WO2014084268A1 - White glass - Google Patents

White glass Download PDF

Info

Publication number
WO2014084268A1
WO2014084268A1 PCT/JP2013/081935 JP2013081935W WO2014084268A1 WO 2014084268 A1 WO2014084268 A1 WO 2014084268A1 JP 2013081935 W JP2013081935 W JP 2013081935W WO 2014084268 A1 WO2014084268 A1 WO 2014084268A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
wavelength
less
housing
average value
Prior art date
Application number
PCT/JP2013/081935
Other languages
French (fr)
Japanese (ja)
Inventor
盛輝 大原
順子 宮坂
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014549868A priority Critical patent/JPWO2014084268A1/en
Publication of WO2014084268A1 publication Critical patent/WO2014084268A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to a white glass suitably used for a housing of an electronic device, for example, a communication device or an information device that can be carried and used, or a building material for a building or a building (civil engineering structure).
  • the case of an electronic device such as a mobile phone is used by appropriately selecting a material such as resin or metal in consideration of various factors such as decoration, scratch resistance, workability, and cost.
  • the housing is required not only to store electronic components but also to have design characteristics such as color and decoration. Color is an important element as one of the design properties.
  • Patent Document 1 In recent years, attempts have been made to use glass, which has not been used in the past, as a casing material (Patent Document 1). According to Patent Document 1, in an electronic device such as a mobile phone, it is said that a unique decoration effect with a sense of transparency can be exhibited by forming the casing body from glass.
  • Electronic devices are equipped with a display device such as a liquid crystal panel on the outer surface of the device. These display devices tend to have high definition and high brightness, and accordingly, backlights serving as light sources also tend to have high brightness. In addition to irradiating the light from the light source on the display device side, the light may reach the back surface of the housing that is multiple-reflected inside the device and is covered.
  • a light shielding means such as a coating film for providing the glass with a shielding property against visible light (hereinafter referred to as shielding property) is formed on the back surface of the glass.
  • the coating film can be formed into a thick film or from a plurality of layers.
  • a film to be formed which increases the number of processes and increases the cost.
  • the coating film when the coating film is not formed uniformly, the light is transmitted only in the portion where the coating film is thin, and there is a risk of deteriorating the aesthetics of the device such as locally recognizing the color of the housing brightly.
  • a concave housing it is necessary to form a uniform film over the entire concave surface.
  • the process of uniformly forming a coating film having sufficient shielding properties on the concave surface is complicated, which increases the cost.
  • the white paint has high translucency, and sufficient shielding properties cannot be obtained even if the white coating layer is thickened.
  • a black coating layer having a high shielding property is laminated on the white coating layer.
  • casing provided with the high shielding property which exhibits white using a white coating material there exists a problem that cost becomes very high.
  • an electronic device that can be used for a mobile phone or the like is required to have high strength for the casing in consideration of damage caused by a drop impact during use or contact damage due to long-term use.
  • the glass is chemically strengthened to form a compressive stress layer on the surface to enhance the scratch resistance of the glass substrate.
  • Tunnels or tunnels have high temperature and humidity, and the air is contaminated, so the walls deteriorate quickly.
  • the daylight is not exposed to the tunnels or tunnels, lighting is necessary not only at night but also in the daytime.
  • the power consumed by the tunnels and tunnels throughout the country is enormous, and energy saving is urgently required. ing.
  • Patent Document 2 describes a light reflecting tile for tunnel interior in which a glaze is applied for the purpose of increasing the strength on the surface side having a plurality of granular irregularities formed on the surface of a tile base material. Moreover, the glaze which added the zirconia to the transparent glaze and made it cloudy as white glaze is described.
  • Patent Document 3 describes a highly reflective white tile used as a building material or wall material of a building, and describes that antifouling treatment is performed with a glaze as necessary.
  • the present inventors When using glass so as to constitute at least a part of the casing body as shown in FIGS. 5 (a) to 5 (c), the present inventors have found uneven color on the back of the glass if the light shielding property of the glass is low. It was found that color unevenness is easily visible through glass. On the other hand, excellent design properties are required, and it may be necessary to adjust the color of the back of the glass with high accuracy. However, if the light shielding property of the glass is too high, the color of the back of the glass can be adjusted with high accuracy. We found it difficult to adjust.
  • an object of the present invention is to provide a glass capable of suppressing the influence of color unevenness on the back surface of the glass and adjusting the color of the back surface of the glass with high accuracy.
  • the present invention provides a glass that can be used for building materials for tunnels or tunnel interiors and the like that can maintain cleaning performance, reflection performance, and strength even if surface scratches or chipping occurs. Objective.
  • the inventors of the present invention can cover the color unevenness on the back surface of the glass by setting the average value of the linear transmittance at a wavelength of 400 to 800 nm within a specific range, and also the average value of the total light transmittance at a wavelength of 400 to 800 nm. It was found that the color tone of the back surface of the glass can be adjusted with high accuracy by setting the value to a specific range, and the present invention was completed.
  • the present invention is as follows. 1. A glass having an average value of linear transmittance at a wavelength of 400 nm to 800 nm of 15% or less and an average value of total light transmittance at a wavelength of 400 nm to 800 nm of 4% or more. 2. 2. The glass according to item 1, wherein the maximum value of linear transmittance at a wavelength of 400 nm to 800 nm is 35% or less, and the minimum value of total light transmittance at a wavelength of 400 nm to 800 nm is 4% or more. 3. 3. The glass according to item 1 or 2, which is a phase separation glass. 4). 3. The glass according to item 1 or 2, which is a crystallized glass containing crystals. 5. 5. 5.
  • the layer printed on the housing glass constitutes at least a part of the functional layer.
  • the housing that is. 10. 10. The housing according to 9 above, wherein at least a part of the outer surface portion is the glass, and a functional layer is provided on a surface of the glass facing the housing outer surface. 11. 11. The housing according to item 10 above, wherein the functional layer includes a layer printed on the glass. 12 12. An information terminal comprising the housing according to any one of 9 to 11 above. 13.
  • a glass for building materials having a thickness of 0.5 mm or more, an average value of linear transmittance at a wavelength of 400 nm to 800 nm of 15% or less, and an average value of total light transmittance at a wavelength of 400 nm to 800 nm of 4% or more.
  • 14 The glass for building material as described in 13 above, containing 0 to 25% of Al 2 O 3 in terms of mole percentage based on oxide. 15.
  • the building material glass as described in 13 or 14 above which contains 0.5 to 10% of ZrO 2 + P 2 O 5 + La 2 O 3 in terms of mole percentage based on oxide. 16.
  • the glass of the present invention has an average value of linear transmittance at a wavelength of 400 to 800 nm as low as 15% or less, so that the influence of color unevenness on the back surface can be suppressed. It is possible to make the color unevenness on the back of the glass visible through the glass less noticeable.
  • the glass of the present invention can adjust the color of the back surface of the glass that is visible through the glass with high accuracy when the average value of the total light transmittance at a wavelength of 400 to 800 nm is 4% or more.
  • the glass of the present invention when used for a housing or the like, the color unevenness on the back side of the glass is suppressed, and the appearance on the back side of the glass is adjusted with high accuracy and has an excellent design. Can do.
  • FIG. 1 is a diagram showing the correlation between wavelength and linear transmittance.
  • FIG. 2 is a diagram showing the results of testing whether the color unevenness on the back surface can be suppressed using the glasses of Examples 1 to 5.
  • (A) shows Example 1,
  • (b) shows Example 2,
  • (c) shows Example 3,
  • (d) shows Example 4, and
  • (e) shows Example 5.
  • FIG. 3 is a diagram showing the correlation between the wavelength and the total light transmittance.
  • FIG. 4 is a diagram showing the correlation between the average total light transmittance and the saturation C ( ⁇ a * , ⁇ b * ).
  • FIGS. 5A to 5C are diagrams in which the glass of the present invention is used as a casing glass of a mobile phone.
  • FIG. 5A is a perspective view
  • FIGS. 5B and 5C are cross-sectional views taken along line AA of FIG. 5A.
  • Glass examples of the glass of the present invention include phase-separated glass (also called phase-separated glass) or crystallized glass.
  • Phase separation glass Glass phase separation means that a single-phase glass is divided into two or more glass phases. Examples of the method for phase separation of glass include a method for heat-treating glass.
  • the conditions for the heat treatment for phase separation of the glass typically, a temperature 50 to 400 ° C. higher than the glass transition point is preferable. A temperature higher by 100 ° C. to 300 ° C. is more preferable.
  • the time for heat treating the glass is preferably 1 to 64 hours, more preferably 2 to 32 hours. From the viewpoint of mass productivity, it is preferably 24 hours or less, and more preferably within 12 hours.
  • Whether the glass is phase-separated or not can be determined by SEM (scanning electron microscope). That is, when the glass is phase-separated, it can be observed that it is divided into two or more phases when observed with an SEM.
  • phase-separated glass examples include a binodal state and a spinodal state.
  • the binodal state is a phase separation by a nucleation-growth mechanism and is generally spherical.
  • the spinodal state is a state in which the phase separation is intertwined with each other in three dimensions with some degree of regularity.
  • the phase-separated glass subjected to the ion exchange treatment is preferably in a binodal state.
  • a dispersed phase of other components rich in silica is present in the alkali-rich matrix.
  • the average size of one phase in the phase-separated state or the average particle size of the dispersed phase in the phase-separated glass is preferably 50 to 2000 nm, and preferably 100 to 1000 nm. More preferred. Typically, it is 200 nm or more or 500 nm or less.
  • the average particle size of the dispersed phase can be measured by SEM observation.
  • the average size of one phase in the phase separation state is the average of the widths of the phases intertwined with each other in the spinodal state, and when one phase is spherical in the binodal state When the diameter of one phase is elliptical, it is the average value of the major axis and the minor axis.
  • the average particle size of the dispersed phase is the average size in the binodal state.
  • the difference in refractive index between the dispersed phase particles in the phase-separated glass and the matrix around it is large.
  • the volume ratio of the dispersed phase particles in the phase-separated glass is preferably 10% or more, and more preferably 20% or more.
  • the volume ratio of the particles of the dispersed phase is estimated from the ratio of the dispersed particles by calculating the ratio of the dispersed particles distributed on the glass surface from the SEM observation photograph.
  • phase-separated glass there are no particular restrictions on the method of producing the phase-separated glass, but for example, various amounts of various raw materials are prepared, heated to about 1500-1800 ° C. and melted, and then homogenized by defoaming, stirring, etc. Formed into a plate or the like by drawing, pressing, or roll-out, or cast into a block, and after slow cooling, processed into an arbitrary shape, then processed to phase separation and processed into the desired shape Then, an ion exchange process is performed.
  • the glass is melted, homogenized, molded, slowly cooled, or shaped without any special phase separation process in steps such as melting, homogenizing, molding, annealing, or shaping.
  • phase-divided glass by heat processing shall also be included in phase-separated glass, and in this case, the step of phase-separating the glass is included in the step of melting or the like.
  • the phase-separated glass preferably contains Na 2 O.
  • the Na 2 O content in the glass is preferably 1% or more. If it is less than 1%, it becomes difficult to form a desired surface compressive stress layer by ion exchange. Preferably it is 3% or more, More preferably, it is 4% or more.
  • Na 2 O exceeds 17%, the weather resistance decreases. Preferably it is 14% or less, More preferably, it is 11% or less.
  • the phase-separated glass preferably contains SiO 2 , Al 2 O 3 and MgO.
  • the phase-separated glass contains SiO 2 , Al 2 O 3 and MgO, ion exchange is facilitated, and durability and strength are improved.
  • the content of SiO 2 in the phase-separated glass is preferably 50 to 80%, more preferably 55 to 75%, and still more preferably 60 to 70%.
  • the content of Al 2 O 3 in the phase-separated glass is preferably 0 to 10%, more preferably 1 to 7%, and further preferably 2 to 5%.
  • the content of Al 2 O 3 is preferably 0 to 10%.
  • Al 2 O 3 may or may not be contained, but when it is contained, the content is preferably 10% or less. Is the meaning.
  • the content of MgO in the phase-separated glass is preferably 0 to 30%, more preferably 5 to 25%, and even more preferably 10 to 20%.
  • the phase-separated glass preferably contains at least one selected from MgO, CaO, SrO and BaO.
  • the whiteness of the glass can be increased.
  • the total amount is preferably 5 to 30%, more preferably 10 to 25%, still more preferably 12 to 20%.
  • the phase-separated glass preferably contains at least one selected from ZrO 2 , P 2 O 5 and La 2 O 3 .
  • the whiteness of the glass can be increased.
  • the total amount is preferably 0.5 to 10%.
  • the content of ZrO 2 in the phase-separated glass is preferably 0 to 5%, and more preferably 0.5 to 3%.
  • the content of P 2 O 5 in the phase-separated glass is preferably 0 to 10%, more preferably 0.5 to 5%, and further preferably 1 to 4%.
  • the content of La 2 O 3 in the phase-separated glass is preferably 0 to 2%, more preferably 0.2 to 1%.
  • the phase-separated glass may contain K 2 O.
  • K 2 O is a component for improving the meltability, and is a component for increasing the ion exchange rate in chemical strengthening to obtain a desired surface compressive stress and stress layer depth.
  • the effect is small at less than 1%.
  • it is 1% or more.
  • the ion exchange rate it is preferably 2% or more, and typically 3% or more.
  • K 2 O exceeds 9%, the weather resistance decreases.
  • it is 7% or less, typically 6% or less.
  • Crystallized glass examples include crystallized glass containing nepheline solid solution crystals. Crystallized glass containing nepheline solid solution crystals can be produced through heat treatment of the precursor as described in US Pat. No. 2,920,971. In the manufacture of crystallized glass containing nepheline solid solution crystals, the following steps (i) to (iii) are included. (I) Melting a glass-forming batch that usually contains a nucleating agent. (Ii) At the same time, the melt is cooled to a temperature lower than its transition range to form a glass having a desired shape. (Iii) The glass is subjected to a prescribed heat treatment method to crystallize the glass.
  • the step (iii) is divided into the following two steps (iii-1) and (iii-2).
  • the temperature is preferably 950 ° C. or lower, and more preferably 900 ° C. or lower.
  • the heat treatment time is preferably 1 to 10 hours, more preferably 2 to 6 hours.
  • the glass is heated to a higher temperature, sometimes higher than its softening point, to grow crystals on the nuclei formed in (iii-1).
  • the temperature is preferably 850 to 1200 ° C., more preferably 900 to 1150 ° C.
  • the heat treatment time is preferably 1 to 10 hours, more preferably 2 to 6 hours.
  • the crystallized glass containing nepheline solid solution crystals obtained by heat treatment under the conditions within the above range is easy to ion-exchange, and the crystallized glass is ion-exchanged to provide a high light shielding property suitable for the casing. Strength can be obtained.
  • a nepheline solid solution crystal is a crystal represented by the formula Na 8-x K x Al 8 Si 8 O 32 (where x varies in the range of 0 to 8).
  • Nepheline solid solution crystals have high ion exchange efficiency, and high strength can be obtained in addition to light shielding properties that are more suitable for the housing by subjecting the crystallized glass containing the crystals to ion exchange treatment.
  • the main crystal phase of the crystallized glass is preferably nepheline solid solution crystal.
  • the main crystal phase of the crystallized glass is nepheline solid solution crystal, so that high ion exchange efficiency can be obtained, and the crystallized glass having the nepheline solid solution crystal as the main crystal phase is ion-exchanged so that it is more suitable for the casing. In addition to light shielding properties, high strength can be obtained.
  • the crystallized glass containing nepheline solid solution crystals preferably contains Na 2 O.
  • the content of Na 2 O in the crystallized glass containing nepheline solid solution crystals is preferably 10 to 30%, more preferably 12 to 24%, and further preferably 15 to 20%.
  • SiO 2 and Al 2 O 3 are the main components of nepheline solid solution and are essential.
  • the content of SiO 2 in the crystallized glass containing nepheline solid solution crystals is preferably 40 to 70%, more preferably 45 to 64%.
  • the content of Al 2 O 3 in the crystallized glass containing nepheline solid solution crystals is preferably 8 to 28%, more preferably 15 to 25%, and still more preferably 20 to 24%.
  • TiO 2 is essential as a nucleation material.
  • the content of TiO 2 in the crystallized glass containing nepheline solid solution crystals is preferably 4 to 12%, more preferably 5 to 10%.
  • the crystallized glass containing nepheline solid solution crystals may contain K 2 O.
  • K 2 O is one of the components that form nepheline solid solution crystals, is a component that improves meltability, and is a component that increases the ion exchange rate in chemical strengthening. In order to improve the ion exchange rate, the effect is small at less than 1%. Preferably it is 2% or more. When K 2 O exceeds 10%, the weather resistance decreases. Preferably it is 8% or less.
  • the crystallized glass containing nepheline solid solution crystals is preferably whitened.
  • the crystallized glass for housing of the present invention obtained by ion-exchange treatment of crystallized glass containing nepheline solid solution crystal having whitening and light-shielding properties, it is possible to reduce the light without providing a light-shielding means separately.
  • a highly shielding housing that exhibits a white appearance at a low cost can be obtained.
  • casing provided with the designability is obtained.
  • the crystallized glass of the present invention is not limited to nepheline solid solution crystal, and crystallized glass such as crystallized glass containing ⁇ -quartz solid solution crystal and crystallized glass containing ⁇ -spodumene solid solution crystal is also used for the glass of the present invention. include.
  • Co, Mn, Fe, Ni, Cu, Cr, V, Zn, Bi, Er, Tm, Nd, Sm, Sn, Ce, Pr, Eu, Ag or Au are added to the glass of the present invention as coloring components. May be.
  • the addition amount is preferably 5% or less in terms of mol% based on oxide.
  • the glass of the present invention has an average value of linear transmittance (also referred to as parallel transmittance) at a wavelength of 400 nm to 800 nm of 15% or less, preferably 10% or less, and more preferably 5% or less.
  • linear transmittance also referred to as parallel transmittance
  • the average value of the linear transmittance at a wavelength of 400 nm to 800 nm exceeds 15%, the color unevenness on the back surface of the glass visually recognized through the glass is easily noticeable.
  • the linear transmittance depends on the thickness of the glass, but the thickness of the glass of the present invention is the thickness of various products.
  • the linear transmittance in the thickness of the corresponding product is defined as the linear transmittance in the present invention.
  • the thickness of the glass of the present invention is 0.2 mm to 5 mm. In order to make the back surface color unevenness inconspicuous, it should be 0.2 mm or more. Preferably it is 0.5 mm or more, More preferably, it is 1 mm or more. In order to facilitate the color adjustment of the back surface of the glass and to reduce the weight of the glass, the thickness is set to 5 mm or less. Preferably it is 3 mm or less, More preferably, it is 2 mm or less.
  • the maximum value of linear transmittance at a wavelength of 400 nm to 800 nm is 35% or less, preferably 25% or less, and more preferably 15% or less.
  • the maximum value of the linear transmittance at a wavelength of 400 nm to 800 nm exceeds 35%, the color unevenness on the back surface of the glass that is visually recognized through the glass becomes conspicuous.
  • the average value of the linear transmittance at a wavelength of 400 nm to 800 nm can be obtained by measuring the linear transmittance T at a wavelength of 400 nm to 800 nm for each wavelength of 1 nm and using the following formula.
  • n is an integer of 400 to 800.
  • the linear transmittance of glass at wavelengths of 400 nm to 800 nm can be measured by ordinary transmittance measurement.
  • the average value of the total light transmittance at wavelengths of 400 nm to 800 nm and the saturation C ( ⁇ a * , ⁇ b * ) are in a proportional relationship. From the graph shown in FIG. 4, in order to set the saturation C ( ⁇ a * , ⁇ b * ) to 0.8 or more, it is necessary to set the average value of the total light transmittance at wavelengths of 400 nm to 800 nm to 4% or more. Recognize.
  • the total light transmittance depends on the thickness of the glass, but the thickness of the glass of the present invention is the thickness of various products.
  • the total light transmittance in the thickness of the corresponding product is defined as the total light transmittance in the present invention.
  • the glass of the present invention has an average value of total light transmittance at a wavelength of 400 nm to 800 nm of 4% or more, preferably 5% or more, more preferably 10% or more, and more preferably 20% or more. More preferably, it is particularly preferably 30% or more.
  • the saturation C ( ⁇ a * , ⁇ b * ) is less than 0.8, and it is difficult to adjust the color of the back surface of the glass with high accuracy. Become. The higher the total light transmittance, the better. However, since the average value of the linear transmittance is 15% or less, the upper limit of the total light transmittance is usually 60%.
  • the average value of the total light transmittance at wavelengths of 400 nm to 800 nm can be obtained from the following formula by measuring the total light transmittance T ′ for each wavelength of 1 nm at wavelengths of 400 nm to 800 nm.
  • n is an integer of 400 to 800.
  • the total light transmittance of glass at a wavelength of 400 nm to 800 nm can be measured with a spectrophotometer or the like.
  • the composition of glass, heat treatment conditions for example, phase separation glass
  • a crystallized glass or in the case of crystallized glass, it can be appropriately adjusted.
  • the average value of the linear transmittance at a wavelength of 400 nm to 800 nm is set to 15% or less, and the wavelength of 400 nm to The average value of the total light transmittance at 800 nm can be 4% or more.
  • Glass composition In terms of mol%, preferably, SiO 2 is 50 to 70%, Al 2 O 3 is 1 to 6%, the total amount of MgO, CaO and BaO is 0 to 20%, Na 2 O is 1 to 15%, P 2 O 5 0.5-5%, B 2 O 3 0-5%, ZrO 2 0-5%.
  • Phase separation processing conditions A temperature higher by 50 to 400 ° C. than the glass transition point is preferred.
  • a temperature higher by 100 ° C to 300 ° C is more preferable.
  • the time for heat treating the glass is preferably 1 to 64 hours, more preferably 2 to 32 hours. From the viewpoint of mass productivity, it is preferably 24 hours or less, and more preferably within 12 hours.
  • the average value of linear transmittance at a wavelength of 400 nm to 800 nm is set to 15% or less depending on the glass composition and crystallization conditions in the following range, and the total light at a wavelength of 400 nm to 800 nm is set.
  • the average value of the transmittance can be 4% or more.
  • Glass composition In terms of mol%, SiO 2 is 45 to 60%, Al 2 O 3 is 15 to 28%, Na 2 O is 10 to 20%, K 2 O is 1 to 10%, and TiO 2 is 5 to 10%.
  • the temperature is preferably 950 ° C. or less, and 900 ° C. or less. It is more preferable that The heat treatment time is preferably 1 to 10 hours, more preferably 2 to 6 hours.
  • Heat treatment conditions for heating the glass to a higher temperature, sometimes higher than its softening point, to grow crystals on the nuclei formed in (1) are: 850-1200 ° C.
  • the temperature is 900 to 1150 ° C.
  • the heat treatment time is preferably 1 to 10 hours, more preferably 2 to 6 hours.
  • the present invention includes a glass sorting method as another embodiment.
  • a glass sorting method For example, when the average value of the linear transmittance at a wavelength of 400 nm to 800 nm of the glass is 15% or less and the average value of the total light transmittance at a wavelength of 400 nm to 800 nm is 4% or more, color unevenness on the back surface of the glass is suppressed.
  • the saturation C ( ⁇ a * , ⁇ b * ) can be set to 0.8 or more, and it is determined that the glass can be adjusted with high accuracy in color on the back surface of the glass. it can.
  • the glass of the present invention may be chemically strengthened by ion exchange treatment to have high strength.
  • Chemical strengthening is a method of increasing the strength of glass by forming a compressive stress layer on the glass surface. Specifically, alkali metal ions (typically Li ions, Na ions) having a small ion radius on the surface of the glass plate by ion exchange at a temperature below the glass transition point are converted to alkali ions (typically Is a process of exchanging Na ions or K ions for Li ions and K ions for Na ions.
  • the chemical strengthening method is not particularly limited as long as Li 2 O or Na 2 O on the glass surface layer and Na 2 O or K 2 O in the molten salt can be ion-exchanged.
  • heated potassium nitrate (KNO 3 ) A method of immersing glass in molten salt.
  • the conditions for forming a chemically strengthened layer having a desired surface compressive stress (surface compressive stress layer) on the glass vary depending on the thickness of the glass, but the temperature condition is preferably 350 to 550 ° C., preferably 400 to More preferably, it is 500 degreeC.
  • the chemical strengthening time is preferably 1 to 144 hours, and more preferably 2 to 24 hours.
  • the molten salt include KNO 3 and NaNO 3 . Specifically, for example, it is typical to immerse the glass in a KNO 3 molten salt at 400 to 550 ° C. for 2 to 24 hours.
  • Chemically tempered glass has a compressive stress layer on the surface by ion exchange treatment.
  • a polishing step may be performed when the glass is flat.
  • the grain size of polishing abrasive grains used for the final stage polishing is typically 2 to 6 ⁇ m, and such abrasive grains ultimately cause the glass surface to have a maximum of 5 ⁇ m micron. It is thought that a crack is formed.
  • the surface compressive stress layer is preferably deeper, more preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, typically 30 ⁇ m or more.
  • the depth of the surface compressive stress layer is preferably 70 ⁇ m or less.
  • the depth of the surface compressive stress layer should be kept thin for safety, for example, in applications such as panels that have a high probability of contact scratches on the surface. More preferably, it is 60 ⁇ m or less, more preferably 50 ⁇ m or less, and typically 40 ⁇ m or less.
  • the depth of the surface compressive stress layer of the chemically strengthened glass can be measured using an EPMA (electron probe micro analyzer) or a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho).
  • EPMA electron probe micro analyzer
  • FSM-6000 manufactured by Orihara Seisakusho
  • the potassium ion concentration analysis in the depth direction of the crystallized glass is performed with EPMA, and the potassium ion obtained by the measurement
  • the diffusion depth is regarded as the depth of the surface compressive stress layer.
  • the sodium ion concentration analysis in the depth direction of the glass is performed by EPMA, and the sodium ion diffusion depth obtained by the measurement is measured. This is regarded as the depth of the surface compressive stress layer.
  • the glass of the present invention is packaged, for example, on an electronic device.
  • a display device made up of a liquid crystal panel or an organic EL display and an operation device made up of buttons, or a display device such as a touch panel integrated with an operation device is arranged on one outer surface.
  • the frame material surrounds the periphery.
  • the other outer surface is composed of a panel.
  • a frame material in the thickness part of the apparatus between one outer surface and the other outer surface.
  • the frame material and the frame material, or the panel and the frame material may be configured integrally.
  • the glass of the present invention can be used for any of the aforementioned frame materials, panels, and frame materials.
  • these shapes may be flat or curved, and may be a concave shape or a convex shape in which the frame material and the frame material, or the panel and the frame material are integrated. Good.
  • a light source of a display device provided in an electronic device is configured to emit white light such as a light emitting diode, an organic EL, or a CCFL.
  • Some organic EL displays include a light emitting element that emits white light or the like without using the light source. If these white light leaks out of the device through the chemically strengthened glass, the appearance will deteriorate. Therefore, it is preferable that the glass has a characteristic of reliably blocking white light.
  • the glass of the present invention may be formed not only in a flat plate shape but also in a concave shape or a convex shape.
  • a portion corresponding to a display device or a connector of an electronic device may be processed simultaneously with press molding, or may be subjected to cutting or the like after press molding.
  • the reason why the glass of the present invention is used for the housing is as follows.
  • the glass obtained by the production method of the present invention has a white appearance as particles such as a dispersed phase in the glass diffuse and reflect and scatter light.
  • the glass of the present invention makes white light transmitted through the glass opaque by utilizing the scattering of light from the glass, and makes it difficult to recognize color unevenness on the glass back surface on the glass surface side.
  • FIGS. 5A to 5C illustrate an example in which the glass of the present invention is used as a casing glass constituting at least a part of the casing body in a mobile phone.
  • FIG. 5A is a perspective view of the mobile phone 10 in which the casing glass 12 is arranged on a part of the outer surface side of the casing 11, and FIGS. 5B and 5C are FIGS. )
  • the hatched portion from the upper right to the lower left is a portion constituting the inner surface side of the housing 11, and It may be glass or other than the glass of the present invention.
  • Examples of materials other than the glass of the housing 11 include metals, plastics, and ceramics.
  • the housing glass 12 may have a functional layer 13 between a surface (back surface) facing the outer surface of the housing 11 and another surface in the housing.
  • the functional layer 13 include a print portion, a print layer, a coated paint layer, a sprayed paint layer, and an adhesive layer.
  • printing what does not cause a plate is referred to as printing, and what causes a plate is referred to as printing.
  • the printing layer includes full surface printing and partial printing.
  • the effect of suppressing color unevenness by the glass of the present invention is enhanced when the housing glass 12 and the functional layer 13 are integrated.
  • the case where the layer printed on the housing glass 12 constitutes at least a part of the functional layer 13 is preferable.
  • the layer is printed directly on the housing glass 12 or the entire surface is printed on the housing glass 12. And the like are more preferable.
  • the functional layer 13 for example, when printing is performed on the surface facing the housing glass 12 of the portion constituting the inner surface side of the housing 11, the functional layer is formed on the portion constituting the inner surface side of the housing 11. 13 includes a case where the housing glass 12 is used on the functional layer 13.
  • the color unevenness and color of the back surface of the glass in the housing 11 or the functional layer 13 change. Appearance changes.
  • the average value of the linear transmittance at a wavelength of 400 to 800 nm is as low as 15% or less, so that the surface of the housing glass 12 facing the outer surface of the housing 11 and the back side of the housing 11 are configured.
  • the color unevenness is covered with the portion to be covered, that is, on the back surface of the housing glass 12, and the average value of the total light transmittance at a wavelength of 400 to 800 nm is 4% or more, so that the color can be adjusted with high accuracy. Therefore, it is possible to obtain the casing 11 having an excellent design appearance in which color unevenness visually recognized through the casing glass 12 is suppressed and the color is adjusted with high accuracy.
  • the chemically strengthened glass obtained by subjecting the glass of the present invention to ion exchange treatment is characterized by excellent mechanical strength and the like. Therefore, it can be preferably used for a white glass casing of a portable electronic device such as a mobile phone that requires high strength to the casing.
  • the glass of the present invention can be suitably used for portable electronic devices.
  • a portable electronic device is a concept that encompasses communication devices or information devices that can be carried around.
  • Examples of communication devices include mobile phones, PHS (Personal Handy-phone System), smartphones, PDAs (Personal Data Assistance) and PNDs (Portable Navigation Devices, portable car navigation systems) as communication terminals, and broadcast receivers.
  • Mobile radio mobile TV, one-seg receiver and the like.
  • Examples of information devices include digital cameras, video cameras, portable music players, sound recorders, portable DVD players, portable game machines, notebook computers, tablet PCs, electronic dictionaries, electronic notebooks, electronic book readers, portable printers, and mobile phones.
  • a scanner For example, a scanner. In addition, it is not limited to these for illustration.
  • the glass of the present invention having high design properties can be applied to a desktop personal computer, a large TV, a building material, furniture, a home appliance, or the like.
  • the thickness is 0.5 mm or more
  • the average value of linear transmittance at a wavelength of 400 nm to 800 nm is 15% or less
  • the average value of total light transmittance at a wavelength of 400 nm to 800 nm is 4% or more.
  • the glass for building materials preferably contains 0 to 25%, more preferably 1 to 15% of Al 2 O 3 in terms of mole percentage based on oxide. More preferably, the content is 2 to 10%.
  • the glass for building materials preferably contains 0.5 to 10% of ZrO 2 + P 2 O 5 + La 2 O 3 in terms of oxide-based mole percentage, and preferably 1 to 8%.
  • the content is more preferably 2 to 6%.
  • the glass for building materials preferably contains 0 to 15% of Na 2 O, more preferably 3 to 15% in terms of oxide-based mole percentage, in order to improve the solubility in melting of the glass.
  • the content is preferably 4 to 13%, more preferably 5 to 12%.
  • glass for building materials examples include glass for tunnels or tunnel interiors.
  • “Anti-road” refers to a passage made underground, mainly used for mining in mines.
  • a “tunnel” is a man-made or naturally-formed civil engineering structure that passes from the ground to the destination underground, under the sea, or in the mountains, and in the axial direction compared to the height or width of the cross section. An elongated space.
  • Artificial tunnels include, for example, roads or railways (railways) constructed for the purpose of laying lifelines such as water or electric wires (for example, common trenches), mining minerals or storing or transporting materials (for example, , Mountain tunnel).
  • lifelines such as water or electric wires (for example, common trenches), mining minerals or storing or transporting materials (for example, , Mountain tunnel).
  • the thickness of the building glass is preferably 0.5 mm or more, more preferably 1 mm or more, still more preferably 2 mm or more, and particularly preferably 3 mm or more.
  • the thickness is preferably 0.5 mm or more, more preferably 1 mm or more, still more preferably 2 mm or more, and particularly preferably 3 mm or more.
  • it is preferable that it is 30 mm or less, More preferably, it is 20 mm or less, More preferably, it is 15 mm or less, Most preferably, it is 10 mm or less.
  • the glass for building materials of the present invention is superior in strength compared to tiles with a glaze applied to ceramic substrates, even if the glass surface is scratched or chipped, even if the glass surface is scratched or chipped. Since the new surface is glass, the strength can be maintained.
  • the glass for building materials of the present invention it is possible to obtain an interior material having design properties by using glass having excellent workability as an interior material of a tunnel or a tunnel.
  • the glass for building materials of the present invention can be directly attached to the wall surface with an adhesive or the like.
  • a glass panel for building material in which a plurality of white glasses are attached to a cement plate or a metal plate can be installed on the wall surface.
  • the glass for building materials of the present invention may be laminated with a resin or the like in order to prevent it from being broken and scattered when a vehicle or the like collides, or a laminated glass using a resin or the like in an intermediate layer between glass and glass.
  • the glass on the back surface may be white glass or transparent glass.
  • the glass for building materials of the present invention may be polished on the end side for easy handling or prevention of strength reduction due to cracks or the like.
  • the size of the glass for building material of the present invention is preferably such that the short side or the short diameter is 30 mm or more, more preferably 40 mm or more, still more preferably 100 mm or more, and particularly preferably 500 mm or more. By setting it to 30 mm or more, it is possible to prevent an increase in the number of sheets to be installed and improve work efficiency. Further, the length of the long side or the long diameter is preferably 3000 mm or less, more preferably 2000 mm or less, and still more preferably 1000 mm or less. By setting it to 3000 mm or less, it can be easily handled.
  • the glass for building materials of the present invention preferably has a density of 3.0 g / cm 3 or less, more preferably 2.8 g / cm 3 or less. When the density is 3.0 g / cm 3 or less, the weight can be reduced.
  • the glass for building materials of the present invention preferably does not contain filler mixed glass.
  • the mixing amount is preferably 1% or less.
  • the filler is a ceramic powder or a crystal powder, and the filler mixed glass is obtained by mixing a filler with glass and heat-molding it.
  • melting is not contained in a filler.
  • the filler examples include aluminum nitride, zirconia oxide, zircon, and titanium oxide.
  • the filler-mixed glass is easy to contain bubbles, and the strength may be reduced by stress due to the difference in thermal expansion between the filler and the mother glass. By not containing the filler mixed glass, the strength of the glass can be improved.
  • Building materials for glass of the present invention preferably has acid resistance (20 hours 0.1 M HCl treatment at 90 ° C.) is 2 mg / cm 2 or less, more preferably 1 mg / cm 2 or less, 0.5 mm More preferably, it is as follows. Improves resistance to sulfur oxide (SO X ) or nitrogen oxide (NO X ) contained in exhaust gas when acid resistance (0.1 M HCl treatment at 90 ° C. for 20 hours) is 2 mg / cm 2 or less can do.
  • SO X sulfur oxide
  • NO X nitrogen oxide
  • the glass for building materials of the present invention preferably has an alkali resistance (0.1 M NaOH treatment at 90 ° C. for 20 hours) of 2 mg / cm 2 or less, and more preferably 1 mg / cm 2 or less.
  • an alkali resistance 0.1 M NaOH treatment at 90 ° C. for 20 hours
  • the alkali resistance is 2 mg / cm 2 or less, it is possible to improve resistance to alkali components eluted from the concrete or the like used on the wall surface.
  • the glass for building materials of the present invention preferably has a bending strength of 60 MPa or more, more preferably 80 MPa or more.
  • the bending strength is 60 MPa or more, sufficient strength against the deformation of the wall surface due to the collision of the vehicle or deterioration over time can be obtained.
  • the bending strength is measured by a three-point bending test.
  • the glass for building materials of the present invention is typically plate-shaped. Moreover, you may shape
  • the surface of the glass for building material of the present invention may be a flat surface or an uneven pattern.
  • the uneven pattern may be sandwiched between rollers in which the glass is soft and the surface is uneven, or the uneven pattern may be formed by pressing.
  • the surface may be a mirror surface, or may be ground glass by polishing powder or etching.
  • the glass for building materials of this invention may be apply
  • the glass for building materials of the present invention is typically not chemically strengthened, but may be chemically strengthened or physically strengthened. By strengthening, the strength can be further increased.
  • Example 5 The glass raw material shown in Table 1 was put into a platinum crucible, melted at 1550 ° C., defoamed and homogenized, poured into a mold, and gradually cooled at 700 ° C. to obtain a glass block. The obtained glass was put into a resistance heating type electric furnace at 850 ° C., held for 4 hours for crystal nucleation, held at 1100 ° C. for 4 hours, and then cooled to room temperature at a cooling rate of 1 ° C. per minute. Crystallized glass was obtained by cooling. The obtained glass was polished to obtain the glass of Example 5.
  • Examples 2 to 4 are examples, and examples 1 and 5 are comparative examples.
  • the average value of the linear transmittance at a wavelength of 400 nm to 800 nm was obtained by measuring the linear transmittance T at a wavelength of 400 nm to 800 nm for each wavelength of 1 nm and using the following formula.
  • n is an integer of 400 to 800.
  • Total light transmittance (%) The total light transmittance of the glass was measured using an ultraviolet-visible near-infrared spectrophotometer LAMBDA 950 (manufactured by PerkinElmer) using a glass having a thickness shown in Table 2 whose upper and lower surfaces were mirror-finished. The light transmittance was acquired. The results are shown in Table 2 and FIG.
  • FIG. 4 shows a graph plotted with the average total light transmittance as the horizontal axis and the saturation C ( ⁇ a * , ⁇ b * ) as the vertical axis.
  • the saturation C ( ⁇ a * , ⁇ b * ) can be set to 0.8 or more by setting the average value of the total light transmittance at a wavelength of 400 nm to 800 nm of the glass to 4% or more. It has been found that it is possible to adjust the color of the back of the glass with high accuracy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Casings For Electric Apparatus (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

The present invention addresses the problem of providing a glass with which the colour of a glass rear surface can be adjusted with high precision, and the impact of colour unevenness on the glass rear surface can be inhibited. The present invention relates to a glass which has an average linear transmittance of not more than 15% at wavelengths in the range 400-800 nm, and which has an average total light transmittance of at least 4% at wavelengths in the range 400-800 nm.

Description

白色ガラスWhite glass
 本発明は、電子機器、例えば携帯して使用可能な通信機器もしくは情報機器等の筐体、または建築物や建造物(土木構築物)のための建材等に好適に用いられる白色ガラスに関する。 The present invention relates to a white glass suitably used for a housing of an electronic device, for example, a communication device or an information device that can be carried and used, or a building material for a building or a building (civil engineering structure).
 携帯電話等の電子機器の筐体は、装飾性、耐傷性、加工性またはコスト等の様々な要因を考慮し、樹脂または金属等の素材から適宜のものが選択されて用いられている。筐体は、電子部品を収納する機能だけでなく、色味および装飾性等の意匠性が求められている。
意匠性の一つとして色味は重要な要素である。
The case of an electronic device such as a mobile phone is used by appropriately selecting a material such as resin or metal in consideration of various factors such as decoration, scratch resistance, workability, and cost. The housing is required not only to store electronic components but also to have design characteristics such as color and decoration.
Color is an important element as one of the design properties.
 近年、従来用いられていなかったガラスを筐体の素材として用いる試みがされている(特許文献1)。特許文献1によれば、携帯電話等の電子機器において、筐体本体をガラスで形成することにより、透明感のある独特の装飾効果を発揮することができるとされている。 In recent years, attempts have been made to use glass, which has not been used in the past, as a casing material (Patent Document 1). According to Patent Document 1, in an electronic device such as a mobile phone, it is said that a unique decoration effect with a sense of transparency can be exhibited by forming the casing body from glass.
 電子機器は、機器の外表面に液晶パネル等の表示装置を備えている。これら表示装置は、高精細および高輝度化の傾向にあり、それに伴い光源となるバックライトも高輝度化の傾向にある。光源からの光は、表示装置側に照射される以外に、機器内部で多重反射し外装されている筐体の裏面に到達することがある。 Electronic devices are equipped with a display device such as a liquid crystal panel on the outer surface of the device. These display devices tend to have high definition and high brightness, and accordingly, backlights serving as light sources also tend to have high brightness. In addition to irradiating the light from the light source on the display device side, the light may reach the back surface of the housing that is multiple-reflected inside the device and is covered.
 また、光源を不要とする有機EL(Electro-Luminescence)ディスプレイであっても、同様に発光素子からの光の漏れが懸念される。筐体の素材として金属を用いる場合は問題にならないが、前述のような透明性を有するガラスを用いる場合、光源からの光が筐体を透過し、機器外部から認識されるおそれがある。そのため、ガラスを筐体に用いる際には、ガラスに可視光線に対する遮蔽性(以下、遮蔽性という)を持たせるための塗膜等の遮光手段をガラスの裏面に形成することが行われる。 Further, even in an organic EL (Electro-Luminescence) display that does not require a light source, there is a concern that light leaks from the light emitting element. When metal is used as the material of the housing, there is no problem, but when glass having transparency as described above is used, light from the light source may pass through the housing and be recognized from the outside of the device. For this reason, when glass is used for a housing, a light shielding means such as a coating film for providing the glass with a shielding property against visible light (hereinafter referred to as shielding property) is formed on the back surface of the glass.
 前述のとおり表示装置の光源の高輝度化に伴い、ガラスの裏面(機器側)に十分な遮蔽性を有する塗膜を形成するには、塗膜を厚膜に形成したり、複数の層からなる膜を形成したりする必要があり、工程数が多くコストが高くなる要因となる。 As described above, with the increase in the brightness of the light source of the display device, in order to form a coating film having sufficient shielding properties on the back surface (device side) of the glass, the coating film can be formed into a thick film or from a plurality of layers. A film to be formed, which increases the number of processes and increases the cost.
 また、塗膜が均一に形成されない場合、塗膜が薄い箇所のみ光が透過し、局部的に筐体の色味が明るく認識される等の機器の美観を損ねるおそれがある。例えば、凹状の筐体においては、凹面側全面に均一な膜を形成する必要がある。しかしながら、十分な遮蔽性を備える塗膜を凹面に均一に形成する工程は複雑であり、コストが高くなる要因となる。 In addition, when the coating film is not formed uniformly, the light is transmitted only in the portion where the coating film is thin, and there is a risk of deteriorating the aesthetics of the device such as locally recognizing the color of the housing brightly. For example, in a concave housing, it is necessary to form a uniform film over the entire concave surface. However, the process of uniformly forming a coating film having sufficient shielding properties on the concave surface is complicated, which increases the cost.
 特に、外観が白色を呈する筐体を得る場合、前述のとおり透明ガラスの少なくとも一方の面に白色塗膜層を形成する方法がある。しかしながら、白色塗料は、透光性が高く、白色塗膜層を厚くしても十分な遮蔽性を得ることができない。 In particular, when obtaining a casing having a white appearance, there is a method of forming a white coating layer on at least one surface of the transparent glass as described above. However, the white paint has high translucency, and sufficient shielding properties cannot be obtained even if the white coating layer is thickened.
 そのため、白色塗膜層に遮蔽性の高い黒色塗膜層を積層することが行われるが、この場合、黒色塗膜層が認識されない程度に白色塗膜層を厚くする必要がある。このように、白色塗料を用いて白色を呈する高い遮蔽性を備える筐体を得るには、コストが非常に高くなるという問題がある。 Therefore, a black coating layer having a high shielding property is laminated on the white coating layer. In this case, it is necessary to make the white coating layer thick enough to prevent the black coating layer from being recognized. Thus, in order to obtain the housing | casing provided with the high shielding property which exhibits white using a white coating material, there exists a problem that cost becomes very high.
 また、携帯電話等に使用可能な電子機器は、使用時の落下衝撃による破損または長期間の使用による接触傷を考慮し、筐体に対し高い強度が求められる。このため、従来より、ガラス基板の耐傷性を向上させるため、ガラスを、化学強化することで表面に圧縮応力層を形成しガラス基板の耐傷性を高めている。 Also, an electronic device that can be used for a mobile phone or the like is required to have high strength for the casing in consideration of damage caused by a drop impact during use or contact damage due to long-term use. For this reason, conventionally, in order to improve the scratch resistance of the glass substrate, the glass is chemically strengthened to form a compressive stress layer on the surface to enhance the scratch resistance of the glass substrate.
 坑道またはトンネルは温度および湿度が高く、空気が汚染されているので壁面の劣化が早い。また、坑道またはトンネル内は昼光が当たらないため、夜間だけでなく昼間も照明が必要であるが、全国の坑道またはトンネルで照明に消費される電力は多大であり、省エネルギー化が急がれている。 Tunnels or tunnels have high temperature and humidity, and the air is contaminated, so the walls deteriorate quickly. In addition, because the daylight is not exposed to the tunnels or tunnels, lighting is necessary not only at night but also in the daytime. However, the power consumed by the tunnels and tunnels throughout the country is enormous, and energy saving is urgently required. ing.
 従来、坑道またはトンネルの内装材として、反射率の高いタイルが使用されていた。反射率の高いタイルを使用することにより、照明器具の数を減らすことができ、省エネルギー化されてきた。また、視認性を向上することができる。これまで使用されているトンネル内装用タイルにおいては、洗浄性、反射率または強度の向上のために、窯業系基板の上に釉薬が塗られていた。 Conventionally, tiles with high reflectivity have been used as interior materials for tunnels or tunnels. By using tiles with high reflectivity, the number of lighting fixtures can be reduced and energy has been saved. In addition, visibility can be improved. In the tunnel interior tiles used so far, a glaze has been applied on the ceramic substrate for the purpose of improving the cleanability, reflectivity or strength.
 例えば、特許文献2には、タイル基材表面に形成された複数の粒状凹凸部を有する表面側に強度を増す目的で釉薬が施されているトンネル内装用光反射タイルが記載されている。また、白色釉薬として透明釉薬の中にジルコニアを加えて白濁させた釉薬が記載されている。 For example, Patent Document 2 describes a light reflecting tile for tunnel interior in which a glaze is applied for the purpose of increasing the strength on the surface side having a plurality of granular irregularities formed on the surface of a tile base material. Moreover, the glaze which added the zirconia to the transparent glaze and made it cloudy as white glaze is described.
 また、特許文献3には、建物の建材または壁材として使用される高反射白色タイルが記載され、必要に応じて釉薬により防汚染処理することが記載されている。 Also, Patent Document 3 describes a highly reflective white tile used as a building material or wall material of a building, and describes that antifouling treatment is performed with a glaze as necessary.
日本国特開2009-61730号公報Japanese Unexamined Patent Publication No. 2009-61730 日本国特開2010-255188号公報Japanese Unexamined Patent Publication No. 2010-255188 日本国特開2011-226156号公報Japanese Unexamined Patent Publication No. 2011-226156
 本発明者らは、図5(a)~(c)に示すように筐体本体の少なくとも一部を構成するようにガラスを用いる場合に、ガラスの遮光性が低いと、ガラス背面の色ムラの影響を受けやすくなり、ガラスを通して色ムラが視認されやすくなることを見出した。一方で、優れた意匠性が要求され、ガラス背面の色味を高い精度で調整することが必要となる場合があるが、ガラスの遮光性が高すぎると、高い精度でガラス背面の色味を調整することが困難であることを見出した。 When using glass so as to constitute at least a part of the casing body as shown in FIGS. 5 (a) to 5 (c), the present inventors have found uneven color on the back of the glass if the light shielding property of the glass is low. It was found that color unevenness is easily visible through glass. On the other hand, excellent design properties are required, and it may be necessary to adjust the color of the back of the glass with high accuracy. However, if the light shielding property of the glass is too high, the color of the back of the glass can be adjusted with high accuracy. We found it difficult to adjust.
 したがって、本発明は、ガラス背面の色ムラの影響を抑制するとともに、かつガラス背面の色味を高い精度で調整することが出来るガラスを提供することを課題とする。 Therefore, an object of the present invention is to provide a glass capable of suppressing the influence of color unevenness on the back surface of the glass and adjusting the color of the back surface of the glass with high accuracy.
 また、坑道またはトンネルをタイルにより内装すると、表面に釉薬を施していたとしても、施工中のハンドリングなどにより生じたタイル表面の傷またはカケにより、洗浄性能、反射性能または強度が低下する恐れがあった。また、釉薬と窯業系基板との熱膨張差により、釉薬が剥離しやすくなる懸念があった。 In addition, if a tunnel or tunnel is decorated with tiles, even if glaze is applied to the surface, the cleaning performance, reflection performance, or strength may be reduced due to scratches or chipping on the tile surface caused by handling during construction. It was. In addition, there is a concern that the glaze easily peels due to the difference in thermal expansion between the glaze and the ceramic substrate.
 したがって、本発明は、表面の傷またはカケが生じたとしても、洗浄性能、反射性能および強度を維持することのできる、坑道またはトンネル内装用の建材等に好適に用いられるガラスを提供することを目的とする。 Therefore, the present invention provides a glass that can be used for building materials for tunnels or tunnel interiors and the like that can maintain cleaning performance, reflection performance, and strength even if surface scratches or chipping occurs. Objective.
 本発明者らは、波長400~800nmにおける直線透過率の平均値を特定範囲とすることにより、ガラス背面の色ムラをカバーすることができるとともに、波長400~800nmにおける全光透過率の平均値を特定範囲とすることにより、ガラス背面の色味を高い精度で調整することができることを見出し、本発明を完成させた。 The inventors of the present invention can cover the color unevenness on the back surface of the glass by setting the average value of the linear transmittance at a wavelength of 400 to 800 nm within a specific range, and also the average value of the total light transmittance at a wavelength of 400 to 800 nm. It was found that the color tone of the back surface of the glass can be adjusted with high accuracy by setting the value to a specific range, and the present invention was completed.
 すなわち、本発明は以下の通りである。
1.波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上であるガラス。
2.波長400nm~800nmにおける直線透過率の最大値が35%以下であり、波長400nm~800nmにおける全光透過率の最小値が4%以上である前項1に記載のガラス。
3.分相ガラスである前項1または2に記載のガラス。
4.結晶を含有する結晶化ガラスである前項1または2に記載のガラス。
5.厚みが0.2~5mmである前項1~4のいずれか1項に記載のガラス。
6.筐体の少なくとも一部を構成する筐体ガラスであって、波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上である筐体ガラス。
7.筐体ガラスの筐体外面と対向する側の面に機能層を有する前項6に記載の筐体ガラス。
8.筐体ガラスに印刷された層が機能層の少なくとも一部を構成する前項7に記載の筐体ガラス。
9.少なくとも一部がガラスである筐体であって、該ガラスが波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上である筐体。
10.外面部分の少なくとも一部が前記ガラスであり、該ガラスの筐体外面と対向する側の面に機能層を有する前項9に記載の筐体。
11.機能層が前記ガラスに印刷された層を含む前項10に記載の筐体。
12.前項9~11のいずれか1項に記載の筐体を備える情報端末。
13.厚みが0.5mm以上であり、且つ波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上である建材用ガラス。

14.酸化物基準のモル百分率表示でAlを0~25%含有する前項13に記載の建材用ガラス。
15.酸化物基準のモル百分率表示でZrO+P+Laを0.5~10%含有する前項13または14に記載の建材用ガラス。
16.酸化物基準の質量百分率表示でNaOを0~15%含有する前項13~15のいずれか1項に記載の建材用ガラス。
17.密度が3.0g/cm以下である前項13~16のいずれか1項に記載の建材用ガラス。
18.フィラー混合ガラスを含まない前項13~17のいずれか1項に記載の建材用ガラス。
19.坑道またはトンネルの内装用である前項13~18のいずれか1項に記載の建材用ガラス。
20.分相ガラスである前項13~19のいずれか1項に記載の建材用ガラス。
21.結晶を含有する結晶化ガラスである前項13~19のいずれか1項に記載の建材用ガラス。

22.裏面に塗料が塗布されている、前項13~21のいずれか1項に記載の建材用ガラス。
23.厚みが30mm以下である前項13~22のいずれか1項に記載の建材用ガラス。
That is, the present invention is as follows.
1. A glass having an average value of linear transmittance at a wavelength of 400 nm to 800 nm of 15% or less and an average value of total light transmittance at a wavelength of 400 nm to 800 nm of 4% or more.
2. 2. The glass according to item 1, wherein the maximum value of linear transmittance at a wavelength of 400 nm to 800 nm is 35% or less, and the minimum value of total light transmittance at a wavelength of 400 nm to 800 nm is 4% or more.
3. 3. The glass according to item 1 or 2, which is a phase separation glass.
4). 3. The glass according to item 1 or 2, which is a crystallized glass containing crystals.
5. 5. The glass according to any one of items 1 to 4, wherein the glass has a thickness of 0.2 to 5 mm.
6). A casing glass constituting at least a part of a casing, wherein an average value of linear transmittance at a wavelength of 400 nm to 800 nm is 15% or less, and an average value of total light transmittance at a wavelength of 400 nm to 800 nm is 4% or more The housing glass.
7). 7. The housing glass according to item 6 above, wherein the housing glass has a functional layer on a surface facing the outer surface of the housing.
8). 8. The housing glass according to item 7, wherein the layer printed on the housing glass constitutes at least a part of the functional layer.
9. A casing made of at least a part of glass, wherein the glass has an average value of linear transmittance at a wavelength of 400 nm to 800 nm of 15% or less, and an average value of total light transmittance at a wavelength of 400 nm to 800 nm of 4% or more The housing that is.
10. 10. The housing according to 9 above, wherein at least a part of the outer surface portion is the glass, and a functional layer is provided on a surface of the glass facing the housing outer surface.
11. 11. The housing according to item 10 above, wherein the functional layer includes a layer printed on the glass.
12 12. An information terminal comprising the housing according to any one of 9 to 11 above.
13. A glass for building materials having a thickness of 0.5 mm or more, an average value of linear transmittance at a wavelength of 400 nm to 800 nm of 15% or less, and an average value of total light transmittance at a wavelength of 400 nm to 800 nm of 4% or more.

14 14. The glass for building material as described in 13 above, containing 0 to 25% of Al 2 O 3 in terms of mole percentage based on oxide.
15. 15. The building material glass as described in 13 or 14 above, which contains 0.5 to 10% of ZrO 2 + P 2 O 5 + La 2 O 3 in terms of mole percentage based on oxide.
16. 16. The building glass according to any one of 13 to 15 above, containing 0 to 15% of Na 2 O in terms of mass percentage based on oxide.
17. 17. The building material glass according to any one of items 13 to 16, wherein the density is 3.0 g / cm 3 or less.
18. 18. The building material glass according to any one of items 13 to 17, which does not contain filler mixed glass.
19. 19. The glass for building materials as described in any one of 13 to 18 above, which is used for interiors of tunnels or tunnels.
20. 20. The building material glass according to any one of items 13 to 19, which is a phase separation glass.
21. 20. The building material glass according to any one of items 13 to 19, which is a crystallized glass containing crystals.

22. 22. The building material glass according to any one of items 13 to 21, wherein a coating is applied to the back surface.
23. 23. The building material glass according to any one of items 13 to 22, which has a thickness of 30 mm or less.
 本発明のガラスは、波長400~800nmにおける直線透過率の平均値が15%以下と低いことにより、背面にある色ムラの影響を抑制することができるため、筐体等に用いた場合に、ガラスを通して視認されるガラス背面の色ムラを目立ちにくくすることができる。 The glass of the present invention has an average value of linear transmittance at a wavelength of 400 to 800 nm as low as 15% or less, so that the influence of color unevenness on the back surface can be suppressed. It is possible to make the color unevenness on the back of the glass visible through the glass less noticeable.
 また、本発明のガラスは、波長400~800nmにおける全光透過率の平均値が4%以上であることにより、ガラスを通して視認されるガラス背面の色味を高い精度で調整することができる。 In addition, the glass of the present invention can adjust the color of the back surface of the glass that is visible through the glass with high accuracy when the average value of the total light transmittance at a wavelength of 400 to 800 nm is 4% or more.
 したがって、本発明のガラスは、筐体等に用いた場合に、ガラス背面の色ムラを抑制され、且つガラス背面の色味が高い精度で調整された、優れた意匠性を備える外観を示すことができる。 Therefore, when the glass of the present invention is used for a housing or the like, the color unevenness on the back side of the glass is suppressed, and the appearance on the back side of the glass is adjusted with high accuracy and has an excellent design. Can do.
 坑道またはトンネルの内装にタイルを用いる場合、タイル表面の釉薬相が欠けてはがれると窯業系基板がむき出しになり、汚れが付きやすく、かつ落ちにくくなる。これに対し、本発明の建材用ガラスを坑道またはトンネルの内装に用いることで、ガラス表面の傷またはカケが生じたとしても、新たな表面はガラスであるため、汚れが付きにくく洗浄性能に優れるとともに、反射性能を維持することができる。 When tiles are used in the interior of tunnels or tunnels, if the glaze phase on the tile surface is chipped and peeled off, the ceramic substrate will be exposed, and will be easily soiled and difficult to remove. On the other hand, by using the glass for building materials of the present invention for interiors of tunnels or tunnels, even if the glass surface is scratched or chipped, the new surface is glass, so that it is difficult to get dirt and has excellent cleaning performance. At the same time, the reflection performance can be maintained.
図1は、波長と直線透過率との相関関係を示す図である。FIG. 1 is a diagram showing the correlation between wavelength and linear transmittance. 図2は、例1~5のガラスを用いて、背面の色ムラを抑制可能か否かについて試験した結果について示す図である。(a)は例1、(b)は例2、(c)は例3、(d)は例4、(e)は例5を示す。FIG. 2 is a diagram showing the results of testing whether the color unevenness on the back surface can be suppressed using the glasses of Examples 1 to 5. (A) shows Example 1, (b) shows Example 2, (c) shows Example 3, (d) shows Example 4, and (e) shows Example 5. 図3は、波長と全光透過率との相関関係を示す図である。FIG. 3 is a diagram showing the correlation between the wavelength and the total light transmittance. 図4は、平均全光透過率と彩度C(Δa,Δb)との相関関係を示す図である。FIG. 4 is a diagram showing the correlation between the average total light transmittance and the saturation C (Δa * , Δb * ). 図5(a)~(c)は、本発明のガラスを、携帯電話の筐体ガラスとして用いた図である。図5(a)は斜視図、図5(b)および図5(c)は図5(a)のA-A断面図である。FIGS. 5A to 5C are diagrams in which the glass of the present invention is used as a casing glass of a mobile phone. FIG. 5A is a perspective view, and FIGS. 5B and 5C are cross-sectional views taken along line AA of FIG. 5A.
[ガラス]
 本発明のガラスとしては、分相したガラス(分相ガラスともいう)または結晶化ガラスが挙げられる。
[Glass]
Examples of the glass of the present invention include phase-separated glass (also called phase-separated glass) or crystallized glass.
(分相ガラス)
 ガラスの分相とは、単一相のガラスが、二つ以上のガラス相に分かれることをいう。ガラスを分相させる方法としては、例えば、ガラスを熱処理する方法が挙げられる。
(Phase separation glass)
Glass phase separation means that a single-phase glass is divided into two or more glass phases. Examples of the method for phase separation of glass include a method for heat-treating glass.
 ガラスを分相するために熱処理する条件としては、典型的には、ガラス転移点より50~400℃高い温度が好ましい。100℃~300℃高い温度がより好ましい。ガラスを熱処理する時間は、1~64時間が好ましく、2~32時間がより好ましい。量産性の観点からは24時間以下が好ましく、12時間以内がさらに好ましい。 As the conditions for the heat treatment for phase separation of the glass, typically, a temperature 50 to 400 ° C. higher than the glass transition point is preferable. A temperature higher by 100 ° C. to 300 ° C. is more preferable. The time for heat treating the glass is preferably 1 to 64 hours, more preferably 2 to 32 hours. From the viewpoint of mass productivity, it is preferably 24 hours or less, and more preferably within 12 hours.
 ガラスが分相しているか否かは、SEM(scanning electron microscope、走査型電子顕微鏡)により判断することができる。すなわち、ガラスが分相している場合、SEMで観察すると、2つ以上の相に分かれていることが観察できる。 Whether the glass is phase-separated or not can be determined by SEM (scanning electron microscope). That is, when the glass is phase-separated, it can be observed that it is divided into two or more phases when observed with an SEM.
 分相したガラスの状態としては、バイノーダル状態およびスピノーダル状態が挙げられる。バイノーダル状態とは、核生成-成長機構による分相であり、一般的には球状である。また、スピノーダル状態とは、分相が、ある程度規則性を持った、3次元で相互かつ連続的に絡み合った状態である。 状態 Examples of the state of phase-separated glass include a binodal state and a spinodal state. The binodal state is a phase separation by a nucleation-growth mechanism and is generally spherical. The spinodal state is a state in which the phase separation is intertwined with each other in three dimensions with some degree of regularity.
 分相したガラスをイオン交換処理して表面圧縮応力を有する化学強化層における表面圧縮応力を高くするためには、イオン交換処理に供する分相したガラスがバイノーダル状態であることが好ましい。特に、アルカリリッチのマトリックス中に、シリカリッチのその他成分の分散相が存在していることが好ましい。 In order to increase the surface compressive stress in the chemically strengthened layer having a surface compressive stress by ion-exchanging the phase-separated glass, the phase-separated glass subjected to the ion exchange treatment is preferably in a binodal state. In particular, it is preferable that a dispersed phase of other components rich in silica is present in the alkali-rich matrix.
 分相したガラスを白色化するためには、分相状態における一相の平均サイズまたは分相したガラスにおける分散相の平均粒子径が50~2000nmであることが好ましく、100~1000nmであることがより好ましい。典型的には200nm以上または500nm以下である。分散相の平均粒子径はSEM観察をすることにより測定することができる。 In order to whiten the phase-separated glass, the average size of one phase in the phase-separated state or the average particle size of the dispersed phase in the phase-separated glass is preferably 50 to 2000 nm, and preferably 100 to 1000 nm. More preferred. Typically, it is 200 nm or more or 500 nm or less. The average particle size of the dispersed phase can be measured by SEM observation.
 ここで、分相状態における一相の平均サイズとは、スピノーダル状態にあっては相互かつ連続的に絡み合った相の幅の平均であり、バイノーダル状態にあっては一方の相が球状の場合はその直径、一方の相が楕円球状の場合はその長径と短径の平均値である。また、分散相の平均粒子径とはバイノーダル状態の場合の前記平均サイズである。 Here, the average size of one phase in the phase separation state is the average of the widths of the phases intertwined with each other in the spinodal state, and when one phase is spherical in the binodal state When the diameter of one phase is elliptical, it is the average value of the major axis and the minor axis. The average particle size of the dispersed phase is the average size in the binodal state.
 また、分相したガラスを白色化するためには、分相したガラスにおける分散相の粒子とその周りのマトリックスにおける屈折率差が大きいことが好ましい。 Also, in order to whiten the phase-separated glass, it is preferable that the difference in refractive index between the dispersed phase particles in the phase-separated glass and the matrix around it is large.
 さらに、分相したガラスにおける分散相の粒子の体積の割合が10%以上であることが好ましく、20%以上であることがより好ましい。ここで、分散相の粒子の体積の割合は、SEM観察写真からガラス表面に分布している分散粒子の割合を計算し、該分散粒子の割合から見積もる。 Furthermore, the volume ratio of the dispersed phase particles in the phase-separated glass is preferably 10% or more, and more preferably 20% or more. Here, the volume ratio of the particles of the dispersed phase is estimated from the ratio of the dispersed particles by calculating the ratio of the dispersed particles distributed on the glass surface from the SEM observation photograph.
 分相したガラスの製造方法は特に限定されないが、例えば種々の原料を適量調合し、約1500~1800℃に加熱し溶融した後、脱泡、撹拌などにより均質化し、周知の、フロート法、ダウンドロー法、プレス法またはロールアウト法などによって板状等に、またはキャストしてブロック状に成形し、徐冷後、任意の形状に加工した後、分相させる処理をし、所望の形状に加工してから、イオン交換処理を施す。 There are no particular restrictions on the method of producing the phase-separated glass, but for example, various amounts of various raw materials are prepared, heated to about 1500-1800 ° C. and melted, and then homogenized by defoaming, stirring, etc. Formed into a plate or the like by drawing, pressing, or roll-out, or cast into a block, and after slow cooling, processed into an arbitrary shape, then processed to phase separation and processed into the desired shape Then, an ion exchange process is performed.
 なお、本発明においては、ガラスを溶融、均質化、成形、徐冷または形状加工等の工程において特段の分相させる処理を行うことなく、溶融、均質、成形、徐冷または形状加工のための熱処理によりガラスが分相したものも分相ガラスに含むものとし、この場合ガラスを分相させる工程は当該溶融等の工程に含まれるものとする。 In the present invention, the glass is melted, homogenized, molded, slowly cooled, or shaped without any special phase separation process in steps such as melting, homogenizing, molding, annealing, or shaping. What phase-divided glass by heat processing shall also be included in phase-separated glass, and in this case, the step of phase-separating the glass is included in the step of melting or the like.
 分相したガラスは、NaOを含有していることが好ましい。分相したガラスがNaOを含有していることにより、その後のイオン交換処理によるガラスの強度を高めることができる。ガラスにおけるNaOの含有量は、1%以上が好ましい。1%未満ではイオン交換により所望の表面圧縮応力層を形成することが困難となる。好ましくは3%以上、より好ましくは4%以上である。NaOが17%超では耐候性が低下する。好ましくは14%以下、より好ましくは11%以下である。 The phase-separated glass preferably contains Na 2 O. When the phase-separated glass contains Na 2 O, the strength of the glass by the subsequent ion exchange treatment can be increased. The Na 2 O content in the glass is preferably 1% or more. If it is less than 1%, it becomes difficult to form a desired surface compressive stress layer by ion exchange. Preferably it is 3% or more, More preferably, it is 4% or more. When Na 2 O exceeds 17%, the weather resistance decreases. Preferably it is 14% or less, More preferably, it is 11% or less.
 分相したガラスは、SiO、AlおよびMgOを含有することが好ましい。分相したガラスが、SiO、AlおよびMgOを含有することにより、イオン交換しやすくなる、および耐久性、強度が向上する。 The phase-separated glass preferably contains SiO 2 , Al 2 O 3 and MgO. When the phase-separated glass contains SiO 2 , Al 2 O 3 and MgO, ion exchange is facilitated, and durability and strength are improved.
 分相したガラスにおけるSiOの含有量は、50~80%であることが好ましく、55~75%であることがより好ましく、60~70%であることがさらに好ましい。 The content of SiO 2 in the phase-separated glass is preferably 50 to 80%, more preferably 55 to 75%, and still more preferably 60 to 70%.
 分相したガラスにおけるAlの含有量は、0~10%であることが好ましく、1~7%であることがより好ましく、2~5%であることがさらに好ましい。なお、例えばAlの含有量は0~10%が好ましいとは、Alは含有しても含有しなくてもよいが、含有する場合その含有量は10%以下が好ましい、の意である。 The content of Al 2 O 3 in the phase-separated glass is preferably 0 to 10%, more preferably 1 to 7%, and further preferably 2 to 5%. For example, the content of Al 2 O 3 is preferably 0 to 10%. Al 2 O 3 may or may not be contained, but when it is contained, the content is preferably 10% or less. Is the meaning.
 分相したガラスにおけるMgOの含有量は、0~30%であることが好ましく、5~25%であることがより好ましく、10~20%であることがさらに好ましい。 The content of MgO in the phase-separated glass is preferably 0 to 30%, more preferably 5 to 25%, and even more preferably 10 to 20%.
 分相したガラスは、MgO、CaO、SrOおよびBaOから選ばれる少なくとも1を含むことが好ましい。分相したガラスが、MgO、CaO、SrOおよびBaOから選ばれる少なくとも1を含むことにより、ガラスの白みを増すことができる。その合量は5~30%であることが好ましく、10~25%であることがより好ましく、12~20%であることがさらに好ましい。 The phase-separated glass preferably contains at least one selected from MgO, CaO, SrO and BaO. When the phase-separated glass contains at least one selected from MgO, CaO, SrO and BaO, the whiteness of the glass can be increased. The total amount is preferably 5 to 30%, more preferably 10 to 25%, still more preferably 12 to 20%.
 分相したガラスは、ZrO、PおよびLaから選ばれる少なくとも1を含むことが好ましい。分相したガラスが、ZrO、PおよびLaから選ばれる少なくとも1を含むことにより、ガラスの白みを増すことができる。その合量は0.5~10%であることが好ましい。 The phase-separated glass preferably contains at least one selected from ZrO 2 , P 2 O 5 and La 2 O 3 . When the phase-separated glass contains at least one selected from ZrO 2 , P 2 O 5 and La 2 O 3 , the whiteness of the glass can be increased. The total amount is preferably 0.5 to 10%.
 分相したガラスにおけるZrOの含有量は、0~5%であることが好ましく、0.5~3%であることがより好ましい。分相したガラスにおけるPの含有量は、0~10%であることが好ましく、0.5~5%であることがより好ましく、1~4%であることがさらに好ましい。 The content of ZrO 2 in the phase-separated glass is preferably 0 to 5%, and more preferably 0.5 to 3%. The content of P 2 O 5 in the phase-separated glass is preferably 0 to 10%, more preferably 0.5 to 5%, and further preferably 1 to 4%.
 分相したガラスにおけるLaの含有量は、0~2%であることが好ましく、0.2~1%であることがより好ましい。 The content of La 2 O 3 in the phase-separated glass is preferably 0 to 2%, more preferably 0.2 to 1%.
 分相したガラスは、KOを含有してもよい。KOは溶融性を向上させる成分であるとともに、化学強化におけるイオン交換速度を大きくして所望の表面圧縮応力と応力層深さを得るようにするための成分である。溶融性を向上するためには、1%未満ではその効果が小さい。好ましくは1%以上である。また、イオン交換速度を向上させるためには、好ましくは2%以上、典型的には3%以上である。KOが9%超では耐候性が低下する。好ましくは7%以下、典型的には6%以下である。 The phase-separated glass may contain K 2 O. K 2 O is a component for improving the meltability, and is a component for increasing the ion exchange rate in chemical strengthening to obtain a desired surface compressive stress and stress layer depth. In order to improve the meltability, the effect is small at less than 1%. Preferably it is 1% or more. In order to improve the ion exchange rate, it is preferably 2% or more, and typically 3% or more. When K 2 O exceeds 9%, the weather resistance decreases. Preferably it is 7% or less, typically 6% or less.
(結晶化ガラス)
 結晶ガラスとしては、例えば、ネフェリン固溶体結晶を含む結晶化ガラスが挙げられる。ネフェリン固溶体結晶を含む結晶化ガラスは、米国特許第2920971号明細書に記載されているように、前駆体の熱処理を通して製造することができる。ネフェリン固溶体結晶を含む結晶化ガラスの製造においては、次の(i)~(iii)の工程が含まれる。
(i)通常は成核剤を含むガラス形成バッチを溶融する。
(ii)同時に溶融体をその転移範囲より低い温度に冷却して所望形状のガラスを形成する。
(iii)ガラスを規定の熱処理法に供してガラスを結晶化させる。
(Crystallized glass)
Examples of the crystal glass include crystallized glass containing nepheline solid solution crystals. Crystallized glass containing nepheline solid solution crystals can be produced through heat treatment of the precursor as described in US Pat. No. 2,920,971. In the manufacture of crystallized glass containing nepheline solid solution crystals, the following steps (i) to (iii) are included.
(I) Melting a glass-forming batch that usually contains a nucleating agent.
(Ii) At the same time, the melt is cooled to a temperature lower than its transition range to form a glass having a desired shape.
(Iii) The glass is subjected to a prescribed heat treatment method to crystallize the glass.
 前記(iii)の工程は次の(iii-1)および(iii-2)の2段階の工程に分けられる。
(iii-1)最初に原ガラスを転移範囲内またはそれよりわずかに高い温度に加熱して、ガラス中に核を生成させる。ガラス中に核を生成させる熱処理の条件としては、温度は950℃以下であることが好ましく、900℃以下であることがより好ましい。また、熱処理時間は、1~10時間であることが好ましく、2~6時間であることがより好ましい。
(iii-2)ガラスをより一層高い温度に、時にはその軟化点より高い温度に加熱して、(iii-1)において形成させた核の上に結晶を成長させる。結晶を成長させる熱処理の条件としては、温度は850~1200℃であることが好ましく、900~1150℃であることがより好ましい。また、熱処理時間は、1~10時間であることが好ましく、2~6時間であることがより好ましい。
The step (iii) is divided into the following two steps (iii-1) and (iii-2).
(Iii-1) First, the original glass is heated to a temperature within or slightly above the transition range to form nuclei in the glass. As conditions for the heat treatment for generating nuclei in the glass, the temperature is preferably 950 ° C. or lower, and more preferably 900 ° C. or lower. The heat treatment time is preferably 1 to 10 hours, more preferably 2 to 6 hours.
(Iii-2) The glass is heated to a higher temperature, sometimes higher than its softening point, to grow crystals on the nuclei formed in (iii-1). As conditions for the heat treatment for growing crystals, the temperature is preferably 850 to 1200 ° C., more preferably 900 to 1150 ° C. The heat treatment time is preferably 1 to 10 hours, more preferably 2 to 6 hours.
 前記範囲内の条件にて熱処理して得られたネフェリン固溶体結晶を含む結晶化ガラスはイオン交換し易く、該結晶化ガラスをイオン交換処理することにより筐体に好適な遮光性に加えて、高い強度を得ることができる。 The crystallized glass containing nepheline solid solution crystals obtained by heat treatment under the conditions within the above range is easy to ion-exchange, and the crystallized glass is ion-exchanged to provide a high light shielding property suitable for the casing. Strength can be obtained.
 ネフェリン固溶体結晶は式Na8-xAlSi32(式中xは0~8の範囲で変化する)で表わされる結晶である。ネフェリン固溶体結晶は、イオン交換効率が高く、該結晶を含む結晶化ガラスをイオン交換処理することにより、筐体により好適な遮光性に加えて、高い強度を得ることができる。 A nepheline solid solution crystal is a crystal represented by the formula Na 8-x K x Al 8 Si 8 O 32 (where x varies in the range of 0 to 8). Nepheline solid solution crystals have high ion exchange efficiency, and high strength can be obtained in addition to light shielding properties that are more suitable for the housing by subjecting the crystallized glass containing the crystals to ion exchange treatment.
 また、結晶化ガラスの主要結晶相はネフェリン固溶体結晶であることが好ましい。結晶化ガラスの主要結晶相がネフェリン固溶体結晶であることにより、高いイオン交換効率が得られ、該ネフェリン固溶体結晶を主要結晶相とする結晶化ガラスをイオン交換処理することにより、筐体により好適な遮光性に加えて、高い強度を得ることができる。 Also, the main crystal phase of the crystallized glass is preferably nepheline solid solution crystal. The main crystal phase of the crystallized glass is nepheline solid solution crystal, so that high ion exchange efficiency can be obtained, and the crystallized glass having the nepheline solid solution crystal as the main crystal phase is ion-exchanged so that it is more suitable for the casing. In addition to light shielding properties, high strength can be obtained.
 ネフェリン固溶体結晶を含む結晶化ガラスは、NaOを含有していることが好ましい。ネフェリン固溶体結晶を含む結晶化ガラスがNaOを含有していることにより、その後のイオン交換処理による結晶化ガラスの強度を高めることができる。ネフェリン固溶体結晶を含む結晶化ガラスにおけるNaOの含有量は、10~30%であることが好ましく、12~24%であることがより好ましく、15~20%であることがさらに好ましい。 The crystallized glass containing nepheline solid solution crystals preferably contains Na 2 O. When the crystallized glass containing the nepheline solid solution crystal contains Na 2 O, the strength of the crystallized glass by the subsequent ion exchange treatment can be increased. The content of Na 2 O in the crystallized glass containing nepheline solid solution crystals is preferably 10 to 30%, more preferably 12 to 24%, and further preferably 15 to 20%.
 SiOおよびAlはネフェリン固溶体の主成分であり、必須である。ネフェリン固溶体結晶を含む結晶化ガラスにおけるSiOの含有量は、40~70%であることが好ましく、45~64%であることがより好ましい。ネフェリン固溶体結晶を含む結晶化ガラスにおけるAlの含有量は、8~28%であることが好ましく、15~25%であることがより好ましく、20~24%であることがさらに好ましい。 SiO 2 and Al 2 O 3 are the main components of nepheline solid solution and are essential. The content of SiO 2 in the crystallized glass containing nepheline solid solution crystals is preferably 40 to 70%, more preferably 45 to 64%. The content of Al 2 O 3 in the crystallized glass containing nepheline solid solution crystals is preferably 8 to 28%, more preferably 15 to 25%, and still more preferably 20 to 24%.
 ネフェリン固溶体結晶を含む結晶化ガラスに、TiOは核生成材として必須である。 In crystallized glass containing nepheline solid solution crystals, TiO 2 is essential as a nucleation material.
 ネフェリン固溶体結晶を含む結晶化ガラスにおけるTiOの含有量は、4~12%であることが好ましく、5~10%であることがより好ましい。 The content of TiO 2 in the crystallized glass containing nepheline solid solution crystals is preferably 4 to 12%, more preferably 5 to 10%.
 ネフェリン固溶体結晶を含む結晶化ガラスは、KOを含有してもよい。KOはネフェリン固溶体結晶を形成する成分の1つであるとともに、溶融性を向上させる成分であり、化学強化におけるイオン交換速度を大きくするための成分である。イオン交換速度を向上するためには、1%未満ではその効果が小さい。好ましくは2%以上である。KOが10%超では耐候性が低下する。好ましくは8%以下である。 The crystallized glass containing nepheline solid solution crystals may contain K 2 O. K 2 O is one of the components that form nepheline solid solution crystals, is a component that improves meltability, and is a component that increases the ion exchange rate in chemical strengthening. In order to improve the ion exchange rate, the effect is small at less than 1%. Preferably it is 2% or more. When K 2 O exceeds 10%, the weather resistance decreases. Preferably it is 8% or less.
 ネフェリン固溶体結晶を含む結晶化ガラスは白色化していることが好ましい。白色化して遮光性を有するネフェリン固溶体結晶を含む結晶化ガラスをイオン交換処理して得られる本発明の筐体用結晶化ガラスを筐体として構成することで、遮光手段を別途設けることなく、低コストで白色の外観を呈する遮蔽性の高い筐体が得られる。また、意匠性を備えた筐体が得られる。 The crystallized glass containing nepheline solid solution crystals is preferably whitened. By forming the crystallized glass for housing of the present invention obtained by ion-exchange treatment of crystallized glass containing nepheline solid solution crystal having whitening and light-shielding properties, it is possible to reduce the light without providing a light-shielding means separately. A highly shielding housing that exhibits a white appearance at a low cost can be obtained. Moreover, the housing | casing provided with the designability is obtained.
 なお、本発明の結晶化ガラスはネフェリン固溶体結晶に限定されることなく、β―石英固溶体結晶を含む結晶化ガラスやβ―スポジュメン固溶体結晶を含む結晶化ガラスなどの結晶化ガラスも本発明のガラスに含まれる。 The crystallized glass of the present invention is not limited to nepheline solid solution crystal, and crystallized glass such as crystallized glass containing β-quartz solid solution crystal and crystallized glass containing β-spodumene solid solution crystal is also used for the glass of the present invention. include.
 本発明のガラスに、着色成分として、Co、Mn、Fe、Ni、Cu、Cr、V、Zn、Bi、Er、Tm、Nd、Sm、Sn、Ce、Pr、Eu、AgまたはAuを添加してもよい。添加する場合は、添加量を酸化物基準のモル%表示で5%以下とすることが好ましい。 Co, Mn, Fe, Ni, Cu, Cr, V, Zn, Bi, Er, Tm, Nd, Sm, Sn, Ce, Pr, Eu, Ag or Au are added to the glass of the present invention as coloring components. May be. When added, the addition amount is preferably 5% or less in terms of mol% based on oxide.
[直線透過率]
 本発明のガラスは、波長400nm~800nmにおける直線透過率(平行透過率ともいう)の平均値が15%以下であり、10%以下であることが好ましく、5%以下であることがより好ましい。波長400nm~800nmにおける直線透過率の平均値が15%を超えると、ガラスを通して視認されるガラス背面の色ムラが目立ち易くなる。
[Linear transmittance]
The glass of the present invention has an average value of linear transmittance (also referred to as parallel transmittance) at a wavelength of 400 nm to 800 nm of 15% or less, preferably 10% or less, and more preferably 5% or less. When the average value of the linear transmittance at a wavelength of 400 nm to 800 nm exceeds 15%, the color unevenness on the back surface of the glass visually recognized through the glass is easily noticeable.
 直線透過率はガラスの厚みに依存するが、本発明のガラスの厚みは対象とする各種製品の厚みとする。該当製品の厚みにおける直線透過率を、本発明における直線透過率とする。  The linear transmittance depends on the thickness of the glass, but the thickness of the glass of the present invention is the thickness of various products. The linear transmittance in the thickness of the corresponding product is defined as the linear transmittance in the present invention. *
 本発明のガラスの厚みは0.2mm~5mmである。背面色むらを見立ちにくくするために0.2mm以上とする。好ましくは0.5mm以上、より好ましくは1mm以上である。ガラス背面の色味調整を容易にするために、また、ガラスの軽量化のために5mm以下とする。好ましくは3mm以下、より好ましくは2mm以下である。 The thickness of the glass of the present invention is 0.2 mm to 5 mm. In order to make the back surface color unevenness inconspicuous, it should be 0.2 mm or more. Preferably it is 0.5 mm or more, More preferably, it is 1 mm or more. In order to facilitate the color adjustment of the back surface of the glass and to reduce the weight of the glass, the thickness is set to 5 mm or less. Preferably it is 3 mm or less, More preferably, it is 2 mm or less.
 本発明のガラスは、波長400nm~800nmにおける直線透過率の最大値が35%以下であり、25%以下であることが好ましく、15%以下であることがより好ましい。波長400nm~800nmにおける直線透過率の最大値が35%を超えると、ガラスを通して視認されるガラス背面の色ムラが目立ち易くなる。 In the glass of the present invention, the maximum value of linear transmittance at a wavelength of 400 nm to 800 nm is 35% or less, preferably 25% or less, and more preferably 15% or less. When the maximum value of the linear transmittance at a wavelength of 400 nm to 800 nm exceeds 35%, the color unevenness on the back surface of the glass that is visually recognized through the glass becomes conspicuous.
 波長400nm~800nmにおける直線透過率の平均値は、波長400nm~800nmにおける直線透過率Tを波長1nmごとに測定し、下記式により求めることができる。 The average value of the linear transmittance at a wavelength of 400 nm to 800 nm can be obtained by measuring the linear transmittance T at a wavelength of 400 nm to 800 nm for each wavelength of 1 nm and using the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 前記式において、nは400~800の整数である。 In the above formula, n is an integer of 400 to 800.
 ガラス背面の色ムラについては、実施例において後述するように、色ムラを模したドット状の模様を有する紙の上にガラスを乗せ、該模様がガラスを通して識別できるか否かにより試験することができる。 As for color unevenness on the back side of the glass, as will be described later in the examples, it is possible to test whether or not the pattern can be identified through the glass by placing the glass on a paper having a dot-like pattern imitating the color unevenness. it can.
 波長400nm~800nmにおけるガラスの直線透過率は、通常の透過率測定により測定することができる。 The linear transmittance of glass at wavelengths of 400 nm to 800 nm can be measured by ordinary transmittance measurement.
[全光透過率]
 ガラスにおける知覚色差の許容範囲を調整することにより、ガラスを通して視認されるガラス背面の色味を調整することが可能である。すなわち、測定した三刺激値XYZをUCS(均等色空間)に変換すると、L表色系により2点の座標間の距離で知覚色差の大小を比べることが可能であり、色の許容範囲を下記式により求められる色差値ΔEabで表現することができる。
 ΔEab=[(ΔL+(Δa+(Δb1/2
[Total light transmittance]
By adjusting the permissible range of the perceived color difference in the glass, it is possible to adjust the color tone of the back surface of the glass viewed through the glass. In other words, when the measured tristimulus values XYZ are converted into UCS (uniform color space), it is possible to compare the magnitude of the perceived color difference with the distance between the coordinates of the two points using the L * a * b * color system. Can be expressed by a color difference value ΔE * ab obtained by the following equation.
ΔE * ab = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2
 色の許容差が0.8以下であれば、ガラス背面の色差がほとんど気付かれないレベルである。ΔLが一定であるとした場合、下記式により求められる彩度C(a,b)を0.8以上とすることにより、ガラスを通して視認されるガラス背面の色差をわずかに感じられるレベルとすることができ、高い精度でガラス背面の色味を調整することができる。
 彩度C(Δa,Δb)=[(Δa+(Δb1/2
If the color tolerance is 0.8 or less, the color difference on the back side of the glass is hardly noticed. When ΔL * is constant, the saturation C (a * , b * ) calculated by the following equation is set to 0.8 or more, so that the color difference on the back of the glass seen through the glass can be slightly felt. And the color tone of the back surface of the glass can be adjusted with high accuracy.
Saturation C (Δa * , Δb * ) = [(Δa * ) 2 + (Δb * ) 2 ] 1/2
 ここで、図4に示すように、波長400nm~800nmにおける全光透過率の平均値と彩度C(Δa,Δb)とは比例関係にある。図4に示すグラフから彩度C(Δa,Δb)を0.8以上とするためには、波長400nm~800nmにおける全光透過率の平均値を4%以上とする必要があることがわかる。 Here, as shown in FIG. 4, the average value of the total light transmittance at wavelengths of 400 nm to 800 nm and the saturation C (Δa * , Δb * ) are in a proportional relationship. From the graph shown in FIG. 4, in order to set the saturation C (Δa * , Δb * ) to 0.8 or more, it is necessary to set the average value of the total light transmittance at wavelengths of 400 nm to 800 nm to 4% or more. Recognize.
 全光透過率はガラスの厚みに依存するが、本発明のガラスの厚みは対象とする各種製品の厚みとする。該当製品の厚みにおける全光透過率を、本発明における全光透過率とする。 The total light transmittance depends on the thickness of the glass, but the thickness of the glass of the present invention is the thickness of various products. The total light transmittance in the thickness of the corresponding product is defined as the total light transmittance in the present invention.
 したがって、本発明のガラスは、波長400nm~800nmにおける全光透過率の平均値が4%以上であり、5%以上であることが好ましく、10%以上であることがより好ましく、20%以上であることがさらに好ましく、30%以上であることが特に好ましい。波長400nm~800nmにおける全光透過率の平均値が4%未満であると、彩度C(Δa,Δb)が0.8未満となり、高い精度でのガラス背面の色味調整が困難となる。全光透過率は高ければ高いほど好ましいが、直線透過率の平均値が15%以下であることから、全光透過率の上限は、通常60%である。 Therefore, the glass of the present invention has an average value of total light transmittance at a wavelength of 400 nm to 800 nm of 4% or more, preferably 5% or more, more preferably 10% or more, and more preferably 20% or more. More preferably, it is particularly preferably 30% or more. When the average value of the total light transmittance at a wavelength of 400 nm to 800 nm is less than 4%, the saturation C (Δa * , Δb * ) is less than 0.8, and it is difficult to adjust the color of the back surface of the glass with high accuracy. Become. The higher the total light transmittance, the better. However, since the average value of the linear transmittance is 15% or less, the upper limit of the total light transmittance is usually 60%.
 波長400nm~800nmにおける全光透過率の平均値は、波長400nm~800nmにおける波長1nmごとの全光透過率T’を測定し、下記式により求めることができる。 The average value of the total light transmittance at wavelengths of 400 nm to 800 nm can be obtained from the following formula by measuring the total light transmittance T ′ for each wavelength of 1 nm at wavelengths of 400 nm to 800 nm.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 前記式において、nは400~800の整数である。 In the above formula, n is an integer of 400 to 800.
 波長400nm~800nmにおけるガラスの全光透過率は、分光光度計等により測定することができる。 The total light transmittance of glass at a wavelength of 400 nm to 800 nm can be measured with a spectrophotometer or the like.
 波長400nm~800nmにおける直線透過率の平均値を15%以下とし、波長400nm~800nmにおける全光透過率の平均値を4%以上とするには、ガラスの組成、熱処理条件(例えば、分相ガラスである場合は分相処理の条件、または結晶化ガラスである場合は結晶化条件の条件等)等により適宜調整することができる。 In order to set the average value of the linear transmittance at a wavelength of 400 nm to 800 nm to 15% or less and the average value of the total light transmittance at a wavelength of 400 nm to 800 nm to 4% or more, the composition of glass, heat treatment conditions (for example, phase separation glass) In the case of a crystallized glass, or in the case of crystallized glass, it can be appropriately adjusted.
 具体的には、例えば、ガラスが分相ガラスである場合は、以下の範囲のガラス組成、分相処理条件により、波長400nm~800nmにおける直線透過率の平均値を15%以下とし、波長400nm~800nmにおける全光透過率の平均値を4%以上とすることができる。
(ガラス組成)
 モル%表示で、好ましくは、SiOを50~70%、Alを1~6%、MgOとCaOとBaOの合量が0~20%、NaOを1~15%、Pを0.5~8%、Bを0~5%、ZrOを0~5%。
(分相処理条件)
 ガラス転移点より50~400℃高い温度が好ましい。100℃~300℃高い温度がより好ましい。ガラスを熱処理する時間は、1~64時間が好ましく、2~32時間がより好ましい。量産性の観点からは24時間以下が好ましく、12時間以内がさらに好ましい。
Specifically, for example, when the glass is a phase separation glass, the average value of the linear transmittance at a wavelength of 400 nm to 800 nm is set to 15% or less, and the wavelength of 400 nm to The average value of the total light transmittance at 800 nm can be 4% or more.
(Glass composition)
In terms of mol%, preferably, SiO 2 is 50 to 70%, Al 2 O 3 is 1 to 6%, the total amount of MgO, CaO and BaO is 0 to 20%, Na 2 O is 1 to 15%, P 2 O 5 0.5-5%, B 2 O 3 0-5%, ZrO 2 0-5%.
(Phase separation processing conditions)
A temperature higher by 50 to 400 ° C. than the glass transition point is preferred. A temperature higher by 100 ° C to 300 ° C is more preferable. The time for heat treating the glass is preferably 1 to 64 hours, more preferably 2 to 32 hours. From the viewpoint of mass productivity, it is preferably 24 hours or less, and more preferably within 12 hours.
 また、例えば、ガラスが結晶化ガラスである場合は、以下の範囲のガラス組成、結晶化条件により、波長400nm~800nmにおける直線透過率の平均値を15%以下とし、波長400nm~800nmにおける全光透過率の平均値を4%以上とすることができる。
(ガラス組成)
 モル%表示で、SiOを45~60%、Alを15~28%、NaOを10~20%、KOを1~10%、TiOを5~10%。
(結晶化条件)
(1)最初に原ガラスを転移範囲内またはそれよりわずかに高い温度に加熱して、ガラス中に核を生成させる熱処理の条件としては、温度は950℃以下であることが好ましく、900℃以下であることがより好ましい。また、熱処理時間は、1~10時間であることが好ましく、2~6時間であることがより好ましい。
(2)ガラスをより一層高い温度に、時にはその軟化点より高い温度に加熱して、(1)において形成させた核の上に結晶を成長させる熱処理の条件としては、温度は850~1200℃であることが好ましく、900~1150℃であることがより好ましい。また、熱処理時間は、1~10時間であることが好ましく、2~6時間であることがより好ましい。
For example, when the glass is a crystallized glass, the average value of linear transmittance at a wavelength of 400 nm to 800 nm is set to 15% or less depending on the glass composition and crystallization conditions in the following range, and the total light at a wavelength of 400 nm to 800 nm is set. The average value of the transmittance can be 4% or more.
(Glass composition)
In terms of mol%, SiO 2 is 45 to 60%, Al 2 O 3 is 15 to 28%, Na 2 O is 10 to 20%, K 2 O is 1 to 10%, and TiO 2 is 5 to 10%.
(Crystallization conditions)
(1) First, as a heat treatment condition in which the original glass is heated to a temperature within or slightly higher than the transition range to generate nuclei in the glass, the temperature is preferably 950 ° C. or less, and 900 ° C. or less. It is more preferable that The heat treatment time is preferably 1 to 10 hours, more preferably 2 to 6 hours.
(2) Heat treatment conditions for heating the glass to a higher temperature, sometimes higher than its softening point, to grow crystals on the nuclei formed in (1) are: 850-1200 ° C. Preferably, the temperature is 900 to 1150 ° C. The heat treatment time is preferably 1 to 10 hours, more preferably 2 to 6 hours.
 本発明は別の一態様としてガラスの選別方法を含む。例えば、ガラスの波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上である場合は、ガラス背面の色ムラを抑制するとともに、彩度C(Δa,Δb)を0.8以上とすることができ、ガラス背面の色味を高い精度で調整することが可能なガラスであると判断し、選別することができる。 The present invention includes a glass sorting method as another embodiment. For example, when the average value of the linear transmittance at a wavelength of 400 nm to 800 nm of the glass is 15% or less and the average value of the total light transmittance at a wavelength of 400 nm to 800 nm is 4% or more, color unevenness on the back surface of the glass is suppressed. At the same time, the saturation C (Δa * , Δb * ) can be set to 0.8 or more, and it is determined that the glass can be adjusted with high accuracy in color on the back surface of the glass. it can.
[化学強化]
 本発明のガラスをイオン交換処理して化学強化し、高い強度を備えるようにしてもよい。化学強化とは、ガラス表面に圧縮応力層を形成し、ガラスの強度を高める方法である。具体的には、ガラス転移点以下の温度でイオン交換によりガラス板表面のイオン半径が小さなアルカリ金属イオン(典型的には、Liイオン、Naイオン)をイオン半径のより大きいアルカリイオン(典型的には、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)に交換する処理である。
[Chemical strengthening]
The glass of the present invention may be chemically strengthened by ion exchange treatment to have high strength. Chemical strengthening is a method of increasing the strength of glass by forming a compressive stress layer on the glass surface. Specifically, alkali metal ions (typically Li ions, Na ions) having a small ion radius on the surface of the glass plate by ion exchange at a temperature below the glass transition point are converted to alkali ions (typically Is a process of exchanging Na ions or K ions for Li ions and K ions for Na ions.
 化学強化の方法としてはガラス表層のLiOまたはNaOと溶融塩中のNaOまたはKOとをイオン交換できるものであれば特に限定されないが、例えば加熱された硝酸カリウム(KNO)溶融塩にガラスを浸漬する方法が挙げられる。 The chemical strengthening method is not particularly limited as long as Li 2 O or Na 2 O on the glass surface layer and Na 2 O or K 2 O in the molten salt can be ion-exchanged. For example, heated potassium nitrate (KNO 3 ) A method of immersing glass in molten salt.
 ガラスに所望の表面圧縮応力を有する化学強化層(表面圧縮応力層)を形成するための条件はガラスの厚さによっても異なるが、温度条件は、350~550℃であることが好ましく、400~500℃であることがより好ましい。また、化学強化する時間は、1~144時間であることが好ましく、2~24時間であることがより好ましい。溶融塩としては、例えば、KNOおよびNaNOが挙げられる。具体的には、例えば、400~550℃のKNO溶融塩に2~24時間ガラスを浸漬させることが典型的である。 The conditions for forming a chemically strengthened layer having a desired surface compressive stress (surface compressive stress layer) on the glass vary depending on the thickness of the glass, but the temperature condition is preferably 350 to 550 ° C., preferably 400 to More preferably, it is 500 degreeC. The chemical strengthening time is preferably 1 to 144 hours, and more preferably 2 to 24 hours. Examples of the molten salt include KNO 3 and NaNO 3 . Specifically, for example, it is typical to immerse the glass in a KNO 3 molten salt at 400 to 550 ° C. for 2 to 24 hours.
 化学強化ガラスは、イオン交換処理によって表面に圧縮応力層を備える。筐体用途に用いられるガラスの製造においては、ガラスが平板状である場合、研磨工程が行われることがある。ガラスの研磨工程においては、その最終段階の研磨に使用される研磨砥粒の粒径は2~6μmが典型的であり、このような砥粒によって、ガラス表面には最終的に最大5μmのマイクロクラックが形成されると考えられる。 Chemically tempered glass has a compressive stress layer on the surface by ion exchange treatment. In the manufacture of glass used for housing applications, a polishing step may be performed when the glass is flat. In the glass polishing process, the grain size of polishing abrasive grains used for the final stage polishing is typically 2 to 6 μm, and such abrasive grains ultimately cause the glass surface to have a maximum of 5 μm micron. It is thought that a crack is formed.
 化学強化による強度向上の効果を有効なものとするためには、ガラス表面に形成されるマイクロクラックより深い表面圧縮応力層があることが好ましく、化学強化によって生じる表面圧縮応力層の深さは6μm以上が好ましい。また、使用時に表面圧縮応力層の深さを超える傷がつくとガラスの破壊につながるため、表面圧縮応力層は深い方が好ましく、より好ましくは10μm以上、さらに好ましくは20μm以上、典型的には30μm以上である。 In order to make the effect of improving the strength by chemical strengthening effective, it is preferable to have a surface compressive stress layer deeper than the microcracks formed on the glass surface, and the depth of the surface compressive stress layer generated by chemical strengthening is 6 μm. The above is preferable. In addition, if a scratch exceeding the depth of the surface compressive stress layer is caused during use, it leads to glass breakage. Therefore, the surface compressive stress layer is preferably deeper, more preferably 10 μm or more, more preferably 20 μm or more, typically 30 μm or more.
 一方、表面圧縮応力層が深くなりすぎると内部引張応力が大きくなり、破壊時の衝撃が大きくなる。すなわち、内部引張応力が大きいとガラスが破壊する際に細片となって粉々に飛散する傾向があることがわかっている。本発明者らによる実験の結果、厚さ2mm以下のガラスでは、表面圧縮応力層の深さが70μmを超えると、破壊時の飛散が顕著となることが判明した。 On the other hand, if the surface compressive stress layer becomes too deep, the internal tensile stress increases and the impact at the time of failure increases. That is, it is known that when the internal tensile stress is large, the glass tends to break up into pieces when it breaks. As a result of experiments by the present inventors, it has been found that in a glass having a thickness of 2 mm or less, scattering at the time of breakage becomes significant when the depth of the surface compressive stress layer exceeds 70 μm.
 したがって、化学強化ガラスは、表面圧縮応力層の深さは70μm以下であることが好ましい。化学強化ガラスを筐体として用いる場合、外装する電子機器にもよるが、例えば表面に接触傷がつく確率が高いパネル等の用途では、安全をみて表面圧縮応力層の深さを薄くしておくことも考えられ、より好ましくは60μm以下、さらに好ましくは50μm以下、典型的には40μm以下である。 Therefore, in the chemically strengthened glass, the depth of the surface compressive stress layer is preferably 70 μm or less. When chemically tempered glass is used as the housing, depending on the electronic equipment to be packaged, the depth of the surface compressive stress layer should be kept thin for safety, for example, in applications such as panels that have a high probability of contact scratches on the surface. More preferably, it is 60 μm or less, more preferably 50 μm or less, and typically 40 μm or less.
 なお、化学強化ガラスの表面圧縮応力層の深さは、EPMA(electron probe micro analyzer)または表面応力計(例えば、折原製作所製FSM-6000)等を用いて測定することができる。 The depth of the surface compressive stress layer of the chemically strengthened glass can be measured using an EPMA (electron probe micro analyzer) or a surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho).
 例えば、イオン交換処理においてガラス表層のナトリウム成分と溶融塩中のカリウム成分とをイオン交換する場合、EPMAにて結晶化ガラスの深さ方向のカリウムイオン濃度分析を行い、測定により得られたカリウムイオン拡散深さを表面圧縮応力層の深さとみなす。 For example, when ion exchange is performed between the sodium component of the glass surface layer and the potassium component in the molten salt in the ion exchange treatment, the potassium ion concentration analysis in the depth direction of the crystallized glass is performed with EPMA, and the potassium ion obtained by the measurement The diffusion depth is regarded as the depth of the surface compressive stress layer.
 また、イオン交換処理においてガラス表層のリチウム成分と溶融塩中のナトリウム成分とをイオン交換する場合、EPMAにてガラスの深さ方向のナトリウムイオン濃度分析を行い、測定により得られたナトリウムイオン拡散深さを表面圧縮応力層の深さとみなす。 Further, when ion exchange is performed between the lithium component of the glass surface layer and the sodium component in the molten salt in the ion exchange treatment, the sodium ion concentration analysis in the depth direction of the glass is performed by EPMA, and the sodium ion diffusion depth obtained by the measurement is measured. This is regarded as the depth of the surface compressive stress layer.
 また、化学強化ガラスよりも熱膨張係数が小さいガラスを表面に薄く被覆することで熱膨張差による表面圧縮応力を入れることも可能である。クリアガラスを用いれば、被覆したガラスの表面と裏面の反射により美観が向上する効果も得られる。 Also, it is possible to apply surface compressive stress due to thermal expansion difference by thinly coating the surface with glass having a smaller thermal expansion coefficient than chemically strengthened glass. If clear glass is used, the effect of improving the aesthetics due to the reflection of the front and back surfaces of the coated glass can be obtained.
[用途]
 本発明のガラスは、例えば、電子機器に外装されるものである。携帯電話の外表面は、一方の外表面に液晶パネルまたは有機ELディスプレイからなる表示装置及びボタンからなる操作装置、またはタッチパネルのような表示装置と操作装置が一体となったものが配置され、その周囲を額縁材が囲う構成である。他方の外表面は、パネルで構成される。そして、一方の外表面と他方の外表面との間である機器の厚み部分に枠材がある。これら額縁材と枠材、またはパネルと枠材は一体に構成される場合もある。
[Usage]
The glass of the present invention is packaged, for example, on an electronic device. On the outer surface of the mobile phone, a display device made up of a liquid crystal panel or an organic EL display and an operation device made up of buttons, or a display device such as a touch panel integrated with an operation device is arranged on one outer surface. The frame material surrounds the periphery. The other outer surface is composed of a panel. And there exists a frame material in the thickness part of the apparatus between one outer surface and the other outer surface. The frame material and the frame material, or the panel and the frame material may be configured integrally.
 本発明のガラスは、前述の額縁材、パネルおよび枠材のいずれにも用いることが可能である。また、これらの形状は、平板状であってもよいし、曲面であってもよく、額縁材と枠材、もしくはパネルと枠材との一体構造となった凹状、または凸状であってもよい。 The glass of the present invention can be used for any of the aforementioned frame materials, panels, and frame materials. In addition, these shapes may be flat or curved, and may be a concave shape or a convex shape in which the frame material and the frame material, or the panel and the frame material are integrated. Good.
 電子機器の内部に設けられる表示装置の光源は、発光ダイオード、有機ELまたはCCFL等の白色光を発するもので構成される。また、有機ELディスプレイのように前記光源を用いず、白色光等を出す発光素子を備えるものもある。これら白色光が化学強化ガラスを介して機器の外部に漏れると見栄えが悪くなる。そのため、ガラスは、白色光を確実に遮光する特性を備えることが好ましい。 A light source of a display device provided in an electronic device is configured to emit white light such as a light emitting diode, an organic EL, or a CCFL. Some organic EL displays include a light emitting element that emits white light or the like without using the light source. If these white light leaks out of the device through the chemically strengthened glass, the appearance will deteriorate. Therefore, it is preferable that the glass has a characteristic of reliably blocking white light.
 本発明のガラスは、平板状だけでなく、凹状または凸状に成形されてもよい。この場合、平板またはブロック等に成形したガラスを再加熱し溶融した状態でプレス成形してもよい。また、溶融ガラスを直接プレス型上に流出しプレス成形する、いわゆるダイレクトプレス法にて所望の形状に成形してもよい。また、電子機器の表示装置またはコネクタに対応する箇所をプレス成形と同時に加工したり、プレス成形後に切削加工等したりしてもよい。 The glass of the present invention may be formed not only in a flat plate shape but also in a concave shape or a convex shape. In this case, you may press-form in the state which reheated and melt | dissolved the glass shape | molded in the flat plate or the block. Moreover, you may shape | mold into a desired shape by what is called a direct press method which flows out and press-molds a molten glass directly on a press die. Further, a portion corresponding to a display device or a connector of an electronic device may be processed simultaneously with press molding, or may be subjected to cutting or the like after press molding.
 本発明のガラスを筐体に用いる理由は以下のとおりである。本発明の製造方法により得られるガラスは、ガラス中の分散相等の粒子が光を拡散反射、散乱することで外観が白色を呈する。本発明のガラスは、ガラスを透過する白色光を、ガラスの光の散乱を利用して、不透明にするとともに、ガラスの表面側においてガラス背面の色ムラを認識し難くするものである。 The reason why the glass of the present invention is used for the housing is as follows. The glass obtained by the production method of the present invention has a white appearance as particles such as a dispersed phase in the glass diffuse and reflect and scatter light. The glass of the present invention makes white light transmitted through the glass opaque by utilizing the scattering of light from the glass, and makes it difficult to recognize color unevenness on the glass back surface on the glass surface side.
 図5(a)~(c)に本発明のガラスを携帯電話に筐体本体の少なくとも一部を構成する筐体ガラスとして用いた例について説明する。図5(a)は、筐体11の一部の外面側の部分に筐体ガラス12が配置された携帯電話10の斜視図であり、図5(b)および(c)は図5(a)のA-A断面図であり、図5(b)および(c)の中の右上から左下への斜線でハッチングされた部分は筐体11の内面側を構成する部分であって本発明のガラスであってもよいし本発明のガラス以外のものであってもよい。 FIGS. 5A to 5C illustrate an example in which the glass of the present invention is used as a casing glass constituting at least a part of the casing body in a mobile phone. FIG. 5A is a perspective view of the mobile phone 10 in which the casing glass 12 is arranged on a part of the outer surface side of the casing 11, and FIGS. 5B and 5C are FIGS. ) In FIG. 5B and FIG. 5C, the hatched portion from the upper right to the lower left is a portion constituting the inner surface side of the housing 11, and It may be glass or other than the glass of the present invention.
 筐体11のガラス以外の素材としては、例えば、金属、プラスチックおよびセラミック等が挙げられる。 Examples of materials other than the glass of the housing 11 include metals, plastics, and ceramics.
 図5(c)に示すように、筐体ガラス12は筐体11外面と対向する側の面(背面)と、筐体中の別の面との間に機能層13を有していてもよい。機能層13としては、例えば、印字部分、印刷層、塗布した塗料層、噴霧した塗料層および接着層が含まれる。ここで、版を起こさないものを印字とし、版を起こすものを印刷とする。印刷層には、全面印刷および部分印刷が含まれる。 As shown in FIG. 5C, the housing glass 12 may have a functional layer 13 between a surface (back surface) facing the outer surface of the housing 11 and another surface in the housing. Good. Examples of the functional layer 13 include a print portion, a print layer, a coated paint layer, a sprayed paint layer, and an adhesive layer. Here, what does not cause a plate is referred to as printing, and what causes a plate is referred to as printing. The printing layer includes full surface printing and partial printing.
 本発明のガラスによる色ムラの抑制効果は、筐体ガラス12と機能層13が一体化している場合により高まる。具体的には、筐体ガラス12に印刷された層が機能層13の少なくとも一部を構成する場合が好ましく、筐体ガラス12に直接印字されている場合、または筐体ガラス12に全面印刷されている場合等がより好ましい。また、機能層13には、例えば、筐体11の内面側を構成する部分の筐体ガラス12と対向する面に印字などされている場合、筐体11の内面側を構成する部分に機能層13が積層しており、該機能層13上に筐体ガラス12をかぶせて用いる場合も含む。 The effect of suppressing color unevenness by the glass of the present invention is enhanced when the housing glass 12 and the functional layer 13 are integrated. Specifically, the case where the layer printed on the housing glass 12 constitutes at least a part of the functional layer 13 is preferable. When the layer is printed directly on the housing glass 12 or the entire surface is printed on the housing glass 12. And the like are more preferable. Further, in the functional layer 13, for example, when printing is performed on the surface facing the housing glass 12 of the portion constituting the inner surface side of the housing 11, the functional layer is formed on the portion constituting the inner surface side of the housing 11. 13 includes a case where the housing glass 12 is used on the functional layer 13.
 筐体11中のガラスの背面または機能層13の色ムラおよび色味により、筐体ガラス12を通して視認される筐体11中のガラスの背面の色ムラおよび色味が変化し、筐体11の外観が変化する。本発明のガラスは、波長400~800nmにおける直線透過率の平均値が15%以下と低いことにより、筐体ガラス12の筐体11外面と対向する側の面と筐体11の背面側を構成する部分との間、すなわち筐体ガラス12の背面における色ムラをカバーするとともに、波長400~800nmにおける全光透過率の平均値が4%以上であることにより高い精度で色味を調整することができ、筐体ガラス12を通して視認される色ムラが抑制され、かつ高い精度で色味が調整された、優れた意匠性の外観を示す筐体11とすることができる。 Due to the color unevenness and color of the back surface of the glass in the housing 11 or the functional layer 13, the color unevenness and color of the back surface of the glass in the housing 11 that is visually recognized through the housing glass 12 change. Appearance changes. In the glass of the present invention, the average value of the linear transmittance at a wavelength of 400 to 800 nm is as low as 15% or less, so that the surface of the housing glass 12 facing the outer surface of the housing 11 and the back side of the housing 11 are configured. The color unevenness is covered with the portion to be covered, that is, on the back surface of the housing glass 12, and the average value of the total light transmittance at a wavelength of 400 to 800 nm is 4% or more, so that the color can be adjusted with high accuracy. Therefore, it is possible to obtain the casing 11 having an excellent design appearance in which color unevenness visually recognized through the casing glass 12 is suppressed and the color is adjusted with high accuracy.
 また、本発明のガラスをイオン交換処理した化学強化ガラスは、機械的強度等に優れているという特徴がある。そのため、筐体に対して高い強度が求められる、携帯電話等の携帯可能な電子機器の白色ガラス筐体に好ましく用いることができる。 Further, the chemically strengthened glass obtained by subjecting the glass of the present invention to ion exchange treatment is characterized by excellent mechanical strength and the like. Therefore, it can be preferably used for a white glass casing of a portable electronic device such as a mobile phone that requires high strength to the casing.
 本発明のガラスは、携帯型電子機器に好適に用いることができる。携帯型電子機器とは、携帯して使用可能な通信機器または情報機器を包含する概念である。 The glass of the present invention can be suitably used for portable electronic devices. A portable electronic device is a concept that encompasses communication devices or information devices that can be carried around.
 通信機器としては、例えば、通信端末として、携帯電話、PHS(Personal Handy-phone System)、スマートフォン、PDA(Personal Data Assistance)およびPND(Portable Navigation Device、携帯型カーナビゲーションシステム)があり、放送受信機として携帯ラジオ、携帯テレビおよびワンセグ受信機等が挙げられる。 Examples of communication devices include mobile phones, PHS (Personal Handy-phone System), smartphones, PDAs (Personal Data Assistance) and PNDs (Portable Navigation Devices, portable car navigation systems) as communication terminals, and broadcast receivers. Mobile radio, mobile TV, one-seg receiver and the like.
 また、情報機器としては、例えば、デジタルカメラ、ビデオカメラ、携帯音楽プレーヤー、サウンドレコーダー、ポータブルDVDプレーヤー、携帯ゲーム機、ノートパソコン、タブレットPC、電子辞書、電子手帳、電子書籍リーダー、携帯プリンターおよび携帯スキャナ等が挙げられる。なお、これらに例示に限定されるものではない。 Examples of information devices include digital cameras, video cameras, portable music players, sound recorders, portable DVD players, portable game machines, notebook computers, tablet PCs, electronic dictionaries, electronic notebooks, electronic book readers, portable printers, and mobile phones. For example, a scanner. In addition, it is not limited to these for illustration.
 これら携帯型電子機器に本発明のガラスを用いることで、高い意匠性を備えた携帯型電子機器を得ることができる。 By using the glass of the present invention for these portable electronic devices, portable electronic devices having high design properties can be obtained.
 なお、高い意匠性を備えた本発明のガラスは、デスクトップパソコン、大型テレビ、建材、家具または家電製品などにも適用可能である。 Note that the glass of the present invention having high design properties can be applied to a desktop personal computer, a large TV, a building material, furniture, a home appliance, or the like.
 建材用ガラスとしては、厚みが0.5mm以上であり、波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上であることが好ましい。 As glass for building materials, the thickness is 0.5 mm or more, the average value of linear transmittance at a wavelength of 400 nm to 800 nm is 15% or less, and the average value of total light transmittance at a wavelength of 400 nm to 800 nm is 4% or more. Preferably there is.
 建材用ガラスは、化学的耐久性を向上させるためには、酸化物基準のモル百分率表示でAlを0~25%含有することが好ましく、1~15%含有することがより好ましく、2~10%含有することがさらに好ましい。 In order to improve the chemical durability, the glass for building materials preferably contains 0 to 25%, more preferably 1 to 15% of Al 2 O 3 in terms of mole percentage based on oxide. More preferably, the content is 2 to 10%.
 建材用ガラスは、白色度を増すためには、酸化物基準のモル百分率表示でZrO+P+Laを0.5~10%含有することが好ましく、1~8%含有することがより好ましく、2~6%含有することがさらに好ましい。 In order to increase the whiteness, the glass for building materials preferably contains 0.5 to 10% of ZrO 2 + P 2 O 5 + La 2 O 3 in terms of oxide-based mole percentage, and preferably 1 to 8%. The content is more preferably 2 to 6%.
 建材用ガラスは、ガラスの溶解において溶解性を向上させるためには、酸化物基準のモル百分率表示でNaOを0~15%含有することが好ましく、3~15%含有することがより好ましく、4~13%含有することがさらに、5~12%含有することがさらに好ましい。 The glass for building materials preferably contains 0 to 15% of Na 2 O, more preferably 3 to 15% in terms of oxide-based mole percentage, in order to improve the solubility in melting of the glass. The content is preferably 4 to 13%, more preferably 5 to 12%.

 建材用ガラスとしては、例えば、坑道またはトンネル内装用のガラスが挙げられる。「抗道」とは、主に鉱山などで採掘に使用される地下に作られる通路をいう。また、「トンネル」とは、地上から目的地まで地下、海底若しくは山岳などの土中を通る人工のまたは自然に形成された土木構造物であり、断面の高さまたは幅に比べて軸方向に細長い空間をいう。

Examples of the glass for building materials include glass for tunnels or tunnel interiors. “Anti-road” refers to a passage made underground, mainly used for mining in mines. A “tunnel” is a man-made or naturally-formed civil engineering structure that passes from the ground to the destination underground, under the sea, or in the mountains, and in the axial direction compared to the height or width of the cross section. An elongated space.
 人工のトンネルとしては、例えば、水道若しくは電線等ライフラインの敷設(例えば、共同溝)、鉱物の採掘または物資の貯留または運搬などを目的として建設された道路または鉄道(線路)といった交通路(例えば、山岳トンネル)が挙げられる。 Artificial tunnels include, for example, roads or railways (railways) constructed for the purpose of laying lifelines such as water or electric wires (for example, common trenches), mining minerals or storing or transporting materials (for example, , Mountain tunnel).
 建材用ガラスの厚みは、0.5mm以上であることが好ましく、より好ましくは1mm以上であり、さらに好ましくは2mm以上、特に好ましくは3mm以上である。厚みを0.5mm以上とすることにより、十分な強度が得られる。また、軽量化の観点から、30mm以下であることが好ましく、より好ましくは20mm以下、さらに好ましくは15mm以下、最も好ましくは10mm以下である。 The thickness of the building glass is preferably 0.5 mm or more, more preferably 1 mm or more, still more preferably 2 mm or more, and particularly preferably 3 mm or more. By setting the thickness to 0.5 mm or more, sufficient strength can be obtained. Moreover, from a viewpoint of weight reduction, it is preferable that it is 30 mm or less, More preferably, it is 20 mm or less, More preferably, it is 15 mm or less, Most preferably, it is 10 mm or less.
 坑道またはトンネルの内装にタイルを用いる場合、タイル表面の釉薬相が欠けてはがれると窯業系基板がむき出しになり、汚れが付きやすく、かつ落ちにくくなる。これに対し、本発明によれば、白色ガラスを坑道またはトンネルの内装に用いることで、ガラス表面の傷またはカケが生じたとしても、新たな表面はガラスであるため、汚れが付きにくく洗浄性能に優れるとともに、反射性能を維持することができる。 When tiles are used in the interior of tunnels or tunnels, if the glaze phase on the tile surface is chipped and peeled off, the ceramic substrate will be exposed, and will be easily soiled and difficult to remove. In contrast, according to the present invention, white glass is used for interiors of tunnels or tunnels, so that even if scratches or chips on the glass surface occur, the new surface is glass, so that it is difficult to get dirt and cleaning performance. In addition, the reflection performance can be maintained.
 また、本発明の建材用ガラスは、窯業系基板に釉薬を施したタイルと比較して強度に優れており、ガラス表面の傷またはカケが生じにくく、ガラス表面の傷またはカケが生じたとしても、新たな表面はガラスであるため強度を維持することができる。 Moreover, the glass for building materials of the present invention is superior in strength compared to tiles with a glaze applied to ceramic substrates, even if the glass surface is scratched or chipped, even if the glass surface is scratched or chipped. Since the new surface is glass, the strength can be maintained.
 さらに、本発明の建材用ガラスによれば、加工性に優れているガラスを坑道またはトンネルの内装材として用いることにより、意匠性を備えた内装材とすることが可能となる。 Furthermore, according to the glass for building materials of the present invention, it is possible to obtain an interior material having design properties by using glass having excellent workability as an interior material of a tunnel or a tunnel.
 本発明の建材用ガラスは接着剤等で壁面に直接張り付けることができる。また、複数の白色ガラスをセメント板または金属板などに張り付けた建材用ガラスのパネルを壁面に設置することもできる。また、壁面に直接張り付ける代わりに、金属やセラミック製等の冶具により固定してもよい。また、冶具で固定する場合は、ガラスの端で保持してもよいし、白色ガラス面内に開けた穴を利用して固定してもよい。 The glass for building materials of the present invention can be directly attached to the wall surface with an adhesive or the like. In addition, a glass panel for building material in which a plurality of white glasses are attached to a cement plate or a metal plate can be installed on the wall surface. Moreover, you may fix with jigs, such as metal and ceramics, instead of sticking directly to a wall surface. Moreover, when fixing with a jig, you may hold | maintain at the edge of glass and you may fix using the hole opened in the white glass surface.
 本発明の建材用ガラスは、車両等が衝突した時に、割れて飛散するのを防ぐために、樹脂等と張り合わせてもよいし、ガラスとガラスの中間層に樹脂等を用いた合わせガラスとしてもよい。この場合、裏面のガラスは白色ガラスであってもよいし、透明のガラスであってもよい。 The glass for building materials of the present invention may be laminated with a resin or the like in order to prevent it from being broken and scattered when a vehicle or the like collides, or a laminated glass using a resin or the like in an intermediate layer between glass and glass. . In this case, the glass on the back surface may be white glass or transparent glass.
 本発明の建材用ガラスは、扱い易くするために、またはクラックなどによる強度低下を防ぐために、端辺を研磨加工してもよい。 The glass for building materials of the present invention may be polished on the end side for easy handling or prevention of strength reduction due to cracks or the like.
 本発明の建材用ガラスのサイズは、短辺または短径が30mm以上であることが好ましく、より好ましくは40mm以上、さらに好ましくは100mm以上、特に好ましくは500mm以上である。30mm以上とすることにより、設置する枚数が増えるのを防ぐことができ作業効率が向上する。また、長辺または長径の長さは3000mm以下が好ましく、より好ましくは2000mm以下、さらに好ましくは1000mm以下である。3000mm以下とすることにより、容易に扱うことが出来る。 The size of the glass for building material of the present invention is preferably such that the short side or the short diameter is 30 mm or more, more preferably 40 mm or more, still more preferably 100 mm or more, and particularly preferably 500 mm or more. By setting it to 30 mm or more, it is possible to prevent an increase in the number of sheets to be installed and improve work efficiency. Further, the length of the long side or the long diameter is preferably 3000 mm or less, more preferably 2000 mm or less, and still more preferably 1000 mm or less. By setting it to 3000 mm or less, it can be easily handled.
 本発明の建材用ガラスは、密度が3.0g/cm以下であることが好ましく、より好ましくは2.8g/cm以下である。密度が3.0g/cm以下であることにより、軽量化することができる。 The glass for building materials of the present invention preferably has a density of 3.0 g / cm 3 or less, more preferably 2.8 g / cm 3 or less. When the density is 3.0 g / cm 3 or less, the weight can be reduced.
 本発明の建材用ガラスは、フィラー混合ガラスを含まないことが好ましい。フィラー混合ガラスを含有する場合は、その混合量は1%以下とすることが好ましい。ここで、フィラーとはセラミック粉末または結晶粉末のことであり、フィラー混合ガラスとはフィラーをガラスに混合して加熱成形して得られたものをいう。なお、溶融して得られた均一なガラスから析出した結晶はフィラーに含まない。 The glass for building materials of the present invention preferably does not contain filler mixed glass. When the filler mixed glass is contained, the mixing amount is preferably 1% or less. Here, the filler is a ceramic powder or a crystal powder, and the filler mixed glass is obtained by mixing a filler with glass and heat-molding it. In addition, the crystal | crystallization which precipitated from the uniform glass obtained by fuse | melting is not contained in a filler.
 フィラーとしては、例えば、窒化アルミニウム、酸化ジルコニア、ジルコンおよび酸化チタンなどが挙げられる。フィラー混合ガラスは気泡が入り易く、またフィラーと母ガラスの熱膨張差による応力により強度が低下する恐れがある。フィラー混合ガラスを含まないことにより、ガラスの強度を向上することができる。 Examples of the filler include aluminum nitride, zirconia oxide, zircon, and titanium oxide. The filler-mixed glass is easy to contain bubbles, and the strength may be reduced by stress due to the difference in thermal expansion between the filler and the mother glass. By not containing the filler mixed glass, the strength of the glass can be improved.
 本発明の建材用ガラスは、耐酸性(90℃にて20時間0.1M HCl処理)が2mg/cm以下であることが好ましく、1mg/cm以下であることがより好ましく、0.5mm以下であることがさらに好ましい。耐酸性(90℃にて20時間0.1M HCl処理)が2mg/cm以下であることにより、排気ガスに含まれる硫黄酸化物(SO)または窒素酸化物(NO)に対する耐性を向上することができる。 Building materials for glass of the present invention preferably has acid resistance (20 hours 0.1 M HCl treatment at 90 ° C.) is 2 mg / cm 2 or less, more preferably 1 mg / cm 2 or less, 0.5 mm More preferably, it is as follows. Improves resistance to sulfur oxide (SO X ) or nitrogen oxide (NO X ) contained in exhaust gas when acid resistance (0.1 M HCl treatment at 90 ° C. for 20 hours) is 2 mg / cm 2 or less can do.
 本発明の建材用ガラスは、耐アルカリ性(90℃にて20時間0.1M NaOH処理)が2mg/cm以下であることが好ましく、1mg/cm以下であることがより好ましい。耐アルカリ性(90℃にて20時間0.1M NaOH処理)が2mg/cm以下であることにより、壁面に使用されているコンクリートなどから溶出するアルカリ成分に対する耐性を向上することができる。 The glass for building materials of the present invention preferably has an alkali resistance (0.1 M NaOH treatment at 90 ° C. for 20 hours) of 2 mg / cm 2 or less, and more preferably 1 mg / cm 2 or less. When the alkali resistance (0.1 M NaOH treatment at 90 ° C. for 20 hours) is 2 mg / cm 2 or less, it is possible to improve resistance to alkali components eluted from the concrete or the like used on the wall surface.
 本発明の建材用ガラスは、曲げ強度が60MPa以上であることが好ましく、より好ましくは80MPa以上である。曲げ強度が60MPa以上であることにより、車の衝突または径時劣化にともなう壁面の変形などに対する十分な強度が得られる。曲げ強度は、3点曲げ試験により測定する。 The glass for building materials of the present invention preferably has a bending strength of 60 MPa or more, more preferably 80 MPa or more. When the bending strength is 60 MPa or more, sufficient strength against the deformation of the wall surface due to the collision of the vehicle or deterioration over time can be obtained. The bending strength is measured by a three-point bending test.
 本発明の建材用ガラスは、典型的には板状である。また、平板状だけでなく、曲面状に成形されてもよい。この場合、平板またはブロック等に成形したガラスを再加熱し軟化した状態で自重変形させてもよいし、プレス成形してもよい。また、溶融ガラスを直接プレス型上に流出しプレス成形する、いわゆるダイレクトプレス法にて所望の形状に成形してもよい。 The glass for building materials of the present invention is typically plate-shaped. Moreover, you may shape | mold not only flat form but curved surface form. In this case, the glass formed into a flat plate or a block may be reheated and softened in its own weight, or may be press-molded. Moreover, you may shape | mold into a desired shape by what is called a direct press method which flows out and press-molds a molten glass directly on a press die.
 本発明の建材用ガラスの表面は、平面であってもよいし、凸凹模様であってもよい。凸凹模様は、ガラスが軟化している状態で、表面が凸凹状態であるローラーで挟みこんでもよいし、プレスにより凸凹模様をつけてもよい。また、表面は鏡面であってもよいし、研磨粉またはエッチングにより、すりガラス状にしてもよい。また、本発明の建材用ガラスは、裏面に塗料が塗布されていてもよい。 The surface of the glass for building material of the present invention may be a flat surface or an uneven pattern. The uneven pattern may be sandwiched between rollers in which the glass is soft and the surface is uneven, or the uneven pattern may be formed by pressing. Further, the surface may be a mirror surface, or may be ground glass by polishing powder or etching. Moreover, the glass for building materials of this invention may be apply | coated with the coating material on the back surface.
 本発明の建材用ガラスは、典型的には化学強化しないが、化学強化してもよいし、物理強化してもよい。強化することにより、さらに強度を増すことが出来る。 The glass for building materials of the present invention is typically not chemically strengthened, but may be chemically strengthened or physically strengthened. By strengthening, the strength can be further increased.
[ガラスの製造]
(例1~4)
 表1に示す組成の原料を1550~1650℃で溶解し、650~730℃で徐冷したサンプルに表1に示す熱処理を施した後、ガラスが分相したことをSEMにより観察した。得られたガラスを研磨し、例1~4のガラスとした。
[Manufacture of glass]
(Examples 1 to 4)
After the raw materials having the compositions shown in Table 1 were melted at 1550 to 1650 ° C. and annealed at 650 to 730 ° C., the samples were subjected to the heat treatment shown in Table 1, and the glass was phase-separated by SEM. The obtained glass was polished to obtain glasses of Examples 1 to 4.
(例5)
 表1に示すガラス原料を白金製るつぼに入れ、1550℃で溶解し、脱泡、均質化した後、型材に流し込み、700℃で徐冷してガラスブロックを得た。得られたガラスを850℃の抵抗加熱式電気炉に投入し、4時間保持して結晶核生成を行った後、1100℃にて4時間保持後、毎分1℃の冷却速度にて室温まで冷却して結晶化ガラスを得た。得られたガラスを研磨し、例5のガラスとした。
(Example 5)
The glass raw material shown in Table 1 was put into a platinum crucible, melted at 1550 ° C., defoamed and homogenized, poured into a mold, and gradually cooled at 700 ° C. to obtain a glass block. The obtained glass was put into a resistance heating type electric furnace at 850 ° C., held for 4 hours for crystal nucleation, held at 1100 ° C. for 4 hours, and then cooled to room temperature at a cooling rate of 1 ° C. per minute. Crystallized glass was obtained by cooling. The obtained glass was polished to obtain the glass of Example 5.
 例2~4は実施例、例1および例5は比較例である。 Examples 2 to 4 are examples, and examples 1 and 5 are comparative examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(1)直線透過率(%)
 ガラスの直線透過率は、上下面が鏡面加工された表2に示す厚みのガラスを用いて、分光光度計U-4100(日立ハイテク社製)により、波長400~800nmの直線透過率を取得した。その結果を表2および図1に示す。
(1) Linear transmittance (%)
With respect to the linear transmittance of the glass, a linear transmittance with a wavelength of 400 to 800 nm was obtained with a spectrophotometer U-4100 (manufactured by Hitachi High-Tech) using a glass having a thickness shown in Table 2 whose upper and lower surfaces were mirror-finished. . The results are shown in Table 2 and FIG.
 波長400nm~800nmにおける直線透過率の平均値は、波長400nm~800nmにおける直線透過率Tを波長1nmごとに測定し、下記式により求めた。 The average value of the linear transmittance at a wavelength of 400 nm to 800 nm was obtained by measuring the linear transmittance T at a wavelength of 400 nm to 800 nm for each wavelength of 1 nm and using the following formula.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 前記式において、nは400~800の整数である。 In the above formula, n is an integer of 400 to 800.
(2)色ムラ試験
 色ムラを模擬したドット状の模様が印刷された紙の上に例1~例5のガラスを置き、ガラスを通してドット状の模様が視認できるか否かを調べた。その結果、ドット状の模様が視認できる場合を「×」とし、視認できない場合を「○」とした。その結果を表2および図2に示す。図2において、(a)は例1、(b)は例2、(c)は例3、(d)は例4、(e)は例5を示す。
(2) Color unevenness test The glass of Examples 1 to 5 was placed on a paper on which a dot-like pattern simulating color unevenness was printed, and it was examined whether the dot-like pattern could be visually recognized through the glass. As a result, the case where the dot-like pattern was visible was set as “X”, and the case where it was not visible was set as “◯”. The results are shown in Table 2 and FIG. In FIG. 2, (a) shows Example 1, (b) shows Example 2, (c) shows Example 3, (d) shows Example 4, and (e) shows Example 5.
(3)全光透過率(%)
 ガラスの全光透過率は、上下面が鏡面加工された表2に示す厚みのガラスを用いて、紫外可視近赤外分光光度計 LAMBDA 950(パーキンエルマー社製)により、波長400~800nmの全光透過率を取得した。その結果を表2および図3に示す。
(3) Total light transmittance (%)
The total light transmittance of the glass was measured using an ultraviolet-visible near-infrared spectrophotometer LAMBDA 950 (manufactured by PerkinElmer) using a glass having a thickness shown in Table 2 whose upper and lower surfaces were mirror-finished. The light transmittance was acquired. The results are shown in Table 2 and FIG.
(4)彩度
 明るさを示すL値、色相と彩度を示す色度(a、b)値について、CIE(国際照明委員会)で基準化され、日本でもJIS(JISX8729)に規格化されたL表色系測定に準拠し、色彩計(コニカミノルタ社製:商品名 色彩色度計 CR-400)にて、光源D65、視野角2°で測定した。例1から例5のガラスは、それぞれ表2の背面色として示すL値、a値、b値である板の上において測定した。得られたa値、b値から、彩度Cを次式から算出した。
彩度C(Δa,Δb)=[(Δa+(Δb1/2
 なお、ΔaはΔa=a(max)-a(min)、ΔbはΔb=b(max)-b(min)である。
(4) Saturation The L * value indicating brightness and the chromaticity (a * , b * ) values indicating hue and saturation are standardized by the CIE (International Commission on Illumination), and in JIS (JISX8729) in Japan. Based on the standardized L * a * b * color system measurement, measurement was performed with a color meter (manufactured by Konica Minolta Co., Ltd .: trade name Color Colorimeter CR-400) at a light source D65 and a viewing angle of 2 °. The glasses of Examples 1 to 5 were measured on plates having L * values, a * values, and b * values shown as the back colors in Table 2, respectively. From the obtained a * value and b * value, the saturation C was calculated from the following equation.
Saturation C (Δa * , Δb * ) = [(Δa * ) 2 + (Δb * ) 2 ] 1/2
Δa * is Δa * = a * (max) −a * (min), and Δb * is Δb * = b * (max) −b * (min).
 その結果を表2に示す。また、図4に、平均全光透過率を横軸とし、彩度C(Δa,Δb)を縦軸としてプロットしたグラフを示す。 The results are shown in Table 2. FIG. 4 shows a graph plotted with the average total light transmittance as the horizontal axis and the saturation C (Δa * , Δb * ) as the vertical axis.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2および図2に示すように、ガラスの波長400nm~800nmにおける直線透過率の平均値が15%以下であることにより、ガラスの背景にある色ムラをカバーし、目立ちにくくするという効果が得られることがわかった。 As shown in Table 2 and FIG. 2, since the average value of the linear transmittance at a wavelength of 400 nm to 800 nm of the glass is 15% or less, the effect of covering the color unevenness on the background of the glass and making it less noticeable is obtained. I found out that
 また、図4に示すように、ガラスの波長400nm~800nmにおける全光透過率の平均値と彩度C(Δa,Δb)とは比例関係にあることがわかった。図4に示す結果から、ガラスの波長400nm~800nmにおける全光透過率の平均値を4%以上とすることにより、彩度C(Δa,Δb)を0.8以上とすることができ、高い精度でガラス背面の色味調整をすることが可能となることがわかった。 Further, as shown in FIG. 4, it was found that the average value of the total light transmittance at a wavelength of 400 nm to 800 nm of the glass and the saturation C (Δa * , Δb * ) are in a proportional relationship. From the results shown in FIG. 4, the saturation C (Δa * , Δb * ) can be set to 0.8 or more by setting the average value of the total light transmittance at a wavelength of 400 nm to 800 nm of the glass to 4% or more. It has been found that it is possible to adjust the color of the back of the glass with high accuracy.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2012年11月29日付で出願された日本特許出願(特願2012-261314)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on November 29, 2012 (Japanese Patent Application No. 2012-261314), which is incorporated by reference in its entirety.

Claims (23)

  1.  波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上であるガラス。 Glass with an average linear transmittance of 15% or less at a wavelength of 400 nm to 800 nm and an average value of total light transmittance of 4% or more at a wavelength of 400 nm to 800 nm.
  2.  波長400nm~800nmにおける直線透過率の最大値が35%以下であり、波長400nm~800nmにおける全光透過率の最小値が4%以上である請求項1に記載のガラス。 The glass according to claim 1, wherein the maximum value of linear transmittance at a wavelength of 400 nm to 800 nm is 35% or less, and the minimum value of total light transmittance at a wavelength of 400 nm to 800 nm is 4% or more.
  3.  分相ガラスである請求項1または2に記載のガラス。 The glass according to claim 1, which is a phase separation glass.
  4.  結晶を含有する結晶化ガラスである請求項1または2に記載のガラス。 The glass according to claim 1 or 2, which is a crystallized glass containing crystals.
  5.  厚みが0.2~5mmである請求項1~4のいずれか1項に記載のガラス。 The glass according to any one of claims 1 to 4, which has a thickness of 0.2 to 5 mm.
  6.  筐体の少なくとも一部を構成する筐体ガラスであって、波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上である筐体ガラス。 A casing glass constituting at least a part of a casing, wherein an average value of linear transmittance at a wavelength of 400 nm to 800 nm is 15% or less, and an average value of total light transmittance at a wavelength of 400 nm to 800 nm is 4% or more The housing glass.
  7.  筐体ガラスの筐体外面と対向する側の面に機能層を有する請求項6に記載の筐体ガラス。 The housing glass according to claim 6, wherein the housing glass has a functional layer on a surface facing a housing outer surface.
  8.  筐体ガラスに印刷された層が機能層の少なくとも一部を構成する請求項7に記載の筐体ガラス。 The casing glass according to claim 7, wherein the layer printed on the casing glass constitutes at least a part of the functional layer.
  9.  少なくとも一部がガラスである筐体であって、該ガラスが波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上である筐体。 A casing made of at least a part of glass, wherein the glass has an average value of linear transmittance at a wavelength of 400 nm to 800 nm of 15% or less, and an average value of total light transmittance at a wavelength of 400 nm to 800 nm of 4% or more The housing that is.
  10.  外面部分の少なくとも一部が前記ガラスであり、該ガラスの筐体外面と対向する側の面に機能層を有する請求項9に記載の筐体。 The housing according to claim 9, wherein at least a part of the outer surface portion is the glass, and the functional layer is provided on a surface of the glass facing the outer surface of the housing.
  11.  機能層が前記ガラスに印刷された層を含む請求項10に記載の筐体。 The housing according to claim 10, wherein the functional layer includes a layer printed on the glass.
  12.  請求項9~11のいずれか1項に記載の筐体を備える情報端末。 An information terminal comprising the casing according to any one of claims 9 to 11.
  13.  厚みが0.5mm以上であり、且つ波長400nm~800nmにおける直線透過率の平均値が15%以下であり、波長400nm~800nmにおける全光透過率の平均値が4%以上である建材用ガラス。
    A glass for building materials having a thickness of 0.5 mm or more, an average value of linear transmittance at a wavelength of 400 nm to 800 nm of 15% or less, and an average value of total light transmittance at a wavelength of 400 nm to 800 nm of 4% or more.
  14.  酸化物基準のモル百分率表示でAlを0~25%含有する請求項13に記載の建材用ガラス。 The building glass according to claim 13, containing 0 to 25% of Al 2 O 3 in terms of a molar percentage on an oxide basis.
  15.  酸化物基準のモル百分率表示でZrO+P+Laを0.5~10%含有する請求項13または14に記載の建材用ガラス。 The glass for building materials according to claim 13 or 14, containing 0.5 to 10% of ZrO 2 + P 2 O 5 + La 2 O 3 in terms of mole percentage based on oxide.
  16.  酸化物基準の質量百分率表示でNaOを0~15%含有する請求項13~15のいずれか1項に記載の建材用ガラス。 The glass for building materials according to any one of claims 13 to 15, which contains 0 to 15% of Na 2 O in terms of mass percentage based on oxide.
  17.  密度が3.0g/cm以下である請求項13~16のいずれか1項に記載の建材用ガラス。 The building glass according to any one of claims 13 to 16, having a density of 3.0 g / cm 3 or less.
  18.  フィラー混合ガラスを含まない請求項13~17のいずれか1項に記載の建材用ガラス。 The building material glass according to any one of claims 13 to 17, which does not contain filler mixed glass.

  19.  坑道またはトンネルの内装用である請求項13~18のいずれか1項に記載の建材用ガラス。

    The building material glass according to any one of claims 13 to 18, which is used for interiors of tunnels or tunnels.
  20.  分相ガラスである請求項13~19のいずれか1項に記載の建材用ガラス。 The glass for building materials according to any one of claims 13 to 19, which is a phase separation glass.
  21.  結晶を含有する結晶化ガラスである請求項13~19のいずれか1項に記載の建材用ガラス。 The building glass according to any one of claims 13 to 19, which is a crystallized glass containing crystals.

  22.  裏面に塗料が塗布されている、請求項13~21のいずれか1項に記載の建材用ガラス。

    The building glass according to any one of claims 13 to 21, wherein a coating is applied to the back surface.
  23.  厚みが30mm以下である請求項13~22のいずれか1項に記載の建材用ガラス。 The glass for building materials according to any one of claims 13 to 22, wherein the glass has a thickness of 30 mm or less.
PCT/JP2013/081935 2012-11-29 2013-11-27 White glass WO2014084268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014549868A JPWO2014084268A1 (en) 2012-11-29 2013-11-27 White glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012261314 2012-11-29
JP2012-261314 2012-11-29

Publications (1)

Publication Number Publication Date
WO2014084268A1 true WO2014084268A1 (en) 2014-06-05

Family

ID=50827900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081935 WO2014084268A1 (en) 2012-11-29 2013-11-27 White glass

Country Status (3)

Country Link
JP (1) JPWO2014084268A1 (en)
TW (1) TW201422555A (en)
WO (1) WO2014084268A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144907A (en) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd Glass plate
JP2015071524A (en) * 2013-09-03 2015-04-16 日本電気硝子株式会社 Glass manufacturing method and glass
JP2015164887A (en) * 2013-09-03 2015-09-17 日本電気硝子株式会社 glass
JP2019032511A (en) * 2017-06-20 2019-02-28 アップル インコーポレイテッドApple Inc. Internal coating of glass structure in electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019007431T5 (en) * 2019-06-03 2022-02-17 Tosoh Quartz Corporation Opaque fused silica and method of making same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309219A (en) * 1981-01-26 1982-01-05 Corning Glass Works Phase separated, non-crystalline opal glasses
US4310595A (en) * 1980-10-31 1982-01-12 Corning Glass Works Peraluminious nepheline/kalsilite glass-ceramics
US4341544A (en) * 1980-10-31 1982-07-27 Corning Glass Works Method of making peraluminous nepheline/kalsilite glass-ceramics
JPH01145499U (en) * 1988-03-30 1989-10-05
JPH0597473A (en) * 1991-10-08 1993-04-20 Kirin Brewery Co Ltd Crystallized glass material and its production
JP2011226156A (en) * 2010-04-20 2011-11-10 Danto Holdings Corp High reflective white tile and its production method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310595A (en) * 1980-10-31 1982-01-12 Corning Glass Works Peraluminious nepheline/kalsilite glass-ceramics
EP0051390A1 (en) * 1980-10-31 1982-05-12 Corning Glass Works Glass-ceramic articles extremely resistant to impact and spontaneous delayed breakage and production thereof
JPS57106535A (en) * 1980-10-31 1982-07-02 Corning Glass Works Peralumina-nepheline/kalcilite glass-ceramic and manufacture thereof
US4341544A (en) * 1980-10-31 1982-07-27 Corning Glass Works Method of making peraluminous nepheline/kalsilite glass-ceramics
CA1157273A (en) * 1980-10-31 1983-11-22 George H. Beall Peraluminous nepheline/kalsilite glass-ceramics
DE3163313D1 (en) * 1980-10-31 1984-05-30 Corning Glass Works Glass-ceramic articles extremely resistant to impact and spontaneous delayed breakage and production thereof
US4309219A (en) * 1981-01-26 1982-01-05 Corning Glass Works Phase separated, non-crystalline opal glasses
JPH01145499U (en) * 1988-03-30 1989-10-05
JPH0597473A (en) * 1991-10-08 1993-04-20 Kirin Brewery Co Ltd Crystallized glass material and its production
JP2011226156A (en) * 2010-04-20 2011-11-10 Danto Holdings Corp High reflective white tile and its production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144907A (en) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd Glass plate
JP2015071524A (en) * 2013-09-03 2015-04-16 日本電気硝子株式会社 Glass manufacturing method and glass
JP2015164887A (en) * 2013-09-03 2015-09-17 日本電気硝子株式会社 glass
JP2019032511A (en) * 2017-06-20 2019-02-28 アップル インコーポレイテッドApple Inc. Internal coating of glass structure in electronic device
US10556823B2 (en) 2017-06-20 2020-02-11 Apple Inc. Interior coatings for glass structures in electronic devices
US11230493B2 (en) 2017-06-20 2022-01-25 Apple Inc. Interior coatings for glass structures in electronic devices
US11697615B2 (en) 2017-06-20 2023-07-11 Apple Inc. Interior coatings for glass structures in electronic devices

Also Published As

Publication number Publication date
JPWO2014084268A1 (en) 2017-01-05
TW201422555A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
JP6187476B2 (en) White glass
WO2014088094A1 (en) White glass
JP5695240B2 (en) Crystallized glass casing and electronic equipment
US9487440B2 (en) Process for producing chemically strengthened glass
JP5110236B2 (en) Colored glass enclosure
JP6098639B2 (en) Colored glass
US9902647B2 (en) Manufacturing method for phase-separated glass, and phase-separated glass
JP6511810B2 (en) Front glass for display device and device with display device
US9938181B2 (en) White glass
WO2014084268A1 (en) White glass
JP2022016675A (en) Crystallized glass, chemically strengthened glass, and semiconductor support substrate
JPWO2014175367A1 (en) Glass, chemically tempered glass, exterior members and electronic equipment
JPWO2014196421A1 (en) White glass
JP2013245151A (en) Crystallized glass for housing and method for producing crystallized glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859474

Country of ref document: EP

Kind code of ref document: A1