WO2014084206A1 - Organic el element - Google Patents

Organic el element Download PDF

Info

Publication number
WO2014084206A1
WO2014084206A1 PCT/JP2013/081770 JP2013081770W WO2014084206A1 WO 2014084206 A1 WO2014084206 A1 WO 2014084206A1 JP 2013081770 W JP2013081770 W JP 2013081770W WO 2014084206 A1 WO2014084206 A1 WO 2014084206A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
electron
hole
mobility
Prior art date
Application number
PCT/JP2013/081770
Other languages
French (fr)
Japanese (ja)
Inventor
賢太郎 渡邉
竜徳 篠
伸浩 名取
光正 岩本
孝彰 間中
大 田口
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2014084206A1 publication Critical patent/WO2014084206A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes

Definitions

  • the present invention relates to an organic EL element.
  • This application claims priority based on Japanese Patent Application No. 2012-258907 filed in Japan on November 27, 2012, the contents of which are incorporated herein by reference.
  • Electron injection layers with very high electron mobility have been reported as techniques for increasing the voltage and efficiency of organic EL elements, and it has been confirmed that the use of these can significantly reduce the voltage of organic EL elements ( For example, see Patent Documents 1 and 2).
  • Patent Document 3 by combining an electron injection layer having a high electron mobility and an electron injection suppression layer, the balance between the amount of electrons and the amount of holes is improved, and an organic EL element is obtained. It has been reported that the light emission efficiency and lifetime of this product are improved. That is, from the viewpoint of electron mobility, since the electron mobility of the electron injection suppression layer is smaller than the electron mobility of the electron injection layer, the amount of electrons injected into the light-emitting layer is suppressed, so that It is thought that it contributed to the improvement of luminous efficiency and lifetime in balance with the amount.
  • Patent Document 3 charges accumulate at the interface between the electron injection suppression layer and the light emitting layer, preventing further improvement in light emission efficiency, and such charges become chemically unstable radicals.
  • the organic layer (light emitting layer) was deteriorated, preventing further improvement of the device lifetime.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an organic EL element having high luminous efficiency and improved lifetime.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • the light emitting layer is further configured to have a higher electron mobility than the electron transport layer (electron injection suppression layer), thereby promoting charge recombination and improving light emission efficiency.
  • the lifetime can be improved by reducing chemically unstable radicals in the vicinity of the light emitting layer.
  • the hole mobility the light emitting layer is configured to have a higher hole mobility than the hole transport layer (hole injection suppression layer), thereby promoting charge recombination.
  • the present inventors have found that the luminous efficiency can be improved and the lifetime can be improved by reducing chemically unstable radicals in the vicinity of the light emitting layer. That is, in order to achieve the above object, the present invention provides the following means.
  • An organic EL device having a light emitting layer between an anode and a cathode, comprising an electron injection layer and an electron transport layer in order from the cathode side between the cathode and the light emitting layer, An organic EL element, wherein an electron mobility is smaller than an electron mobility of the electron injection layer, and an electron mobility of the light emitting layer is larger than an electron mobility of the electron transport layer.
  • An organic EL device according to [1] wherein a hole injection layer and a hole transport layer are provided in this order from the anode side between the anode and the light emitting layer.
  • An organic EL device having a light emitting layer between an anode and a cathode, comprising a hole injection layer and a hole transport layer in that order from the anode side between the anode and the light emitting layer,
  • the hole mobility of the transport layer is smaller than the hole mobility of the hole injection layer, and the hole mobility of the light emitting layer is larger than the hole mobility of the hole transport layer EL element.
  • An organic EL device having a light emitting layer between an anode and a cathode, comprising an electron injection layer and an electron transport layer in that order from the cathode side between the cathode and the light emitting layer, Between the light emitting layer, a hole injection layer and a hole transport layer are provided in this order from the anode side, the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer, and the electron mobility of the light emitting layer The mobility of the electron transport layer is greater than the mobility of the hole transport layer, the mobility of the hole transport layer is smaller than the mobility of the hole injection layer, and the mobility of the light emitting layer is greater than the positive mobility.
  • An organic EL element characterized by being larger than the hole mobility of the hole transport layer.
  • An organic EL device having a plurality of light emitting layers between an anode and a cathode, comprising an electron injection layer and an electron transport layer in order from the cathode side between the cathode and the plurality of light emitting layers,
  • the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer, and the electron mobility of the light emitting layer disposed at a position closest to the electron transport layer among the plurality of light emitting layers is the electron transport.
  • An organic EL element characterized by being larger than the electron mobility of the layer.
  • the electron mobility of the light emitting layer disposed at the position closest to the electron transport layer among the plurality of light emitting layers is larger than the electron mobility of the electron transport layer
  • the hole mobility of the hole transport layer is
  • the hole mobility of the light-emitting layer that is smaller than the hole mobility of the hole-injection layer and is arranged closest to the hole-transport layer among the plurality of light-emitting layers is the hole of the hole-transport layer.
  • An organic EL element characterized by being larger than a mobility.
  • An organic EL device having a plurality of light emitting layers between an anode and a cathode, and having an electron injection layer and an electron transport layer in order from the cathode side between the cathode and the plurality of light emitting layers. And a hole injection layer and a hole transport layer in order from the anode side between the anode and the plurality of light emitting layers, and the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer.
  • the electron mobility of the light emitting layer disposed at a position closest to the electron transport layer among the plurality of light emitting layers is larger than the electron mobility of the electron transport layer, and the hole of the plurality of light emitting layers is the hole.
  • the electron mobility of the light emitting layer disposed closest to the transport layer is smaller than the electron mobility of the light emitting layer disposed closest to the electron transport layer, and the hole mobility of the hole transport layer is greater than the positive mobility. Less than the hole mobility of the hole injection layer, Among the layers, the hole mobility of the light emitting layer disposed at a position closest to the hole transport layer is larger than the hole mobility of the hole transport layer, and the electron transport layer among the plurality of light emitting layers.
  • An organic EL element wherein the hole mobility of the light emitting layer disposed at a position closest to the hole is smaller than the hole mobility of the light emitting layer disposed at a position closest to the hole transport layer.
  • the electron injection layer and the electron transport layer are provided between the cathode and the light emitting layer from the cathode side.
  • a structure is adopted in which the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer, and the electron mobility of the light emitting layer is larger than the electron mobility of the electron transport layer.
  • a hole injection layer and a hole transport layer are sequentially provided between the anode and the light emitting layer from the cathode side, and the hole mobility of the hole transport layer is smaller than the hole mobility of the hole injection layer.
  • the structure in which the hole mobility of the light emitting layer is larger than the hole mobility of the hole transport layer is adopted.
  • charge recombination is promoted, luminous efficiency is improved, and lifetime is also improved by reducing chemically unstable radicals in the vicinity of the light emitting layer. Can do. Therefore, it is possible to realize an organic EL element with high luminous efficiency and long life.
  • FIG. 1 is a cross-sectional view schematically showing an organic EL element 1 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an organic EL element 3 according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an organic EL element 5 according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing an organic EL element 6 according to the fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing an organic EL element 8 according to the fifth embodiment of the present invention.
  • FIG. 6 is a sectional view schematically showing an organic EL element 10 according to the sixth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an organic EL element 1 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an organic EL element 3 according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing an organic EL element 1A according to a seventh embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing the organic EL element 2 in the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing the organic EL element 4 in the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing an organic EL element 7 according to the fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing an organic EL element 9 according to the fifth embodiment of the present invention.
  • an arrow 101 (upward arrow in the figure) shown in each figure is an arrow showing a flow of holes
  • an arrow 102 (downward arrow in the figure) is an electron flow. It is the arrow which shows a flow.
  • the inequality symbols shown in FIGS. 1 to 11 indicate the relationship between the mobility of electrons or holes between the layers, and the opening of the inequality symbol is This indicates that the facing layer has a higher mobility than the opposite layer.
  • TOF method time of flight method
  • the organic EL element 1 described in the present embodiment includes a light emitting layer 14 between an anode 11 and a cathode 17, and a cathode 17 between the cathode 17 and the light emitting layer 14.
  • An electron injection layer 16 and an electron transport layer 15 are provided in order from the side, and are schematically configured.
  • an anode 11, a light emitting layer 14, an electron transport layer 15, an electron injection layer 16, and a cathode 17 are sequentially stacked on a support substrate (not shown) that supports the organic EL element.
  • an arrow 102 shown in FIG. 1 is an arrow indicating the direction of the flow of electrons e ⁇ .
  • the inequality sign 201a is an inequality sign indicating the magnitude of the electron mobility between the electron transport layer 15 and the light emitting layer 14.
  • the inequality sign 201b is an inequality sign indicating the magnitude of the electron mobility between the electron injection layer 16 and the electron transport layer 15.
  • the electron mobility mu E_ETL of the electron transport layer 15 is smaller than the electron mobility mu E_EIL of the electron injection layer 16, and the electron mobility of the light-emitting layer 14
  • the material used for each layer is selected so that ⁇ e_EML is larger than the electron mobility of the electron transport layer 15.
  • the electron mobility described in the present invention is a value indicating the ease of movement of electrons in the solid material, and is defined as the ratio V1 / E of the electron velocity V1 and the electric field E.
  • Examples of the support substrate used in the present invention include a substrate made of a translucent material, and the organic EL element 1 of the present embodiment has the above layer structure formed on the translucent substrate.
  • a transparent substrate having a transmittance of visible light of 400 to 700 nm of 50% or more is preferable.
  • Specific examples of such a support substrate include a glass plate and a polymer plate.
  • the glass plate material include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • Examples of the material for the polymer plate include polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
  • the anode 11 is for injecting holes into the light emitting layer 14 and is preferably made of an electrode material having a work function of 4.5 eV or more. Specifically, a material such as indium tin oxide alloy (ITO), indium zinc oxide alloy (IZO), tin oxide (NESA), gold, silver, platinum, or copper can be used for the anode 11.
  • ITO indium tin oxide alloy
  • IZO indium zinc oxide alloy
  • NESA tin oxide
  • gold, silver, platinum, or copper can be used for the anode 11.
  • the anode 11 can be formed by depositing the electrode material as a thin film on a supporting substrate using a method such as vapor deposition or sputtering.
  • the anode material and the film thickness so that the transmittance of the light emitted from the anode 11 exceeds 10%.
  • the sheet resistance of the anode 11 is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode 11 depends on the material, it can be generally in the range of about 10 nm to 1 ⁇ m, more preferably in the range of 50 to 200 nm in consideration of the above-described transmittance and sheet resistance.
  • the light emitting layer 14 is a layer for generating an excited state mainly by recombining electrons supplied from the cathode and holes supplied from the anode, and connecting this to light emission. Moreover, the light emitting layer 14 provided in the organic EL element 1 of the present embodiment is configured to have a higher electron mobility than an electron transport layer 15 described later.
  • the light-emitting layer 14 has a transport function of moving injected charges (electrons and holes) by the force of an electric field. Further, as described above, the light-emitting layer 14 has a charge recombination of electrons and holes. By providing a field, it has a light emitting function to connect it to light emission. However, in the light emitting layer 14 of the present embodiment, the transport ability of both charges represented by the mobility of holes and electrons may be large or small, but it is preferable to transport at least one of the charges.
  • the light emitting layer 14 is made of a material that actually emits light called a light emitter and a material that transports charges called a host.
  • a conventionally known light-emitting material having a long lifetime can be used.
  • a material described in Japanese Patent Application Laid-Open No. 2011-139044 particularly, in paragraph 0100 of the same publication.
  • the organic materials described in the above, and the organometallic complex materials described in paragraph 0101) can be used.
  • Examples of the host material used for the light-emitting layer 14 include materials described in JP-A-2009-260308 (in particular, host materials having hole transport properties described in paragraph 0049 of the same publication, and paragraph 0054).
  • a material whose electron mobility is higher than the electron mobility ⁇ e_ETL of the electron transport layer 15 is selected from the materials that can be used for the light-emitting layer 14.
  • the light emitting layer 14 is particularly preferably a molecular deposition film.
  • the molecular deposition film refers to a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state.
  • Such a molecular deposition film can be generally distinguished from a thin film (molecular accumulation film) formed by the LB method by a difference in an agglomerated structure and a higher-order structure and a functional difference resulting therefrom.
  • a light emitting layer can be obtained by applying a method in which a binder such as a resin and a material compound are dissolved in a solvent to form a dispersion solution and then thinned by a spin coating method or the like. 14 can be formed.
  • the electron transport layer 15 relates to electrons injected from the cathode 17 into the light-emitting layer 14 via the electron injection layer 16, and the electrons injected from the electron injection layer 16 are flowed with appropriate mobility.
  • This layer is transported to the light emitting layer 14 while adjusting, and is a layer for balancing the electrons injected from the cathode 17 and the holes injected from the anode 11.
  • the electron mobility of the electron transport layer 15 is made smaller than the electron mobility of the electron injection layer 16 described later, and smaller than the electron mobility of the light emitting layer 14 described above. .
  • the material used for the electron transport layer 15 is a material that suppresses the transport of electrons, it should not be a material that does not allow electrons to flow.
  • a material having a lower electron mobility than the electron injection layer used in the organic EL device of the present invention can be used.
  • a heterocyclic derivative for example, a heterocyclic compound in which a 6-membered ring and a 5-membered ring are condensed, such as an imidazole derivative and an imidazopyridine derivative, can be suitably used.
  • a nitrogen-containing ring compound, a silicon-containing ring compound, a boron compound, and the like that can be used as an electron injection layer to be described later can also be suitably used.
  • 8-hydroxyquinoline or a metal complex of a derivative thereof is preferable.
  • Specific examples include metal chelate oxinoid compounds containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline).
  • (8-quinolinolato) aluminum complex (Alq) can be used.
  • the electron injection layer 16 is a layer that promotes injection of electrons from the cathode 17 to the electron transport layer 15. Further, the electron mobility ⁇ e_EIL of the electron injection layer 16 provided in the organic EL element 1 of the present embodiment is larger than the electron mobility ⁇ e_ETL of the electron transport layer 15 described above. Thus, by inserting the electron transport layer 15 having a lower electron mobility than those layers between the electron injection layer and the light emitting layer, the electron transport layer 15 restricts the supply of electrons to the light emitting layer 14, Deterioration of the light emitting layer 14 is suppressed.
  • the material for the electron injection layer 16 is not particularly limited, and a conventionally known material in this field can be used.
  • a nitrogen-containing ring compound, a silicon-containing ring compound, a boron compound, or the like is preferably used.
  • a material having an electron mobility higher than the electron mobility ⁇ e_ETL of the electron transport layer 15 is selected from the materials described above.
  • the material described in this document can be used as a host material for the electron transport layer 15, the electron injection layer 16, and the electron transporting light-emitting layer 14.
  • the electron transport layer 15 is related to each material forming the light emitting layer 14 in addition to the electron transport layer 15 and the electron injection layer 16 among the materials described with reference to the above references.
  • the material used for each layer is selected so that the electron mobility is lower than that of the electron injection layer 16 and the light emitting layer 14 is higher than the electron transport layer 15. May be.
  • the electron mobility of the electron transport layer 15 smaller than the electron mobility of the electron injection layer 16, supply of excess electrons to the light emitting layer 14 is suppressed. Further, the amount of electrons supplied to the light emitting layer 14 can be adjusted by adjusting the film thickness of the electron transport layer 15.
  • the electron mobility in the electron transport layer 15 by making the electron mobility in the electron transport layer 15 smaller than the electron mobility in the light emitting layer 14, electrons supplied from the electron transport layer 15 can enter the light emitting layer 14 without delay. And can be transported. As a result, charge recombination in the light emitting layer 14 can be promoted to improve the light emission efficiency. Furthermore, since the electron mobility of the electron transport layer 15 is smaller than the electron mobility of the light-emitting layer 14, it is possible to suppress accumulation of charges as chemically unstable radicals at the interface between the electron transport layer 15 and the light-emitting layer 14. Therefore, the lifetime of the organic EL element 1 can be improved.
  • the cathode 17 is for injecting electrons into the electron injection layer 16 or the light emitting layer 14.
  • a metal, an alloy, an electrically conductive compound having a work function as small as 4 eV or less, and a mixture thereof are used as an electrode material.
  • Specific examples of such electrode materials include, for example, silver, aluminum, platinum, gold, copper, titanium, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, and aluminum / lithium alloy. , Indium, and rare earth metals.
  • the cathode 17 can be formed by depositing a thin film on the electron injection layer 16 by using a method such as vapor deposition or sputtering.
  • the electrode material and film thickness so that the transmittance of the cathode 17 with respect to the light emission exceeds 10%.
  • the sheet resistance of the cathode 17 is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the cathode 17 depends on the material, it can be generally in the range of about 10 nm to 1 ⁇ m, preferably in the range of 50 to 200 nm, taking into consideration the above-described light transmittance and sheet resistance.
  • the structure is not limited to that shown in FIG. 1.
  • the organic EL element 2 provided with the positive hole injection layer 12 and the positive hole transport layer 13 in order.
  • the electron transport layer 15 has a lower electron mobility than the electron injection layer 16 and the light emitting layer 14 has the electron transport layer 15 as described above.
  • the organic EL element 1 can be manufactured by sequentially forming the anode 11, the light emitting layer 14, the electron transport layer 15, the electron injection layer 16, and the cathode 17 by the materials and methods exemplified in the above description. . Furthermore, in this embodiment, in addition to the above, by forming the hole injection layer 12 and the hole transport layer 13 sequentially from the anode side between the anode 11 and the light emitting layer 14 as necessary, The EL element 2 can be manufactured. Alternatively, each layer can be formed from the cathode 17 to the anode 11 in the reverse order.
  • a thin film made of an anode material is formed on a light-transmitting support substrate (not shown) by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, more preferably in the range of 10 to 200 nm. As a result, the anode 11 is formed.
  • the light emitting layer 14 is formed on the anode 11.
  • the light emitting layer 14 is formed by thinning the light emitting layer material by using, for example, a vacuum deposition method, a sputtering method, a spin coating method, a casting method, or the like, using the organic light emitting material (light emitting layer material) as described above. Can be formed.
  • a vacuum deposition method for example, a vacuum deposition method, a sputtering method, a spin coating method, a casting method, or the like.
  • the organic light emitting material light emitting layer material
  • the electron transport layer 15 is formed on the light emitting layer 14.
  • a method of forming a thin film by using, for example, a vacuum deposition method, a sputtering method, a spin coating method, a casting method, or the like using the organic material as described above.
  • appropriate conditions can be selected in consideration of the organic material to be used, the target crystal structure, and the like.
  • an electron injection layer 16 is formed on the electron transport layer 15.
  • the organic material can be used to form a film by the same film formation method and conditions.
  • the cathode 17 is composed of the electrode material as described above.
  • a vapor deposition method or sputtering can be used. From the viewpoint of protecting the electron injection layer 16 serving as a base from damage during film formation. It is preferable to use a vacuum deposition method.
  • the organic EL element 2 when manufacturing the organic EL element 2 provided with the positive hole injection layer 12 and the positive hole transport layer 13 in addition to the organic EL element 1, said anode 11 was formed on the support substrate. Thereafter, a hole injection layer 12 is first formed on the anode 11, and a hole transport layer 13 is further formed on the hole injection layer 12. At this time, in forming the hole injection layer 12 and the hole transport layer 13, for example, a method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like can be used using the above materials. Further, regarding the conditions, appropriate conditions can be selected in consideration of the organic material to be used, the target crystal structure, and the like.
  • the light emitting layer 14 is formed on the hole transport layer 13 by the method described above, and the layers thereon are also formed in the same manner as described above, whereby the anode 11, An organic EL device in which the hole injection layer 12, the hole transport layer 13, the light emitting layer 14, the electron transport layer 15, the electron injection layer 16, and the cathode 17 are sequentially formed can be manufactured.
  • each layer of the organic EL element which concerns on this invention is not limited to said method, Various formation methods, such as a conventionally well-known vacuum evaporation method and a spin coating method, can be used.
  • the electron injection layer 16, the electron transport layer 15, the light emitting layer 14, the hole injection layer 12, and the hole transport layer 13 are formed by a vacuum evaporation method, a molecular beam evaporation method (MBE method), or a solution dissolved in a solvent.
  • MBE method molecular beam evaporation method
  • Conventionally known methods by coating methods such as a dipping method, a spin coating method, a casting method, a bar coating method, a roll coating method, and an ink jet method can be employed.
  • the film thickness of each layer of the organic EL elements 1 and 2 is not particularly limited, but generally, if the film thickness is too thin, defects such as pinholes are likely to occur, and conversely, if it is too thick, a high applied voltage is required. , Luminous efficiency decreases. For this reason, it is usually preferable that the thickness be in the range of several nm to 1 ⁇ m.
  • the organic EL element 3 of the present embodiment has a light emitting layer 14 between the anode 11 and the cathode 17, and between the anode 11 and the light emitting layer 14 from the anode 11 side.
  • a hole injection layer 12 and a hole transport layer 13 are sequentially provided in order. That is, the organic EL element 3 of the present embodiment includes the hole injection layer 12 and the hole transport layer 13, but does not include the electron transport layer 15 and the electron injection layer 16.
  • an arrow 101 shown in FIG. 2 is an arrow indicating the flow of holes h + .
  • the inequality sign 202 a is an inequality sign indicating the magnitude of the hole mobility ⁇ h between the hole transport layer 13 and the light emitting layer 14.
  • the inequality sign 202b is an inequality sign indicating the magnitude of the hole mobility between the hole injection layer 12 and the hole transport layer 13.
  • the organic EL element 3 of this embodiment the hole mobility mu H_HTL of the hole transport layer 13 is smaller than the hole mobility mu H_HIL of the hole injection layer 12, and hole mobility of the light-emitting layer 14
  • the degree ⁇ h_EML is larger than the hole mobility of the hole transport layer 13.
  • the hole mobility described in the present invention is a value indicating the ease of movement of holes in a solid material, and is defined as the ratio V2 / E of the hole velocity V2 and the electric field E. Is done.
  • holes are injected from the anode 11 into the hole injection layer 12.
  • the hole injection layer 12 is a layer for promoting hole injection into the light emitting layer 14 and transporting it to the light emitting region.
  • the hole injection layer 12 has a high hole mobility and is usually a small ionization energy of 5.5 eV or less. is there.
  • the material of such a hole injection layer 12 is not particularly limited, and a material conventionally used as a charge transport material for holes or a conventionally known material used for a hole injection layer of an organic EL element can be used. It can be appropriately selected from among them.
  • the material for the hole injection layer 12 is preferably a material that can transport holes to the light emitting layer 14 with lower electric field strength.
  • the material of the hole injection layer 12 is more preferably one having a hole mobility of at least 10 ⁇ 4 cm 2 / V ⁇ sec when an electric field of 10 4 to 10 6 V / cm is applied.
  • a material having a hole mobility higher than the hole mobility ⁇ h_HTL of the hole transport layer 13 is selected from the materials described above.
  • the hole injection layer 12 is formed by forming the above-described material into a thin film on the anode 11 by a conventionally known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. be able to.
  • the film thickness of the hole injection layer 12 is not particularly limited, but can be, for example, about 1 nm to 1 ⁇ m.
  • the hole transport layer 13 is a layer that suppresses holes injected from the hole injection layer 12 toward the light emitting layer 14. That is, the hole transport layer 13 needs to be made of a material that suppresses holes, but should not be a material that does not allow holes to flow. As such a material of the hole transport layer 13, among those conventionally used for the hole injection layer, the hole mobility is smaller than the material used for the hole injection layer 12, and A material having a hole mobility smaller than that of the light emitting layer 14 is selected and used.
  • the hole transport layer 13 is a layer having a lower hole mobility than the hole injection layer 12, and the light emitting layer 14 is more positive than the hole transport layer 13. You may select the material used for each layer so that it may become a layer with a large hole mobility.
  • the hole transport layer 13 is configured to have a hole mobility smaller than that of the hole injection layer 12, and the light emitting layer 14 is configured to transport holes.
  • the hole mobility is higher than that of the layer 13, the amount of holes injected into the light emitting layer 14 can be made equal to the amount of electrons.
  • the hole transport layer 13 have a hole mobility smaller than that of the light emitting layer 14, the holes supplied from the hole transport layer 13 can be transported into the light emitting layer 14 without delay. it can. Accordingly, it is possible to promote the charge recombination in the light emitting layer 14 and improve the light emission efficiency.
  • the hole mobility ⁇ h_HTL of the hole transport layer 13 is smaller than the hole mobility ⁇ h_EML of the light emitting layer 14, a chemically unstable radical is formed at the interface between the hole transport layer 13 and the light emitting layer 14. As a result, accumulation of electric charges can be suppressed. Therefore, the lifetime of the organic EL element 3 can be improved.
  • the structure is not limited to that shown in FIG. 2, and for example, between the cathode 17 and the light emitting layer 14, as in the modification described in the first embodiment.
  • the organic EL element 4 shown in FIG. 9 may be configured to include the electron injection layer 16 and the electron transport layer 15 in this order from the cathode 17 side.
  • the organic EL element 4 of the present embodiment has the same layer structure as the organic EL element 2 described in the first embodiment.
  • the hole transport layer 13 is a layer having a hole mobility smaller than that of the hole injection layer 12, and the light emitting layer 14 is a hole. By making the hole mobility higher than that of the transport layer 13, the effect of improving the light emission efficiency and the life characteristics can be obtained.
  • an arrow 101 shown in FIG. 3 is an arrow indicating the flow of holes h +
  • an arrow 102 is an arrow indicating the flow of electrons e +
  • an inequality sign 201 a is between the electron transport layer 15 and the light emitting layer 14.
  • the inequality sign 202a is an inequality sign indicating the magnitude of hole mobility between the hole transport layer 13 and the light emitting layer 14
  • an inequality sign 202b is a hole injection layer 12 and a hole transport layer.
  • 13 is an inequality sign indicating the magnitude of hole mobility between 13 and 13.
  • the organic EL element 5 of the present embodiment has a light emitting layer 14 between the anode 11 and the cathode 17, and electrons are sequentially arranged between the cathode 17 and the light emitting layer 14 from the cathode 17 side.
  • An injection layer 16 and an electron transport layer 15 are provided, and a hole injection layer 12 and a hole transport layer 13 are sequentially provided between the anode 11 and the light emitting layer 14 in this order from the anode 11 side.
  • the organic EL element 5 of this embodiment has the same layer structure as the organic EL elements 2 and 4 described in the first and second embodiments.
  • the organic EL element 5 first, similarly to the organic EL element 2 described in the first embodiment, the electron mobility mu E_ETL of the electron transport layer 15 is smaller than the electron mobility mu E_EIL of the electron injection layer 16, and the electron mobility mu E_EML emitting layer 14 is larger configuration than the electron mobility mu E_ETL of the electron transport layer 15.
  • the organic EL element 5 is smaller than the hole mobility mu H_HIL hole mobility mu H_HTL is the hole injection layer 12 of the hole transport layer 13 and hole mobility mu H_EML emitting layer 14
  • the hole transport layer 13 has a hole mobility higher than ⁇ h_ETL . That is, in the organic EL element 5, the relationship between the electron mobility of each of the electron transport layer 15, the electron injection layer 16, and the light emitting layer 14 is optimized, and the positive hole transport layer 12 and the hole transport layer 13 are positive.
  • the organic EL element 2 described in the first and second embodiments in that the relationship between the hole mobility and the hole mobility between the hole transport layer 13 and the light emitting layer 14 is optimized. 4 is different.
  • the electron transport layer 15 is a layer having a lower electron mobility than the electron injection layer 16 and the light emitting layer 14 is a layer having a higher electron mobility than the electron transport layer 15, As in the case of the embodiment, by selecting the material, the electron mobility between each layer can be appropriately controlled.
  • the hole transport layer 13 is a layer having a hole mobility smaller than that of the hole injection layer 12 and the light emitting layer 14 is a layer having a hole mobility larger than that of the hole transport layer 13, As in the case of the first and second embodiments, the hole mobility between the layers can be appropriately controlled by selecting the material.
  • the organic EL element 5 of the present embodiment by adopting the above configuration, as in the organic EL elements 1 to 4 in the first and second embodiments, the charge recombination in the light emitting layer 14 is promoted to increase the luminous efficiency. In addition, the lifetime can be improved by reducing chemically unstable radicals in the vicinity of the light-emitting layer 14.
  • an arrow 102 shown in FIG. 4 is an arrow indicating the direction of the flow of electrons e ⁇ .
  • the inequality sign 201a is an inequality sign indicating the magnitude of electron mobility between the electron transport layer 15 and the light emitting layer 14B on the electron transport layer 15 side.
  • the inequality sign 201b is an inequality sign indicating the magnitude of the electron mobility between the electron injection layer 16 and the electron transport layer 15.
  • the organic EL elements 6 and 7 of the present embodiment are different from the organic EL elements 1 and 2 of the first embodiment in that a plurality of light emitting layers are provided.
  • the organic EL element 6 in the example shown in FIG. 4 includes two light emitting layers 14A and 14B.
  • the emission color emitted from the light emitting layer is determined by the band gap of the light emitter (light emitting layer material).
  • the organic EL element 6 of the present embodiment has two light emitting layers 14A and 14B between the anode 11 and the cathode 17, and the cathode 11 and the light emitting layers 14A and 14B.
  • the electron injection layer 16 and the electron transport layer 15 are provided in this order from the cathode 17 side.
  • the organic EL device 6 is smaller than the electron mobility mu E_EIL electron mobility mu E_ETL of the electron transport layer 15 is an electron injection layer 16, and a plurality of light-emitting layers 14A, among 14B, the electron transport layer 15 electron mobility mu E_EML1 emitting layer 14B which located closest is the larger configuration than the electron mobility mu E_ETL of the electron transport layer 15. That is, the organic EL element 6 of the example shown in FIG. 4 has the same layer structure as that of the organic EL element 1 shown in FIG. 1 except that the light emitting layer is composed of two layers 14A and 14B. Is.
  • the organic EL element 7 is further provided between the anode 11 and the anode-side light emitting layer 14A among the plurality of light emitting layers.
  • the hole injection layer 12 and the hole transport layer 13 are provided in this order from the anode 11 side. That is, the organic EL element 7 has the same layer structure as that of the organic EL element 2 shown in FIG. 8 except that the light emitting layer is composed of two layers 14A and 14B.
  • the material of the light emitting layers 14A and 14B the material as described in the first embodiment (for example, the material described in Japanese Patent Application Laid-Open No. 2011-139044) can be used. It is possible to obtain a desired emission wavelength and intensity by appropriately adopting the dopant and the light emitter described in paragraph 0100 of the publication. Further, as the host material of the light emitting layers 14A and 14B, the same material as described above (for example, the material described in JP2009-260308A) can be used, and in particular, the hole described in paragraph 0049 of the same publication. You may select the material which satisfy
  • an arrow 101 shown in FIG. 5 is an arrow indicating the flow of holes h +
  • an inequality sign 202 a is an inequality sign or inequality sign indicating the magnitude of hole mobility between the hole transport layer 13 and the light emitting layer 14.
  • 202b is an inequality sign indicating the magnitude of the hole mobility between the hole injection layer 12 and the hole transport layer 13.
  • the organic EL element 8 (FIG. 5) of this embodiment includes a hole injection layer 12 and a hole transport layer 13 in order from the anode 11 side between the anode 11 and the light emitting layer 14A. smaller than the hole mobility mu H_HIL hole mobility mu H_HTL a hole injection layer 12, luminescent layer 14A of the two layers, among 14B, positive luminescent layer 14A be located closest to the hole transport layer 13 hole mobility mu H_HML2 is larger configuration than the hole mobility mu H_HTL of the hole transport layer 13.
  • the organic EL element 8 of the example shown in FIG. 5 has the same layer structure as that of the organic EL element 3 shown in FIG. 2 except that the light emitting layer is composed of two layers 14A and 14B. Is.
  • the electron injection layer 16 and the electron transport layer 15 are further provided in this order from the cathode 17 side between the cathode 17 and the light emitting layer 14B. It can be set as the organic EL element 9 (refer FIG. 11).
  • the organic EL element 9 of this example has the same layer structure as the organic EL element 7 described above.
  • the organic EL element 9 has the same layer structure as that of the organic EL element 4 shown in FIG. 9 except that the light emitting layer is composed of two layers 14A and 14B.
  • materials as shown in the first embodiment for example, materials described in JP2011-139044A
  • a desired emission wavelength and intensity can be obtained by appropriately adopting the dopant and the light emitter described in paragraph 0100 of the publication.
  • the same material as described above for example, the material described in JP2009-260308A
  • an arrow 101 shown in FIG. 6 is an arrow indicating the flow of holes h +
  • an arrow 102 is an arrow indicating the flow of electrons e +
  • the inequality sign 201a is an inequality sign indicating the magnitude of the electron mobility between the electron transport layer 15 and the light emitting layer 14B
  • the inequality sign 202a is the magnitude of the hole mobility between the hole transport layer 13 and the light emitting layer 14B.
  • An inequality sign 201b is an inequality sign indicating the magnitude of the electron mobility between the electron injection layer 16 and the electron transport layer 15, and an inequality sign 202b is a hole mobility between the hole injection layer 12 and the hole transport layer 13. It is an inequality sign indicating magnitude.
  • the electron injection layer 16 and the electron transport layer 15 are provided in this order from the cathode 17 side between the cathode 17 and the light emitting layer 14B, and the anode 11 and the light emitting layer. Between 14A, it can also be set as the structure provided with the positive hole injection layer 12 and the positive hole transport layer 13 in order from the anode 11 side.
  • the organic EL element 10 is smaller than the electron mobility mu E_EIL electron mobility mu E_ETL the electron injection layer 16 of the electron transport layer 15, a plurality of light-emitting layers 14A, among 14B, closest to the electron transport layer 15 electron mobility mu E_EML1 emitting layer 14B to place the position is greater than the electron mobility mu E_ETL of the electron transport layer 15, the hole mobility mu H_HTL holes move of the hole injection layer 12 of the hole transport layer 13
  • the hole mobility ⁇ h_EML2 of the light-emitting layer 14A disposed at the position closest to the hole transport layer 13 among the plurality of light-emitting layers 14A and 14B is smaller than the degree ⁇ h_HIL , and the hole mobility of the hole transport layer 13
  • the configuration is larger than ⁇ h_HTL .
  • the organic EL element 10 has the same layer structure as that of the organic EL element 5 shown in FIG. 3 except that the light emitting layer is composed of two layers 14A and 14B.
  • the electron mobility between the layers is similar to the organic EL elements 1 to 5 of the first to third embodiments described above.
  • the hole mobility by appropriately controlling the hole mobility, the charge recombination in the light emitting layers 14A and 14B can be promoted to improve the light emission efficiency, and the chemically unstable in the vicinity of the light emitting layers 14A and 14B.
  • the lifetime can be improved by reducing radicals.
  • the organic EL elements 6 to 10 by adopting a configuration including a plurality of light emitting layers 14A and 14B, as described above, color mixing is expressed by controlling the wavelength of each light emitting layer, and the like. It becomes easy to obtain an arbitrary color tone.
  • the plurality of light emitting layers are represented by two light emitting layers 14A and 14B.
  • the present invention is not limited to this, and the desired light emitting characteristics are taken into consideration.
  • a light emitting layer having a multilayer structure may be provided.
  • an arrow 101 shown in FIG. 7 is an arrow indicating the flow of holes h +
  • an arrow 102 is an arrow indicating the flow of electrons e +
  • An inequality sign 201b is an inequality sign indicating the magnitude of electron mobility between the electron injection layer 16 and the electron transport layer 15
  • an inequality sign 201c is an electron transfer between the electron transport layer 15 and the light emitting layer (cathode side) 14B. It is an inequality sign indicating the magnitude of degree.
  • the inequality sign 202b is an inequality sign indicating the magnitude of the hole mobility between the hole injection layer 12 and the hole transport layer 13, and the inequality sign 202c is the difference between the hole transport layer 13 and the light emitting layer (anode side) 14A. It is an inequality sign indicating the magnitude of the hole mobility between them.
  • the inequality sign 203b is an inequality sign indicating the size of hole mobility between the light emitting layer (cathode side) 14B and the light emitting layer (anode side) 14A, and the inequality sign 203c is the light emitting layer (cathode side) 14B and the light emitting layer (anode side).
  • An inequality sign indicating the magnitude of electron mobility with respect to 14A.
  • the organic EL element 1 ⁇ / b> A of the present embodiment has a plurality of light emitting layers 14 ⁇ / b> A and 14 ⁇ / b> B between the anode 11 and the cathode 17, and a cathode between the cathode 17 and the light emitting layer 14 ⁇ / b> B.
  • the electron injection layer 16 and the electron transport layer 15 are provided in this order from the 17th side, and the hole injection layer 12 and the hole transport layer 13 are provided in order from the anode 11 side between the anode 11 and the light emitting layer 14A.
  • the organic EL element 1A of the present embodiment is smaller than the electron mobility mu E_EIL electron mobility mu E_ETL of the electron transport layer 15 is an electron injection layer 16, also a plurality of light-emitting layers 14A, among 14B, electronic emitting layer 14B electron mobility mu E_EML1 of which located closest to the transport layer 15 is larger configuration than the electron mobility mu E_ETL of the electron transport layer 15. Furthermore, among the plurality of light emitting layers 14A and 14B, the electron mobility ⁇ e_EML1 of the light emitting layer 14B disposed at the position closest to the electron transport layer 15 is the light emitting layer 14A disposed at the position closest to the hole transport layer 13. The electron mobility is larger than ⁇ e_EML2 .
  • the hole mobility mu H_HTL of the hole transport layer 13 is smaller than the hole mobility mu H_HIL of the hole injection layer 12, a plurality of light-emitting layers 14A, among 14B, closest to the hole transport layer 13 emitting layer 14A of the hole mobility mu H_EML2 be placed in position, there is a greater configuration than the hole mobility mu H_HTL of the hole transport layer 13. Furthermore, among the plurality of light emitting layers 14A and 14B, the hole mobility ⁇ h_EML1 of the light emitting layer 14B disposed at the position closest to the electron transport layer 15 is the position of the light emitting layer 14A disposed at the position closest to the hole transport layer 13. The hole mobility is smaller than ⁇ h_EML2 .
  • the organic EL element 1A of the present embodiment similarly to the organic EL elements 1 to 10 in the first to sixth embodiments described above, by appropriately controlling the electron mobility and the hole mobility between the respective layers. It is possible to improve the light emission efficiency by promoting charge recombination in the light emitting layers 14A and 14B, and to improve the lifetime by reducing chemically unstable radicals in the vicinity of the light emitting layers 14A and 14B. Is possible.
  • the electron mobility of the electron injection layer, the electron transport layer, and the light emitting layer 14B by appropriately controlling the electron mobility of the electron injection layer, the electron transport layer, and the light emitting layer 14B, an appropriate amount of electrons transported to the light emitting layer 14B does not penetrate through the light emitting layer 14A.
  • the organic EL element 1A by adopting a configuration including a plurality of light emitting layers 14A and 14B, as in the organic EL elements 6 to 10 of the fourth embodiment, the wavelength of each light emitting layer can be adjusted. It is possible to obtain a mixed color by controlling to obtain an arbitrary color tone. Furthermore, according to the organic EL element 1A, the luminous efficiency is further improved by suppressing the penetration of electrons from the light emitting layer 14A, that is, the penetration of holes from the light emitting layer 14B. The effect of being obtained. In the example shown in FIG. 7, the plurality of light-emitting layers are represented by two light-emitting layers 14A and 14B. However, as in the fourth embodiment, the present invention is not limited to this. Further, a light emitting layer having a multilayer structure may be used in consideration of light emitting characteristics.
  • the hole mobility mu H_HTL of the hole transport layer 13 is smaller than the hole mobility mu H_HIL of the hole injection layer 12
  • hole mobility of the light-emitting layer 14 (14A) degree ⁇ h_ ML ( ⁇ h_HML2) is larger configuration than the hole mobility mu H_HTL of the hole transport layer 13, employs at least one of configuration.
  • charge recombination is promoted, luminous efficiency is improved, and lifetime can be improved by reducing chemically unstable radicals in the vicinity of the light emitting layer 14 (14A, 14B). Therefore, it is possible to realize an organic EL element with high luminous efficiency and long life.
  • the light emitting layer provided in the organic EL devices prepared in Examples 1 to 3 and Comparative Examples 1 to 3 is composed of a mixture of a light emitter and a host compound.
  • the main material involved in the charge transport is a host material (a material having a high mixing ratio), so the charge mobility of the light-emitting layer is replaced by the charge mobility of the host compound.
  • the material having a high mixing ratio is the main material related to the charge transport of the corresponding layer, and therefore the charge mobility of the corresponding layer is Substitute the charge mobility of compounds with a high ratio.
  • Example 1 An organic EL device in which the electron mobility of the electron transport layer was smaller than the electron mobility of the electron injection layer and the electron mobility of the light emitting layer was larger than the electron mobility of the electron transport layer was produced. Specifically, a substrate with ITO (Indium Tin Oxide) in which two ITO electrodes with a width of 4 mm serving as an anode are formed in a stripe pattern on one surface of a 25 mm square glass substrate (manufactured by Nippon Electric Co., Ltd.) An organic light emitting device was fabricated using ITO (Indium Tin Oxide) in which two ITO electrodes with a width of 4 mm serving as an anode are formed in a stripe pattern on one surface of a 25 mm square glass substrate (manufactured by Nippon Electric Co., Ltd.) An organic light emitting device was fabricated using ITO (Indium Tin Oxide) in which two ITO electrodes with a width of 4 mm serving as an anode are formed in a stripe pattern on one surface
  • m-MTDATA represented by Chemical Formula 1 40 nm of m-MTDATA represented by Chemical Formula 1 was formed on the ITO electrode by a vacuum deposition method to form a hole injection layer and a hole transport layer.
  • the phosphor PH-1 represented by Chemical Formula 2 and the host compound PyTMB represented by Chemical Formula 3 are co-evaporated to a weight ratio of 10:90 to form a light-emitting layer having a thickness of 20 nm. did.
  • Alq3 represented by Chemical Formula 4 was deposited to a thickness of 20 nm by vacuum deposition to form an electron transport layer, and then BCP and Cs represented by Chemical Formula 5 were co-deposited (weight) Ratio 20: 1), an electron injection layer having a thickness of 20 nm was stacked and formed.
  • an aluminum layer having a thickness of 150 nm is stacked on the electron injection layer by an evaporation method, so that 3 mm ⁇ 2 cathodes arranged in stripes are orthogonal to the extending direction of the anode.
  • four organic EL elements having a length of 4 mm and a width of 3 mm in plan view were produced.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 1 except that OXD-7 represented by Chemical Formula 6 was used instead of PyTMB represented by Chemical Formula 3 as the host material of the light emitting layer.
  • OXD-7 represented by Chemical Formula 6 was used instead of PyTMB represented by Chemical Formula 3 as the host material of the light emitting layer.
  • the maximum emission external quantum efficiency and luminance half-life were determined and shown in Table 2 above.
  • Example 2 In Example 2, the hole mobility of the hole transport layer 13 is smaller than the hole mobility of the hole injection layer 12, and the hole mobility of the light emitting layer 14 is the hole mobility of the hole transport layer 13.
  • An organic EL element larger than the above degree was produced. Specifically, first, pTmTDMPD (synthesized according to the method described in International Publication WO2011 / 052625) (100 parts by mass), which is a triarylamine derivative represented by Chemical Formula 7, and Chemical Formula 8 F4TCNQ (Aldrich) (5 parts by mass), which is an electron-accepting compound, was dissolved in toluene, and a solution was prepared so that the solid content concentration was 0.8% by mass.
  • m-TTA represented by Chemical Formula 9 was formed to a thickness of 10 nm on the hole injection layer by a vacuum deposition method to form a hole transport layer.
  • the phosphor PH-2 represented by the chemical formula 10 and the host compound BFA-1T represented by the chemical formula 11 were co-evaporated so as to have a weight ratio of 10:90, and a light-emitting layer having a thickness of 20 nm was formed.
  • a film was formed.
  • PyTMB represented by Chemical Formula 3 was formed to a thickness of 40 nm by vacuum deposition to form an electron injection layer and an electron transport layer, and then a 0.5 nm sodium fluoride layer and a 150 nm thickness were further formed.
  • An organic EL element was produced by depositing a cathode made of an aluminum layer in this order to form a laminated film.
  • Comparative Example 2 an organic light emitting device was fabricated in the same manner as in Example 2, except that TPPCz represented by Chemical Formula 12 was used instead of BFA-1T represented by Chemical Formula 11 as the host compound of the light emitting layer.
  • TPPCz represented by Chemical Formula 12 was used instead of BFA-1T represented by Chemical Formula 11 as the host compound of the light emitting layer.
  • the maximum emission external quantum efficiency and luminance half-life were determined and shown in Table 2 above.
  • Example 3 The organic EL element produced in Example 3 was formed by laminating two light emitting layers.
  • the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer, and the light emission disposed in the position closest to the electron transport layer among the plurality of light emitting layers.
  • the electron mobility of the layer is larger than the electron mobility of the electron transport layer.
  • the electron mobility of the light emitting layer disposed at the position closest to the electron transport layer is configured to be greater than the electron mobility of the light emitting layer disposed at the position closest to the hole transport layer. ing.
  • the hole mobility of the hole transport layer is smaller than the hole mobility of the hole injection layer, and the hole mobility of the light emitting layer arranged at the position closest to the hole transport layer among the plurality of light emitting layers The degree is higher than the hole mobility of the hole transport layer.
  • the hole mobility of the light emitting layer disposed at the position closest to the hole transport layer is larger than the hole mobility of the hole transport layer, and among the plurality of light emitting layers, The hole mobility of the light emitting layer disposed at the position closest to the electron transport layer is configured to be smaller than the hole mobility of the light emitting layer disposed at the position closest to the hole transport layer.
  • Example 2 a hole injection layer, a hole transport layer, and a light emitting layer containing the phosphor PH-2 represented by Chemical Formula 10 were formed on a glass substrate with an ITO film. The layers were sequentially stacked. Next, on this light emitting layer, a light emitting layer containing the light emitter PH-1 represented by Chemical Formula 2, an electron transport layer, an electron injection layer, and a cathode were laminated in this order by the same method as in Example 1. By forming, an organic EL element was produced.
  • Comparative Example 3 an organic EL device was produced in the same manner as in Example 3 except that TPPCz represented by Chemical Formula 12 was used instead of BFA-1T represented by Chemical Formula 11 as the host compound of the light emitting layer.
  • TPPCz represented by Chemical Formula 12 was used instead of BFA-1T represented by Chemical Formula 11 as the host compound of the light emitting layer.
  • the maximum emission external quantum efficiency and luminance half-life were determined and shown in Table 2 above.
  • the maximum light emission external quantum efficiency is 7.5 to 10. 9%, which is inferior to Examples 1 to 3, and the luminance half-life is 300 to 700 hours, which is significantly shorter than Examples 1 to 3.
  • the relationship between the electron mobility between the electron injection layer, the electron transport layer, and the light emitting layer in addition to the relationship between the hole injection layer, the hole transport layer, and the light emitting layer. It is clear that both the light emission efficiency and the lifetime characteristics are improved by setting the relationship between the electron mobility or the hole mobility to the conditions defined in the present invention.
  • the organic EL device according to the present invention is excellent in light emission characteristics and lifetime characteristics, for example, various displays used for televisions, computer monitors, consumer TVs, large display displays, mobile phones, various portable terminals, and the like. It is suitable for various lighting devices such as a device, a backlight for liquid crystal, in-vehicle lighting, and indoor lighting.
  • an electron transport layer and a light emitting layer (cathode side) in the seventh embodiment An inequality sign indicating the magnitude of electron mobility between the holes, 202a... An inequality sign indicating the magnitude of hole mobility between the hole transport layer and the light emitting layer, 202b... Between the hole injection layer and the hole transport layer. An inequality sign indicating the magnitude of hole mobility, 202c... Inequality sign indicating the magnitude of hole mobility between layers (anode side), 203b... The magnitude of hole mobility between the light emitting layer (cathode side) and the light emitting layer (anode side) in the seventh embodiment , An inequality sign indicating the magnitude of electron mobility between the light emitting layer (cathode side) and the light emitting layer (anode side) in the seventh embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This organic EL element has a light-emitting layer between an anode and a cathode, and is provided with an electron injection layer and an electron transport layer, in that order from the cathode side, between the cathode and the light-emitting layer; the electron mobility of the electron transport layer being less than the electron mobility of the electron injection layer, and the electron mobility of the light-emitting layer being greater than the electron mobility of the electron transport layer.

Description

有機EL素子Organic EL device
 本発明は、有機EL素子に関する。
 本願は、2012年11月27日に、日本に出願された特願2012-258907号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an organic EL element.
This application claims priority based on Japanese Patent Application No. 2012-258907 filed in Japan on November 27, 2012, the contents of which are incorporated herein by reference.
 有機EL素子の低電圧高効率化の技術として、非常に電子移動度の高い電子注入層が報告されており、これらを用いることで、有機EL素子を著しく低電圧化できることが確認されている(例えば、特許文献1、2参照)。 Electron injection layers with very high electron mobility have been reported as techniques for increasing the voltage and efficiency of organic EL elements, and it has been confirmed that the use of these can significantly reduce the voltage of organic EL elements ( For example, see Patent Documents 1 and 2).
 しかし、特許文献1、2に記載のような技術の場合、発光層に注入される電子の量が正孔の量よりも過剰となり、電子の量と正孔の量とのバランスを欠くため、発光層を電子が通り抜ける割合が高くなってしまうことが多い。従って、電流は正孔と電子の流れを合せたものであるから、電流は多く流れるものの、発光量はそれほど多くならない。つまり、十分な発光効率が得られず、寿命も短いという問題があった。 However, in the case of the techniques described in Patent Documents 1 and 2, the amount of electrons injected into the light emitting layer becomes excessive than the amount of holes, and the balance between the amount of electrons and the amount of holes is lacking. In many cases, the rate at which electrons pass through the light emitting layer increases. Therefore, since the current is a combination of the flow of holes and electrons, a large amount of current flows, but the amount of light emission does not increase so much. That is, there is a problem that sufficient luminous efficiency cannot be obtained and the lifetime is short.
 上記問題を解決するため、特許文献3では、電子移動度の高い電子注入層と、電子注入抑制層を組み合わせることにより、電子の量と正孔の量とのバランスが改善して、有機EL素子の発光効率、寿命が向上することが報告されている。すなわち、電子移動度の視点からは、電子注入抑制層の電子移動度が、電子注入層の電子移動度よりも小さいために、発光層に注入される電子の量が抑えられることによって正孔の量とバランスし、発光効率、寿命の向上に寄与したと考えられる。 In order to solve the above problem, in Patent Document 3, by combining an electron injection layer having a high electron mobility and an electron injection suppression layer, the balance between the amount of electrons and the amount of holes is improved, and an organic EL element is obtained. It has been reported that the light emission efficiency and lifetime of this product are improved. That is, from the viewpoint of electron mobility, since the electron mobility of the electron injection suppression layer is smaller than the electron mobility of the electron injection layer, the amount of electrons injected into the light-emitting layer is suppressed, so that It is thought that it contributed to the improvement of luminous efficiency and lifetime in balance with the amount.
特開平9-087616号公報Japanese Patent Laid-Open No. 9-087616 特開平9-194487号公報JP-A-9-194487 特開2009-239309号公報JP 2009-239309 A
 しかしながら、特許文献3の構成では、電子注入抑制層と発光層との界面に電荷が溜まってしまい、発光効率のさらなる向上を阻み、また、かかる電荷は化学的に不安定なラジカルとなるので、有機層(発光層)を劣化させ、素子の寿命のさらなる向上を阻んでいた。 However, in the configuration of Patent Document 3, charges accumulate at the interface between the electron injection suppression layer and the light emitting layer, preventing further improvement in light emission efficiency, and such charges become chemically unstable radicals. The organic layer (light emitting layer) was deteriorated, preventing further improvement of the device lifetime.
 本発明は上記問題に鑑みてなされたものであり、発光効率が高く、かつ、寿命が向上した有機EL素子を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an organic EL element having high luminous efficiency and improved lifetime.
 本発明者等は、上記問題を解決するために鋭意研究を重ねた。この結果、上記の電子移動度について、さらに、発光層の方が電子輸送層(電子注入抑制層)よりも電子移動度が大きくなるように構成することにより、電荷再結合を促進して発光効率を向上させることができるとともに、発光層近傍の化学的に不安定なラジカルを減少させて寿命も向上させることが可能となることを見出した。さらに、同様に、正孔移動度についても、発光層の方が正孔輸送層(正孔注入抑制層)よりも大きな正孔移動度となるように構成することで、電荷再結合を促進して発光効率を向上させることができるとともに、発光層近傍の化学的に不安定なラジカルを減少させて寿命を向上させることができることを見出し、本発明を完成させた。
 即ち、上記の目的を達成するために、本発明は以下の手段を提供する。
The inventors of the present invention have made extensive studies to solve the above problems. As a result, with respect to the above electron mobility, the light emitting layer is further configured to have a higher electron mobility than the electron transport layer (electron injection suppression layer), thereby promoting charge recombination and improving light emission efficiency. It has been found that the lifetime can be improved by reducing chemically unstable radicals in the vicinity of the light emitting layer. Furthermore, similarly, regarding the hole mobility, the light emitting layer is configured to have a higher hole mobility than the hole transport layer (hole injection suppression layer), thereby promoting charge recombination. Thus, the present inventors have found that the luminous efficiency can be improved and the lifetime can be improved by reducing chemically unstable radicals in the vicinity of the light emitting layer.
That is, in order to achieve the above object, the present invention provides the following means.
 [1] 陽極と陰極の間に発光層を有する有機EL素子であって、前記陰極と前記発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備え、前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、前記発光層の電子移動度が前記電子輸送層の電子移動度よりも大きいことを特徴とする有機EL素子。
 [2] 前記陽極と前記発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備えることを特徴とする上記[1]に記載の有機EL素子。
 [3] 陽極と陰極の間に発光層を有する有機EL素子であって、前記陽極と前記発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、前記発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きいことを特徴とする有機EL素子。
 [4] 前記陰極と前記発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備えることを特徴とする上記[3]に記載の有機EL素子。
 [5] 陽極と陰極の間に発光層を有する有機EL素子であって、前記陰極と前記発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備えると共に、前記陽極と前記発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、前記発光層の電子移動度が前記電子輸送層の電子移動度よりも大きく、前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、前記発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きいことを特徴とする有機EL素子。
[1] An organic EL device having a light emitting layer between an anode and a cathode, comprising an electron injection layer and an electron transport layer in order from the cathode side between the cathode and the light emitting layer, An organic EL element, wherein an electron mobility is smaller than an electron mobility of the electron injection layer, and an electron mobility of the light emitting layer is larger than an electron mobility of the electron transport layer.
[2] The organic EL device according to [1], wherein a hole injection layer and a hole transport layer are provided in this order from the anode side between the anode and the light emitting layer.
[3] An organic EL device having a light emitting layer between an anode and a cathode, comprising a hole injection layer and a hole transport layer in that order from the anode side between the anode and the light emitting layer, The hole mobility of the transport layer is smaller than the hole mobility of the hole injection layer, and the hole mobility of the light emitting layer is larger than the hole mobility of the hole transport layer EL element.
[4] The organic EL device according to [3], wherein an electron injection layer and an electron transport layer are provided in this order from the cathode side between the cathode and the light emitting layer.
[5] An organic EL device having a light emitting layer between an anode and a cathode, comprising an electron injection layer and an electron transport layer in that order from the cathode side between the cathode and the light emitting layer, Between the light emitting layer, a hole injection layer and a hole transport layer are provided in this order from the anode side, the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer, and the electron mobility of the light emitting layer The mobility of the electron transport layer is greater than the mobility of the hole transport layer, the mobility of the hole transport layer is smaller than the mobility of the hole injection layer, and the mobility of the light emitting layer is greater than the positive mobility. An organic EL element characterized by being larger than the hole mobility of the hole transport layer.
 [6] 陽極と陰極の間に、複数の発光層を有する有機EL素子であって、前記陰極と前記複数の発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備え、前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、前記複数の発光層のうち、前記電子輸送層に最も近い位置に配置する発光層の電子移動度が前記電子輸送層の電子移動度よりも大きいことを特徴とする有機EL素子。
 [7] 前記陽極と前記複数の発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備えることを特徴とする上記[6]に記載の有機EL素子。
 [8] 陽極と陰極の間に、複数の発光層を有する有機EL素子であって、前記陽極と前記複数の発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、前記複数の発光層のうち、前記正孔輸送層に最も近い位置に配置する発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きいことを特徴とする有機EL素子。
 [9] 前記陰極と前記複数の発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備えることを特徴とする上記[8]に記載の有機EL素子。
 [10] 陽極と陰極の間に、複数の発光層を有する有機EL素子であって、前記陰極と前記複数の発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備える共に、前記陽極と前記複数の発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、前記複数の発光層のうち、前記電子輸送層に最も近い位置に配置する発光層の電子移動度が前記電子輸送層の電子移動度よりも大きく、前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、前記複数の発光層のうち、前記正孔輸送層に最も近い位置に配置する発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きいことを特徴とする有機EL素子。
[6] An organic EL device having a plurality of light emitting layers between an anode and a cathode, comprising an electron injection layer and an electron transport layer in order from the cathode side between the cathode and the plurality of light emitting layers, The electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer, and the electron mobility of the light emitting layer disposed at a position closest to the electron transport layer among the plurality of light emitting layers is the electron transport. An organic EL element characterized by being larger than the electron mobility of the layer.
[7] The organic EL device according to [6], wherein a hole injection layer and a hole transport layer are provided in this order from the anode side between the anode and the plurality of light emitting layers.
[8] An organic EL device having a plurality of light emitting layers between an anode and a cathode, wherein a hole injection layer and a hole transport layer are arranged in order from the anode side between the anode and the plurality of light emitting layers. A hole mobility of the hole transport layer is smaller than a hole mobility of the hole injection layer, and a light emitting layer disposed at a position closest to the hole transport layer among the plurality of light emitting layers. An organic EL device having a hole mobility larger than that of the hole transport layer.
[9] The organic EL device according to [8], wherein an electron injection layer and an electron transport layer are provided between the cathode and the light emitting layers in order from the cathode side.
[10] An organic EL device having a plurality of light emitting layers between an anode and a cathode, and having an electron injection layer and an electron transport layer in order from the cathode side between the cathode and the plurality of light emitting layers. And a hole injection layer and a hole transport layer in order from the anode side between the anode and the plurality of light emitting layers, and the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer. The electron mobility of the light emitting layer disposed at the position closest to the electron transport layer among the plurality of light emitting layers is larger than the electron mobility of the electron transport layer, and the hole mobility of the hole transport layer is The hole mobility of the light-emitting layer that is smaller than the hole mobility of the hole-injection layer and is arranged closest to the hole-transport layer among the plurality of light-emitting layers is the hole of the hole-transport layer. An organic EL element characterized by being larger than a mobility.
 [11] 陽極と陰極の間に、複数の発光層を有する有機EL素子であって、前記陰極と前記複数の発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備えると共に、前記陽極と前記複数の発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、前記複数の発光層のうち、前記電子輸送層に最も近い位置に配置する発光層の電子移動度が前記電子輸送層の電子移動度よりも大きく、前記複数の発光層のうち、前記正孔輸送層に最も近い位置に配置する発光層の電子移動度が前記電子輸送層に最も近い位置に配置する発光層の電子移動度よりも小さく、前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、前記複数の発光層のうち、前記正孔輸送層に最も近い位置に配置する発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きく、前記複数の発光層のうち、前記電子輸送層に最も近い位置に配置する発光層の正孔移動度が前記正孔輸送層に最も近い位置に配置する発光層の正孔移動度よりも小さい、ことを特徴とする有機EL素子。 [11] An organic EL device having a plurality of light emitting layers between an anode and a cathode, and having an electron injection layer and an electron transport layer in order from the cathode side between the cathode and the plurality of light emitting layers. And a hole injection layer and a hole transport layer in order from the anode side between the anode and the plurality of light emitting layers, and the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer. The electron mobility of the light emitting layer disposed at a position closest to the electron transport layer among the plurality of light emitting layers is larger than the electron mobility of the electron transport layer, and the hole of the plurality of light emitting layers is the hole. The electron mobility of the light emitting layer disposed closest to the transport layer is smaller than the electron mobility of the light emitting layer disposed closest to the electron transport layer, and the hole mobility of the hole transport layer is greater than the positive mobility. Less than the hole mobility of the hole injection layer, Among the layers, the hole mobility of the light emitting layer disposed at a position closest to the hole transport layer is larger than the hole mobility of the hole transport layer, and the electron transport layer among the plurality of light emitting layers. An organic EL element, wherein the hole mobility of the light emitting layer disposed at a position closest to the hole is smaller than the hole mobility of the light emitting layer disposed at a position closest to the hole transport layer.
 本発明に係る有機EL素子によれば、上述のような、陽極と陰極の間に発光層を有する構造において、陰極と発光層の間に、陰極側から、電子注入層と電子輸送層とを順次備え、電子輸送層の電子移動度が電子注入層の電子移動度よりも小さく、発光層の電子移動度が電子輸送層の電子移動度よりも大きい構成を採用している。あるいは、陽極と発光層の間に、陰極側から、正孔注入層と正孔輸送層とを順次備え、正孔輸送層の正孔移動度が正孔注入層の正孔移動度よりも小さく、発光層の正孔移動度が正孔輸送層の正孔移動度よりも大きい構成を採用している。上記の、少なくとも何れかの構成を採用することにより、電荷再結合が促進され、発光効率が向上するとともに、発光層近傍の化学的に不安定なラジカルを減少させることで、寿命も向上させることができる。従って、発光効率が高く、かつ、長寿命の有機EL素子を実現することが可能となる。 According to the organic EL device of the present invention, in the structure having the light emitting layer between the anode and the cathode as described above, the electron injection layer and the electron transport layer are provided between the cathode and the light emitting layer from the cathode side. A structure is adopted in which the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer, and the electron mobility of the light emitting layer is larger than the electron mobility of the electron transport layer. Alternatively, a hole injection layer and a hole transport layer are sequentially provided between the anode and the light emitting layer from the cathode side, and the hole mobility of the hole transport layer is smaller than the hole mobility of the hole injection layer. The structure in which the hole mobility of the light emitting layer is larger than the hole mobility of the hole transport layer is adopted. By adopting at least one of the above-mentioned structures, charge recombination is promoted, luminous efficiency is improved, and lifetime is also improved by reducing chemically unstable radicals in the vicinity of the light emitting layer. Can do. Therefore, it is possible to realize an organic EL element with high luminous efficiency and long life.
図1は、本発明の第1の実施形態である有機EL素子1を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an organic EL element 1 according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態である有機EL素子3を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an organic EL element 3 according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態である有機EL素子5を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an organic EL element 5 according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態である有機EL素子6を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an organic EL element 6 according to the fourth embodiment of the present invention. 図5は、本発明の第5の実施形態である有機EL素子8を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing an organic EL element 8 according to the fifth embodiment of the present invention. 図6は、本発明の第6の実施形態である有機EL素子10を模式的に示す断面図である。FIG. 6 is a sectional view schematically showing an organic EL element 10 according to the sixth embodiment of the present invention. 図7は、本発明の第7の実施形態である有機EL素子1Aを模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an organic EL element 1A according to a seventh embodiment of the present invention. 図8は、本発明の第1の実施形態における有機EL素子2を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing the organic EL element 2 in the first embodiment of the present invention. 図9は、本発明の第2の実施形態における有機EL素子4を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing the organic EL element 4 in the second embodiment of the present invention. 図10は、本発明の第4の実施形態である有機EL素子7を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an organic EL element 7 according to the fourth embodiment of the present invention. 図11は、本発明の第5の実施形態である有機EL素子9を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing an organic EL element 9 according to the fifth embodiment of the present invention.
 以下、本発明の有機EL素子の実施の形態について、図1~図11を適宜参照しながら説明する。
 なお、図1~図11において、各図中に示す矢印101(図中、上向きの矢印)は、正孔の流れを示す矢印であり、矢印102(図中、下向きの矢印)は、電子の流れを示す矢印である。また、図1~図11中に示した不等号記号(各図中において縦書きで表記)は、各々、各層間の電子または正孔の移動度の大きさの関係を示し、不等号記号の開口が向く側の層が、その反対側の層に較べて移動度が大きいことを示している。
 なお、移動度が未知の層については、例えば、タイムオブフライト法(TOF法)により測定を行うことができる。
Hereinafter, embodiments of the organic EL element of the present invention will be described with reference to FIGS. 1 to 11 as appropriate.
1 to 11, an arrow 101 (upward arrow in the figure) shown in each figure is an arrow showing a flow of holes, and an arrow 102 (downward arrow in the figure) is an electron flow. It is the arrow which shows a flow. In addition, the inequality symbols shown in FIGS. 1 to 11 (indicated by vertical writing in the respective drawings) indicate the relationship between the mobility of electrons or holes between the layers, and the opening of the inequality symbol is This indicates that the facing layer has a higher mobility than the opposite layer.
In addition, about a layer with unknown mobility, it can measure by the time of flight method (TOF method), for example.
[第1の実施形態]
 本実施形態で説明する有機EL素子1は、図1中に例示するように、陽極11と陰極17の間に発光層14を有するものであり、陰極17と発光層14の間に、陰極17側から順に電子注入層16と電子輸送層15を備えて概略構成されている。この有機EL素子1は、有機EL素子を支持する図示略の支持基板上に、陽極11、発光層14、電子輸送層15、電子注入層16及び陰極17が順次積層されている。ここで、図1中に示す矢印102は、電子eの流れの方向を示す矢印である。不等号201aは電子輸送層15と発光層14との間の電子移動度の大小を示す不等号である。不等号201bは電子注入層16と電子輸送層15との間の電子移動度の大小を示す不等号である。
[First Embodiment]
As illustrated in FIG. 1, the organic EL element 1 described in the present embodiment includes a light emitting layer 14 between an anode 11 and a cathode 17, and a cathode 17 between the cathode 17 and the light emitting layer 14. An electron injection layer 16 and an electron transport layer 15 are provided in order from the side, and are schematically configured. In the organic EL element 1, an anode 11, a light emitting layer 14, an electron transport layer 15, an electron injection layer 16, and a cathode 17 are sequentially stacked on a support substrate (not shown) that supports the organic EL element. Here, an arrow 102 shown in FIG. 1 is an arrow indicating the direction of the flow of electrons e . The inequality sign 201a is an inequality sign indicating the magnitude of the electron mobility between the electron transport layer 15 and the light emitting layer 14. The inequality sign 201b is an inequality sign indicating the magnitude of the electron mobility between the electron injection layer 16 and the electron transport layer 15.
 そして、本実施形態の有機EL素子1においては、電子輸送層15の電子移動度μe_ETLが電子注入層16の電子移動度μe_EILよりも小さくなるように、かつ、発光層14の電子移動度μe_EMLが電子輸送層15の電子移動度よりも大きくなるように、各層に使用される材料を選定する。
 ここで、本発明において説明する電子移動度とは、固体物質中での電子の移動のしやすさを示す値であり、電子の速度V1と電界Eとの比V1/Eとして定義される。
Then, in the organic EL device 1 of the present embodiment, as the electron mobility mu E_ETL of the electron transport layer 15 is smaller than the electron mobility mu E_EIL of the electron injection layer 16, and the electron mobility of the light-emitting layer 14 The material used for each layer is selected so that μ e_EML is larger than the electron mobility of the electron transport layer 15.
Here, the electron mobility described in the present invention is a value indicating the ease of movement of electrons in the solid material, and is defined as the ratio V1 / E of the electron velocity V1 and the electric field E.
 本発明で用いられる支持基板としては、透光性材料からなる基板が挙げられ、本実施形態の有機EL素子1は、この透光性基板上に、上記層構造が形成されてなる。上述のような透光性を有する支持基板としては、400~700nmの可視光における透過率が50%以上で、平滑な基板であることが好ましい。このような支持基板として、具体的には、例えば、ガラス板やポリマー板等が挙げられる。ここで、ガラス板の材料としては、特に、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。また、ポリマー板の材料としては、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等が挙げられる。 Examples of the support substrate used in the present invention include a substrate made of a translucent material, and the organic EL element 1 of the present embodiment has the above layer structure formed on the translucent substrate. As the above-described light-transmitting supporting substrate, a transparent substrate having a transmittance of visible light of 400 to 700 nm of 50% or more is preferable. Specific examples of such a support substrate include a glass plate and a polymer plate. Here, examples of the glass plate material include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the material for the polymer plate include polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
 陽極11は、正孔を発光層14に注入するものであり、4.5eV以上の仕事関数を有する電極材料からなることが好ましい。具体的には、陽極11として、酸化インジウム錫合金(ITO)、酸化インジウム亜鉛合金(IZO)、酸化錫(NESA)、金、銀、白金、銅等の材料を用いることができる。また、陽極11は、上記電極物質を、蒸着法やスパッタリング法等の方法を用いて、支持基板上に薄膜として成膜することによって形成することができる。 The anode 11 is for injecting holes into the light emitting layer 14 and is preferably made of an electrode material having a work function of 4.5 eV or more. Specifically, a material such as indium tin oxide alloy (ITO), indium zinc oxide alloy (IZO), tin oxide (NESA), gold, silver, platinum, or copper can be used for the anode 11. The anode 11 can be formed by depositing the electrode material as a thin film on a supporting substrate using a method such as vapor deposition or sputtering.
 ここで、発光層14からの発光を陽極11から取り出す場合、陽極11の発光に対する透過率が10%超となるように、陽極材料や膜厚を適正化することが好ましい。
 また、陽極11のシート抵抗は、数百Ω/□以下であることが好ましい。
 また、陽極11の膜厚は、材料にもよるが、上述した透過率やシート抵抗等を勘案しながら、通常、10nm~1μm程度、より好ましくは50~200nmの範囲とすることができる。
Here, when light emitted from the light emitting layer 14 is taken out from the anode 11, it is preferable to optimize the anode material and the film thickness so that the transmittance of the light emitted from the anode 11 exceeds 10%.
The sheet resistance of the anode 11 is preferably several hundred Ω / □ or less.
Further, although the film thickness of the anode 11 depends on the material, it can be generally in the range of about 10 nm to 1 μm, more preferably in the range of 50 to 200 nm in consideration of the above-described transmittance and sheet resistance.
 発光層14は、主として、陰極から供給された電子と、陽極から供給された正孔を再結合させることにより、励起状態を生成し、これを発光につなげるための層である。また、本実施形態の有機EL素子1に備えられる発光層14は、後述の電子輸送層15よりも電子移動度が大きい構成とされている。 The light emitting layer 14 is a layer for generating an excited state mainly by recombining electrons supplied from the cathode and holes supplied from the anode, and connecting this to light emission. Moreover, the light emitting layer 14 provided in the organic EL element 1 of the present embodiment is configured to have a higher electron mobility than an electron transport layer 15 described later.
 発光層14は、注入された電荷(電子と正孔)を電界の力で移動させる輸送機能を有しており、さらに、発光層14は、上述の如く、電子と正孔の電荷再結合の場を提供することにより、これを発光につなげる発光機能を有するものである。
 但し、本実施形態の発光層14においては、正孔と電子の移動度で表される両電荷の輸送能に大小があっても良いが、少なくとも何れか一方の電荷を輸送することが好ましい。
The light-emitting layer 14 has a transport function of moving injected charges (electrons and holes) by the force of an electric field. Further, as described above, the light-emitting layer 14 has a charge recombination of electrons and holes. By providing a field, it has a light emitting function to connect it to light emission.
However, in the light emitting layer 14 of the present embodiment, the transport ability of both charges represented by the mobility of holes and electrons may be large or small, but it is preferable to transport at least one of the charges.
 発光層14は、発光体と呼ばれる実際に発光する材料と、ホストと呼ばれる電荷を輸送する材料からなる。発光層14に用いられる材料としては、長寿命な発光材料として従来公知のものを用いることが可能であり、例えば、特開2011-139044号公報に記載の材料(特に、同公報の段落0100に記載の有機物材料、並びに、段落0101に記載の有機金属錯体材料)等を用いることができる。
 また、発光層14に用いられるホスト材料としては、例えば、特開2009-260308号公報に記載の材料(特に、同公報の段落0049に記載の正孔輸送性を有するホスト材料、並びに、段落0054に記載の電子輸送性を有するホスト材料)等を用いることができる。
 発光層14には、上記の発光層14に用いることができる材料の中から、その電子移動度が電子輸送層15の電子移動度μe_ETLよりも大きくなるような材料を選定する。
The light emitting layer 14 is made of a material that actually emits light called a light emitter and a material that transports charges called a host. As the material used for the light-emitting layer 14, a conventionally known light-emitting material having a long lifetime can be used. For example, a material described in Japanese Patent Application Laid-Open No. 2011-139044 (particularly, in paragraph 0100 of the same publication). The organic materials described in the above, and the organometallic complex materials described in paragraph 0101) can be used.
Examples of the host material used for the light-emitting layer 14 include materials described in JP-A-2009-260308 (in particular, host materials having hole transport properties described in paragraph 0049 of the same publication, and paragraph 0054). Or a host material having an electron transporting property described in 1).
For the light-emitting layer 14, a material whose electron mobility is higher than the electron mobility μ e_ETL of the electron transport layer 15 is selected from the materials that can be used for the light-emitting layer 14.
 なお、本実施形態の有機EL素子1に備えられる発光層14を形成する方法としては、例えば、蒸着法、スピンコート法、LB法等の公知の方法を適用して、上記材料を成膜する方法を採用することができる。この場合、発光層14は、特に、分子堆積膜であることが好ましい。ここで、分子堆積膜とは、気相状態の材料化合物から沈着して形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化して形成された膜のことである。このような分子堆積膜は、通常、LB法によって形成された薄膜(分子累積膜)とは、凝集構造、高次構造の相違や、それに起因する機能的な相違によって区分することができる。
また、上記方法以外にも、例えば、樹脂等の結着剤と材料化合物とを溶剤に溶かして分散溶液とした後、これをスピンコート法等によって薄膜化する方法を適用することでも、発光層14を形成することができる。
In addition, as a method of forming the light emitting layer 14 provided in the organic EL element 1 of the present embodiment, for example, a known method such as a vapor deposition method, a spin coating method, or an LB method is applied to form the above material into a film. The method can be adopted. In this case, the light emitting layer 14 is particularly preferably a molecular deposition film. Here, the molecular deposition film refers to a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state. Such a molecular deposition film can be generally distinguished from a thin film (molecular accumulation film) formed by the LB method by a difference in an agglomerated structure and a higher-order structure and a functional difference resulting therefrom.
In addition to the above method, for example, a light emitting layer can be obtained by applying a method in which a binder such as a resin and a material compound are dissolved in a solvent to form a dispersion solution and then thinned by a spin coating method or the like. 14 can be formed.
 電子輸送層15は、陰極17から電子注入層16を介して発光層14に注入される電子に関し、電子注入層16から注入された電子を、適切な移動度を以って、電子の流れを調整しながら発光層14に輸送し、陰極17から注入される電子と陽極11から注入される正孔とのバランスを図る層である。このため、本実施形態では、電子輸送層15の電子移動度を、後述の電子注入層16の電子移動度よりも小さくし、かつ、上述した発光層14の電子移動度よりも小さくしている。 The electron transport layer 15 relates to electrons injected from the cathode 17 into the light-emitting layer 14 via the electron injection layer 16, and the electrons injected from the electron injection layer 16 are flowed with appropriate mobility. This layer is transported to the light emitting layer 14 while adjusting, and is a layer for balancing the electrons injected from the cathode 17 and the holes injected from the anode 11. For this reason, in this embodiment, the electron mobility of the electron transport layer 15 is made smaller than the electron mobility of the electron injection layer 16 described later, and smaller than the electron mobility of the light emitting layer 14 described above. .
 電子輸送層15に用いられる材料は、電子の輸送を抑制する材料ではあっても、電子を流さない材料であってはいけない。このような材料としては、本発明の有機EL素子で使用される電子注入層よりも、電子移動度が低い材料を使うことができる。例えば、このような材料として、複素環誘導体であって、例えば、イミダゾール誘導体、イミダゾピリジン誘導体等の6員環と5員環が縮合したヘテロ環化合物も好適に使用できる。さらに、後述する電子注入層として使用できる含窒素環化合物、シリコン含有環化合物、及び、ホウ素化合物等も好適に使用できる。具体的には、8-ヒドロキシキノリン、又は、その誘導体の金属錯体が好適である。具体例としては、オキシン(一般に8-キノリノール、又は、8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物が挙げられ、例えば、(8-キノリノラト)アルミニウム錯体(Alq)を用いることができる。 Even if the material used for the electron transport layer 15 is a material that suppresses the transport of electrons, it should not be a material that does not allow electrons to flow. As such a material, a material having a lower electron mobility than the electron injection layer used in the organic EL device of the present invention can be used. For example, as such a material, a heterocyclic derivative, for example, a heterocyclic compound in which a 6-membered ring and a 5-membered ring are condensed, such as an imidazole derivative and an imidazopyridine derivative, can be suitably used. Furthermore, a nitrogen-containing ring compound, a silicon-containing ring compound, a boron compound, and the like that can be used as an electron injection layer to be described later can also be suitably used. Specifically, 8-hydroxyquinoline or a metal complex of a derivative thereof is preferable. Specific examples include metal chelate oxinoid compounds containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline). For example, (8-quinolinolato) aluminum complex (Alq) can be used.
 電子注入層16は、陰極17から電子輸送層15への電子の注入を促進する層である。
また、本実施形態の有機EL素子1に備えられる電子注入層16の電子移動度μe_EILは、上記の電子輸送層15の電子移動度μe_ETLよりも大きくされている。このように、電子注入層と発光層の間に、それらの層より電子移動度の小さい電子輸送層15を挿入することにより、電子輸送層15が発光層14への電子の供給を制限し、発光層14の劣化を抑制している。このような電子注入層16の材料としては、特に限定されず、この分野における従来公知の材料を用いることができ、例えば、含窒素環化合物やシリコン含有環化合物、ホウ素化合物等を好適に用いることができる。また、電子注入層16には、上記の材料の中から、その電子移動度が電子輸送層15の電子移動度μe_ETLよりも大きい材料を選定して使用する。
The electron injection layer 16 is a layer that promotes injection of electrons from the cathode 17 to the electron transport layer 15.
Further, the electron mobility μ e_EIL of the electron injection layer 16 provided in the organic EL element 1 of the present embodiment is larger than the electron mobility μ e_ETL of the electron transport layer 15 described above. Thus, by inserting the electron transport layer 15 having a lower electron mobility than those layers between the electron injection layer and the light emitting layer, the electron transport layer 15 restricts the supply of electrons to the light emitting layer 14, Deterioration of the light emitting layer 14 is suppressed. The material for the electron injection layer 16 is not particularly limited, and a conventionally known material in this field can be used. For example, a nitrogen-containing ring compound, a silicon-containing ring compound, a boron compound, or the like is preferably used. Can do. For the electron injection layer 16, a material having an electron mobility higher than the electron mobility μ e_ETL of the electron transport layer 15 is selected from the materials described above.
 ここで、有機EL素子を構成する各層において所望の電子移動度、並びに、後述の正孔移動度を実現できる材料としては、従来から各方面で研究が行われ、多くの提案がなされている。
 例えば、参考文献『Abhishek P.Kulkarni等;「Electron Transport Materials Organic Light-Emitting Diodes」;Chem.Mater.2004,16,4556-4573』には、電子輸送性材料についての開示がある(特に、同文献のTable2に記載の材料を参照)。この文献に記載された材料を、電子輸送層15や電子注入層16、また、電子輸送性の発光層14のホスト材料として使用することができる。
Here, as a material that can realize desired electron mobility and hole mobility described later in each layer constituting the organic EL element, research has been conducted in various fields and many proposals have been made.
For example, the reference “Abhisek P.A. Kulkarni et al .; “Electron Transport Materials Organic Light-Emitting Diodes”; Chem. Mater. 2004, 16, 4556-4573 ”discloses an electron transporting material (see in particular the material described in Table 2 of the same document). The material described in this document can be used as a host material for the electron transport layer 15, the electron injection layer 16, and the electron transporting light-emitting layer 14.
 また、参考文献『Yasuhiko Shirota等;「Charge Carrier Transporting Molecular Materials and Their Applications in Devices」;Chem.Rev.2007,107,953-1010』には、電子移動度や正孔移動度に関して、p型半導体材料(同文献のTable8を参照)やn型半導体材料(同文献のTable9を参照)についての開示がある。さらに、同文献には、両極性分子(同文献のTable10を参照)の他、正孔輸送性材料(同文献のTable11を参照)や電子輸送性材料(同文献のTable12を参照)、正孔輸送性材料(同文献のTable13を参照)等についての開示がある。この文献に記載の材料を、電子輸送層15、電子注入層16、正孔輸送層13、正孔注入層12、また、電子輸送性、及び、正孔輸送性の発光層14のホスト材料として使用することができる。 Also, reference documents “Yasuhiko Koshirota et al .;“ Charge Carrier Transporting Molecular Materials and Ther Applications in Devices ”; Chem. Rev. 2007, 107, 953-1010 ”discloses a p-type semiconductor material (see Table 8 in the same document) and an n-type semiconductor material (see Table 9 in the same document) regarding electron mobility and hole mobility. is there. Further, in the same document, in addition to bipolar molecules (see Table 10 in the same document), hole transporting materials (see Table 11 in the same document), electron transporting materials (see Table 12 in the same document), holes There is disclosure about a transportable material (see Table 13 of the same document) and the like. The material described in this document is used as a host material for the electron transport layer 15, the electron injection layer 16, the hole transport layer 13, the hole injection layer 12, and the light-emitting layer 14 having an electron transport property and a hole transport property. Can be used.
 また、参考文献『Lixin Xiao等;「Recent Progress on Materials for Electrophosphorescent Organic Light-Emitting Devices」;ADVANCED MATERIALS,2011,23,926-952』には、電子移動度及び正孔移動度に関して、正孔輸送性材料(同文献のTable1を参照)や、電子輸送性材料(同文献のTable2を参照)についての開示がある。この文献に記載の材料を、電子輸送層15、電子注入層16、正孔輸送層、正孔注入層、また、電子輸送性、及び、正孔輸送性の発光層のホスト材料として使用することができる。 In addition, reference literature “Lixin Xiao etc .;“ Recent Progress on Materials for Electrophosphorescent Organic Light-Emitting Devices ”;“ ADVANCED MATERIALS, 2011, 23, 926-952 ” There is a disclosure of a conductive material (see Table 1 of the same document) and an electron transport material (see Table 2 of the same document). Use the material described in this document as a host material for the electron transport layer 15, the electron injection layer 16, the hole transport layer, the hole injection layer, and the light-emitting layer having an electron transport property and a hole transport property. Can do.
 本実施形態の有機EL素子1においては、上記各参考文献を示して説明した材料の中から、電子輸送層15、電子注入層16に加え、発光層14をなす各材料に関し、電子輸送層15が電子注入層16よりも電子移動度の小さい層となるように、かつ、発光層14が電子輸送層15よりも電子移動度の大きい層となるように、各層に使用される材料を選定しても良い。上述したように、電子輸送層15の電子移動度が電子注入層16の電子移動度より小さくすることにより、過剰の電子が発光層14へ供給されることを抑制している。また、電子輸送層15の膜厚を調整することにより、発光層14に供給される電子の量を調整することができる。同時に、本実施形態では、電子輸送層15での電子移動度を発光層14での電子移動度よりも小さくすることで、電子輸送層15から供給された電子を、滞りなく発光層14内部へと輸送することができる。これにより、発光層14における電荷再結合を促進して発光効率を向上させることが可能となる。さらに、電子輸送層15の電子移動度が発光層14の電子移動度より小さいことで、電子輸送層15と発光層14の界面に、化学的に不安定なラジカルとして電荷が蓄積することを抑制することができるため、有機EL素子1の寿命を向上させることも可能となる。 In the organic EL element 1 of the present embodiment, the electron transport layer 15 is related to each material forming the light emitting layer 14 in addition to the electron transport layer 15 and the electron injection layer 16 among the materials described with reference to the above references. The material used for each layer is selected so that the electron mobility is lower than that of the electron injection layer 16 and the light emitting layer 14 is higher than the electron transport layer 15. May be. As described above, by making the electron mobility of the electron transport layer 15 smaller than the electron mobility of the electron injection layer 16, supply of excess electrons to the light emitting layer 14 is suppressed. Further, the amount of electrons supplied to the light emitting layer 14 can be adjusted by adjusting the film thickness of the electron transport layer 15. At the same time, in the present embodiment, by making the electron mobility in the electron transport layer 15 smaller than the electron mobility in the light emitting layer 14, electrons supplied from the electron transport layer 15 can enter the light emitting layer 14 without delay. And can be transported. As a result, charge recombination in the light emitting layer 14 can be promoted to improve the light emission efficiency. Furthermore, since the electron mobility of the electron transport layer 15 is smaller than the electron mobility of the light-emitting layer 14, it is possible to suppress accumulation of charges as chemically unstable radicals at the interface between the electron transport layer 15 and the light-emitting layer 14. Therefore, the lifetime of the organic EL element 1 can be improved.
 陰極17は、電子を電子注入層16または発光層14に注入するものであり、例えば、仕事関数が4eV以下と小さい金属、合金、電気伝導性化合物、及び、これらの混合物を電極物質として用いることができる。このような電極物質の具体例としては、例えば、銀、アルミニウム、白金、金、銅、チタン、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属等を挙げることができる。
 また、陰極17は、上記電極物質を、蒸着やスパッタリング等の方法によって、電子注入層16上に薄膜を成膜することで形成することができる。
The cathode 17 is for injecting electrons into the electron injection layer 16 or the light emitting layer 14. For example, a metal, an alloy, an electrically conductive compound having a work function as small as 4 eV or less, and a mixture thereof are used as an electrode material. Can do. Specific examples of such electrode materials include, for example, silver, aluminum, platinum, gold, copper, titanium, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, and aluminum / lithium alloy. , Indium, and rare earth metals.
The cathode 17 can be formed by depositing a thin film on the electron injection layer 16 by using a method such as vapor deposition or sputtering.
 ここで、発光層14からの発光を陰極17側から取り出す場合には、陰極17の発光に対する透過率が10%超となるように、その電極物質や膜厚を適正化することが好ましい。
 また、陰極17のシート抵抗は、数百Ω/□以下であることが好ましい。
 また、陰極17の膜厚は、材料にもよるが、上述した光透過率やシート抵抗等を勘案しながら、通常、10nm~1μm程度、好ましくは50~200nmの範囲とすることができる。
Here, when taking out the light emission from the light emitting layer 14 from the cathode 17 side, it is preferable to optimize the electrode material and film thickness so that the transmittance of the cathode 17 with respect to the light emission exceeds 10%.
The sheet resistance of the cathode 17 is preferably several hundred Ω / □ or less.
Further, although the film thickness of the cathode 17 depends on the material, it can be generally in the range of about 10 nm to 1 μm, preferably in the range of 50 to 200 nm, taking into consideration the above-described light transmittance and sheet resistance.
 なお、本実施形態においては、図1に示すような構造に限定されるものではなく、例えば、図8に示す例のように、陽極11と発光層14の間に、さらに、陽極11側から順に正孔注入層12と正孔輸送層13を備えた有機EL素子2のような構成としても良い。この有機EL素子2のような構成とした場合にも、上述と同じように、電子輸送層15を電子注入層16よりも電子移動度の小さい層とし、かつ、発光層14を電子輸送層15よりも電子移動度の大きい層とすることにより、発光効率及び寿命特性が向上する効果が得られる。 In the present embodiment, the structure is not limited to that shown in FIG. 1. For example, as in the example shown in FIG. 8, between the anode 11 and the light emitting layer 14 and further from the anode 11 side. It is good also as a structure like the organic EL element 2 provided with the positive hole injection layer 12 and the positive hole transport layer 13 in order. Even when the organic EL element 2 is configured, the electron transport layer 15 has a lower electron mobility than the electron injection layer 16 and the light emitting layer 14 has the electron transport layer 15 as described above. By using a layer having a higher electron mobility than that, the effect of improving the light emission efficiency and life characteristics can be obtained.
 上述のような有機EL素子1(2)を製造する方法としては、例えば、以下のような方法を採用することができる。本実施形態では、上記説明において例示した材料及び方法により、陽極11、発光層14、電子輸送層15、電子注入層16、陰極17を順次形成することで有機EL素子1を製造することができる。さらに、本実施形態では、必要に応じて、上記に加え、陽極11と発光層14との間に、陽極側から順次、正孔注入層12及び正孔輸送層13を形成することにより、有機EL素子2を製造することができる。あるいは、陰極17から陽極11へと、上記と反対の順序で各層を形成することも可能である。 As a method for manufacturing the organic EL element 1 (2) as described above, for example, the following method can be employed. In the present embodiment, the organic EL element 1 can be manufactured by sequentially forming the anode 11, the light emitting layer 14, the electron transport layer 15, the electron injection layer 16, and the cathode 17 by the materials and methods exemplified in the above description. . Furthermore, in this embodiment, in addition to the above, by forming the hole injection layer 12 and the hole transport layer 13 sequentially from the anode side between the anode 11 and the light emitting layer 14 as necessary, The EL element 2 can be manufactured. Alternatively, each layer can be formed from the cathode 17 to the anode 11 in the reverse order.
 以下、図1に示す層構造を有する有機EL素子1の製造方法の一例を説明する。
 まず、図示略の透光性の支持基板上に、陽極材料からなる薄膜を、膜厚1μm以下、より好ましくは10~200nmの範囲になるように、蒸着やスパッタリング等の方法を用いて成膜することで、陽極11を形成する。
Hereinafter, an example of the manufacturing method of the organic EL element 1 having the layer structure shown in FIG. 1 will be described.
First, a thin film made of an anode material is formed on a light-transmitting support substrate (not shown) by a method such as vapor deposition or sputtering so that the film thickness is 1 μm or less, more preferably in the range of 10 to 200 nm. As a result, the anode 11 is formed.
 次に、陽極11上に発光層14を形成する。この発光層14は、上述したような有機発光材料(発光層材料)を用いて、例えば、真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により、発光層材料を薄膜化することで形成できる。このように、発光層14を形成する場合、その条件は使用する化合物(有機発光材料)や、目的とする発光層の結晶構造等を勘案しながら、適正な条件を選択することが好ましい。 Next, the light emitting layer 14 is formed on the anode 11. The light emitting layer 14 is formed by thinning the light emitting layer material by using, for example, a vacuum deposition method, a sputtering method, a spin coating method, a casting method, or the like, using the organic light emitting material (light emitting layer material) as described above. Can be formed. Thus, when forming the light emitting layer 14, it is preferable to select an appropriate condition in consideration of the compound to be used (organic light emitting material), the crystal structure of the target light emitting layer, and the like.
 次に、この発光層14上に電子輸送層15を形成する。この電子輸送層15の形成にあたっては、上述したような有機材料を用いて、例えば、真空蒸着法、スパッタリング、スピンコート法、キャスト等の方法を用いて薄膜化する方法を採用することができる。また、発光層14と同様、その条件についても、使用する有機材料や目的とする結晶構造等を勘案しながら、適正な条件を選択することができる。 Next, the electron transport layer 15 is formed on the light emitting layer 14. In forming the electron transport layer 15, it is possible to employ a method of forming a thin film by using, for example, a vacuum deposition method, a sputtering method, a spin coating method, a casting method, or the like using the organic material as described above. Further, as with the light emitting layer 14, appropriate conditions can be selected in consideration of the organic material to be used, the target crystal structure, and the like.
 次に、この電子輸送層15上に電子注入層16を形成する。この電子注入層16の形成にあたっても、電子輸送層15の場合と同様、上記有機材料を用いて、同様の成膜方法及び条件によって成膜することができる。 Next, an electron injection layer 16 is formed on the electron transport layer 15. In the formation of the electron injection layer 16, as in the case of the electron transport layer 15, the organic material can be used to form a film by the same film formation method and conditions.
 そして、電子注入層16の上に陰極17を積層することにより、図示略の透光性材料からなる支持基板上に、陽極11、発光層14、電子輸送層15、電子注入層16及び陰極17が順次形成されてなる有機EL素子1を製造することができる。この陰極17は、上述したような電極材料から構成されるもので、例えば、蒸着法、スパッタリングを用いることができるが、下地となる電子注入層16を、成膜時の損傷から保護する観点から、真空蒸着法を用いることが好ましい。 Then, by laminating the cathode 17 on the electron injection layer 16, the anode 11, the light emitting layer 14, the electron transport layer 15, the electron injection layer 16, and the cathode 17 are formed on a support substrate made of a translucent material (not shown). Can be produced in sequence. The cathode 17 is composed of the electrode material as described above. For example, a vapor deposition method or sputtering can be used. From the viewpoint of protecting the electron injection layer 16 serving as a base from damage during film formation. It is preferable to use a vacuum deposition method.
 なお、本実施形態では、有機EL素子1に加えて、正孔注入層12及び正孔輸送層13を備える有機EL素子2を製造する場合においては、支持基板上に上記の陽極11を形成した後、まず、この陽極11の上に正孔注入層12を形成し、さらに、この正孔注入層12の上に正孔輸送層13を形成する。この際、正孔注入層12及び正孔輸送層13の形成にあたっては、上記材料を用いて、例えば、真空蒸着法、スピンコート法、キャスト法、LB法等の方法を用いることができる。また、その条件についても、使用する有機材料や目的とする結晶構造等を勘案しながら、適正な条件を選択することができる。 In addition, in this embodiment, when manufacturing the organic EL element 2 provided with the positive hole injection layer 12 and the positive hole transport layer 13 in addition to the organic EL element 1, said anode 11 was formed on the support substrate. Thereafter, a hole injection layer 12 is first formed on the anode 11, and a hole transport layer 13 is further formed on the hole injection layer 12. At this time, in forming the hole injection layer 12 and the hole transport layer 13, for example, a method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like can be used using the above materials. Further, regarding the conditions, appropriate conditions can be selected in consideration of the organic material to be used, the target crystal structure, and the like.
 そして、正孔輸送層13上に、上記方法で発光層14を形成し、その上の各層も上記同様に形成することにより、図示略の透光性材料からなる支持基板上に、陽極11、正孔注入層12、正孔輸送層13、発光層14、電子輸送層15、電子注入層16及び陰極17が順次形成されてなる有機EL素子を製造することができる。 Then, the light emitting layer 14 is formed on the hole transport layer 13 by the method described above, and the layers thereon are also formed in the same manner as described above, whereby the anode 11, An organic EL device in which the hole injection layer 12, the hole transport layer 13, the light emitting layer 14, the electron transport layer 15, the electron injection layer 16, and the cathode 17 are sequentially formed can be manufactured.
 なお、本発明に係る有機EL素子の各層の形成方法は、上記の方法に限定されるものではなく、従来公知の真空蒸着法やスピンコーティング法等、各種の形成方法を用いることができる。また、上述の電子注入層16や電子輸送層15、発光層14、正孔注入層12や正孔輸送層13は、真空蒸着法、分子線蒸着法(MBE法)、溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法、インクジェット法等の塗布法による従来公知の方法を採用することが可能である。 In addition, the formation method of each layer of the organic EL element which concerns on this invention is not limited to said method, Various formation methods, such as a conventionally well-known vacuum evaporation method and a spin coating method, can be used. The electron injection layer 16, the electron transport layer 15, the light emitting layer 14, the hole injection layer 12, and the hole transport layer 13 are formed by a vacuum evaporation method, a molecular beam evaporation method (MBE method), or a solution dissolved in a solvent. Conventionally known methods by coating methods such as a dipping method, a spin coating method, a casting method, a bar coating method, a roll coating method, and an ink jet method can be employed.
 ここで、有機EL素子1、2の各層の膜厚は、特に制限されないが、一般に、膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に、厚すぎると高い印加電圧が必要となり、発光効率が低下する。そのため、通常は数nmから1μmの範囲とすることが好ましい。 Here, the film thickness of each layer of the organic EL elements 1 and 2 is not particularly limited, but generally, if the film thickness is too thin, defects such as pinholes are likely to occur, and conversely, if it is too thick, a high applied voltage is required. , Luminous efficiency decreases. For this reason, it is usually preferable that the thickness be in the range of several nm to 1 μm.
[第2の実施形態]
 以下に、本発明の有機EL素子の第2の実施形態について、図2を参照しながら説明する。なお、以下の説明において、上記第1の実施形態の有機EL素子1、2と共通する構成については同じ符号を付し、また、その詳しい説明を省略する。
[Second Embodiment]
Below, 2nd Embodiment of the organic EL element of this invention is described, referring FIG. Note that, in the following description, the same reference numerals are given to configurations common to the organic EL elements 1 and 2 of the first embodiment, and detailed description thereof is omitted.
 本実施形態の有機EL素子3は、図2中に例示するように、陽極11と陰極17の間に発光層14を有するものであり、陽極11と発光層14の間に、陽極11側から順に正孔注入層12と正孔輸送層13を備えて概略構成される。即ち、本実施形態の有機EL素子3は、正孔注入層12及び正孔輸送層13を備える一方、電子輸送層15及び電子注入層16を備えていない点で、上記第1の実施形態の有機EL素子1とは異なる。ここで、図2中に示す矢印101は、正孔hの流れを示す矢印である。不等号202aは、正孔輸送層13と発光層14との間の正孔移動度μの大小を示す不等号である。不等号202bは正孔注入層12と正孔輸送層13との間の正孔移動度の大小を示す不等号である。 As illustrated in FIG. 2, the organic EL element 3 of the present embodiment has a light emitting layer 14 between the anode 11 and the cathode 17, and between the anode 11 and the light emitting layer 14 from the anode 11 side. A hole injection layer 12 and a hole transport layer 13 are sequentially provided in order. That is, the organic EL element 3 of the present embodiment includes the hole injection layer 12 and the hole transport layer 13, but does not include the electron transport layer 15 and the electron injection layer 16. Different from the organic EL element 1. Here, an arrow 101 shown in FIG. 2 is an arrow indicating the flow of holes h + . The inequality sign 202 a is an inequality sign indicating the magnitude of the hole mobility μ h between the hole transport layer 13 and the light emitting layer 14. The inequality sign 202b is an inequality sign indicating the magnitude of the hole mobility between the hole injection layer 12 and the hole transport layer 13.
 そして、本実施形態の有機EL素子3は、正孔輸送層13の正孔移動度μh_HTLが正孔注入層12の正孔移動度μh_HILよりも小さく、かつ、発光層14の正孔移動度μh_EMLが正孔輸送層13の正孔移動度よりも大きい構成とされている。
 ここで、本発明において説明する正孔移動度とは、固体物質中での正孔の移動のしやすさを示す値であり、正孔の速度V2と電界Eとの比V2/Eとして定義される。
Then, the organic EL element 3 of this embodiment, the hole mobility mu H_HTL of the hole transport layer 13 is smaller than the hole mobility mu H_HIL of the hole injection layer 12, and hole mobility of the light-emitting layer 14 The degree μh_EML is larger than the hole mobility of the hole transport layer 13.
Here, the hole mobility described in the present invention is a value indicating the ease of movement of holes in a solid material, and is defined as the ratio V2 / E of the hole velocity V2 and the electric field E. Is done.
 本実施形態では、陽極11から正孔注入層12に正孔が注入される。
 正孔注入層12は、発光層14への正孔注入を促進し、発光領域まで輸送するための層であり、正孔移動度が大きく、通常、イオン化エネルギーが5.5eV以下と小さい層である。このような正孔注入層12の材料としては、特に限定されず、従来から正孔の電荷輸送材料として用いられているものや、有機EL素子の正孔注入層に使用される従来公知のものの中から適宜選択して用いることができる。中でも、正孔注入層12の材料としては、より低い電界強度で正孔を発光層14に輸送できる材料が好ましい。また、正孔注入層12の材料としては、正孔移動度が、例えば、10~10V/cmの電界印加時に、少なくとも10-4cm/V・秒であるものがより好ましい。また、正孔注入層12には、上記の材料の中から、その正孔移動度が正孔輸送層13の正孔移動度μh_HTLよりも大きな材料を選定して使用する。
In the present embodiment, holes are injected from the anode 11 into the hole injection layer 12.
The hole injection layer 12 is a layer for promoting hole injection into the light emitting layer 14 and transporting it to the light emitting region. The hole injection layer 12 has a high hole mobility and is usually a small ionization energy of 5.5 eV or less. is there. The material of such a hole injection layer 12 is not particularly limited, and a material conventionally used as a charge transport material for holes or a conventionally known material used for a hole injection layer of an organic EL element can be used. It can be appropriately selected from among them. Among these, the material for the hole injection layer 12 is preferably a material that can transport holes to the light emitting layer 14 with lower electric field strength. The material of the hole injection layer 12 is more preferably one having a hole mobility of at least 10 −4 cm 2 / V · sec when an electric field of 10 4 to 10 6 V / cm is applied. For the hole injection layer 12, a material having a hole mobility higher than the hole mobility μ h_HTL of the hole transport layer 13 is selected from the materials described above.
 正孔注入層12は、上述した材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法等の従来公知の方法により、陽極11上に薄膜化して成膜することにより、形成することができる。
 このような正孔注入層12の膜厚としては、特に限定されないが、例えば、1nm~1μm程度とすることができる。
The hole injection layer 12 is formed by forming the above-described material into a thin film on the anode 11 by a conventionally known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. be able to.
The film thickness of the hole injection layer 12 is not particularly limited, but can be, for example, about 1 nm to 1 μm.
 正孔輸送層13は、正孔注入層12から発光層14に向けて注入される正孔を抑制する層である。即ち、正孔輸送層13は、正孔を抑制する材料から構成する必要があるが、正孔を流さない材料であってはならない。このような正孔輸送層13の材料としては、従来から正孔注入層に使用されているものの中から、上記の正孔注入層12に用いられる材料よりも正孔移動度が小さく、かつ、発光層14よりも正孔移動度が小さい材料を選定して使用する。 The hole transport layer 13 is a layer that suppresses holes injected from the hole injection layer 12 toward the light emitting layer 14. That is, the hole transport layer 13 needs to be made of a material that suppresses holes, but should not be a material that does not allow holes to flow. As such a material of the hole transport layer 13, among those conventionally used for the hole injection layer, the hole mobility is smaller than the material used for the hole injection layer 12, and A material having a hole mobility smaller than that of the light emitting layer 14 is selected and used.
 また、上述のように、正孔注入層12、正孔輸送層13及び発光層14に関し、所望の正孔移動度の関係を実現するための材料としては、上記第1の実施形態で説明した各参考文献に記載の材料の中から、正孔輸送層13が正孔注入層12よりも正孔移動度の小さい層となるように、かつ、発光層14が正孔輸送層13よりも正孔移動度の大きい層となるように、各層に使用される材料を選定してもよい。 As described above, regarding the hole injection layer 12, the hole transport layer 13, and the light emitting layer 14, the material for realizing the desired hole mobility relationship has been described in the first embodiment. Among the materials described in the respective references, the hole transport layer 13 is a layer having a lower hole mobility than the hole injection layer 12, and the light emitting layer 14 is more positive than the hole transport layer 13. You may select the material used for each layer so that it may become a layer with a large hole mobility.
 本実施形態の有機EL素子3によれば、上述したように、まず、正孔輸送層13が正孔注入層12よりも正孔移動度が小さな構成とし、そして、発光層14が正孔輸送層13よりも正孔移動度が大きい構成とすることで、発光層14に注入される正孔の量を、電子の量と等しくすることができる。これにより、正孔輸送層13を、発光層14よりも正孔移動度を小さくすることで、正孔輸送層13から供給された正孔を、滞りなく発光層14内部へと輸送することができる。従って、発光層14における電荷再結合を促進して発光効率を向上させることが可能となる。さらに、正孔輸送層13の正孔移動度μh_HTLが発光層14の正孔移動度μh_EMLより小さいことで、正孔輸送層13と発光層14の界面に、化学的に不安定なラジカルとして電荷が蓄積することを抑制することができる。そのため、有機EL素子3の寿命を向上させることも可能となる。 According to the organic EL element 3 of the present embodiment, as described above, first, the hole transport layer 13 is configured to have a hole mobility smaller than that of the hole injection layer 12, and the light emitting layer 14 is configured to transport holes. By adopting a configuration in which the hole mobility is higher than that of the layer 13, the amount of holes injected into the light emitting layer 14 can be made equal to the amount of electrons. Thereby, by making the hole transport layer 13 have a hole mobility smaller than that of the light emitting layer 14, the holes supplied from the hole transport layer 13 can be transported into the light emitting layer 14 without delay. it can. Accordingly, it is possible to promote the charge recombination in the light emitting layer 14 and improve the light emission efficiency. Furthermore, since the hole mobility μ h_HTL of the hole transport layer 13 is smaller than the hole mobility μ h_EML of the light emitting layer 14, a chemically unstable radical is formed at the interface between the hole transport layer 13 and the light emitting layer 14. As a result, accumulation of electric charges can be suppressed. Therefore, the lifetime of the organic EL element 3 can be improved.
 なお、本実施形態においては、図2に示すような構造に限定されるものではなく、例えば、上記第1の実施形態で説明した変形例と同様、陰極17と発光層14の間に、さらに、陰極17側から順に電子注入層16と電子輸送層15を備えた、図9に示す有機EL素子4のような構成としても良い。ここで、図9に示すように、本実施形態の有機EL素子4は、上記第1の実施形態で説明した有機EL素子2と同一の層構造を有している。
 本実施形態では、上述のような層構造とした場合にも、上記同様、正孔輸送層13が正孔注入層12よりも正孔移動度が小さな層とし、そして、発光層14が正孔輸送層13よりも正孔移動度が大きい層とすることによる、発光効率及び寿命特性が向上する効果が得られる。
In the present embodiment, the structure is not limited to that shown in FIG. 2, and for example, between the cathode 17 and the light emitting layer 14, as in the modification described in the first embodiment. The organic EL element 4 shown in FIG. 9 may be configured to include the electron injection layer 16 and the electron transport layer 15 in this order from the cathode 17 side. Here, as shown in FIG. 9, the organic EL element 4 of the present embodiment has the same layer structure as the organic EL element 2 described in the first embodiment.
In the present embodiment, even in the case of the layer structure as described above, the hole transport layer 13 is a layer having a hole mobility smaller than that of the hole injection layer 12, and the light emitting layer 14 is a hole. By making the hole mobility higher than that of the transport layer 13, the effect of improving the light emission efficiency and the life characteristics can be obtained.
[第3の実施形態]
 以下に、本発明の有機EL素子の第3の実施形態について、図3を参照しながら説明する。なお、以下の説明においては、上記第1、2の実施形態と共通する構成については、その詳しい説明を省略する。ここで、図3中に示す矢印101は正孔hの流れを示す矢印であり、矢印102は電子eの流れを示す矢印、不等号201aは電子輸送層15と発光層14との間の電子移動度の大小を示す不等号であり、不等号202aは正孔輸送層13と発光層14との間の正孔移動度の大小を示す不等号、不等号202bは正孔注入層12と正孔輸送層13との間の正孔移動度の大小を示す不等号である。
[Third Embodiment]
Below, 3rd Embodiment of the organic EL element of this invention is described, referring FIG. In the following description, detailed description of the configuration common to the first and second embodiments is omitted. Here, an arrow 101 shown in FIG. 3 is an arrow indicating the flow of holes h + , an arrow 102 is an arrow indicating the flow of electrons e + , and an inequality sign 201 a is between the electron transport layer 15 and the light emitting layer 14. An inequality sign indicating the magnitude of electron mobility, the inequality sign 202a is an inequality sign indicating the magnitude of hole mobility between the hole transport layer 13 and the light emitting layer 14, and an inequality sign 202b is a hole injection layer 12 and a hole transport layer. 13 is an inequality sign indicating the magnitude of hole mobility between 13 and 13.
 本実施形態の有機EL素子5は、図3中に例示するように、陽極11と陰極17の間に発光層14を有し、陰極17と発光層14の間に、陰極17側から順に電子注入層16と電子輸送層15を備えるとともに、陽極11と発光層14の間に、陽極11側から順に正孔注入層12と正孔輸送層13を備えて概略構成される。 As illustrated in FIG. 3, the organic EL element 5 of the present embodiment has a light emitting layer 14 between the anode 11 and the cathode 17, and electrons are sequentially arranged between the cathode 17 and the light emitting layer 14 from the cathode 17 side. An injection layer 16 and an electron transport layer 15 are provided, and a hole injection layer 12 and a hole transport layer 13 are sequentially provided between the anode 11 and the light emitting layer 14 in this order from the anode 11 side.
 図3に示すように、本実施形態の有機EL素子5は、上記第1、2の実施形態で説明した有機EL素子2、4と同一の層構造を有している。一方、有機EL素子5は、まず、第1の実施形態で説明した有機EL素子2と同様、電子輸送層15の電子移動度μe_ETLが電子注入層16の電子移動度μe_EILよりも小さく、かつ、発光層14の電子移動度μe_EMLが電子輸送層15の電子移動度μe_ETLよりも大きい構成とされている。そして、有機EL素子5は、正孔輸送層13の正孔移動度μh_HTLが正孔注入層12の正孔移動度μh_HILよりも小さく、かつ、発光層14の正孔移動度μh_EMLが正孔輸送層13の正孔移動度μh_ETLよりも大きい構成とされている。即ち、有機EL素子5は、電子輸送層15、電子注入層16及び発光層14の各層の電子移動度の関係が適正化され、かつ、正孔注入層12と正孔輸送層13との正孔移動度の関係、及び、正孔輸送層13と発光層14との正孔移動度の関係が適正化されている点で、上記第1、2の実施形態で説明した有機EL素子2、4とは異なるものである。 As shown in FIG. 3, the organic EL element 5 of this embodiment has the same layer structure as the organic EL elements 2 and 4 described in the first and second embodiments. On the other hand, the organic EL element 5, first, similarly to the organic EL element 2 described in the first embodiment, the electron mobility mu E_ETL of the electron transport layer 15 is smaller than the electron mobility mu E_EIL of the electron injection layer 16, and the electron mobility mu E_EML emitting layer 14 is larger configuration than the electron mobility mu E_ETL of the electron transport layer 15. Then, the organic EL element 5 is smaller than the hole mobility mu H_HIL hole mobility mu H_HTL is the hole injection layer 12 of the hole transport layer 13 and hole mobility mu H_EML emitting layer 14 The hole transport layer 13 has a hole mobility higher than μh_ETL . That is, in the organic EL element 5, the relationship between the electron mobility of each of the electron transport layer 15, the electron injection layer 16, and the light emitting layer 14 is optimized, and the positive hole transport layer 12 and the hole transport layer 13 are positive. The organic EL element 2 described in the first and second embodiments in that the relationship between the hole mobility and the hole mobility between the hole transport layer 13 and the light emitting layer 14 is optimized. 4 is different.
 本実施形態では、電子輸送層15を電子注入層16よりも電子移動度の小さい層とし、かつ、発光層14を電子輸送層15よりも電子移動度の大きい層とするにあたり、上記第1の実施形態の場合と同様に、その材料の選定を行うことで、各層の間の電子移動度を適正に制御することができる。
 また、正孔輸送層13を正孔注入層12よりも正孔移動度が小さな層とし、かつ、発光層14を正孔輸送層13よりも正孔移動度が大きい層とするにあたっても、上記第1、2の実施形態の場合と同様に、その材料の選定を行うことで、各層の間の正孔移動度を適正に制御することが可能である。
In the present embodiment, when the electron transport layer 15 is a layer having a lower electron mobility than the electron injection layer 16 and the light emitting layer 14 is a layer having a higher electron mobility than the electron transport layer 15, As in the case of the embodiment, by selecting the material, the electron mobility between each layer can be appropriately controlled.
In addition, when the hole transport layer 13 is a layer having a hole mobility smaller than that of the hole injection layer 12 and the light emitting layer 14 is a layer having a hole mobility larger than that of the hole transport layer 13, As in the case of the first and second embodiments, the hole mobility between the layers can be appropriately controlled by selecting the material.
 本実施形態の有機EL素子5によれば、上記構成を採用することにより、第1、2の実施形態における有機EL素子1~4と同様、発光層14における電荷再結合を促進して発光効率を向上させることが可能になるとともに、発光層14近傍の化学的に不安定なラジカルを減少させることで寿命を向上させることが可能になる。 According to the organic EL element 5 of the present embodiment, by adopting the above configuration, as in the organic EL elements 1 to 4 in the first and second embodiments, the charge recombination in the light emitting layer 14 is promoted to increase the luminous efficiency. In addition, the lifetime can be improved by reducing chemically unstable radicals in the vicinity of the light-emitting layer 14.
[第4の実施形態]
 以下に、本発明の有機EL素子の第4の実施形態について説明する。なお、以下の説明においては、図4及び図10を参照しながら説明するとともに、上記第1~3の実施形態における有機EL素子1~5と共通する構成については、その詳しい説明を省略する。ここで、図4中に示す矢印102は、電子eの流れの方向を示す矢印である。不等号201aは電子輸送層15と該電子輸送層15側の発光層14Bとの間の電子移動度の大小を示す不等号である。不等号201bは電子注入層16と電子輸送層15との間の電子移動度の大小を示す不等号である。
[Fourth Embodiment]
Below, 4th Embodiment of the organic EL element of this invention is described. In the following description, it will be described with reference to FIGS. 4 and 10, and detailed description of the configuration common to the organic EL elements 1 to 5 in the first to third embodiments will be omitted. Here, an arrow 102 shown in FIG. 4 is an arrow indicating the direction of the flow of electrons e . The inequality sign 201a is an inequality sign indicating the magnitude of electron mobility between the electron transport layer 15 and the light emitting layer 14B on the electron transport layer 15 side. The inequality sign 201b is an inequality sign indicating the magnitude of the electron mobility between the electron injection layer 16 and the electron transport layer 15.
 本実施形態の有機EL素子6、7は、発光層が複数備えられている点で、上記第1の実施形態の有機EL素子1、2とは異なる。図4に示す例の有機EL素子6においては、2層の発光層14A、14Bが備えられている。本実施形態では、発光層を複数設け、各発光層の波長等を制御することにより、混色を発現させて任意の色調を得るのが容易になるという効果が得られる。一般に、発光層から出射される発光色は、発光体(発光層材料)のバンドギャップで決定される。 The organic EL elements 6 and 7 of the present embodiment are different from the organic EL elements 1 and 2 of the first embodiment in that a plurality of light emitting layers are provided. The organic EL element 6 in the example shown in FIG. 4 includes two light emitting layers 14A and 14B. In this embodiment, by providing a plurality of light-emitting layers and controlling the wavelength of each light-emitting layer, it is possible to obtain an effect that it is easy to develop a color mixture and obtain an arbitrary color tone. In general, the emission color emitted from the light emitting layer is determined by the band gap of the light emitter (light emitting layer material).
 図4に示す例のように、本実施形態の有機EL素子6は、陽極11と陰極17の間に、2層の発光層14A、14Bを有するものであり、陰極11と発光層14A、14Bの間に、陰極17側から順に電子注入層16と電子輸送層15を備えて構成される。そして、有機EL素子6は、電子輸送層15の電子移動度μe_ETLが電子注入層16の電子移動度μe_EILよりも小さく、且つ、複数の発光層14A、14Bのうち、電子輸送層15に最も近い位置に配置する発光層14Bの電子移動度μe_EML1が電子輸送層15の電子移動度μe_ETLよりも大きな構成とされている。即ち、図4に示す例の有機EL素子6は、発光層が2層の14A、14Bから構成される点を除き、他の層構造は、図1に示す有機EL素子1と同様とされたものである。 As in the example shown in FIG. 4, the organic EL element 6 of the present embodiment has two light emitting layers 14A and 14B between the anode 11 and the cathode 17, and the cathode 11 and the light emitting layers 14A and 14B. The electron injection layer 16 and the electron transport layer 15 are provided in this order from the cathode 17 side. Then, the organic EL device 6 is smaller than the electron mobility mu E_EIL electron mobility mu E_ETL of the electron transport layer 15 is an electron injection layer 16, and a plurality of light-emitting layers 14A, among 14B, the electron transport layer 15 electron mobility mu E_EML1 emitting layer 14B which located closest is the larger configuration than the electron mobility mu E_ETL of the electron transport layer 15. That is, the organic EL element 6 of the example shown in FIG. 4 has the same layer structure as that of the organic EL element 1 shown in FIG. 1 except that the light emitting layer is composed of two layers 14A and 14B. Is.
 また、図10に示すように、有機EL素子7は、上述した有機EL素子6の構成に加え、さらに、陽極11と、複数の発光層の内の陽極側の発光層14Aとの間に、陽極11側から順に正孔注入層12と正孔輸送層13を備えた構成とされている。即ち、有機EL素子7は、発光層が2層の14A、14Bから構成される点を除き、他の層構造は、図8に示す有機EL素子2と同様とされたものである。 Further, as shown in FIG. 10, in addition to the configuration of the organic EL element 6 described above, the organic EL element 7 is further provided between the anode 11 and the anode-side light emitting layer 14A among the plurality of light emitting layers. The hole injection layer 12 and the hole transport layer 13 are provided in this order from the anode 11 side. That is, the organic EL element 7 has the same layer structure as that of the organic EL element 2 shown in FIG. 8 except that the light emitting layer is composed of two layers 14A and 14B.
 このような発光層14A、14Bの材料としては、上記第1の実施形態で示したような材料(例えば、特開2011-139044号公報に記載の材料)等を用いることができ、特に、同公報の段落0100に記載のドーパント、発光体を勘案して適宜採用することで、所望の発光波長や強度を得ることが可能となる。
 また、発光層14A、14Bのホスト材料としても、上記同様の材料(例えば、特開2009-260308号公報に記載の材料)を用いることができ、特に、同公報の段落0049に記載の正孔輸送性を有する材料、並びに、段落0054に記載の電子輸送性を有する材料等の中から、上述のような移動度の関係を満たすような材料を選定しても良い。
As the material of the light emitting layers 14A and 14B, the material as described in the first embodiment (for example, the material described in Japanese Patent Application Laid-Open No. 2011-139044) can be used. It is possible to obtain a desired emission wavelength and intensity by appropriately adopting the dopant and the light emitter described in paragraph 0100 of the publication.
Further, as the host material of the light emitting layers 14A and 14B, the same material as described above (for example, the material described in JP2009-260308A) can be used, and in particular, the hole described in paragraph 0049 of the same publication. You may select the material which satisfy | fills the above mobility relationships from the material which has transportability, the material which has electron transport property of Paragraph 0054, etc.
[第5の実施形態]
 以下に、本発明の有機EL素子の第5の実施形態について、図5及び図11を参照しながら説明する。ここで、図5中に示す矢印101は正孔hの流れを示す矢印であり、不等号202aは正孔輸送層13と発光層14との間の正孔移動度の大小を示す不等号、不等号202bは正孔注入層12と正孔輸送層13との間の正孔移動度の大小を示す不等号である。
[Fifth Embodiment]
Below, 5th Embodiment of the organic EL element of this invention is described, referring FIG.5 and FIG.11. Here, an arrow 101 shown in FIG. 5 is an arrow indicating the flow of holes h + , and an inequality sign 202 a is an inequality sign or inequality sign indicating the magnitude of hole mobility between the hole transport layer 13 and the light emitting layer 14. 202b is an inequality sign indicating the magnitude of the hole mobility between the hole injection layer 12 and the hole transport layer 13.
 本実施形態の有機EL素子8(図5)は、陽極11と発光層14Aの間に、陽極11側から順に正孔注入層12と正孔輸送層13を備え、正孔輸送層13の正孔移動度μh_HTLが正孔注入層12の正孔移動度μh_HILよりも小さく、2層の発光層14A、14Bのうち、正孔輸送層13に最も近い位置に配置する発光層14Aの正孔移動度μh_HML2が正孔輸送層13の正孔移動度μh_HTLよりも大きい構成とされている。この、図5に示す例の有機EL素子8は、発光層が2層の14A、14Bから構成される点を除き、他の層構造は、図2に示す有機EL素子3と同様とされたものである。 The organic EL element 8 (FIG. 5) of this embodiment includes a hole injection layer 12 and a hole transport layer 13 in order from the anode 11 side between the anode 11 and the light emitting layer 14A. smaller than the hole mobility mu H_HIL hole mobility mu H_HTL a hole injection layer 12, luminescent layer 14A of the two layers, among 14B, positive luminescent layer 14A be located closest to the hole transport layer 13 hole mobility mu H_HML2 is larger configuration than the hole mobility mu H_HTL of the hole transport layer 13. The organic EL element 8 of the example shown in FIG. 5 has the same layer structure as that of the organic EL element 3 shown in FIG. 2 except that the light emitting layer is composed of two layers 14A and 14B. Is.
 また、本実施形態では、上述した有機EL素子8の構成に加え、さらに、陰極17と発光層14Bの間に、陰極17側から順に電子注入層16と電子輸送層15を備えた構成とした有機EL素子9とすることができる(図11参照)。ここで、本例の有機EL素子9は、上述した有機EL素子7と同様の層構造を有するものである。また、有機EL素子9は、発光層が2層の14A、14Bから構成される点を除き、他の層構造は、図9に示す有機EL素子4と同様とされたものである。 In the present embodiment, in addition to the configuration of the organic EL element 8 described above, the electron injection layer 16 and the electron transport layer 15 are further provided in this order from the cathode 17 side between the cathode 17 and the light emitting layer 14B. It can be set as the organic EL element 9 (refer FIG. 11). Here, the organic EL element 9 of this example has the same layer structure as the organic EL element 7 described above. The organic EL element 9 has the same layer structure as that of the organic EL element 4 shown in FIG. 9 except that the light emitting layer is composed of two layers 14A and 14B.
 このような発光層14A、14Bの材料としては、上記第1の実施形態で示したような材料(例えば、特開2011-139044号公報に記載の材料)等を用いることができる。特に、同公報の段落0100に記載のドーパント、発光体を勘案して適宜採用することで、所望の発光波長や強度を得ることが可能となる。
 また、発光層14A、14Bのホスト材料としても、上記同様の材料(例えば、特開2009-260308号公報に記載の材料)を用いることができ、特に、同公報の段落0049に記載の正孔輸送性を有する材料、並びに、段落0054に記載の電子輸送性を有する材料等の中から上述の移動度の関係を満たすような材料を選定してもよい。
As the material of the light emitting layers 14A and 14B, materials as shown in the first embodiment (for example, materials described in JP2011-139044A) can be used. In particular, a desired emission wavelength and intensity can be obtained by appropriately adopting the dopant and the light emitter described in paragraph 0100 of the publication.
Further, as the host material of the light emitting layers 14A and 14B, the same material as described above (for example, the material described in JP2009-260308A) can be used, and in particular, the hole described in paragraph 0049 of the same publication. You may select the material which satisfy | fills the above-mentioned mobility relationship from the material which has transportability, the material which has electron transport property of Paragraph 0054, etc.
[第6の実施形態]
 以下に、本発明の有機EL素子の第6の実施形態について、図6を参照しながら説明する。ここで、図6中に示す矢印101は正孔hの流れを示す矢印であり、矢印102は電子eの流れを示す矢印である。また、不等号201aは電子輸送層15と発光層14Bとの間の電子移動度の大小を示す不等号であり、不等号202aは正孔輸送層13と発光層14Bとの間の正孔移動度の大小を示す不等号である。また、不等号201bは電子注入層16と電子輸送層15との間の電子移動度の大小を示す不等号、不等号202bは正孔注入層12と正孔輸送層13との間の正孔移動度の大小を示す不等号である。
[Sixth Embodiment]
Hereinafter, a sixth embodiment of the organic EL element of the present invention will be described with reference to FIG. Here, an arrow 101 shown in FIG. 6 is an arrow indicating the flow of holes h + , and an arrow 102 is an arrow indicating the flow of electrons e + . The inequality sign 201a is an inequality sign indicating the magnitude of the electron mobility between the electron transport layer 15 and the light emitting layer 14B, and the inequality sign 202a is the magnitude of the hole mobility between the hole transport layer 13 and the light emitting layer 14B. Is an inequality sign. An inequality sign 201b is an inequality sign indicating the magnitude of the electron mobility between the electron injection layer 16 and the electron transport layer 15, and an inequality sign 202b is a hole mobility between the hole injection layer 12 and the hole transport layer 13. It is an inequality sign indicating magnitude.
 本実施形態では、図6に示す有機EL素子10のように、陰極17と発光層14Bの間に、陰極17側から順に電子注入層16と電子輸送層15を備えると共に、陽極11と発光層14Aの間に、陽極11側から順に正孔注入層12と正孔輸送層13を備えた構成とすることもできる。そして、有機EL素子10は、電子輸送層15の電子移動度μe_ETLが電子注入層16の電子移動度μe_EILよりも小さく、複数の発光層14A、14Bのうち、電子輸送層15に最も近い位置に配置する発光層14Bの電子移動度μe_EML1が電子輸送層15の電子移動度μe_ETLよりも大きく、正孔輸送層13の正孔移動度μh_HTLが正孔注入層12の正孔移動度μh_HILよりも小さく、複数の発光層14A、14Bのうち、正孔輸送層13に最も近い位置に配置する発光層14Aの正孔移動度μh_EML2が正孔輸送層13の正孔移動度μh_HTLよりも大きい構成とされている。また、有機EL素子10は、発光層が2層の14A、14Bから構成される点を除き、他の層構造は、図3に示す有機EL素子5と同様とされたものである。 In the present embodiment, as in the organic EL element 10 shown in FIG. 6, the electron injection layer 16 and the electron transport layer 15 are provided in this order from the cathode 17 side between the cathode 17 and the light emitting layer 14B, and the anode 11 and the light emitting layer. Between 14A, it can also be set as the structure provided with the positive hole injection layer 12 and the positive hole transport layer 13 in order from the anode 11 side. Then, the organic EL element 10 is smaller than the electron mobility mu E_EIL electron mobility mu E_ETL the electron injection layer 16 of the electron transport layer 15, a plurality of light-emitting layers 14A, among 14B, closest to the electron transport layer 15 electron mobility mu E_EML1 emitting layer 14B to place the position is greater than the electron mobility mu E_ETL of the electron transport layer 15, the hole mobility mu H_HTL holes move of the hole injection layer 12 of the hole transport layer 13 The hole mobility μ h_EML2 of the light-emitting layer 14A disposed at the position closest to the hole transport layer 13 among the plurality of light-emitting layers 14A and 14B is smaller than the degree μ h_HIL , and the hole mobility of the hole transport layer 13 The configuration is larger than μh_HTL . The organic EL element 10 has the same layer structure as that of the organic EL element 5 shown in FIG. 3 except that the light emitting layer is composed of two layers 14A and 14B.
 以上説明したような、第4~6の実施形態の有機EL素子6~10によれば、上述した第1~3の実施形態における有機EL素子1~5と同様、各層の間の電子移動度及び正孔移動度を適正に制御することにより、発光層14A、14Bにおける電荷再結合を促進して発光効率を向上させることが可能になるとともに、発光層14A、14B近傍の化学的に不安定なラジカルを減少させることで寿命を向上させることが可能になる。 According to the organic EL elements 6 to 10 of the fourth to sixth embodiments as described above, the electron mobility between the layers is similar to the organic EL elements 1 to 5 of the first to third embodiments described above. In addition, by appropriately controlling the hole mobility, the charge recombination in the light emitting layers 14A and 14B can be promoted to improve the light emission efficiency, and the chemically unstable in the vicinity of the light emitting layers 14A and 14B. The lifetime can be improved by reducing radicals.
 また、有機EL素子6~10によれば、複数の発光層14A、14Bを備えた構成を採用することにより、上述したように、各発光層の波長等を制御することで混色を発現させ、任意の色調を得るのが容易になる。
 なお、図4~図5に示す例においては、複数の発光層を2層の発光層14A、14Bで表しているが、本実施形態では、これには限定されず、所望の発光特性を勘案しながら、さらに多層構造とされた発光層を設けても良い。
Further, according to the organic EL elements 6 to 10, by adopting a configuration including a plurality of light emitting layers 14A and 14B, as described above, color mixing is expressed by controlling the wavelength of each light emitting layer, and the like. It becomes easy to obtain an arbitrary color tone.
In the examples shown in FIGS. 4 to 5, the plurality of light emitting layers are represented by two light emitting layers 14A and 14B. However, in the present embodiment, the present invention is not limited to this, and the desired light emitting characteristics are taken into consideration. However, a light emitting layer having a multilayer structure may be provided.
[第7の実施形態]
 以下に、本発明の有機EL素子の第7の実施形態について説明する。なお、以下の説明においては、図7を参照しながら説明するとともに、上記第1~6の実施形態における説明と共通する構成については、その詳しい説明を省略する。ここで、図7中に示す矢印101は正孔hの流れを示す矢印であり、矢印102は電子eの流れを示す矢印である。また、不等号201bは電子注入層16と電子輸送層15との間の電子移動度の大小を示す不等号であり、不等号201cは電子輸送層15と発光層(陰極側)14Bとの間の電子移動度の大小を示す不等号である。また、不等号202bは正孔注入層12と正孔輸送層13との間の正孔移動度の大小を示す不等号であり、不等号202cは正孔輸送層13と発光層(陽極側)14Aとの間の正孔移動度の大小を示す不等号である。また、不等号203bは発光層(陰極側)14Bと発光層(陽極側)14Aとの間の正孔移動度の大小を示す不等号、不等号203cは発光層(陰極側)14Bと発光層(陽極側)14Aとの間の電子移動度の大小を示す不等号である。
[Seventh Embodiment]
The seventh embodiment of the organic EL element of the present invention will be described below. In the following description, it will be described with reference to FIG. 7, and detailed description of the configuration common to the description in the first to sixth embodiments will be omitted. Here, an arrow 101 shown in FIG. 7 is an arrow indicating the flow of holes h + , and an arrow 102 is an arrow indicating the flow of electrons e + . An inequality sign 201b is an inequality sign indicating the magnitude of electron mobility between the electron injection layer 16 and the electron transport layer 15, and an inequality sign 201c is an electron transfer between the electron transport layer 15 and the light emitting layer (cathode side) 14B. It is an inequality sign indicating the magnitude of degree. The inequality sign 202b is an inequality sign indicating the magnitude of the hole mobility between the hole injection layer 12 and the hole transport layer 13, and the inequality sign 202c is the difference between the hole transport layer 13 and the light emitting layer (anode side) 14A. It is an inequality sign indicating the magnitude of the hole mobility between them. The inequality sign 203b is an inequality sign indicating the size of hole mobility between the light emitting layer (cathode side) 14B and the light emitting layer (anode side) 14A, and the inequality sign 203c is the light emitting layer (cathode side) 14B and the light emitting layer (anode side). ) An inequality sign indicating the magnitude of electron mobility with respect to 14A.
 本実施形態の有機EL素子1Aは、図7に示す例のように、陽極11と陰極17の間に、複数の発光層14A、14Bを有し、陰極17と発光層14Bの間に、陰極17側から順に電子注入層16と電子輸送層15を備えると共に、陽極11と発光層14Aの間に、陽極11側から順に正孔注入層12と正孔輸送層13を備えて構成されている。 As in the example shown in FIG. 7, the organic EL element 1 </ b> A of the present embodiment has a plurality of light emitting layers 14 </ b> A and 14 </ b> B between the anode 11 and the cathode 17, and a cathode between the cathode 17 and the light emitting layer 14 </ b> B. The electron injection layer 16 and the electron transport layer 15 are provided in this order from the 17th side, and the hole injection layer 12 and the hole transport layer 13 are provided in order from the anode 11 side between the anode 11 and the light emitting layer 14A. .
 そして、本実施形態の有機EL素子1Aは、電子輸送層15の電子移動度μe_ETLが電子注入層16の電子移動度μe_EILよりも小さく、また、複数の発光層14A、14Bのうち、電子輸送層15に最も近い位置に配置する発光層14Bの電子移動度μe_EML1が電子輸送層15の電子移動度μe_ETLよりも大きい構成とされている。
さらに、複数の発光層14A、14Bのうち、電子輸送層15に最も近い位置に配置する発光層14Bの電子移動度μe_EML1が、正孔輸送層13に最も近い位置に配置する発光層14Aの電子移動度μe_EML2よりも大きい構成とされている。また、正孔輸送層13の正孔移動度μh_HTLが、正孔注入層12の正孔移動度μh_HILよりも小さく、複数の発光層14A、14Bのうち、正孔輸送層13に最も近い位置に配置する発光層14Aの正孔移動度μh_EML2が、正孔輸送層13の正孔移動度μh_HTLよりも大きい構成とされている。さらに、複数の発光層14A、14Bのうち、電子輸送層15に最も近い位置に配置する発光層14Bの正孔移動度μh_EML1が正孔輸送層13に最も近い位置に配置する発光層14Aの正孔移動度μh_EML2よりも小さい構成とされている。
Then, the organic EL element 1A of the present embodiment is smaller than the electron mobility mu E_EIL electron mobility mu E_ETL of the electron transport layer 15 is an electron injection layer 16, also a plurality of light-emitting layers 14A, among 14B, electronic emitting layer 14B electron mobility mu E_EML1 of which located closest to the transport layer 15 is larger configuration than the electron mobility mu E_ETL of the electron transport layer 15.
Furthermore, among the plurality of light emitting layers 14A and 14B, the electron mobility μ e_EML1 of the light emitting layer 14B disposed at the position closest to the electron transport layer 15 is the light emitting layer 14A disposed at the position closest to the hole transport layer 13. The electron mobility is larger than μ e_EML2 . The hole mobility mu H_HTL of the hole transport layer 13 is smaller than the hole mobility mu H_HIL of the hole injection layer 12, a plurality of light-emitting layers 14A, among 14B, closest to the hole transport layer 13 emitting layer 14A of the hole mobility mu H_EML2 be placed in position, there is a greater configuration than the hole mobility mu H_HTL of the hole transport layer 13. Furthermore, among the plurality of light emitting layers 14A and 14B, the hole mobility μ h_EML1 of the light emitting layer 14B disposed at the position closest to the electron transport layer 15 is the position of the light emitting layer 14A disposed at the position closest to the hole transport layer 13. The hole mobility is smaller than μh_EML2 .
 本実施形態の有機EL素子1Aによれば、上述した第1~6の実施形態における有機EL素子1~10と同様、各層の間の電子移動度及び正孔移動度を適正に制御することで、発光層14A、14Bにおける電荷再結合を促進して発光効率を向上させることが可能になるとともに、発光層14A、14B近傍の化学的に不安定なラジカルを減少させることで寿命を向上させることが可能になる。特に、本実施形態では、電子注入層、電子輸送層、発光層14Bの電子移動度を適切に制御することにより、発光層14Bに輸送された適量の電子が発光層14Aを突き抜けることがなくなる。また、上記同様に、正孔注入層、正孔輸送層、発光層14Aの正孔移動度を適切に制御することにより、発光層14Aに輸送された適量の正孔が発光層Bを突き抜けることがなくなる。従って、本実施形態では、正孔や電子の突き抜けが少ないという観点から、発光層14A及び発光層14Bでの電荷再結合の確率が各々向上するため、上述したような発光効率の向上効果、及び寿命の向上効果を大きくすることが可能になる。 According to the organic EL element 1A of the present embodiment, similarly to the organic EL elements 1 to 10 in the first to sixth embodiments described above, by appropriately controlling the electron mobility and the hole mobility between the respective layers. It is possible to improve the light emission efficiency by promoting charge recombination in the light emitting layers 14A and 14B, and to improve the lifetime by reducing chemically unstable radicals in the vicinity of the light emitting layers 14A and 14B. Is possible. In particular, in the present embodiment, by appropriately controlling the electron mobility of the electron injection layer, the electron transport layer, and the light emitting layer 14B, an appropriate amount of electrons transported to the light emitting layer 14B does not penetrate through the light emitting layer 14A. Similarly to the above, by appropriately controlling the hole mobility of the hole injection layer, the hole transport layer, and the light emitting layer 14A, an appropriate amount of holes transported to the light emitting layer 14A penetrates the light emitting layer B. Disappears. Therefore, in the present embodiment, from the viewpoint that there is little penetration of holes and electrons, the probability of charge recombination in each of the light emitting layer 14A and the light emitting layer 14B is improved. It is possible to increase the life improvement effect.
 さらに、有機EL素子1Aによれば、上記第4の実施形態の有機EL素子6~10と同様、複数の発光層14A、14Bを備えた構成を採用することで、各発光層の波長等を制御して混色を発現させ、任意の色調を得ることが可能となる。
 またさらに、有機EL素子1Aによれば、複数の発光層の間、即ち、発光層14Aからの電子の突き抜けと、発光層14Bからの正孔の突き抜けを抑制することで、発光効率がより高められるという効果が得られる。
 また、図7に示す例においては、複数の発光層を2層の発光層14A、14Bで表しているが、上記第4の実施形態と同様、これには限定されるものではなく、所望の発光特性を勘案しながら、さらに多層構造とされた発光層としても良い。
Furthermore, according to the organic EL element 1A, by adopting a configuration including a plurality of light emitting layers 14A and 14B, as in the organic EL elements 6 to 10 of the fourth embodiment, the wavelength of each light emitting layer can be adjusted. It is possible to obtain a mixed color by controlling to obtain an arbitrary color tone.
Furthermore, according to the organic EL element 1A, the luminous efficiency is further improved by suppressing the penetration of electrons from the light emitting layer 14A, that is, the penetration of holes from the light emitting layer 14B. The effect of being obtained.
In the example shown in FIG. 7, the plurality of light-emitting layers are represented by two light-emitting layers 14A and 14B. However, as in the fourth embodiment, the present invention is not limited to this. Further, a light emitting layer having a multilayer structure may be used in consideration of light emitting characteristics.
 以上説明したような、本発明に係る有機EL素子によれば、上述のような、陽極11と陰極17の間に発光層14(14A、14B)を有する構造において、陰極17と発光層14の間に、陰極側から、電子注入層16と電子輸送層15とを順次備え、電子輸送層15の電子移動度μe_ETLが電子注入層16の電子移動度μe_EILよりも小さく、発光層14(14B)の電子移動度μe_EML(μe_EML1)が電子輸送層15の電子移動度μe_ETLよりも大きい構成か、あるいは、陽極11と発光層14の間に、陰極側から、正孔注入層12と正孔輸送層13とを順次備え、正孔輸送層13の正孔移動度μh_HTLが正孔注入層12の正孔移動度μh_HILよりも小さく、発光層14(14A)の正孔移動度μh_HML(μh_HML2)が正孔輸送層13の正孔移動度μh_HTLよりも大きい構成の、少なくとも何れかの構成を採用している。これにより、電荷再結合が促進され、発光効率が向上するとともに、発光層14(14A、14B)近傍の化学的に不安定なラジカルを減少させることで、寿命も向上させることができる。従って、発光効率が高く、かつ、長寿命の有機EL素子を実現することが可能となる。 According to the organic EL element according to the present invention as described above, the structure of the light emitting layer 14 (14A, 14B) between the anode 11 and the cathode 17 as described above, the cathode 17 and the light emitting layer 14 during, from the cathode side, sequentially and an electron injection layer 16 and the electron transport layer 15, the electron mobility mu E_ETL of the electron transport layer 15 is smaller than the electron mobility mu E_EIL of the electron injection layer 16, luminescent layer 14 ( 14B) is configured so that the electron mobility μ e_EMLe_EML1 ) of the electron transport layer 15 is larger than the electron mobility μ e_ETL of the electron transport layer 15 or the hole injection layer 12 between the anode 11 and the light emitting layer 14 from the cathode side. and sequentially a hole transport layer 13, the hole mobility mu H_HTL of the hole transport layer 13 is smaller than the hole mobility mu H_HIL of the hole injection layer 12, hole mobility of the light-emitting layer 14 (14A) degree μ h_ ML h_HML2) is larger configuration than the hole mobility mu H_HTL of the hole transport layer 13, employs at least one of configuration. Thereby, charge recombination is promoted, luminous efficiency is improved, and lifetime can be improved by reducing chemically unstable radicals in the vicinity of the light emitting layer 14 (14A, 14B). Therefore, it is possible to realize an organic EL element with high luminous efficiency and long life.
 次に、実施例及び比較例を示し、本発明をさらに具体的に説明する。なお本発明は、本実施例によってその範囲が制限されるものではなく、本発明に係る有機EL素子は、本発明の要旨を変更しない範囲において適宜変更して実施することが可能である。 Next, examples and comparative examples will be shown to describe the present invention more specifically. Note that the scope of the present invention is not limited by this embodiment, and the organic EL device according to the present invention can be implemented with appropriate modifications within a range that does not change the gist of the present invention.
[使用した有機材料の移動度の測定]
 まず、下記表1、並びに、化学式1~12に示すような、本実施例の各層の成膜に用いた各有機材料に関し、タイムオブフライト法キャリア移動度測定装置(OPTEL TOF-401、住友重機械工業株式会社製)を用いて正孔移動度及び電子移動度を測定した。この際、陽極(ITO)-陰極(Au)間に形成した各有機材料の薄膜に、1×10V/cmの電界をかけて得られた移動度の測定結果を下記表1に示した。
[Measurement of mobility of organic materials used]
First, the time-of-flight method carrier mobility measuring device (OPTEL TOF-401, Sumitomo Shigeru) regarding each organic material used for forming each layer of this example as shown in the following Table 1 and chemical formulas 1 to 12 Hole mobility and electron mobility were measured using a machine industry). Table 1 below shows the measurement results of mobility obtained by applying an electric field of 1 × 10 6 V / cm to the thin film of each organic material formed between the anode (ITO) and the cathode (Au). .
 ここで、実施例1~3および比較例1~3で作製した有機EL素子に備えられる発光層は、発光体とホスト化合物の混合物からなる。これらの発光層は、その電荷の輸送に関わる主たる材料がホスト材料(混合比の多い材料)であるため、発光層の電荷移動度は、ホスト化合物の電荷移動度で代替する。また、電荷注入層及び電荷輸送層についても、混合物を用いる場合には、混合比の多い材料が該当する層の電荷の輸送に関わる主たる材料であるため、該当する層の電荷移動度は、混合比の多い化合物の電荷移動度で代替する。 Here, the light emitting layer provided in the organic EL devices prepared in Examples 1 to 3 and Comparative Examples 1 to 3 is composed of a mixture of a light emitter and a host compound. In these light-emitting layers, the main material involved in the charge transport is a host material (a material having a high mixing ratio), so the charge mobility of the light-emitting layer is replaced by the charge mobility of the host compound. In addition, when a mixture is used for the charge injection layer and the charge transport layer, the material having a high mixing ratio is the main material related to the charge transport of the corresponding layer, and therefore the charge mobility of the corresponding layer is Substitute the charge mobility of compounds with a high ratio.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[有機EL素子の作製](実施例1)
 実施例1では、電子輸送層の電子移動度が電子注入層の電子移動度よりも小さく、発光層の電子移動度が電子輸送層の電子移動度よりも大きい有機EL素子を作製した。具体的には、25mm角のガラス基板の一方の面に、陽極となる幅4mmの2本のITO電極がストライプ状に形成されたITO(酸化インジウム錫)付き基板(ニッポ電機(株)製)を用いて有機発光素子を作製した。
[Preparation of Organic EL Element] (Example 1)
In Example 1, an organic EL device in which the electron mobility of the electron transport layer was smaller than the electron mobility of the electron injection layer and the electron mobility of the light emitting layer was larger than the electron mobility of the electron transport layer was produced. Specifically, a substrate with ITO (Indium Tin Oxide) in which two ITO electrodes with a width of 4 mm serving as an anode are formed in a stripe pattern on one surface of a 25 mm square glass substrate (manufactured by Nippon Electric Co., Ltd.) An organic light emitting device was fabricated using
 まず、上記のITO電極上に、真空蒸着法により、化学式1で示したm-MTDATAを40nm成膜し、正孔注入層及び正孔輸送層を形成した。
 次に、化学式2で示した発光体PH-1と、化学式3で示したホスト化合物PyTMBとを、10:90の重量比となるように共蒸着し、20nmの膜厚の発光層を成膜した。
First, 40 nm of m-MTDATA represented by Chemical Formula 1 was formed on the ITO electrode by a vacuum deposition method to form a hole injection layer and a hole transport layer.
Next, the phosphor PH-1 represented by Chemical Formula 2 and the host compound PyTMB represented by Chemical Formula 3 are co-evaporated to a weight ratio of 10:90 to form a light-emitting layer having a thickness of 20 nm. did.
 次に、真空蒸着法により、化学式4で示したAlq3を20nmの膜厚で積層して成膜し、電子輸送層を形成した後、さらに、化学式5で示したBCP及びCsを共蒸着(重量比20:1)することで、膜厚20nmの電子注入層を積層成膜した。
 次に、電子注入層の上に、150nmのアルミニウム層を蒸着法で積層成膜することにより、ストライプ状に配列された幅3mm×2本の陰極を、陽極の延在方向に対して直交するように形成し、平面視で縦4mm×横3mmの有機EL素子を4個作製した。
Next, Alq3 represented by Chemical Formula 4 was deposited to a thickness of 20 nm by vacuum deposition to form an electron transport layer, and then BCP and Cs represented by Chemical Formula 5 were co-deposited (weight) Ratio 20: 1), an electron injection layer having a thickness of 20 nm was stacked and formed.
Next, an aluminum layer having a thickness of 150 nm is stacked on the electron injection layer by an evaporation method, so that 3 mm × 2 cathodes arranged in stripes are orthogonal to the extending direction of the anode. Thus, four organic EL elements having a length of 4 mm and a width of 3 mm in plan view were produced.
 そして、プログラマブル直流電圧/電流源((株)アドバンテスト社製:TR6143)を用いて、上記手順で作成した有機EL素子に電圧を印加して発光させ、その発光輝度を輝度計((株)トプコン社製:BM-8)を用いて測定した。
 実施例1において得られた、最大発光外部量子効率、初期輝度を1000cd/mとした場合の一定電流駆動時における輝度半減寿命を下記表2に示す。
Then, using a programmable DC voltage / current source (manufactured by Advantest Co., Ltd .: TR6143), voltage is applied to the organic EL element created by the above procedure to emit light, and the luminance is measured with a luminance meter (Topcon Co., Ltd.). Measured using BM-8).
Table 2 below shows the luminance half-life at the time of constant current driving when the maximum light emission external quantum efficiency and the initial luminance were 1000 cd / m 2 obtained in Example 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(比較例1)
 比較例1では、発光層のホスト材料として、化学式3で示したPyTMBに代えて、化学式6で示したOXD-7を用いた点以外は、実施例1と同様にして有機EL素子を作製し、その最大発光外部量子効率及び輝度半減寿命を求め、上記表2に示した。
(Comparative Example 1)
In Comparative Example 1, an organic EL device was produced in the same manner as in Example 1 except that OXD-7 represented by Chemical Formula 6 was used instead of PyTMB represented by Chemical Formula 3 as the host material of the light emitting layer. The maximum emission external quantum efficiency and luminance half-life were determined and shown in Table 2 above.
(実施例2)
 実施例2では、正孔輸送層13の正孔移動度が正孔注入層12の正孔移動度よりも小さく、かつ、発光層14の正孔移動度が正孔輸送層13の正孔移動度よりも大きい有機EL素子を作製した。
 具体的には、まず、化学式7で示したトリアリールアミン誘導体であるpTmTDMPD(国際公開WO2011/052625号公報に記載された方法に従って合成した。)(100質量部)、及び、化学式8に示した電子受容性化合物であるF4TCNQ(Aldrich社製)(5質量部)をトルエンに溶解し、固形分濃度が0.8質量%となるように溶液を調製した。そして、この溶液を、実施例1で用いたものと同様のITO膜付ガラス基板上に、スピンコート法(回転数:3000rpm、回転時間30秒)によって塗布し、得られた塗膜を窒素雰囲気下:210℃:1時間で加熱し、厚さ20nmの正孔注入層を形成した。
(Example 2)
In Example 2, the hole mobility of the hole transport layer 13 is smaller than the hole mobility of the hole injection layer 12, and the hole mobility of the light emitting layer 14 is the hole mobility of the hole transport layer 13. An organic EL element larger than the above degree was produced.
Specifically, first, pTmTDMPD (synthesized according to the method described in International Publication WO2011 / 052625) (100 parts by mass), which is a triarylamine derivative represented by Chemical Formula 7, and Chemical Formula 8 F4TCNQ (Aldrich) (5 parts by mass), which is an electron-accepting compound, was dissolved in toluene, and a solution was prepared so that the solid content concentration was 0.8% by mass. And this solution was apply | coated by the spin coat method (rotation speed: 3000 rpm, rotation time 30 seconds) on the glass substrate with an ITO film | membrane similar to what was used in Example 1, and the obtained coating film was nitrogen atmosphere. Bottom: heated at 210 ° C. for 1 hour to form a 20 nm thick hole injection layer.
 次に、正孔注入層の上に、真空蒸着法により、化学式9で示したm-TTAを10nmの膜厚で成膜し、正孔輸送層を形成した。
 次に、化学式10で示した発光体PH-2と、化学式11で示したホスト化合物BFA-1Tとを、10:90の重量比となるように共蒸着し、20nmの膜厚の発光層を成膜した。
 次に、真空蒸着法により、化学式3で示したPyTMBを40nmの膜厚で積層成膜し、電子注入層及び電子輸送層を形成した後、さらに、0.5nmのフッ化ナトリウム層及び150nmのアルミニウム層からなる陰極を、この順で蒸着して積層成膜することにより、有機EL素子を作製した。
Next, m-TTA represented by Chemical Formula 9 was formed to a thickness of 10 nm on the hole injection layer by a vacuum deposition method to form a hole transport layer.
Next, the phosphor PH-2 represented by the chemical formula 10 and the host compound BFA-1T represented by the chemical formula 11 were co-evaporated so as to have a weight ratio of 10:90, and a light-emitting layer having a thickness of 20 nm was formed. A film was formed.
Next, PyTMB represented by Chemical Formula 3 was formed to a thickness of 40 nm by vacuum deposition to form an electron injection layer and an electron transport layer, and then a 0.5 nm sodium fluoride layer and a 150 nm thickness were further formed. An organic EL element was produced by depositing a cathode made of an aluminum layer in this order to form a laminated film.
 そして、実施例1と同様の方法で、上記手順で作製した有機EL素子の最大発光外部量子効率及び輝度半減寿命を求め、表2に示した。 Then, in the same manner as in Example 1, the maximum light emission external quantum efficiency and luminance half-life of the organic EL device produced by the above procedure were determined and shown in Table 2.
(比較例2)
 比較例2では、発光層のホスト化合物として、化学式11で示したBFA-1Tに代えて、化学式12で示したTPPCzを用いた点以外は、実施例2と同様にして有機発光素子を作製し、その最大発光外部量子効率及び輝度半減寿命を求め、上記表2に示した。
(Comparative Example 2)
In Comparative Example 2, an organic light emitting device was fabricated in the same manner as in Example 2, except that TPPCz represented by Chemical Formula 12 was used instead of BFA-1T represented by Chemical Formula 11 as the host compound of the light emitting layer. The maximum emission external quantum efficiency and luminance half-life were determined and shown in Table 2 above.
(実施例3)
 実施例3で作製した有機EL素子は、発光層を2層積層することで形成した。本実施例で作製した有機EL素子は、電子輸送層の電子移動度が電子注入層の電子移動度よりも小さく、また、複数の発光層のうち、電子輸送層に最も近い位置に配置する発光層の電子移動度が電子輸送層の電子移動度よりも大きい構成とされている。さらに、複数の発光層のうち、電子輸送層に最も近い位置に配置する発光層の電子移動度が、正孔輸送層に最も近い位置に配置する発光層の電子移動度よりも大きい構成とされている。また、正孔輸送層の正孔移動度が、正孔注入層の正孔移動度よりも小さく、複数の発光層のうち、正孔輸送層に最も近い位置に配置する発光層の正孔移動度が、正孔輸送層の正孔移動度よりも大きい構成とされている。さらに、複数の発光層のうち、正孔輸送層に最も近い位置に配置する発光層の正孔移動度が、正孔輸送層の正孔移動度よりも大きく、また、複数の発光層のうち、電子輸送層に最も近い位置に配置する発光層の正孔移動度が、正孔輸送層に最も近い位置に配置する発光層の正孔移動度よりも小さい構成とされている。
(Example 3)
The organic EL element produced in Example 3 was formed by laminating two light emitting layers. In the organic EL device manufactured in this example, the electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer, and the light emission disposed in the position closest to the electron transport layer among the plurality of light emitting layers. The electron mobility of the layer is larger than the electron mobility of the electron transport layer. Further, among the plurality of light emitting layers, the electron mobility of the light emitting layer disposed at the position closest to the electron transport layer is configured to be greater than the electron mobility of the light emitting layer disposed at the position closest to the hole transport layer. ing. In addition, the hole mobility of the hole transport layer is smaller than the hole mobility of the hole injection layer, and the hole mobility of the light emitting layer arranged at the position closest to the hole transport layer among the plurality of light emitting layers The degree is higher than the hole mobility of the hole transport layer. Further, among the plurality of light emitting layers, the hole mobility of the light emitting layer disposed at the position closest to the hole transport layer is larger than the hole mobility of the hole transport layer, and among the plurality of light emitting layers, The hole mobility of the light emitting layer disposed at the position closest to the electron transport layer is configured to be smaller than the hole mobility of the light emitting layer disposed at the position closest to the hole transport layer.
 具体的には、まず、実施例2と同様にして、ITO膜付きガラス基板上に、正孔注入層、正孔輸送層、及び、化学式10で示した発光体PH-2を含む発光層を、順次積層して形成した。
 次に、この発光層上に、実施例1と同様の方法で、化学式2で示した発光体PH-1を含む発光層、電子輸送層、電子注入層及び陰極を、この順で積層して形成することにより、有機EL素子を作製した。
Specifically, first, in the same manner as in Example 2, a hole injection layer, a hole transport layer, and a light emitting layer containing the phosphor PH-2 represented by Chemical Formula 10 were formed on a glass substrate with an ITO film. The layers were sequentially stacked.
Next, on this light emitting layer, a light emitting layer containing the light emitter PH-1 represented by Chemical Formula 2, an electron transport layer, an electron injection layer, and a cathode were laminated in this order by the same method as in Example 1. By forming, an organic EL element was produced.
 そして、実施例1と同様の方法で、上記手順で作製した有機EL素子の最大発光外部量子効率及び輝度半減寿命を求め、表2に示した。 Then, in the same manner as in Example 1, the maximum light emission external quantum efficiency and luminance half-life of the organic EL device produced by the above procedure were determined and shown in Table 2.
(比較例3)
 比較例3では、発光層のホスト化合物として、化学式11で示したBFA-1Tに代えて、化学式12で示したTPPCzを用いた点以外は、実施例3と同様にして有機EL素子を作製し、その最大発光外部量子効率及び輝度半減寿命を求め、上記表2に示した。
(Comparative Example 3)
In Comparative Example 3, an organic EL device was produced in the same manner as in Example 3 except that TPPCz represented by Chemical Formula 12 was used instead of BFA-1T represented by Chemical Formula 11 as the host compound of the light emitting layer. The maximum emission external quantum efficiency and luminance half-life were determined and shown in Table 2 above.
(結果)
 表1及び表2に示すように、各層間の電子移動度又は正孔移動度の関係を、本発明で規定する関係として作製した実施例1~3の有機EL素子においては、最大発光外部量子効率が11.6~15.5%と、比較例1~3に比べて発光効率に優れており、さらに、輝度半減寿命が2800~5900時間と、長寿命であることが明らかとなった。
(result)
As shown in Tables 1 and 2, in the organic EL devices of Examples 1 to 3 that are produced with the relationship between the electron mobility or the hole mobility between the layers as defined in the present invention, the maximum emission external quantum The efficiency was 11.6 to 15.5%, which was superior to that of Comparative Examples 1 to 3, and the luminance half-life was 2800 to 5900 hours.
 一方、各層間の電子移動度又は正孔移動度の関係を、本発明の規定範囲外として作製した比較例1~3の有機EL素子においては、最大発光外部量子効率が7.5~10.9%と、実施例1~3に比べて劣っており、また、輝度半減寿命も300~700時間と、実施例1~3に比べて著しく短いことがわかる。 On the other hand, in the organic EL elements of Comparative Examples 1 to 3 manufactured with the relationship between the electron mobility or the hole mobility between the respective layers being outside the specified range of the present invention, the maximum light emission external quantum efficiency is 7.5 to 10. 9%, which is inferior to Examples 1 to 3, and the luminance half-life is 300 to 700 hours, which is significantly shorter than Examples 1 to 3.
 以上説明したような実施例の結果により、電子注入層、電子輸送層及び発光層の各層間の電子移動度の関係、加えて、正孔注入層、正孔輸送層及び発光層の各層間の電子移動度あるいは正孔移動度の関係を本発明で規定する条件とすることにより、発光効率及び寿命特性の両方が向上することが明らかである。 According to the results of the examples as described above, the relationship between the electron mobility between the electron injection layer, the electron transport layer, and the light emitting layer, in addition to the relationship between the hole injection layer, the hole transport layer, and the light emitting layer. It is clear that both the light emission efficiency and the lifetime characteristics are improved by setting the relationship between the electron mobility or the hole mobility to the conditions defined in the present invention.
 本発明に係る有機EL素子は、発光特性や寿命特性に優れていることから、例えば、テレビジョンやコンピュータ用モニター、民生用TV、大型表示ディスプレイ、携帯電話や各種携帯端末等に用いられる各種表示装置、液晶用バックライト、車載照明、室内照明などの各種照明装置に好適である。 Since the organic EL device according to the present invention is excellent in light emission characteristics and lifetime characteristics, for example, various displays used for televisions, computer monitors, consumer TVs, large display displays, mobile phones, various portable terminals, and the like. It is suitable for various lighting devices such as a device, a backlight for liquid crystal, in-vehicle lighting, and indoor lighting.
1、2、3、4、5、6、7、8、9、10、1A… 有機EL素子、11…陽極、12…正孔注入層、13…正孔輸送層、14、14A、14B…発光層、15…電子輸送層、16…電子注入層、17…陰極、101…正孔の流れを示す矢印、102…電子の流れを示す矢印、201a…電子輸送層と発光層との間の電子移動度の大小を示す不等号、201b…電子注入層と電子輸送層との間の電子移動度の大小を示す不等号、201c…第7の実施形態における電子輸送層と発光層(陰極側)との間の電子移動度の大小を示す不等号、202a…正孔輸送層と発光層との間の正孔移動度の大小を示す不等号、202b…正孔注入層と正孔輸送層との間の正孔移動度の大小を示す不等号、202c…第7の実施形態における正孔輸送層と発光層(陽極側)との間の正孔移動度の大小を示す不等号、203b…第7の実施形態における発光層(陰極側)と発光層(陽極側)との間の正孔移動度の大小を示す不等号、203c…第7の実施形態における発光層(陰極側)と発光層(陽極側)との間の電子移動度の大小を示す不等号。 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1A ... organic EL element, 11 ... anode, 12 ... hole injection layer, 13 ... hole transport layer, 14, 14A, 14B ... Light emitting layer, 15 ... electron transport layer, 16 ... electron injection layer, 17 ... cathode, 101 ... arrow indicating the flow of holes, 102 ... arrow indicating the flow of electrons, 201a ... between the electron transport layer and the light emitting layer An inequality sign indicating the magnitude of electron mobility, 201b ... an inequality sign indicating the magnitude of electron mobility between the electron injection layer and the electron transport layer, 201c ... an electron transport layer and a light emitting layer (cathode side) in the seventh embodiment An inequality sign indicating the magnitude of electron mobility between the holes, 202a... An inequality sign indicating the magnitude of hole mobility between the hole transport layer and the light emitting layer, 202b... Between the hole injection layer and the hole transport layer. An inequality sign indicating the magnitude of hole mobility, 202c... Inequality sign indicating the magnitude of hole mobility between layers (anode side), 203b... The magnitude of hole mobility between the light emitting layer (cathode side) and the light emitting layer (anode side) in the seventh embodiment , An inequality sign indicating the magnitude of electron mobility between the light emitting layer (cathode side) and the light emitting layer (anode side) in the seventh embodiment.

Claims (11)

  1.  陽極と陰極の間に発光層を有する有機EL素子であって、
     前記陰極と前記発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備え、
     前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、
     前記発光層の電子移動度が前記電子輸送層の電子移動度よりも大きいことを特徴とする有機EL素子。
    An organic EL device having a light emitting layer between an anode and a cathode,
    Between the cathode and the light emitting layer, comprising an electron injection layer and an electron transport layer in order from the cathode side,
    The electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer,
    The organic EL element, wherein the electron mobility of the light emitting layer is larger than the electron mobility of the electron transport layer.
  2.  前記陽極と前記発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備えることを特徴とする請求項1に記載の有機EL素子。 The organic EL device according to claim 1, further comprising a hole injection layer and a hole transport layer in order from the anode side between the anode and the light emitting layer.
  3.  陽極と陰極の間に発光層を有する有機EL素子であって、
     前記陽極と前記発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、
     前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、
     前記発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きいことを特徴とする有機EL素子。
    An organic EL device having a light emitting layer between an anode and a cathode,
    Between the anode and the light emitting layer, comprising a hole injection layer and a hole transport layer in order from the anode side,
    The hole mobility of the hole transport layer is smaller than the hole mobility of the hole injection layer,
    The organic EL element, wherein the hole mobility of the light emitting layer is larger than the hole mobility of the hole transport layer.
  4.  前記陰極と前記発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備えることを特徴とする請求項3に記載の有機EL素子。 The organic EL device according to claim 3, further comprising an electron injection layer and an electron transport layer in order from the cathode side between the cathode and the light emitting layer.
  5.  陽極と陰極の間に発光層を有する有機EL素子であって、
     前記陰極と前記発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備えると共に、前記陽極と前記発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、
     前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、
     前記発光層の電子移動度が前記電子輸送層の電子移動度よりも大きく、
     前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、
     前記発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きいことを特徴とする有機EL素子。
    An organic EL device having a light emitting layer between an anode and a cathode,
    Between the cathode and the light emitting layer, an electron injection layer and an electron transport layer are provided in order from the cathode side, and between the anode and the light emitting layer, a hole injection layer and a hole transport layer are sequentially provided from the anode side. With
    The electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer,
    The electron mobility of the light emitting layer is larger than the electron mobility of the electron transport layer,
    The hole mobility of the hole transport layer is smaller than the hole mobility of the hole injection layer,
    The organic EL element, wherein the hole mobility of the light emitting layer is larger than the hole mobility of the hole transport layer.
  6.  陽極と陰極の間に、複数の発光層を有する有機EL素子であって、
     前記陰極と前記複数の発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備え、
     前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、
     前記複数の発光層のうち、前記電子輸送層に最も近い位置に配置する発光層の電子移動度が前記電子輸送層の電子移動度よりも大きいことを特徴とする有機EL素子。
    An organic EL element having a plurality of light emitting layers between an anode and a cathode,
    Between the cathode and the plurality of light emitting layers, an electron injection layer and an electron transport layer in order from the cathode side,
    The electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer,
    The organic EL element characterized by the electron mobility of the light emitting layer arrange | positioned in the position nearest to the said electron carrying layer among these light emitting layers being larger than the electron mobility of the said electron carrying layer.
  7.  前記陽極と前記複数の発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備えることを特徴とする請求項6に記載の有機EL素子。 The organic EL device according to claim 6, further comprising a hole injection layer and a hole transport layer in order from the anode side between the anode and the plurality of light emitting layers.
  8.  陽極と陰極の間に、複数の発光層を有する有機EL素子であって、
     前記陽極と前記複数の発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、
     前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、
     前記複数の発光層のうち、前記正孔輸送層に最も近い位置に配置する発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きいことを特徴とする有機EL素子。
    An organic EL element having a plurality of light emitting layers between an anode and a cathode,
    Between the anode and the plurality of light emitting layers, a hole injection layer and a hole transport layer are sequentially provided from the anode side,
    The hole mobility of the hole transport layer is smaller than the hole mobility of the hole injection layer,
    The organic EL element, wherein a hole mobility of a light emitting layer disposed at a position closest to the hole transport layer among the plurality of light emitting layers is larger than a hole mobility of the hole transport layer.
  9.  前記陰極と前記複数の発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備えることを特徴とする請求項8に記載の有機EL素子。 The organic EL device according to claim 8, further comprising an electron injection layer and an electron transport layer in order from the cathode side between the cathode and the plurality of light emitting layers.
  10.  陽極と陰極の間に、複数の発光層を有する有機EL素子であって、
     前記陰極と前記複数の発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備える共に、前記陽極と前記複数の発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、
     前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、
     前記複数の発光層のうち、前記電子輸送層に最も近い位置に配置する発光層の電子移動度が前記電子輸送層の電子移動度よりも大きく、
     前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、
     前記複数の発光層のうち、前記正孔輸送層に最も近い位置に配置する発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きいことを特徴とする有機EL素子。
    An organic EL element having a plurality of light emitting layers between an anode and a cathode,
    Between the cathode and the plurality of light emitting layers, an electron injection layer and an electron transport layer are sequentially provided from the cathode side, and between the anode and the plurality of light emitting layers, a hole injection layer is sequentially provided from the anode side. With a hole transport layer,
    The electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer,
    Among the plurality of light emitting layers, the electron mobility of the light emitting layer disposed at a position closest to the electron transport layer is larger than the electron mobility of the electron transport layer,
    The hole mobility of the hole transport layer is smaller than the hole mobility of the hole injection layer,
    The organic EL element, wherein a hole mobility of a light emitting layer disposed at a position closest to the hole transport layer among the plurality of light emitting layers is larger than a hole mobility of the hole transport layer.
  11.  陽極と陰極の間に、複数の発光層を有する有機EL素子であって、
     前記陰極と前記複数の発光層の間に、前記陰極側から順に電子注入層と電子輸送層を備えると共に、前記陽極と前記複数の発光層の間に、前記陽極側から順に正孔注入層と正孔輸送層を備え、
     前記電子輸送層の電子移動度が前記電子注入層の電子移動度よりも小さく、
     前記複数の発光層のうち、前記電子輸送層に最も近い位置に配置する発光層の電子移動度が前記電子輸送層の電子移動度よりも大きく、
     前記複数の発光層のうち、前記正孔輸送層に最も近い位置に配置する発光層の電子移動度が前記電子輸送層に最も近い位置に配置する発光層の電子移動度よりも小さく、
     前記正孔輸送層の正孔移動度が前記正孔注入層の正孔移動度よりも小さく、
     前記複数の発光層のうち、前記正孔輸送層に最も近い位置に配置する発光層の正孔移動度が前記正孔輸送層の正孔移動度よりも大きく、
     前記複数の発光層のうち、前記電子輸送層に最も近い位置に配置する発光層の正孔移動度が前記正孔輸送層に最も近い位置に配置する発光層の正孔移動度よりも小さい、
     ことを特徴とする有機EL素子。
    An organic EL element having a plurality of light emitting layers between an anode and a cathode,
    Between the cathode and the plurality of light emitting layers, an electron injection layer and an electron transport layer are sequentially provided from the cathode side, and between the anode and the plurality of light emitting layers, a hole injection layer is sequentially provided from the anode side. With a hole transport layer,
    The electron mobility of the electron transport layer is smaller than the electron mobility of the electron injection layer,
    Among the plurality of light emitting layers, the electron mobility of the light emitting layer disposed at a position closest to the electron transport layer is larger than the electron mobility of the electron transport layer,
    Among the plurality of light emitting layers, the electron mobility of the light emitting layer disposed at the position closest to the hole transport layer is smaller than the electron mobility of the light emitting layer disposed at the position closest to the electron transport layer,
    The hole mobility of the hole transport layer is smaller than the hole mobility of the hole injection layer,
    Among the plurality of light emitting layers, the hole mobility of the light emitting layer disposed at the position closest to the hole transport layer is larger than the hole mobility of the hole transport layer,
    Among the plurality of light emitting layers, the hole mobility of the light emitting layer disposed at the position closest to the electron transport layer is smaller than the hole mobility of the light emitting layer disposed at the position closest to the hole transport layer,
    An organic EL device characterized by that.
PCT/JP2013/081770 2012-11-27 2013-11-26 Organic el element WO2014084206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012258907 2012-11-27
JP2012-258907 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014084206A1 true WO2014084206A1 (en) 2014-06-05

Family

ID=50827842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081770 WO2014084206A1 (en) 2012-11-27 2013-11-26 Organic el element

Country Status (1)

Country Link
WO (1) WO2014084206A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230023178A1 (en) * 2021-07-22 2023-01-26 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and mobile terminal
JP7492820B2 (en) 2019-11-29 2024-05-30 JDI Design and Development 合同会社 Organic EL element, organic EL display panel, and method for manufacturing organic EL element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110106A1 (en) * 2003-06-04 2004-12-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
US20060194077A1 (en) * 2005-02-28 2006-08-31 Fuji Photo Film Co., Ltd. Organic light emitting diode and display using the same
JP2006270091A (en) * 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Organic electroluminescent element and display
US20070015004A1 (en) * 2005-06-07 2007-01-18 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JP2007019471A (en) * 2005-06-07 2007-01-25 Fujifilm Holdings Corp Organic electric field light-emitting element
JP2008108710A (en) * 2006-09-28 2008-05-08 Fujifilm Corp Organic luminescent element
US20080180023A1 (en) * 2006-09-28 2008-07-31 Fujifilm Corporation Organic electroluminescence element
WO2011148909A1 (en) * 2010-05-24 2011-12-01 出光興産株式会社 Organic electroluminescent element

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070103065A1 (en) * 2003-06-04 2007-05-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
JP2004362914A (en) * 2003-06-04 2004-12-24 Idemitsu Kosan Co Ltd Organic electroluminescent element and display device using the same
KR20060022676A (en) * 2003-06-04 2006-03-10 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device and display using same
EP1643812A1 (en) * 2003-06-04 2006-04-05 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
CN1802878A (en) * 2003-06-04 2006-07-12 出光兴产株式会社 Organic electroluminescent element and display device using the same
WO2004110106A1 (en) * 2003-06-04 2004-12-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
ATE525894T1 (en) * 2003-06-04 2011-10-15 Idemitsu Kosan Co ORGANIC ELECTROLUMINENCE COMPONENT AND DISPLAY CONTAINING THE SAME
US20100096624A1 (en) * 2003-06-04 2010-04-22 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
US7659659B2 (en) * 2003-06-04 2010-02-09 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
US20060194077A1 (en) * 2005-02-28 2006-08-31 Fuji Photo Film Co., Ltd. Organic light emitting diode and display using the same
US20090261324A1 (en) * 2005-02-28 2009-10-22 Fujifilm Corporation Organic light emitting diode and display using the same
US20090261724A1 (en) * 2005-02-28 2009-10-22 Fujifilm Corporation Organic light emitting diode and display using the same
JP2006270091A (en) * 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Organic electroluminescent element and display
JP2007019471A (en) * 2005-06-07 2007-01-25 Fujifilm Holdings Corp Organic electric field light-emitting element
US20070015004A1 (en) * 2005-06-07 2007-01-18 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JP2008108710A (en) * 2006-09-28 2008-05-08 Fujifilm Corp Organic luminescent element
US20080180023A1 (en) * 2006-09-28 2008-07-31 Fujifilm Corporation Organic electroluminescence element
WO2011148909A1 (en) * 2010-05-24 2011-12-01 出光興産株式会社 Organic electroluminescent element
TW201213497A (en) * 2010-05-24 2012-04-01 Idemitsu Kosan Co Organic electroluminescent element
US20120119197A1 (en) * 2010-05-24 2012-05-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
KR20130021350A (en) * 2010-05-24 2013-03-05 이데미쓰 고산 가부시키가이샤 Organic electroluminescent element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. KULKARNI ET AL.: "Electron Transport Materials for Organic Light-Emitting Diodes", CHEM. MATER., vol. 16, no. 23, 15 October 2004 (2004-10-15), pages 4556 - 4573 *
Y. SHIROTA ET AL.: "Charge Carrier Transporting Molecular Materials and Their Applications in Devices", CHEM. REV., vol. 107, no. 4, 4 November 2007 (2007-11-04), pages 953 - 1010 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492820B2 (en) 2019-11-29 2024-05-30 JDI Design and Development 合同会社 Organic EL element, organic EL display panel, and method for manufacturing organic EL element
US20230023178A1 (en) * 2021-07-22 2023-01-26 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and mobile terminal

Similar Documents

Publication Publication Date Title
US9048447B2 (en) Organic light emitting display device having auxiliary charge generation layer
US11711933B2 (en) OLED device structures
JP5624459B2 (en) Organic electroluminescence device
JP5180369B2 (en) Organic electroluminescent device
WO2012132842A1 (en) Organic electroluminescent element
US20150287949A1 (en) Organic electroluminescent element and electronic device
WO2011010696A1 (en) Organic electroluminescent element
CN106848084B (en) OLED display panel, manufacturing method and electronic equipment comprising OLED display panel
US10355220B2 (en) Organic light emitting display device
JP2008053556A (en) Organic electroluminescent element
US20140048785A1 (en) Optoelectronic component and use of a copper complex as dopant for doping a layer
JP5760281B2 (en) Blue phosphorescent organic light-emitting device with minimum stacking structure
US20120119196A1 (en) Organic electroluminescent element
JP5109054B2 (en) Organic electroluminescence device
KR102650149B1 (en) Process for manufacturing metal-containing layers
JP5791129B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
WO2014084206A1 (en) Organic el element
TWI249368B (en) White organic light emitting device using three emissive layer
KR102393090B1 (en) Organic light emitting diode
KR20180082533A (en) A metallic layer comprising an alkali metal and a second metal
JP2010177338A (en) Organic electroluminescent element, and method of manufacturing the same
WO2013176069A1 (en) Organic electroluminescence element and method for manufacturing same
TWI569492B (en) Organic light-emitting element
US10811608B2 (en) N-doped semiconducting material comprising two metal dopants
WO2014109265A1 (en) Transparent electrode and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP