WO2014083877A1 - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
WO2014083877A1
WO2014083877A1 PCT/JP2013/068157 JP2013068157W WO2014083877A1 WO 2014083877 A1 WO2014083877 A1 WO 2014083877A1 JP 2013068157 W JP2013068157 W JP 2013068157W WO 2014083877 A1 WO2014083877 A1 WO 2014083877A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding member
lubricating film
cross
piston
sliding
Prior art date
Application number
PCT/JP2013/068157
Other languages
French (fr)
Japanese (ja)
Inventor
高田亮太郎
辻井芳孝
田代尊久
山中将裕
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2014083877A1 publication Critical patent/WO2014083877A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/04Resilient guiding parts, e.g. skirts, particularly for trunk pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/08Constructional features providing for lubrication

Definitions

  • the present invention relates to, for example, a sliding member such as a piston for an internal combustion engine slidingly contacting an inner wall of a cylinder of an internal combustion engine, and more particularly to a sliding member having a convex portion and a lubricating film formed on the sliding contact surface.
  • the presence of the lubricating film enables the lubricant to be well held between the inner wall of the cylinder (for example, the inner wall of the sleeve) and the piston skirt. Also, the frictional heat is diffused or transmitted quickly. Therefore, the occurrence of adhesion between the piston skirt and the inner wall of the cylinder can be avoided.
  • the main object of the present invention is to provide a sliding member which is light in weight and capable of sufficiently reducing sliding resistance.
  • a sliding member having a sliding contact surface slidingly contacting a predetermined member
  • a convex portion protruding toward the predetermined member and a lubricating film covering the convex portion and having a trapezoidal cross section along the protruding direction of the convex portion are formed on the sliding contact surface
  • the length of the top side of the trapezoid is Z
  • the total length of the lubricating film in the top side is X
  • a member is provided.
  • Cross section coverage [%] (X / Z) ⁇ 100 (1)
  • the lubricating film is not shaped to cover and swell the entire convex portion (so-called peak shape), but to have a shape in which the top is cut off.
  • the amount of lubricating film can be reduced by this amount. Therefore, weight reduction can be achieved.
  • the cross-sectional coverage is sufficiently reduced.
  • the lubricating film is formed to have a trapezoidal cross-sectional shape from the beginning, the amount of the starting material for obtaining the lubricating film, for example, metal particles can be reduced. Therefore, the cost increase is suppressed.
  • the top portion may be polished to obtain a trapezoidal cross-sectional shape.
  • Providing a mountain-shaped lubricating film is easier than providing a lubricating film having a trapezoidal cross-section, and therefore, the time required for forming the lubricating film can be shortened, and thus the production cycle time of the sliding member can be improved.
  • Can be Polishing may be performed, for example, by actually bringing the sliding member into sliding contact with a predetermined member.
  • the cross-sectional coverage is more preferably 20% or more. This is because the friction loss is further reduced.
  • Preferred examples of the lubricating film include those composed of at least one of silver, a silver alloy, copper or a copper alloy. In this case, since it becomes easy to dissipate the frictional heat generated with the sliding contact, the seizure can be avoided.
  • the convex portion can be formed of a metal material or a resin material.
  • the convex portion is made of a metal material, it is preferable to interpose an intermediate layer made of a resin material between the convex portion and the lubricating film. Thereby, the bonding strength of the lubricating film to the convex portion is improved. That is, the lubricating film is less likely to come off from the projections.
  • the sliding member in which the above lubricating films are provided, the piston for internal combustion engines which carries out reciprocating operation in the cylinder of an internal combustion engine is mentioned.
  • the sliding contact surface on which the lubricating film is provided is a piston skirt.
  • the lubricating film is not shaped to cover the whole of the convex portion and bulged, but is shaped to cut off the top, so the amount of the lubricating film is reduced by this amount.
  • FIG. 1 is a schematic overall perspective view of a piston for an internal combustion engine as a sliding member according to an embodiment of the present invention.
  • FIG. 2 is a side view of the piston for an internal combustion engine shown in FIG.
  • FIG. 3 is an enlarged schematic cross-sectional view showing the vicinity of a surface layer portion of a piston skirt that constitutes the piston.
  • FIG. 4 is an enlarged schematic cross-sectional view showing the vicinity of the surface layer portion of the piston skirt in the previous stage when the state of FIG. 3 is reached.
  • FIG. 5 is a graph showing the relationship between the cross-sectional coverage of the lubricating coating and the friction loss of the internal combustion engine.
  • FIG. 6 is an enlarged schematic cross-sectional view showing the vicinity of the surface layer portion of the piston skirt in which the cross-sectional coverage of the lubricating film is different from that in FIG.
  • FIG. 7 is an enlarged schematic cross-sectional view showing the vicinity of the surface layer portion of the piston skirt in which the cross-sectional coverage of the lubricating film is different from that in FIGS. 3 and 6.
  • a piston for an internal combustion engine (hereinafter, may be simply referred to as "piston”) is exemplified.
  • FIG. 1 is a schematic overall perspective view of a piston 10 (sliding member) according to the present embodiment
  • FIG. 2 is a side view thereof.
  • the piston 10 has a pair of piston skirts 12, 12 at its lower part, and between the piston skirts 12, 12, wall portions 14, 14 extending along a substantially vertical direction intervene.
  • Pin bosses 16, 16 are provided on each of the walls 14, 14 so as to protrude in a horizontal direction, and piston pins (not shown) for inserting piston pins (not shown) in each of the pin bosses 16, 16 Holes 17, 17 are formed through.
  • the piston pin is passed through a through hole formed at a small end of a connecting rod (connecting rod) not shown, thereby pivotally supporting the connecting rod.
  • the piston skirt 12 is a sliding contact surface in sliding contact with the inner wall of the bore (cylinder bore) of the cylinder block or the inner wall of the cylinder sleeve.
  • An oil ring groove 18, a first piston ring groove 20, and a second piston ring groove 22 are formed in this order on the upper portion of the piston skirt 12 from the lower side to the upper side.
  • the oil ring groove 18, the first piston ring groove 20, and the second piston ring groove 22 are formed to go around the head of the piston 10 in the circumferential direction.
  • the piston skirt 12 is further provided with a plurality of streaks 24.
  • Each streak 24 is an undulation having a protrusion (protrusion) 26 raised toward the inner wall of the cylinder bore or the inner wall of the cylinder sleeve and a depressed valley 28, and the piston skirt 12 is provided with the ridge 24. It is formed by machining along the circumferential direction. It is preferable that the height of the protrusions 26 be in the range of 0.001 to 0.1 mm, and the distance between adjacent protrusions 26, that is, the pitch be in the range of 0.1 to 0.5 mm. It is. The more preferable range of the height of the protrusions 26 is 0.008 to 0.012 mm, and the more preferable range of the pitch is 0.25 to 0.3 mm.
  • the piston 10 configured as described above is made of, for example, an aluminum alloy such as AC2A, AC2B, AC4B, AC4C, AC4D, AC8H, A1100 (all are aluminum alloys defined in JIS), or Al-Cu alloy. Since the projection 26 is formed by machining the piston skirt 12 as described above, it is made of the same metal material as the piston 10.
  • an aluminum alloy such as AC2A, AC2B, AC4B, AC4C, AC4D, AC8H, A1100 (all are aluminum alloys defined in JIS), or Al-Cu alloy. Since the projection 26 is formed by machining the piston skirt 12 as described above, it is made of the same metal material as the piston 10.
  • the cross section of the projection 26 is approximated to a trapezoidal shape and is covered with the intermediate layer 30.
  • the arrow X direction in FIG. 3 corresponds to the arrow X direction in FIGS. 1 and 2. The same applies to the subsequent drawings.
  • the intermediate layer 30 linearly extending along the circumferential direction of the piston skirt 12 improves the bonding strength between the lubricant film 32 and the piston skirt 12 described later, and contains a resin material exhibiting heat resistance.
  • a resin material exhibiting heat resistance polyimide resin, polyamide imide resin, epoxy resin, nylon-6 resin, nylon-6,6 resin and the like can be mentioned.
  • the intermediate layer 30 may be made of only the above-described resin material, but may be a resin material to which a solid lubricant is added.
  • a solid lubricant known ones may be blended, and preferred examples thereof include molybdenum disulfide (MoS 2 ), boron nitride (BN), graphite (C) and the like.
  • MoS 2 molybdenum disulfide
  • BN boron nitride
  • C graphite
  • the compounding ratio of the resin material and the solid lubricant may be such that the ratio by weight of resin material: solid lubricant is 1: 9 to 9: 1.
  • the intermediate layer 30 is coated with a lubricious coating 32 extending linearly along the circumferential direction of the piston skirt 12.
  • the lubricant film 32 is made of silver, a silver alloy, copper, or a copper alloy. These all exhibit excellent lubricating performance when the piston skirt 12 is in sliding contact with the inner wall of the bore of the cylinder block or the inner wall of the cylinder sleeve.
  • Preferred examples of silver alloys include Ag-Sn alloys and Ag-Cu alloys
  • preferred examples of copper alloys include Cu-Sn alloys, Cu-Zn alloys, Cu-P alloys and the like.
  • the purity of silver is preferably 60% by weight or more. If the amount is less than 60% by weight, the thermal conductivity of the lubricating coating 32 is slightly low, which makes it difficult to form a smooth wear surface, and hence the effect of reducing the friction loss (Psf) of the internal combustion engine is It tends to be scarce. More preferably, the purity of silver is 80% by weight or more.
  • the purity of copper is preferably 70% by weight or more, particularly preferably 80% by weight or more, for the same reason as described above.
  • the purity of silver is defined as "% by weight of silver contained in the lubricating film 32".
  • the purity of silver is defined as the ratio of silver particles in the paste.
  • the purity of silver is determined as the weight percentage of silver contained in the lubricating film 32. The same applies to the purity of copper.
  • the lubricating film 32 it is not necessary to provide all of the lubricating film 32 from the same metal material in particular.
  • the lubricating film 32 which covers one arbitrary protrusion part 26 is formed with silver
  • the lubricating film 32 which covers another protrusion part 26 adjacent to the said protrusion part 26 is formed with a copper alloy etc. It may be provided from another kind of metal material.
  • the thickness of the lubricating coating 32 shown as T in FIG. 3 is not particularly limited, but if the thickness is too small, the lubricating coating 32 wears in a relatively short time. On the other hand, if it is excessively large, the weight of the lubricating coating 32 will be large, and the driving force for reciprocating the piston 10 will be large. In order to avoid the occurrence of the above-mentioned problems, it is preferable to set the thickness of the lubricating film 32 to 0.5 to 100 ⁇ m.
  • the cross section of the intermediate layer 30 and the lubricating coating 32 along the projecting direction of the projection 26 has a trapezoidal shape along with the cross section of the projection 26. For this reason, in plan view, as shown in the lower part of FIG. 3, a concentric circle is formed by the projection 26, the intermediate layer 30 and the lubricating film 32.
  • the cross-sectional shape shown in FIG. 3 is formed, for example, by polishing the top side from the state shown in FIG.
  • extension lines of the oblique sides of the protrusion 26, the intermediate layer 30, and the lubricating film 32 are shown together in phantom lines.
  • the cross section along the projecting direction of the protrusion 26 is an isosceles triangle. It is approximated to In the following, the state shown in FIG. 4 (that is, the state shown by the phantom line in FIG. 3) is referred to as the “initial state”.
  • Z X1 + Y1 + L + Y2 + X2 (2)
  • X1 and X2 are the total length of the lubricating coating 32 in the top side
  • Y1 and Y2 are the total length of the intermediate layer 30 in the top side
  • L is the length of the top side of the protrusion.
  • the cross-sectional coverage of the lubricating film 32 is determined by the above equation (1).
  • X in Formula (1) can be calculated as X1 + X2. Accordingly, the equation (1) can be transformed into the following equation (3).
  • Cross-sectional coverage 100 x (X1 + X2) / (X1 + Y1 + L + Y + X2) ... (3)
  • the lubricant film 32 is provided so that the cross-sectional coverage thus obtained is 15% or more, more preferably 20% or more.
  • the amount of use of silver, a silver alloy, copper, or a copper alloy can be reduced.
  • FIG. 3 the state whose cross-sectional coverage is 20% is shown.
  • FIG. 5 is a graph showing the relationship between the cross-sectional coverage of the lubricating coating 32 and the friction loss (Psf) of the internal combustion engine. From FIG. 5, it can be seen that Psf can be reduced by setting the cross-sectional coverage to 15% or more, and Psf can be further reduced by setting the cross-section coverage to 20% or more.
  • the lubricating film 32 substantially penetrates the lubricating oil to the inner wall of the cylinder (the inner wall of the cylinder bore or the inner wall of the cylinder sleeve). Touch.
  • the lubricating film 32 is in sliding contact with the inner wall of FC (grey cast iron) sleeve or Al sleeve, the sum of the thermal conductivity of the lubricating film 32 and the thermal conductivity of the FC sleeve or Al sleeve is determined
  • the absolute value of the difference in Young's modulus of the lubricating coating 32 with respect to the FC sleeve or the Al sleeve is 10 GPa or more.
  • the lubricating oil is well retained in the minute clearance between the sleeve and the piston skirt 12 and adhesion between the sleeve and the piston skirt 12 occurs. Is avoided. For this reason, it is possible to effectively avoid the occurrence of seizure and to significantly reduce the friction loss (Psf) of the internal combustion engine.
  • the lubricating film 32 is firmly joined to the piston skirt 12 via the intermediate layer 30. For this reason, the lubricant film 32 is less likely to come off the intermediate layer 30 and hence the piston skirt 12. In other words, the lubricious coating 32 is held on the piston skirt 12 for a long period of time. For this reason, in the piston 10, the above-described effect obtained by the presence of the lubricating coating 32 is continued for a long time. Further, both the solid lubricant and the resin material as described above are inexpensive and lightweight.
  • the lubricant film 32 is hard to come off, for example, the above effect can be obtained under the action of the lubricant film 32 even when the piston 10 is vigorously reciprocated in the cylinder. That is, even a car such as a racing car that is operated under a severe environment can be provided as an internal combustion engine having excellent durability.
  • the weight of the piston 10 can be reduced as compared with the case where the lubricant film 32 is provided in a mountain shape.
  • the lubricating coating 32 is initially formed to have a trapezoidal cross section, the amount of starting material (particles of silver, silver alloy, copper, or copper alloy) for providing the lubricating coating 32 is reduced. For this reason, the increase in cost can be suppressed while providing the lubricating film 32.
  • the intermediate layer 30 contains a solid lubricant, The solid lubricant can maintain lubricating performance.
  • the mid layer 30 and the lubricious coating 32 can be provided on the piston skirt 12 as follows, for example. In the following, the case of polishing is described as an example.
  • the above-described resin material to be the intermediate layer 30 is prepared and melted.
  • a solid lubricant as described above may be blended with this melt.
  • resin material: solid lubricant 1: 9 to 9: 1 (weight ratio).
  • the melt is then supplied onto the protrusions 26 of the streaks 24.
  • a melt may be applied to the protrusions 26.
  • an intermediate layer 30 is formed on the protrusion 26.
  • fine particles of silver, silver alloy, copper or copper alloy preferably, so-called nanoparticles having an average particle diameter of 1 to 80 nm are dispersed in a dispersion medium such as polyhydric alcohol such as benzyl alcohol, ethylene glycol or glycerin.
  • a dispersion medium such as polyhydric alcohol such as benzyl alcohol, ethylene glycol or glycerin.
  • the paste is prepared by dispersing in A dispersant is added to this paste.
  • carboxylic-ester type polymer dispersing agent is mentioned.
  • polymers of fatty acid esters are suitable.
  • the fatty acid ester may be an unsaturated fatty acid ester such as butene acid or a saturated fatty acid ester.
  • the main chain is a polyester, and an unsaturated hydrocarbon chain is bonded as a side chain, and an amide bond is added to either the main chain or the side chain Include.
  • FT-IR Fullier transform infrared spectroscopy
  • NMR nuclear magnetic resonance
  • the proportion of the carboxylic acid ester-based polymer dispersant is preferably 6 to 11% by weight when the total weight of particles of silver, silver alloy, copper or copper alloy in the paste is 100% by weight.
  • the remainder of the paste, that is, the components other than the particles and the dispersant is a dispersion medium.
  • the above-described paste is applied onto the intermediate layer 30 by a known application method such as screen printing or pad printing, for example. Thereafter, the paste is heated together with the piston 10, preferably at 160 to 240.degree. As a result, the dispersion medium in the paste is volatilized and the nanoparticles are fused. That is, sintering takes place, and the lubricating film 32 made of a sintered body of nanoparticles is obtained.
  • the cross sections along the projecting direction of the protrusions 26, the intermediate layer 30, and the lubricating coating 32 approximate the shape shown in FIG.
  • the piston skirt 12 is subjected to polishing processing to polish the projection 26, the intermediate layer 30 and the lubricating film 32.
  • Polishing is completed from the initial state shown in FIG. 4 before the cross-sectional coverage of the lubricating coating 32 becomes less than 15%, more preferably less than 20%. Thereby, for example, the protrusion 26, the intermediate layer 30, and the lubricating film 32 having the cross-sectional shape shown in FIG. 3 can be obtained.
  • the projection 26 of the piston skirt 12 may be polished before the intermediate layer 30 is formed, and then the intermediate layer 30 and the lubricating film 32 may be provided.
  • the cross-sectional coverage of the lubricating film 32 decreases as the polishing process on the protrusions 26 increases. For this reason, it is originally desirable to increase the polishing rate, but in this case, it takes a long time for the polishing process and it is complicated. Therefore, the intermediate layer 30 and the lubricant film 32 having the cross-sectional shape as shown in FIG. 6 may be formed without polishing the projection 26. As shown in FIG. The intermediate layer 30 and the lubricating film 32 may be formed after some polishing process is performed on the surface 26.
  • the cross-sectional coverage of the lubricating coating 32 is 70% and 45%, respectively. Therefore, also in the cases shown in FIGS. 6 and 7, it is possible to reduce Psf of the internal combustion engine while reducing the amount of use of silver, silver alloy, copper, or copper alloy.
  • polishing can be performed, for example, by incorporating the piston 10 provided with the lubricating film 32 in a cylinder block and sliding the piston skirt 12 on the inner surface of the cylinder bore or cylinder sleeve.
  • the piston skirt 12 itself is machined to provide the streaks 24 (protrusions 26), but the smooth piston skirt 12 is directed to the inner wall of the cylinder bore or cylinder sleeve. It is also possible to form an intermediate layer 30 having a projecting shape and use it as a projection. That is, in this case, the convex portion made of the resin material is covered with the lubricating film 32.
  • the protrusion 26 may be directly coated with the lubricating film 32 without providing the intermediate layer 30.
  • the lubricant film 32 can also be formed by plating, for example.
  • the lubricating film 32 having a trapezoidal cross-sectional shape may be formed from the beginning without polishing. Polishing of the lubricating coating 32 can also be performed using a suitable polishing machine before the piston 10 is incorporated into the cylinder block.
  • the present invention is not particularly limited to the piston 10, and can be applied to a member that slides on a mating member (predetermined member).
  • a member for example, a piston of a fluid pressure cylinder or the like can be mentioned.
  • the sliding member may be made of aluminum. Of course, other metal materials may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

The present invention relates to a sliding member (10) which is provided with a sliding surface (12) which is in sliding contact with a predetermined member. The sliding surface (12) has formed thereon: a protrusion (26) which protrudes toward the predetermined member: and a lubrication coating (32) which covers the protrusion (26). The protrusion (26) and the lubrication coating (32) are formed so that a cross-section of the sliding member (10) cut in the direction in which the protrusion (26) protrudes has a trapezoidal shape. If the length of the top side of the trapezoid is Z and the total length of the lubrication coating (32) in the top side is X, the cross-section coverage expressed by the following formula (1) is 15% or more: Cross-section coverage (%) = (X/Z) × 100 ... (1).

Description

摺動部材Sliding member
 本発明は、例えば、内燃機関のシリンダの内壁に摺接する内燃機関用ピストン等の摺動部材に関し、一層詳細には、摺接面に凸部と潤滑性皮膜が形成された摺動部材に関する。 The present invention relates to, for example, a sliding member such as a piston for an internal combustion engine slidingly contacting an inner wall of a cylinder of an internal combustion engine, and more particularly to a sliding member having a convex portion and a lubricating film formed on the sliding contact surface.
 自動車は、燃料が供給された内燃機関が発生する駆動力を回転駆動力に変換してタイヤを回転動作させ、これにより走行している。このような構成の自動車において、近時、内燃機関の燃料消費率(燃費)を向上させることが種々試みられている。燃料の消費量が低減するので、省エネルギ化となるとともに、地球環境保護に貢献し得るからである。 In a car, a driving force generated by an internal combustion engine supplied with fuel is converted into a rotational driving force to rotate a tire, thereby traveling. Recently, various attempts have been made to improve the fuel consumption rate (fuel consumption) of internal combustion engines in vehicles having such a configuration. Because the amount of fuel consumption is reduced, energy saving can be achieved, and it can contribute to global environmental protection.
 そのような試みの1つとして、内燃機関のシリンダの内壁(ボア又はスリーブの内壁)と、該シリンダ内を往復動作するピストンとの摺動抵抗を低減することが挙げられる。摺動抵抗が小さい場合、ピストンが往復動作することが容易となる。このため、ピストンを往復動作させるための駆動力が小さくなり、ひいては燃料消費量が低減するからである。 One such attempt is to reduce the sliding resistance between the inner wall of a cylinder of an internal combustion engine (a bore or the inner wall of a sleeve) and a piston reciprocating within the cylinder. When the sliding resistance is small, it becomes easy for the piston to reciprocate. For this reason, the driving force for reciprocating the piston is reduced, and the fuel consumption is reduced.
 摺動抵抗を低減するべく、潤滑性に富む物質を含む層をシリンダの内壁又はピストンスカートに設け、これにより、内壁又はピストンスカートの潤滑性能を向上させることが知られている。例えば、本出願人は、国際公開第2011/115152号において、アルミニウム合金からなる内燃機関用ピストンの摺接部位、すなわち、ピストンスカートに条痕(凸部)を形成するとともに、該条痕を銀、銀合金、銅又は銅合金からなる潤滑性皮膜で被覆することを提案している(特に、段落[0063]~[0067]参照)。 In order to reduce the sliding resistance, it is known to provide a layer containing a highly lubricious substance on the inner wall or piston skirt of the cylinder, thereby improving the lubricating performance of the inner wall or piston skirt. For example, in International Publication No. 2011/115152, the applicant forms a streak (protrusion) on a sliding contact portion of a piston for an internal combustion engine made of an aluminum alloy, that is, a piston skirt, and It is proposed to coat with a lubricating film made of silver alloy, copper or copper alloy (in particular, refer to paragraphs [0063] to [0067]).
 このように構成された内燃機関用ピストンでは、前記潤滑性皮膜が存在することにより、シリンダの内壁(例えば、スリーブの内壁)とピストンスカートとの間に潤滑剤を良好に保持することができる。また、摩擦熱が速やかに拡散ないし伝達されるようになる。従って、ピストンスカートとシリンダの内壁との間に凝着が起こることを回避することができる。 In the piston for an internal combustion engine configured as described above, the presence of the lubricating film enables the lubricant to be well held between the inner wall of the cylinder (for example, the inner wall of the sleeve) and the piston skirt. Also, the frictional heat is diffused or transmitted quickly. Therefore, the occurrence of adhesion between the piston skirt and the inner wall of the cylinder can be avoided.
 本発明の主たる目的は、一層軽量でありながら摺動抵抗を十分に低減することが可能な摺動部材を提供することにある。 The main object of the present invention is to provide a sliding member which is light in weight and capable of sufficiently reducing sliding resistance.
 本発明の一実施形態によれば、所定の部材に対して摺接する摺接面を具備する摺動部材において、
 前記摺接面に、前記所定の部材に指向して突出した凸部と、前記凸部を被覆するとともに前記凸部の突出方向に沿う断面が台形形状をなす潤滑性皮膜が形成され、
 前記台形の頂辺の長さをZ、前記頂辺中の潤滑性皮膜の合計長さをXとするとき、下記の式(1)で表される断面被覆率が15%以上である摺動部材が提供される。
   断面被覆率[%]=(X/Z)×100 …(1)
According to an embodiment of the present invention, in a sliding member having a sliding contact surface slidingly contacting a predetermined member,
A convex portion protruding toward the predetermined member and a lubricating film covering the convex portion and having a trapezoidal cross section along the protruding direction of the convex portion are formed on the sliding contact surface,
When the length of the top side of the trapezoid is Z and the total length of the lubricating film in the top side is X, a slide having a cross-sectional coverage of 15% or more represented by the following formula (1) A member is provided.
Cross section coverage [%] = (X / Z) × 100 (1)
 すなわち、本発明においては、潤滑性皮膜を、凸部の全体を被覆して盛り上がるような形状(いわゆる山形状)ではなく、頂部を切り落としたような形状にしている。この分だけ潤滑性皮膜の量を少なくすることができる。このため、軽量化を図ることができる。しかも、断面被覆率を15%以上とすることにより、摺動抵抗が十分に低減する。 That is, in the present invention, the lubricating film is not shaped to cover and swell the entire convex portion (so-called peak shape), but to have a shape in which the top is cut off. The amount of lubricating film can be reduced by this amount. Therefore, weight reduction can be achieved. Moreover, by setting the cross-sectional coverage to 15% or more, the sliding resistance is sufficiently reduced.
 潤滑性皮膜を当初から断面台形形状となるように形成した場合、潤滑性皮膜を得るための出発材料、例えば、金属粒子等の使用量を低減することができる。従って、コストが高騰することが抑制される。 When the lubricating film is formed to have a trapezoidal cross-sectional shape from the beginning, the amount of the starting material for obtaining the lubricating film, for example, metal particles can be reduced. Therefore, the cost increase is suppressed.
 潤滑性皮膜を、山形状として一旦形成した後、頂部に対して研磨を行うことによって断面台形形状となるようにしてもよい。山形状の潤滑性皮膜を設けることは、断面台形形状の潤滑性皮膜を設けるよりも容易であり、このため、潤滑性皮膜の形成に要する時間の短縮、ひいては摺動部材の生産サイクルタイムの向上を図ることができる。なお、研磨は、例えば、摺動部材を所定の部材に対して実際に摺接させることで行うようにすればよい。 Once the lubricant film is formed into a mountain shape, the top portion may be polished to obtain a trapezoidal cross-sectional shape. Providing a mountain-shaped lubricating film is easier than providing a lubricating film having a trapezoidal cross-section, and therefore, the time required for forming the lubricating film can be shortened, and thus the production cycle time of the sliding member can be improved. Can be Polishing may be performed, for example, by actually bringing the sliding member into sliding contact with a predetermined member.
 なお、断面被覆率が20%以上であることが一層好ましい。これにより、摩擦損失が一層小さくなるからである。 The cross-sectional coverage is more preferably 20% or more. This is because the friction loss is further reduced.
 潤滑性皮膜の好適な例としては、銀、銀合金、銅又は銅合金の少なくともいずれか1種からなるものが挙げられる。この場合、摺接に伴って発生する摩擦熱を放熱することが容易となるので、焼付きを回避することができる。 Preferred examples of the lubricating film include those composed of at least one of silver, a silver alloy, copper or a copper alloy. In this case, since it becomes easy to dissipate the frictional heat generated with the sliding contact, the seizure can be avoided.
 一方、前記凸部は、金属材又は樹脂材から形成することができる。前記凸部を金属材で構成するときには、該凸部と前記潤滑性皮膜との間に樹脂材からなる中間層を介在することが好ましい。これにより、凸部に対する潤滑性皮膜の接合力が向上する。すなわち、潤滑性皮膜が凸部から脱落し難くなる。 On the other hand, the convex portion can be formed of a metal material or a resin material. When the convex portion is made of a metal material, it is preferable to interpose an intermediate layer made of a resin material between the convex portion and the lubricating film. Thereby, the bonding strength of the lubricating film to the convex portion is improved. That is, the lubricating film is less likely to come off from the projections.
 以上のような潤滑性皮膜が設けられる摺動部材の好適な例としては、内燃機関のシリンダ内を往復動作する内燃機関用ピストンが挙げられる。この場合、潤滑性皮膜が設けられる摺接面は、ピストンスカートである。 As a suitable example of the sliding member in which the above lubricating films are provided, the piston for internal combustion engines which carries out reciprocating operation in the cylinder of an internal combustion engine is mentioned. In this case, the sliding contact surface on which the lubricating film is provided is a piston skirt.
 本発明によれば、潤滑性皮膜を、凸部の全体を被覆して盛り上がるような形状ではなく、頂部を切り落としたような形状にしているので、この分だけ潤滑性皮膜の量を少なくすることができる。これにより、潤滑性皮膜を得るための出発材料、例えば、金属粒子等の使用量が低減する。このため、潤滑性皮膜を設けながらもコストが高騰することを抑制することができるとともに、軽量化を図ることができる。 According to the present invention, the lubricating film is not shaped to cover the whole of the convex portion and bulged, but is shaped to cut off the top, so the amount of the lubricating film is reduced by this amount. Can. This reduces the amount of starting material used to obtain the lubricious coating, such as metal particles. For this reason, it is possible to suppress the cost increase while providing the lubricating film, and to reduce the weight.
図1は、本発明の実施の形態に係る摺動部材としての内燃機関用ピストンの概略全体斜視図である。FIG. 1 is a schematic overall perspective view of a piston for an internal combustion engine as a sliding member according to an embodiment of the present invention. 図2は、図1に示す内燃機関用ピストンの側面図である。FIG. 2 is a side view of the piston for an internal combustion engine shown in FIG. 図3は、前記ピストンを構成するピストンスカートの表層部近傍を拡大して示す断面模式図である。FIG. 3 is an enlarged schematic cross-sectional view showing the vicinity of a surface layer portion of a piston skirt that constitutes the piston. 図4は、図3の状態となる前段階の前記ピストンスカートの表層部近傍を拡大して示す断面模式図である。FIG. 4 is an enlarged schematic cross-sectional view showing the vicinity of the surface layer portion of the piston skirt in the previous stage when the state of FIG. 3 is reached. 図5は、潤滑性皮膜の断面被覆率と、内燃機関の摩擦損失との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the cross-sectional coverage of the lubricating coating and the friction loss of the internal combustion engine. 図6は、潤滑性皮膜の断面被覆率が図3とは相違するピストンスカートの表層部近傍を拡大して示す断面模式図である。FIG. 6 is an enlarged schematic cross-sectional view showing the vicinity of the surface layer portion of the piston skirt in which the cross-sectional coverage of the lubricating film is different from that in FIG. 図7は、潤滑性皮膜の断面被覆率が図3及び図6とは相違するピストンスカートの表層部近傍を拡大して示す断面模式図である。FIG. 7 is an enlarged schematic cross-sectional view showing the vicinity of the surface layer portion of the piston skirt in which the cross-sectional coverage of the lubricating film is different from that in FIGS. 3 and 6.
 以下、本発明に係る摺動部材につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。なお、この実施の形態では、摺動部材として、内燃機関用ピストン(以降、単に「ピストン」と表記することもある)を例示するものとする。 Hereinafter, preferred embodiments of the sliding member according to the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, as the sliding member, a piston for an internal combustion engine (hereinafter, may be simply referred to as "piston") is exemplified.
 図1は、本実施の形態に係るピストン10(摺動部材)の概略全体斜視図であり、図2は、その側面図である。このピストン10は、その下部に一対のピストンスカート12、12を有し、該ピストンスカート12、12同士の間には、略鉛直方向に沿って延在する壁部14、14が介在する。壁部14、14の各々には、ピンボス部16、16が水平方向に指向して突出するように設けられ、ピンボス部16、16の各々には、図示しないピストンピンを挿入するためのピストンピン孔17、17が貫通形成される。前記ピストンピンは、図示しないコネクティングロッド(コンロッド)の小端部に形成される貫通孔に通され、これにより、コンロッドを軸支する。 FIG. 1 is a schematic overall perspective view of a piston 10 (sliding member) according to the present embodiment, and FIG. 2 is a side view thereof. The piston 10 has a pair of piston skirts 12, 12 at its lower part, and between the piston skirts 12, 12, wall portions 14, 14 extending along a substantially vertical direction intervene. Pin bosses 16, 16 are provided on each of the walls 14, 14 so as to protrude in a horizontal direction, and piston pins (not shown) for inserting piston pins (not shown) in each of the pin bosses 16, 16 Holes 17, 17 are formed through. The piston pin is passed through a through hole formed at a small end of a connecting rod (connecting rod) not shown, thereby pivotally supporting the connecting rod.
 ピストンスカート12は、シリンダブロックのボア(シリンダボア)の内壁、又はシリンダスリーブの内壁に対して摺接する摺接面である。このピストンスカート12の上部には、下方から上方に向かうに従って、オイルリング溝18、第1ピストンリング溝20、第2ピストンリング溝22がこの順序で形成される。勿論、これらオイルリング溝18、第1ピストンリング溝20及び第2ピストンリング溝22は、ピストン10の頭部を円周方向に沿って周回するように形成されている。 The piston skirt 12 is a sliding contact surface in sliding contact with the inner wall of the bore (cylinder bore) of the cylinder block or the inner wall of the cylinder sleeve. An oil ring groove 18, a first piston ring groove 20, and a second piston ring groove 22 are formed in this order on the upper portion of the piston skirt 12 from the lower side to the upper side. Of course, the oil ring groove 18, the first piston ring groove 20, and the second piston ring groove 22 are formed to go around the head of the piston 10 in the circumferential direction.
 ピストンスカート12には、さらに、複数個の条痕24が設けられる。各条痕24は、シリンダボアの内壁、又はシリンダスリーブの内壁に指向して隆起した突起部(凸部)26と、陥没した谷部28とを有するうねりであり、該ピストンスカート12に対し、その周回方向に沿って機械加工を施すことで形成される。突起部26の高さは0.001~0.1mmの範囲内であり、隣接する突起部26、26同士の間隔、すなわち、ピッチは0.1~0.5mmの範囲内であることが好適である。なお、突起部26の高さの一層好適な範囲は0.008~0.012mmであり、ピッチの一層好適な範囲は0.25~0.3mmである。 The piston skirt 12 is further provided with a plurality of streaks 24. Each streak 24 is an undulation having a protrusion (protrusion) 26 raised toward the inner wall of the cylinder bore or the inner wall of the cylinder sleeve and a depressed valley 28, and the piston skirt 12 is provided with the ridge 24. It is formed by machining along the circumferential direction. It is preferable that the height of the protrusions 26 be in the range of 0.001 to 0.1 mm, and the distance between adjacent protrusions 26, that is, the pitch be in the range of 0.1 to 0.5 mm. It is. The more preferable range of the height of the protrusions 26 is 0.008 to 0.012 mm, and the more preferable range of the pitch is 0.25 to 0.3 mm.
 以上のように構成されるピストン10は、例えば、AC2A、AC2B、AC4B、AC4C、AC4D、AC8H、A1100(いずれもJISに定義されるアルミニウム合金)、又はAl-Cu合金等のアルミニウム合金からなる。突起部26は、上記したように該ピストンスカート12に対して機械加工を施すことで形成されるものであるため、ピストン10と同一の金属材からなる。 The piston 10 configured as described above is made of, for example, an aluminum alloy such as AC2A, AC2B, AC4B, AC4C, AC4D, AC8H, A1100 (all are aluminum alloys defined in JIS), or Al-Cu alloy. Since the projection 26 is formed by machining the piston skirt 12 as described above, it is made of the same metal material as the piston 10.
 図3に拡大して示すように、突起部26の断面は台形形状に近似されるとともに、中間層30で被覆されている。ここで、図3中の矢印X方向は、図1及び図2中の矢印X方向に対応する。以降の図面においても同様である。 As shown in an enlarged manner in FIG. 3, the cross section of the projection 26 is approximated to a trapezoidal shape and is covered with the intermediate layer 30. Here, the arrow X direction in FIG. 3 corresponds to the arrow X direction in FIGS. 1 and 2. The same applies to the subsequent drawings.
 ピストンスカート12の周回方向に沿って線状に延在する中間層30は、後述する潤滑性皮膜32とピストンスカート12との接合力を向上させ、且つ耐熱性を示す樹脂材を含有する。この種の樹脂材の好適な例としては、ポリイミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、ナイロン-6樹脂、ナイロン-6,6樹脂等を挙げることができる。 The intermediate layer 30 linearly extending along the circumferential direction of the piston skirt 12 improves the bonding strength between the lubricant film 32 and the piston skirt 12 described later, and contains a resin material exhibiting heat resistance. As preferable examples of this type of resin material, polyimide resin, polyamide imide resin, epoxy resin, nylon-6 resin, nylon-6,6 resin and the like can be mentioned.
 中間層30は、上記したような樹脂材のみから構成するようにしてもよいが、樹脂材に固体潤滑剤が添加されたものであってもよい。固体潤滑剤としては公知のものを配合すればよいが、その好適な具体例としては、二硫化モリブデン(MoS2)、窒化ホウ素(BN)、グラファイト(C)等が挙げられる。中間層30が固体潤滑剤を含有するものである場合、樹脂材と固体潤滑剤の配合比は、重量割合で樹脂材:固体潤滑剤=1:9~9:1とすればよい。 The intermediate layer 30 may be made of only the above-described resin material, but may be a resin material to which a solid lubricant is added. As the solid lubricant, known ones may be blended, and preferred examples thereof include molybdenum disulfide (MoS 2 ), boron nitride (BN), graphite (C) and the like. When the mid layer 30 contains a solid lubricant, the compounding ratio of the resin material and the solid lubricant may be such that the ratio by weight of resin material: solid lubricant is 1: 9 to 9: 1.
 中間層30は、ピストンスカート12の周回方向に沿って線状に延在する潤滑性皮膜32で被覆される。 The intermediate layer 30 is coated with a lubricious coating 32 extending linearly along the circumferential direction of the piston skirt 12.
 この場合、潤滑性皮膜32は、銀、銀合金、銅、又は銅合金のいずれかからなる。これらはいずれも、ピストンスカート12がシリンダブロックのボアの内壁、又はシリンダスリーブの内壁に対して摺接する際、優れた潤滑性能を示す。なお、銀合金の好適な例としてはAg-Sn合金、Ag-Cu合金が挙げられ、銅合金の好適な例としてはCu-Sn合金、Cu-Zn合金、Cu-P合金等が挙げられる。 In this case, the lubricant film 32 is made of silver, a silver alloy, copper, or a copper alloy. These all exhibit excellent lubricating performance when the piston skirt 12 is in sliding contact with the inner wall of the bore of the cylinder block or the inner wall of the cylinder sleeve. Preferred examples of silver alloys include Ag-Sn alloys and Ag-Cu alloys, and preferred examples of copper alloys include Cu-Sn alloys, Cu-Zn alloys, Cu-P alloys and the like.
 潤滑性皮膜32を銀又は銀合金で構成する場合、銀の純度は、60重量%以上であることが好ましい。60重量%未満であると、潤滑性皮膜32の熱伝導率が若干低く、このために平滑な摩耗面が形成することが容易ではなくなるので、内燃機関の摩擦損失(Psf)を低減する効果が乏しくなる傾向がある。銀の純度は、80重量%以上であることが一層好ましい。 When the lubricating film 32 is made of silver or a silver alloy, the purity of silver is preferably 60% by weight or more. If the amount is less than 60% by weight, the thermal conductivity of the lubricating coating 32 is slightly low, which makes it difficult to form a smooth wear surface, and hence the effect of reducing the friction loss (Psf) of the internal combustion engine is It tends to be scarce. More preferably, the purity of silver is 80% by weight or more.
 一方、潤滑性皮膜32を銅又は銅合金で構成する場合、銅の純度は、上記と同様の理由から70重量%以上であることが好ましく、80重量%以上であることが特に好ましい。 On the other hand, when the lubricating film 32 is made of copper or a copper alloy, the purity of copper is preferably 70% by weight or more, particularly preferably 80% by weight or more, for the same reason as described above.
 ここで、銀の純度は「潤滑性皮膜32に含まれる銀の重量%」として定義される。例えば、銀粒子を塗布した後に焼結体からなる潤滑性皮膜32を得る場合、銀の純度は、ペースト中の銀粒子の割合として定義される。また、銀合金からなる潤滑性皮膜32を形成した場合、銀の純度は、潤滑性皮膜32中に含まれる銀の重量%として求められる。銅の純度についても同様である。 Here, the purity of silver is defined as "% by weight of silver contained in the lubricating film 32". For example, in the case where the lubricant film 32 made of a sintered body is obtained after applying silver particles, the purity of silver is defined as the ratio of silver particles in the paste. In addition, when the lubricating film 32 made of a silver alloy is formed, the purity of silver is determined as the weight percentage of silver contained in the lubricating film 32. The same applies to the purity of copper.
 なお、潤滑性皮膜32の全てを同一の金属材から設ける必要は特にない。例えば、任意の1本の突起部26を被覆する潤滑性皮膜32を銀で形成するとともに、前記突起部26に隣接する別の突起部26を被覆する潤滑性皮膜32を銅合金で形成する等、別種の金属材から設けるようにしてもよい。 In addition, it is not necessary to provide all of the lubricating film 32 from the same metal material in particular. For example, while forming the lubricating film 32 which covers one arbitrary protrusion part 26 with silver, the lubricating film 32 which covers another protrusion part 26 adjacent to the said protrusion part 26 is formed with a copper alloy etc. It may be provided from another kind of metal material.
 図3中にTとして示される潤滑性皮膜32の厚みは、特に限定されるものではないが、過度に小さいと潤滑性皮膜32が比較的短期間で摩耗する。一方、過度に大きいと、潤滑性皮膜32の重量が大きくなるのでピストン10を往復動作させるための駆動力が大きくなってしまう。以上の不都合が発生することを回避するべく、潤滑性皮膜32の厚みを0.5~100μmに設定することが好ましい。 The thickness of the lubricating coating 32 shown as T in FIG. 3 is not particularly limited, but if the thickness is too small, the lubricating coating 32 wears in a relatively short time. On the other hand, if it is excessively large, the weight of the lubricating coating 32 will be large, and the driving force for reciprocating the piston 10 will be large. In order to avoid the occurrence of the above-mentioned problems, it is preferable to set the thickness of the lubricating film 32 to 0.5 to 100 μm.
 突起部26の突出方向に沿う中間層30及び潤滑性皮膜32の断面は、突起部26の断面とともに台形形状をなす。このため、平面視では、図3の下方に示すように、突起部26、中間層30及び潤滑性皮膜32で同心円が形成される。図3に示される断面形状は、例えば、図4に示す状態から頂部側が研磨されることで形成される。 The cross section of the intermediate layer 30 and the lubricating coating 32 along the projecting direction of the projection 26 has a trapezoidal shape along with the cross section of the projection 26. For this reason, in plan view, as shown in the lower part of FIG. 3, a concentric circle is formed by the projection 26, the intermediate layer 30 and the lubricating film 32. The cross-sectional shape shown in FIG. 3 is formed, for example, by polishing the top side from the state shown in FIG.
 図3には、突起部26、中間層30及び潤滑性皮膜32の各斜辺の延長線を仮想線で併せて示している。この仮想線、及び図4から諒解されるように、突起部26の斜辺を延長すると、該突起部26の突出方向(シリンダスリーブ又はシリンダボアの内壁に指向する方向)に沿う断面は、二等辺三角形に近似される。なお、以下においては、図4に示す状態(すなわち、図3中の仮想線で示す状態)を「初期状態」という。 In FIG. 3, extension lines of the oblique sides of the protrusion 26, the intermediate layer 30, and the lubricating film 32 are shown together in phantom lines. As can be understood from this imaginary line and FIG. 4, when the oblique side of the protrusion 26 is extended, the cross section along the projecting direction of the protrusion 26 (direction toward the cylinder sleeve or the inner wall of the cylinder bore) is an isosceles triangle. It is approximated to In the following, the state shown in FIG. 4 (that is, the state shown by the phantom line in FIG. 3) is referred to as the “initial state”.
 図3に示される台形形状の頂辺の長さをZとすると、Zは、下記の式(2)で表される。
   Z=X1+Y1+L+Y2+X2 …(2)
Assuming that the length of the top side of the trapezoidal shape shown in FIG. 3 is Z, Z is expressed by the following equation (2).
Z = X1 + Y1 + L + Y2 + X2 (2)
 ここで、X1、X2は、頂辺中の潤滑性皮膜32の合計長さ、Y1、Y2は頂辺中の中間層30の合計長さ、Lは突起部の頂辺の長さである。 Here, X1 and X2 are the total length of the lubricating coating 32 in the top side, Y1 and Y2 are the total length of the intermediate layer 30 in the top side, and L is the length of the top side of the protrusion.
 一方、潤滑性皮膜32の断面被覆率は、上記の式(1)によって求められる。なお、式(1)中のXはX1+X2として算出し得る。従って、式(1)は、下記の式(3)に変形することができる。
 断面被覆率=100×(X1+X2)/(X1+Y1+L+Y2+X2)
                                                            …(3)
On the other hand, the cross-sectional coverage of the lubricating film 32 is determined by the above equation (1). In addition, X in Formula (1) can be calculated as X1 + X2. Accordingly, the equation (1) can be transformed into the following equation (3).
Cross-sectional coverage = 100 x (X1 + X2) / (X1 + Y1 + L + Y + X2)
... (3)
 潤滑性皮膜32は、このようにして求められる断面被覆率が15%以上、一層好適には20%以上となるように設けられる。このような断面被覆率で潤滑性皮膜32を設けることにより、銀、銀合金、銅、又は銅合金の使用量を低減することができる。なお、図3においては、断面被覆率が20%である状態を示している。 The lubricant film 32 is provided so that the cross-sectional coverage thus obtained is 15% or more, more preferably 20% or more. By providing the lubricating film 32 with such a cross-sectional coverage, the amount of use of silver, a silver alloy, copper, or a copper alloy can be reduced. In addition, in FIG. 3, the state whose cross-sectional coverage is 20% is shown.
 図5に、潤滑性皮膜32の断面被覆率と、内燃機関の摩擦損失(Psf)との関係をグラフにして示す。この図5から、断面被覆率を15%以上とすることでPsfを低減することが可能となり、20%以上とすることでPsfを一層大きく低減し得るようになることが分かる。 FIG. 5 is a graph showing the relationship between the cross-sectional coverage of the lubricating coating 32 and the friction loss (Psf) of the internal combustion engine. From FIG. 5, it can be seen that Psf can be reduced by setting the cross-sectional coverage to 15% or more, and Psf can be further reduced by setting the cross-section coverage to 20% or more.
 以上のように構成されたピストン10を含む内燃機関を運転する際には、シリンダの内壁(シリンダボアの内壁又はシリンダスリーブの内壁)に対して、実質的には潤滑性皮膜32が潤滑油を介して摺接する。例えば、潤滑性皮膜32がFC(ねずみ鋳鉄)スリーブ又はAlスリーブの内壁に摺接するような場合では、潤滑性皮膜32の熱伝導度と、FCスリーブ又はAlスリーブの熱伝導度との和を求めると350W/m・K以上となり、且つ、潤滑性皮膜32のFCスリーブ又はAlスリーブに対するヤング率の差の絶対値が10GPa以上となる。本発明者らの鋭意検討によれば、この場合、スリーブとピストンスカート12との間の微小なクリアランスに潤滑油が良好に保持されるとともに、スリーブとピストンスカート12との間に凝着が発生することが回避される。このため、焼付きが生じることを有効に回避し得るとともに、内燃機関の摩擦損失(Psf)を大幅に低減することができる。 When the internal combustion engine including the piston 10 configured as described above is operated, the lubricating film 32 substantially penetrates the lubricating oil to the inner wall of the cylinder (the inner wall of the cylinder bore or the inner wall of the cylinder sleeve). Touch. For example, in the case where the lubricating film 32 is in sliding contact with the inner wall of FC (grey cast iron) sleeve or Al sleeve, the sum of the thermal conductivity of the lubricating film 32 and the thermal conductivity of the FC sleeve or Al sleeve is determined And the absolute value of the difference in Young's modulus of the lubricating coating 32 with respect to the FC sleeve or the Al sleeve is 10 GPa or more. According to the intensive studies of the present inventors, in this case, the lubricating oil is well retained in the minute clearance between the sleeve and the piston skirt 12 and adhesion between the sleeve and the piston skirt 12 occurs. Is avoided. For this reason, it is possible to effectively avoid the occurrence of seizure and to significantly reduce the friction loss (Psf) of the internal combustion engine.
 しかも、本実施の形態では、潤滑性皮膜32が中間層30を介してピストンスカート12に強固に接合している。このため、潤滑性皮膜32が中間層30、ひいてはピストンスカート12から脱落し難い。換言すれば、潤滑性皮膜32が長期間にわたってピストンスカート12に保持される。このため、ピストン10においては、潤滑性皮膜32が存在することによって得られる上記の効果が長期間にわたって継続される。また、上記したような固体潤滑剤及び樹脂材のいずれも安価且つ軽量である。 Moreover, in the present embodiment, the lubricating film 32 is firmly joined to the piston skirt 12 via the intermediate layer 30. For this reason, the lubricant film 32 is less likely to come off the intermediate layer 30 and hence the piston skirt 12. In other words, the lubricious coating 32 is held on the piston skirt 12 for a long period of time. For this reason, in the piston 10, the above-described effect obtained by the presence of the lubricating coating 32 is continued for a long time. Further, both the solid lubricant and the resin material as described above are inexpensive and lightweight.
 また、潤滑性皮膜32が脱落し難いので、例えば、ピストン10がシリンダ内を激しく往復運動する場合であっても、潤滑性皮膜32の作用下に上記の効果が得られる。すなわち、レーシングカー等、過酷な環境下で運転される車であっても、耐久性に優れた内燃機関として供することが可能である。 Further, since the lubricant film 32 is hard to come off, for example, the above effect can be obtained under the action of the lubricant film 32 even when the piston 10 is vigorously reciprocated in the cylinder. That is, even a car such as a racing car that is operated under a severe environment can be provided as an internal combustion engine having excellent durability.
 さらに、潤滑性皮膜32が断面台形形状であるので、潤滑性皮膜32を山形状として設ける場合に比してピストン10の軽量化を図ることもできる。その上、潤滑性皮膜32を当初から断面台形として形成したときには、潤滑性皮膜32を設けるための出発材料(銀、銀合金、銅、又は銅合金の粒子)の使用量が低減する。このため、潤滑性皮膜32を設けながらもコストが上昇することを抑制し得る。 Furthermore, since the lubricant film 32 has a trapezoidal cross section, the weight of the piston 10 can be reduced as compared with the case where the lubricant film 32 is provided in a mountain shape. In addition, when the lubricating coating 32 is initially formed to have a trapezoidal cross section, the amount of starting material (particles of silver, silver alloy, copper, or copper alloy) for providing the lubricating coating 32 is reduced. For this reason, the increase in cost can be suppressed while providing the lubricating film 32.
 さらに、仮に潤滑性皮膜32が中間層30から脱落し、中間層30がシリンダの内壁に摺接するような事態に至ったとしても、該中間層30に固体潤滑剤が含有されている場合には、この固体潤滑剤によって潤滑性能を維持することができる。 Furthermore, even if the lubricant film 32 falls off from the intermediate layer 30 and the intermediate layer 30 comes into sliding contact with the inner wall of the cylinder, if the intermediate layer 30 contains a solid lubricant, The solid lubricant can maintain lubricating performance.
 中間層30及び潤滑性皮膜32は、例えば、以下のようにしてピストンスカート12に設けることができる。なお、以下においては、研磨を行う場合を例示して説明する。 The mid layer 30 and the lubricious coating 32 can be provided on the piston skirt 12 as follows, for example. In the following, the case of polishing is described as an example.
 先ず、中間層30となる上記したような樹脂材を用意し、溶融する。この溶融物に対し、上記したような固体潤滑剤を配合するようにしてもよい。この場合、樹脂材:固体潤滑剤=1:9~9:1(重量比)となるようにする。 First, the above-described resin material to be the intermediate layer 30 is prepared and melted. A solid lubricant as described above may be blended with this melt. In this case, resin material: solid lubricant = 1: 9 to 9: 1 (weight ratio).
 次に、条痕24の突起部26上に溶融物を供給する。このためには、例えば、突起部26に溶融物を塗布すればよい。このようにして供給された溶融物が冷却固化することにより、突起部26上に中間層30が形成される。 The melt is then supplied onto the protrusions 26 of the streaks 24. For this purpose, for example, a melt may be applied to the protrusions 26. By cooling and solidifying the melt supplied in this manner, an intermediate layer 30 is formed on the protrusion 26.
 その一方で、銀、銀合金、銅又は銅合金の微粒子、好ましくは、平均粒径が1~80nmである、いわゆるナノ粒子を、ベンジルアルコール、エチレングリコール、グリセリン等の多価アルコール等の分散媒に分散させることでペーストを調製する。このペーストには、分散剤が添加される。 On the other hand, fine particles of silver, silver alloy, copper or copper alloy, preferably, so-called nanoparticles having an average particle diameter of 1 to 80 nm are dispersed in a dispersion medium such as polyhydric alcohol such as benzyl alcohol, ethylene glycol or glycerin. The paste is prepared by dispersing in A dispersant is added to this paste.
 好ましい分散剤としては、カルボン酸エステル系高分子分散剤が挙げられる。特に、脂肪酸エステルの高分子であることが好適である。なお、脂肪酸エステルは、ブテン酸等の不飽和脂肪酸エステルであってもよいし、飽和脂肪酸エステルであってもよい。さらに、高級カルボン酸エステルの高分子であることが好ましい。 As a preferable dispersing agent, carboxylic-ester type polymer dispersing agent is mentioned. In particular, polymers of fatty acid esters are suitable. The fatty acid ester may be an unsaturated fatty acid ester such as butene acid or a saturated fatty acid ester. Furthermore, it is preferable that it is a polymer of higher carboxylic acid ester.
 このようなカルボン酸エステル系高分子分散剤の具体例としては、主鎖がポリエステルであり、且つ不飽和炭化水素鎖が側鎖として結合するとともに、主鎖又は側鎖のいずれかにアミド結合を含むものが挙げられる。なお、上記の側鎖やアミド結合の存在は、FT-IR(フーリエ変換型赤外分光)分析や、核磁気共鳴(NMR)分析を行うことによって確認することができる。 As a specific example of such a carboxylic acid ester-based polymer dispersant, the main chain is a polyester, and an unsaturated hydrocarbon chain is bonded as a side chain, and an amide bond is added to either the main chain or the side chain Include. The presence of the above-mentioned side chain or amide bond can be confirmed by performing FT-IR (Fourier transform infrared spectroscopy) analysis or nuclear magnetic resonance (NMR) analysis.
 カルボン酸エステル系高分子分散剤の割合は、ペースト中の銀、銀合金、銅又は銅合金の粒子の全重量を100重量%とするとき、6~11重量%であることが好ましい。なお、ペーストの残部、すなわち、粒子及び分散剤以外の成分は、分散媒である。 The proportion of the carboxylic acid ester-based polymer dispersant is preferably 6 to 11% by weight when the total weight of particles of silver, silver alloy, copper or copper alloy in the paste is 100% by weight. The remainder of the paste, that is, the components other than the particles and the dispersant is a dispersion medium.
 潤滑性皮膜32を形成するためには、上記したペーストを、例えば、スクリーン印刷又はパッド印刷等の公知の塗布手法によって中間層30上に塗布する。その後、該ペーストをピストン10ごと、好ましくは160~240℃で加熱する。これによりペースト中の分散媒が揮発するとともに、ナノ粒子同士が融着する。すなわち、焼結が起こり、ナノ粒子の焼結体からなる潤滑性皮膜32が得られるに至る。 In order to form the lubricating film 32, the above-described paste is applied onto the intermediate layer 30 by a known application method such as screen printing or pad printing, for example. Thereafter, the paste is heated together with the piston 10, preferably at 160 to 240.degree. As a result, the dispersion medium in the paste is volatilized and the nanoparticles are fused. That is, sintering takes place, and the lubricating film 32 made of a sintered body of nanoparticles is obtained.
 ナノ粒子を用いた場合、上記したように160~240℃という比較的低温域で焼結させて皮膜を形成することが可能である。従って、アルミニウム合金からなるピストンスカート12が高温となることが回避され、このため、該ピストンスカート12の機械的強度等に影響が及ぶことを回避することができる。 When nanoparticles are used, it is possible to form a film by sintering at a relatively low temperature of 160 to 240 ° C. as described above. Accordingly, the piston skirt 12 made of an aluminum alloy is prevented from becoming high in temperature, which can prevent the mechanical strength and the like of the piston skirt 12 from being affected.
 この時点(初期状態)では、突起部26、中間層30及び潤滑性皮膜32の突出方向に沿う断面は、図4に示す形状に近似される。次に、ピストンスカート12に対して研磨加工を施し、突起部26、中間層30及び潤滑性皮膜32を研磨する。 At this point (in the initial state), the cross sections along the projecting direction of the protrusions 26, the intermediate layer 30, and the lubricating coating 32 approximate the shape shown in FIG. Next, the piston skirt 12 is subjected to polishing processing to polish the projection 26, the intermediate layer 30 and the lubricating film 32.
 研磨は、図4に示す初期状態から、潤滑性皮膜32の断面被覆率が15%未満となる前、一層好ましくは20%未満となる前に終了する。これにより、例えば、図3に示す断面形状をなす突起部26、中間層30及び潤滑性皮膜32が得られるに至る。 Polishing is completed from the initial state shown in FIG. 4 before the cross-sectional coverage of the lubricating coating 32 becomes less than 15%, more preferably less than 20%. Thereby, for example, the protrusion 26, the intermediate layer 30, and the lubricating film 32 having the cross-sectional shape shown in FIG. 3 can be obtained.
 又は、中間層30を形成する前のピストンスカート12の突起部26に対して研磨加工を施し、その後に中間層30及び潤滑性皮膜32を設けるようにしてもよい。 Alternatively, the projection 26 of the piston skirt 12 may be polished before the intermediate layer 30 is formed, and then the intermediate layer 30 and the lubricating film 32 may be provided.
 ここで、潤滑性皮膜32の断面被覆率は、突起部26に対する研磨加工が大きいほど小さくなる。このため、研磨加工率を大きくすることが本来は望ましいが、この場合、研磨加工に長時間を要することになり、また、煩雑である。従って、突起部26に対して研磨加工を施すことなく図6に示すような断面形状の中間層30及び潤滑性皮膜32を形成するようにしてもよいし、図7に示すように、突起部26に対して若干の研磨加工を施した後に中間層30及び潤滑性皮膜32を形成するようにしてもよい。 Here, the cross-sectional coverage of the lubricating film 32 decreases as the polishing process on the protrusions 26 increases. For this reason, it is originally desirable to increase the polishing rate, but in this case, it takes a long time for the polishing process and it is complicated. Therefore, the intermediate layer 30 and the lubricant film 32 having the cross-sectional shape as shown in FIG. 6 may be formed without polishing the projection 26. As shown in FIG. The intermediate layer 30 and the lubricating film 32 may be formed after some polishing process is performed on the surface 26.
 なお、図6及び図7において、潤滑性皮膜32の断面被覆率は、それぞれ、70%、45%である。従って、図6及び図7に示すような場合においても、銀、銀合金、銅、又は銅合金の使用量を低減しながら、内燃機関のPsfを低減することができる。 6 and 7, the cross-sectional coverage of the lubricating coating 32 is 70% and 45%, respectively. Therefore, also in the cases shown in FIGS. 6 and 7, it is possible to reduce Psf of the internal combustion engine while reducing the amount of use of silver, silver alloy, copper, or copper alloy.
 以上において、研磨は、例えば、潤滑性皮膜32を設けたピストン10をシリンダブロックに組み込み、ピストンスカート12をシリンダボア又はシリンダスリーブの内壁に摺接させることで行うことができる。 In the above, polishing can be performed, for example, by incorporating the piston 10 provided with the lubricating film 32 in a cylinder block and sliding the piston skirt 12 on the inner surface of the cylinder bore or cylinder sleeve.
 本発明は上記した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の変更が可能であることは勿論である。 The present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the scope of the invention.
 例えば、この実施の形態では、ピストンスカート12自体に機械加工を施して条痕24(突起部26)を設けるようにしているが、平滑なピストンスカート12に対し、シリンダボア又はシリンダスリーブの内壁に指向して突出する形状の中間層30を形成して、これを凸部とするようにしてもよい。すなわち、この場合、樹脂材からなる凸部が潤滑性皮膜32で被覆される。 For example, in this embodiment, the piston skirt 12 itself is machined to provide the streaks 24 (protrusions 26), but the smooth piston skirt 12 is directed to the inner wall of the cylinder bore or cylinder sleeve. It is also possible to form an intermediate layer 30 having a projecting shape and use it as a projection. That is, in this case, the convex portion made of the resin material is covered with the lubricating film 32.
 また、中間層30を設けることなく、突起部26を潤滑性皮膜32で直接被覆するようにしてもよい。この場合、潤滑性皮膜32は、例えば、メッキによって形成することも可能である。 Alternatively, the protrusion 26 may be directly coated with the lubricating film 32 without providing the intermediate layer 30. In this case, the lubricant film 32 can also be formed by plating, for example.
 そして、研磨を行うことなく、断面台形形状の潤滑性皮膜32を当初から形成するようにしてもよい。潤滑性皮膜32に対する研磨についても、ピストン10をシリンダブロックに組み込む前に、適切な研磨加工機を用いて行うことができる。 Then, the lubricating film 32 having a trapezoidal cross-sectional shape may be formed from the beginning without polishing. Polishing of the lubricating coating 32 can also be performed using a suitable polishing machine before the piston 10 is incorporated into the cylinder block.
 さらにまた、本発明は、ピストン10に特に限定されることなく、相手材(所定の部材)に対して摺動を行う部材に適用することができる。このような部材としては、例えば、流体圧シリンダのピストン等が挙げられる。 Furthermore, the present invention is not particularly limited to the piston 10, and can be applied to a member that slides on a mating member (predetermined member). As such a member, for example, a piston of a fluid pressure cylinder or the like can be mentioned.
 摺動部材は、アルミニウムからなるものであってもよい。勿論、その他の金属材からなるものであってもよい。 The sliding member may be made of aluminum. Of course, other metal materials may be used.

Claims (9)

  1.  所定の部材に対して摺接する摺接面(12)を具備する摺動部材(10)において、
     前記摺接面(12)に、前記所定の部材に指向して突出した凸部(26)と、前記凸部(26)を被覆する潤滑性皮膜(32)が形成され、
     前記凸部(26)及び前記潤滑性皮膜(32)の双方で、前記凸部(26)の突出方向に沿う断面が台形形状をなし、
     前記台形の頂辺の長さをZ、前記頂辺中の潤滑性皮膜(32)の合計長さをXとするとき、下記の式(1)で表される断面被覆率が15%以上であることを特徴とする摺動部材(10)。
       断面被覆率[%]=(X/Z)×100 …(1)
    In a sliding member (10) provided with a sliding contact surface (12) in sliding contact with a predetermined member,
    The sliding contact surface (12) is provided with a convex portion (26) projecting toward the predetermined member and a lubricating film (32) covering the convex portion (26).
    In both of the convex portion (26) and the lubricating film (32), the cross section along the projecting direction of the convex portion (26) has a trapezoidal shape.
    When the length of the top side of the trapezoid is Z and the total length of the lubricating film (32) in the top side is X, the cross-sectional coverage represented by the following formula (1) is 15% or more A sliding member (10) characterized in that
    Cross section coverage [%] = (X / Z) × 100 (1)
  2.  請求項1記載の摺動部材(10)において、前記断面被覆率が20%以上であることを特徴とする摺動部材(10)。 The sliding member (10) according to claim 1, wherein the cross-sectional coverage is 20% or more.
  3.  請求項1又は2記載の摺動部材(10)において、前記潤滑性皮膜(32)が銀、銀合金、銅又は銅合金の少なくともいずれか1種からなることを特徴とする摺動部材(10)。 The sliding member (10) according to claim 1 or 2, wherein the lubricating film (32) is made of at least one of silver, silver alloy, copper or copper alloy. ).
  4.  請求項1~3のいずれか1項に記載の摺動部材(10)において、前記凸部(26)が金属材又は樹脂材からなることを特徴とする摺動部材(10)。 A sliding member (10) according to any one of the preceding claims, characterized in that the projection (26) is made of metal or resin.
  5.  請求項1~4のいずれか1項に記載の摺動部材(10)において、前記凸部(26)が金属材からなり、且つ前記凸部(26)と前記潤滑性皮膜(32)との間に樹脂材からなる中間層(30)が介在することを特徴とする摺動部材(10)。 The sliding member (10) according to any one of claims 1 to 4, wherein the convex portion (26) is made of a metal material, and the convex portion (26) and the lubricating film (32) A sliding member (10) characterized in that an intermediate layer (30) made of a resin material is interposed therebetween.
  6.  請求項5記載の摺動部材(10)において、前記中間層(30)が、ポリイミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂、ナイロン-6樹脂、ナイロン-6,6樹脂からなることを特徴とする摺動部材(10)。 The sliding member (10) according to claim 5, wherein the intermediate layer (30) is made of a polyimide resin, a polyamideimide resin, an epoxy resin, a nylon-6 resin, a nylon-6,6 resin. Moving member (10).
  7.  請求項5又は6記載の摺動部材(10)において、前記中間層(30)が固体潤滑剤を含有することを特徴とする摺動部材(10)。 A sliding member (10) according to claim 5 or 6, characterized in that the intermediate layer (30) contains a solid lubricant.
  8.  請求項1~7のいずれか1項に記載の摺動部材(10)において、当該摺動部材(10)は、内燃機関のシリンダ内を往復動作する内燃機関用ピストンであることを特徴とする摺動部材(10)。 The sliding member (10) according to any one of claims 1 to 7, characterized in that the sliding member (10) is a piston for an internal combustion engine that reciprocates in a cylinder of the internal combustion engine. Sliding member (10).
  9.  請求項1~8のいずれか1項に記載の摺動部材(10)において、アルミニウム又はアルミニウム合金からなることを特徴とする摺動部材(10)。 A sliding member (10) according to any one of the preceding claims, characterized in that it consists of aluminum or an aluminum alloy.
PCT/JP2013/068157 2012-11-30 2013-07-02 Sliding member WO2014083877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012261806 2012-11-30
JP2012-261806 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083877A1 true WO2014083877A1 (en) 2014-06-05

Family

ID=50827534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068157 WO2014083877A1 (en) 2012-11-30 2013-07-02 Sliding member

Country Status (1)

Country Link
WO (1) WO2014083877A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013802A (en) * 2001-06-27 2003-01-15 Honda Motor Co Ltd Aluminum alloy-made piston for internal combustion engine
CN101839188A (en) * 2009-03-17 2010-09-22 日立汽车系统株式会社 Piston for internal combustion engine and piston surface treatment method
WO2011115152A1 (en) * 2010-03-19 2011-09-22 本田技研工業株式会社 Piston for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013802A (en) * 2001-06-27 2003-01-15 Honda Motor Co Ltd Aluminum alloy-made piston for internal combustion engine
CN101839188A (en) * 2009-03-17 2010-09-22 日立汽车系统株式会社 Piston for internal combustion engine and piston surface treatment method
US20100236516A1 (en) * 2009-03-17 2010-09-23 Hitachi Automotive Systems, Ltd. Piston for Internal Combustion Engine and Piston Surface Treatment Method
JP2010216362A (en) * 2009-03-17 2010-09-30 Hitachi Automotive Systems Ltd Piston for internal combustion engine subjected to double layer film composition and piston surface treatment method
US20120222646A1 (en) * 2009-03-17 2012-09-06 Hitachi Automotive Systems, Ltd. Piston for Internal Combustion Engine and Piston Surface Treatment Method
WO2011115152A1 (en) * 2010-03-19 2011-09-22 本田技研工業株式会社 Piston for internal combustion engine
CN102803694A (en) * 2010-03-19 2012-11-28 本田技研工业株式会社 Piston for internal combustion engine
US20130000592A1 (en) * 2010-03-19 2013-01-03 Ryotaro Takada Piston for internal combustion engine
EP2549089A1 (en) * 2010-03-19 2013-01-23 Honda Motor Co., Ltd. Piston for internal combustion engine

Similar Documents

Publication Publication Date Title
WO2014034177A1 (en) Piston for internal combustion engine
JP5642157B2 (en) Piston for internal combustion engine
JP5248379B2 (en) Piston of internal combustion engine provided with multi-layer coating composition and surface treatment method of the piston
JP5789678B2 (en) Piston for internal combustion engine
JP6112203B2 (en) Iron-based thermal spray coating, cylinder block for internal combustion engine using the same, and sliding mechanism for internal combustion engine
JPH08512343A (en) Coating system consisting of solid lubricant and hardenable steel
JP2014001732A (en) Coating with nonconstant thickness for cylinder liner
US20130220115A1 (en) Piston Assembly Including A Polymer Coating With Hard Particles Applied to Sliding Surfaces
EP2771594B1 (en) Piston assembly including a polymer coating with hard particles applied to sliding surfaces
US9909528B2 (en) Piston with abradable coating to generate appropriate contact geometry on running surface
JP2018003673A (en) Cylinder block
JP5551256B2 (en) Sliding member manufacturing method and sliding member
WO2014083877A1 (en) Sliding member
WO2012137562A1 (en) Sliding member and process for producing sliding member
JP5307208B2 (en) Piston for internal combustion engine provided with multi-layer coating composition
JP5858778B2 (en) Manufacturing method of piston for internal combustion engine
JP5840485B2 (en) Piston for internal combustion engine
JP2013224360A (en) Method for manufacturing sliding member
JP5568666B2 (en) Piston of internal combustion engine provided with multi-layer coating composition and surface treatment method of the piston
JP2013136960A (en) Piston for internal combustion engine
JP5815399B2 (en) Manufacturing method of piston for internal combustion engine
JPH0512810U (en) Hydraulic auto tensioner
JP5719839B2 (en) Slide member with exposed functional surface
WO2013161530A1 (en) Internal combustion engine piston
JP2013164035A (en) Method for manufacturing piston of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP