WO2014084172A1 - Charged-particle beam device - Google Patents

Charged-particle beam device Download PDF

Info

Publication number
WO2014084172A1
WO2014084172A1 PCT/JP2013/081657 JP2013081657W WO2014084172A1 WO 2014084172 A1 WO2014084172 A1 WO 2014084172A1 JP 2013081657 W JP2013081657 W JP 2013081657W WO 2014084172 A1 WO2014084172 A1 WO 2014084172A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
optical axis
particle beam
image
magnification
Prior art date
Application number
PCT/JP2013/081657
Other languages
French (fr)
Japanese (ja)
Inventor
正臣 大野
賢一 平根
幸太郎 細谷
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2014084172A1 publication Critical patent/WO2014084172A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1471Arrangements for directing or deflecting the discharge along a desired path for centering, aligning or positioning of ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Definitions

  • the present invention relates to a charged particle beam apparatus that performs image acquisition of a sample by irradiating the sample with a charged particle beam.
  • the charged particle beam device performs observation and analysis of the target sample by irradiating the target sample with the charged particle beam. For example, in a scanning electron microscope (SEM: Scanning Electron Microscope) or a transmission electron microscope (TEM: Transmission Electron Microscope), the target sample is irradiated with an electron beam as a charged particle beam and the amount of secondary electrons detected by the detector or A microscopic image of the target sample is generated based on the amount of transmitted electrons.
  • SEM Scanning Electron Microscope
  • TEM Transmission Electron Microscope
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-84823 discloses a charged particle source, a converging lens for converging a primary charged particle beam emitted from the charged particle source, An objective lens for focusing the primary charged particle beam on the sample, an objective aperture disposed on the charged particle source side from the objective lens to limit the amount of irradiation of the primary charged particle beam to the sample, and the primary charged particle beam Discloses a technique relating to a charged particle beam apparatus including a detector that detects a secondary signal generated from a sample by irradiation of the above and an aligner for moving the center of the primary charged particle beam to the center of the objective aperture.
  • the alignment of the optical axis of the primary charged particle beam emitted from the charged particle gun and the central axis of a lens, a diaphragm, etc. Is necessary. This is because, for example, the primary charged particle beam is prevented from being blocked more than necessary by a diaphragm for limiting the amount of the primary charged particle beam irradiated to the sample.
  • the optical axis adjustment is performed while the operator looks at the brightness of the optical axis adjustment image obtained by the primary charged particle beam passing through the stop.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a charged particle beam apparatus capable of accurately adjusting the optical axis without being affected by the skill level of an operator.
  • the present invention provides a charged particle gun, a converging lens that converges a primary charged particle beam emitted from the charged particle gun, a deflector that adjusts the optical axis of the primary charged particle beam, and a primary A limiting aperture that limits the amount of irradiation of the sample to be irradiated with the charged particle beam, a detector that detects secondary charged particles obtained by irradiating the sample with the primary charged particle beam, and two detectors detected by the detector Control for displaying magnification information representing magnification when performing image quality adjustment for adjusting at least one parameter relating to the image quality of an image obtained based on the next charged particle to a predetermined value so as to be adjacent to or superimposed on the image Part.
  • the optical axis can be adjusted accurately without being affected by the skill level of the operator.
  • FIG. 1 It is a figure which shows the whole structure of the scanning electron microscope which concerns on one embodiment of this invention. It is a figure which shows the mode of position adjustment (mechanical axis adjustment) of a cathode. It is a figure which shows the mode of the optical axis adjustment (electrical axis adjustment) by a deflector. It is a figure which shows an example of the image for optical axis adjustment displayed on a display apparatus when performing an optical axis adjustment, and is a figure which shows the state which optical axis adjustment is incomplete. It is a figure which shows an example of the image for optical axis adjustment displayed on a display apparatus when performing an optical axis adjustment, and is a figure which shows the state in which optical axis adjustment was performed appropriately.
  • FIG. 1 is a diagram showing an overall configuration of a scanning electron microscope according to the present embodiment.
  • a scanning electron microscope (SEM: Scanning Electron Microscope) includes an electron gun (charged particle gun) 17 having a cathode 1 as a charged particle source (electron source) and an anode 4 as an extraction electrode, and an electron gun 17.
  • An objective lens aperture (limit aperture) 6 that limits the amount of irradiation to the target sample 15, upper and lower deflection coils 8 and 9 for scanning the sample 15 with the primary electron beam 3, and the sample 15 are irradiated.
  • the secondary electron detector 1 In a display device (display unit) 30 for displaying the optical axis adjustment image obtained based on the detected secondary electrons, it is schematically a control unit 18 for controlling the entire operation of the scanning electron beam apparatus.
  • the primary electron beam 3 emitted from the cathode 1 by an extraction voltage applied between the cathode 1 and an extraction electrode (not shown) is accelerated by a voltage Vacc applied between the cathode 1 and the anode 4. Then, the process proceeds to the electromagnetic lens system in the subsequent stage.
  • the acceleration voltage Vacc is controlled by a high voltage control circuit 22 provided in the control device 18.
  • the primary electron beam 3 emitted from the electron gun 17 is adjusted by the deflector 2 and then converged by the first converging lens 5.
  • the deflector 2 is controlled by the aligner control unit 21 of the control device 18.
  • the first convergent lens 5 is controlled by the first convergent lens control unit 22 of the control device 18.
  • the primary electron beam 3 converged by the first converging lens 5 is limited in the amount of irradiation current to the sample by the objective lens aperture (limit aperture) 6 and then converged by the second convergence lens 7.
  • the second convergent lens 7 is controlled by the second convergent lens control unit 23 of the control device 18.
  • the primary electron beam 3 converged by the second converging lens 7 is incident on the objective lens 10 through the upper and lower deflection coils 8 and 9 and is narrowed down and irradiated onto the sample 15. At this time, the primary electron beam 3 is scanned two-dimensionally on the sample 15 by the action of the upper and lower changing coils 8 and 9.
  • the upper and lower deflection coils 8 and 9 are controlled by the deflection controller 24 of the control device 18.
  • the objective lens 10 is controlled by the objective lens control unit 26 of the control device 18.
  • the relay switch 11 When the optical axis adjustment image is obtained, the relay switch 11 is turned on (closed) by the control unit 29, and the scanning signals of the upper and lower deflection coils 8 and 9 by the deflection control unit 24 are transmitted via the relay switch 11. Thus, the signal is synchronized with the signal of the deflector 2 that adjusts the optical axis.
  • the sample 15 is disposed on the sample fine movement device 14, and the position of the sample 15 is adjusted by horizontal movement so that the sample 15 becomes a desired position in the irradiation range (scanning range) of the primary electron beam 3.
  • the sample fine movement device 14 is controlled by the sample fine movement control unit 27 of the control device 18.
  • the secondary electrons generated from the sample 15 by irradiation of the primary electron beam 3 those having low energy are wound up by the magnetic field of the objective lens 10 and detected by the detector 12.
  • the detection signal from the detector 12 is amplified by the amplifier 16 and sent to the control unit 29 via the signal control unit 25 of the control device 18.
  • an orthogonal electromagnetic field (EXB) device 13 is disposed above the objective lens 10, and thereby the axial displacement of the primary electrons 3 due to the secondary electrons is suppressed.
  • control units 20,..., 27 of the control device 18 are controlled by a higher-level control unit 29.
  • an image of the sample is generated based on the secondary electrons detected by the detector 12 and the scanning information of the upper and lower stage changing coils 8 and 9 by the deflection control unit 24 and connected to the control device 18. It is displayed on the display device 30.
  • control unit 29 of the control device 18 performs various image processing on the observation image and an image acquisition device 31 for acquiring the observation image of the sample 15 displayed on the display device 30 as image information.
  • An image processing device 32, a calculation device 33 for performing various calculations based on the results of image processing, a storage device 34 for storing observation images and calculation results, and an input device for inputting various set values and the like 35 is connected.
  • FIG. 2 is a diagram showing a state of cathode position adjustment (mechanical axis adjustment)
  • FIG. 3 is a diagram showing a state of optical axis adjustment (electrical axis adjustment) by a deflector.
  • FIG. 4 and 5 are diagrams illustrating an example of an optical axis adjustment image displayed on the display device 30 when performing optical axis adjustment.
  • FIG. 4 illustrates a state where the optical axis adjustment is incomplete, and
  • FIG. Each of the figures shows a state in which the optical axis is properly adjusted.
  • an image 15a of the sample 15 obtained based on the secondary electrons detected by the detector 12 is displayed as the optical axis adjustment image.
  • the display device 30 has an image quality adjustment (adjustment for adjusting at least one parameter (for example, contrast, brightness, or both) relating to the image quality of the optical axis adjustment image (image 15a) to a predetermined value.
  • image quality adjustment adjustment for adjusting at least one parameter (for example, contrast, brightness, or both) relating to the image quality of the optical axis adjustment image (image 15a) to a predetermined value.
  • Magnification information indicating the magnification when performing auto contrast, auto brightness, or auto contrast / brightness is displayed so as to be superimposed on the optical axis adjustment image 15a.
  • the magnification information displayed on the display device 30 by the control of the control unit 29 includes a numerical value axis (axis line) 40 that serves as a reference for the size of the parameter, and an instruction line 41 that indicates a position on the numerical value axis 40.
  • the magnification information is indicated by the relative position between the numerical value axis 40 and the instruction line 41. Note that the magnification and magnification information when performing image quality adjustment are, in other words, amplification factor and signal amplification factor information, respectively.
  • the parameters relating to the image quality of the optical axis adjustment image 15a that is, the values of contrast and brightness are reduced, and as a result, the magnification B is increased.
  • the value of the parameter increases, and as a result, the magnification B decreases as shown in FIG. That is, by adjusting the optical axis so that the magnification B becomes smaller, the optical axis can be adjusted appropriately.
  • the deflector 2 in the state of automatic image quality adjustment in which image quality adjustment is always performed, the deflector 2 is set using the input device 35 or the like while confirming the optical axis adjustment image 15a and magnification information of the display device 30. Adjust and adjust the optical axis.
  • the instruction line 41 moves in the magnification direction (vertical direction in FIGS. 4 and 5).
  • a marker 42 that follows the instruction line 41 and moves only downward (that is, in a direction in which the magnification is low) is provided.
  • the marker 42 is pushed down in accordance with the movement of the indication line 41, and as a result, the indication line 41 indicates a position where the minimum value is shown. Then, by adjusting the setting of the deflector 2 so that the indication line 41 matches the minimum value indicated by the marker 42, the magnification can be set smaller, and the optical axis can be adjusted easily and appropriately. Can do.
  • FIG. 6 is a flowchart showing the procedure of optical axis adjustment in the present embodiment.
  • step S10 image quality adjustment is started while acquiring the optical axis adjustment image 15a (step S10).
  • step S20 while performing mechanical axis adjustment for adjusting the horizontal position of the cathode 1 using a screw mechanism (not shown) or the like (step S20), the optical axis adjustment image 15a and magnification information are referred to (step S30). Then, it is determined whether or not the magnification information has become a minimum value (step S40). If the determination result is NO, steps S20 and S30 are repeated until the determination result is YES.
  • step S40 If the determination result in step S40 is YES, the optical axis adjustment image 15a and the magnification information are obtained while performing electrical axis adjustment for adjusting the setting of the deflector 2 using the input device 35 or the like (step S50). Reference is made (step S60). Then, it is determined whether or not the magnification information has become a minimum value (step S70). If the determination result is NO, steps S50 and S60 are repeated until the determination result is YES, and the determination result in step S70 is YES. In such a case, the optical axis adjustment is terminated.
  • a primary electron beam primary charged particle beam
  • an electron gun charged particle gun
  • the optical axis adjustment is performed while the operator looks at the brightness of the optical axis adjustment image obtained by the primary charged particle beam passing through the stop.
  • skill is required to adjust the optical axis accurately depending on the brightness of the image for optical axis adjustment, and the quality of the sample image obtained varies depending on the level of skill of the operator performing the optical axis adjustment. There is also concern that this will occur.
  • the first and second converging lenses 5 and 7 converging lenses that converge the primary electron beam 3 (primary charged particle beam) emitted from the electron gun 1 (charged particle gun).
  • a deflector 2 that adjusts the optical axis of the primary electron beam 3
  • an objective lens aperture 6 limit aperture
  • the detector 12 detects the optical axis when adjusting the optical axis.
  • the optical axis adjustment image 15a obtained based on the secondary electrons is displayed on the display device 30 (display unit), and at least one parameter (such as contrast C) relating to the image quality of the optical axis adjustment image 15a is determined in advance.
  • Value (specified value C1 ) Magnification information representing a magnification when performing image quality adjustment for adjusting (such as magnification B) so as to have configured to display to overlap the optical axis adjustment image 15a.
  • the optical axis adjustment state when determining the optical axis adjustment state based only on the brightness of the optical axis adjustment image, it is not possible to grasp the occurrence of misalignment or other defects between other components. Although it is difficult and there is a concern that the irradiation angle of the primary electron beam to the sample becomes shallow and the contrast of the acquired sample image decreases, in this embodiment, the light is obtained while grasping the state of the sample image. Since the axis adjustment can be performed at the same time, it is possible to suppress adjustment in an unsuitable range in view of the purpose of acquiring a clear image of the sample, and the optical axis adjustment can be performed with high accuracy.
  • the numerical value axis 40 of the magnification information may not be displayed, and only the instruction line 41 may be used so as to be superimposed on the optical axis adjustment image 15a. Also in this case, since the magnification can be grasped intuitively as the instruction line 41 goes downward, the operator can easily grasp the adjustment state in the optical axis adjustment, and is affected by the skill level of the operator. Therefore, the optical axis can be adjusted accurately.
  • the magnification information may be displayed by the color tone of the image.
  • the color tone of the optical axis adjustment image 15a is set to be more red, and is configured to be blue as the magnification is reduced. Even in this case, the operator can easily grasp the adjustment state in the optical axis adjustment.
  • magnification information may be expressed by a numerical value 43 and displayed so as to be superimposed on a part of the optical axis adjustment image 15a. Even in this case, the operator can easily grasp the adjustment state in the optical axis adjustment.
  • the instruction line 41 and the numerical value 43 need only be within a range where the operator can simultaneously recognize the optical axis adjustment image 15a and the magnification information, and may be arranged adjacent to the optical axis adjustment image 15a.
  • a scanning electron microscope SEM
  • TEM focused ion beam
  • FIB-SEM focused ion beam scanning electron microscope
  • STEM scanning transmission electron microscope

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

Provided is a charged-particle beam device whereby it is possible to carry out an optical axis adjustment with good precision and without being affected by a degree of proficiency of an operator. A charged-particle beam device comprises: a detector which detects secondary charged particles which are obtained by a projection of a primary charged-particle beam upon a specimen; a display unit which, when an optical axis adjustment of the primary charged-particle beam is to be carried out, displays an image for optical axis adjustment (15a) which is obtained on the basis of the secondary charged particles which are detected with the detector; and a control unit which displays, so as to be adjacent to or overlap with the image for optical axis adjustment, magnification information which represents a magnification when carrying out the image adjustment of adjusting such that at least one parameter relating to image quality of the image for optical axis adjustment reaches a predetermined value. The magnification information represents the magnification by, for example, the relative positions of a reference axis (40) and an indication line (41).

Description

荷電粒子線装置Charged particle beam equipment
 本発明は、試料に荷電粒子線を照射することによりその試料の画像取得等を行う荷電粒子線装置に関する。 The present invention relates to a charged particle beam apparatus that performs image acquisition of a sample by irradiating the sample with a charged particle beam.
 荷電粒子線装置は、対象試料に荷電粒子線を照射することにより、対象試料の観察や分析等を行うものである。例えば、走査電子顕微鏡(SEM : Scanning Electron Microscope)や透過型電子顕微鏡(TEM : Transmission Electron Microscope)においては、対象試料に荷電粒子線として電子線を照射し、検出器により検出した二次電子量又は透過電子量に基づいて、対象試料の顕微鏡像を生成している。 The charged particle beam device performs observation and analysis of the target sample by irradiating the target sample with the charged particle beam. For example, in a scanning electron microscope (SEM: Scanning Electron Microscope) or a transmission electron microscope (TEM: Transmission Electron Microscope), the target sample is irradiated with an electron beam as a charged particle beam and the amount of secondary electrons detected by the detector or A microscopic image of the target sample is generated based on the amount of transmitted electrons.
 このような荷電粒子線装置として、例えば、特許文献1(特開2008-84823号公報)には、荷電粒子源と、荷電粒子源から放出する一次荷電粒子線を収束するための収束レンズと、一次荷電粒子線を試料上にフォーカスするための対物レンズと、一次荷電粒子線の試料への照射量を制限するために対物レンズより荷電粒子源側に配置された対物絞りと、一次荷電粒子線の照射によって試料から発生した二次信号を検出する検出器と、一次荷電粒子線の中心を対物絞りの中心に移動させるためのアライナーを備えた荷電粒子線装置に関する技術が開示されている。 As such a charged particle beam device, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2008-84823) discloses a charged particle source, a converging lens for converging a primary charged particle beam emitted from the charged particle source, An objective lens for focusing the primary charged particle beam on the sample, an objective aperture disposed on the charged particle source side from the objective lens to limit the amount of irradiation of the primary charged particle beam to the sample, and the primary charged particle beam Discloses a technique relating to a charged particle beam apparatus including a detector that detects a secondary signal generated from a sample by irradiation of the above and an aligner for moving the center of the primary charged particle beam to the center of the objective aperture.
特開2008-84823号公報JP 2008-84823 A
 ところで、荷電粒子線装置においては、高精度の試料画像を取得するために、荷電粒子銃から放出される一次荷電粒子線の光軸とレンズや絞り等の中心軸との位置合わせ(光軸調整)を行う必要がある。これは、例えば、試料に照射される一次荷電粒子線の量を制限するための絞りによって必要以上に一次荷電粒子線が遮られることを防ぐためである。そして、光軸調整は、オペレータが、絞りを通過する一次荷電粒子線により得られる光軸調整用の画像の明るさを見ながら行っている。 By the way, in the charged particle beam apparatus, in order to obtain a highly accurate sample image, the alignment of the optical axis of the primary charged particle beam emitted from the charged particle gun and the central axis of a lens, a diaphragm, etc. (optical axis adjustment) ) Is necessary. This is because, for example, the primary charged particle beam is prevented from being blocked more than necessary by a diaphragm for limiting the amount of the primary charged particle beam irradiated to the sample. The optical axis adjustment is performed while the operator looks at the brightness of the optical axis adjustment image obtained by the primary charged particle beam passing through the stop.
 しかしながら、光軸調整用の画像の明るさによって精度良く光軸調整を行うためには熟練が必要であり、また、光軸調整を行うオペレータの熟練度の違いによって得られる試料画像の質にバラツキが生じることも懸念される。 However, skill is required to adjust the optical axis accurately depending on the brightness of the image for optical axis adjustment, and the quality of the sample image obtained varies depending on the level of skill of the operator performing the optical axis adjustment. There is also concern that this will occur.
 本発明は上記に鑑みてなされたものであり、オペレータの熟練度の影響されずに精度良く光軸調整を行うことができる荷電粒子線装置を提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a charged particle beam apparatus capable of accurately adjusting the optical axis without being affected by the skill level of an operator.
 上記目的を達成するために、本発明は、荷電粒子銃と、荷電粒子銃から放出される一次荷電粒子線を収束する収束レンズと、一次荷電粒子線の光軸調整を行う偏向器と、一次荷電粒子線の照射対象である試料への照射量を制限する制限絞りと、一次荷電粒子線の試料への照射により得られる二次荷電粒子を検出する検出器と、検出器で検出された二次荷電粒子に基づいて得られる画像の画質に関する少なくとも1つのパラメータを予め定めた値となるように調整する画質調整を行う際の倍率を表す倍率情報を画像に隣接又は重畳するように表示する制御部とを備えたものとする。 To achieve the above object, the present invention provides a charged particle gun, a converging lens that converges a primary charged particle beam emitted from the charged particle gun, a deflector that adjusts the optical axis of the primary charged particle beam, and a primary A limiting aperture that limits the amount of irradiation of the sample to be irradiated with the charged particle beam, a detector that detects secondary charged particles obtained by irradiating the sample with the primary charged particle beam, and two detectors detected by the detector Control for displaying magnification information representing magnification when performing image quality adjustment for adjusting at least one parameter relating to the image quality of an image obtained based on the next charged particle to a predetermined value so as to be adjacent to or superimposed on the image Part.
 本発明によれば、オペレータの熟練度の影響されずに精度良く光軸調整を行うことができる。 According to the present invention, the optical axis can be adjusted accurately without being affected by the skill level of the operator.
本発明の一実施の形態に係る走査電子顕微鏡の全体構成を示す図である。It is a figure which shows the whole structure of the scanning electron microscope which concerns on one embodiment of this invention. 陰極の位置調整(機械的軸調整)の様子を示す図である。It is a figure which shows the mode of position adjustment (mechanical axis adjustment) of a cathode. 偏向器による光軸調整(電気的軸調整)の様子を示す図である。It is a figure which shows the mode of the optical axis adjustment (electrical axis adjustment) by a deflector. 光軸調整を行う際に表示装置に表示される光軸調整用画像の一例を示す図であり、光軸調整が不完全である状態を示す図である。It is a figure which shows an example of the image for optical axis adjustment displayed on a display apparatus when performing an optical axis adjustment, and is a figure which shows the state which optical axis adjustment is incomplete. 光軸調整を行う際に表示装置に表示される光軸調整用画像の一例を示す図であり、光軸調整が適当に行われた状態を示す図である。It is a figure which shows an example of the image for optical axis adjustment displayed on a display apparatus when performing an optical axis adjustment, and is a figure which shows the state in which optical axis adjustment was performed appropriately. 光軸調整の手順を示すフローチャートである。It is a flowchart which shows the procedure of an optical axis adjustment. 本実施の形態の一変形例を示す図である。It is a figure which shows one modification of this Embodiment. 本実施の形態の他の変形例を示す図である。It is a figure which shows the other modification of this Embodiment. 本実施の形態のさらに他の変形例を示す図である。It is a figure which shows the further another modification of this Embodiment.
 以下、本発明の実施の形態に係る荷電粒子線装置の一例として走査電子顕微鏡を挙げ、図面を参照しつつ詳細に説明する。 Hereinafter, a scanning electron microscope will be cited as an example of the charged particle beam apparatus according to the embodiment of the present invention, and a detailed description will be given with reference to the drawings.
 図1は、本実施の形態に係る走査電子顕微鏡の全体構成を示す図である。 FIG. 1 is a diagram showing an overall configuration of a scanning electron microscope according to the present embodiment.
 図1において、走査電子顕微鏡(SEM : Scanning Electron Microscope)は、荷電粒子源(電子源)としての陰極1と引出電極としての陽極4とを有する電子銃(荷電粒子銃)17と、電子銃17から放出される一次電子線(一次荷電粒子線)3を収束する第一及び第二収束レンズ5,7と、一次電子線3の光軸調整を行う偏向器2と、一次電子線3の照射対象である試料15への照射量を制限する対物レンズ絞り(制限絞り)6と、一次電子線3を試料15上に走査するための上段及び下段偏向コイル8,9と、試料15に照射される一次電子線3を細く絞る対物レンズ10と、一次電子線3の試料15への照射により得られる二次電子(二次荷電粒子)を検出する二次電子検出器(検出器)12と、光軸調整を行う際に、二次電子検出器12で検出された二次電子に基づいて得られる光軸調整用画像を表示する表示装置(表示部)30と、走査電子線装置全体の動作を制御する制御装置18とから概略構成されている。 1, a scanning electron microscope (SEM: Scanning Electron Microscope) includes an electron gun (charged particle gun) 17 having a cathode 1 as a charged particle source (electron source) and an anode 4 as an extraction electrode, and an electron gun 17. The first and second converging lenses 5 and 7 for converging the primary electron beam (primary charged particle beam) 3 emitted from the beam, the deflector 2 for adjusting the optical axis of the primary electron beam 3, and the irradiation of the primary electron beam 3 An objective lens aperture (limit aperture) 6 that limits the amount of irradiation to the target sample 15, upper and lower deflection coils 8 and 9 for scanning the sample 15 with the primary electron beam 3, and the sample 15 are irradiated. An objective lens 10 for narrowing the primary electron beam 3; a secondary electron detector (detector) 12 for detecting secondary electrons (secondary charged particles) obtained by irradiating the sample 15 with the primary electron beam 3; When the optical axis is adjusted, the secondary electron detector 1 In a display device (display unit) 30 for displaying the optical axis adjustment image obtained based on the detected secondary electrons, it is schematically a control unit 18 for controlling the entire operation of the scanning electron beam apparatus.
 電子銃17において、陰極1と図示しない引出電極との間に印加される引出電圧によって陰極1から放出された一次電子線3は、陰極1と陽極4との間に印加される電圧Vaccにより加速されて、後段の電磁レンズ系に進行する。加速電圧Vaccは、制御装置18に設けられた高電圧制御回路22により制御されている。 In the electron gun 17, the primary electron beam 3 emitted from the cathode 1 by an extraction voltage applied between the cathode 1 and an extraction electrode (not shown) is accelerated by a voltage Vacc applied between the cathode 1 and the anode 4. Then, the process proceeds to the electromagnetic lens system in the subsequent stage. The acceleration voltage Vacc is controlled by a high voltage control circuit 22 provided in the control device 18.
 電子銃17から放出された一次電子線3は偏向器2により光軸の調整が行われ、その後、第一収束レンズ5により収束される。偏向器2は、制御装置18のアライナー制御部21により制御されている。また、第一収束レンズ5は、制御装置18の第一収束レンズ制御部22により制御されている。 The primary electron beam 3 emitted from the electron gun 17 is adjusted by the deflector 2 and then converged by the first converging lens 5. The deflector 2 is controlled by the aligner control unit 21 of the control device 18. The first convergent lens 5 is controlled by the first convergent lens control unit 22 of the control device 18.
 第一収束レンズ5により収束された一次電子線3は、対物レンズ絞り(制限絞り)6によって試料への照射電流量が制限され、その後、第二収束レンズ7により収束される。第二収束レンズ7は、制御装置18の第二収束レンズ制御部23により制御されている。 The primary electron beam 3 converged by the first converging lens 5 is limited in the amount of irradiation current to the sample by the objective lens aperture (limit aperture) 6 and then converged by the second convergence lens 7. The second convergent lens 7 is controlled by the second convergent lens control unit 23 of the control device 18.
 第二収束レンズ7により収束された一次電子線3は、上段及び下段偏向コイル8,9を介して対物レンズ10に入射され、細く絞られて試料15上に照射される。このとき、一次電子線3は、上段及び下段変更コイル8,9の作用により試料15上を二次元的に走査される。上段及び下段偏向コイル8,9は、制御装置18の偏向制御部24により制御されている。また、対物レンズ10は、制御装置18の対物レンズ制御部26により制御されている。 The primary electron beam 3 converged by the second converging lens 7 is incident on the objective lens 10 through the upper and lower deflection coils 8 and 9 and is narrowed down and irradiated onto the sample 15. At this time, the primary electron beam 3 is scanned two-dimensionally on the sample 15 by the action of the upper and lower changing coils 8 and 9. The upper and lower deflection coils 8 and 9 are controlled by the deflection controller 24 of the control device 18. The objective lens 10 is controlled by the objective lens control unit 26 of the control device 18.
 また、光軸調整用画像を得る際は、制御部29によってリレースイッチ11が導通状態(閉状態)となり、偏向制御部24による上段及び下段偏向コイル8,9の走査信号がリレースイッチ11を介して光軸調整を行う偏向器2の信号と同期が取られる。 When the optical axis adjustment image is obtained, the relay switch 11 is turned on (closed) by the control unit 29, and the scanning signals of the upper and lower deflection coils 8 and 9 by the deflection control unit 24 are transmitted via the relay switch 11. Thus, the signal is synchronized with the signal of the deflector 2 that adjusts the optical axis.
 試料15は、試料微動装置14上に配置されており、試料15が一次電子線3の照射範囲(走査範囲)の所望の位置となるよう水平移動により位置調整される。試料微動装置14は、制御装置18の試料微動制御部27により制御されている。 The sample 15 is disposed on the sample fine movement device 14, and the position of the sample 15 is adjusted by horizontal movement so that the sample 15 becomes a desired position in the irradiation range (scanning range) of the primary electron beam 3. The sample fine movement device 14 is controlled by the sample fine movement control unit 27 of the control device 18.
 一次電子線3の照射により試料15から生じる二次電子のうち、エネルギーの低いものは、対物レンズ10の磁場によって巻き上げられ、検出器12により検出される。検出器12からの検出信号は、増幅器16により増幅され、制御装置18の信号制御部25を介して制御部29に送られる。なお、対物レンズ10上部には、直交電磁界(EXB)装置13が配置されており、これによって二次電子による一次電子3の軸ずれが抑制される。 Among the secondary electrons generated from the sample 15 by irradiation of the primary electron beam 3, those having low energy are wound up by the magnetic field of the objective lens 10 and detected by the detector 12. The detection signal from the detector 12 is amplified by the amplifier 16 and sent to the control unit 29 via the signal control unit 25 of the control device 18. Note that an orthogonal electromagnetic field (EXB) device 13 is disposed above the objective lens 10, and thereby the axial displacement of the primary electrons 3 due to the secondary electrons is suppressed.
 制御装置18の各制御部20,・・・,27は、さらに上位の制御部29により制御されている。制御部29では、検出器12で検出された二次電子と偏向制御部24による上段及び下段変更コイル8,9の走査情報とに基づいて試料の画像が生成され、制御装置18に接続された表示装置30に表示される。 The control units 20,..., 27 of the control device 18 are controlled by a higher-level control unit 29. In the control unit 29, an image of the sample is generated based on the secondary electrons detected by the detector 12 and the scanning information of the upper and lower stage changing coils 8 and 9 by the deflection control unit 24 and connected to the control device 18. It is displayed on the display device 30.
 また、制御装置18の制御部29には、表示装置30上に表示された試料15の観察画像を画像情報として取得するための画像取得装置31と、観察画像に対して種々の画像処理を行う画像処理装置32と、画像処理の結果に基づいて種々の計算を行う計算装置33と、観察画像や計算結果を保存するための記憶装置34と、種々の設定値などを入力するための入力装置35とが接続されている。 Further, the control unit 29 of the control device 18 performs various image processing on the observation image and an image acquisition device 31 for acquiring the observation image of the sample 15 displayed on the display device 30 as image information. An image processing device 32, a calculation device 33 for performing various calculations based on the results of image processing, a storage device 34 for storing observation images and calculation results, and an input device for inputting various set values and the like 35 is connected.
 このような荷電粒子線装置(走査電子顕微鏡)においては、使用とともに消耗する陰極1の交換や、その他部品の交換、或いは、電子光学系の条件の変更を行った場合に、各部材の軸合わせ(光軸調整)を行う必要がある。 In such a charged particle beam apparatus (scanning electron microscope), when the cathode 1 consumed with use is replaced, other parts are replaced, or the conditions of the electron optical system are changed, the axis alignment of each member is performed. (Optical axis adjustment) needs to be performed.
 図2は陰極の位置調整(機械的軸調整)の様子を示す図であり、図3は偏向器による光軸調整(電気的軸調整)の様子を示す図である。 FIG. 2 is a diagram showing a state of cathode position adjustment (mechanical axis adjustment), and FIG. 3 is a diagram showing a state of optical axis adjustment (electrical axis adjustment) by a deflector.
 図2に示すように、電子銃17において、交換後の陰極1(位置1a)と陽極4の中心軸4aとのずれが比較的大きい場合は、陰極1から放出される一次電子線3の陽極4により遮られる量(電流量)が多くなり、従って、偏向器2等を通って試料15に到達する一次電子線3が少なくなってしまう。そこで、陰極1を水平移動して陽極4の中心軸4a上に位置調整(機械的軸調整)することにより、陰極1から放出されて陽極4を通過する一次電子線3を極大化させ、試料15に照射される一次電子線3を多くする。 As shown in FIG. 2, in the electron gun 17, when the displacement between the replaced cathode 1 (position 1 a) and the central axis 4 a of the anode 4 is relatively large, the anode of the primary electron beam 3 emitted from the cathode 1. The amount (current amount) obstructed by 4 increases, and therefore the number of primary electron beams 3 that reach the sample 15 through the deflector 2 and the like decreases. Therefore, the primary electron beam 3 emitted from the cathode 1 and passing through the anode 4 is maximized by horizontally moving the cathode 1 and adjusting the position on the central axis 4a of the anode 4 (mechanical axis adjustment). The primary electron beam 3 irradiated to 15 is increased.
 また、図2に示すように、陰極1から放出される一次電子線3の光軸3aと、陰極4や偏向器2、対物レンズ絞り6等の中心軸6aとのズレが比較的大きい場合は、陰極1から放出される一次電子線3の対物レンズ絞り6により遮られる量(電流量)が多くなり、従って、試料15に到達する一次電子線3が少なくなってしまう。そこで、偏向器2により一次電子線3を偏向して中心軸6aに沿うように光軸調整(電気的軸調整)することにより、陰極1から放出されて対物レンズ絞り6を通過する一次電子線3を極大化させ、試料15に照射される一次電子線3を多くする。 In addition, as shown in FIG. 2, when the deviation between the optical axis 3a of the primary electron beam 3 emitted from the cathode 1 and the central axis 6a of the cathode 4, the deflector 2, the objective lens aperture 6, etc. is relatively large. The amount (current amount) of the primary electron beam 3 emitted from the cathode 1 is blocked by the objective lens aperture 6 is increased, and therefore the primary electron beam 3 reaching the sample 15 is decreased. Therefore, the primary electron beam 3 is deflected by the deflector 2 and the optical axis is adjusted (electrical axis adjustment) along the central axis 6a, whereby the primary electron beam which is emitted from the cathode 1 and passes through the objective lens aperture 6. 3 is maximized, and the number of primary electron beams 3 irradiated on the sample 15 is increased.
 図4及び図5は、光軸調整を行う際に表示装置30に表示される光軸調整用画像の一例を示す図であり、図4は光軸調整が不完全である状態、図5は光軸調整が適当に行われた状態をそれぞれ示している。 4 and 5 are diagrams illustrating an example of an optical axis adjustment image displayed on the display device 30 when performing optical axis adjustment. FIG. 4 illustrates a state where the optical axis adjustment is incomplete, and FIG. Each of the figures shows a state in which the optical axis is properly adjusted.
 図4及び図5においては、光軸調整用画像として、検出器12で検出された二次電子に基づいて得られた試料15の画像15aが表示されている。また、表示装置30には、光軸調整用画像(画像15a)の画質に関する少なくとも1つのパラメータ(例えば、コントラスト、ブライトネス、或いは、その両者)を予め定めた値となるように調整する画質調整(オートコントラスト、オートブライトネス、或いは、オートコントラスト・ブライトネス)を行う際の倍率を表す倍率情報が光軸調整用画像15aに重畳するように表示されている。制御部29の制御により表示装置30に表示される倍率情報は、そのパラメータの大きさの基準となる数値軸(軸線)40と、数値軸40上の位置を指示する指示線41とを含んで構成されており、数値軸40と指示線41との相対位置により倍率情報を示している。なお、画質調整を行う際の倍率及び倍率情報は、それぞれ言い換えると増幅率及び信号増幅率情報である。 4 and 5, an image 15a of the sample 15 obtained based on the secondary electrons detected by the detector 12 is displayed as the optical axis adjustment image. In addition, the display device 30 has an image quality adjustment (adjustment for adjusting at least one parameter (for example, contrast, brightness, or both) relating to the image quality of the optical axis adjustment image (image 15a) to a predetermined value. Magnification information indicating the magnification when performing auto contrast, auto brightness, or auto contrast / brightness) is displayed so as to be superimposed on the optical axis adjustment image 15a. The magnification information displayed on the display device 30 by the control of the control unit 29 includes a numerical value axis (axis line) 40 that serves as a reference for the size of the parameter, and an instruction line 41 that indicates a position on the numerical value axis 40. The magnification information is indicated by the relative position between the numerical value axis 40 and the instruction line 41. Note that the magnification and magnification information when performing image quality adjustment are, in other words, amplification factor and signal amplification factor information, respectively.
 倍率情報とは、光軸調整用画像(画像15a)の画質に関するパラメータを予め定めた値となるように調整する画質調整を行う際の倍率を表すものである。すなわち、画質調整では、例えば、得られた光軸調整用画像のコントラストC、予め定めたコントラストの規定値C1、及び、画質調整における倍率Bとした場合の各数値の関係が(コントラストC)×(倍率B)=(規定値C1)となるように倍率Bを求める。 The magnification information represents the magnification at the time of performing image quality adjustment for adjusting the parameter relating to the image quality of the optical axis adjustment image (image 15a) to a predetermined value. That is, in the image quality adjustment, for example, the relationship among the numerical values when the contrast C of the obtained optical axis adjustment image, the predetermined contrast value C1 of the predetermined contrast, and the magnification B in the image quality adjustment is (contrast C) × The magnification B is determined so that (magnification B) = (prescribed value C1).
 光軸調整が不完全である状態においては、図4に示すように、光軸調整用画像15aの画質に関するパラメータ、つまり、コントラストやブライトネスの値は小さくなり、結果として倍率Bが大きくなる。言い換えると、光軸調整が適当に行われた状態においては、パラメータの値は大きくなり、結果として図5に示すように、倍率Bが小さくなるということである。すなわち、倍率Bがより小さくなるように光軸調整を行うことにより、光軸調整を適切に行うことができる。 In the state where the optical axis adjustment is incomplete, as shown in FIG. 4, the parameters relating to the image quality of the optical axis adjustment image 15a, that is, the values of contrast and brightness are reduced, and as a result, the magnification B is increased. In other words, in the state where the optical axis adjustment is appropriately performed, the value of the parameter increases, and as a result, the magnification B decreases as shown in FIG. That is, by adjusting the optical axis so that the magnification B becomes smaller, the optical axis can be adjusted appropriately.
 本実施の形態においては、画質調整を常時行う自動画質調整の状態において、表示装置30の光軸調整用画像15a及び倍率情報を確認しつつ、入力装置35等を用いて偏向器2の設定を調整して光軸調整を行う。偏向器2による光軸調整の状態に応じて、指示線41が倍率の高低方向(図4及び図5の上下方向)に移動する。倍率情報には、指示線41に追従して下方(即ち、倍率の低い方向)にのみ移動するマーカー42が設けられている。したがって、マーカー42は、指示線41の移動に従って下方に押し下げられ、結果として、指示線41が極小値を示す位置を示す。そして、このマーカー42が示す極小値に指示線41が一致するように偏向器2の設定を調整することにより、倍率をより小さく設定することができ、光軸調整を容易にかつ適切に行うことができる。 In the present embodiment, in the state of automatic image quality adjustment in which image quality adjustment is always performed, the deflector 2 is set using the input device 35 or the like while confirming the optical axis adjustment image 15a and magnification information of the display device 30. Adjust and adjust the optical axis. In accordance with the state of the optical axis adjustment by the deflector 2, the instruction line 41 moves in the magnification direction (vertical direction in FIGS. 4 and 5). In the magnification information, a marker 42 that follows the instruction line 41 and moves only downward (that is, in a direction in which the magnification is low) is provided. Therefore, the marker 42 is pushed down in accordance with the movement of the indication line 41, and as a result, the indication line 41 indicates a position where the minimum value is shown. Then, by adjusting the setting of the deflector 2 so that the indication line 41 matches the minimum value indicated by the marker 42, the magnification can be set smaller, and the optical axis can be adjusted easily and appropriately. Can do.
 以上のように構成した本実施の形態の走査電子顕微鏡の光軸調整の手順を図6をもちいて説明する。 The procedure for adjusting the optical axis of the scanning electron microscope of the present embodiment configured as described above will be described with reference to FIG.
 図6は、本実施の形態における光軸調整の手順を示すフローチャートである。 FIG. 6 is a flowchart showing the procedure of optical axis adjustment in the present embodiment.
 図6において、まず、光軸調整用画像15aを取得しつつ画質調整を開始する(ステップS10)。次に、図示しないネジ機構等により陰極1の水平位置を調整する機械的軸調整を行いつつ(ステップS20)、光軸調整用画像15a及び倍率情報を参照する(ステップS30)。そして、倍率情報が極小値となったかどうかを判定し(ステップS40)、判定結果がNOの場合には、判定結果がYESになるまでステップS20,S30を繰り返す。 In FIG. 6, first, image quality adjustment is started while acquiring the optical axis adjustment image 15a (step S10). Next, while performing mechanical axis adjustment for adjusting the horizontal position of the cathode 1 using a screw mechanism (not shown) or the like (step S20), the optical axis adjustment image 15a and magnification information are referred to (step S30). Then, it is determined whether or not the magnification information has become a minimum value (step S40). If the determination result is NO, steps S20 and S30 are repeated until the determination result is YES.
 また、ステップS40での判定結果がYESの場合には、入力装置35等により偏向器2の設定を調整する電気的軸調整を行いつつ(ステップS50)、光軸調整用画像15a及び倍率情報を参照する(ステップS60)。そして、倍率情報が極小値となったかどうかを判定し(ステップS70)、判定結果がNOの場合には、判定結果がYESになるまでステップS50,S60を繰り返し、ステップS70での判定結果がYESとなった場合には、光軸調整を終了する。 If the determination result in step S40 is YES, the optical axis adjustment image 15a and the magnification information are obtained while performing electrical axis adjustment for adjusting the setting of the deflector 2 using the input device 35 or the like (step S50). Reference is made (step S60). Then, it is determined whether or not the magnification information has become a minimum value (step S70). If the determination result is NO, steps S50 and S60 are repeated until the determination result is YES, and the determination result in step S70 is YES. In such a case, the optical axis adjustment is terminated.
 以上のように構成した本実施の形態における効果を説明する。 The effect of the present embodiment configured as described above will be described.
 走査電子顕微鏡や透過型電子顕微鏡などの荷電粒子線装置においては、高精度の試料画像を取得するために、電子銃(荷電粒子銃)から放出される一次電子線(一次荷電粒子線)の光軸とレンズや絞り等の中心軸との位置合わせ(光軸調整)を行う必要がある。これは、例えば、試料に照射される一次電子線の量を制限するための絞りによって必要以上に一次電子線が遮られることを防ぐためである。 In charged particle beam devices such as scanning electron microscopes and transmission electron microscopes, light from a primary electron beam (primary charged particle beam) emitted from an electron gun (charged particle gun) is used to obtain a highly accurate sample image. It is necessary to perform alignment (optical axis adjustment) between the axis and the central axis of the lens or the diaphragm. This is because, for example, the primary electron beam is prevented from being blocked more than necessary by a diaphragm for limiting the amount of the primary electron beam irradiated on the sample.
 従来技術において光軸調整は、オペレータが、絞りを通過する一次荷電粒子線により得られる光軸調整用の画像の明るさを見ながら行っていた。しかしながら、光軸調整用の画像の明るさによって精度良く光軸調整を行うためには熟練が必要であり、また、光軸調整を行うオペレータの熟練度の違いによって得られる試料画像の質にバラツキが生じることも懸念される。 In the prior art, the optical axis adjustment is performed while the operator looks at the brightness of the optical axis adjustment image obtained by the primary charged particle beam passing through the stop. However, skill is required to adjust the optical axis accurately depending on the brightness of the image for optical axis adjustment, and the quality of the sample image obtained varies depending on the level of skill of the operator performing the optical axis adjustment. There is also concern that this will occur.
 これに対し、本実施の形態においては、電子銃1(荷電粒子銃)から放出される一次電子線3(一次荷電粒子線)を収束する第一及び第二収束レンズ5,7(収束レンズ)と、一次電子線3の光軸調整を行う偏向器2と、一次電子線3の照射対象である試料15への照射量を制限する対物レンズ絞り6(制限絞り)と、一次電子線3の試料への照射により得られる二次電子(二次荷電粒子)を検出する検出器12とを備えた走査電子顕微鏡(荷電粒子線装置)において、光軸調整を行う際に、検出器12で検出された二次電子に基づいて得られる光軸調整用画像15aを表示装置30(表示部)に表示するとともに、光軸調整用画像15aの画質に関する少なくとも1つのパラメータ(コントラストCなど)を予め定めた値(規定値C1など)となるように調整する画質調整を行う際の倍率(倍率Bなど)を表す倍率情報を光軸調整用画像15aに重畳するように表示するように構成した。これにより、オペレータは容易に光軸調整における調整状態を把握することができるので、オペレータの熟練度の影響されずに精度良く光軸調整を行うことができる。 In contrast, in the present embodiment, the first and second converging lenses 5 and 7 (converging lenses) that converge the primary electron beam 3 (primary charged particle beam) emitted from the electron gun 1 (charged particle gun). A deflector 2 that adjusts the optical axis of the primary electron beam 3, an objective lens aperture 6 (limit aperture) that limits the amount of irradiation of the sample 15 to be irradiated with the primary electron beam 3, In a scanning electron microscope (charged particle beam apparatus) equipped with a detector 12 that detects secondary electrons (secondary charged particles) obtained by irradiating the sample, the detector 12 detects the optical axis when adjusting the optical axis. The optical axis adjustment image 15a obtained based on the secondary electrons is displayed on the display device 30 (display unit), and at least one parameter (such as contrast C) relating to the image quality of the optical axis adjustment image 15a is determined in advance. Value (specified value C1 ) Magnification information representing a magnification when performing image quality adjustment for adjusting (such as magnification B) so as to have configured to display to overlap the optical axis adjustment image 15a. As a result, the operator can easily grasp the adjustment state in the optical axis adjustment, so that the optical axis adjustment can be performed accurately without being affected by the skill level of the operator.
 また、従来技術のように、光軸調整用の画像の明るさのみで光軸調整の状態を判断する場合には、他の構成間の軸のずれやその他の不具合の発生を把握することは困難であり、試料への一次電子線の照射角度が浅くなり、取得した試料画像のコントラスト等が低下することも懸念されるが、本実施の形態においては、試料画像の状態を把握しながら光軸調整を同時に行うことができるので、試料の鮮明な画像を取得するという目的からみて適切で無い範囲の調整実施を抑制することができ、精度良く光軸調整を行うことができる。 In addition, as in the prior art, when determining the optical axis adjustment state based only on the brightness of the optical axis adjustment image, it is not possible to grasp the occurrence of misalignment or other defects between other components. Although it is difficult and there is a concern that the irradiation angle of the primary electron beam to the sample becomes shallow and the contrast of the acquired sample image decreases, in this embodiment, the light is obtained while grasping the state of the sample image. Since the axis adjustment can be performed at the same time, it is possible to suppress adjustment in an unsuitable range in view of the purpose of acquiring a clear image of the sample, and the optical axis adjustment can be performed with high accuracy.
 なお、本実施の形態における荷電粒子線装置においては、種々の変更が可能である。 It should be noted that various changes can be made in the charged particle beam apparatus according to the present embodiment.
 例えば、図7に示すように、倍率情報の数値軸40を非表示とし、光軸調整用画像15aに重畳するように指示線41のみを用いても良い。この場合にも、直感的に指示線41が下方にいくに従って倍率が小さくなることは把握できるので、オペレータは容易に光軸調整における調整状態を把握することができ、オペレータの熟練度の影響されずに精度良く光軸調整を行うことができる。 For example, as shown in FIG. 7, the numerical value axis 40 of the magnification information may not be displayed, and only the instruction line 41 may be used so as to be superimposed on the optical axis adjustment image 15a. Also in this case, since the magnification can be grasped intuitively as the instruction line 41 goes downward, the operator can easily grasp the adjustment state in the optical axis adjustment, and is affected by the skill level of the operator. Therefore, the optical axis can be adjusted accurately.
 また、図8に示すように、倍率情報を画像の色調により表示するように構成することも考えられる。例えば、倍率が大きい場合は光軸調整用画像15aの色調をより赤色になるようにし、倍率が小さくなるに従って青色になるように構成する。この場合においても、オペレータは容易に光軸調整における調整状態を把握することができる。 Further, as shown in FIG. 8, it may be configured to display the magnification information by the color tone of the image. For example, when the magnification is large, the color tone of the optical axis adjustment image 15a is set to be more red, and is configured to be blue as the magnification is reduced. Even in this case, the operator can easily grasp the adjustment state in the optical axis adjustment.
 さらに、図9に示すように、倍率情報を数値43で表現し、光軸調整用画像15aの一部に重畳するように表示しても良い。この場合においても、オペレータは容易に光軸調整における調整状態を把握することができる。 Furthermore, as shown in FIG. 9, the magnification information may be expressed by a numerical value 43 and displayed so as to be superimposed on a part of the optical axis adjustment image 15a. Even in this case, the operator can easily grasp the adjustment state in the optical axis adjustment.
 なお、指示線41や数値43については、光軸調整用画像15aと倍率情報とをオペレータが同時に認識できる範囲にあればよく、光軸調整用画像15aに隣接するように配置してもよい。 The instruction line 41 and the numerical value 43 need only be within a range where the operator can simultaneously recognize the optical axis adjustment image 15a and the magnification information, and may be arranged adjacent to the optical axis adjustment image 15a.
 また、本実施の形態においては、荷電粒子線装置の一例として走査電子顕微鏡(SEM)を示して説明したが、収束イオンビーム(TEM)装置や、収束イオンビーム走査電子顕微鏡(FIB-SEM)、走査透過型電子顕微鏡(STEM)などにも適用することができる。 In this embodiment, a scanning electron microscope (SEM) is shown and described as an example of a charged particle beam apparatus. However, a focused ion beam (TEM) apparatus, a focused ion beam scanning electron microscope (FIB-SEM), The present invention can also be applied to a scanning transmission electron microscope (STEM).
1 陰極
2 偏向器
3 電子線(荷電粒子線)
4 陽極
5 第一収束レンズ
6 対物レンズ絞り(制限絞り)
7 第二収束レンズ
8 上段偏向コイル
9 下段偏向コイル
10 対物レンズ
11 リレースイッチ
12 二次電子検出器
13 直交電磁界(EXB)装置
14 試料微動装置
15 試料
16 増幅器
17 荷電粒子銃
18 制御装置
20 高電圧制御部
21 アライナー制御部
22 第一収束レンズ制御部
23 第二収束レンズ制御部
24 偏向制御部
25 信号制御部
26 対物レンズ制御部
27 試料微動装置制御部
30 表示装置
31 画像取得装置
32 画像処理装置
33 計算装置
34 記憶装置
35 入力装置
40 数値軸
41 指示線
42 マーカー
1 cathode 2 deflector 3 electron beam (charged particle beam)
4 Anode 5 First focusing lens 6 Objective lens aperture (limited aperture)
7 Second focusing lens 8 Upper deflection coil 9 Lower deflection coil 10 Objective lens 11 Relay switch 12 Secondary electron detector 13 Orthogonal electromagnetic field (EXB) device 14 Sample fine movement device 15 Sample 16 Amplifier 17 Charged particle gun 18 Control device 20 High Voltage control unit 21 Aligner control unit 22 First converging lens control unit 23 Second converging lens control unit 24 Deflection control unit 25 Signal control unit 26 Objective lens control unit 27 Sample fine movement device control unit 30 Display device 31 Image acquisition device 32 Image processing Device 33 Calculation device 34 Storage device 35 Input device 40 Numerical axis 41 Indicator line 42 Marker

Claims (7)

  1.  荷電粒子銃と、
     前記荷電粒子銃から放出される一次荷電粒子線を収束する収束レンズと、
     前記一次荷電粒子線の光軸調整を行う偏向器と、
     前記一次荷電粒子線の照射対象である試料への照射量を制限する制限絞りと、
     前記一次荷電粒子線の前記試料への照射により得られる二次荷電粒子を検出する検出器と、
     前記光軸調整を行う際に、前記検出器で検出された二次荷電粒子に基づいて得られる光軸調整用画像を表示する表示部と、
     前記光軸調整用画像の画質に関する少なくとも1つのパラメータを予め定めた値となるように調整する画質調整を行う際の倍率を表す倍率情報を前記光軸調整用画像に隣接又は重畳するように表示する制御部と
    を備えたことを特徴とする荷電粒子線装置。
    With charged particle guns,
    A converging lens that converges a primary charged particle beam emitted from the charged particle gun;
    A deflector for adjusting the optical axis of the primary charged particle beam;
    A limiting aperture that limits the amount of irradiation of the sample that is the target of irradiation with the primary charged particle beam;
    A detector for detecting secondary charged particles obtained by irradiating the sample with the primary charged particle beam;
    When performing the optical axis adjustment, a display unit for displaying an optical axis adjustment image obtained based on secondary charged particles detected by the detector;
    Magnification information indicating the magnification when performing image quality adjustment for adjusting at least one parameter relating to the image quality of the optical axis adjustment image to a predetermined value is displayed so as to be adjacent to or superimposed on the optical axis adjustment image. A charged particle beam apparatus comprising:
  2.  荷電粒子銃と、
     前記荷電粒子銃から放出される一次荷電粒子線を収束する収束レンズと、
     前記一次荷電粒子線の光軸調整を行う偏向器と、
     前記一次荷電粒子線の照射対象である試料への照射量を制限する制限絞りと、
     前記一次荷電粒子線の前記試料への照射により得られる二次荷電粒子を検出する検出器と、
     前記検出器で検出された二次荷電粒子に基づいて得られる光軸調整用画像を表示部に表示する際に、前記光軸調整用画像の画質に関する少なくとも1つのパラメータを予め定めた値となるように調整する画質調整の倍率を表す倍率情報を前記光軸調整用画像に隣接又は重畳するように表示する制御部と
    を備えたことを特徴とする荷電粒子線装置。
    With charged particle guns,
    A converging lens that converges a primary charged particle beam emitted from the charged particle gun;
    A deflector for adjusting the optical axis of the primary charged particle beam;
    A limiting aperture that limits the amount of irradiation of the sample that is the target of irradiation with the primary charged particle beam;
    A detector for detecting secondary charged particles obtained by irradiating the sample with the primary charged particle beam;
    When an optical axis adjustment image obtained based on the secondary charged particles detected by the detector is displayed on the display unit, at least one parameter relating to the image quality of the optical axis adjustment image is a predetermined value. A charged particle beam apparatus comprising: a control unit that displays magnification information indicating magnification of image quality adjustment to be adjusted so as to be adjacent to or superimposed on the optical axis adjustment image.
  3.  電子銃と、
     前記電子銃から放出される一次電子線を収束する収束レンズと、
     前記一次電子線の光軸調整を行う偏向器と、
     前記一次電子線の照射対象である試料への照射量を制限する制限絞りと、
     前記一次電子線の前記試料への照射により得られる二次電子を検出する検出器と、
     前記光軸調整を行う際に、前記検出器で検出された二次電子に基づいて得られる走査電子顕微鏡像を表示する表示部と、
     前記走査電子顕微鏡像の画質に関する少なくとも1つのパラメータを予め定めた値となるように調整する画質調整を行う際の倍率を表す倍率情報を前記走査電子顕微鏡像に隣接又は重畳するように表示する制御部と
    を備えたことを特徴とする荷電粒子線装置。
    An electron gun,
    A converging lens that converges the primary electron beam emitted from the electron gun;
    A deflector for adjusting the optical axis of the primary electron beam;
    A limiting aperture that limits the amount of irradiation of the sample that is the target of irradiation with the primary electron beam;
    A detector for detecting secondary electrons obtained by irradiating the sample with the primary electron beam;
    When performing the optical axis adjustment, a display unit that displays a scanning electron microscope image obtained based on secondary electrons detected by the detector;
    Control for displaying magnification information indicating magnification when performing image quality adjustment for adjusting at least one parameter relating to image quality of the scanning electron microscope image to a predetermined value so as to be adjacent to or superimposed on the scanning electron microscope image A charged particle beam device comprising a unit.
  4.  請求項1~3の何れか1項に記載の荷電粒子線装置において、
     前記画質調整により調整するパラメータは、コントラスト又はブライトネスの少なくとも一方であることを特徴とする荷電粒子線装置。
    The charged particle beam apparatus according to any one of claims 1 to 3,
    The charged particle beam apparatus characterized in that the parameter adjusted by the image quality adjustment is at least one of contrast and brightness.
  5.  請求項4に記載の荷電粒子線装置において、
     前記倍率情報は、前記倍率を基準となる軸線と指示線との相対位置により表すことを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 4,
    The charged particle beam apparatus according to claim 1, wherein the magnification information represents the magnification by a relative position between a reference axis and an instruction line.
  6.  請求項4に記載の荷電粒子線装置において、
     前記倍率情報は、前記倍率を数値で表すことを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 4,
    The charged particle beam device, wherein the magnification information represents the magnification by a numerical value.
  7.  請求項4に記載の荷電粒子線装置において、
     前記倍率情報は、前記倍率を前記画質調整の対象となる画像の色調により表すことを特徴とする荷電粒子線装置。
    The charged particle beam device according to claim 4,
    The charged particle beam apparatus according to claim 1, wherein the magnification information represents the magnification by a color tone of an image to be subjected to the image quality adjustment.
PCT/JP2013/081657 2012-11-27 2013-11-25 Charged-particle beam device WO2014084172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-258952 2012-11-27
JP2012258952A JP2016035800A (en) 2012-11-27 2012-11-27 Charged particle beam device

Publications (1)

Publication Number Publication Date
WO2014084172A1 true WO2014084172A1 (en) 2014-06-05

Family

ID=50827808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081657 WO2014084172A1 (en) 2012-11-27 2013-11-25 Charged-particle beam device

Country Status (2)

Country Link
JP (1) JP2016035800A (en)
WO (1) WO2014084172A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7212592B2 (en) 2019-07-12 2023-01-25 株式会社荏原製作所 Adjustment method and electron beam device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233186A (en) * 1997-02-17 1998-09-02 Nikon Corp Scanning electron microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233186A (en) * 1997-02-17 1998-09-02 Nikon Corp Scanning electron microscope

Also Published As

Publication number Publication date
JP2016035800A (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP4620981B2 (en) Charged particle beam equipment
JP5277250B2 (en) Charged particle beam application apparatus and geometric aberration measuring method thereof
JP6242745B2 (en) Charged particle beam apparatus and inspection method using the apparatus
US8269188B2 (en) Charged particle beam apparatus and sample processing method
JP4887030B2 (en) Charged particle beam equipment
WO2015050201A1 (en) Charged particle beam inclination correction method and charged particle beam device
CN108463869B (en) Charged particle beam device and optical axis adjusting method thereof
US10134558B2 (en) Scanning electron microscope
JP2017220413A (en) Charged particle beam device and its aberration compensation method
JP2006108123A (en) Charged particle beam device
JP5331893B2 (en) Scanning charged particle beam apparatus and chromatic spherical aberration correction method
US20160118218A1 (en) Charged Particle Beam Device and Method for Adjusting Charged Particle Beam Device
US20160013012A1 (en) Charged Particle Beam System
JP2008084823A (en) Charged particle beam adjustment method and charged particle beam device
JP2011014299A (en) Scanning electron microscope
WO2014084172A1 (en) Charged-particle beam device
JP4668807B2 (en) Charged particle beam apparatus and charged particle beam image generation method
JP4752138B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
US10665423B2 (en) Analyzing energy of charged particles
JP5189058B2 (en) Scanning electron microscope
JP5389124B2 (en) Scanning charged particle beam equipment
JP5502794B2 (en) electronic microscope
US20230170182A1 (en) Charged Particle Beam Apparatus
JP5218683B2 (en) Charged particle beam equipment
JP5348152B2 (en) Charged particle beam adjustment method and charged particle beam apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP