials and mixing them intimately in order to obtain a mixture with the stoichiometric proportions of C3A, at least 50%, for example by mixing 74.6 grams of calcium carbonate with 25.4 grams of alumina.
  • the mixture is heat treated at an elevated temperature, between 300 ° C and 1700 ° C, for example at 1350 ° C, so that the reaction between the components occurs and the C3A is obtained.
  • the product obtained is crushed finely until it passes, in its entirety, through a 5mm mesh of light, for example when the average size is also 0 5 050mrrv
  • the application of C3A in the treatment of sulfate-containing waters is proposed, for example, with sulfate contents exceeding the limit allowed by the legislation in force in the country of application. For example in Spain, with sulfate contents greater than 1000 ppm.
  • the proportion of sulfates is reduced to levels below the maximum allowed values. It is also applicable in the case of drinking water purification, in which case the maximum recommended limit for Spain is 250 ppm.
  • tn waters with contents of sultates (exceeding the limit of solubility of calcium sulfate dihydrate) (very high), calcium hydroxide, or some other substance that precipitates the sulfate ion, can be used for the first precipitation of sulfates and subsequently the C3A is used to carry the content of sulfates to levels below the maximum established by the environmental laws of the country.
  • a source of calcium ions can also be used to improve process performance, mixed with C3A. Sulfate removal by precipitation.
  • sulfates are also eliminated by precipitation of etringite, but the reagent used is tricalcium aluminate (3CaO AI 2 0 3 ) (C3A).
  • the method consists of a previous treatment with calcium carbonate, calcium oxide and / or calcium hydroxide with precipitation of gypsum or anhydrite, depending on the conditions of composition and / or temperature existing in the reactor.
  • C3A Maintaining a basic pH, C3A is added by reacting with sulfate ions and precipitating etringite.
  • the sulphate liquid (block 1) is subjected to a previous treatment 2, where the following reactions occur:
  • the water 7 obtained in the main precipitation reaction of etringite is a water with a low sulphate content, for example less than 100 ppm, and suitable for discharge Do or consumption in the mouth.
  • C3A is considered in the treatment of water containing sulfates, for example, with sulfate contents exceeding the limit allowed by current legislation. For example in Spain, with sulfate contents greater than 1000 ppm.
  • the proportion of sulfates is reduced to levels below the maximum allowed values. It is also applicable in the case of drinking water purification, in which case the recommended limit for Spain is 250 ppm.
  • calcium hydroxide or some other substance that precipitates the sulfate ion, can be used first, for a first precipitation of sulfates and Subsequently, C3A is used to bring the sulphate content to levels below the maximum established by the country's environmental laws and to the solubility product of the plaster.
  • a source of calcium ions can also be used to improve process performance, mixed with C3A.
  • a use of the sludge obtained in the precipitation of the sulfates with C3A is foreseen.
  • a mud 5 rich in sulfates, calcium and aluminum (etringite) is obtained.
  • This sludge, conveniently conditioned in 6 can be used as a component in the manufacturing processes of expansive cements (in block 8). Due to its composition, the suitably conditioned sludge 6 can also be used in the treatment of wastewater (in block 9), as a coagulant, as a substitute for alumina sulfate, alumina polychloride, ferric chloride, etc., and as a neutralizer. and forming insoluble hydroxides, replacing calcium or sodium hydroxide and calcium or sodium carbonate.
  • the generated sludge also conveniently conditioned, can be used to remove other compounds from water, such as boron metal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Método para el tratamiento de residuos conteniendo sulfatos y de valorización de los subproductos obtenidos. En una fase de tratamiento previo (2) se adiciona hidróxido cálcico, óxido cálcico y/o carbonato cálcico, obteniendo un precipitado que contiene sulfato de calcio o sulfato de calcio hidratado. Posteriormente se adiciona aluminato tricálcico (3CaO AI203), en una reacción principal (4), siendo los sulfatos eliminados por precipitación, con la obtención de un subproducto que incorpora ios precipitados. El subproducto es un lodo conteniendo etringita y/o sulfoaluminato cálcico, que se valoriza como componente para la fabricación de cemento y/o como coagulante-neutralizante en una estación depuradora de aguas residuales. En ambas utilizaciones, el método mejora notablemente las características del cemento, y la funcionalidad del coagulante-neutralizante. El presente método permite prescindir de metales pesados tóxicos y solucionar los inconvenientes de las técnicas de precipitación actuales de no poder rebajar el nivel de sulfatos por debajo de los 1200 ppm, y del elevado coste de los reactivos.

Description

D E S C R I P C I O N
"Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos"
Sector técnico de ia invención
La presente invención se refiere al tratamiento de residuos, sólidos, líquidos o gaseosos, conteniendo sulfatos, por ejemplo, aguas residuales con contenidos de sulfatos superiores al limite permitido por la legislación vigente en ei país de aplicación. En concreto, la presente invención se refiere a un método de tratamiento de residuos con carga en sulfatos, así como de valorización de los lodos obtenidos.
Antecedentes de la invención
Los procesos de tratamiento de sulfatos se pueden clasificar en cuatro categorías: tratamientos químicos con precipitación mineral
membranas
intercambio iónico
eliminación biológica de los sulfatos
Existen diversos métodos de tratamiento químico: Carbonato cálcico/cal; sales de bario, método SAVMIN; método CESR.
En la neutralización "por carbonato cálcico / cal", se neutraliza con hidróxido o carbonato de calcio, precipitando yeso o anhidrita. Se trata de un sistema económico pero, dada la solubilidad del sulfato cálcico no se puede rebajar la concentración del sulfato por debajo de unos 1200-1500 ppm. Las reacciones correspondientes son:
Ca(OH)2+H2S04→ CaS04 2H20
CaC03+H2S04+H20→ CaS04-2H20+C02
Si se utilizan sales de bario, se neutraliza con sales de bario tipo carbonato, hidróxido o sulfuro de bario, obteniéndose sulfato de Ba insoluble. Se reducen los niveles de sulfato a unos 200 ppm. Se trata de un sistema relativamente caro dado el coste de los reactivos. Las reacciones correspondientes son: BaC03+H2S04 - BaS04+H2C03
Ba(OH)2+ H2S04→ BaS04+2H20
BaS+ H2S04→ BaS04+H2S
El método SAVMIN consiste en la eliminación de sulfatos por precipitación de Etnn- gita. Esta se consigue por la reacción del hidróxido de aluminio con el ión sulfato en presencia de cal. Se obtienen bajos niveles de sulfatos de salida pero para aguas con bajos niveles de sulfatos. Por otro lado los costes de inversión también son elevados. Las reacciones correspondientes son: 3S04H2+6Ca(OH)2+2AI(OH)3+19H20→ 3CaO-3CaS04 AI203-31 H20
El método CESR también utiliza la eliminación de sulfatos por precipitación de etringita pero utilizando en este caso el aluminato cálcico (CaAI20 ) como reactivo. Los sulfatos se reducen por debajo de los 200ppm pero con un coste de producción elevado. La reacción del proceso se puede escribir como:
3S04H2+5CaO+CaAI204+28H20→ 3CaO-3CaS04 AI203-31 H20
Las membranas se utilizan en dos importantes procesos de tratamiento de aguas: La osmosis inversa y la electrodiálisis. Estos procesos consiguen elevadas purezas con calidad para agua de boca. Como contrapartida las inversiones, el mantenimiento y el coste de explotación son elevados. Además, estos sistemas generan un concentrado salino, en forma continua, más o menos concentrado en función de la concentración inicial de sulfatos y del nivel de calidad requerido, de difícil y costosa gestión.
Otro de los métodos de eliminación de sulfatos es mediante la utilización de resinas de intercambio iónico. Están compuestas de una alta concentración de grupos polares, ácidos o básicos, incorporados a una matriz de un polímero sintético (resinas estirénicas, resinas acrílicas, etc.) y actúan tomando iones de las soluciones (generalmente agua) y cediendo cantidades equivalentes de otros iones. La principal ventaja de las resinas de intercambio iónico es que pueden recuperar su capacidad de intercambio original, mediante el tratamiento con una solución regenerante.
Las resinas de intercambio iónico poseen un radical fijo y un ión móvil o ión de sustitución. El ión móvil es el ión que es intercambiado por iones que desean eliminarse de la solución y este intercambio sólo funciona entre iones de igual carga eléctrica: cationes por cationes y aniones por aniones.
En general las resinas de intercambio iónico operan en columnas, para favorecer el proceso de intercambio, parecido a la destilación o la destilación en bandejas. La reacción de intercambio se desplaza en el lecho de resina, generalmente hacia los niveles inferiores.
Las resinas aniónicas de base débil eliminan con gran eficiencia los aniones de los ácidos fuertes, tales como sulfatos, nitratos y cloruros.
Es un método de gran eficiencia pero de elevado coste, tanto de mantenimiento como de gestión, generando además una importante cantidad de residuos.
Los tratamientos biológicos para la eliminación de sulfatos son una alternativa a los distintos métodos expuestos anteriormente. Las principales tecnologías utilizadas actualmente son: biorreactor, humedales artificiales para el tratamiento de aguas residuales, sistemas productores de alcalinidad (drenaje anóxico a través de calizas y sistemas de flujo vertical) y las barreras reactivas verticales. Todos ellos, excepto el biorreactor, son sistemas de tratamientos pasivos y por lo tanto de baja velocidad de tratamiento. Por otro lado se encuentran influidos por la utilización de substratos con presencia de otras bacterias anaeróbicas, con la toxicidad debida a la presencia de H2S y la disolución de metales, que incluso a nivel de trazas parecen inhibir la reducción de sulfatos. Si bien los anteriores métodos tienen en general una correcta funcionalidad, presentan individualmente y en conjunto unos inconvenientes que limitan la aplicación en determinados campos. En este sentido, las técnicas de membranas y de resinas de intercambio iónico, producen una excelente calidad pero con bajo rendimiento y elevado coste. Las técnicas biológicas, en general son muy lentas y críticas en el mantenimiento de las cepas de bacterias. Asi pues los candidatos más adecuados son las técnicas de precipitación. Dentro de ellas la precipitación por carbonato cálcico y/o cal es un sistema efectivo pero con el inconveniente de que dada la solubilidad del yeso precipitado, no se puede rebajar el nivel de sulfates por debajo de los 1200 ppm. De todas formas, dado el bajo coste, se puede utilizar como un tratamiento previo.
La precipitación por sales de bario tiene el inconveniente del elevado coste de los reactivos además del riesgo en el uso de un metal pesado altamente tóxico, lo que en general desaconseja su utilización. Los otros dos métodos SAVMIN y CESR, presentan elevados costes de inversión y/o producción ya sea por la complejidad del sistema o por la carestía de los reactivos.
La presente invención tiene por finalidad solucionar simultáneamente todos estos inconvenientes.
Explicación de la invención
A tal finalidad, el objeto de la presente invención es un método para el tratamiento de residuos conteniendo sulfates, ya sean sólidos, líquidos o gaseosos, y de valorización de los subproductos obtenidos, de nuevo concepto, caracterizado porque comprende una fase, o reacción principal, de adicionar proporciones variables de alumínate tricálcico (3CaO AI203), siendo los sulfates eliminados por precipitación, con la obtención de un subproducto que incorpora los precipitados. Preferiblemente, el método comprende una fase de tratamiento previo de dichos residuos, en la que se adicionan proporciones variables de hidróxido cálcico, óxido cálcico y/o carbonato cálcico, previamente a la reacción, con la obtención de un precipitado conteniendo sulfato de calcio o sulfato de calcio hidratado.
Dichos subproductos pueden estar constituidos por lodos que contienen etringita o alguna otra fase de sulfoaluminato cálcico. En tal caso, la invención contempla la posibilidad de la fase adicional de acondicionar dichos lodos.
Dicho lodo pueden ser valorizado como componente para la fabricación de cemento o, alternativa o complementariamente, como coagulante-neutralizante en una esta- ción depuradora de aguas residuales, habiendo observado los inventores que, sorprendentemente en ambas utilizaciones mejora notablemente las características del cemento, en un caso, y la funcionalidad del coagulante-neutralizante, en el otro caso.. Los inventores han encontrado tras muchos ensayos que la mezcla proporcionada de C3A con cantidades concretas de fuentes de Ca, mejoran la precipitación de sulfatos, y a ello puede deberse, al menos parcialmente, tanto la excelente eficacia de la precipitación, como las buenas características de los lodos en tanto que componente del cemento y coagulante.
El método propuesto utiliza como reactivo el aluminato tricálcico en lugar del alumi- nato cálcico, en el método CESR o el hidróxido de aluminio en el de SAVMIN. Las ventajas que ello conlleva están en su mejor reactividad y mayor economía del producto, en el caso del CESR. El aluminato cálcico es el principal componente del cemento aluminoso que se sintetiza por fusión a temperaturas del orden de los 1600°C mientras que el aluminato tricálcico se sintetiza a temperaturas de unos 300°C inferiores, es decir a unos 1300°C y por síntesis en estado sólido. Ello conlleva una mayor economía en el producto. Por otro lado, la reactividad del aluminato tricálcico es mucho mayor ya que reacciona con los sulfatos con solo entrar en con- tacto, utilizándose por ello como parte de la reacción del proceso de retardado del cemento Portland.
Comparándolo con el proceso SAVMIN, éste es un proceso mucho más complejo, como se puede ver en la bibliografía sobre el tema y en la descripción de la patente correspondiente y en la economía del reactivo, que en este caso ha de ser un hidróxido de aluminio de alta reactividad, como el hidróxido de aluminio amorfo.
En el caso de la presente invención, se utiliza un producto mucho más económico y que presenta una mayor reactividad; ello conlleva una menor complejidad del proceso y una mayor economía tanto del producto como de la inversión necesaria para su aplicación y mantenimiento.
Gracias a ello, la presente invención permite solucionar los inconvenientes citados de un modo eficaz.
Breve descripción de los dibujos
A continuación se hace la descripción detallada de formas de realización preferidas, aunque no exclusivas, del método de tratamiento de residuos con carga en sulfatos y valorización de los subproductos obtenidos objeto de la invención, para cuya mejor comprensión se acompaña de unos dibujos en los cuales se ilustra a modo de ejemplo no limitativo, una forma de realización de la presente invención, en cuya única Fig. 1 se muestra un diagrama de flujo esquemático del método de la inven- ción.
Descripción detallada de los dibujos
Se describe seguidamente el método de tratamiento de residuos con carga en sui- fatos y valorización de los subproductos obtenidos.
Para la obtención del C3A, se utilizan como materias primas:
- Cualquier producto (natural, sintético o residuo) en el que el contenido de CaO, después de su calcinación, sea superior al 25%, como por ejemplo el carbonato cálcico.
- Cualquier producto (natural, sintético o residuo) en el que el contenido en Al203, después de su calcinación, sea superior al 25%, como por ejemplo la alúmina.
El proceso consiste en pesar las materias primas y mezclarlas íntimamente con el fin de obtener una mezcla con las proporciones estequiométricas del C3A, al menos en un 50%, por ejemplo mezclando 74,6 gr de carbonato cálcico con 25,4 gr de alúmina .
Se trata térmicamente la mezcla a una temperatura elevada, comprendida entre los 300°C y los 1700°C, por ejemplo a 1350°C, con el fin de que se produzca la reac- ción entre los componentes y se obtenga el C3A.
Se tritura el producto obtenido finamente hasta que pase, en su totalidad, por una malla de 5mm de luz, por ejemplo cuando además el tamaño medio sea de 05050mrrv
Según la presente invención, se propone la aplicación del C3A en el tratamiento de aguas conteniendo sulfatos, por ejemplo, con contenidos de sulfatos superiores al límite permitido por la legislación vigente en el país de aplicación. Por ejemplo en España, con contenidos de sulfatos superiores a los 1000 ppm. Mediante la aplica- ción del producto en las proporciones adecuadas, a las aguas con niveles elevados de sulfatos, se disminuye la proporción de sulfatos a niveles inferiores a los valores máximos permitidos. También es aplicable en el caso de la potabilización de agua de consumo, en cuyo caso el límite máximo recomendable para España, es de 250 ppm. tn aguas con contenidos de sultatos (superiores al limite de solubilidad del sulfato cálcico dihidratado) (muy elevados), se puede utilizar, en primer lugar, hidróxido cálcico, o alguna otra sustancia que precipite el ión sulfato, para una primera precipitación de sulfatos y posteriormente se utiliza el C3A para llevar el contenido de sulfatos hasta niveles inferiores a los máximos establecidos por las leyes medioambientales del país. En determinados casos, también puede usarse una fuente de iones calcio para mejorar el rendimiento del proceso, mezclados con C3A. La eliminación de sulfatos por precipitación. En este caso también se eliminan los sulfatos por precipitación de etringita, pero el reactivo utilizado es el aluminato tricálcico (3CaO AI203) (C3A). ti método consiste en un tratamiento previo con carbonato calcico, óxido de calcio y/o hidróxido cálcico con precipitación de yeso o anhidrita, en función de las condiciones de composición y/o temperatura existentes en el reactor.
Manteniendo un pH básico, se le añade el C3A reaccionando con los iones sulfato y precipitando la etringita.
Este proceso se puede esquematizar en el diagrama de flujo de la Fig. 1.
El líquido con sulfatos (bloque 1) es sometido a un tratamiento previo 2, en dónde se producen las siguientes reacciones:
Ca(OH)2+H2S04→ CaS04 2H20
CaC03+H2S04+H20→ CaS04-2H20+C02 con obtención de un precipitado 3.
A continuación se produce la reacción principal 4 con el sulfato:
3H2S04+3Ca(OH)+3CaO AI203+25H20→ 3CaO-3CaS04 AI203-31 H20 con producción de la etringita (3Ca03CaS04 AI203 31H20), incorporada en el lodo 5.
El agua 7 obtenida en la reacción principal de precipitación de etringita es un agua con un contenido en sulfatos bajo, por ejemplo inferior a 100 ppm, y apta para vertí- do o consumo en boca.
La aplicación del C3A, se plantea en el tratamiento de aguas conteniendo sulfatos, por ejemplo, con contenidos de sulfatos superiores al límite permitido por la legisla- ción vigente. Por ejemplo en España, con contenidos de sulfatos superiores a los 1000 ppm. Mediante la aplicación del producto en las proporciones adecuadas, a las aguas con niveles elevados de sulfatos, se disminuye la proporción de sulfatos a niveles inferiores a los valores máximos permitidos. También es aplicable en el caso de la potabilización de agua de consumo, en cuyo caso el limite recomendable, para España, es de 250 ppm.
En aguas con contenidos de sulfatos (superiores al limite de solubilidad del sulfato cálcico dihidratado) muy elevados, se puede utilizar, en primer lugar, hidróxido cálcico, o alguna otra sustancia que precipite el ión sulfato, para una primera preci- pitación de sulfatos y posteriormente se utiliza el C3A para llevar el contenido de sulfatos hasta niveles inferiores a los máximos establecidos por las leyes medioambientales del país y al producto de solubilidad del yeso. En determinados casos, también puede usarse una fuente de iones calcio para mejorar el rendimiento del proceso, mezclados con C3A.
Por ejemplo, en el tratamiento de unas aguas 1 con un contenido de sulfatos de 2.650 ppm., se utilizan 2.800 gr./m3 de C3A desleídos en las aguas, reduciéndose el contenido de sulfatos a < 100 ppm. Para otros casos de aguas 1 con un contenido de sulfatos más elevado se utiliza previamente Ca(OH)2 y posteriormente se aplica el C3A
Según la invención, se prevé una utilización del lodo obtenido en la precipitación de los sulfatos con C3A.
Tras la precipitación de los sulfatos con la aplicación de C3A, se obtiene un lodo 5 rico en sulfatos, calcio y aluminio (etringita). Este lodo, convenientemente acondicionado en 6, puede emplearse como componente en los procesos de fabricación de cementos expansivos (en el bloque 8). Debido a su composición, el lodo convenientemente acondicionado 6, puede usarse también en el tratamiento de aguas residuales (en el bloque 9), como coagulante, en substitución del sulfato de alúmina, policloruro de alúmina, cloruro férrico, etc., y como neutralizante y formador de hidróxidos insolubles, en substitución del hidróxi- do cálcico o sódico y del carbonato cálcico o sódico.
El lodo generado, también convenientemente acondicionado, puede utilizarse en la eliminación de otros compuestos del agua, como en el caso del metal boro.
Por último, debe indicarse que la mezcla proporcionada de C3A con cantidades concretas de fuentes de Ca, mejoran la precipitación de sulfatos. Por este motivo, el estudio detallado de cada caso concreto, y la correspondiente aportación y mezcla de cal con C3A redundarán en una mejora del proceso. A su vez, la reutilización del lodo obtenido (etringita) para eliminar los sulfatos, en ciertos casos, es muy favorable.
Descrita suficientemente la naturaleza de la presente invención, así como la manera de ponerla en práctica, se hace constar que todo cuanto no altere, cambie o mo- difique su principio fundamental, queda sujeto a variaciones de detalle.

Claims

R E I V I N D I C A C I O N E S
1.- Método para el tratamiento de residuos conteniendo sulfatos y de valorización de los subproductos obtenidos, caracterizado porque comprende una fase, de adicionar proporciones variables de aluminato tricálcico (3CaO AI203), para la producción de una reacción principal (4), siendo los sulfatos eliminados por precipitación, con la obtención de un subproducto que incorpora los precipitados.
2 - Método para el tratamiento de residuos conteniendo sulfatos, segUn la rei- vindicación 1 , caracterizado porque comprende una fase de tratamiento previo (2) de dichos residuos (1), en la que se adicionan proporciones variables de hidróxido cálcico, óxido cálcico y/o carbonato cálcico, previamente a la reacción principal (4) de aluminato tricálcico, con la obtención de un precipitado conteniendo sulfato de calcio o sulfato de calcio hidratado.
3.- Método para el tratamiento de residuos conteniendo sulfatos, según la reivindicación 1 , caracterizado porque dicho subproducto comprende lodos (5) que contienen etringita. 4.- Método para el tratamiento de residuos conteniendo sulfatos, según la reivindicación 3, caracterizado porque comprende la fase adicional de acondicionar dichos lodos (5).
5. - Método para el tratamiento de residuos conteniendo sulfatos, según la rei- vindicación 1 ó la reivindicación 4, caracterizado porque comprende la fase de añadir dichos lodos en una mezcla para la fabricación de cemento (8).
6. - Método para el tratamiento de residuos conteniendo sulfatos, según la reivindicación 1 ó la reivindicación 4, caracterizado porque comprende la fase de ver- ter dichos lodos como coagulante en una estación depuradora de aguas residuales
(9).
7. - Método para el tratamiento de residuos conteniendo sulfatos, según la reivindicación 1 , ó la reivindicación 4, caracterizado porque comprende la fase de verter dichos lodos como neutralizante en una estación depuradora de aguas duales (9).
PCT/ES2012/000307 2012-12-03 2012-12-03 Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos WO2014087026A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12889400.3A EP2955161A1 (en) 2012-12-03 2012-12-03 Method for treating sulphate-laden waste and for recycling the resulting sludge
PCT/ES2012/000307 WO2014087026A1 (es) 2012-12-03 2012-12-03 Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2012/000307 WO2014087026A1 (es) 2012-12-03 2012-12-03 Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos

Publications (1)

Publication Number Publication Date
WO2014087026A1 true WO2014087026A1 (es) 2014-06-12

Family

ID=50882833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/000307 WO2014087026A1 (es) 2012-12-03 2012-12-03 Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos

Country Status (2)

Country Link
EP (1) EP2955161A1 (es)
WO (1) WO2014087026A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590040A (zh) * 2019-09-30 2019-12-20 江苏源拓环境科技有限公司 一种废水处理方法和废水处理系统
SE2050899A1 (en) * 2020-07-16 2022-01-17 Axolot Solutions Holding Ab Ettringite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058215A1 (en) * 2017-09-20 2019-03-28 Smr Technologies Limited REAGENT SUITABLE FOR TREATING WATER WITH HIGH SULFATE CONTENT

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250626A1 (de) * 1986-06-30 1988-01-07 Walhalla-Kalk Entwicklungs- und Vertriebsgesellschaft mbH Verfahren zur Abtrennung von Sulfationen aus Abwässern
DE3709950A1 (de) * 1987-03-26 1988-10-06 Linde Ag Verfahren zur behandlung sulfathaltigen abwassers
EP0584502A2 (de) * 1992-08-21 1994-03-02 A.I.R. BETEILIGUNGS GmbH Verfahren zur spontanen Fällung von in Wasser gelösten Sulfaten als Calciumaluminiumsulfat und Anwendung dieses Verfahrens zur Herstellung eines chloridarmen, aluminiumoxidhaltigen Gips-Anhydrits
WO2008149114A1 (en) * 2007-06-08 2008-12-11 Integrated Effluent Solutions Limited Effluent treatment process
US7914676B2 (en) * 2006-08-16 2011-03-29 Siemens Aktiengesellschaft Method for removing sulphate and heavy metals from waste water
ES2397018A1 (es) * 2011-06-21 2013-03-04 Jordi Arellano Ortiz Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250626A1 (de) * 1986-06-30 1988-01-07 Walhalla-Kalk Entwicklungs- und Vertriebsgesellschaft mbH Verfahren zur Abtrennung von Sulfationen aus Abwässern
DE3709950A1 (de) * 1987-03-26 1988-10-06 Linde Ag Verfahren zur behandlung sulfathaltigen abwassers
EP0584502A2 (de) * 1992-08-21 1994-03-02 A.I.R. BETEILIGUNGS GmbH Verfahren zur spontanen Fällung von in Wasser gelösten Sulfaten als Calciumaluminiumsulfat und Anwendung dieses Verfahrens zur Herstellung eines chloridarmen, aluminiumoxidhaltigen Gips-Anhydrits
US7914676B2 (en) * 2006-08-16 2011-03-29 Siemens Aktiengesellschaft Method for removing sulphate and heavy metals from waste water
WO2008149114A1 (en) * 2007-06-08 2008-12-11 Integrated Effluent Solutions Limited Effluent treatment process
ES2397018A1 (es) * 2011-06-21 2013-03-04 Jordi Arellano Ortiz Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INAP.: "Treatment of Sulphate in Mine Effluents", INAP RESEARCH PROJECT, 2003, pages 4-1 - 4-14 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590040A (zh) * 2019-09-30 2019-12-20 江苏源拓环境科技有限公司 一种废水处理方法和废水处理系统
CN110590040B (zh) * 2019-09-30 2023-08-25 江苏源拓环境科技有限公司 一种废水处理方法和废水处理系统
SE2050899A1 (en) * 2020-07-16 2022-01-17 Axolot Solutions Holding Ab Ettringite
SE545642C2 (en) * 2020-07-16 2023-11-21 Axolot Solutions Holding Ab A method and a system for removal of sulfate from wastewater by electrocoagulation

Also Published As

Publication number Publication date
EP2955161A1 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
Dou et al. Sulfate removal from wastewater using ettringite precipitation: Magnesium ion inhibition and process optimization
Tian et al. A novel sulfate removal process by ettringite precipitation with aluminum recovery: Kinetics and a pilot-scale study
Yoshikawa et al. Removal of boron from wastewater by the hydroxyapatite formation reaction using acceleration effect of ammonia
Xin et al. A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation
ES2739654T3 (es) Método para eliminar el sulfato, el calcio y otros metales solubles de aguas residuales que contienen sulfato
CA2659451C (en) Desalination methods and systems that include carbonate compound precipitation
KR101340161B1 (ko) 고농도 불산 폐수 처리 방법
KR920703456A (ko) 폐수 정제방법
Gomelya et al. Water purification of sulfates by liming when adding reagents containing aluminum
CN100398457C (zh) 聚合硅酸铝铁絮凝剂的制备方法
Zahedi et al. Sulfate removal from chemical industries' wastewater using ettringite precipitation process with recovery of Al (OH) 3
KR100648461B1 (ko) 산업폐기물을 이용한 연약지반 및 슬러지 처리용 고화제조성물
WO2014087026A1 (es) Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos
Masindi et al. Recovery of phosphate from real municipal wastewater and its application for the production of phosphoric acid
ES2397018B1 (es) Método de tratamiento de residuos con carga en sulfatos y valorización de los lodos obtenidos.
KR102140871B1 (ko) 탈황석고의 제조방법
Saloua et al. Industrial rejection: removal of heavy metals based on chemical precipitation and research for recoverable material in byproducts
CN105130050A (zh) 一种去除废水中的氮和磷的方法
El Awady et al. Sulfate reduction and heavy metals removal from industrial wastewater via advanced calcium-aluminum precipitation method
CN108640175A (zh) 一种新型净水剂的生产方法
KR19990038900A (ko) 칼슘, 마그네슘 함유 물질을 이용한 중금속함유 폐수 처리방법
Damons et al. An aspen model for the treatment of acid mine water
BR102013031412A2 (pt) processo para redução de nitrogênio e fósforo de efluentes de águas residuais com uso de cimento portland gerando fertilizante de liberação lenta com sílica
ES2334095T3 (es) Policlorosulfatos de aluminio, proceso para su preparacion y el uso de los mismos.
Zhang et al. Chromate and selenate hydrocalumite solid solutions and their applications in waste treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012889400

Country of ref document: EP