WO2014084096A1 - Reinforced glass and method for manufacturing same - Google Patents

Reinforced glass and method for manufacturing same Download PDF

Info

Publication number
WO2014084096A1
WO2014084096A1 PCT/JP2013/081264 JP2013081264W WO2014084096A1 WO 2014084096 A1 WO2014084096 A1 WO 2014084096A1 JP 2013081264 W JP2013081264 W JP 2013081264W WO 2014084096 A1 WO2014084096 A1 WO 2014084096A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
compressive stress
hydrogen concentration
depth
strength
Prior art date
Application number
PCT/JP2013/081264
Other languages
French (fr)
Japanese (ja)
Inventor
文 山本
博之 大川
山中 一彦
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014084096A1 publication Critical patent/WO2014084096A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/24Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass
    • B24B7/242Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass for plate glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0085Drying; Dehydroxylation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal

Definitions

  • the present invention relates to tempered glass and a method for producing the same.
  • the conventional cover glass is strengthened by chemical strengthening or physical strengthening to form a compressive stress layer on the surface to enhance the scratch resistance.
  • Patent Document 1 discloses that the ion exchange layer having a potassium ion concentration exceeding 5000 ppm in the surface layer of the chemically strengthened glass substrate is removed thereafter.
  • a method is disclosed in which potassium ions are not ion-exchanged with hydronium ions at the time of cleaning, and thus the strength of the glass is increased by preventing the formation of a tensile stress layer that causes a decrease in strength.
  • the present inventors have found that the strength of the glass may decrease after chemical strengthening, the main cause of which is that chemical defects are generated when moisture in the atmosphere enters the glass. Moreover, it discovered that this phenomenon generate
  • an object of the present invention is to provide a tempered glass that effectively suppresses a reduction in the strength of the glass after tempering.
  • the present inventors have a correlation between the hydrogen profile in the surface layer of tempered glass and the strength of the glass, and by making the hydrogen concentration in the surface layer of the tempered glass into a specific range, the surface strength of the glass is dramatically improved. As a result, the present invention has been completed.
  • the present invention is as follows. 1.
  • the surface layer has a compressive stress layer, and the maximum hydrogen concentration in a region within 10 ⁇ m depth from the outermost surface of the compressive stress layer is not more than 5 times the minimum hydrogen concentration of 10 ⁇ m depth from the outermost surface. Tempered glass.
  • the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer and the lowest hydrogen concentration of 10 ⁇ m depth from the outermost surface are values measured under the following analytical conditions.
  • Measuring device Secondary ion mass spectrometer having a quadrupole mass analyzer
  • Primary ion species Cs +
  • Primary acceleration voltage 5.0 kV
  • Primary ion current 500 nA
  • Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
  • Raster size 300 ⁇ 300 ⁇ m 2
  • Detection area 12 ⁇ 12 ⁇ m 2
  • Secondary ion polarity Use of electron gun for negative neutralization 2.
  • the tempered glass according to item 1 wherein the compressive stress layer is formed by an ion exchange method.
  • 3. The tempered glass according to item 1 or 2, wherein the compressive stress layer has a compressive stress value of 400 MPa or more. 4).
  • a ball that places a glass plate on a ring made of stainless steel with a diameter of 30 mm, and that loads the sphere to the center of the ring under static load conditions with a sphere made of steel with a diameter of 10 mm in contact with the glass plate 5.
  • F ⁇ 1000 ⁇ t 2 wherein, F is the BOR strength (N) measured by the ball-on-ring test, and t is the thickness (mm) of the glass plate.
  • a molten salt containing KNO 3 is brought into contact with glass to form a compressive stress layer on the glass surface, and then the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer has a depth from the outermost surface.
  • a method for producing a tempered glass comprising removing a hydrogen-containing layer exceeding 5 times the minimum hydrogen concentration of 10 ⁇ m.
  • the hydrogen concentration in a region within 10 ⁇ m depth from the outermost surface of the compressive stress layer and the lowest hydrogen concentration at a depth of 10 ⁇ m from the outermost surface are values measured under the following analytical conditions.
  • Measuring device Secondary ion mass spectrometer having a quadrupole mass analyzer
  • Primary ion species Cs +
  • Primary acceleration voltage 5.0 kV
  • Primary ion current 500 nA
  • Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
  • Raster size 300 ⁇ 300 ⁇ m 2
  • Detection area 12 ⁇ 12 ⁇ m 2
  • Secondary ion polarity use of electron gun for negative neutralization 8.
  • the tempered glass of the present invention since the generation of defects due to moisture entering the glass is suppressed due to the hydrogen concentration of the surface layer being in a specific range, it is possible to suppress a decrease in strength after tempering, Shows high strength.
  • FIG. 1 is a schematic diagram for explaining a ball-on-ring test method.
  • FIG. 2 is a schematic diagram for explaining the method of the falling ball test.
  • FIG. 3 is a cross-sectional view of a flat panel display device using the tempered glass of the present invention as a cover glass for the flat panel display device.
  • FIG. 4A is a diagram showing the BOR intensity before and after polishing after strengthening.
  • FIG. 4B is a diagram showing the hydrogen concentration in the glass surface layer before and after polishing after strengthening.
  • FIG. 5A is a diagram showing the correlation between the post-strengthening polishing amount and the BOR intensity.
  • FIG. 5B is a diagram showing the correlation between the post-strengthening polishing amount and the falling ball strength (BD strength).
  • FIG. 6A is a diagram showing the correlation between the heat treatment temperature of the tempered glass and the BOR strength.
  • FIG.6 (b) is a figure which shows the hydrogen concentration in the glass surface layer before and behind heat processing of tempered glass.
  • FIG. 7 is a diagram showing the correlation between the hydrogen profile and the BOR intensity in the glass surface layer after the heat treatment.
  • FIG. 8 is a graph showing the correlation between the plate thickness and the BOR intensity.
  • FIG. 9 is a graph showing the correlation between the plate thickness and the falling ball strength.
  • the penetration depth of hydrogen into the glass depends on the diffusion coefficient, temperature and time, and the penetration amount of hydrogen is influenced by the moisture content in the atmosphere in addition to these.
  • the present inventors have found that the higher the hydrogen concentration of the glass, the lower the strength.
  • [ 1 H ⁇ / 30 Si ⁇ ] is a value measured under the following analytical conditions.
  • Measuring device Secondary ion mass spectrometer having a quadrupole mass analyzer
  • Primary ion species Cs +
  • Primary acceleration voltage 5.0 kV
  • Primary ion current 500 nA
  • Primary ion incident angle 60 °
  • Raster size 300 ⁇ 300 ⁇ m 2
  • Detection area 12 ⁇ 12 ⁇ m 2
  • Secondary ion polarity Use of electron gun for negative neutralization
  • the sputtering rate is 150 nm / sec.
  • the secondary ion intensity I M1 of the isotope M 1 of the element M in secondary ion mass spectrometry is the primary ion intensity I P , the sputtering rate Y of the matrix, the concentration M M of the element M (ratio to the total concentration), and the isotope M. It is proportional to the existence probability ⁇ 1 of 1 , the secondary ionization rate ⁇ M of the element M, and the transmission efficiency ⁇ (including the detection efficiency of the detector) of the mass spectrometer.
  • I M1 A ⁇ I P ⁇ Y ⁇ C M ⁇ ⁇ 1 ⁇ ⁇ M ⁇ ⁇ (Formula 1)
  • A is the ratio of the secondary ion detection area to the scanning range of the primary ion beam.
  • is eliminated by using a main component element or the like in the same sample as a reference element and taking a ratio with (Equation 1).
  • 1 H ⁇ corresponds to M 1 and 30 Si ⁇ corresponds to R j . Therefore, from (Equation 2), the intensity ratio [ 1 H ⁇ / 30 Si ⁇ ] is equal to the hydrogen concentration C M divided by K. That is, [ 1 H ⁇ / 30 Si ⁇ ] is a direct indicator of the hydrogen concentration.
  • ADEPT 1010 manufactured by ULVAC-PHI can be mentioned.
  • the tempered glass of the present invention has a compressive stress layer on the surface layer, and the maximum hydrogen concentration in a region within 10 ⁇ m depth from the outermost surface of the compressive stress layer is 5 times or less than the minimum hydrogen concentration of 10 ⁇ m depth from the outermost surface. It is characterized by being.
  • the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer is not more than 5 times, preferably not more than 3 times, and preferably not more than 2 times the minimum hydrogen concentration of 10 ⁇ m depth from the outermost surface. It is more preferable. If the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer is more than five times the minimum hydrogen concentration of 10 ⁇ m depth from the outermost surface, the surface strength of the tempered glass decreases.
  • the maximum hydrogen concentration and the minimum hydrogen concentration in a region within a depth of 10 ⁇ m from the outermost surface of the compressive stress layer are the values of [ 1 H ⁇ / 30 Si ⁇ ] measured under the analysis conditions.
  • the compressive stress value of the compressive stress layer is preferably 400 MPa or more, more preferably 500 MPa or more, and further preferably 600 MPa or more. .
  • the depth of the compressive stress layer is preferably 10 ⁇ m or more in order to make the effect of improving the strength by chemical strengthening effective.
  • the compressive stress layer is preferably deeper, more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, typically 30 ⁇ m or more. It is.
  • the depth of the compressive stress layer is preferably 70 ⁇ m or less.
  • the compressive stress value of the compressive stress layer and the depth of the compressive stress layer of the chemically tempered glass of the present invention are determined by an electron probe microanalyzer (EPMA) or a surface stress meter (for example, FSM- manufactured by Orihara Seisakusho). 6000) or the like.
  • EPMA electron probe microanalyzer
  • a surface stress meter for example, FSM- manufactured by Orihara Seisakusho. 6000
  • the surface roughness Ra of the surface layer in the tempered glass of the present invention is preferably 0.1 to 10 nm, and more preferably 0.2 to 3 nm.
  • the surface roughness Ra of the compressive stress layer is 0.2 to 3 nm, when a film such as a functional film is attached to the glass surface after strengthening, the film and the glass are likely to be in close contact with each other. There is an advantage that it is difficult to peel off.
  • Ra is measured by an atomic force microscope (AFM) at a measurement size of 10 * 10 ⁇ m and a scan rate of 1 Hz.
  • the strength of the tempered glass of the present invention can be evaluated by a ball-on-ring test and a falling ball test.
  • the tempered glass of the present invention is a state in which a glass plate is disposed on a ring made of stainless steel having a diameter of 30 mm and a contact portion having a radius of curvature of 2.5 mm, and a sphere made of steel having a diameter of 10 mm is brought into contact with the glass plate.
  • the BOR strength F (N) measured by a ball-on-ring test in which the sphere is loaded at the center of the ring under a static load condition is F ⁇ 1000 ⁇ t 2 [where F is measured by a ball-on-ring test. BOR strength (N), and t is the plate thickness (mm) of the glass substrate. ] Is preferable, and it is more preferable that F ⁇ 1240 ⁇ t 2 .
  • the BOR strength F (N) is F ⁇ 1000 ⁇ t 2 , excellent strength is exhibited even when the plate is thinned.
  • FIG. 1 shows a schematic diagram for explaining the BOR test used in the present invention.
  • the glass plate 1 is pressed using a pressure jig 2 made of SUS304 with the glass plate 1 placed horizontally, and the strength of the glass plate 1 is measured. To do.
  • a glass plate 1 as a sample is horizontally installed on a receiving jig 3 made of SUS304. Above the glass plate 1, a pressurizing jig 2 for pressurizing the glass plate 1 is installed.
  • the central region of the glass plate 1 is pressurized from above the glass plate 1.
  • the test conditions are as follows. Sample thickness: 1.1 (mm) Lowering speed of the pressure jig 2: 1.0 (mm / min)
  • the tempered glass of the present invention has a falling ball strength E (J determined by the following formula in a falling ball test in which a glass plate is placed on a base made of stainless steel and a sphere made of stainless steel having a diameter of 32 mm is dropped onto the glass plate from above. )
  • E satisfies E ⁇ 1.0 ⁇ t 2, and more preferably E ⁇ 1.7 ⁇ t 2 .
  • E ⁇ 1.0 ⁇ t 2 excellent strength is exhibited even when thinned.
  • FIG. 2 shows a schematic diagram for explaining the falling ball test used in the present invention.
  • a glass plate 5 is placed on a base 4 made of stainless steel, and a sphere 6 made of stainless steel is dropped onto the glass plate 5 from above, and the strength of the glass plate 5 is evaluated.
  • the glass plate 5 is placed on a base 4 made of SUS304 (100 ⁇ 100 ⁇ 10 ⁇ 10 mm thick metal plate having a 40 ⁇ 40 mm hollow portion in the center).
  • a sphere 6 (made of SUS304) having a mass of 130 kg is dropped on the center of the glass plate 5, and the falling ball strength is calculated from the height (destruction height) when the sphere 6 is dropped when the glass plate 5 is broken by the above formula. Find (J).
  • Glass composition As the tempered glass of the present invention, glass having various compositions can be used as long as it has a composition that can be tempered by a tempering treatment and formed by a float method or a downdraw method.
  • a transparent glass plate made of aluminosilicate glass, soda lime glass, borate glass, lithium aluminosilicate glass, borosilicate glass, non-alkali glass, and other various glasses.
  • the composition expressed in mol% is SiO 2 55-75%, Al 2 O 3 5-15%, Li 2 O 0-15%, Na 2 O 10-20%, K 2 O Is represented by a glass (ii) mol% containing 0 to 10%, MgO 0 to 15%, CaO 0 to 5% and ZrO 2 0 to 5%, SiO 2 55 to 75%, Al 2 O 3 0-15%, Li 2 O 0-20%, Na 2 O 0-15%, MgO 0-5%, CaO 0-5% and ZrO 2 0-5% composition displaying a glass (iii) mol%, a SiO 2 68 ⁇ 80%, the Al 2 O 3 4 ⁇ 10% , a Na 2 O 5 ⁇ 15%, the K 2 O 0 ⁇ 1%, of MgO 4-15% and ZrO 2 is composition displaying a
  • the tempered glass of the present invention includes a tempered glass by chemical tempering and a tempered glass by physical tempering, and the tempering method is not particularly limited, but is a tempered glass by chemical tempering in which a compressive stress layer is formed by ion exchange method Is preferred.
  • the surface of the glass is ion-exchanged to form a surface layer in which compressive stress remains.
  • alkali metal ions typically Li ions, Na ions
  • alkali ions typically Is substituted for Na ions or K ions for Li ions and K ions for Na ions.
  • Conditions and methods for chemical strengthening are not particularly limited, and known methods can be used.
  • the chemical strengthening method is not particularly limited as long as Li 2 O or Na 2 O on the glass surface layer and Na 2 O or K 2 O in the molten salt can be ion-exchanged.
  • heated potassium nitrate (KNO) 3 The method of immersing glass in the molten salt containing is mentioned.
  • the conditions of the ion exchange treatment for forming a chemically strengthened layer (surface compressive stress layer) having a desired surface compressive stress on the glass vary depending on the thickness of the glass, but the temperature condition is preferably 520 ° C. or lower. 500 ° C. or lower, more preferably 350 ° C. or higher, and more preferably 400 ° C. or higher.
  • the ion exchange treatment time is preferably 1 to 72 hours, and more preferably 2 to 24 hours. In order to improve productivity, 12 hours or less is more preferable.
  • the molten salt include KNO 3 .
  • a method of immersing glass in KNO 3 molten salt at 400 to 500 ° C. for 1 to 72 hours is typical.
  • the tempered glass of the present invention can be produced by forming a compressive stress layer on the glass surface and then removing the hydrogen-containing layer on the surface layer of the compressive stress layer.
  • the hydrogen-containing layer is a layer in which the maximum hydrogen concentration in a region within 10 ⁇ m depth from the outermost surface of the compressive stress layer exceeds 5 times the minimum hydrogen concentration of 10 ⁇ m depth from the outermost surface.
  • the hydrogen concentration of the hydrogen-containing layer is a value measured under the following analytical conditions.
  • Measuring device Secondary ion mass spectrometer having a quadrupole mass analyzer
  • Primary ion species Cs +
  • Primary acceleration voltage 5.0 kV
  • Primary ion current 500 nA
  • Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
  • Raster size 300 ⁇ 300 ⁇ m 2
  • Detection region 12 ⁇ 12 [mu] m 2 secondary ion polarity: an electron gun using perforated for minus neutralizing
  • Examples of the method for removing the hydrogen-containing layer include polishing or etching.
  • the polishing method is not limited.
  • rare earth oxides such as cerium oxide, zirconium oxide, aluminum oxide, magnesium oxide, silicon oxide (including colloidal silica), silicon carbide, manganese oxide, iron oxide, diamond, boron nitride, and zircon.
  • polishing glass using the slurry containing abrasive grains, such as these is mentioned. These abrasive grains may be used alone or in combination of two or more.
  • polishing with a slurry containing colloidal silica having an average particle diameter of 80 nm or less as abrasive grains can be performed on the surface of the glass plate. It is preferable because it can be uniformly polished and a sufficient strength can be achieved.
  • a slurry containing known abrasive grains such as rare earth oxides such as cerium oxide, zirconium oxide, aluminum oxide, magnesium oxide, silicon oxide, silicon carbide, manganese oxide, iron oxide, diamond, boron nitride and zircon. It is more preferable to perform polishing using a slurry containing colloidal silica having an average particle size of 80 nm or less as abrasive grains after polishing.
  • Polishing both surfaces of the glass is preferable because warpage can be reduced by making the hydrogen concentration of the surface layer uniform on both surfaces of the glass.
  • an aqueous solution containing a glass-soluble chemical is used as an etching solution.
  • An aqueous solution containing fluoride may be used for the glass-soluble chemical.
  • the fluoride include hydrogen fluoride, ammonium fluoride, potassium fluoride, and sodium fluoride.
  • These aqueous solutions may contain an inorganic acid and / or an organic acid.
  • the inorganic acid one or more kinds may be selected from hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and the like, and as the organic acid, one kind or two kinds or more may be selected from acetic acid, succinic acid and the like.
  • the etching rate is preferably 0.1 ⁇ m / cm 2 / min or more, and more preferably 1 ⁇ m / cm 2 / min or more.
  • the etching rate can be adjusted by appropriately adjusting the composition of the glass used for chemical strengthening, the temperature or concentration of the etching solution, and the like.
  • the etching temperature is usually preferably 10 ° C. to 60 ° C., more preferably 20 ° C. to 40 ° C. Furthermore, the etching time is usually preferably from 30 seconds to 30 minutes, more preferably from 1 minute to 10 minutes. These etching conditions can be appropriately selected by those skilled in the art so that the reaction product does not precipitate depending on the material of the glass substrate used.
  • Etching on both surfaces of the glass is preferable because warpage can be reduced by making the hydrogen concentration of the surface layer uniform on both surfaces of the glass.
  • the washing method is not particularly limited, and a known method can be used. For example, washing can be performed with an aqueous solution of sulfuric acid, hydrochloric acid, nitric acid, or the like while applying ultrasonic waves.
  • the method for producing tempered glass varies depending on the application, and is not particularly limited as other steps other than the hydrogen-containing layer removing step after the tempering step.
  • An example is shown below, but the present invention is not limited to this example.
  • the prepared glass base plate is formed into a desired size and shape to be finally finished through processes such as cutting, drilling, notching, polishing, and thread chamfering. At this time, in order to improve the handling of the subsequent process and reduce the process cost, it is cut into a size larger than the desired size to be finally finished, and after all the processing steps are completed, the desired size is obtained. It may be formed into a shape.
  • the formed glass is tempered by chemical strengthening or physical strengthening, and then the hydrogen-containing layer is removed to form tempered glass.
  • the tempered glass is subjected to, for example, printing, antireflection coating, functional film bonding, etc., and a cover glass is manufactured.
  • the tempered glass of the present invention can be used for a cover glass for a display such as a mobile phone, a digital camera or a touch panel display.
  • FIG. 3 is a cross-sectional view of a display device in which a cover glass is disposed.
  • front, rear, left and right are based on the direction of the arrow in the figure.
  • the display device 10 generally includes a display panel 20 provided in the housing 15, and a cover glass 30 that covers the entire surface of the display panel 20 and surrounds the front of the housing 15. .
  • the cover glass 30 is installed mainly for the purpose of improving the aesthetics and strength of the display device 10 and preventing impact damage, and is formed of a single sheet of glass having a substantially flat shape as a whole. As shown in FIG. 3, the cover glass 30 may be installed so as to be separated from the display side (front side) of the display panel 20 (having an air layer), and has a translucent adhesive film (FIG. (Not shown) may be attached to the display side of the display panel 20.
  • a translucent adhesive film FOG. (Not shown) may be attached to the display side of the display panel 20.
  • a functional film 41 is provided on the front surface of the cover glass 30 that emits light from the display panel 20, and a functional film is provided on the back surface of the cover glass 30 on which light from the display panel 20 enters at a position corresponding to the display panel 20. 42 is provided.
  • the functional films 41 and 42 are provided on both surfaces in FIG. 3, the functional films 41 and 42 are not limited to this and may be provided on the front surface or the back surface, or may be omitted.
  • the functional films 41 and 42 have functions such as anti-reflection of ambient light, prevention of impact breakage, electromagnetic wave shielding, near-infrared shielding, color tone correction, and / or scratch resistance improvement, and thickness and shape are used for applications. It is selected as appropriate.
  • the functional films 41 and 42 are formed, for example, by attaching a resin film to the cover glass 30. Or you may form by thin film formation methods, such as a vapor deposition method, a sputtering method, or CVD method.
  • Reference numeral 44 denotes a black layer, which is, for example, a coating formed by applying ink containing pigment particles to the cover glass 30, irradiating it with ultraviolet rays, or baking it, followed by cooling.
  • a black layer which is, for example, a coating formed by applying ink containing pigment particles to the cover glass 30, irradiating it with ultraviolet rays, or baking it, followed by cooling.
  • the glass plate is immersed in KNO 3 molten salt, subjected to ion exchange treatment, and then chemically strengthened by cooling to near room temperature. At this time, the temperature of the KNO 3 molten salt was 435 ° C., and the immersion time was 4 hours. The obtained chemically strengthened glass was washed with water and subjected to the next step.
  • colloidal silica polishing As a polishing slurry, colloidal silica having an average particle diameter (d50) of 80 nm (Compoule 80; manufactured by Fujimi Incorporated) is dispersed in water to prepare a slurry, and a glass plate is polished at a polishing rate (single side). ): Polished with a polishing pad (Suede type H2093NX; manufactured by Fujibo Atago Co., Ltd.) at 0.03 ⁇ m / min.
  • a polishing pad Sudede type H2093NX; manufactured by Fujibo Atago Co., Ltd.
  • the analysis conditions for secondary ion mass spectrometry were as follows. Measuring device: Secondary ion mass spectrometer having a quadrupole mass analyzer Primary ion species: Cs + Primary acceleration voltage: 5.0 kV Primary ion current: 500 nA Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 ° Raster size: 300 ⁇ 300 ⁇ m 2 Detection area: 12 ⁇ 12 ⁇ m 2 Secondary ion polarity: Use of electron gun for negative neutralization
  • FIG. 1 is a schematic diagram for explaining the ball-on-ring test used in the present invention.
  • a glass plate 1 serving as a sample is horizontally installed on a receiving jig 3 made of SUS304 (diameter 30 mm, contact portion curvature R2.5 mm, contact portion is hardened steel, mirror finish). Above the glass plate 1, a pressurizing jig 2 for pressurizing the glass plate 1 is installed.
  • region of the glass plate 1 was pressurized from the upper direction of the glass plate 1 obtained after the Example and the comparative example.
  • the test conditions are as follows. Sample thickness: 1.1 (mm) Lowering speed of the pressure jig 2: 1.0 (mm / min) At this time, the breaking load (unit N) when the glass was broken was defined as BOR strength, and the average value of 20 measurements was defined as BOR average strength.
  • FIG. 2 is a schematic diagram for explaining the falling ball test used in the present invention.
  • the sphere 6 was dropped on the glass plate 5 and the strength of the glass plate 5 was evaluated.
  • the glass plate 5 was placed on a base 4 made of SUS304 (a vertical 100 ⁇ 100 ⁇ 10 mm thick metal plate having a 40 ⁇ 40 mm hollow portion in the center).
  • Example 1 A glass plate that has not been polished after chemical strengthening (hereinafter also referred to as an unpolished glass plate after strengthening), and a glass plate in which a region of 2 ⁇ m from the surface layer has been polished by colloidal silica polishing after chemical strengthening (hereinafter, after strengthening) The BOR strength in a polished glass plate) was measured. The result is shown in FIG.
  • the glass plate that has been polished after tempering has a significantly increased BOR strength compared with the glass plate that has not been polished after tempering, although CS is relatively decreased.
  • FIG. 5A shows the correlation between the BOR strength measured by the ball-on-ring test and the amount of the glass plate polished after strengthening.
  • FIG. 5B shows the correlation between the BD strength measured by the falling ball test and the amount of polishing the glass plate after strengthening.
  • the maximum hydrogen concentration in a region within 10 ⁇ m depth from the outermost surface of the compressive stress layer was 0.13, and the lowest hydrogen concentration at a depth of 10 ⁇ m from the outermost surface was 0.11. That is, the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer was 1.2 times the lowest hydrogen concentration of 10 ⁇ m depth from the outermost surface.
  • the hydrogen concentration is a value of [ 1 H ⁇ / 30 Si ⁇ ] measured under the above analysis conditions.
  • the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer in the tempered glass is not more than 5 times the minimum hydrogen concentration of 10 ⁇ m depth from the outermost surface. It turns out that it can improve.
  • Example 3 The correlation between the annealing temperature in the atmosphere and the BOR strength of the tempered polished glass was examined.
  • FIG. 6A shows the result of measuring the BOR strength after polishing a chemically strengthened glass plate by 2 ⁇ m and annealing in air at each temperature for 4 hours.
  • FIG. 6B shows the result of analyzing the hydrogen concentration of the glass surface layer by secondary ion mass spectrometry when there is no annealing treatment and when annealing is performed at 350 ° C. for 4 hours. From the results shown in FIGS. 6 (a) and 6 (b), it was found that the strength of the glass was lowered by increasing the hydrogen concentration in the glass surface layer by heat treatment.
  • Example 4 In order to investigate the correlation between the hydrogen profile in the glass after the heat treatment and the strength of the glass, a glass in which the hydrogen concentration in the surface layer of the glass was changed by changing the heat treatment conditions was prepared, and the BOR strength of each glass was measured. . The result is shown in FIG.
  • FIG. 8 a graph showing the correlation between the plate thickness and the BOR strength is shown in FIG.
  • the ⁇ plot shows a sample (Example) in which the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer is 5 times or less than the lowest hydrogen concentration of 10 ⁇ m depth from the outermost surface.
  • BOR intensity is shown.
  • the ⁇ plot shows the BOR intensity of a sample (comparative example) in which the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer exceeds 5 times the minimum hydrogen concentration of 10 ⁇ m depth from the outermost surface. is there.
  • the conventional product has a BOR strength of ⁇ plot.
  • the solid line plot F 1000 ⁇ t 2 is the threshold value. Therefore, it was found that by setting F ⁇ 1000 ⁇ t 2 , the glass exhibits excellent BOR strength even when it is thinned.
  • FIG. 9 A graph showing the correlation between the plate thickness and the falling ball strength is shown in FIG.
  • the ⁇ plot shows a sample (Example) in which the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer is 5 times or less than the minimum hydrogen concentration of 10 ⁇ m depth from the outermost surface. Indicates falling ball strength.
  • a plot shows the falling ball strength of a sample (comparative example) in which the maximum hydrogen concentration in the region within 10 ⁇ m depth from the outermost surface of the compressive stress layer exceeds 5 times the lowest hydrogen concentration of 10 ⁇ m depth from the outermost surface.
  • the conventional product has a falling ball strength of ⁇ plot.
  • ⁇ t 2 is at its threshold. Therefore, it was found that by setting E ⁇ 1.0 ⁇ t 2 , the glass exhibits excellent falling ball strength even when it is thinned.
  • Table 1 summarizes the above results.
  • the surface roughness Ra is a value measured with an atomic force microscope at a measurement size of 10 * 10 ⁇ m.
  • ⁇ CS is the compressive stress value of the compressive stress layer
  • DOL is the compressive depth of the compressive stress layer, and is a value measured with a surface stress meter (FSM-6000 manufactured by Orihara Seisakusho).
  • the H content ratio is a ratio of the maximum hydrogen concentration in a region within 10 ⁇ m depth from the outermost surface of the compressive stress layer and the minimum hydrogen concentration of 10 ⁇ m depth from the outermost surface.

Abstract

The purpose of the present invention is to provide a reinforced glass in which the strength of the glass is prevented in an effective manner from decreasing after reinforcement. The present invention pertains to a reinforced glass characterized in that a compressive stress layer is present on the surface layer and the maximum hydrogen concentration in the region within a depth of 10 μm from the outermost surface of the compressive stress layer is no greater than five times the minimum hydrogen concentration at a depth of 10 μm from the outermost surface.

Description

強化ガラスおよびその製造方法Tempered glass and method for producing the same
 本発明は、強化ガラスおよびその製造方法に関する。 The present invention relates to tempered glass and a method for producing the same.
 近年、携帯電話または携帯情報端末(PDA)等のフラットパネルディスプレイ装置において、ディスプレイの保護および美観の向上が求められている。このために、画像表示部分よりも広い領域となるように薄い板状のカバーガラスをディスプレイの前面に配置することが行われている。このようなフラットパネルディスプレイ装置に対しては、軽量および薄型化が要求されており、そのため、ディスプレイ保護用に使用されるカバーガラスも薄くすることが要求されている。 In recent years, in flat panel display devices such as mobile phones or personal digital assistants (PDAs), display protection and improvement in aesthetics have been demanded. For this reason, a thin plate-like cover glass is disposed on the front surface of the display so as to be a wider area than the image display portion. Such flat panel display devices are required to be lightweight and thin, and therefore, it is also required to reduce the thickness of cover glass used for display protection.
 しかし、カバーガラスの厚さを薄くしていくと、強度が低下し、使用中または携帯中の落下などによりカバーガラス自身が割れてしまうことがある。カバーガラスの割れは、ディスプレイ装置を保護するという本来の役割を果たすことができなくなるという問題がある。このため従来のカバーガラスは、耐傷性を向上させるため、化学強化または物理強化により強化することで表面に圧縮応力層を形成し耐傷性を高めている。 However, as the thickness of the cover glass is reduced, the strength decreases, and the cover glass itself may be broken due to dropping during use or carrying. The crack of the cover glass has a problem that the original function of protecting the display device cannot be performed. For this reason, in order to improve the scratch resistance, the conventional cover glass is strengthened by chemical strengthening or physical strengthening to form a compressive stress layer on the surface to enhance the scratch resistance.
 ガラスの厚さが薄くても高い強度を持つガラスの製造方法として、特許文献1には、化学強化ガラス基材の表層におけるカリウムイオン濃度が5000ppmを超えるイオン交換層を除去することにより、その後の洗浄の際にカリウムイオンがヒドロニウムイオンとイオン交換せず、強度低下を招く引張応力層の形成を防止してガラスの強度を上げる方法が開示されている。 As a method for producing a glass having a high strength even though the glass is thin, Patent Document 1 discloses that the ion exchange layer having a potassium ion concentration exceeding 5000 ppm in the surface layer of the chemically strengthened glass substrate is removed thereafter. A method is disclosed in which potassium ions are not ion-exchanged with hydronium ions at the time of cleaning, and thus the strength of the glass is increased by preventing the formation of a tensile stress layer that causes a decrease in strength.
日本国特開2011-105598号公報Japanese Unexamined Patent Publication No. 2011-105598
 本発明者らは、化学強化後にガラスの強度が低下することがあり、その主原因は雰囲気中の水分がガラスに侵入することにより化学的欠陥が生成するためであることを見出した。また、この現象は化学強化に限らず、ガラスの製造工程において昇温工程を経ることにより発生することを見出した。 The present inventors have found that the strength of the glass may decrease after chemical strengthening, the main cause of which is that chemical defects are generated when moisture in the atmosphere enters the glass. Moreover, it discovered that this phenomenon generate | occur | produces not only through chemical strengthening but through a temperature rising process in the glass manufacturing process.
 したがって、本発明は、強化後においてガラスの強度が低下するのを効果的に抑制する強化ガラスを提供することを目的とする。 Therefore, an object of the present invention is to provide a tempered glass that effectively suppresses a reduction in the strength of the glass after tempering.
 本発明者らは、強化ガラスの表層における水素プロファイルとガラスの強度とには相関があり、強化ガラスの表層における水素濃度を特定の範囲とすることにより、ガラスの面強度が飛躍的に向上することを見出し、本発明を完成させた。 The present inventors have a correlation between the hydrogen profile in the surface layer of tempered glass and the strength of the glass, and by making the hydrogen concentration in the surface layer of the tempered glass into a specific range, the surface strength of the glass is dramatically improved. As a result, the present invention has been completed.
 すなわち、本発明は以下の通りである。
1.表層に圧縮応力層を有し、該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍以下であることを特徴とする強化ガラス。
 なお、圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度および最表面から深さ10μmの最低水素濃度は、以下の分析条件下で測定した値である。
(分析条件)
測定装置:四重極型質量分析器を有する二次イオン質量分析装置
一次イオン種:Cs
一次加速電圧:5.0kV
一次イオンカレント:500nA
一次イオン入射角(試料面垂直方向からの角度):60°
ラスターサイズ:300×300μm
検出領域:12×12μm
二次イオン極性:マイナス
中和用の電子銃使用有
2.前記圧縮応力層は、イオン交換法により形成されたものである前項1に記載の強化ガラス。
3.前記圧縮応力層の圧縮応力値が400MPa以上である前項1または2に記載の強化ガラス。
4.アルカリアルミノシリケートガラスまたはソーダライムガラスからなる前項1~3のいずれか1に記載の強化ガラス。
5.ガラス板を直径30mmのステンレスからなるリング上に配置し、該ガラス板に直径10mmの鋼からなる球体を接触させた状態で、該球体を静的荷重条件下で該リングの中心に荷重するボールオンリング試験により測定したBOR強度F(N)が下記式を満たす前項1~4のいずれか1に記載の強化ガラス。
F≧1000×t
[式中、Fはボールオンリング試験により測定したBOR強度(N)であり、tはガラス板の板厚(mm)である。]
6.ステンレスからなる基台上にガラス板を配置し、直径10mmのステンレス鋼からなる球体を上方から落下させる落球試験において、下記式により求められる落球強度E(J)がE≧1.0×tを満たす前項1~5のいずれか1に記載の強化ガラス。
落球強度E(J)=球体の質量(kg)×重力加速度(9.81m/s)×破壊高さ(m)
[式中、Eは落球試験により測定した落球強度(J)であり、tはガラス板の板厚(mm)である。]
7.KNOを含有する溶融塩とガラスとを接触させてガラス表面に圧縮応力層を形成し、次いで該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍を超える水素含有層を除去することを特徴とする強化ガラスの製造方法。
 なお、圧縮応力層の最表面から深さ10μm以内の領域における水素濃度および最表面から深さ10μmの最低水素濃度は、以下の分析条件下で測定した値である。
(分析条件)
測定装置:四重極型質量分析器を有する二次イオン質量分析装置
一次イオン種:Cs
一次加速電圧:5.0kV
一次イオンカレント:500nA
一次イオン入射角(試料面垂直方向からの角度):60°
ラスターサイズ:300×300μm
検出領域:12×12μm
二次イオン極性:マイナス
中和用の電子銃使用有
8.前記水素含有層の除去が、研磨またはエッチングにより行われる前項7に記載の強化ガラスの製造方法。
That is, the present invention is as follows.
1. The surface layer has a compressive stress layer, and the maximum hydrogen concentration in a region within 10 μm depth from the outermost surface of the compressive stress layer is not more than 5 times the minimum hydrogen concentration of 10 μm depth from the outermost surface. Tempered glass.
The maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer and the lowest hydrogen concentration of 10 μm depth from the outermost surface are values measured under the following analytical conditions.
(Analysis conditions)
Measuring device: Secondary ion mass spectrometer having a quadrupole mass analyzer Primary ion species: Cs +
Primary acceleration voltage: 5.0 kV
Primary ion current: 500 nA
Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
Raster size: 300 × 300 μm 2
Detection area: 12 × 12 μm 2
Secondary ion polarity: Use of electron gun for negative neutralization 2. 2. The tempered glass according to item 1, wherein the compressive stress layer is formed by an ion exchange method.
3. 3. The tempered glass according to item 1 or 2, wherein the compressive stress layer has a compressive stress value of 400 MPa or more.
4). 4. The tempered glass according to any one of items 1 to 3, which is made of alkali aluminosilicate glass or soda lime glass.
5. A ball that places a glass plate on a ring made of stainless steel with a diameter of 30 mm, and that loads the sphere to the center of the ring under static load conditions with a sphere made of steel with a diameter of 10 mm in contact with the glass plate 5. The tempered glass according to any one of the preceding items 1 to 4, wherein a BOR strength F (N) measured by an on-ring test satisfies the following formula.
F ≧ 1000 × t 2
[Wherein, F is the BOR strength (N) measured by the ball-on-ring test, and t is the thickness (mm) of the glass plate. ]
6). In a falling ball test in which a glass plate is placed on a stainless steel base and a sphere made of stainless steel having a diameter of 10 mm is dropped from above, the falling ball strength E (J) calculated by the following formula is E ≧ 1.0 × t 2. 6. The tempered glass according to any one of the preceding items 1 to 5, wherein
Falling ball strength E (J) = sphere mass (kg) × gravity acceleration (9.81 m / s 2 ) × destruction height (m)
[Where E is the falling ball strength (J) measured by the falling ball test, and t is the thickness (mm) of the glass plate. ]
7). A molten salt containing KNO 3 is brought into contact with glass to form a compressive stress layer on the glass surface, and then the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer has a depth from the outermost surface. A method for producing a tempered glass, comprising removing a hydrogen-containing layer exceeding 5 times the minimum hydrogen concentration of 10 μm.
The hydrogen concentration in a region within 10 μm depth from the outermost surface of the compressive stress layer and the lowest hydrogen concentration at a depth of 10 μm from the outermost surface are values measured under the following analytical conditions.
(Analysis conditions)
Measuring device: Secondary ion mass spectrometer having a quadrupole mass analyzer Primary ion species: Cs +
Primary acceleration voltage: 5.0 kV
Primary ion current: 500 nA
Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
Raster size: 300 × 300 μm 2
Detection area: 12 × 12 μm 2
Secondary ion polarity: use of electron gun for negative neutralization 8. The method for producing tempered glass according to 7 above, wherein the removal of the hydrogen-containing layer is performed by polishing or etching.
 本発明の強化ガラスは、表層の水素濃度が特定の範囲であることにより、水分がガラスへ侵入することによる欠陥の生成が抑制されるため、強化後における強度の低下を抑制することができ、高い強度を示す。 In the tempered glass of the present invention, since the generation of defects due to moisture entering the glass is suppressed due to the hydrogen concentration of the surface layer being in a specific range, it is possible to suppress a decrease in strength after tempering, Shows high strength.
図1は、ボールオンリング試験の方法を説明するための概略図である。FIG. 1 is a schematic diagram for explaining a ball-on-ring test method. 図2は、落球試験の方法を説明するための概略図である。FIG. 2 is a schematic diagram for explaining the method of the falling ball test. 図3は、本発明の強化ガラスを、フラットパネルディスプレイ装置用のカバーガラスとして用いたフラットパネルディスプレイ装置の断面図である。FIG. 3 is a cross-sectional view of a flat panel display device using the tempered glass of the present invention as a cover glass for the flat panel display device. 図4(a)は、強化後研磨前後のBOR強度を示す図である。図4(b)は、強化後研磨前後のガラス表層における水素濃度を示す図である。FIG. 4A is a diagram showing the BOR intensity before and after polishing after strengthening. FIG. 4B is a diagram showing the hydrogen concentration in the glass surface layer before and after polishing after strengthening. 図5(a)は、強化後研磨量とBOR強度との相関関係を示す図である。図5(b)は、強化後研磨量と落球強度(BD強度)との相関関係を示す図である。FIG. 5A is a diagram showing the correlation between the post-strengthening polishing amount and the BOR intensity. FIG. 5B is a diagram showing the correlation between the post-strengthening polishing amount and the falling ball strength (BD strength). 図6(a)は、強化ガラスの熱処理温度とBOR強度との相関関係を示す図である。図6(b)は、強化ガラスの熱処理前後におけるガラス表層における水素濃度を示す図である。FIG. 6A is a diagram showing the correlation between the heat treatment temperature of the tempered glass and the BOR strength. FIG.6 (b) is a figure which shows the hydrogen concentration in the glass surface layer before and behind heat processing of tempered glass. 図7は、熱処理後のガラス表層における水素プロファイルとBOR強度との相関関係を示す図である。FIG. 7 is a diagram showing the correlation between the hydrogen profile and the BOR intensity in the glass surface layer after the heat treatment. 図8は、板厚とBOR強度の相関関係を示すグラフである。FIG. 8 is a graph showing the correlation between the plate thickness and the BOR intensity. 図9は、板厚と落球強度の相関関係を示すグラフである。FIG. 9 is a graph showing the correlation between the plate thickness and the falling ball strength.
〔強化ガラス〕
 本発明者らは、ガラスを強化した場合および強化していない場合ともに、大気中熱処理で面強度が低下することを見出した。熱処理による強度の低下とガラス表面の化学的な組成変化および化学的欠陥の生成との関係を二次イオン質量分析(Secondary Ion Mass Spectrometry;SIMS)により調べたところ、熱処理前後でガラス表層における水素プロファイルが変化した。一方、熱処理前後でガラス表面の化学的な組成変化は無かった。したがって、熱処理による強度の低下は、ガラス表層における水素プロファイルの変化によるものであると考えられる。
[Tempered glass]
The present inventors have found that the surface strength is reduced by heat treatment in the atmosphere both when the glass is strengthened and when it is not strengthened. The relationship between the decrease in strength due to heat treatment, the chemical composition change on the glass surface, and the formation of chemical defects was investigated by secondary ion mass spectrometry (SIMS). Changed. On the other hand, there was no chemical composition change on the glass surface before and after the heat treatment. Therefore, it is considered that the decrease in strength due to the heat treatment is due to a change in the hydrogen profile in the glass surface layer.
 ガラスへの水素の侵入深さは、拡散係数、温度および時間に従い、水素の侵入量はこれらに加えて雰囲気中の水分量が影響する。本発明者らが、水素プロファイルの面積(水素濃度)とガラスの強度との相関を調べた結果、ガラスの水素濃度が高いほど、強度が下がることがわかった。 The penetration depth of hydrogen into the glass depends on the diffusion coefficient, temperature and time, and the penetration amount of hydrogen is influenced by the moisture content in the atmosphere in addition to these. As a result of examining the correlation between the hydrogen profile area (hydrogen concentration) and the strength of the glass, the present inventors have found that the higher the hydrogen concentration of the glass, the lower the strength.
 ガラス中の水素濃度が高いと、ガラスのSi-O-Siの結合ネットワークの中に水素がSiOHの形で入り、Si-O-Siの結合が切れる。ガラス中の水素濃度が高いとSi-O-Siの結合が切れる部分が多くなり、化学的欠陥が生成され易くなり、強度が低下すると考えられる。 When the hydrogen concentration in the glass is high, hydrogen enters the Si—O—Si bond network of the glass in the form of SiOH, and the Si—O—Si bond is broken. If the hydrogen concentration in the glass is high, it is considered that the Si—O—Si bond is cut off more, chemical defects are easily generated, and the strength is lowered.
 本発明においては水素濃度そのものを精度よく測定することは困難であるので、水素濃度に比例する[30Si]を水素濃度の直接的な指標として用いる。 In the present invention, since it is difficult to accurately measure the hydrogen concentration itself, [ 1 H / 30 Si ] proportional to the hydrogen concentration is used as a direct indicator of the hydrogen concentration.
 ここで、本明細書において、[30Si]とは、以下の分析条件下で測定した値である。
(分析条件)
測定装置:四重極型質量分析器を有する二次イオン質量分析装置
一次イオン種:Cs
一次加速電圧:5.0kV
一次イオンカレント:500nA
一次イオン入射角(試料面垂直方向からの角度):60°
ラスターサイズ:300×300μm
検出領域:12×12μm
二次イオン極性:マイナス
中和用の電子銃使用有
Here, in this specification, [ 1 H / 30 Si ] is a value measured under the following analytical conditions.
(Analysis conditions)
Measuring device: Secondary ion mass spectrometer having a quadrupole mass analyzer Primary ion species: Cs +
Primary acceleration voltage: 5.0 kV
Primary ion current: 500 nA
Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
Raster size: 300 × 300 μm 2
Detection area: 12 × 12 μm 2
Secondary ion polarity: Use of electron gun for negative neutralization
 より具体的には、スパッタレートは、150nm/secとする。 More specifically, the sputtering rate is 150 nm / sec.
 次に、[30Si]について説明する。二次イオン質量分析における元素Mの同位体Mの二次イオン強度IM1は、一次イオン強度I、マトリックスのスパッタ率Y、元素Mの濃度C(全濃度に対する比)、同位体Mの存在確率α、元素Mの二次イオン化率β、および質量分析計の透過効率η(検出器の検出効率を含む)に比例する。
 IM1=A・I・Y・C・α・β・η (式1)
Next, [ 1 H / 30 Si ] will be described. The secondary ion intensity I M1 of the isotope M 1 of the element M in secondary ion mass spectrometry is the primary ion intensity I P , the sputtering rate Y of the matrix, the concentration M M of the element M (ratio to the total concentration), and the isotope M. It is proportional to the existence probability α 1 of 1 , the secondary ionization rate β M of the element M, and the transmission efficiency η (including the detection efficiency of the detector) of the mass spectrometer.
I M1 = A · I P · Y · C M · α 1 · β M · η (Formula 1)
 ここで、Aは一次イオンビームの走査範囲に対する二次イオンの検出面積の比である。一般的には装置のηを求めるのは困難なためβの絶対値を求めることができない。そこで、同じ試料の中の主成分元素などを参照元素として用い、(式1)との比をとることによりηを消去する。 Here, A is the ratio of the secondary ion detection area to the scanning range of the primary ion beam. In general, it is impossible to determine the absolute value for the hard beta M determine the η devices. Therefore, η is eliminated by using a main component element or the like in the same sample as a reference element and taking a ratio with (Equation 1).
 ここで参照元素をR、その同位体をRとした場合、(式2)が得られる。
 IM1/IRj=(C・α・β)/(C・α・β)=C/K (式2)
 ここでKは元素Mの元素Rに対する相対感度因子である。
 K=(C・α・β)/(α・β) (式3)
 この場合、元素Mの濃度は(式4)より求められる。
 C=K・IM1/IRj (式4)
Here, when the reference element is R and its isotope is R j , (Formula 2) is obtained.
I M1 / I Rj = (C M · α 1 · β M ) / (C R · α j · β R ) = C M / K (Formula 2)
Here, K is a relative sensitivity factor of the element M with respect to the element R.
K = ( CR * [alpha] j * [beta] R ) / ([alpha] 1 * [beta] M ) (Formula 3)
In this case, the concentration of the element M is obtained from (Equation 4).
C M = K · I M1 / I Rj (Formula 4)
 本発明においては、はMに、30SiはRにそれぞれ対応する。したがって、(式2)より両者の強度比[30Si]は水素濃度CをKで除したものに等しい。すなわち、[30Si]は水素濃度の直接的な指標である。 In the present invention, 1 H corresponds to M 1 and 30 Si corresponds to R j . Therefore, from (Equation 2), the intensity ratio [ 1 H / 30 Si ] is equal to the hydrogen concentration C M divided by K. That is, [ 1 H / 30 Si ] is a direct indicator of the hydrogen concentration.
 四重極型質量分析器を有する二次イオン質量分析装置としては、例えば、アルバック・ファイ社製ADEPT1010が挙げられる。 As a secondary ion mass spectrometer having a quadrupole mass spectrometer, for example, ADEPT 1010 manufactured by ULVAC-PHI can be mentioned.
 本発明の強化ガラスは、表層に圧縮応力層を有し、該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍以下であることを特徴とする。圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度は、最表面から深さ10μmの最低水素濃度の5倍以下であり、3倍以下であることが好ましく、2倍以下であることがより好ましい。該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍を超える濃度であると、強化ガラスの面強度が低下する。 The tempered glass of the present invention has a compressive stress layer on the surface layer, and the maximum hydrogen concentration in a region within 10 μm depth from the outermost surface of the compressive stress layer is 5 times or less than the minimum hydrogen concentration of 10 μm depth from the outermost surface. It is characterized by being. The maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer is not more than 5 times, preferably not more than 3 times, and preferably not more than 2 times the minimum hydrogen concentration of 10 μm depth from the outermost surface. It is more preferable. If the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer is more than five times the minimum hydrogen concentration of 10 μm depth from the outermost surface, the surface strength of the tempered glass decreases.
 圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度および最低水素濃度は、前記分析条件下で測定した[30Si]の値である。 The maximum hydrogen concentration and the minimum hydrogen concentration in a region within a depth of 10 μm from the outermost surface of the compressive stress layer are the values of [ 1 H / 30 Si ] measured under the analysis conditions.
 強化による強度向上の効果を有効なものとするためには、圧縮応力層の圧縮応力値は、400MPa以上であることが好ましく、500MPa以上であることがより好ましく、600MPa以上であることがさらに好ましい。 In order to make the effect of strength improvement by strengthening effective, the compressive stress value of the compressive stress layer is preferably 400 MPa or more, more preferably 500 MPa or more, and further preferably 600 MPa or more. .
 また、本発明の強化ガラスが化学強化ガラスである場合、化学強化による強度向上の効果を有効なものとするためには、圧縮応力層の深さは10μm以上が好ましい。また、使用時に圧縮応力層の深さを超える傷がつくとガラスの破壊につながるため、圧縮応力層は深い方が好ましく、より好ましくは20μm以上、さらに好ましくは30μm以上、典型的には30μm以上である。 Further, when the tempered glass of the present invention is a chemically tempered glass, the depth of the compressive stress layer is preferably 10 μm or more in order to make the effect of improving the strength by chemical strengthening effective. In addition, if a scratch exceeding the depth of the compressive stress layer occurs during use, the glass will be broken. Therefore, the compressive stress layer is preferably deeper, more preferably 20 μm or more, further preferably 30 μm or more, typically 30 μm or more. It is.
 一方、圧縮応力層が深くなりすぎると内部引張応力が大きくなり、破壊時の衝撃が大きくなる。すなわち、内部引張応力が大きいとガラスが破壊する際に細片となって粉々に飛散する傾向がある。したがって、圧縮応力層の深さは70μm以下が好ましい On the other hand, if the compressive stress layer becomes too deep, the internal tensile stress increases and the impact at the time of failure increases. That is, when the internal tensile stress is large, there is a tendency that when the glass breaks, it becomes a fine piece and is shattered. Therefore, the depth of the compressive stress layer is preferably 70 μm or less.
 なお、本発明の化学強化ガラスの圧縮応力層の圧縮応力値および圧縮応力層の深さは、電子プローブ微小分析器(Electron Probe Micro Analyzer;EPMA)または表面応力計(例えば、折原製作所製FSM-6000)等を用いて測定することができる。 The compressive stress value of the compressive stress layer and the depth of the compressive stress layer of the chemically tempered glass of the present invention are determined by an electron probe microanalyzer (EPMA) or a surface stress meter (for example, FSM- manufactured by Orihara Seisakusho). 6000) or the like.
 本発明の強化ガラスにおける表層の表面粗さRaは、0.1~10nmであることが好ましく、0.2~3nmであることがより好ましい。圧縮応力層の表面粗さRaが0.2~3nmであることにより、強化後にガラス表面に機能性膜等の膜を取り付ける場合に、該膜とガラスとが密着しやすく、該膜がガラスから剥がれにくいという利点がある。ここで、Raは、原子間力顕微鏡(Atomic Force Microscope;AFM)により測定サイズ:10*10μm、Scan rate:1Hzにて測定する。 The surface roughness Ra of the surface layer in the tempered glass of the present invention is preferably 0.1 to 10 nm, and more preferably 0.2 to 3 nm. When the surface roughness Ra of the compressive stress layer is 0.2 to 3 nm, when a film such as a functional film is attached to the glass surface after strengthening, the film and the glass are likely to be in close contact with each other. There is an advantage that it is difficult to peel off. Here, Ra is measured by an atomic force microscope (AFM) at a measurement size of 10 * 10 μm and a scan rate of 1 Hz.
〔評価方法〕
 本発明の強化ガラスの強度は、ボールオンリング試験および落球試験により評価することができる。
〔Evaluation methods〕
The strength of the tempered glass of the present invention can be evaluated by a ball-on-ring test and a falling ball test.
(ボールオンリング試験)
 本発明の強化ガラスは、ガラス板を直径30mm、接触部が曲率半径2.5mmの丸みを持つステンレスからなるリング上に配置し、該ガラス板に直径10mmの鋼からなる球体を接触させた状態で、該球体を静的荷重条件下で該リングの中心に荷重するボールオンリング試験により測定したBOR強度F(N)がF≧1000×t[式中、Fはボールオンリング試験により測定したBOR強度(N)であり、tはガラス基板の板厚(mm)である。]を満たすことが好ましく、F≧1240×tであることがより好ましい。BOR強度F(N)がF≧1000×tであることにより、薄板化した場合にも優れた強度を示す。
(Ball-on-ring test)
The tempered glass of the present invention is a state in which a glass plate is disposed on a ring made of stainless steel having a diameter of 30 mm and a contact portion having a radius of curvature of 2.5 mm, and a sphere made of steel having a diameter of 10 mm is brought into contact with the glass plate. The BOR strength F (N) measured by a ball-on-ring test in which the sphere is loaded at the center of the ring under a static load condition is F ≧ 1000 × t 2 [where F is measured by a ball-on-ring test. BOR strength (N), and t is the plate thickness (mm) of the glass substrate. ] Is preferable, and it is more preferable that F ≧ 1240 × t 2 . When the BOR strength F (N) is F ≧ 1000 × t 2 , excellent strength is exhibited even when the plate is thinned.
 図1に、本発明で用いるBOR試験を説明するための概略図を示す。ボールオンリング(Ball on Ring;BOR)試験では、ガラス板1を水平に載置した状態で、SUS304製の加圧治具2を用いてガラス板1を加圧し、ガラス板1の強度を測定する。 FIG. 1 shows a schematic diagram for explaining the BOR test used in the present invention. In the ball-on-ring (BOR) test, the glass plate 1 is pressed using a pressure jig 2 made of SUS304 with the glass plate 1 placed horizontally, and the strength of the glass plate 1 is measured. To do.
 図1において、SUS304製の受け治具3の上に、サンプルとなるガラス板1が水平に設置されている。ガラス板1の上方には、ガラス板1を加圧するための、加圧治具2が設置されている。 In FIG. 1, a glass plate 1 as a sample is horizontally installed on a receiving jig 3 made of SUS304. Above the glass plate 1, a pressurizing jig 2 for pressurizing the glass plate 1 is installed.
 本実施の形態においては、ガラス板1の上方から、ガラス板1の中央領域を加圧する。なお、試験条件は下記の通りである。
サンプルの厚み:1.1(mm)
加圧治具2の下降速度:1.0(mm/min)
In the present embodiment, the central region of the glass plate 1 is pressurized from above the glass plate 1. The test conditions are as follows.
Sample thickness: 1.1 (mm)
Lowering speed of the pressure jig 2: 1.0 (mm / min)
(落球試験)
 本発明の強化ガラスは、ステンレスからなる基台上にガラス板を配置し、直径32mmのステンレス鋼からなる球体を上方からガラス板に落下させる落球試験において、下記式により求められる落球強度E(J)がE≧1.0×tを満たすことが好ましく、E≧1.7×tであることがより好ましい。E≧1.0×tであることにより、薄板化した場合にも優れた強度を示す。
落球強度E(J)=球体の質量(kg)×重力加速度(9.81m/s)×破壊高さ(m)[式中、Eは落球試験により測定した落球強度(J)であり、tはガラス基板の板厚(mm)である。]
(Falling ball test)
The tempered glass of the present invention has a falling ball strength E (J determined by the following formula in a falling ball test in which a glass plate is placed on a base made of stainless steel and a sphere made of stainless steel having a diameter of 32 mm is dropped onto the glass plate from above. ) Preferably satisfies E ≧ 1.0 × t 2, and more preferably E ≧ 1.7 × t 2 . When E ≧ 1.0 × t 2 , excellent strength is exhibited even when thinned.
Falling ball strength E (J) = sphere mass (kg) × gravity acceleration (9.81 m / s 2 ) × breaking height (m) [where E is the falling ball strength (J) measured by the falling ball test, t is the thickness (mm) of the glass substrate. ]
 図2に、本発明で用いる落球試験を説明するための概略図を示す。落球試験では、ステンレスからなる基台4上にガラス板5を配置し、上方からステンレス鋼からなる球体6をガラス板5に落下させ、ガラス板5の強度を評価する。 FIG. 2 shows a schematic diagram for explaining the falling ball test used in the present invention. In the falling ball test, a glass plate 5 is placed on a base 4 made of stainless steel, and a sphere 6 made of stainless steel is dropped onto the glass plate 5 from above, and the strength of the glass plate 5 is evaluated.
 具体的な試験方法としては、ガラス板5を、SUS304製の基台4(中央に40×40mmのくり抜き部を有する縦100×横100×厚さ10mmの金属板)に乗せる。ガラス板5の中央部に、質量130kgの球体6(SUS304製)を落下させ、前記式により、ガラス板5が破壊されたときの球体6を落下させた高さ(破壊高さ)から落球強度(J)を求める。 As a specific test method, the glass plate 5 is placed on a base 4 made of SUS304 (100 × 100 × 10 × 10 mm thick metal plate having a 40 × 40 mm hollow portion in the center). A sphere 6 (made of SUS304) having a mass of 130 kg is dropped on the center of the glass plate 5, and the falling ball strength is calculated from the height (destruction height) when the sphere 6 is dropped when the glass plate 5 is broken by the above formula. Find (J).
〔強化ガラスの製造方法〕
(ガラス組成)
 本発明の強化ガラスとしては、フロート法またはダウンドロー法などにより成形され、強化処理による強化が可能な組成を有するものである限り、種々の組成のものを使用することができる。
[Method for producing tempered glass]
(Glass composition)
As the tempered glass of the present invention, glass having various compositions can be used as long as it has a composition that can be tempered by a tempering treatment and formed by a float method or a downdraw method.
 具体的には、例えば、アルミノシリケートガラス、ソーダライムガラス、ボレートガラス、リチウムアルミノシリケートガラス、ホウ珪酸ガラスおよび無アルカリガラス並びにその他の各種ガラスからなる透明ガラス板が挙げられる。 Specifically, for example, a transparent glass plate made of aluminosilicate glass, soda lime glass, borate glass, lithium aluminosilicate glass, borosilicate glass, non-alkali glass, and other various glasses.
 本発明の強化ガラスは組成によらずに優れた強度を示すが、例えば、以下の組成のガラスが挙げられる。
(i)モル%で表示した組成が、SiOを55~75%、Alを5~15%、LiOを0~15%、NaOを10~20%、KOを0~10%、MgOを0~15%、CaOを0~5%およびZrOを0~5%を含むガラス
(ii)モル%で表示した組成が、SiOを55~75%、Alを0~15%、LiOを0~20%、NaOを0~15%、MgOを0~5%、CaOを0~5%およびZrOを0~5%を含むガラス
(iii)モル%で表示した組成が、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、MgOを4~15%およびZrOを0~1%含有するガラス(iv)モル%で表示した組成が、SiOを60~80%、Alを0~5%、NaOを5~15%、KOを0~5%、MgOを0~10%、CaOを0~10%およびZrOを0~5%を含むガラス
Although the tempered glass of this invention shows the outstanding intensity | strength irrespective of a composition, the glass of the following compositions is mentioned, for example.
(I) The composition expressed in mol% is SiO 2 55-75%, Al 2 O 3 5-15%, Li 2 O 0-15%, Na 2 O 10-20%, K 2 O Is represented by a glass (ii) mol% containing 0 to 10%, MgO 0 to 15%, CaO 0 to 5% and ZrO 2 0 to 5%, SiO 2 55 to 75%, Al 2 O 3 0-15%, Li 2 O 0-20%, Na 2 O 0-15%, MgO 0-5%, CaO 0-5% and ZrO 2 0-5% composition displaying a glass (iii) mol%, a SiO 2 68 ~ 80%, the Al 2 O 3 4 ~ 10% , a Na 2 O 5 ~ 15%, the K 2 O 0 ~ 1%, of MgO 4-15% and ZrO 2 is composition displaying a glass (iv) mole% containing 0 to 1%, a SiO 2 60 ~ 80%, a Including 2 O 3 0-5%, a Na 2 O 5 ~ 15%, the K 2 O 0-5%, the MgO 0 ~ 10%, the CaO 0 ~ 10% and the ZrO 2 and 0-5% Glass
(ガラスの強化)
 本発明の強化ガラスとしては、化学強化による強化ガラスおよび物理強化による強化ガラスが挙げられ、特に強化方法は限定されないが、圧縮応力層がイオン交換法により形成された化学強化による強化ガラスであることが好ましい。
(Tempered glass)
The tempered glass of the present invention includes a tempered glass by chemical tempering and a tempered glass by physical tempering, and the tempering method is not particularly limited, but is a tempered glass by chemical tempering in which a compressive stress layer is formed by ion exchange method Is preferred.
 イオン交換法では、ガラスの表面をイオン交換し、圧縮応力が残留する表面層を形成させる。具体的には、ガラス転移点以下の温度でイオン交換によりガラス板表面のイオン半径が小さなアルカリ金属イオン(典型的には、Liイオン、Naイオン)をイオン半径のより大きいアルカリイオン(典型的には、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオン)に置換する。これにより、ガラスの表面に圧縮応力が残留し、ガラスの強度が向上する。 In the ion exchange method, the surface of the glass is ion-exchanged to form a surface layer in which compressive stress remains. Specifically, alkali metal ions (typically Li ions, Na ions) having a small ion radius on the surface of the glass plate by ion exchange at a temperature below the glass transition point are converted to alkali ions (typically Is substituted for Na ions or K ions for Li ions and K ions for Na ions. Thereby, compressive stress remains on the surface of the glass, and the strength of the glass is improved.
 化学強化の条件及び方法は、特に限定されず、公知の方法を使用できる。化学強化の方法としてはガラス表層のLiOまたはNaOと溶融塩中のNaOまたはKOとをイオン交換できるものであれば特に限定されないが、例えば、加熱された硝酸カリウム(KNO)を含有する溶融塩にガラスを浸漬する方法が挙げられる。 Conditions and methods for chemical strengthening are not particularly limited, and known methods can be used. The chemical strengthening method is not particularly limited as long as Li 2 O or Na 2 O on the glass surface layer and Na 2 O or K 2 O in the molten salt can be ion-exchanged. For example, heated potassium nitrate (KNO) 3 ) The method of immersing glass in the molten salt containing is mentioned.
 ガラスに所望の表面圧縮応力を有する化学強化層(表面圧縮応力層)を形成するためのイオン交換処理の条件はガラスの厚さによっても異なるが、温度条件は、520℃以下であることが好ましく、500℃以下であることがより好ましく、また、350℃以上であることが好ましく、400℃以上であることがより好ましい。 The conditions of the ion exchange treatment for forming a chemically strengthened layer (surface compressive stress layer) having a desired surface compressive stress on the glass vary depending on the thickness of the glass, but the temperature condition is preferably 520 ° C. or lower. 500 ° C. or lower, more preferably 350 ° C. or higher, and more preferably 400 ° C. or higher.
 また、イオン交換処理する時間は、1~72時間であることが好ましく、2~24時間であることがより好ましい。生産性を向上させるためには、12時間以下がさらに好ましい。溶融塩としては、例えば、KNOなどが挙げられる。 The ion exchange treatment time is preferably 1 to 72 hours, and more preferably 2 to 24 hours. In order to improve productivity, 12 hours or less is more preferable. Examples of the molten salt include KNO 3 .
 具体的には、例えば、400~500℃のKNO溶融塩に1~72時間ガラスを浸漬させる方法が典型的である。また、化学強化後に、ガラス板に付着する溶融塩などの付着物などを除去する目的で、水により洗浄することが好ましい。 Specifically, for example, a method of immersing glass in KNO 3 molten salt at 400 to 500 ° C. for 1 to 72 hours is typical. Moreover, after chemical strengthening, it is preferable to wash with water for the purpose of removing deposits such as molten salt adhering to the glass plate.
 本発明の強化ガラスは、ガラス表面に圧縮応力層を形成し、次いで該圧縮応力層の表層における水素含有層を除去することにより製造することができる。ここで、水素含有層とは、圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍を超える層をいう。水素含有層の水素濃度は以下の分析条件下で測定した値である。 The tempered glass of the present invention can be produced by forming a compressive stress layer on the glass surface and then removing the hydrogen-containing layer on the surface layer of the compressive stress layer. Here, the hydrogen-containing layer is a layer in which the maximum hydrogen concentration in a region within 10 μm depth from the outermost surface of the compressive stress layer exceeds 5 times the minimum hydrogen concentration of 10 μm depth from the outermost surface. The hydrogen concentration of the hydrogen-containing layer is a value measured under the following analytical conditions.
(分析条件)
測定装置:四重極型質量分析器を有する二次イオン質量分析装置
一次イオン種:Cs
一次加速電圧:5.0kV
一次イオンカレント:500nA
一次イオン入射角(試料面垂直方向からの角度):60°
ラスターサイズ:300×300μm
検出領域:12×12μm二次イオン極性:マイナス
中和用の電子銃使用有
(Analysis conditions)
Measuring device: Secondary ion mass spectrometer having a quadrupole mass analyzer Primary ion species: Cs +
Primary acceleration voltage: 5.0 kV
Primary ion current: 500 nA
Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
Raster size: 300 × 300 μm 2
Detection region: 12 × 12 [mu] m 2 secondary ion polarity: an electron gun using perforated for minus neutralizing
 前記水素含有層を除去する方法としては、例えば、研磨またはエッチングが挙げられる。 Examples of the method for removing the hydrogen-containing layer include polishing or etching.
(研磨)
 研磨方法は限定されず、例えば、酸化セリウムなどの希土類酸化物、酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化ケイ素(コロイダルシリカを含む)、炭化ケイ素、酸化マンガン、酸化鉄、ダイヤモンド、窒化ホウ素及びジルコンなどの砥粒を含むスラリーを使用してガラスを研磨する方法が挙げられる。これらの砥粒は、1種類を単独で使用してもよく、2種類以上を併用して使用してもよい。
(Polishing)
The polishing method is not limited. For example, rare earth oxides such as cerium oxide, zirconium oxide, aluminum oxide, magnesium oxide, silicon oxide (including colloidal silica), silicon carbide, manganese oxide, iron oxide, diamond, boron nitride, and zircon. The method of grind | polishing glass using the slurry containing abrasive grains, such as these is mentioned. These abrasive grains may be used alone or in combination of two or more.
 上述の砥粒の群において、前述の表面異質層を除去する工程と同様に、平均粒径80nm以下のコロイダルシリカを砥粒として含有するスラリーを用いて研磨を行うことが、ガラス板の表面を均一に研磨でき、十分な強度を達成できるため、好ましい。 In the above-mentioned group of abrasive grains, similarly to the above-described step of removing the surface heterogeneous layer, polishing with a slurry containing colloidal silica having an average particle diameter of 80 nm or less as abrasive grains can be performed on the surface of the glass plate. It is preferable because it can be uniformly polished and a sufficient strength can be achieved.
 また、酸化セリウムなどの希土類酸化物、酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、炭化ケイ素、酸化マンガン、酸化鉄、ダイヤモンド、窒化ホウ素及びジルコンなどの、公知の砥粒を含むスラリーを用いて研磨した後に、平均粒径80nm以下のコロイダルシリカを砥粒として含有するスラリーを用いて研磨を行うことが、より好ましい。 Also, using a slurry containing known abrasive grains such as rare earth oxides such as cerium oxide, zirconium oxide, aluminum oxide, magnesium oxide, silicon oxide, silicon carbide, manganese oxide, iron oxide, diamond, boron nitride and zircon. It is more preferable to perform polishing using a slurry containing colloidal silica having an average particle size of 80 nm or less as abrasive grains after polishing.
 ガラスの両面を研磨することにより、ガラスの両面における表層の水素濃度を均一にすることで反りを低減することができるため、好ましい。 Polishing both surfaces of the glass is preferable because warpage can be reduced by making the hydrogen concentration of the surface layer uniform on both surfaces of the glass.
(エッチング)
 エッチング液としては、ガラス溶解性の薬品を含有する水溶液が使用される。ガラス溶解性の薬品には、フッ化物を含有する水溶液を使用するとよい。フッ化物としては、例えば、フッ化水素、フッ化アンモニウム、フッ化カリウムおよびフッ化ナトリウム等が例示される。またこれら水溶液に無機酸及び/又は有機酸を含有させてもよい。無機酸としては、塩酸、硫酸、リン酸および硝酸等から一種又は二種以上を選択するとよく、有機酸としては、酢酸およびコハク酸等から一種又は二種以上を選択するとよい。
(etching)
As an etching solution, an aqueous solution containing a glass-soluble chemical is used. An aqueous solution containing fluoride may be used for the glass-soluble chemical. Examples of the fluoride include hydrogen fluoride, ammonium fluoride, potassium fluoride, and sodium fluoride. These aqueous solutions may contain an inorganic acid and / or an organic acid. As the inorganic acid, one or more kinds may be selected from hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and the like, and as the organic acid, one kind or two kinds or more may be selected from acetic acid, succinic acid and the like.
 エッチングレートは、0.1μm/cm/min以上であることが好ましく、1μm/cm/min以上であることがより好ましい。エッチングレートを0.1μm/cm/min以上とすることにより、エッチング工程に要する時間を短縮し、より高い効率で強化ガラスを製造することができる。エッチングレートは、化学強化に供するガラスの組成、エッチング液の温度または濃度等を適宜調整することにより調整することができる。 The etching rate is preferably 0.1 μm / cm 2 / min or more, and more preferably 1 μm / cm 2 / min or more. By setting the etching rate to 0.1 μm / cm 2 / min or more, the time required for the etching process can be shortened, and tempered glass can be produced with higher efficiency. The etching rate can be adjusted by appropriately adjusting the composition of the glass used for chemical strengthening, the temperature or concentration of the etching solution, and the like.
 エッチング温度は、通常10℃~60℃であることが好ましく、より好ましくは20℃~40℃である。さらに、エッチング時間は、通常30秒~30分であることが好ましく、より好ましくは1分~10分である。これらのエッチングの条件は、使用するガラス基板の材質などに応じて、反応物が析出することのないように、当業者が適宜選択できるものである。 The etching temperature is usually preferably 10 ° C. to 60 ° C., more preferably 20 ° C. to 40 ° C. Furthermore, the etching time is usually preferably from 30 seconds to 30 minutes, more preferably from 1 minute to 10 minutes. These etching conditions can be appropriately selected by those skilled in the art so that the reaction product does not precipitate depending on the material of the glass substrate used.
 ガラスの両面をエッチングすることにより、ガラスの両面における表層の水素濃度を均一にすることで反りを低減することができるため、好ましい。 Etching on both surfaces of the glass is preferable because warpage can be reduced by making the hydrogen concentration of the surface layer uniform on both surfaces of the glass.
 エッチング後のガラス板の表面には、付着物が付着していることがあるため、処理後のガラス板は洗浄することが好ましい。洗浄方法としては特に限定されず、公知の方法を使用することができるが、例えば、超音波を印加した状態で、硫酸、塩酸または硝酸などの水溶液で洗浄することができる。 Since the deposits may adhere to the surface of the glass plate after etching, it is preferable to wash the glass plate after the treatment. The washing method is not particularly limited, and a known method can be used. For example, washing can be performed with an aqueous solution of sulfuric acid, hydrochloric acid, nitric acid, or the like while applying ultrasonic waves.
 強化ガラスの製造方法は、用途によっても異なり、前記した強化工程後の水素含有層除去工程以外のその他の工程としては特に限定されない。一例を下記に示すが、本発明はこの例に限定されない。 The method for producing tempered glass varies depending on the application, and is not particularly limited as other steps other than the hydrogen-containing layer removing step after the tempering step. An example is shown below, but the present invention is not limited to this example.
 まず、準備したガラス素板を、切断、穴あけ、切り欠き、研磨または糸面取りなどの工程を経て、最終的に仕上げる所望の大きさ、形状に成形する。この時、後の工程のハンドリングの向上及びプロセスコストを削減するために、最終的に仕上げる所望の大きさよりも大きい大きさに切断しておき、全ての加工工程が終了した後に、所望の大きさ、形状に成形してもよい。 First, the prepared glass base plate is formed into a desired size and shape to be finally finished through processes such as cutting, drilling, notching, polishing, and thread chamfering. At this time, in order to improve the handling of the subsequent process and reduce the process cost, it is cut into a size larger than the desired size to be finally finished, and after all the processing steps are completed, the desired size is obtained. It may be formed into a shape.
 成形されたガラスは、化学強化または物理強化等により強化された後に、水素含有層が除去され、強化ガラスとなる。強化ガラスには、例えば、印刷、反射防止コーティング、機能性フイルムの貼り合せなどが行なわれ、カバーガラスが製造される。 The formed glass is tempered by chemical strengthening or physical strengthening, and then the hydrogen-containing layer is removed to form tempered glass. The tempered glass is subjected to, for example, printing, antireflection coating, functional film bonding, etc., and a cover glass is manufactured.
 本発明の強化ガラスは、携帯電話、デジタルカメラまたはタッチパネルディスプレイ等のディスプレイ用カバーガラスに用いることができる。 The tempered glass of the present invention can be used for a cover glass for a display such as a mobile phone, a digital camera or a touch panel display.
 以下、本発明の強化ガラスを、フラットパネルディスプレイ装置用のカバーガラスとして用いた例について説明する。図3は、カバーガラスが配置されたディスプレイ装置の断面図である。なお、以下の説明において、前後左右は図中の矢印の向きを基準とする。 Hereinafter, an example in which the tempered glass of the present invention is used as a cover glass for a flat panel display device will be described. FIG. 3 is a cross-sectional view of a display device in which a cover glass is disposed. In the following description, front, rear, left and right are based on the direction of the arrow in the figure.
 ディスプレイ装置10は、図3に示すように、概して筐体15内に設けられた表示パネル20と、表示パネル20の全面を覆い筐体15の前方を囲うように設けられるカバーガラス30とを備える。 As shown in FIG. 3, the display device 10 generally includes a display panel 20 provided in the housing 15, and a cover glass 30 that covers the entire surface of the display panel 20 and surrounds the front of the housing 15. .
 カバーガラス30は、主として、ディスプレイ装置10の美観や強度の向上、衝撃破損防止などを目的として設置されるものであり、全体形状が略平面形状の一枚の板状ガラスから形成される。カバーガラス30は、図3に示すように、表示パネル20の表示側(前側)から離間するように(空気層を有するように)設置されていてもよく、透光性を有する接着膜(図示せず)を介して表示パネル20の表示側に貼り付けられてもよい。 The cover glass 30 is installed mainly for the purpose of improving the aesthetics and strength of the display device 10 and preventing impact damage, and is formed of a single sheet of glass having a substantially flat shape as a whole. As shown in FIG. 3, the cover glass 30 may be installed so as to be separated from the display side (front side) of the display panel 20 (having an air layer), and has a translucent adhesive film (FIG. (Not shown) may be attached to the display side of the display panel 20.
 表示パネル20からの光を出射するカバーガラス30の前面には機能膜41が設けられ、表示パネル20からの光が入射するカバーガラス30の背面には、表示パネル20と対応する位置に機能膜42が設けられている。なお、機能膜41、42は、図3では両面に設けたが、これに限らず前面または背面に設けてもよく、省略してもよい。 A functional film 41 is provided on the front surface of the cover glass 30 that emits light from the display panel 20, and a functional film is provided on the back surface of the cover glass 30 on which light from the display panel 20 enters at a position corresponding to the display panel 20. 42 is provided. In addition, although the functional films 41 and 42 are provided on both surfaces in FIG. 3, the functional films 41 and 42 are not limited to this and may be provided on the front surface or the back surface, or may be omitted.
 機能膜41、42は、例えば、周囲光の反射防止、衝撃破損防止、電磁波遮蔽、近赤外線遮蔽、色調補正、および/または耐傷性向上などの機能を有し、厚さおよび形状などは用途に応じて適宜選択される。機能膜41、42は、例えば、樹脂製の膜をカバーガラス30に貼り付けることにより形成される。あるいは、蒸着法、スパッタ法またはCVD法などの薄膜形成法により形成されてもよい。 The functional films 41 and 42 have functions such as anti-reflection of ambient light, prevention of impact breakage, electromagnetic wave shielding, near-infrared shielding, color tone correction, and / or scratch resistance improvement, and thickness and shape are used for applications. It is selected as appropriate. The functional films 41 and 42 are formed, for example, by attaching a resin film to the cover glass 30. Or you may form by thin film formation methods, such as a vapor deposition method, a sputtering method, or CVD method.
 符号44は、黒色層であり、例えば、顔料粒子を含むインクをカバーガラス30に塗布し、これを紫外線照射、または加熱焼成した後、冷却することによって形成された被膜である。これにより、筐体15の外側からは表示パネル等が見えなくなり、外観の審美性を向上させる。 Reference numeral 44 denotes a black layer, which is, for example, a coating formed by applying ink containing pigment particles to the cover glass 30, irradiating it with ultraviolet rays, or baking it, followed by cooling. As a result, the display panel or the like cannot be seen from the outside of the housing 15, and the appearance aesthetics are improved.
 以下に本発明の実施例について具体的に説明するが、本発明はこれらに限定されない。 Examples of the present invention will be specifically described below, but the present invention is not limited to these.
[ガラスの製造]
(ガラス板の製造)
 以下の組成のガラスを板厚1.1mmになるようにフロート法で製造し、50×50mmに切断してガラス板を作製した。
組成:モル%表示で、SiOを73%、Alを7%、NaOを14%、MgOを6%含有する組成
[Manufacture of glass]
(Manufacture of glass plates)
A glass having the following composition was produced by a float method so as to have a plate thickness of 1.1 mm, and cut into 50 × 50 mm to produce a glass plate.
Composition: by mol%, a SiO 2 73%, Al 2 O 3 to 7%, Na 2 O 14%, the composition containing 6% MgO
 以下の実施例では、次の各工程を適宜組み合わせて行った。 In the following examples, the following steps were appropriately combined.
(化学強化)
 ガラス板を、KNO溶融塩に浸漬し、イオン交換処理した後、室温付近まで冷却することにより化学強化する。このとき、KNO溶融塩の温度は435℃とし、浸漬時間は4時間とした。得られた化学強化ガラスは水洗いし、次の工程に供した。
(Chemical strengthening)
The glass plate is immersed in KNO 3 molten salt, subjected to ion exchange treatment, and then chemically strengthened by cooling to near room temperature. At this time, the temperature of the KNO 3 molten salt was 435 ° C., and the immersion time was 4 hours. The obtained chemically strengthened glass was washed with water and subjected to the next step.
(コロイダルシリカ研磨)
 研磨スラリーとして、平均粒子直径(d50)が80nmのコロイダルシリカ(コンポール80;フジミインコーポレーテッド社製)を水に分散させてスラリーを作製し、得られたスラリーを用いてガラス板を研磨レート(片面):0.03μm/minで研磨パッド(スウェードタイプH2093NX;フジボウ愛媛社製)により研磨した。
(Colloidal silica polishing)
As a polishing slurry, colloidal silica having an average particle diameter (d50) of 80 nm (Compoule 80; manufactured by Fujimi Incorporated) is dispersed in water to prepare a slurry, and a glass plate is polished at a polishing rate (single side). ): Polished with a polishing pad (Suede type H2093NX; manufactured by Fujibo Atago Co., Ltd.) at 0.03 μm / min.
[評価方法]
(二次イオン質量分析)
 ガラス板の水素濃度を、二次イオン質量分析により分析した。
[Evaluation methods]
(Secondary ion mass spectrometry)
The hydrogen concentration of the glass plate was analyzed by secondary ion mass spectrometry.
 二次イオン質量分析の分析条件は以下とした。
測定装置:四重極型質量分析器を有する二次イオン質量分析装置
一次イオン種:Cs
一次加速電圧:5.0kV
一次イオンカレント:500nA
一次イオン入射角(試料面垂直方向からの角度):60°
ラスターサイズ:300×300μm
検出領域:12×12μm
二次イオン極性:マイナス
中和用の電子銃使用有
The analysis conditions for secondary ion mass spectrometry were as follows.
Measuring device: Secondary ion mass spectrometer having a quadrupole mass analyzer Primary ion species: Cs +
Primary acceleration voltage: 5.0 kV
Primary ion current: 500 nA
Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
Raster size: 300 × 300 μm 2
Detection area: 12 × 12 μm 2
Secondary ion polarity: Use of electron gun for negative neutralization
 なお、検出器のField Aperture:0とした。 In addition, it was set as 0 Field Aperture of a detector.
(ボールオンリング試験)
 ボールオンリング(Ball on Ring;BOR)試験では、ガラス板1を水平に載置した状態で、SUS304製の加圧治具2(焼入れ鋼、直径10mm、鏡面仕上げ)を用いてガラス板1を加圧し、ガラス板1の強度を測定した。図1に、本発明で用いたボールオンリング試験を説明するための概略図を示す。
(Ball-on-ring test)
In the ball-on-ring (BOR) test, the glass plate 1 is placed using the pressure jig 2 (hardened steel, diameter 10 mm, mirror finish) made of SUS304 with the glass plate 1 placed horizontally. The pressure was applied and the strength of the glass plate 1 was measured. FIG. 1 is a schematic diagram for explaining the ball-on-ring test used in the present invention.
 図1において、SUS304製の受け治具3(直径30mm、接触部の曲率R2.5mm、接触部は焼入れ鋼、鏡面仕上げ)の上に、サンプルとなるガラス板1が水平に設置されている。ガラス板1の上方には、ガラス板1を加圧するための、加圧治具2が設置されている。 1, a glass plate 1 serving as a sample is horizontally installed on a receiving jig 3 made of SUS304 (diameter 30 mm, contact portion curvature R2.5 mm, contact portion is hardened steel, mirror finish). Above the glass plate 1, a pressurizing jig 2 for pressurizing the glass plate 1 is installed.
 本実施の形態においては、実施例及び比較例後に得られたガラス板1の上方から、ガラス板1の中央領域を加圧した。なお、試験条件は下記の通りである。
サンプルの厚み:1.1(mm)
加圧治具2の下降速度:1.0(mm/min)
 この時、ガラスが破壊された際の、破壊荷重(単位N)をBOR強度とし、20回の測定の平均値をBOR平均強度とした。
In this Embodiment, the center area | region of the glass plate 1 was pressurized from the upper direction of the glass plate 1 obtained after the Example and the comparative example. The test conditions are as follows.
Sample thickness: 1.1 (mm)
Lowering speed of the pressure jig 2: 1.0 (mm / min)
At this time, the breaking load (unit N) when the glass was broken was defined as BOR strength, and the average value of 20 measurements was defined as BOR average strength.
(落球試験)
 図2に、本発明で用いた落球試験を説明するための概略図を示す。落球試験では、ガラス板5に球体6を落下させ、ガラス板5の強度を評価した。具体的な試験方法としては、先ず、ガラス板5を、SUS304製の基台4(中央に40×40mmのくり抜き部を有する縦100×横100×厚さ10mmの金属板)に乗せた。
(Falling ball test)
FIG. 2 is a schematic diagram for explaining the falling ball test used in the present invention. In the falling ball test, the sphere 6 was dropped on the glass plate 5 and the strength of the glass plate 5 was evaluated. As a specific test method, first, the glass plate 5 was placed on a base 4 made of SUS304 (a vertical 100 × 100 × 10 mm thick metal plate having a 40 × 40 mm hollow portion in the center).
 ガラス板5の中央部に、質量130kgの球体(SUS304製、鏡面仕上げ)を落下させ、ガラスが破壊されたときの球体6を落下させた高さ(破壊高さ)から落球強度(J)を求めた。なお、測定は20回行い、落球強度の平均値を平均落球強度とした。
 落球強度(J)=球体の質量(kg)×重力加速度(9.81m/s)×破壊高さ(m)
A sphere having a mass of 130 kg (made of SUS304, mirror finish) is dropped at the center of the glass plate 5 and the falling ball strength (J) is calculated from the height (destruction height) at which the sphere 6 is dropped when the glass is broken. Asked. The measurement was performed 20 times, and the average value of the falling ball strength was defined as the average falling ball strength.
Falling ball strength (J) = sphere mass (kg) × gravity acceleration (9.81 m / s 2 ) × destruction height (m)
(表面圧縮応力値、圧縮応力層深さ)
 表面圧縮応力値(Compressive Stress;以下、CS、単位はMPa)および圧縮応力層の深さ(Depth of Layer;以下、DOL、単位はμm)は折原製作所社製表面応力計(FSM-6000)を用いて測定した。
(Surface compressive stress value, compressive stress layer depth)
Surface compressive stress (Compressive Stress; hereinafter, CS, unit is MPa) and depth of compressive stress layer (Depth of Layer; hereinafter, DOL, unit is μm) are a surface stress meter manufactured by Orihara Seisakusho (FSM-6000). And measured.
[実施例1]
(1)化学強化後に研磨していないガラス板(以下、強化後未研磨のガラス板ともいう)、および化学強化した後に表層から2μmの領域をコロイダルシリカ研磨により研磨したガラス板(以下、強化後研磨したガラス板ともいう)におけるBOR強度を測定した。その結果を図4(a)に示す。
[Example 1]
(1) A glass plate that has not been polished after chemical strengthening (hereinafter also referred to as an unpolished glass plate after strengthening), and a glass plate in which a region of 2 μm from the surface layer has been polished by colloidal silica polishing after chemical strengthening (hereinafter, after strengthening) The BOR strength in a polished glass plate) was measured. The result is shown in FIG.
 なお、各ガラス板についてCSおよびDOLを測定した結果、強化後未研磨のガラス板については750MPaおよび45μmであり、強化後研磨したガラス板については680MPaおよび43μmであった。 In addition, as a result of measuring CS and DOL about each glass plate, it was 750 MPa and 45 μm for the unpolished glass plate after strengthening, and 680 MPa and 43 μm for the glass plate polished after strengthening.
 図4(a)に示すように、強化後研磨したガラス板は、強化後未研磨のガラス板と比較して、CSが相対的に低下しているにも関わらず、BOR強度が顕著に増加することがわかった。 As shown in FIG. 4 (a), the glass plate that has been polished after tempering has a significantly increased BOR strength compared with the glass plate that has not been polished after tempering, although CS is relatively decreased. I found out that
(2)(1)で調製した強化後未研磨のガラス板および強化後研磨したガラス板を用いてガラス表層における水素プロファイルを分析した。その結果を図4(b)に示す。 (2) The hydrogen profile in the glass surface layer was analyzed using the unstrengthened and polished glass plate prepared in (1) and the polished and polished glass plate. The result is shown in FIG.
 図4(b)に示すように、強化後未研磨のガラス板と比較して、強化後研磨したガラス板は、ガラス表層における水素プロファイルが変化していることが分かった。 As shown in FIG. 4B, it was found that the hydrogen profile in the glass surface layer of the glass plate polished after tempering was changed as compared with the unpolished glass plate after tempering.
[実施例2]
 強化後研磨する量とガラス板の強度との関係を調べた。図5(a)にボールオンリング試験により測定したBOR強度と強化後にガラス板を研磨した量との相関関係を示す。また、図5(b)に落球試験により測定したBD強度と強化後にガラス板を研磨した量との相関関係を示す。
[Example 2]
The relationship between the amount of polishing after strengthening and the strength of the glass plate was examined. FIG. 5A shows the correlation between the BOR strength measured by the ball-on-ring test and the amount of the glass plate polished after strengthening. FIG. 5B shows the correlation between the BD strength measured by the falling ball test and the amount of polishing the glass plate after strengthening.
 図5(a)および(b)に示すように、強化後にガラス板を研磨する量が2μmを超えると、高いBOR強度およびBD強度を示した。なお、ガラス板の水素濃度を、二次イオン質量分析により分析したところ、強化後のガラス板の表層から2μmを研磨した場合、圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度は0.91であり、最表面から深さ10μmの最低水素濃度は0.14であった。すなわち、圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度は、最表面から深さ10μmの最低水素濃度の6.3倍であった。 As shown in FIGS. 5A and 5B, when the amount of polishing the glass plate after strengthening exceeded 2 μm, high BOR strength and BD strength were exhibited. When the hydrogen concentration of the glass plate was analyzed by secondary ion mass spectrometry, when 2 μm was polished from the surface layer of the tempered glass plate, the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer. Was 0.91, and the minimum hydrogen concentration at a depth of 10 μm from the outermost surface was 0.14. That is, the maximum hydrogen concentration in a region within 10 μm depth from the outermost surface of the compressive stress layer was 6.3 times the lowest hydrogen concentration at a depth of 10 μm from the outermost surface.
 圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度は0.13であり、最表面から深さ10μmの最低水素濃度は0.11であった。すなわち、圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度は、最表面から深さ10μmの最低水素濃度の1.2倍であった。水素濃度は、前記分析条件下で測定した[30Si]の値である。 The maximum hydrogen concentration in a region within 10 μm depth from the outermost surface of the compressive stress layer was 0.13, and the lowest hydrogen concentration at a depth of 10 μm from the outermost surface was 0.11. That is, the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer was 1.2 times the lowest hydrogen concentration of 10 μm depth from the outermost surface. The hydrogen concentration is a value of [ 1 H / 30 Si ] measured under the above analysis conditions.
 この結果から、強化ガラスにおける圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍以下とすることによって、強化ガラスの強度を向上できることがわかった。 From this result, the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer in the tempered glass is not more than 5 times the minimum hydrogen concentration of 10 μm depth from the outermost surface. It turns out that it can improve.
[実施例3]
 大気中においてアニーリングした温度と強化後研磨ガラスのBOR強度との相関関係を調べた。化学強化したガラス板を2μm研磨し、大気中で各温度において4時間アニーリングした後にBOR強度を測定した結果を図6(a)に示す。
[Example 3]
The correlation between the annealing temperature in the atmosphere and the BOR strength of the tempered polished glass was examined. FIG. 6A shows the result of measuring the BOR strength after polishing a chemically strengthened glass plate by 2 μm and annealing in air at each temperature for 4 hours.
 図6(a)に示すように、たとえ、アニーリング温度が化学強化の温度より低かったとしても、強化後研磨ガラスのBOR強度はアニーリングにより低下した。図6(a)の結果は、強化ガラスのBOR強度はアニーリング温度に依存していることを示す。 As shown in FIG. 6 (a), even if the annealing temperature was lower than the temperature of chemical strengthening, the BOR strength of the tempered polished glass was lowered by annealing. The result of Fig.6 (a) shows that the BOR intensity | strength of tempered glass is dependent on annealing temperature.
 化学強化後にガラス板を研磨し、アニーリングしているため、ガラス表面の水素濃度は非常に低いと考えられる。図6(a)の結果から、強化ガラスのBOR強度は、アニーリングにより低下することがわかった。同じ現象がソーダライムシリケートガラスについても観察された。 Since the glass plate is polished and annealed after chemical strengthening, the hydrogen concentration on the glass surface is considered to be very low. From the result of FIG. 6A, it was found that the BOR strength of the tempered glass was lowered by annealing. The same phenomenon was observed for soda lime silicate glass.
 この現象を解析するため、ガラス表面の物理的状態および化学的状態を分析した。物理的状態を原子間力顕微鏡により解析した結果、Raおよびガラス表面の起伏に変化は見られなかった。 In order to analyze this phenomenon, the physical state and chemical state of the glass surface were analyzed. As a result of analyzing the physical state with an atomic force microscope, there was no change in the roughness of Ra and the glass surface.
 また、X線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)および二次イオン質量分析によりガラス表面の化学的状態を解析した。X線光電子分光法による分析の結果、ガラス表面の構成は、KとNaのイオン交換を除いて変化していなかった。一方、二次イオン質量分析の結果、アニーリング後のガラス表面に水素が侵入していることがわかった。その結果を図6(b)に示す。 In addition, the chemical state of the glass surface was analyzed by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry. As a result of analysis by X-ray photoelectron spectroscopy, the composition of the glass surface was not changed except for ion exchange of K and Na. On the other hand, as a result of secondary ion mass spectrometry, it was found that hydrogen entered the glass surface after annealing. The result is shown in FIG.
 図6(b)はアニーリング処理無しの場合と350℃で4時間アニーリングした場合とにおけるガラス表層の水素濃度を二次イオン質量分析により分析した結果である。図6(a)および(b)に示す結果から、熱処理によりガラス表層における水素濃度が増加することにより、ガラスの強度が低下することがわかった。 FIG. 6B shows the result of analyzing the hydrogen concentration of the glass surface layer by secondary ion mass spectrometry when there is no annealing treatment and when annealing is performed at 350 ° C. for 4 hours. From the results shown in FIGS. 6 (a) and 6 (b), it was found that the strength of the glass was lowered by increasing the hydrogen concentration in the glass surface layer by heat treatment.
[実施例4]
 熱処理後のガラスにおける水素プロファイルとガラスの強度との相関関係を調べるために、熱処理条件を変化させることによりガラスの表層における水素濃度を変化させたガラスを用意し、各ガラスのBOR強度を測定した。その結果を図7に示す。
[Example 4]
In order to investigate the correlation between the hydrogen profile in the glass after the heat treatment and the strength of the glass, a glass in which the hydrogen concentration in the surface layer of the glass was changed by changing the heat treatment conditions was prepared, and the BOR strength of each glass was measured. . The result is shown in FIG.
 図7に示す結果から、ガラスの表層に侵入した水素はガラスに化学的欠陥を生成し、該化学的欠陥がガラスの強度を低下させると考えられる。大気中のアニーリングにおいて観察されたように、化学強化工程においても、水素がガラスの表層に侵入することが観察された。これらの結果から、化学強化工程で生じた化学的欠陥が強化後研磨により除去されることにより、ガラスの強度が向上していることがわかった。 From the results shown in FIG. 7, it is considered that hydrogen that has entered the surface layer of the glass generates chemical defects in the glass, and the chemical defects reduce the strength of the glass. As observed in atmospheric annealing, hydrogen was observed to penetrate the glass surface layer during the chemical strengthening process. From these results, it was found that the strength of the glass was improved by removing chemical defects generated in the chemical strengthening step by polishing after strengthening.
 また、板厚とBOR強度の相関関係を示すグラフを図8に示す。図8において、●プロットは、該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍以下であるサンプル(実施例)のBOR強度を示す。また、□プロットは、該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍を超えるサンプル(比較例)のBOR強度である。 Also, a graph showing the correlation between the plate thickness and the BOR strength is shown in FIG. In FIG. 8, the ● plot shows a sample (Example) in which the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer is 5 times or less than the lowest hydrogen concentration of 10 μm depth from the outermost surface. BOR intensity is shown. The □ plot shows the BOR intensity of a sample (comparative example) in which the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer exceeds 5 times the minimum hydrogen concentration of 10 μm depth from the outermost surface. is there.
 図8において、従来品は□プロットのBOR強度であるが、薄板化によりガラスの強度の重要度がより一層高まっている中で、今後はこれ以上のBOR強度を有するガラスが好ましいと考えられ、実線プロットF=1000×tがその閾値である。したがって、F≧1000×tとすることにより、薄板化した場合にも優れたBOR強度を示すガラスとなることがわかった。 In FIG. 8, the conventional product has a BOR strength of □ plot. However, while the importance of the strength of the glass is further increased by thinning, it is considered that a glass having a BOR strength higher than this is preferable in the future. The solid line plot F = 1000 × t 2 is the threshold value. Therefore, it was found that by setting F ≧ 1000 × t 2 , the glass exhibits excellent BOR strength even when it is thinned.
 板厚と落球強度の相関関係を示すグラフを図9に示す。図9において、●プロットは、該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍以下であるサンプル(実施例)の落球強度を示す。□プロットは、該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍を超えるサンプル(比較例)の落球強度を示す。 A graph showing the correlation between the plate thickness and the falling ball strength is shown in FIG. In FIG. 9, the ● plot shows a sample (Example) in which the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer is 5 times or less than the minimum hydrogen concentration of 10 μm depth from the outermost surface. Indicates falling ball strength. A plot shows the falling ball strength of a sample (comparative example) in which the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer exceeds 5 times the lowest hydrogen concentration of 10 μm depth from the outermost surface.
 従来品は□プロットの落球強度であるが、薄板化によりガラスの強度の重要度がより一層高まっている中で、今後はこれ以上の落球強度が好ましいと考えられ、実線プロットE=1.0×tがその閾値である。したがって、E≧1.0×tとすることにより、薄板化した場合にも優れた落球強度を示すガラスとなることがわかった。 The conventional product has a falling ball strength of □ plot. However, as the importance of the strength of the glass is further increased due to the thin plate, it is considered that the falling ball strength is more preferable in the future, and the solid line plot E = 1.0. × t 2 is at its threshold. Therefore, it was found that by setting E ≧ 1.0 × t 2 , the glass exhibits excellent falling ball strength even when it is thinned.
 以上の結果をまとめたものを表1に示す。表1において、表面粗さRaは、原子間力顕微鏡により測定サイズ:10*10μmで測定した値である。σCSは圧縮応力層の圧縮応力値、DOLは圧縮応力層の圧縮深さで、表面応力計(折原製作所製FSM-6000)で測定した値である。 Table 1 summarizes the above results. In Table 1, the surface roughness Ra is a value measured with an atomic force microscope at a measurement size of 10 * 10 μm. σ CS is the compressive stress value of the compressive stress layer, DOL is the compressive depth of the compressive stress layer, and is a value measured with a surface stress meter (FSM-6000 manufactured by Orihara Seisakusho).
 表1において、H量比率は、圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度と、最表面から深さ10μmの最低水素濃度の比率である。 In Table 1, the H content ratio is a ratio of the maximum hydrogen concentration in a region within 10 μm depth from the outermost surface of the compressive stress layer and the minimum hydrogen concentration of 10 μm depth from the outermost surface.
 表1において、BOR強度F(N)≧1000×tを満たす場合は「○」、満たさない場合は「×」と示す。また、落球強度E(J)≧1.0×tを満たす場合は「○」、満たさない場合は「×」と示す。 In Table 1, “B” indicates that the BOR strength F (N) ≧ 1000 × t 2 is satisfied, and “X” indicates that the BOR intensity F (N) ≧ 1000 × t 2 is not satisfied. In addition, when the falling ball strength E (J) ≧ 1.0 × t 2 is satisfied, “◯” is indicated, and when it is not satisfied, “×” is indicated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、H量比率が5以下である実施例1~5の強化ガラスはいずれもBOR強度F(N)≧1000×tおよび落球強度E(J)≧1.0×tを満たしており優れた強度を示したのに対し、従来品である比較例の強化ガラスは、BOR強度F(N)≧1000×tおよび落球強度E(J)≧1.0×tを満たさないことがわかった。 As shown in Table 1, all of the tempered glasses of Examples 1 to 5 having an H content ratio of 5 or less have BOR strength F (N) ≧ 1000 × t 2 and falling ball strength E (J) ≧ 1.0 × t. 2 and excellent strength, the tempered glass of the comparative example, which is a conventional product, has a BOR strength F (N) ≧ 1000 × t 2 and a falling ball strength E (J) ≧ 1.0 × t. It was found that 2 was not satisfied.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2012年11月30日付で出願された日本特許出願(特願2012-263058)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on November 30, 2012 (Japanese Patent Application No. 2012-263058), which is incorporated by reference in its entirety.
1,5 ガラス板
2 加圧治具
3 受け治具
4 基台
6 球体
10 ディスプレイ装置
15 筐体
20 表示パネル
30 カバーガラス
1, 5 Glass plate 2 Pressure jig 3 Receiving jig 4 Base 6 Sphere 10 Display device 15 Housing 20 Display panel 30 Cover glass

Claims (8)

  1.  表層に圧縮応力層を有し、該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍以下であることを特徴とする強化ガラス。
     なお、圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度および最表面から深さ10μmの最低水素濃度は、以下の分析条件下で測定した値である。
    (分析条件)
    測定装置:四重極型質量分析器を有する二次イオン質量分析装置
    一次イオン種:Cs
    一次加速電圧:5.0kV
    一次イオンカレント:500nA
    一次イオン入射角(試料面垂直方向からの角度):60°
    ラスターサイズ:300×300μm
    検出領域:12×12μm
    二次イオン極性:マイナス
    中和用の電子銃使用有
    The surface layer has a compressive stress layer, and the maximum hydrogen concentration in a region within 10 μm depth from the outermost surface of the compressive stress layer is not more than 5 times the minimum hydrogen concentration of 10 μm depth from the outermost surface. Tempered glass.
    The maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer and the lowest hydrogen concentration of 10 μm depth from the outermost surface are values measured under the following analytical conditions.
    (Analysis conditions)
    Measuring device: Secondary ion mass spectrometer having a quadrupole mass analyzer Primary ion species: Cs +
    Primary acceleration voltage: 5.0 kV
    Primary ion current: 500 nA
    Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
    Raster size: 300 × 300 μm 2
    Detection area: 12 × 12 μm 2
    Secondary ion polarity: Use of electron gun for negative neutralization
  2.  前記圧縮応力層は、イオン交換法により形成されたものである請求項1に記載の強化ガラス。 The tempered glass according to claim 1, wherein the compressive stress layer is formed by an ion exchange method.
  3.  前記圧縮応力層の圧縮応力値が400MPa以上である請求項1または2に記載の強化ガラス。 The tempered glass according to claim 1 or 2, wherein the compressive stress value of the compressive stress layer is 400 MPa or more.
  4.  アルカリアルミノシリケートガラスまたはソーダライムガラスからなる請求項1~3のいずれか1項に記載の強化ガラス。 The tempered glass according to any one of claims 1 to 3, comprising alkali aluminosilicate glass or soda lime glass.
  5.  ガラス板を直径30mm、接触部が曲率半径2.5mmの丸みを持つステンレスからなるリング上に配置し、該ガラス板に直径10mmの鋼からなる球体を接触させた状態で、該球体を静的荷重条件下で該リングの中心に荷重するボールオンリング試験により測定したBOR強度F(N)が下記式を満たす請求項1~4のいずれか1項に記載の強化ガラス。
    F≧1000×t
    [式中、Fはボールオンリング試験により測定したBOR強度(N)であり、tはガラス板の板厚(mm)である。]
    The glass plate is placed on a ring made of stainless steel having a diameter of 30 mm and the contact portion is rounded with a radius of curvature of 2.5 mm, and the sphere is statically fixed in a state where the glass plate is in contact with a sphere made of steel having a diameter of 10 mm. The tempered glass according to any one of claims 1 to 4, wherein the BOR strength F (N) measured by a ball-on-ring test applied to the center of the ring under a load condition satisfies the following formula.
    F ≧ 1000 × t 2
    [Wherein, F is the BOR strength (N) measured by the ball-on-ring test, and t is the thickness (mm) of the glass plate. ]
  6.  ステンレスからなる基台上にガラス板を配置し、直径10mmのステンレス鋼からなる球体を上方から落下させる落球試験において、下記式により求められる落球強度E(J)がE≧1.0×tを満たす請求項1~5のいずれか1項に記載の強化ガラス。
    落球強度E(J)=球体の質量(kg)×重力加速度(9.81m/s)×破壊高さ(m)
    [式中、Eは落球試験により測定した落球強度(J)であり、tはガラス板の板厚(mm)である。]
    In a falling ball test in which a glass plate is placed on a stainless steel base and a sphere made of stainless steel having a diameter of 10 mm is dropped from above, the falling ball strength E (J) calculated by the following formula is E ≧ 1.0 × t 2. The tempered glass according to any one of claims 1 to 5, which satisfies:
    Falling ball strength E (J) = sphere mass (kg) × gravity acceleration (9.81 m / s 2 ) × destruction height (m)
    [Where E is the falling ball strength (J) measured by the falling ball test, and t is the thickness (mm) of the glass plate. ]
  7.  KNOを含有する溶融塩とガラスとを接触させてガラス表面に圧縮応力層を形成し、次いで該圧縮応力層の最表面から深さ10μm以内の領域における最高水素濃度が、最表面から深さ10μmの最低水素濃度の5倍を超える水素含有層を除去することを特徴とする強化ガラスの製造方法。
     なお、圧縮応力層の最表面から深さ10μm以内の領域における水素濃度および最表面から深さ10μmの最低水素濃度は、以下の分析条件下で測定した値である。
    (分析条件)
    測定装置:四重極型質量分析器を有する二次イオン質量分析装置
    一次イオン種:Cs
    一次加速電圧:5.0kV
    一次イオンカレント:500nA
    一次イオン入射角(試料面垂直方向からの角度):60°
    ラスターサイズ:300×300μm
    検出領域:12×12μm
    二次イオン極性:マイナス中和用の電子銃使用有
    A molten salt containing KNO 3 is brought into contact with glass to form a compressive stress layer on the glass surface, and then the maximum hydrogen concentration in the region within 10 μm depth from the outermost surface of the compressive stress layer has a depth from the outermost surface. A method for producing a tempered glass, comprising removing a hydrogen-containing layer exceeding 5 times the minimum hydrogen concentration of 10 μm.
    The hydrogen concentration in a region within 10 μm depth from the outermost surface of the compressive stress layer and the lowest hydrogen concentration at a depth of 10 μm from the outermost surface are values measured under the following analytical conditions.
    (Analysis conditions)
    Measuring device: Secondary ion mass spectrometer having a quadrupole mass analyzer Primary ion species: Cs +
    Primary acceleration voltage: 5.0 kV
    Primary ion current: 500 nA
    Primary ion incident angle (angle from the direction perpendicular to the sample surface): 60 °
    Raster size: 300 × 300 μm 2
    Detection area: 12 × 12 μm 2
    Secondary ion polarity: Use of electron gun for negative neutralization
  8.  前記水素含有層の除去が、研磨またはエッチングにより行われる請求項7に記載の強化ガラスの製造方法。 The method for producing a tempered glass according to claim 7, wherein the removal of the hydrogen-containing layer is performed by polishing or etching.
PCT/JP2013/081264 2012-11-30 2013-11-20 Reinforced glass and method for manufacturing same WO2014084096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012263058 2012-11-30
JP2012-263058 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014084096A1 true WO2014084096A1 (en) 2014-06-05

Family

ID=50827738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081264 WO2014084096A1 (en) 2012-11-30 2013-11-20 Reinforced glass and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW201431820A (en)
WO (1) WO2014084096A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863107A (en) * 2016-04-22 2018-11-23 Agc株式会社 Glass substrate for display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2020896B1 (en) * 2018-05-08 2019-11-14 Corning Inc Water-containing glass-based articles with high indentation cracking threshold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043512A1 (en) * 2003-10-31 2005-05-12 Konica Minolta Opto, Inc. Glass substrate for information recording medium and information recording medium employing same
JP2007164901A (en) * 2005-12-14 2007-06-28 Konica Minolta Opto Inc Glass substrate for magnetic recording medium and method of manufacturing glass substrate for magnetic recording medium
JP2010168270A (en) * 2008-12-26 2010-08-05 Hoya Corp Glass substrate and method for manufacturing the same
JP2011225436A (en) * 2010-03-31 2011-11-10 Konica Minolta Opto Inc Method for manufacturing glass substrate for information recording medium
JP2012218995A (en) * 2011-04-12 2012-11-12 Asahi Glass Co Ltd Method for manufacturing tempered glass plate and cover glass, and cover glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043512A1 (en) * 2003-10-31 2005-05-12 Konica Minolta Opto, Inc. Glass substrate for information recording medium and information recording medium employing same
JP2007164901A (en) * 2005-12-14 2007-06-28 Konica Minolta Opto Inc Glass substrate for magnetic recording medium and method of manufacturing glass substrate for magnetic recording medium
JP2010168270A (en) * 2008-12-26 2010-08-05 Hoya Corp Glass substrate and method for manufacturing the same
JP2011225436A (en) * 2010-03-31 2011-11-10 Konica Minolta Opto Inc Method for manufacturing glass substrate for information recording medium
JP2012218995A (en) * 2011-04-12 2012-11-12 Asahi Glass Co Ltd Method for manufacturing tempered glass plate and cover glass, and cover glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHKAWA HIROYUKI ET AL.: "Improvement of Surface Strength for Cover Glasses", PROCEEDINGS OF THE INTERNATIONAL DISPLAY WORKSHOPS, vol. 19 TH, no. DAYL-2, pages 551 - 552 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863107A (en) * 2016-04-22 2018-11-23 Agc株式会社 Glass substrate for display

Also Published As

Publication number Publication date
TW201431820A (en) 2014-08-16

Similar Documents

Publication Publication Date Title
JP6312722B2 (en) Method for producing impact-resistant glass sheet
JP6112122B2 (en) Float glass for chemical strengthening
TWI598311B (en) Chemically strengthened glass
US8771532B2 (en) Glass having anti-glare surface and method of making
US11236016B2 (en) Chemically strengthened glass
JP6809229B2 (en) Chemically tempered glass and manufacturing method of chemically tempered glass
CN107129160B (en) Chemically strengthened glass and method for producing chemically strengthened glass
WO2014045809A1 (en) Method for producing chemically strengthened glass
JPWO2013005608A1 (en) Float glass for chemical strengthening
EP3322676B1 (en) Method for chemically strengthening with controlled curvature
TW201630840A (en) Chemically strengthened glass and production method for same
JP2012218995A (en) Method for manufacturing tempered glass plate and cover glass, and cover glass
JP2015013777A (en) Coloration glass
CN116253500A (en) Glass article
TW201710201A (en) Glass sheet capable of having controlled warping through chemical strengthening
WO2014084096A1 (en) Reinforced glass and method for manufacturing same
TWI717501B (en) Glass plates, glass substrates for displays, and glass substrates for solar cells
JP2016132598A (en) Chemically strengthened glass, and production method of chemically strengthened glass
JP2013040086A (en) Method for manufacturing tempered glass plate and cover glass, and cover glass
JP2017171557A (en) cover glass
JP2023097437A (en) Method of producing chemically strengthened glass, chemically strengthened glass, cover glass, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP