WO2014084433A1 - Composition comprising peroxisome proliferator-activated receptor delta agonist, as active ingredient, for promoting treatment of myocardial injury after myocardial infraction - Google Patents

Composition comprising peroxisome proliferator-activated receptor delta agonist, as active ingredient, for promoting treatment of myocardial injury after myocardial infraction Download PDF

Info

Publication number
WO2014084433A1
WO2014084433A1 PCT/KR2012/010353 KR2012010353W WO2014084433A1 WO 2014084433 A1 WO2014084433 A1 WO 2014084433A1 KR 2012010353 W KR2012010353 W KR 2012010353W WO 2014084433 A1 WO2014084433 A1 WO 2014084433A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppar
myocardial infarction
myocardial
group
delta agonist
Prior art date
Application number
PCT/KR2012/010353
Other languages
French (fr)
Korean (ko)
Inventor
황진용
박정랑
김진현
Original Assignee
경상대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교 산학협력단 filed Critical 경상대학교 산학협력단
Priority to PCT/KR2012/010353 priority Critical patent/WO2014084433A1/en
Publication of WO2014084433A1 publication Critical patent/WO2014084433A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/095Sulfur, selenium, or tellurium compounds, e.g. thiols
    • A61K31/10Sulfides; Sulfoxides; Sulfones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a myocardial injuries treatment composition after myocardial infarction, and more particularly, to a myocardial injuries treatment composition comprising a PPAR-delta agonist as an active ingredient.
  • Treatment strategies to prevent progression to heart failure after myocardial infarction include acute treatment strategies to prevent early reperfusion and reperfusion injury. Recently, stem cell therapy is the main method, but there are few treatments and drugs that promote myocardial healing after reperfusion. . There is a lot of research around the world, but the development of therapeutics has not been done yet. This is because most treatments and studies for acute myocardial infarction focus on the treatment of early inflammation. Too much inflammation, or too much inflammation, has led to a lack of proper myocardial healing, and new procedures, therapeutics, and basic research are reaching their limits.
  • the present invention is to solve a number of problems, including the above problems, in order to properly control the initial inflammatory stage, to provide a therapeutic agent that acts on the proliferation and regeneration of fibroblasts, activated by myocardial infarction It is an object of the present invention to provide a therapeutic composition that targets PPAR- ⁇ (delta), which promotes the healing of damaged myocardium after myocardial infarction and prevents complications caused by delay in healing.
  • PPAR- ⁇ delta
  • composition for promoting myocardial wound healing after myocardial infarction which contains a peroxisome proliferator-activated receptor (PPAR) -delta agonist as an active ingredient.
  • PPAR peroxisome proliferator-activated receptor
  • the PPAR-delta agonist is GW610742 (GlaxoSmithKline), GSK-0660 (CAS 1014691-61-2), GSK 3787 (CAS 188591-46-0), and GW 501516 (CAS 317318-70-0 It may be one or two or more selected from the group consisting of).
  • the composition can be used to promote healing of damaged myocardium after acute myocardial infarction.
  • composition can be administered orally or parenterally during clinical administration, and is expected to be possible intracoronary administration after the first reperfusion procedure of acute myocardial infarction.
  • Each oral composition according to one embodiment of the present invention further comprises an inert ingredient, including a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier refers to a composition, specifically an ingredient except for the active substance of the pharmaceutical composition.
  • pharmaceutically acceptable carriers include binders, disintegrants, diluents, fillers, glidants, solubilizers or emulsifiers and salts.
  • the pharmaceutical composition according to the embodiment of the present invention uses a pharmaceutically acceptable carrier and / or excipient according to a method that can be easily carried out by those skilled in the art to which the present invention belongs.
  • the formulation may be in the form of a solution, suspension or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer.
  • Suitable dosages of the compositions vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity of the patient, food, time of administration, route of administration, rate of excretion and response sensitivity, and are usually The physician can easily determine and prescribe a dosage effective for the desired treatment or prophylaxis.
  • a suitable daily dose may be between 100 ⁇ g / kg and 1 mg / kg body weight, which dose can be adjusted by further study results.
  • a method for treating myocardial wound after myocardial infarction comprising administering the above-described composition to an individual suffering from cardiovascular disease.
  • compositions for promoting myocardial wound healing after myocardial infarction by a composition containing a PPAR-delta agonist (agonist) as an active ingredient.
  • FIG. 1 is a photo of confirmed through tissue staining after the administration of the PPAR-delta agonist GW610742 according to an embodiment of the present invention to myocardial infarction, tissue fibrosis and collagen deposition (Fig. 1a), collagen protein Western blot confirming the expression (Fig. 1b), angiogenesis (CD31) and endothelial cell proliferation (Ki-67) is an illustration showing schematically the picture confirmed through tissue staining (Fig. 1c).
  • FIG. 2 shows the results of performing echocardiography (FIG. 2A) and the extent of recovery of the left ventricle after administration of a PPAR-delta agonist GW610742 according to an embodiment of the present invention to a myocardial infarction model.
  • Fig. 2b shows a graph (Fig. 2b) confirmed through LVIDS, LVEDV, LVESV, FS and EF-AL values.
  • FIG. 3 is a Western blot photograph confirming fibrosis and neovascularization of the left ventricle through expression of TGF-beta and MMP-9 after administration of GW610742, a PPAR-delta agonist, according to an embodiment of the present invention, to a myocardial infarction model.
  • FIG. 3A fluorescence micrograph (FIG. 3B) confirmed through double staining of alpha-SMA and TGF-beta, and photographs confirming that expression of TGF-beta and MMP-9 increased around the cardiovascular vessel (FIG. 3C). It is a figure which shows.
  • FIG. 4 is a Western blot photograph (FIG. 4A) confirming the differentiation into myofibroblasts using alpha-SMA after administration of the PPAR-delta agonist GW610742 according to an embodiment of the present invention to myocardial infarction model, alpha It is a figure which shows the histochemical staining photograph (FIG. 4B) using SMA, and the Western blot photograph (FIG. 4C) which confirmed the expression of TIMP.
  • Figure 5 is a result of confirming the myocardial infarction treatment effect of the PPAR-delta agonist GW610742 according to an embodiment of the present invention using a cell, cell number calculation method that increases the proliferation of fibroblasts and endothelial cells (HUVEC) Graph confirmed through (Fig. 5a), Western blot image (figure 5b) confirmed by using alpha-SMA fibroblasts differentiation into myofibroblasts, endothelium conditioned medium (conditioned medium) and TIMP- by GW610742 Western blot photograph (Fig. 5c) confirms that the expression of 3 is increased, and optical micrograph (Fig. 5d) confirms that the fibroblasts are differentiated into myofibroblasts and the mobility is increased.
  • VEC cell, cell number calculation method that increases the proliferation of fibroblasts and endothelial cells
  • mice Male SD (Sprague Dawley) rats (230-250 gm; Koatech Animals Inc., Peongtaek, Gyeonggi-Do, Korea) were used, and all mice were controlled in temperature, light / dark cycle, and free diet. And water were supplied. All animal experiments were performed in accordance with the guidelines of the Gyeongsang National University Animal Care and Use Committee (GLA-110324-R0022).
  • LAC left anterior coronary artery
  • GW610742 (GlaxoSmithKline, Stevenage, UK) was directly administered through the peritoneum to the myocardial infarction model prepared as described above. GW610742 (1 mg / kg) was prepared by diluting in dimethyl sulfoxide (DMSO) and then administered every 3 days.
  • DMSO dimethyl sulfoxide
  • Fibroblasts were donated by Professor Sang-Soo Kang of Gyeongsang National University, and were planted in a 6 cm petri dish at a ratio of 4 x 10 5 and in DMEM medium (Lonza, Swiss) containing 10% fetal bovine serum (FBS). The cells were incubated for 3 days in a cell incubator, and maintained at 37 ° C., 20% oxygen, 5% carbon dioxide, and 20% bovine.
  • Human endothelial cells (ATCC CRL-1730) were planted at a ratio of 3 x 10 5 in a 6 cm petri dish and 3 in EGM-2 medium (Clonetics, Swiss) added with 10% FBS, rhEGF, FGF and VEGF. The cells were incubated in a cell incubator for one day, and the incubator was maintained at 37 ° C., 20% oxygen, 5% carbon dioxide, and 20% bovine.
  • Masson's trichrome tissue staining method and tissue staining for collagen I were performed.
  • Masson's trichome tissue staining method is a useful method for detecting collagen that is differentiated. After staining by the method, the collagen appears blue.
  • heart tissue is separated by 4 °C, 4% PFA The tissue was fixed in (phosphate-buffered paraformaldehyde) and then embedded in paraffin.
  • tissue sections were made into 5 ⁇ m thick coronal tissue (Coronal) using a tissue sectioner. After removing paraffin by using xylene, the tissue sections were rehydrated and washed, and ten infarct tissues were selected at random, followed by Masson's trichrome tissue staining. Each tissue was analyzed under 400 magnification, and trichome positive signal was analyzed using Image-Pro PLUS (Meyer Instruments, Houston, TX).
  • the degree of fibrosis was significantly increased in the MI + GW group compared to the MI group was confirmed through tissue staining pictures and graphs.
  • the graph quantifies the result of analyzing the trichome positive signal.
  • the present inventors performed tissue staining using collagen I.
  • the tissue prepared as described above was blocked using 1% normal goat serum and reacted with the collagen I antibody for 16 to 24 hours under humid conditions at 4 ° C. Thereafter, the tissues were washed with PBS and reacted with the secondary antibody at room temperature for 90 minutes.
  • the secondary antibody was used by diluting at a ratio of 1: 200 with anti-rabbit IgG to which biotin was bound.
  • tissue was then reacted with avidin-bitinylated-HRP complex for 60 minutes at room temperature, washed with PBS and washed with 0.003% hydrogen peroxidase and 0.027% DAB (3,3′-diaminobenzidine tetrahydrochloride, Sigma -Aldrich, USA) and staining was performed using hematoxylin for visualization.
  • avidin-bitinylated-HRP complex for 60 minutes at room temperature, washed with PBS and washed with 0.003% hydrogen peroxidase and 0.027% DAB (3,3′-diaminobenzidine tetrahydrochloride, Sigma -Aldrich, USA) and staining was performed using hematoxylin for visualization.
  • PPAR-delta according to an embodiment of the present invention through the expression level of collagen protein in the heart tissue of the myocardial infarction model of Example 2 administered with PPAR-delta for 1 week under the same conditions as in Experimental Example 1-1 By quantitatively confirm the regeneration of myocardial infarction heart.
  • the PPAR-delta agonist was administered to the myocardial infarction model of Example 2 for one week, the animal was sacrificed, the right ventricular portion was surgically removed, the left ventricle was separated into the infarct area and the non-infarct area, and frozen.
  • frozen heart tissues at the infarct or non-infarct sites were placed in liquid nitrogen, respectively, and protein lysis buffer containing 10 ⁇ M leupeptin and 200 ⁇ M phenylmethylsulfonyl fluoride (1% Triton X-100). and 1 mM ethylene diamine tetra acetic acid in 1 ⁇ phosphate buffered saline (PBS; pH 7.4)].
  • tissue sample was homogenized and the lysate was centrifuged at 13,000 rpm for 20 minutes. Then, the supernatant was obtained, and the protein concentration of each lysate was measured using a bicinchoninic acid (BCA) kit (Pierce, Rockford, IL), and bovine serum albumin was used as a control.
  • BCA bicinchoninic acid
  • sample buffer 2% Sodium Dodecyl Sulfate, 100 mM Tris, 0.2% bromophenol blue, 20% glycerol, and 200 mM dithiothreitol
  • sample buffer 2% Sodium Dodecyl Sulfate, 100 mM Tris, 0.2% bromophenol blue, 20% glycerol, and 200 mM dithiothreitol
  • the MI + GW group administered with GW610742 increased compared to the MI group, which is consistent with the result of FIG. 1A (see FIG. 1B).
  • neovascular changes are one of the pathophysiology of heart failure.
  • Angiogenesis along with collagen deposition and myofiber accumulation, is known to promote heart recovery following myocardial infarction.
  • tissue staining for CD31 and Ki-67 was performed.
  • the cardiac tissue of the myocardial infarction model was stained using CD31, a vascular endothelial cell marker.
  • a control group a sham control group that did not cause infarction was used.
  • the obtained heart tissue was stained using CD31, a vascular endothelial cell marker.
  • the present inventors stained the heart tissue of the myocardial infarction model using Ki-67, which is known as a marker of proliferating cells, to confirm whether the endothelial cell proliferation is accompanied by PPAR-delta administration.
  • Ki-67 which is known as a marker of proliferating cells.
  • the control group was a sham control group that did not cause infarction.
  • Ki-67 immune response was not observed at all in the Siamese control cardiac tissue.
  • Most Ki-67 immunoreactivity was observed in the MI group which induced myocardial infarction and the MI + GW group administered with GW610742, and the Ki-67 positive signal was markedly strong in the MI + GW group (see FIG. 1C).
  • the PPAR-delta acts on angiogenesis that promotes left ventricular remodeling after myocardial infarction.
  • LV left ventricle
  • a PPAR-delta agonist according to an embodiment of the present invention
  • the myocardium After administration of GW610742 to the infarct model, the structural changes of the heart tissues were confirmed by echocardiography (Transthoracic echocardiography, TTE). The test was performed after sacrificing the myocardial infarction model for a certain period of time after the myocardial infarction surgery. The animals were lightly anesthetized using ketamine and xylazine together.
  • Two-dimensional and M-mode echocardiograms were measured using a 12-MHz linear transducer (GE Healthcare, Wauwatosa, WI) equipped with a VIVID Q system.
  • the M-mode image was taken at the papillary muscle level of LV.
  • Fractional shortening (FS), ejection fraction (EF), LV internal dimension at diastole (LVIDD), diastolic interventricular septal thickness (IVS), LV diastolic posterior wall thickness (LVPW) and LV volume were measured using M-mode images. .
  • LV end-diastolic volume (LVEDV) and LV end-systolic volume (LVESV) were calculated through two-dimensional images using a one-sided “area-length” (AL) method. Stroke volume (SV), cardiac output (CO), and EF values (EF-AL) using the AL method were calculated by LVEDV and LVESV measurements.
  • a PPAR-delta agonist according to an embodiment of the present invention, after administration of GW610742 to the myocardial infarction model of Example 2, changes in fibrosis and angiogenesis of the heart tissue The expression levels of TGF- ⁇ and MMP-9 were measured.
  • the most important process in cardiac remodeling is the extensive fibrosis process. Fibrosis is initiated by the proliferation and differentiation of fibroblasts.
  • the fibroblasts are called myofibroblasts when they have muscle-like properties, such as contractile stress fibers containing alpha-SMA.
  • alpha-SMA was analyzed by Western blot and immunostaining using myocardial infarction heart tissue.
  • the myocardial infarction heart tissue refers to a tissue obtained by sacrificing the group administered with the PPAR-delta agonist for a week to the myocardial infarction model of Example 2.
  • the present inventors performed immunostaining for alpha-SMA in cardiac tissue. As a result, no alpha-SMA immunogenicity was observed in the Sham control heart tissue except blood vessels. In the MI group, alpha-SMA positive signals were observed in the fibrotic part and in the blood vessels. Moreover, the signal increased significantly in the MI + GW group (see FIG. 4B).
  • TIMP which is known to be an important factor for differentiating fibroblasts into myofibroblasts.
  • Cardiac tissue obtained from the same myocardial infarction model was used as a sample to confirm the expression of TIMP-1, TIMP-2 and TIMP-3, and alpha-tubulin was used as a control for this. .
  • PPAR-delta Agonist Promotes Differentiation of Myofibroblasts and Endothelial Cells
  • the PPAR-delta agonist according to one embodiment of the present invention promotes angiogenesis and differentiation into myofibroblasts during LV remodeling after myocardial infarction.
  • the present inventors attempted to study the relationship between angiogenic effects of PPAR-delta agonists and differentiation and function into myofibroblasts.
  • PW-delta agonist GW610742 was treated with 0, 0.1, 1, and 5 ⁇ M for each of the cells for 72 hours, and then, the cells were obtained, and then the cells were obtained using a MTT assay. The degree of differentiation of was confirmed.
  • GW610742 increased the proliferation of fibroblasts, but was not statistically significant.
  • proliferation was dependent on throughput.
  • an increase in the number of endothelial cells was observed in the group treated with 0.1 ⁇ M in the group treated with 0.1 ⁇ M compared with the group treated with GW610742. (See FIG. 5A).
  • alpha-SMA protein which is known to express in differentiating muscle cells
  • Myofibroblasts were treated with PPAR-delta agonist GW610742 for 0, 0.1, 1, and 5 ⁇ M, respectively, for 72 hours, after which the cells were obtained and subjected to western blot.
  • anti-alpha-SMA Sigma-Aldrich, Saint Louis, MO
  • alpha-tubulin alpha-tubulin
  • the present inventors used a conditioned medium used for culturing endothelial cells in fibroblast culture, and treated GW610742, a PPAR-delta agonist, to differentiate angiogenesis into myofibroblasts. It was confirmed whether or not to be related to. To this end, we measured the expression of tissue inhibitor of metalloprotease (TIMP) and matrix metalloproteinases (MMP), which are important factors for the differentiation of fibroblasts into myofibroblasts.
  • TIMP tissue inhibitor of metalloprotease
  • MMP matrix metalloproteinases
  • the inventors treated fibroblasts and endothelial cells with PPAR-delta agonist GW610742 for 0, 0.1, 1, 5 ⁇ M, respectively, for 72 hours, and then obtained cells and performed Western blot analysis.
  • the fibroblasts were cultured using a conditioned medium used for culturing the endothelial cells, and after treatment with GW610742 for 0, 0.1, 1, 5 ⁇ M for 72 hours, cells were obtained and Western blot analysis was performed. (Fibroblast + HUVEC_CM).
  • anti-MMP-9 and TIMP-3 (Millipore, Temecula, CA) were used as primary antibodies, and alpha-tubulin was used as a control for this.
  • the PPAR-delta agonist according to one embodiment of the present invention increases the expression of MMP-9 in the blood vessel side, and this increased expression of MMP-9 is related to the expression of TIMP-3 related to the differentiation of fibroblasts.
  • PPAR-delta agonists promote differentiation of fibroblasts.
  • further studies on the expression of MMP-9 on the vascular side and the expression of TIMP-3, which increases expression in differentiation of fibroblasts should be further studied. That is, the possibility of having other mechanisms than MMP-9 and TIMP-3 cannot be excluded. It can be interpreted to promote differentiation into myofibroblasts through other isolated mechanisms.
  • the moving properties of myofibroblasts are known as important mediators of fibrosis in cardiac remodeling (Shi Q et al. , 2011, PLos One).
  • a cell culture vessel capable of observing the movement of fibroblasts using a conditioned medium treated with PPAR-delta agonist GW610742 used at the endothelial cell culture at a concentration of 0, 1, 5 ⁇ M for 72 hours After 24 hours of incubation in a transwell migration assay, the mobility of fibroblasts was observed. To observe the mobility, the transferred cells were stained with hematoxylin and the cells were observed using an optical microscope.
  • PPAR-delta agonist in the myocardial infarction animal model, has the effect of promoting fibrosis, the growth and differentiation of myofibroblasts, promote the remodeling process of the ventricles, myocardial infarction It can be usefully used for improvement and treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides a composition comprising (PPAR) peroxisome proliferator-activated receptor (PPAR) delta agonist, as an active ingredient, for promoting a treatment of a myocardial injury after a myocardial infraction so as to prevent and treat cardiovascular diseases.

Description

퍼옥시좀 증식인자 활성화 수용체 델타 작용물질을 유효성분으로 함유하는 심근경색후 심근상처치유 촉진용 조성물Composition for promoting myocardial wound healing after myocardial infarction containing peroxysome growth factor activating receptor delta agonist as an active ingredient
본 발명은 심근경색 후 심근상처치유 촉진제 조성물에 관한 것으로서, 더 상세하게는 PPAR-델타 작용물질을 유효성분으로 함유하는 심근경색 후 심근상처치유 촉진제 조성물에 관한 것이다.The present invention relates to a myocardial injuries treatment composition after myocardial infarction, and more particularly, to a myocardial injuries treatment composition comprising a PPAR-delta agonist as an active ingredient.
관상동맥심장질환에 의한 사망률은 재관류요법의 발달로 감소하고 있지만 생존자들에게 발생하는 심부전으로 인한 사망률과 재입원율은 상대적으로 증가되고 있다. 심근은 지속적으로 박동하기 때문에 상처가 치유되는 동안 괴사된 심벽에 압력이 가해지게 된다. 괴사된 조직이 빨리 적절한 결체조직으로 대체되지 않으면 조기에 심벽이 파열될 수 있고, 말기에 심실재형성에 의해 심부전으로 진행된다. 또한, 심근경색 치유지연은 건강한 다른 심근부위에도 심벽의 압력을 통해 변형을 일으켜서 심실재형성을 일으킬 수 있다. 그러므로 짧은 시간 내에 적당한 심벽의 압력을 견딜 수 있는 결체조직으로 빨리 치유되는 것이 가장 중요하다.Although mortality from coronary heart disease has decreased due to the development of reperfusion therapy, mortality and re-hospitalization rate due to heart failure in survivors have increased relatively. The myocardium constantly beats, causing pressure on the necrotic heart wall while the wound heals. If the necrotic tissue is not replaced quickly with the appropriate connective tissue, the heart wall may rupture prematurely and progress to heart failure by ventricular remodeling at the end. In addition, delayed healing of myocardial infarction can also lead to ventricular remodeling by deforming the wall through pressure on the heart wall in other healthy myocardium. Therefore, it is most important to heal quickly into connective tissue that can withstand the appropriate wall pressure in a short time.
심근경색 후 심부전으로 진행을 막는 치료전략은 조기 재관류 및 재관류손상을 막는 급성기 치료전략이 있고 최근에는 줄기세포 치료가 주된 방법이나, 재관류 이후의 심근치유과정을 촉진하는 치료 및 약제는 거의 없는 상태이다. 전 세계적으로 이에 대한 연구는 많이 진행되고 있지만 치료제에 대한 개발은 아직까지 이루어 지지 않고 있다. 이는 급성심근경색에 대한 치료 및 연구가 대부분 초기의 염증을 억제하는 치료에 초점을 두고 있기 때문이다. 염증을 너무 억제하거나 너무 과도하게 유지되면 이후의 심근치유가 적절하게 이루어지지 않음이 알려짐에 따라, 현재 새로운 시술, 치료제, 기초연구가 한계에 이르고 있다. Treatment strategies to prevent progression to heart failure after myocardial infarction include acute treatment strategies to prevent early reperfusion and reperfusion injury. Recently, stem cell therapy is the main method, but there are few treatments and drugs that promote myocardial healing after reperfusion. . There is a lot of research around the world, but the development of therapeutics has not been done yet. This is because most treatments and studies for acute myocardial infarction focus on the treatment of early inflammation. Too much inflammation, or too much inflammation, has led to a lack of proper myocardial healing, and new procedures, therapeutics, and basic research are reaching their limits.
종래의 심근경색 후 사용되는 약제는 급성기 심근치유과정에 있어서 콜라겐 생성을 오히려 감소시키는 효과가 제시되고 있으며, 저혈압, 서맥 또는 금기 증시에는 사용할 수 없는 문제가 존재한다. Conventional drugs used after myocardial infarction have been suggested to reduce collagen production in acute myocardial healing, and there is a problem that can not be used in hypotension, bradycardia or contraindications.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 초기의 염증단계를 적절히 조절하고, 섬유아세포의 증식 및 재생 단계에 작용하는 치료제를 제공하기 위하여, 심근경색에 의하여 자연적으로 활성화되는 PPAR-δ(델타)를 표적으로 하여, 심근경색 후 손상된 심근의 치유를 촉진하여 치유지연에 의한 합병증을 예방하는 치료용 조성물을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention is to solve a number of problems, including the above problems, in order to properly control the initial inflammatory stage, to provide a therapeutic agent that acts on the proliferation and regeneration of fibroblasts, activated by myocardial infarction It is an object of the present invention to provide a therapeutic composition that targets PPAR-δ (delta), which promotes the healing of damaged myocardium after myocardial infarction and prevents complications caused by delay in healing. However, these problems are exemplary, and the scope of the present invention is not limited thereby.
발명의 일 관점에 따르면, PPAR(peroxisome proliferator-activated receptor)-델타 작용물질(agonist)을 유효성분으로 함유하는, 심근경색후 심근상처치유 촉진용 조성물이 제공된다.According to an aspect of the invention, there is provided a composition for promoting myocardial wound healing after myocardial infarction, which contains a peroxisome proliferator-activated receptor (PPAR) -delta agonist as an active ingredient.
상기 조성물에 있어서, 상기 PPAR-델타 작용물질은 GW610742(GlaxoSmithKline), GSK-0660(CAS 1014691-61-2), GSK 3787(CAS 188591-46-0), 및 GW 501516(CAS 317318-70-0)로 구성되는 군으로부터 선택되는 1종 또는 2종 이상일 수 있다. 특히, 상기 조성물은 급성 심근경색증 이후 손상된 심근의 치유를 촉진하는데 사용할 수 있다.In the composition, the PPAR-delta agonist is GW610742 (GlaxoSmithKline), GSK-0660 (CAS 1014691-61-2), GSK 3787 (CAS 188591-46-0), and GW 501516 (CAS 317318-70-0 It may be one or two or more selected from the group consisting of). In particular, the composition can be used to promote healing of damaged myocardium after acute myocardial infarction.
상기 조성물은 임상 투여시에 경구 또는 비경구로 투여가 가능하며, 비경구 투여시 급성심근경색증의 일차 재관류 시술후 관동맥내 투여가 가능할 것으로 예상된다.The composition can be administered orally or parenterally during clinical administration, and is expected to be possible intracoronary administration after the first reperfusion procedure of acute myocardial infarction.
본 발명의 일 실시 예에 따른 각각의 경구용 조성물은 제약상 허용되는 담체를 비롯한 불활성 성분을 추가로 포함한다. 상기 제약상 허용된 담체는 조성물, 구체적으로 의약 조성물의 활성 물질을 제외한 성분을 지칭한다. 제약상 허용되는 담체의 예로는 결합제, 붕해제, 희석제, 충진제, 활택제, 가용화제 또는 유화제 및 염이 포함된다.Each oral composition according to one embodiment of the present invention further comprises an inert ingredient, including a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier refers to a composition, specifically an ingredient except for the active substance of the pharmaceutical composition. Examples of pharmaceutically acceptable carriers include binders, disintegrants, diluents, fillers, glidants, solubilizers or emulsifiers and salts.
또한, 상기 본 발명의 일 실시예에 따른 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.In addition, the pharmaceutical composition according to the embodiment of the present invention uses a pharmaceutically acceptable carrier and / or excipient according to a method that can be easily carried out by those skilled in the art to which the present invention belongs. Can be prepared in unit dose form or incorporated into a multi-dose container. In this case, the formulation may be in the form of a solution, suspension or emulsion in an oil or an aqueous medium, or may be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer.
상기 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 적합한 1일 투여량은, 100 μg/kg 내지 1 mg/kg(체중)일 수 있으며, 이러한 투여량은 추후 연구 결과에 의해서 조정될 수 있다.Suitable dosages of the compositions vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity of the patient, food, time of administration, route of administration, rate of excretion and response sensitivity, and are usually The physician can easily determine and prescribe a dosage effective for the desired treatment or prophylaxis. According to a preferred embodiment of the present invention, a suitable daily dose may be between 100 μg / kg and 1 mg / kg body weight, which dose can be adjusted by further study results.
본 발명의 다른 관점에 따르면, 상술한 조성물을 심혈관질환에 걸린 개체에 투여하는 단계를 포함하는, 심근경색후 심근상처 치료 방법이 제공된다.According to another aspect of the present invention, there is provided a method for treating myocardial wound after myocardial infarction, comprising administering the above-described composition to an individual suffering from cardiovascular disease.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, PPAR-델타 작용물질(agonist)를 유효성분으로 함유하는 조성물에 의하여 심근경색후 심근상처치유 촉진용 조성물로 사용 할 수 있다. According to one embodiment of the present invention made as described above, it can be used as a composition for promoting myocardial wound healing after myocardial infarction by a composition containing a PPAR-delta agonist (agonist) as an active ingredient.
도 1은 본 발명의 일 실시예에 따른 PPAR-델타 작용물질인 GW610742를 심근경색 모델에 투여한 후, 조직의 섬유화와 콜라겐 침착이 증가되는 것을 조직염색을 통하여 확인한 사진(도 1a), 콜라겐 단백질 발현을 확인한 웨스턴 블랏 결과(도 1b), 신생혈관 생성(CD31) 및 내피세포 증식(Ki-67)이 증가하는 것을 조직염색을 통하여 확인한 사진(도 1c)를 개략적으로 도시하는 도이다.1 is a photo of confirmed through tissue staining after the administration of the PPAR-delta agonist GW610742 according to an embodiment of the present invention to myocardial infarction, tissue fibrosis and collagen deposition (Fig. 1a), collagen protein Western blot confirming the expression (Fig. 1b), angiogenesis (CD31) and endothelial cell proliferation (Ki-67) is an illustration showing schematically the picture confirmed through tissue staining (Fig. 1c).
도 2는 본 발명의 일 실시예에 따른 PPAR-델타 작용물질인 GW610742를 심근경색 모델에 투여한 후, 심초음파 검사를 수행한 결과(도 2a) 및 좌심실의 기능이 회복되고 있는 정도를 LVDD, LVIDS, LVEDV, LVESV, FS 및 EF-AL 수치를 통해서 확인한 그래프(도 2b)를 나타내는 도이다.FIG. 2 shows the results of performing echocardiography (FIG. 2A) and the extent of recovery of the left ventricle after administration of a PPAR-delta agonist GW610742 according to an embodiment of the present invention to a myocardial infarction model. Fig. 2b shows a graph (Fig. 2b) confirmed through LVIDS, LVEDV, LVESV, FS and EF-AL values.
도 3은 본 발명의 일 실시예에 따른 PPAR-델타 작용물질인 GW610742를 심근경색 모델에 투여한 후, 좌심실의 섬유화 및 신생혈관 생성을 TGF-베타 및 MMP-9의 발현을 통하여 확인한 웨스턴 블랏 사진(도 3a), alpha-SMA와 TGF-beta의 이중염색을 통하여 확인한 형광현미경 사진(도 3b), 및 TGF-베타와 MMP-9의 발현들이 심장혈관 주위에서 증가한다는 것을 확인한 사진(도 3c)을 나타내는 도이다. FIG. 3 is a Western blot photograph confirming fibrosis and neovascularization of the left ventricle through expression of TGF-beta and MMP-9 after administration of GW610742, a PPAR-delta agonist, according to an embodiment of the present invention, to a myocardial infarction model. (FIG. 3A), fluorescence micrograph (FIG. 3B) confirmed through double staining of alpha-SMA and TGF-beta, and photographs confirming that expression of TGF-beta and MMP-9 increased around the cardiovascular vessel (FIG. 3C). It is a figure which shows.
도 4는 본 발명의 일 실시예에 따른 PPAR-델타 작용물질인 GW610742를 심근경색 모델에 투여한 후, 근섬유세포로의 분화 여부를 alpha-SMA를 이용하여 확인한 웨스턴 블랏 사진(도 4a), alpha-SMA를 이용한 조직염색 사진(도 4b), 및 TIMP의 발현을 확인한 웨스턴 블랏 사진(도 4c)을 나타내는 도이다.4 is a Western blot photograph (FIG. 4A) confirming the differentiation into myofibroblasts using alpha-SMA after administration of the PPAR-delta agonist GW610742 according to an embodiment of the present invention to myocardial infarction model, alpha It is a figure which shows the histochemical staining photograph (FIG. 4B) using SMA, and the Western blot photograph (FIG. 4C) which confirmed the expression of TIMP.
도 5는 본 발명의 일 실시예에 따른 PPAR-델타 작용물질인 GW610742의 심근경색 치료효과를 세포를 이용하여 확인한 결과로서, 섬유아세포 및 내피세포(HUVEC)의 증식이 증가하는 것을 세포수 계산 방법을 통하여 확인한 그래프(도 5a), 섬유아세포가 근섬유아세포로의 분화가 증가되는 것을 alpha-SMA를 이용하여 확인한 웨스턴 블랏 사진(도 5b), 내피세포 조건 배지(conditioned medium)와 GW610742에 의하여 TIMP-3의 발현이 증가하는 것을 확인한 웨스턴 블랏 사진(도 5c), 및 섬유아세포가 근섬유아세포로 분화되며 이동성이 증가하는 것을 확인한 광학현미경 사진(도 5d)를 나타내는 도이다. Figure 5 is a result of confirming the myocardial infarction treatment effect of the PPAR-delta agonist GW610742 according to an embodiment of the present invention using a cell, cell number calculation method that increases the proliferation of fibroblasts and endothelial cells (HUVEC) Graph confirmed through (Fig. 5a), Western blot image (figure 5b) confirmed by using alpha-SMA fibroblasts differentiation into myofibroblasts, endothelium conditioned medium (conditioned medium) and TIMP- by GW610742 Western blot photograph (Fig. 5c) confirms that the expression of 3 is increased, and optical micrograph (Fig. 5d) confirms that the fibroblasts are differentiated into myofibroblasts and the mobility is increased.
이하, 실시예 및 실험예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예 및 실험예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예 및 실험예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the present invention is not limited to the examples and experimental examples disclosed below, but may be embodied in various different forms. The following examples and experimental examples are provided to make the disclosure of the present invention complete and the general knowledge. It is provided to fully inform those who have the scope of the invention.
실시예 1: 마우스의 사육Example 1 Breeding of Mice
수컷 SD(Sprague Dawley) 랫(230-250 gm; Koatech Animals Inc., Peongtaek, Gyeonggi-Do, Korea)를 이용하였으며, 모든 마우스는 온도가 조절되며, 명/암주기가 조절되며, 자유식이로 사료와 물을 공급하였다. 모든 동물 실험은 경상대학교 동물관리 및 이용 위원회의 가이드라인(GLA-110324-R0022)에 따라 수행되었다.Male SD (Sprague Dawley) rats (230-250 gm; Koatech Animals Inc., Peongtaek, Gyeonggi-Do, Korea) were used, and all mice were controlled in temperature, light / dark cycle, and free diet. And water were supplied. All animal experiments were performed in accordance with the guidelines of the Gyeongsang National University Animal Care and Use Committee (GLA-110324-R0022).
실시예 2: 심근경색증 모델의 제조Example 2: Preparation of a Myocardial Infarction Model
마취된 SD 랫의 좌측 상단의 관상동맥(left anterior coronary artery, LAC)을 비흡수성 4-0 실크 결찰사를 이용하여 결찰하여 유발하였다. 상기와 같이 결찰을 수행한 이후, 혈관 폐색은 좌심실 근육계(musculature) 블랜칭(blanching) 테스트를 통해서 확인하였다. The left anterior coronary artery (LAC) of anesthetized SD rats was induced by ligation using nonabsorbable 4-0 silk ligation. After performing the ligation as described above, vascular occlusion was confirmed through a left ventricular musculature blanching test.
상기와 같이 제조한 심근경색 모델에 PPAR-δ 작용물질인 GW610742(GlaxoSmithKline, Stevenage, UK)를 복막을 통하여 바로 투여하였다. GW610742(1 mg/kg)는 DMSO(dimethyl sulfoxide)에 희석하여 제조한 후, 3일마다 투여하였다. 상기 심근경색 모델은 임의로 5개의 군으로 나누었다:(1) 좌전관상동맥 결찰을 수행하지 않은 대조군(sham control group: 1 week control, n = 2 및 2 weeks control, n = 2);(2) 좌전관상동맥 결찰 이후, 10% DMSO를 1주일 동안 2 회 투여한 군(1 week MI group, n = 10);(3) 좌전관상동맥 결찰 이후, 10% DMSO를 2 주일 동안 4 회 투여한 군(2 weeks MI group, n = 10); 및(4) 좌전관상동맥 결찰 이후, GW610742를 1주일 동안 2회 투여한 군(1 week MI+GW group, n = 10).(5) 좌전관상동맥 결찰이후 GW610742를 2주일 동안 4회 투여한 군(1 week MI+GW group, n = 10). 상기 대조군은 상기 실험군과 동일한 시기에 희생시켰다. The PPAR-δ agonist GW610742 (GlaxoSmithKline, Stevenage, UK) was directly administered through the peritoneum to the myocardial infarction model prepared as described above. GW610742 (1 mg / kg) was prepared by diluting in dimethyl sulfoxide (DMSO) and then administered every 3 days. The myocardial infarction model was randomly divided into 5 groups: (1) control group without left anterior coronary artery ligation (sham control group: 1 week control, n = 2 and 2 weeks control, n = 2); After coronary artery ligation, 10% DMSO twice a week (1 week MI group, n = 10); (3) After left anterior coronary artery ligation, 10% DMSO four times for 2 weeks ( 2 weeks MI group, n = 10); And (4) GW610742 administered twice a week after left anterior coronary artery ligation (1 week MI + GW group, n = 10). (5) GW610742 administered four times for 2 weeks after left anterior coronary artery ligation. Group (1 week MI + GW group, n = 10). The control group was sacrificed at the same time as the experimental group.
실시예 3: 세포배양Example 3: Cell Culture
3-1: 섬유아세포 배양3-1: Fibroblast Culture
섬유아 세포는 경상대학교 해부학교실 강상수 교수로부터 공여받았으며, 6 cm 배양접시(petri dish)에 4 x 105 비율로 심고, 10% FBS(fetal bovine serum)이 함유된 DMEM 배지(Lonza, Swiss)에서 3일 동안 세포 배양기에서 배양되었으며, 상기 배양기는 37℃ 온도, 산소농도 20%, 이산화탄소 5%, 및 슴도 20%의 조건으로 유지시켰다. Fibroblasts were donated by Professor Sang-Soo Kang of Gyeongsang National University, and were planted in a 6 cm petri dish at a ratio of 4 x 10 5 and in DMEM medium (Lonza, Swiss) containing 10% fetal bovine serum (FBS). The cells were incubated for 3 days in a cell incubator, and maintained at 37 ° C., 20% oxygen, 5% carbon dioxide, and 20% bovine.
3-2: 내피세포 배양3-2: Endothelial Cell Culture
인간 내피 세포(ATCC CRL-1730)는 6 cm 배양접시(petri dish)에 3 x 105 비율로 심고, 10% FBS, rhEGF, FGF, VEGF를 추가한 EGM-2 배지(Clonetics, Swiss)에서 3일 동안 세포 배양기에서 배양되었으며, 상기 배양기는 37℃ 온도, 산소농도 20%, 이산화탄소 5%, 및 슴도 20%의 조건으로 유지시켰다. Human endothelial cells (ATCC CRL-1730) were planted at a ratio of 3 x 10 5 in a 6 cm petri dish and 3 in EGM-2 medium (Clonetics, Swiss) added with 10% FBS, rhEGF, FGF and VEGF. The cells were incubated in a cell incubator for one day, and the incubator was maintained at 37 ° C., 20% oxygen, 5% carbon dioxide, and 20% bovine.
실험예 1: 심근경색 모델에서의 PPAR-델타 작용물질에 의한 섬유증 및 혈관신생 수준 변화 측정Experimental Example 1: Measurement of changes in fibrosis and angiogenesis levels by PPAR-delta agonists in myocardial infarction model
본 발명의 일 실시예에 따른 PPAR-델타의 심근경색 치료효과를 확인하기 위하여, 상기 실시예 2의 심근경색 모델에 PPAR-델타 작용물질인 GW610742를 투여한 후, 심실의 리모델링 과정에서 관찰되는 가장 중요한 현상인 섬유증(fibrosis) 수준을 관찰하였다. In order to confirm the treatment effect of myocardial infarction of PPAR-delta according to an embodiment of the present invention, after administering the PPAR-delta agonist GW610742 to the myocardial infarction model of Example 2, the most observed in the remodeling process of the ventricles Fibrosis level, an important phenomenon, was observed.
1-1: 조직염색을 이용한 PPAR-델타 작용물질에 의한 섬유화 증가 확인1-1: Confirmation of increased fibrosis by PPAR-delta agonist using tissue staining
섬유증에 미치는 영향을 분석하기 위하여, Masson’s trichrome 조직염색 방법 및 콜라겐(collagen) I에 대한 조직염색을 수행하였다. Masson’s trichome 조직염색 방법은 분화되는 콜라겐을 검출하는데 유용한 방법으로, 상기 방법에 의해서 염색된 후, 콜라겐을 파란색으로 나타난다. 구체적으로, 상기 실시예 2의 심근경색 모델에 PPAR-델타 작용물질인 1 mg/kg GW610742를 1주 또는 2주가 경과한 후, 1xPBS 용액으로 관류시키고, 심장조직을 분리하여 4℃, 4% PFA(phosphate-buffered paraformaldehyde)에서 조직을 고정한 후, 파라핀에 포매하였다. 그 후, 조직 절편기를 이용하여 5 μm 두께의 관상 조직(Coronal)으로 조직절편으로 만들었다. 자이렌(xylene)을 이용하여 파라핀을 제거한 후, 상기 조직절편을 재수분화 및 세척한 후, 10개의 경색조직을 임의로 선별한 후, Masson’s trichrome 조직염색을 수행하였다. 400 배율 하에서 각각의 조직을 분석하였으며, trichome 양성 신호는 Image-Pro PLUS(Meyer Instruments, Houston, TX)를 이용하여 분석하였다.In order to analyze the effect on fibrosis, Masson's trichrome tissue staining method and tissue staining for collagen I were performed. Masson's trichome tissue staining method is a useful method for detecting collagen that is differentiated. After staining by the method, the collagen appears blue. Specifically, after 1 week or 2 weeks of the PPAR-delta agonist 1 mg / kg GW610742 in the myocardial infarction model of Example 2, perfusion with 1xPBS solution, heart tissue is separated by 4 ℃, 4% PFA The tissue was fixed in (phosphate-buffered paraformaldehyde) and then embedded in paraffin. Thereafter, tissue sections were made into 5 μm thick coronal tissue (Coronal) using a tissue sectioner. After removing paraffin by using xylene, the tissue sections were rehydrated and washed, and ten infarct tissues were selected at random, followed by Masson's trichrome tissue staining. Each tissue was analyzed under 400 magnification, and trichome positive signal was analyzed using Image-Pro PLUS (Meyer Instruments, Houston, TX).
그 결과, 도 1a 상단 패널에 나타난 바와 같이, MI 군에 비하여 MI+GW 군에서 섬유화 정도가 현저하게 증가하는 것을 조직염색 사진 및 그래프를 통해서 확인할 수 있었다. 상기 그래프는 trichome 양성신호를 분석한 결과를 수치화한 것이다. As a result, as shown in the upper panel of Figure 1a, the degree of fibrosis was significantly increased in the MI + GW group compared to the MI group was confirmed through tissue staining pictures and graphs. The graph quantifies the result of analyzing the trichome positive signal.
이어, 본 발명자는 콜라겐 I을 이용하여 조직염색을 수행하였다. 상술한 바와 같이 준비된 조직을 1% 정상 염소 혈청을 이용하여 차단반응(blocking)을 수행하고, collagen I 항체와 4℃에서 습기가 있는 조건하에서 16 내지 24시간 동안 반응시켰다. 그 후, PBS로 상기 조직을 세척하고, 상온에서 2차 항체와 90분 동안 반응시켰다. 상기 2차 항체는 바이오틴(biotin)이 결합된 항-토끼 IgG로 1:200의 비율로 희석하여 사용하였다. 그 후, 상기 조직을 상온에서 아비딘-바이티닐화-HRP 복합체와 60분 동안 반응시키고, PBS를 이용하여 세척하고 0.003% 과산화수소(hydrogen peroxidase) 및 0.027% DAB(3,3′-diaminobenzidine tetrahydrochloride, Sigma-Aldrich, USA)을 이용하여 발색시키고, 가시화시키기 위하여 헤마톡실린을 이용하여 염색을 수행하였다. Next, the present inventors performed tissue staining using collagen I. The tissue prepared as described above was blocked using 1% normal goat serum and reacted with the collagen I antibody for 16 to 24 hours under humid conditions at 4 ° C. Thereafter, the tissues were washed with PBS and reacted with the secondary antibody at room temperature for 90 minutes. The secondary antibody was used by diluting at a ratio of 1: 200 with anti-rabbit IgG to which biotin was bound. The tissue was then reacted with avidin-bitinylated-HRP complex for 60 minutes at room temperature, washed with PBS and washed with 0.003% hydrogen peroxidase and 0.027% DAB (3,3′-diaminobenzidine tetrahydrochloride, Sigma -Aldrich, USA) and staining was performed using hematoxylin for visualization.
그 결과, 도 1b에 나타난 바와 같이, MI 군에 비하여 GW610742을 처리한 MI+GW 군에서 콜라겐 I의 신호가 강하게 관찰되었다. As a result, as shown in FIG. 1B, the collagen I signal was strongly observed in the MI + GW group treated with GW610742 as compared to the MI group.
1-2: 웨스턴 블랏을 이용한 PPAR-델타 작용물질에 의한 섬유화 증가 확인1-2: Increased fibrosis by PPAR-delta agonist using Western blot
상기 실험예 1-1과 동일한 조건으로 PPAR-델타를 1주일 동안 투여한 실시예 2의 심근경색 모델의 심장조직에서 콜라겐 단백질의 발현 수준을 통하여, 본 발명의 일 실시예에 따른 PPAR-델타에 의하여 심근경색된 심장의 재생 정도를 정량적으로 확인하였다. PPAR-delta according to an embodiment of the present invention through the expression level of collagen protein in the heart tissue of the myocardial infarction model of Example 2 administered with PPAR-delta for 1 week under the same conditions as in Experimental Example 1-1 By quantitatively confirm the regeneration of myocardial infarction heart.
상기 실시예 2의 심근경색 모델에 PPAR-델타 작용물질을 1주 동안 투여하고, 동물을 희생시키고 우심실 부분을 수술로 제거하고, 좌심실을 경색 부위와 비경색 부위로 분리하고, 급속 냉동시켰다. 단백질 분리 시에는 상기 경색 또는 비경색 부위의 냉동된 심장 조직을 각각 액체 질소에 넣고, 10 μM 류펩틴(leupeptin) 및 200 μM PMSF(phenylmethylsulfonyl fluoride)가 포함된 단백질 용해 버퍼[1% Triton X-100 and 1 mM ethylene diamine tetra acetic acid in 1× phosphate buffered saline(PBS; pH 7.4)]에서 용해시켰다. 상기 조직 샘플을 균일화시키고, 상기 용해물을 4℃에서 13,000 rpm 조건으로 20분 동안 원심분리를 수행하였다. 그 후, 상기 상층액을 수득하여, 각각의 용해물의 단백질 농도를 BCA(bicinchoninic acid) 키트(Pierce, Rockford, IL)를 이용하여 측정하였으며, 이에 대한 대조군으로는 소 혈청 알부민을 이용하였다. The PPAR-delta agonist was administered to the myocardial infarction model of Example 2 for one week, the animal was sacrificed, the right ventricular portion was surgically removed, the left ventricle was separated into the infarct area and the non-infarct area, and frozen. For protein isolation, frozen heart tissues at the infarct or non-infarct sites were placed in liquid nitrogen, respectively, and protein lysis buffer containing 10 μM leupeptin and 200 μM phenylmethylsulfonyl fluoride (1% Triton X-100). and 1 mM ethylene diamine tetra acetic acid in 1 × phosphate buffered saline (PBS; pH 7.4)]. The tissue sample was homogenized and the lysate was centrifuged at 13,000 rpm for 20 minutes. Then, the supernatant was obtained, and the protein concentration of each lysate was measured using a bicinchoninic acid (BCA) kit (Pierce, Rockford, IL), and bovine serum albumin was used as a control.
그 후, 40 μg 단백질 샘플을 동량의 샘플 버퍼[2% Sodium Dodecyl Sulfate, 100 mM Tris, 0.2% bromophenol blue, 20% glycerol, 및 200 mM dithiothreitol]와 혼합한 후, 10분 동안 끓이고, 10~12% 폴리아크릴아마이드(polyacrylamide) 젤에 로딩하여 단백질을 분리하였다. 상기 젤에서 분리된 단백질은 나이트로셀룰로오스 멤브레인(nitrocellulose membrane)으로 이동시키고, 항-collagen I(Calbiochem, Germany)과 반응시켰으며, 상기 멤브레인을 스트립(strippping) 반응을 수행하고 대조군인 a-tubulin과 반응시켰다. Then, 40 μg protein sample was mixed with the same amount of sample buffer [2% Sodium Dodecyl Sulfate, 100 mM Tris, 0.2% bromophenol blue, 20% glycerol, and 200 mM dithiothreitol], then boiled for 10 minutes and boiled for 10-12 Proteins were isolated by loading onto% polyacrylamide gel. The protein separated from the gel was transferred to a nitrocellulose membrane and reacted with anti-collagen I (Calbiochem, Germany), and the membrane was subjected to a stripping reaction and a-tubulin as a control. Reacted.
그 결과, 도 1b에 나타난 바와 같이, MI군에 비하여 GW610742를 투여한 MI+GW 군에서 증가하였으며, 이는 상기 도 1a의 결과와 일치한다(도 1b 참조). 이러한 결과는 본 발명의 일 실시예에 따른 PPAR-델타 작용물질이 경색된 심장 조직의 재생 또는 리모델링 과정에 영향을 미친다는 것을 의미하며, 이와 같은 심근경색 모델에 PPAR-델타 작용물질의 투여에 의하여 경색된 심장조직에서 섬유증(fibrosis) 수준이 증가한 것은 본 발명자들에 의하여 최초로 입증된 것이다. As a result, as shown in FIG. 1B, the MI + GW group administered with GW610742 increased compared to the MI group, which is consistent with the result of FIG. 1A (see FIG. 1B). These results indicate that the PPAR-delta agonist according to an embodiment of the present invention affects the regeneration or remodeling process of infarcted heart tissue. An increase in fibrosis levels in infarcted heart tissue was first demonstrated by the inventors.
1-3: 조직면역 염색을 이용한 PPAR-델타 작용물질에 의한 신생혈관 증가 확인1-3: Increase of neovascularization by PPAR-delta agonist using tissue immunostaining
심근경색 유도 이후, 신생혈관의 변화는 심부전의 병태생리 중 하나이다. 콜라겐 침착 및 근섬유 축적과 함께 신생 혈관 생성은 심근경색 이후, 심장 회복을 촉진시킨다고 알려져 있다. 이에, 본 발명의 일 실시예에 따른 PPAR-델타 작용물질이 신생혈관 생성에 관련되어 있는지를 확인하기 위하여, CD31과 Ki-67에 대한 조직염색을 수행하여 확인하였다. 실시예 2의 심근경색 모델에 GW610742를 투여한지 1주일이 경과한 후, 수득한 심장 조직을 이용하였으며, 상기 조직의 섬유증(fibrosis) 수준을 확인하기 위하여, Masson’s trichrome 조직염색을 수행하였다.After induction of myocardial infarction, neovascular changes are one of the pathophysiology of heart failure. Angiogenesis, along with collagen deposition and myofiber accumulation, is known to promote heart recovery following myocardial infarction. Thus, in order to confirm whether the PPAR-delta agonist according to an embodiment of the present invention is involved in neovascularization, tissue staining for CD31 and Ki-67 was performed. One week after administration of GW610742 to the myocardial infarction model of Example 2, the obtained heart tissue was used, and Masson's trichrome tissue staining was performed to check the fibrosis level of the tissue.
우선, PPAR-델타 작용물질이 신생혈관 생성에 관련되어 있는지를 확인하기 위하여, 혈관내피세포 마커인 CD31를 이용하여 심근경색 모델의 심장조직을 염색하였다. 이에 대한 대조군은 경색을 유발하지 않은 sham 대조군을 이용하였다. 상기 실시예 2의 심근경색 모델에 GW610742를 투여한지 1주일이 경과한 후, 수득한 심장 조직을 혈관내피세포 마커인 CD31을 이용하여 염색하였다. First, to confirm whether the PPAR-delta agonist is involved in neovascularization, the cardiac tissue of the myocardial infarction model was stained using CD31, a vascular endothelial cell marker. As a control group, a sham control group that did not cause infarction was used. After one week after GW610742 was administered to the myocardial infarction model of Example 2, the obtained heart tissue was stained using CD31, a vascular endothelial cell marker.
그 결과, 도 1c에 나타난 바와 같이, CD31 면역반응성은 재생되는 혈관내피와 성숙한 혈관에서 관찰되었으며, MI군에 비하여 MI+GW 군에서 더욱 많이 관찰되었다(도 1c 참조). 중요한 점은 CD31 신호가 관찰되는 재생되고 있는 작은 혈관들이 GW610742를 투여한 경색된 심장조직에서 더욱 많이 존재한다는 것이다. As a result, as shown in Figure 1c, CD31 immunoreactivity was observed in the revascularized endothelium and mature blood vessels, more observed in the MI + GW group than the MI group (see Figure 1c). Importantly, the regenerating small blood vessels in which the CD31 signal is observed are more present in the infarcted heart tissue administered GW610742.
이어, 본 발명자는 PPAR-델타 투여에 의해서 내피 세포의 증식이 동반되는지 확인하기 위하여, 증식하는 세포의 마커로 알려진 Ki-67을 이용하여 심근경색 모델의 심장조직을 염색하였다. 이에 대한 대조군은 경색을 유발하지 않은 샴(sham) 대조군을 이용하였다.Next, the present inventors stained the heart tissue of the myocardial infarction model using Ki-67, which is known as a marker of proliferating cells, to confirm whether the endothelial cell proliferation is accompanied by PPAR-delta administration. The control group was a sham control group that did not cause infarction.
그 결과, 도 1c에 나타난 바와 같이, 샴 대조군 심장조직에서는 Ki-67 면역 반응성이 전혀 관찰되지 않았다. 대부분의 Ki-67 면역반응성은 심근경색을 유발한 MI군과 GW610742를 투여한 MI+GW 군에서 관찰되었으며, MI+GW 군에서 Ki-67 양성 신호가 현저히 강하게 관찰되었다(도 1c 참조).As a result, as shown in Figure 1c, Ki-67 immune response was not observed at all in the Siamese control cardiac tissue. Most Ki-67 immunoreactivity was observed in the MI group which induced myocardial infarction and the MI + GW group administered with GW610742, and the Ki-67 positive signal was markedly strong in the MI + GW group (see FIG. 1C).
이러한 결과는 본 발명의 일 실시예에 따른 PPAR-델타가 심근경색 이후, 좌심실 리모델링을 촉진하는 혈관 신생 과정에 작용하고 있음을 의미한다.These results indicate that the PPAR-delta according to one embodiment of the present invention acts on angiogenesis that promotes left ventricular remodeling after myocardial infarction.
실험예 2: 심근경색 모델에서의 PPAR-델타 작용물질에 의한 좌심실 구조 및 기능 변화 측정Experimental Example 2: Measurement of left ventricular structure and function change by PPAR-delta agonist in myocardial infarction model
본 발명의 일 실시예에 따른 PPAR-델타 작용물질인 GW610742에 의하여, 상기 실시예 2에서 좌심실을 결찰하여 경색을 유발한 심근경색 동물모델의 LV(left ventricle) 재생 효과를 확인하기 위하여, 상기 심근경색 모델에 GW610742를 투여한 후, 상기 심장조직의 구조적 변화를 심초음파 검사(Transthoracic echocardiography, TTE)를 통해서 확인하였다. 상기 검사는 심근경색 수술 이후를 기준으로 일정 기간 경과 후, 상기 심근경색 모델을 희생시킬 때 수행하였다. 상기 동물은 케타민(ketamine) 및 자일라진(xylazine)을 함께 이용하여 가볍게 마취시켰다. 2차원 및 M-모드 초음파 심장 진단도를 VIVID Q system이 구비된 12-MHz 선형 트랜스듀서(GE Healthcare, Wauwatosa, WI)를 이용하여 측정하였다. 상기 M-모드 이미지는 LV의 papillary 근육 수준에서 촬영하였다. FS(fractional shortening), EF(ejection fraction), LVIDD(LV internal dimension at diastole), IVS(diastolic interventricular septal thickness), LVPW(LV diastolic posterior wall thickness) 및 LV 부피는 M-모드 이미지를 이용하여 측정하였다. 또한, LVEDV(LV end-diastolic volume) 및 LVESV(LV end-systolic volume)는 일면 “면적-길이”(area-length, AL) 방법을 이용하여 2차원 이미지를 통하여 계산하였다. SV(stroke volume), CO(cardiac output), 및 AL 방법을 이용한 EF 수치(EF-AL)는 LVEDV 및 LVESV 측정을 통하여 계산하였다. In order to confirm the left ventricle (LV) regeneration effect of the myocardial infarction animal model induced infarction by ligation of the left ventricle in Example 2 by GW610742, a PPAR-delta agonist according to an embodiment of the present invention, the myocardium After administration of GW610742 to the infarct model, the structural changes of the heart tissues were confirmed by echocardiography (Transthoracic echocardiography, TTE). The test was performed after sacrificing the myocardial infarction model for a certain period of time after the myocardial infarction surgery. The animals were lightly anesthetized using ketamine and xylazine together. Two-dimensional and M-mode echocardiograms were measured using a 12-MHz linear transducer (GE Healthcare, Wauwatosa, WI) equipped with a VIVID Q system. The M-mode image was taken at the papillary muscle level of LV. Fractional shortening (FS), ejection fraction (EF), LV internal dimension at diastole (LVIDD), diastolic interventricular septal thickness (IVS), LV diastolic posterior wall thickness (LVPW) and LV volume were measured using M-mode images. . In addition, LV end-diastolic volume (LVEDV) and LV end-systolic volume (LVESV) were calculated through two-dimensional images using a one-sided “area-length” (AL) method. Stroke volume (SV), cardiac output (CO), and EF values (EF-AL) using the AL method were calculated by LVEDV and LVESV measurements.
그 결과, 도 2에 나타난 바와 같이, LVEDV, LVESV, LVIDD, 및 LVIDS 수치는 MI+GW군이 MI군에 비하여 증가하는 경향을 나타냈다. 기준시에는 EF-AL 수치가 MI군이 MI+GW군에 비하여 높았다. 반면, 1주가 경과한 후, FS와 EF-AL 수치는 MI와 MI+GW군 간에 차이가 관찰되지 않았다. 또한, 0~1주 사이의 LVEDV와 LVESV의 변화는 MI+GW군이 MI군에 비하여 훨씬 높았다. 그러나 2주 째에는 큰 변화가 관찰되지 않았다(표 1 참조). 이러한 결과는 LV의 확장이 먼저 일어나며, 이러한 확장에 따라서 LV의 기능적 회복이 MI군에 비하여 MI+GW군에서 더욱 가속화되고 있다는 것을 의미한다. As a result, as shown in Figure 2, LVEDV, LVESV, LVIDD, and LVIDS values showed a tendency to increase in the MI + GW group compared to the MI group. At baseline, the EF-AL level was higher in the MI group than in the MI + GW group. On the other hand, after one week, no difference was observed between FS and EF-AL levels between the MI and MI + GW groups. In addition, changes in LVEDV and LVESV between 0 and 1 weeks were much higher in the MI + GW group than in the MI group. However, no significant change was observed at 2 weeks (see Table 1). These results indicate that the expansion of LV occurs first, and according to this expansion, functional recovery of LV is accelerated more in MI + GW group than MI group.
실험예 3: 심근경색 모델에서의 PPAR-델타 작용물질에 의한 좌심실 재생효과 확인Experimental Example 3: Confirmation of left ventricular regeneration effect by PPAR-delta agonist in myocardial infarction model
본 발명의 일 실시예에 따른 PPAR-델타 작용물질인 GW610742에 의한 LV 재생 효과를 확인하기 위하여, 상기 실시예 2의 심근경색 모델에 GW610742를 투여한 후, 상기 심장조직의 섬유화 및 혈관신생의 변화를 TGF-β 및 MMP-9의 발현 수준을 측정하였다. In order to confirm the LV regeneration effect by GW610742, a PPAR-delta agonist according to an embodiment of the present invention, after administration of GW610742 to the myocardial infarction model of Example 2, changes in fibrosis and angiogenesis of the heart tissue The expression levels of TGF-β and MMP-9 were measured.
구체적으로, 상기 실시예 2의 심근경색 모델에 GW610742를 1주일 동안 투여한 동물을 희생시킨 후, 심장조직을 분리하고 상기 TGF-β 및 MMP-9 단백질의 발현 수준을 웨스턴 블랏과 면역염색 방법을 통하여 확인하였다.Specifically, after sacrificing an animal administered with GW610742 for one week in the myocardial infarction model of Example 2, cardiac tissues were isolated and the expression levels of the TGF-β and MMP-9 proteins were analyzed using Western blot and immunostaining method. It was confirmed through.
그 결과, 도 3a에 나타난 바와 같이, 심근경색 MI 군에 비하여 GW610742를 투여한 MI+GW 군에서 TGF-β 및 MMP-9의 발현이 유의하게 증가하는 것을 확인할 수 있었다. As a result, as shown in Figure 3a, it was confirmed that the expression of TGF-β and MMP-9 significantly increased in the MI + GW group administered with GW610742 compared to the myocardial infarction MI group.
또한, 이러한 결과는 도 3b의 면역염색 결과에서도 관찰할 수 있었다. 특히, MMP-9-양성 세포는 심근경색 심장 조직의 섬유화 부위의 혈관 주위에서 관찰되었으며, 이러한 신호는 MI+GW군이 MI군보다 더 많이 분포하며, 강하게 관찰되었다. 특히, alpha-SMA와 TGF-beta2, alpha-SMA와 MMP-9의 양성신호는 면역반응성은 MI+GW군의 심근경색 심장 조직에서 재생되고 있는 작은 혈관에 주로 위치하고 있으며, 이러한 신호는 MI군에 비해서 MI+GW군에서 더욱 강하고 많이 존재하는 것을 확인할 수 있었다(도 3c 참조).These results could also be observed in the immunostaining results of FIG. 3b. In particular, MMP-9-positive cells were observed around the blood vessels at the fibrosis site of myocardial infarction heart tissue, and these signals were more strongly distributed in the MI + GW group than in the MI group. In particular, positive signals of alpha-SMA and TGF-beta2, alpha-SMA and MMP-9 are mainly located in the small blood vessels that are regenerated in myocardial infarction heart tissue of the MI + GW group. Compared with the MI + GW group it was confirmed that there is more strong and a lot present (see Figure 3c).
실험예 4: PPAR-델타 작용물질의 섬유아세포의 근섬유아세포로의 분화 촉진 효과 확인Experimental Example 4: Confirmation of the effect of promoting the differentiation of fibroblasts into myofibroblasts of PPAR-delta agonists
심장 리모델링 과정에 있어서 가장 중요한 과정은 광범위한 섬유화 과정이다. 섬유화는 섬유아세포(fibroblast)의 증식 및 분화에 의해서 시작된다. 상기 섬유아세포는 alpha-SMA를 포함하는 수축성 스트레스 섬유(contractile stress fiber)와 같이 근육과 유사한 특성을 갖게 되면 근섬유아세포(myofibroblast)로 불리게 된다. 이에, 본 발명의 일 실시예에 따른 PPAR-델타 작용물질이 섬유아세포의 근섬유아세포로의 형태학적인 분화에 영향을 미치는지 확인하기 위해서, 심근경색 심장조직을 이용하여 alpha-SMA를 웨스턴 블랏과 면역염색을 수행하였다. 이때, 상기 심근경색 심장 조직은 실시예 2의 심근경색 모델에 PPAR-델타 작용물질을 1주일 동안 투여한 군을 희생시켜서 얻은 조직을 의미한다. The most important process in cardiac remodeling is the extensive fibrosis process. Fibrosis is initiated by the proliferation and differentiation of fibroblasts. The fibroblasts are called myofibroblasts when they have muscle-like properties, such as contractile stress fibers containing alpha-SMA. Thus, in order to determine whether the PPAR-delta agonist according to an embodiment of the present invention affects the morphological differentiation of fibroblasts into myofibroblasts, alpha-SMA was analyzed by Western blot and immunostaining using myocardial infarction heart tissue. Was performed. In this case, the myocardial infarction heart tissue refers to a tissue obtained by sacrificing the group administered with the PPAR-delta agonist for a week to the myocardial infarction model of Example 2.
심장조직을 이용하여 단백질 분석을 수행한 웨스턴 블랏 결과, 도 4a에 나타난 바와 같이, 대조군(C) 및 심근경색 모델(MI)에 비하여 PPAR-델타 작용물질을 투여한 MI+GW 군에서 alpha-SMA의 단백질 발현이 증가하였으며, 상기 alpha-SMA 단백질 수준은 MI 군에 비하여 MI+GW 군에서 현저하게 높았다(도 4a 참조). Western blot analysis of protein using cardiac tissue revealed alpha-SMA in the MI + GW group administered with PPAR-delta agonists compared to the control (C) and myocardial infarction model (MI), as shown in FIG. 4A. The protein expression of was increased, the alpha-SMA protein level was significantly higher in the MI + GW group than the MI group (see Figure 4a).
이어, 본 발명자는 심장조직에서 alpha-SMA에 대한 면역염색을 수행하였다. 그 결과, Sham 대조군 심장 조직에서는 혈관을 제외하고 alpha-SMA 면역원성이 전혀 관찰되지 않았다. MI 군에서는 alpha-SMA 양성 신호가 섬유화 부분과 혈관에서 관찰되었다. 더욱이, 상기 신호는 MI+GW 군에서 현저하게 증가하는 하였다(도 4b 참조).Subsequently, the present inventors performed immunostaining for alpha-SMA in cardiac tissue. As a result, no alpha-SMA immunogenicity was observed in the Sham control heart tissue except blood vessels. In the MI group, alpha-SMA positive signals were observed in the fibrotic part and in the blood vessels. Moreover, the signal increased significantly in the MI + GW group (see FIG. 4B).
이어, 본 발명자는 섬유아세포가 근섬유아세포로 분화되는데 중요한 요소로 알려져 있는 TIMP의 발현을 확인하였다. 상기와 동일한 심근경색 모델로부터 수득한 심장조직을 시료로 이용하여 TIMP-1,TIMP-2, TIMP-3의 발현을 확인하였으며, 이에 대한 대조군으로는 알파-튜블린(alpha-tubulin)을 이용하였다.Next, the inventors confirmed the expression of TIMP, which is known to be an important factor for differentiating fibroblasts into myofibroblasts. Cardiac tissue obtained from the same myocardial infarction model was used as a sample to confirm the expression of TIMP-1, TIMP-2 and TIMP-3, and alpha-tubulin was used as a control for this. .
그 결과, 도 4c에 나타난 바와 같이, TIMP-3 발현은 심근경색을 유발시킨 MI 군에서 감소하였으나, 본 발명의 일 실시예에 따른 PPAR-델타 작용물질인 GW610742 처리에 의해서 TIMP-2 및 TIMP-3의 발현이 증가하는 것을 관찰할 수 있었다(도 4c 참조). 이러한 결과는 심근경색 이후, LV 리모델링 과정에 있어서 PPAR-δ 작용물질이 근섬유아세포의 분화를 촉진한다는 것을 입증하는 것이다.As a result, as shown in Figure 4c, TIMP-3 expression was reduced in the MI group causing myocardial infarction, but TIMP-2 and TIMP- by treatment with GW610742, a PPAR-delta agonist according to an embodiment of the present invention. An increase in expression of 3 could be observed (see FIG. 4C). These results demonstrate that, after myocardial infarction, PPAR-δ agonists promote differentiation of myofibroblasts during LV remodeling.
실험예 5: PPAR-델타 작용물질의 근섬유아세포 분화 및 이동 촉진 효과Experimental Example 5: Myofibroblast differentiation and migration promoting effect of PPAR-delta agonist
5-1: PPAR-델타 작용물질 근섬유아세포와 내피세포의 분화 촉진 효과5-1: PPAR-delta Agonist Promotes Differentiation of Myofibroblasts and Endothelial Cells
상기 실험예를 통하여 심근경색 이후 LV 리모델링 과정에서 본 발명의 일 실시예에 따른 PPAR-델타 작용물질이 혈관생성 및 근섬유아세포로의 분화를 촉진한다는 것을 입증하였다. 이어, 본 발명자는 PPAR-델타 작용물질의 혈관신생 효과와 근섬유아세포로의 분화 및 기능의 연관성을 연구하고자 하였다. 본 발명자는 섬유아세포 및 내피세포(HUVEC)를 이용하는 시험관 내(in vitro) 세포 배양 방법을 이용하였다. 상기 각각의 세포에 대하여 PPAR-델타 작용물질인 GW610742를 0, 0.1, 1, 5 μM을 72시간 동안 처리한 후, 세포를 수득한 후 세포수 측정 방법인 MTT 어세이(assay) 을 이용하여 세포의 분화 정도를 확인하였다.Through the above experimental results, it was demonstrated that the PPAR-delta agonist according to one embodiment of the present invention promotes angiogenesis and differentiation into myofibroblasts during LV remodeling after myocardial infarction. Subsequently, the present inventors attempted to study the relationship between angiogenic effects of PPAR-delta agonists and differentiation and function into myofibroblasts. We used an in vitro cell culture method using fibroblasts and endothelial cells (HUVEC). PW-delta agonist GW610742 was treated with 0, 0.1, 1, and 5 μM for each of the cells for 72 hours, and then, the cells were obtained, and then the cells were obtained using a MTT assay. The degree of differentiation of was confirmed.
그 결과, 도 5a에 나타난 바와 같이, GW610742는 섬유아세포의 증식을 증가시켰으나 통계적으로 유의하지 않았다. 내피세포(HUVEC)에서는 처리량 의존적으로 증식에 영향을 미쳤다. 특히, GW610742 미처리군에 비하여 0.1 μM을 처리한 군에서의 내피세포수의 증가가 의미있게 관찰되었고, 또한, 1 μM을 처치한 군에서는 0.1μM을 처치한 군보다 세포수의 증가가 의미있게 증가하였다(도 5a 참조). As a result, as shown in Figure 5a, GW610742 increased the proliferation of fibroblasts, but was not statistically significant. In endothelial cells (HUVECs), proliferation was dependent on throughput. In particular, an increase in the number of endothelial cells was observed in the group treated with 0.1 μM in the group treated with 0.1 μM compared with the group treated with GW610742. (See FIG. 5A).
5-2: 웨스턴 블랏을 이용한 PPAR-델타 작용물질에 의한 근섬유아세포의 분화 촉진 확인5-2: Confirmation of the promotion of differentiation of myofibroblasts by PPAR-delta agonists using Western blot
이어, 본 발명자는 GW610742의 근섬유아세포로의 분화에 미치는 영향을 확인하기 위하여 분화하는 근육세포에서 발현한다고 알려진 알파-SMA 단백질의 발현을 관찰하였다. 근섬유아세포에 PPAR-델타 작용물질인 GW610742를 0, 0.1, 1, 및 5 μM을 각각 72 시간 동안 처리한 후, 세포를 수득하고 웨스턴 블랏을 수행하였다. 이때, 1차 항체로는 항-알파-SMA(Sigma-Aldrich, Saint Louis, MO) 및 이에 대한 대조군으로 알파-튜불린(alpha-tubulin)을 이용하였다.Next, the inventors observed the expression of alpha-SMA protein, which is known to express in differentiating muscle cells, in order to confirm the effect of GW610742 on differentiation into myofibroblasts. Myofibroblasts were treated with PPAR-delta agonist GW610742 for 0, 0.1, 1, and 5 μM, respectively, for 72 hours, after which the cells were obtained and subjected to western blot. In this case, anti-alpha-SMA (Sigma-Aldrich, Saint Louis, MO) as a primary antibody and alpha-tubulin (alpha-tubulin) was used as a control thereto.
그 결과, 도 5b에 나타난 바와 같이 GW610742를 처리농도가 능가함에 따라, alpha-SMA의 발현이 근섬유아세포에서 증가하는 것을 확인할 수 있었다. 이러한 결과는 섬유아세포의 증식에 미치는 영향과 달리, GW610742는 그 자체로 섬유아세포-근섬유아세포로 전이를 활성화시킨다는 것을 입증하는 것이다(도 5b 참조).As a result, as shown in FIG. 5B, as the treatment concentration surpassed GW610742, it was confirmed that the expression of alpha-SMA was increased in myofibroblasts. These results demonstrate that, unlike its effect on the proliferation of fibroblasts, GW610742 itself activates metastasis to fibroblasts-myofibroblasts (see FIG. 5B).
5-3: 웨스턴 블랏을 이용한 PPAR-델타 작용물질의 신생혈관 생성 효과와 근섬유아세포로의 분화 촉진간의 연관성 확인5-3: Confirmation of the association between the neovascularization effect of PPAR-delta agonist and the promotion of differentiation into myofibroblast using Western blot
이어, 본 발명자는 섬유아세포 배양시 내피세포 배양에 이용한 조건배지(conditioned medium)를 이용하고, PPAR-델타 작용물질인 GW610742를 처리함으로써, PPAR-델타 작용물질의 혈관신생 효과가 근섬유아세포로의 분화에 관련되는지의 여부를 확인하였다. 이를 위하여, 섬유아세포가 근섬유아세포로 분화되는데 중요한 영향을 미치는 인자인 TIMP(tissue inhibitor of metalloprotease)와 MMP(Matrix metalloproteinases)의 발현을 측정하였다.Subsequently, the present inventors used a conditioned medium used for culturing endothelial cells in fibroblast culture, and treated GW610742, a PPAR-delta agonist, to differentiate angiogenesis into myofibroblasts. It was confirmed whether or not to be related to. To this end, we measured the expression of tissue inhibitor of metalloprotease (TIMP) and matrix metalloproteinases (MMP), which are important factors for the differentiation of fibroblasts into myofibroblasts.
구체적으로, 본 발명자는 섬유아세포 및 내피세포에 PPAR-델타 작용물질인 GW610742를 0, 0.1, 1, 5 μM을 72시간 동안 각각 처리한 후, 세포를 수득하고 웨스턴 블랏 분석을 수행하였다. 또한, 섬유아세포에 상기 내피세포 배양시 이용한 조건배지(conditioned medium)를 이용하여 배양하며, GW610742를 0, 0.1, 1, 5 μM을 72시간 동안 처리한 후, 세포를 수득하고 웨스턴 블랏 분석을 수행하였다(Fibroblast+HUVEC_CM). 이때, 1차 항체로는 항-MMP-9 및 TIMP-3(Millipore, Temecula, CA)를 이용하였으며, 이에 대한 대조군으로 알파-튜불린(tubulin)을 이용하였다.Specifically, the inventors treated fibroblasts and endothelial cells with PPAR-delta agonist GW610742 for 0, 0.1, 1, 5 μM, respectively, for 72 hours, and then obtained cells and performed Western blot analysis. In addition, the fibroblasts were cultured using a conditioned medium used for culturing the endothelial cells, and after treatment with GW610742 for 0, 0.1, 1, 5 μM for 72 hours, cells were obtained and Western blot analysis was performed. (Fibroblast + HUVEC_CM). In this case, anti-MMP-9 and TIMP-3 (Millipore, Temecula, CA) were used as primary antibodies, and alpha-tubulin was used as a control for this.
그 결과, 도 5c에 나타난 바와 같이, 섬유아세포에서 MMP-9의 발현은 0.1 μM GW610742를 처리하였을 때 다소 증가하였으며, TIMP-3의 발현은 거의 변화가 관찰되지 않았다. 또한, 내피세포에서는 MMP-9의 발현은 1 μM GW610742를 처리하였을 때 증가하였으며, TIMP-3의 발현은 거의 변화가 관찰되지 않았다. 그리고 내피세포 배양시 이용한 조건배지(conditioned medium)를 이용하여 섬유아세포를 배양하며 GW610742를 처리하였을 때, TIMP-3과 alpha-SMA의 단백질 발현이 처리농도 의존적으로 증가하였으며, MMP-9는 변화가 관찰되지 않았다(도 5c 참조). 이러한 결과는 본 발명의 일 실시예에 따른 PPAR-델타 작용물질이 혈관쪽에서는 MMP-9의 발현을 증가시키고, 이렇게 증가된 MMP-9의 발현이 섬유아세포의 분화에 관련된 TIMP-3의 발현에 관여하여 결과적으로 PPAR-델타 작용물질이 섬유아세포의 분화를 촉진하는 것으로 생각된다. 그러나 혈관쪽에서의 MMP-9의 발현이 섬유아세포의 분화시 발현이 증가되는 TIMP-3의 발현과의 연관성은 더 연구해 보아야 한다. 즉, MMP-9와 TIMP-3 이외의 다fms 기작이 있을 가능성도 배제할 수 없다. 분리된 다른 기작을 통하여 근섬유아세포로의 분화를 촉진한다는 것으로 해석될 수 있다.As a result, as shown in Figure 5c, the expression of MMP-9 in fibroblasts slightly increased when treated with 0.1 μM GW610742, TIMP-3 expression was little changed. In addition, the expression of MMP-9 in endothelial cells was increased when 1 μM GW610742 was treated, and there was little change in the expression of TIMP-3. In addition, the protein expression of TIMP-3 and alpha-SMA increased in a dose-dependent manner when GW610742 was treated by culturing fibroblasts using a conditioned medium used for endothelial cell culture. Not observed (see FIG. 5C). These results indicate that the PPAR-delta agonist according to one embodiment of the present invention increases the expression of MMP-9 in the blood vessel side, and this increased expression of MMP-9 is related to the expression of TIMP-3 related to the differentiation of fibroblasts. As a result, it is believed that PPAR-delta agonists promote differentiation of fibroblasts. However, further studies on the expression of MMP-9 on the vascular side and the expression of TIMP-3, which increases expression in differentiation of fibroblasts, should be further studied. That is, the possibility of having other mechanisms than MMP-9 and TIMP-3 cannot be excluded. It can be interpreted to promote differentiation into myofibroblasts through other isolated mechanisms.
5-4: PPAR-델타 작용물질에 의한 근섬유아세포의 이동 확인5-4: Confirmation of migration of myofibroblasts by PPAR-delta agonists
이어, 본 발명자는 근섬유세포의 이동성을 확인하였다. 근섬유세포의 이동하는 특성은 심장 리모델링에 있어서 섬유화를 유도하는 중요한 매개인자로 알려져 있다(Shi Q et al., 2011, PLos One). Next, the inventors confirmed the mobility of myofibril cells. The moving properties of myofibroblasts are known as important mediators of fibrosis in cardiac remodeling (Shi Q et al. , 2011, PLos One).
상기 내피세포 배양시 이용한 PPAR-델타 작용물질인 GW610742를 0, 1, 5 μM의 농도로 72시간 동안 처리된 조건배지(conditioned medium)를 이용하여 섬유아세포를 이동을 관찰할 수 있는 세포 배양 용기(transwell migration assay)에 24 시간 배양 한 후, 섬유아세포의 이동성을 관찰하였다. 이동성을 관찰하기 위하여 이동된 세포를 헤마톡실린으로 염색하고 광학현미경을 이용하여 세포를 관찰하였다. A cell culture vessel capable of observing the movement of fibroblasts using a conditioned medium treated with PPAR-delta agonist GW610742 used at the endothelial cell culture at a concentration of 0, 1, 5 μM for 72 hours ( After 24 hours of incubation in a transwell migration assay, the mobility of fibroblasts was observed. To observe the mobility, the transferred cells were stained with hematoxylin and the cells were observed using an optical microscope.
그 결과, 도 5d에 나타난 바와 같이, GW610742 처리 농도 의존적으로 섬유아세포의 이동이 증가하는 것을 관찰할 수 있었다(도 5d 참조). 이러한 결과는 GW610742가 섬유아세포의 기능에 영향을 미치며, 혈관신생 조건이 섬유아세포의 분화 및 이동을 촉진한다는 것을 의미한다. As a result, as shown in FIG. 5D, it was observed that the migration of fibroblasts was increased depending on GW610742 treatment concentration (see FIG. 5D). These results indicate that GW610742 affects the function of fibroblasts and that angiogenic conditions promote the differentiation and migration of fibroblasts.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명의 일 실시예에 따른 PPAR-델타 작용물질은 심근경색 동물 모델에 있어서, 섬유증(fibrosis), 근섬유세포의 증식 및 분화를 촉진시켜, 심실의 재모델링 과정을 촉진하는 효과가 있어, 심근경색 개선 및 치료에 유용하게 활용될 수 있다.PPAR-delta agonist according to an embodiment of the present invention, in the myocardial infarction animal model, has the effect of promoting fibrosis, the growth and differentiation of myofibroblasts, promote the remodeling process of the ventricles, myocardial infarction It can be usefully used for improvement and treatment.

Claims (2)

  1. PPAR(peroxisome proliferator-activated receptor)-델타 작용물질(agonist)을 유효성분으로 함유하는, 심근경색 후 심근 상처 치유촉진용 조성물.A composition for promoting myocardial wound healing after myocardial infarction, comprising a peroxisome proliferator-activated receptor (PPAR) -delta agonist as an active ingredient.
  2. 제1항에 있어서,The method of claim 1,
    상기 PPAR-델타 작용물질은 GW610742(GSK), GSK-0660(CAS 1014691-61-2), GSK 3787(CAS 188591-46-0) 및 GW 501516(CAS 317318-70-0)으로 구성되는 군으로부터 선택되는 1종 또는 2종 이상인, 심근경색 후 심근 상처 치유촉진용 조성물.The PPAR-delta agonist is from the group consisting of GW610742 (GSK), GSK-0660 (CAS 1014691-61-2), GSK 3787 (CAS 188591-46-0) and GW 501516 (CAS 317318-70-0). At least one selected is a composition for promoting myocardial wound healing after myocardial infarction.
PCT/KR2012/010353 2012-11-30 2012-11-30 Composition comprising peroxisome proliferator-activated receptor delta agonist, as active ingredient, for promoting treatment of myocardial injury after myocardial infraction WO2014084433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/010353 WO2014084433A1 (en) 2012-11-30 2012-11-30 Composition comprising peroxisome proliferator-activated receptor delta agonist, as active ingredient, for promoting treatment of myocardial injury after myocardial infraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/010353 WO2014084433A1 (en) 2012-11-30 2012-11-30 Composition comprising peroxisome proliferator-activated receptor delta agonist, as active ingredient, for promoting treatment of myocardial injury after myocardial infraction

Publications (1)

Publication Number Publication Date
WO2014084433A1 true WO2014084433A1 (en) 2014-06-05

Family

ID=50828050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010353 WO2014084433A1 (en) 2012-11-30 2012-11-30 Composition comprising peroxisome proliferator-activated receptor delta agonist, as active ingredient, for promoting treatment of myocardial injury after myocardial infraction

Country Status (1)

Country Link
WO (1) WO2014084433A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020654A1 (en) * 2003-03-15 2005-01-27 Pershadsingh Harrihar A. Novel PPAR agonists, pharmaceutical compositions and uses thereof
US20090088368A1 (en) * 2006-01-30 2009-04-02 Irm Llc Compositions comprising them as ppar modulators
US20100292278A1 (en) * 2009-05-15 2010-11-18 Yochai Birnbaum Methods of treating vascular disease and injury
US20120093922A1 (en) * 2009-04-29 2012-04-19 Amarin Corporation Plc Pharmaceutical compositions comprising epa and a cardiovascular agent and methods of using the same
US20120277149A1 (en) * 2010-11-02 2012-11-01 Boehringer Ingelheim International Gmbh Pharmaceutical combinations for the treatment of metabolic disorders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020654A1 (en) * 2003-03-15 2005-01-27 Pershadsingh Harrihar A. Novel PPAR agonists, pharmaceutical compositions and uses thereof
US20090088368A1 (en) * 2006-01-30 2009-04-02 Irm Llc Compositions comprising them as ppar modulators
US20120093922A1 (en) * 2009-04-29 2012-04-19 Amarin Corporation Plc Pharmaceutical compositions comprising epa and a cardiovascular agent and methods of using the same
US20100292278A1 (en) * 2009-05-15 2010-11-18 Yochai Birnbaum Methods of treating vascular disease and injury
US20120277149A1 (en) * 2010-11-02 2012-11-01 Boehringer Ingelheim International Gmbh Pharmaceutical combinations for the treatment of metabolic disorders

Similar Documents

Publication Publication Date Title
JP6446134B2 (en) Composition for cancer stem cell treatment
JP7070965B2 (en) Cardiomyocyte preparations, their manufacturing methods, and applications
WO2015021817A1 (en) Use of recombinant ganoderma lucidum immunomodulatory protein (rlz-8) in preparation of medicine for treating melanoma
JP2017519726A (en) Fatty acid bile acid complex for the treatment of lipodystrophy
Yao et al. Suppression of ADAM8 attenuates angiotensin II-induced cardiac fibrosis and endothelial-mesenchymal transition via inhibiting TGF-β1/Smad2/Smad3 pathways
CN108486046B (en) Stem cell preparation for resisting hypoxia injury, preparation method thereof and application thereof in preparation of medicine for treating acute myocardial infarction
CN106727548B (en) Application of alkyl pyridine compound in preparation of cell autophagy inducing drug and method
Cao et al. Puerarin promotes the osteogenic differentiation of rat dental follicle cells by promoting the activation of the nitric oxide pathway
WO2014084433A1 (en) Composition comprising peroxisome proliferator-activated receptor delta agonist, as active ingredient, for promoting treatment of myocardial injury after myocardial infraction
WO2011008052A2 (en) Composition for the prevention or treatment of bone diseases comprising colforsin daropate
WO2019153364A1 (en) Stem cell preparation resisting hypoxia injury, preparation method therefor, and use thereof in preparation of medicament for treating acute myocardial infarction
EA022060B1 (en) Compound for treating infectious diseases, corresponding method, and pharmaceutical composition comprising said compound
KR20220044262A (en) Composition comprising compound from extract of Dryopteris crassirhizoma for preventing or treating coronavirus infection
CN108619158A (en) Application of the sodium tanshinon Ⅱa silate in preparing the drug for promoting angiogenesis
WO2014182050A1 (en) Composition comprising amd3100 for preventing or treating bone diseases
WO2020032426A1 (en) Composition for preventing or treating vascular or cardiac valvular calcification, containing thiamine derivative
WO2018147516A1 (en) Composition for preventing or treating bone diseases comprising mussel protein-derived peptide as active ingredient
CN115025100B (en) Application of active ingredient in preparation of medicine for treating diabetic nephropathy
CN111632059B (en) New application of swertiamarin
WO2020262916A1 (en) Composition for treatment of peripheral arterial disease
WO2021158045A1 (en) Composition for intrapericardial injection comprising stem cells and use thereof
WO2023185681A1 (en) Use of recombinant hirudin in preparation of drug for treating liver cancer
WO2023182609A1 (en) Composition for promoting angiogenesis, comprising adipose tissue-derived mesenchymal stem cells and human stromal vascular fraction
CN114558115A (en) Application of ELABELA in improving survival and migration of adipose-derived stem cells
CN104606684B (en) The target of the medicine that CEACAM1 is damaged as screening treatment myocardial acute ischemia and its application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889231

Country of ref document: EP

Kind code of ref document: A1