WO2014083637A1 - Method for separating target-receptor complex and free receptor - Google Patents

Method for separating target-receptor complex and free receptor Download PDF

Info

Publication number
WO2014083637A1
WO2014083637A1 PCT/JP2012/080748 JP2012080748W WO2014083637A1 WO 2014083637 A1 WO2014083637 A1 WO 2014083637A1 JP 2012080748 W JP2012080748 W JP 2012080748W WO 2014083637 A1 WO2014083637 A1 WO 2014083637A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptor
target substance
complex
electrophoresis
isoelectric point
Prior art date
Application number
PCT/JP2012/080748
Other languages
French (fr)
Japanese (ja)
Inventor
嘉哉 佐藤
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2012/080748 priority Critical patent/WO2014083637A1/en
Priority to PCT/JP2013/051607 priority patent/WO2014083861A1/en
Publication of WO2014083637A1 publication Critical patent/WO2014083637A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3046Stomach, Intestines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44795Isoelectric focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • G01N33/561Immunoelectrophoresis

Definitions

  • the present invention relates to a method for separating a target substance-receptor complex from a free receptor.
  • blood C-peptide is a component of proinsulin, which is a pre-stage substance that synthesizes insulin, and is secreted into the blood at a rate similar to that of insulin, and circulates in the blood with almost no degradation. And discharged with urine. Therefore, the amount of insulin secreted can be determined by measuring C-peptide in blood or urine.
  • a method using a substance (receptor) that specifically binds to a target substance is widely used for separating and quantifying the target substance.
  • the target substance is an antigen
  • an antigen-antibody reaction using an antibody (fragment) can be used. Since an antibody has a very high binding specificity to an antigen, the antigen can be specifically detected by utilizing an antigen-antibody reaction.
  • a target substance-receptor complex When a target substance-receptor complex is obtained using a receptor having a binding property specific to the target substance, it is generally necessary to separate the complex from the free receptor.
  • a separation method after fixing an antigen to a well plate or a transfer membrane, an antibody is bound, and then an unreacted free antibody is washed and separated and removed, such as ELISA or Western blotting. Often used in However, this method takes time and requires some skill. Furthermore, it is difficult to automate a series of operations necessary for detection by this method, and it is very difficult to reduce the size for instant diagnosis at Point Of Care.
  • Electrophoretic mobility shift assay As a method for separating a target substance-receptor complex and a free receptor with a small number of work steps, there is an electrophoretic mobility shift assay (EMSA) (Non-patent Document 1).
  • ESA electrophoretic mobility shift assay
  • a target substance and a receptor are reacted, and an increase in molecular weight (complex formation) caused thereby is detected by a molecular sieving effect of gel electrophoresis.
  • the target substance and the receptor molecule must have the same size. Therefore, when the target substance is a relatively small molecule such as a peptide, the increase in the overall molecular weight including the receptor is small if the target substance is simply bound to the receptor. Therefore, even if the target substance-receptor complex is separated by electrophoresis, the target substance-receptor complex and the free receptor are not clearly separated, and the target substance-receptor complex and the free receptor are separated by the difference in molecular weight. It was very difficult to separate. That is, it was difficult to detect the antigen by ordinary electrophoresis.
  • an object of the present invention is to provide a method for separating a target substance-receptor complex and a free antibody by electrophoresis.
  • the present invention is characterized in that electrophoresis is performed in a buffer solution in which a charge difference between a target substance-receptor complex and a free receptor is generated under non-denaturing conditions of the target substance-receptor complex.
  • a method for separating the receptor complex from the free receptor is performed in a buffer solution in which a charge difference between a target substance-receptor complex and a free receptor is generated under non-denaturing conditions of the target substance-receptor complex.
  • a first embodiment of the present invention is a method for separating a target substance and a complex of a receptor that specifically binds to the target substance and a free receptor, wherein the isoelectric point of the receptor is the isoelectric point of the complex And the electrophoresis is performed in a buffer solution having a pH that exceeds the isoelectric point of the complex and not more than +2 of the isoelectric point of the receptor under the non-denaturing condition of the complex.
  • the detection of the target substance-receptor complex by electrophoresis is a very useful means because it can be detected with high accuracy by an extremely simple operation compared to the ELISA method.
  • the present invention utilizes the fact that a difference in charge occurs between the charge of the target substance-receptor complex and the charge of the free receptor in the electrophoresis buffer. Therefore, a difference occurs in the mobility of electrophoresis between the target substance-receptor complex and the free receptor, and the target substance-antibody complex and the free antibody can be clearly separated.
  • the present inventors paid attention to the isoelectric point of these compounds when detecting compounds having both an anion functional group and a cation functional group, such as peptides and proteins.
  • the pH of the electrophoresis buffer for electrophoresis and the isoelectric point of the receptor that specifically binds to the target substance can be controlled or selected for electrophoresis. It has been found that there is a charge difference between the charge of the target substance-receptor complex (hereinafter also simply referred to as complex) and the charge of the free receptor in the buffer solution, and that the charge difference can separate the two.
  • complex charge of the target substance-receptor complex
  • the target substance can be detected by a very simple method.
  • the diagnosis of the disease can be easily performed by detecting the target substance.
  • the sample used for electrophoresis is a sample after performing a reaction (for example, antigen-antibody reaction) that binds a target substance (for example, an antigen) and a receptor (for example, an antibody) that specifically binds to the target substance. . Therefore, the sample used for electrophoresis contains a target substance-receptor complex and a free receptor.
  • a reaction for example, antigen-antibody reaction
  • a target substance for example, an antigen
  • a receptor for example, an antibody
  • Such a binding reaction is performed by a conventionally known method.
  • the reaction temperature is usually 4 to 50 ° C., preferably 4 to 42 ° C., more preferably 20 to 40 ° C.
  • the reaction time is usually 5 minutes to 24 hours.
  • the reaction solvent is, for example, phosphate buffer, carbonate buffer, Tris buffer, glycine buffer, tricine buffer or the like. can do.
  • the amount of the receptor to be reacted with the target antigen may be appropriately set, but usually a large excess of the receptor is added. Specifically, it is usually 1 to 100 moles per mole of antigen.
  • the antigen and receptor When subjected to the reaction, the antigen and receptor are used after being dissolved in an appropriate solvent (for example, phosphate buffer, carbonate buffer, Tris buffer, Tricine buffer, glycine buffer, Tris-glycine buffer, etc.). be able to.
  • an appropriate solvent for example, phosphate buffer, carbonate buffer, Tris buffer, Tricine buffer, glycine buffer, Tris-glycine buffer, etc.
  • the sample subjected to the antigen-antibody reaction may be pretreated before electrophoresis. Examples of the pretreatment include an operation of removing large aggregates by centrifugal operation or filter filtration.
  • the target substance in the present invention is a substance having an isoelectric point. Since the isoelectric point of the complex is lower than the isoelectric point of the receptor, the isoelectric point of the target substance is naturally lower than the isoelectric point of the receptor.
  • the target substance is not particularly limited as long as it has an isoelectric point and the charge changes with pH, and examples thereof include proteins, peptides, sugar chains, and complexes thereof.
  • the target substance is preferably an amphoteric substance, or is preferably a peptide or protein from the viewpoint of ease of operation and versatility.
  • protein or peptide includes a free form, a phosphate group, a methyl group, an acetyl group, a sugar chain, a lipid, a modified body such as a lipid, a nitrile group, an acid (eg, inorganic acid, organic acid). Or a salt with a base (eg, alkali metal salt), a protein or peptide bound to another substance such as a nucleoprotein bound to a nucleic acid.
  • a salt with a base eg, alkali metal salt
  • the molecular weight of the target substance is not particularly limited.
  • a peptide having a low molecular weight for example, a peptide
  • a target substance having a low molecular weight is not clearly separated due to the small difference in molecular size between the free receptor and the complex even by separation with a molecular sieve.
  • a free antibody and a complex can be easily and clearly separated even with a target substance having a relatively small molecular weight.
  • a target substance having a relatively small molecular weight is preferable.
  • the molecular weight is preferably 500 to 10,000, more preferably 1,000 to 10,000, and still more preferably 1,000 to 5,000.
  • the molecular weight can be determined by a known analysis method (SDS-PAGE, amino acid analysis, etc.).
  • the isoelectric point of the target substance is preferably low to some extent. Specifically, the isoelectric point of the target substance is preferably 6 or less, more preferably 5 or less, and even more preferably 4 or less. Since the lower isoelectric point of the target substance is preferable, the lower limit is not particularly set, but the biological substance has an isoelectric point of usually 3 or more.
  • the isoelectric point can be examined by staining the gel after performing isoelectric focusing. A conventionally known method can be adopted as the staining method, and examples thereof include a CBB (Coomassie Brilliant Blue) staining method and a silver staining method.
  • target substances include the following peptides: C-peptide, corticotropin-like intermediate peptide, proenkephalin (PENK), gastrin, fibrinopeptide (Fibrinopeptide) Guanyli, Uroguanylin, Mammaglobin-A, Cholecystokinin, Cepeptin.
  • protein includes a peptide, but a polypeptide of less than 10 kDa may be particularly referred to as “peptide”.
  • the protein may be a natural product or a synthetic product.
  • the target substance is a sample (blood, plasma, serum, tissue, joint fluid, urine, human or non-human mammal (eg, rat, mouse, rabbit, sheep, pig, cow, cat, dog, monkey, etc.) Lymph, etc.), cells (cultured cells, cell lines, etc.), culture supernatants thereof, extracts thereof, partially purified fractions thereof and the like. Moreover, you may extract from soil, water, etc. of various environments. At this time, the target substance can be produced by purification using a known protein purification method.
  • mammalian tissues or cells are homogenized in the presence of a surfactant, and the resulting crude extract fraction of tissues is subjected to chromatography such as reverse phase chromatography, ion exchange chromatography, affinity chromatography and the like. It can be purified by attaching to a graph or the like.
  • the target substance may be a commercial product.
  • test sample may be used as it is without purifying (extracting) the target substance.
  • the target substance-receptor binding reaction may be performed using a test sample such as a biological component such as blood, plasma, serum, tissue, joint fluid, urine, and lymph of the subject.
  • a treatment such as dilution may be performed on the test sample.
  • a receptor refers to a substance that can specifically bind to a target substance.
  • the isoelectric point of the receptor is higher than the isoelectric point of the complex.
  • the receptor has a negative charge smaller than the negative charge of the complex, or a positive charge, or It has no charge, and the mobility of the free receptor with respect to the positive electrode in electrophoresis is smaller than that of the complex. Therefore, separation of the free receptor and the complex by electrophoresis is easily and clearly performed.
  • the isoelectric point of the receptor is preferably 0.1 or more higher than the isoelectric point of the target substance-receptor complex, more preferably 0.2 or more, and even more preferably 1 or more. It is particularly preferably 2 or more, and most preferably 3 or more.
  • the isoelectric point of the receptor is preferably as far as possible from the isoelectric point of the target substance-receptor complex, but is usually 6 or less than the isoelectric point of the target substance-receptor complex.
  • the isoelectric point of the receptor is preferably 6 or more, more preferably 7 or more, and still more preferably 8 or more.
  • the electrophoresis buffer can be set to the alkaline side, and the charge of the complex is more negatively charged.
  • the separation of the free receptor and the complex can be performed more rapidly. Since the higher isoelectric point of the antibody is preferable, the upper limit is not particularly set, but it is usually 9 or less.
  • the isoelectric point of the receptor can be controlled by modification such as addition of a functional group.
  • modification such as addition of a functional group.
  • an appropriate substance may be added so as to increase the isoelectric point.
  • the isoelectric point can be controlled by binding a carboxyl group, an amino group, or a sugar chain containing an amino sugar or uronic acid to a receptor molecule.
  • Such a modification method of the modifying substance can be performed by a conventionally known method.
  • the introduction of the modifying group can be performed using a cross-linking agent that can react with the functional group of the receptor before modification.
  • the cross-linking agent include N-hydroxysuccinimide (NHS), N-succinimidyl (4-iodoacetyl) aminobenzoate (N-succinimidyl (4-iodoacetyl) aminobenzoate) (SIAB), dimaleimide, dithio-bis- Nitrobenzoic acid (dithio-bis-nitrobenzoic acid) (DTNB), N-succinimidyl-S-acetyl-thioacetate (N-succinimidyl-S-acetyl-thioacetate) (SATA), N-succinimidyl-3- (2-pyridyl) Dithio) propionate (N-succinimidyl-3- (2-pyridyldithio) propionate) (SP P), succinimidyl 4-
  • the carboxyl group of the receptor is used, the carboxyl group is activated with carbodiimides such as 1-ethyl-3- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC). Then, it can be reacted with a compound having an amino group.
  • carbodiimides such as 1-ethyl-3- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC).
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride
  • receptors include antibodies, antibody fragments, receptors, binding proteins, peptides and the like. Among them, it is preferable to use an antibody or an antibody fragment as a receptor because of its high specific binding property to an antigen.
  • antibodies include monoclonal antibodies, polyclonal antibodies, single chain antibodies, modified antibodies (eg, “humanized antibodies” in which only the antigen recognition site is humanized), chimeric antibodies, and bifunctionality capable of simultaneously recognizing two epitopes.
  • An antibody etc. are mentioned.
  • the antibody may be of any class such as IgA, IgD, IgE, IgG, IgM. From the viewpoint of specific binding to an antigen, it is more preferable to use a monoclonal antibody.
  • the receptor can be produced by a conventionally known method.
  • Such an antibody may be modified within a range where binding to an antigen is not inhibited.
  • modifications include fluorescent labeling in which a fluorescent labeling substance is bound by a chemical bond to improve detection efficiency, radioactive labeling in which the atoms constituting the antibody are labeled with a radioisotope, and a pairing substance Specific binding pair labeling in which a substance exhibiting specific binding property is chemically bound (for example, a label in which a lectin having binding property to a polysaccharide is chemically bound) and the like are exemplified.
  • labeling substances used for labeling include fluorescent substances such as FITC (fluorescein isocyanate) or tetramethylrhodamine isocyanate, radioisotopes such as 125 I, 32 P, 14 C, 35 S or 3 H, alkaline phosphatase, peroxidase, ⁇ - Enzymes such as galactosidase or phycoerythrin are included.
  • the antibody may be fused with a fluorescent protein such as green fluorescent protein (GFP).
  • GFP green fluorescent protein
  • the receptor may be an antibody fragment as long as it has reactivity with the antigen.
  • the antibody fragment include Fab fragment, F (ab) ′ 2 fragment, single chain antibody (scFv), scFv ⁇
  • conjugate molecules prepared by genetic engineering such as Fc, minibody, and diabody, or derivatives thereof modified with a molecule having a protein stabilizing action such as polyethylene glycol (PEG).
  • electrophoresis is performed under non-denaturing conditions of the target substance-receptor complex.
  • the “under non-denaturing target substance-receptor complex” means a condition under which the receptor maintains the target substance binding ability.
  • target substance-receptor complex non-denaturing condition refers to the absence of a protein denaturing agent. Therefore, the sample is not heated prior to electrophoresis as in SDS-PAGE.
  • Examples of the protein denaturant include an anionic surfactant (for example, SDS or LDS) or a chaotropic agent (urea, formamide, guanidine, potassium iodide, etc.).
  • a native page which is a kind of polyacrylamide gel electrophoresis (PAGE), is known as an electrophoresis method for electrophoresis of proteins without denaturation.
  • the native page can also be used in the present invention.
  • a buffer solution having a high pH condition using a tris-glycine system is used.
  • a buffer solution adjusted to a specific pH is used.
  • the electrophoresis method may be a carrier-free electrophoresis method such as capillary (zone) electrophoresis or microchip electrophoresis, or an electrophoresis method using a carrier.
  • Examples of the carrier used for electrophoresis include agarose gel, acrylamide, dextran gel, filter paper, cellulose acetate membrane, and capillary polymers described below.
  • the acrylamide gel may be a concentration gradient gel or a uniform concentration gel. Specifically, a concentration gradient gel of 4-16% (w / v), a concentration gradient gel of 5-20% (w / v), or a constant value of 8% (w / v) to 12% (w / v) A concentration gel can be used. In general, a band is sharper in a concentration gradient gel than in a constant concentration gel.
  • the acrylamide gel may be appropriately adjusted, or a commercially available product may be used.
  • the acrylamide gel examples include a tris-glycine gel (for example, Novex (registered trademark) Tris-glycine gel (Invitrogen), etc.), a tris-acetic acid gel (for example, NuPAGE Novex (registered trademark) (Invitrogen)), or a bistris gel (for example, And NativePAGE Novex (registered trademark) Bistris gel (Invitrogen), etc.).
  • the pH of the buffer used when producing the acrylamide gel is preferably about 6-8.
  • the present invention can also be applied to isoelectric focusing in which a pH gradient is formed in the electrophoresis gel.
  • a polymer that has a molecular sieving effect may be filled in a capillary used for capillary electrophoresis together with a buffer for electrophoresis (capillary polymer solution electrophoresis).
  • the polymer (capillary polymer) filled in the capillary is not particularly limited as long as it is usually used in this field.
  • polyethylene oxide polyethylene glycol
  • polypropylene oxide Polyalkyleneimines such as polyethyleneimine
  • Poly (meth) acrylic acid polymers such as poly (meth) acrylic acid and poly (meth) acrylic acid esters such as methyl poly (meth) acrylate
  • Polyacrylamide Polyamide polymers such as polymethacrylamide
  • Polyvinyl polymers such as polyvinyl acetate, polyvinyl pyrrolidone and polyvinyl oxazolidone
  • Water-soluble hydroxyl polymers such as pullulan, erucinane, xanthan, dextran and guar gum
  • Cellulose, hydroxyethyl cellulose, water-soluble cellulose such as hydroxypropyl cellulose; and derivatives thereof, and copolymers such as a monomer unit constituting these polymers.
  • the applied voltage in electrophoresis may be appropriately selected from the range usually used in this field, and is usually applied in the range of 5 to 2000 V / cm.
  • Electrophoresis time can usually be 30 to 180 minutes. From the viewpoint of rapid separation, the electrophoresis time is preferably about several minutes to 10 minutes.
  • the electrophoresis temperature is not particularly limited, but is usually performed at room temperature (20 to 25 ° C.).
  • gel staining can be mentioned.
  • CBB Concentrassie Brilliant Blue
  • silver staining method silver staining method
  • SYPRO registered trademark
  • Ruby Protein Stein manufactured by Takara Bio Inc.
  • Deep Purple Total Protein Stain GE Healthcare
  • a dyeing method using a dye such as Japan Alternatively, the amount of the protein can be quantified by calculating the signal intensity of the dye for the band of the antigen-receptor complex separated from the free antibody using image analysis software or the like.
  • it can be directly detected using a UV / VIS absorptiometer (photodiode array) or the like.
  • the buffer used for electrophoresis has a pH that exceeds the isoelectric point of the target substance-receptor complex and is not more than +2 of the isoelectric point of the receptor.
  • the pH of the buffer so as to exceed the isoelectric point of the target substance-receptor complex, a charge difference is generated between the complex and the receptor, and the complex and the free receptor can be separated in electrophoresis.
  • the pH of the buffer exceeds the isoelectric point +2 of the receptor, the negative charges of both the complex and the receptor in the buffer are increased, so that the charge difference with respect to the charge is reduced and the separability is deteriorated.
  • the pH of the buffer is +1.5 or less of the isoelectric point of the receptor and +1 or more of the isoelectric point of the complex.
  • the complex has an appropriate charge and the separability is further improved.
  • the pH of the buffer is +1.5 or less of the isoelectric point of the receptor and +1 or more of the isoelectric point of the complex” means that the isoelectric point of the receptor is 7, and the isoelectric point of the complex Is 5 means that the pH of the buffer is 6 to 8.5.
  • the buffer for adjusting the pH is a buffer solution that comes into contact with the sample when electrophoresis is performed, that is, a buffer solution for running (running buffer).
  • the pH of the buffer solution is a strong acidic region or a strong alkaline region.
  • the buffer solution does not need to be in the alkaline region.
  • the pH of the electrophoresis buffer is preferably 6-8.
  • the pH of the buffer solution may be adjusted as appropriate using an acidic substance such as hydrochloric acid or a basic substance such as sodium hydroxide.
  • the buffer solution may be appropriately selected according to the pH of the desired buffer solution.
  • hydrochloric acid-potassium chloride buffer solution glycine-hydrochloric acid buffer solution, citrate-phosphate buffer solution, citrate buffer solution, etc. in the acidic region of pH 7 or lower
  • tris-hydrochloric acid buffer solution in the neutral region of about pH 6-8.
  • Glycine-sodium hydroxide buffer or the like may be used.
  • the buffer solution is not particularly limited as long as it is a solution containing a conventionally known buffer solution composition having a buffer capacity, and examples thereof include organic acids such as citric acid, succinic acid, tartaric acid, malic acid, and salts thereof. Solutions containing amino acids; amino acids such as glycine, taurine and arginine; and solutions containing inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid and acetic acid, and salts thereof.
  • Tris-Glycine buffer Tris buffer, Tris-Tricine buffer, Tris-HCl buffer, etc.
  • Tris-Glycine buffer Tris buffer
  • Tris buffer Tris-Tricine buffer
  • Tris-HCl buffer Tris-HCl buffer
  • the buffer solution etc. which are provided in the commercially available kit for protein electrophoresis can also be used.
  • the electrophoresis buffer can be used at a concentration generally used as an electrophoresis buffer.
  • the target substance-receptor complex and the free receptor can be clearly separated by the separation method of the present invention. Therefore, if the separation method of the present invention is used, a target substance that is a target substance can be detected.
  • a target substance and a receptor that specifically binds to the target substance are bound to form a target substance-receptor complex, and electrophoresis is performed. And detecting a target substance, wherein the isoelectric point of the receptor is higher than the isoelectric point of the complex, and the electrophoresis is performed under the non-denaturing condition of the complex.
  • This is a method for detecting a target substance, which is carried out in a buffer solution having a pH exceeding the electric point and +2 or less of the isoelectric point of the receptor.
  • “detection” means “detecting the presence, absence or concentration of the target substance”. By such a method, the target substance can be detected simply and specifically.
  • the step of forming the target substance-receptor complex and the step of performing electrophoresis are as described in the first embodiment.
  • any method can be used as long as it is a method for visualizing the target substance-receptor complex.
  • Enzyme immunoassay (EIA), radioimmunoassay (RIA), fluorescent immunoassay (FIA), chemiluminescence immunoassay (CLIA) can be used.
  • a receptor for example, primary antibody
  • RIA radioimmunoassay
  • FIA fluorescent immunoassay
  • CLIA chemiluminescence immunoassay
  • a receptor for example, primary antibody
  • directly with the target substance may be labeled (direct method), or the first antigen-receptor reaction is performed using an unlabeled primary antibody or the like, and the primary antibody itself.
  • another antibody secondary antibody
  • indirect method may be labeled.
  • FITC fluorescein isothiocyanate
  • FITC fluorescein Isothiocyanate
  • PE phycoerythrin
  • APC Allophycocyanin
  • Cy-3 Cy-5
  • the fluorescent substances such as tetramethylrhodamine isocyanate
  • radioisotopes such as I, 32 P, 14 C, 35 S or 3 H, alkaline phosphatase, peroxidase (eg, peroxidase), enzymes such as ⁇ -galactosidase or phycoerythrin, and chemical substances such as acridinium esters.
  • a second signal that depends on the enzyme may be generated.
  • a substrate other than the labeling enzyme is required.
  • 3,3 ′, 5,5′-tetramethylbenzidine or the like is used in the case of peroxidase, and sodium paranitrophenyl phosphate or the like is used in the case of alkaline phosphatase.
  • a method of labeling with a labeling substance a conventionally known method can be used.
  • an active group capable of forming a bond with a specific functional group and a labeling substance active group in which a labeling substance such as a fluorescent substance is bound and a receptor.
  • Examples of the indirect method include LAB (Linked Avidin-Biotin) method, ABC (Avidin-Biotin Complex) method, LSAB (Linked Streptavidin-Biotin) method using biotinylated antibody.
  • a conventionally known method can be used as a method for detecting the labeling substance.
  • the detection and / or quantification of the product produced by the enzyme can be performed by measuring the absorbance of the product. For example, when 3,3 ′, 5,5′-tetramethylbenzidine is used as the enzyme substrate, the absorbance at 655 nm may be measured.
  • the labeling substance is a radioisotope, it may be measured with a radiation counter.
  • a fluorescence measuring instrument or an image processing system is used. Just measure.
  • the target substance can be quantified by, for example, creating a calibration curve using the fluorescence intensity obtained using a standard sample containing a known concentration of the target substance, thereby simplifying the amount of target substance contained in the sample. It can be quantified.
  • the above detection method is a very useful means in clinical examination especially when the target substance is a marker related to some disease.
  • human C-peptide is a peptide consisting of 31 amino acids and is a constituent of proinsulin, which is an insulin precursor. C-peptide is simultaneously released as a degradation product when proinsulin is cleaved by endopeptidase and insulin is released into the blood. Therefore, C-peptide plays a role as an indicator of insulin secretion kinetics, and blood C-peptide kinetics can be an important indicator for examining the secretory ability of endogenous insulin in diabetic patients and the like. In fact, the measurement of C-peptide is used for the diagnosis or treatment of diabetes, and is also useful for the diagnosis of insulinoma, insulin autoimmune syndrome and the like.
  • the separation method of the first embodiment of the present invention or the detection method of this modified example even a low molecular weight peptide such as C-peptide can be separated and detected. Can be quantified. Furthermore, the amount of insulin secreted can be examined by comparing with normal values. It can be seen that if the amount of C-peptide in the subject is lower than the normal value, the subject's ability to secrete insulin is reduced. Therefore, in a preferred embodiment of the present invention, the target substance is a C-peptide.
  • another embodiment of the present invention is a method for diagnosing a disease related to a target substance using the separation / detection method of the first embodiment. Specifically, collecting a sample from a subject, binding a target substance in the sample and a receptor that specifically binds to the target substance to form a target substance-receptor complex, Performing electrophoresis, detecting a target substance, and determining whether the subject suffers from a disease related to the target substance by comparing with a value of a healthy target substance.
  • the isoelectric point of the receptor is higher than the isoelectric point of the complex, and the electrophoresis exceeds the isoelectric point of the complex under the non-denaturing condition of the complex and the isoelectric point of the receptor.
  • the subject or the healthy person is preferably a human or a non-human mammal.
  • the disease include when the target substance is C-peptide, insulinoma, obesity, liver disease, Cushing syndrome, acromegaly, abnormal insulinemia, insulin autoimmune syndrome, diabetes, hypoglycemia, undernutrition, Examples include pheochromocytoma and hypopituitar adrenal function. If the subject's C-peptide level is higher than that of healthy subjects, they may have insulinoma, obesity, liver disease, Cushing's syndrome, acromegaly, abnormal insulinemia, insulin autoimmune syndrome, etc. If the subject's C-peptide level is lower than that of healthy subjects, the patient may be suffering from diabetes, hypoglycemia, malnutrition, pheochromocytoma, hypopituitar adrenal function, etc. .
  • another embodiment of the present invention provides a receptor that specifically binds to a target substance and has an isoelectric point higher than the isoelectric point of the target substance, and exceeds the isoelectric point of the target substance-receptor complex. And a set for electrophoresis containing a buffer solution having a pH that is +2 or less of the isoelectric point of the receptor, and a test kit for a disease involving a target substance.
  • the receptor included in the test kit preferably includes a container containing the receptor.
  • the receptor may be in a state preliminarily dissolved in a buffer solution.
  • the electrophoresis set includes an assay buffer as described above or a concentrated stock solution thereof.
  • the electrophoresis set includes other electrophoresis apparatuses such as electrophoresis tanks, glass plates for electrophoresis, buffer tanks, spacers, combs, clips, power supplies, or peristaltic pumps; reagents for electrophoresis; gels, etc. A carrier; a detection reagent and the like.
  • the kit may include a target substance having a known concentration as a standard sample and a container containing the target substance.
  • the receptor is preferably labeled with a labeling substance such as a fluorescent substance because diagnosis is easy.
  • Each reagent included in the kit may be provided by being dispensed into a container for each sample measurement, or a plurality of sample measurements may be provided for each reagent in a separate container. . In the latter case, each reagent is dispensed into a predetermined measurement container before use.
  • the container containing each reagent may be integrally formed as a cartridge, and each reagent may be stored in a different section of the cartridge.
  • a buffer as described above suitable for dissolving them may be further included in the kit.
  • An instruction manual is usually attached to the test kit.
  • Example 1 Anti h-C-peptide antibody [7E10] (Abcam, Mouse monoclonal) was diluted to 0.08 mg / mL with PBS buffer solution (10 mM pH 7.4) to prepare an antibody solution.
  • the isoelectric point of the anti hC-peptide antibody was pI6.1 as measured by capillary isoelectric focusing gel electrophoresis.
  • C-Peptide human (manufactured by Bachem) was diluted to 4, 2, 1, 0.5, 0.25 ⁇ M with a PBS buffer solution (10 mM pH 7.4) to prepare an antigen solution.
  • Electrophoresis device XCell SureLock Mini-Cell (manufactured by Invitrogen) Acrylamide gel NativePAGE 4-16% Vistris gel, 1.0 mm, 10 wells (Invitrogen) ⁇ Cathode Buffer (running buffer) 25 mM Tris, 192 mM Glycine, pH 7.4 -Anode Buffer 100 mM Tris, pH 7.8
  • the gel after electrophoresis was stained with a silver staining kit WAKO (manufactured by Wako Pure Chemical Industries, Ltd.). The operation was performed according to the operation procedure attached to the kit.
  • WAKO silver staining kit
  • Electrophoresis was performed in the same manner as in Example 1 except that the Cathode Buffer used for electrophoresis was changed to 100 mM succinate buffer (pH 5.4). The result is shown in FIG. (Comparative Example 2) The Cathode Buffer used for electrophoresis was changed to 25 mM Tris, 192 mM Glycine buffer (pH 8.6). The amount of C-peptide in each lane was 2.4, 4.8, and 9.5 ng. For other operations, electrophoresis was performed in the same manner as in Example 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)

Abstract

[Problem] To provide a method for separating a target-receptor complex and a free receptor by electrophoresis. [Solution] A method for separating a complex of a target and a receptor that specifically binds to the target and a free receptor, wherein an isoelectric point of the receptor is higher than that of the complex, and electrophoresis is carried out under a complex non-denaturing condition in a buffer solution which has a pH that exceeds the isoelectric point of the complex and is +2 or less of the isoelectric point of the receptor.

Description

標的物質-レセプター複合体と遊離レセプターとを分離する方法Method for separating target substance-receptor complex and free receptor
 本発明は、標的物質-レセプター複合体と遊離レセプターとを分離する方法に関する。 The present invention relates to a method for separating a target substance-receptor complex from a free receptor.
 生体内に存在するペプチドの中には疾患により存在量が変化するものがあり、これらのペプチドは特定の疾患のマーカーになりうる。例えば、血中C-ペプチドは、インスリンが合成される前段階の物質であるプロインスリンの構成物質であり、インスリンと同程度の割合で血液中に分泌され、ほとんどが分解されないまま血液中を循環し、尿とともに排出される。このため、血中や尿中のC-ペプチドを測定することによりインスリンの分泌量を把握することができる。 Some peptides present in the living body change in abundance depending on the disease, and these peptides can serve as markers for specific diseases. For example, blood C-peptide is a component of proinsulin, which is a pre-stage substance that synthesizes insulin, and is secreted into the blood at a rate similar to that of insulin, and circulates in the blood with almost no degradation. And discharged with urine. Therefore, the amount of insulin secreted can be determined by measuring C-peptide in blood or urine.
 したがって、特定の疾患に関連するペプチドを特異的に検出することにより、疾患の診断を行うことが可能となり、これらのペプチドの検出方法は重要な臨床検査となりうる。 Therefore, it is possible to diagnose a disease by specifically detecting a peptide related to a specific disease, and the method for detecting these peptides can be an important clinical test.
 一方、標的物質に特定的に結合する物質(レセプター)を利用する方法は、標的物質の分離や定量を行う上で広く用いられている。標的物質が抗原である場合には、抗体(断片)を用いた抗原抗体反応を用いることができる。抗体は抗原への結合特異性が非常に高いため、抗原抗体反応を利用することにより抗原を特異的に検出することができる。 On the other hand, a method using a substance (receptor) that specifically binds to a target substance is widely used for separating and quantifying the target substance. When the target substance is an antigen, an antigen-antibody reaction using an antibody (fragment) can be used. Since an antibody has a very high binding specificity to an antigen, the antigen can be specifically detected by utilizing an antigen-antibody reaction.
 標的物質に特異的な結合性を有するレセプターを用いて標的物質-レセプター複合体を得た場合、一般的には複合体と遊離レセプターとを分離する必要がある。分離方法としてはウェルプレートや転写膜に抗原を固定させた後、抗体を結合させ、その後、未反応の遊離抗体を洗浄し、分離除去するといった方法が一般的であり、ELISAやウエスタンブロッティング法などでよく用いられる。しかしながら、この方法では作業に時間が掛かり、ある程度の熟練も必要となる。さらにこの方法では検出に必要な一連の作業をオートメーション化することが難しく、Point Of Careでの即時診断用に小型化することは非常に困難である。 When a target substance-receptor complex is obtained using a receptor having a binding property specific to the target substance, it is generally necessary to separate the complex from the free receptor. As a separation method, after fixing an antigen to a well plate or a transfer membrane, an antibody is bound, and then an unreacted free antibody is washed and separated and removed, such as ELISA or Western blotting. Often used in However, this method takes time and requires some skill. Furthermore, it is difficult to automate a series of operations necessary for detection by this method, and it is very difficult to reduce the size for instant diagnosis at Point Of Care.
 少ない作業工程で標的物質-レセプター複合体、遊離レセプターを分離する方法としては電気泳動移動度シフトアッセイ(EMSA)が挙げられる(非特許文献1)。電気泳動移動度シフトアッセイ(EMSA)は、標的物質、レセプターを反応させ、それによって生じる分子量の増加(複合体形成)をゲル電気泳動の分子ふるい効果により検出する。 As a method for separating a target substance-receptor complex and a free receptor with a small number of work steps, there is an electrophoretic mobility shift assay (EMSA) (Non-patent Document 1). In the electrophoretic mobility shift assay (EMSA), a target substance and a receptor are reacted, and an increase in molecular weight (complex formation) caused thereby is detected by a molecular sieving effect of gel electrophoresis.
 しかしながら、分子量の増加を検出するためには標的物質とレセプター分子の大きさが同程度である必要がある。そのため、標的物質がペプチド等の比較的小さな分子の場合、レセプターに標的物質が単体で結合しただけでは、レセプターを含む全体的な分子量の増加が少ない。このため、電気泳動により標的物質-レセプター複合体を分離しようとしても、標的物質-レセプター複合体と遊離レセプターとが明確に分離せず、標的物質-レセプター複合体と遊離レセプターとを分子量の差で分離することは非常に困難であった。すなわち、通常の電気泳動では抗原の検出が困難であった。 However, in order to detect an increase in molecular weight, the target substance and the receptor molecule must have the same size. Therefore, when the target substance is a relatively small molecule such as a peptide, the increase in the overall molecular weight including the receptor is small if the target substance is simply bound to the receptor. Therefore, even if the target substance-receptor complex is separated by electrophoresis, the target substance-receptor complex and the free receptor are not clearly separated, and the target substance-receptor complex and the free receptor are separated by the difference in molecular weight. It was very difficult to separate. That is, it was difficult to detect the antigen by ordinary electrophoresis.
 そこで本発明は、電気泳動により標的物質-レセプター複合体と遊離抗体とを分離する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for separating a target substance-receptor complex and a free antibody by electrophoresis.
 本発明は、標的物質-レセプター複合体の非変性条件下で、標的物質-レセプター複合体と遊離レセプターとの電荷差が生じるような緩衝液中で電気泳動を行う点に特徴を有する、標的物質-レセプター複合体と遊離レセプターとを分離する方法である。 The present invention is characterized in that electrophoresis is performed in a buffer solution in which a charge difference between a target substance-receptor complex and a free receptor is generated under non-denaturing conditions of the target substance-receptor complex. A method for separating the receptor complex from the free receptor.
実施例の結果を示す図である。It is a figure which shows the result of an Example. 比較例の結果を示す図である。It is a figure which shows the result of a comparative example. 比較例の結果を示す図である。It is a figure which shows the result of a comparative example.
 本発明の第一実施形態は、標的物質および標的物質に特異的に結合するレセプターの複合体と遊離レセプターとを分離する方法であって、前記レセプターの等電点は前記複合体の等電点より高く、前記電気泳動は、前記複合体非変性条件下で、前記複合体の等電点を超え、かつ前記レセプターの等電点の+2以下であるpHを持つ緩衝液中で行う、標的物質-レセプター複合体と遊離レセプターとを分離する方法である。 A first embodiment of the present invention is a method for separating a target substance and a complex of a receptor that specifically binds to the target substance and a free receptor, wherein the isoelectric point of the receptor is the isoelectric point of the complex And the electrophoresis is performed in a buffer solution having a pH that exceeds the isoelectric point of the complex and not more than +2 of the isoelectric point of the receptor under the non-denaturing condition of the complex. A method for separating the receptor complex from the free receptor.
 電気泳動による標的物質-レセプター複合体の検出は、ELISA法などと比べて非常に簡便な操作で精度よく検出できるため、非常に有用な手段である。 The detection of the target substance-receptor complex by electrophoresis is a very useful means because it can be detected with high accuracy by an extremely simple operation compared to the ELISA method.
 本発明は、電気泳動の緩衝液中で、標的物質-レセプター複合体が有する電荷と遊離レセプターが有する電荷との間に電荷の差が生ずることを利用している。このため、標的物質-レセプター複合体と遊離レセプターとの電気泳動の移動度に差が生じ、標的物質-抗体複合体と遊離抗体とを明確に分離することが可能となる。 The present invention utilizes the fact that a difference in charge occurs between the charge of the target substance-receptor complex and the charge of the free receptor in the electrophoresis buffer. Therefore, a difference occurs in the mobility of electrophoresis between the target substance-receptor complex and the free receptor, and the target substance-antibody complex and the free antibody can be clearly separated.
 本願発明者は、ペプチドやタンパク質のように、アニオンになる官能基とカチオンになる官能基の両方を持つ化合物を検出する際に、これらの化合物の等電点に着目した。そして、これらの化合物の等電点を考慮した上で、電気泳動を行う電気泳動用緩衝液のpHおよび標的物質に特異的に結合するレセプターの等電点を制御または選択すれば、電気泳動用緩衝液中での標的物質-レセプター複合体(以下単に複合体とも称する)の電荷と遊離レセプターの電荷との間に電荷差が生じること、またこの電荷差により両者を分離することができることを見出し、本発明を完成させた。このように、本発明の方法によれば、極めて簡便な方法により標的物質を検出できる。また、標的物質が疾患に関連する物質である場合には、該標的物質を検出することにより、疾患の診断を簡便に行うことができる。 The present inventors paid attention to the isoelectric point of these compounds when detecting compounds having both an anion functional group and a cation functional group, such as peptides and proteins. In consideration of the isoelectric point of these compounds, the pH of the electrophoresis buffer for electrophoresis and the isoelectric point of the receptor that specifically binds to the target substance can be controlled or selected for electrophoresis. It has been found that there is a charge difference between the charge of the target substance-receptor complex (hereinafter also simply referred to as complex) and the charge of the free receptor in the buffer solution, and that the charge difference can separate the two. The present invention has been completed. Thus, according to the method of the present invention, the target substance can be detected by a very simple method. When the target substance is a substance related to a disease, the diagnosis of the disease can be easily performed by detecting the target substance.
 以下、本発明の具体的態様について詳細に説明する。 Hereinafter, specific embodiments of the present invention will be described in detail.
 [電気泳動に用いるサンプル]
 電気泳動に用いるサンプルは、標的物質(例えば、抗原)と、標的物質に特異的に結合するレセプター(例えば、抗体)とを結合させる反応(例えば、抗原抗体反応)を行った後のサンプルである。したがって、電気泳動に用いるサンプルには標的物質-レセプター複合体と遊離レセプターとが含まれる。
[Samples used for electrophoresis]
The sample used for electrophoresis is a sample after performing a reaction (for example, antigen-antibody reaction) that binds a target substance (for example, an antigen) and a receptor (for example, an antibody) that specifically binds to the target substance. . Therefore, the sample used for electrophoresis contains a target substance-receptor complex and a free receptor.
 かような結合反応は従来公知の方法によって行われる。一態様として、抗原抗体反応の条件を挙げると、反応温度は、通常4~50℃、好ましくは4~42℃、さらに好ましくは20~40℃であり、反応時間は、通常5分間~24時間、好ましくは10分間~16時間、さらに好ましくは30分間~120分間であり、反応溶媒としては、例えば、リン酸緩衝液、炭酸緩衝液、トリス緩衝液、グリシン緩衝溶液、トリシン緩衝液等を使用することができる。標的抗原と反応させるレセプターの量は、適宜設定すればよいが、通常大過剰のレセプターが添加される。具体的には、抗原1モルに対して通常1~100モルである。反応に供する際には、抗原およびレセプターは適当な溶媒(例えば、リン酸緩衝液、炭酸緩衝液、トリス緩衝液、トリシン緩衝液、グリシン緩衝液、トリス-グリシン緩衝液等)に溶解して用いることができる。抗原抗体反応を行った試料は電気泳動する前に、前処理を行っても良い。前処理としては、遠心操作やフィルター濾過により、大きな凝集体を取り除く操作が挙げられる。 Such a binding reaction is performed by a conventionally known method. As an aspect of the antigen-antibody reaction conditions, the reaction temperature is usually 4 to 50 ° C., preferably 4 to 42 ° C., more preferably 20 to 40 ° C., and the reaction time is usually 5 minutes to 24 hours. The reaction solvent is, for example, phosphate buffer, carbonate buffer, Tris buffer, glycine buffer, tricine buffer or the like. can do. The amount of the receptor to be reacted with the target antigen may be appropriately set, but usually a large excess of the receptor is added. Specifically, it is usually 1 to 100 moles per mole of antigen. When subjected to the reaction, the antigen and receptor are used after being dissolved in an appropriate solvent (for example, phosphate buffer, carbonate buffer, Tris buffer, Tricine buffer, glycine buffer, Tris-glycine buffer, etc.). be able to. The sample subjected to the antigen-antibody reaction may be pretreated before electrophoresis. Examples of the pretreatment include an operation of removing large aggregates by centrifugal operation or filter filtration.
 [標的物質]
 本発明における標的物質は等電点を有する物質である。そして、複合体の等電点がレセプターの等電点よりも低いため、当然に標的物質の等電点はレセプターの等電点よりも低くなる。
[Target substance]
The target substance in the present invention is a substance having an isoelectric point. Since the isoelectric point of the complex is lower than the isoelectric point of the receptor, the isoelectric point of the target substance is naturally lower than the isoelectric point of the receptor.
 標的物質としては、等電点を有し、pHにより電荷が変化する物質であれば特に限定されず、例えば、タンパク質、ペプチド、糖鎖、およびこれらの複合体等が挙げられる。中でも、標的物質は、両性物質であること、または操作の容易性、汎用性といった観点からは、ペプチドまたはタンパク質であることが好ましい。 The target substance is not particularly limited as long as it has an isoelectric point and the charge changes with pH, and examples thereof include proteins, peptides, sugar chains, and complexes thereof. Among these, the target substance is preferably an amphoteric substance, or is preferably a peptide or protein from the viewpoint of ease of operation and versatility.
 本明細書において、タンパク質またはペプチドには、遊離体、リン酸基、メチル基、アセチル基、糖鎖、脂質、ニトリル基等の修飾を受けた修飾体、酸(例、無機酸、有機酸)や塩基(例、アルカリ金属塩)などとの塩、核酸と結合している核タンパク質など他の物質と結合しているタンパク質またはペプチドが含まれる。 In the present specification, protein or peptide includes a free form, a phosphate group, a methyl group, an acetyl group, a sugar chain, a lipid, a modified body such as a lipid, a nitrile group, an acid (eg, inorganic acid, organic acid). Or a salt with a base (eg, alkali metal salt), a protein or peptide bound to another substance such as a nucleoprotein bound to a nucleic acid.
 標的物質の分子量は、特に限定されるものではない。分子量が低い、例えばペプチドの場合、ペプチド単体を電気泳動で検出しようとすると泳動条件を種々検討する必要があり、ペプチドに抗体等のレセプターを結合させた状態で電気泳動を行う方が容易に泳動で対象を検出できる。さらに、分子量の低い標的物質は、分子ふるいによる分離によっても、遊離レセプターと複合体との分子サイズの差が小さいことに起因して明確に分離されない。しかしながら、本発明の分離方法によれば、比較的分子量が小さい標的物質であっても、容易にかつ明確に遊離抗体と複合体とを分離することができる。かような観点から、本発明では比較的分子量が小さい標的物質であることが好ましい。具体的には、分子量が500~10,000であることが好ましく、1,000~10,000であることがより好ましく、1,000~5,000であることがさらに好ましい。標的物質が未知物質である場合には公知の分析方法(SDS-PAGE、アミノ酸分析等)により分子量を求めることができる。 The molecular weight of the target substance is not particularly limited. In the case of a peptide having a low molecular weight, for example, a peptide, it is necessary to study various conditions for electrophoresis when trying to detect a peptide alone, and it is easier to perform electrophoresis with a peptide bound to a receptor such as an antibody. Can detect the target. Furthermore, a target substance having a low molecular weight is not clearly separated due to the small difference in molecular size between the free receptor and the complex even by separation with a molecular sieve. However, according to the separation method of the present invention, a free antibody and a complex can be easily and clearly separated even with a target substance having a relatively small molecular weight. From such a viewpoint, in the present invention, a target substance having a relatively small molecular weight is preferable. Specifically, the molecular weight is preferably 500 to 10,000, more preferably 1,000 to 10,000, and still more preferably 1,000 to 5,000. When the target substance is an unknown substance, the molecular weight can be determined by a known analysis method (SDS-PAGE, amino acid analysis, etc.).
 レセプターとの電荷差の制御が容易に行うことができ、電気泳動による分離が迅速に行えることができるので、標的物質の等電点はある程度低いことが好ましい。具体的には、標的物質の等電点は、6以下であることが好ましく、5以下であることがより好ましく、4以下であることがさらに好ましい。標的物質の等電点は低いほうが好ましいため、下限は特に設定されないが、生体物質等は等電点が通常3以上である。なお、等電点は、等電点電気泳動を行った後、ゲルを染色することによって調べることができる。染色法は従来公知の方法を採用することができるが、例えば、CBB(クマシーブリリアントブルー)染色法や銀染色法等が挙げられる。 Since the charge difference from the receptor can be easily controlled and separation by electrophoresis can be performed quickly, the isoelectric point of the target substance is preferably low to some extent. Specifically, the isoelectric point of the target substance is preferably 6 or less, more preferably 5 or less, and even more preferably 4 or less. Since the lower isoelectric point of the target substance is preferable, the lower limit is not particularly set, but the biological substance has an isoelectric point of usually 3 or more. The isoelectric point can be examined by staining the gel after performing isoelectric focusing. A conventionally known method can be adopted as the staining method, and examples thereof include a CBB (Coomassie Brilliant Blue) staining method and a silver staining method.
 標的物質の具体例としては以下のペプチドを挙げることができる;C-peptide、コルチコトロピン様中葉ペプチド(Corticotropin-like intermediary peptide)、プロエンケファリン(PENK)、ガストリン(Gastrin)、フィブリノペプチド(Fibrinopeptide) A、グアニリン(Guanyli)、ウログアニリン(Uroguanylin)、マンマグロビン(Mammaglobin)-A、コレシストキニン(Cholecystokinin)、Copeptin。 Specific examples of target substances include the following peptides: C-peptide, corticotropin-like intermediate peptide, proenkephalin (PENK), gastrin, fibrinopeptide (Fibrinopeptide) Guanyli, Uroguanylin, Mammaglobin-A, Cholecystokinin, Cepeptin.
 なお、本明細書において特記しない限り「タンパク質」には、ペプチドが包含されるが、10kDa未満のポリペプチドを特に「ペプチド」と称する場合がある。また、タンパク質は天然物であっても合成物であってもよい。 Note that, unless otherwise specified in the present specification, “protein” includes a peptide, but a polypeptide of less than 10 kDa may be particularly referred to as “peptide”. The protein may be a natural product or a synthetic product.
 標的物質は、ヒトまたはヒト以外の哺乳動物(例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サル等)由来の試料(血液、血漿、血清、組織、関節液、尿、リンパ液等)、細胞(培養細胞、細胞株等)、その培養上清、それらの抽出物、それらの部分精製画分等から調製することができる。また、各種環境の土壌、水等から抽出してもよい。この際、標的物質は、公知のタンパク質の精製方法を用いて精製することにより、製造されうる。具体的には、例えば、哺乳動物の組織または細胞を界面活性剤の存在下でホモジナイズし、得られる組織の粗抽出物画分を逆相クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどのクロマトグラフィー等に付すことにより、精製されうる。標的物質は市販品であってもよい。 The target substance is a sample (blood, plasma, serum, tissue, joint fluid, urine, human or non-human mammal (eg, rat, mouse, rabbit, sheep, pig, cow, cat, dog, monkey, etc.) Lymph, etc.), cells (cultured cells, cell lines, etc.), culture supernatants thereof, extracts thereof, partially purified fractions thereof and the like. Moreover, you may extract from soil, water, etc. of various environments. At this time, the target substance can be produced by purification using a known protein purification method. Specifically, for example, mammalian tissues or cells are homogenized in the presence of a surfactant, and the resulting crude extract fraction of tissues is subjected to chromatography such as reverse phase chromatography, ion exchange chromatography, affinity chromatography and the like. It can be purified by attaching to a graph or the like. The target substance may be a commercial product.
 また、標的物質を精製(抽出)せずに、被検試料をそのまま用いてもよい。例えば、被検者の血液、血漿、血清、組織、関節液、尿、リンパ液等の生体成分等の被検試料を用いて標的物質-レセプター結合反応を行ってもよい。この際、被検試料に対して、希釈等の処理を行ってもよい。 Further, the test sample may be used as it is without purifying (extracting) the target substance. For example, the target substance-receptor binding reaction may be performed using a test sample such as a biological component such as blood, plasma, serum, tissue, joint fluid, urine, and lymph of the subject. At this time, a treatment such as dilution may be performed on the test sample.
 [レセプター]
 本発明においてレセプターとは標的物質と特異的に結合することができる物質を指す。
[Receptor]
In the present invention, a receptor refers to a substance that can specifically bind to a target substance.
 レセプターの等電点は複合体の等電点よりも高い。緩衝液のpHを上記のように設定し、かつレセプターの等電点をかように設定することで、レセプターが複合体の帯びている負電荷よりも小さい負電荷、または正電荷を帯び、あるいは電荷を有さず、正極に対する遊離レセプターの電気泳動での移動度が複合体と比較して小さくなる。したがって、電気泳動での遊離レセプターと複合体との分離が容易かつ明確に行われる。 The isoelectric point of the receptor is higher than the isoelectric point of the complex. By setting the pH of the buffer as described above and setting the isoelectric point of the receptor in this way, the receptor has a negative charge smaller than the negative charge of the complex, or a positive charge, or It has no charge, and the mobility of the free receptor with respect to the positive electrode in electrophoresis is smaller than that of the complex. Therefore, separation of the free receptor and the complex by electrophoresis is easily and clearly performed.
 レセプターの等電点は、標的物質-レセプター複合体の等電点と離れていればいるほど緩衝液のpH調整による両者の電荷差が大きくなりやすく、分離能が向上しやすい。具体的には、レセプターの等電点は、標的物質-レセプター複合体の等電点よりも0.1以上高いことが好ましく、0.2以上高いことがより好ましく、1以上高いことがさらに好ましく、2以上高いことが特に好ましく、3以上高いことが最も好ましい。レセプターの等電点は、標的物質-レセプター複合体の等電点と離れていればいるほど好ましいが、通常は標的物質-レセプター複合体の等電点よりも6以下である。 The farther the isoelectric point of the receptor is from the isoelectric point of the target substance-receptor complex, the greater the difference in charge between the two due to pH adjustment of the buffer solution, and the easier it is to improve the resolution. Specifically, the isoelectric point of the receptor is preferably 0.1 or more higher than the isoelectric point of the target substance-receptor complex, more preferably 0.2 or more, and even more preferably 1 or more. It is particularly preferably 2 or more, and most preferably 3 or more. The isoelectric point of the receptor is preferably as far as possible from the isoelectric point of the target substance-receptor complex, but is usually 6 or less than the isoelectric point of the target substance-receptor complex.
 レセプターの等電点としては、6以上であることが好ましく、7以上であることがより好ましく、8以上であることがさらに好ましい。等電点がかような範囲にあることで、電気泳動の緩衝液をよりアルカリ側に設定することができ、複合体の電荷がより負電荷を帯びやすくなるので、電気泳動の時間が短くなり、遊離レセプターと複合体との分離をより迅速に行うことができる。抗体の等電点は高いほうが好ましいため、上限は特に設定されないが、通常は9以下である。 The isoelectric point of the receptor is preferably 6 or more, more preferably 7 or more, and still more preferably 8 or more. When the isoelectric point is in such a range, the electrophoresis buffer can be set to the alkaline side, and the charge of the complex is more negatively charged. The separation of the free receptor and the complex can be performed more rapidly. Since the higher isoelectric point of the antibody is preferable, the upper limit is not particularly set, but it is usually 9 or less.
 なお、レセプターとしては、電気泳動緩衝液中で標的物質結合活性を維持していることが必要である。 As a receptor, it is necessary to maintain the target substance binding activity in an electrophoresis buffer.
 レセプターの等電点は、官能基付加等の修飾により制御することができる。例えば、用いるレセプターの等電点が所望の等電点でない場合には、等電点が高くなるように適切な物質を付加すればよい。例えば、カルボキシル基、アミノ基、あるいはアミノ糖やウロン酸などを含む糖鎖などをレセプター分子に結合させることにより、等電点を制御することができる。かような修飾物質の修飾方法は従来公知の方法により行うことができる。 The isoelectric point of the receptor can be controlled by modification such as addition of a functional group. For example, when the isoelectric point of the receptor to be used is not a desired isoelectric point, an appropriate substance may be added so as to increase the isoelectric point. For example, the isoelectric point can be controlled by binding a carboxyl group, an amino group, or a sugar chain containing an amino sugar or uronic acid to a receptor molecule. Such a modification method of the modifying substance can be performed by a conventionally known method.
 例えば、修飾基の導入は、修飾前のレセプターが有する官能基と反応できる架橋剤を使用して行うことができる。架橋剤としては、例えば、N-ヒドロキシスクシンイミド(NHS)、N-スクシンイミジル(4-イオードアセチル)アミノベンゾエート(N-succinimidyl(4-iodoacetyl)aminobenzoate)(SIAB)、ジマレイミド(dimaleimide)、ジチオ-ビス-ニトロ安息香酸(dithio-bis-nitrobenzoic acid)(DTNB)、N-スクシンイミジル-S-アセチル-チオアセテート(N-succinimidyl-S-acetyl-thioacetate)(SATA)、N-スクシンイミジル-3-(2-ピリジルジチオ)プロピオネート(N-succinimidyl-3-(2-pyridyldithio)propionate)(SPDP)、スクシンイミジル4-(N-マレイミドメチル)シクロヘキサン-1-カルボキシレート(succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate)(SMCC)、6-ヒドラジノニコチミド(6-hydrazinonicotimide)(HYNIC)、m-マレイミドベンゾイル-N-ヒドロキシスクシニミドエステル(m-maleimidobenzoyl-N-hydroxysuccinimide ester)(MBC)等の多官能性試薬が挙げられる。 For example, the introduction of the modifying group can be performed using a cross-linking agent that can react with the functional group of the receptor before modification. Examples of the cross-linking agent include N-hydroxysuccinimide (NHS), N-succinimidyl (4-iodoacetyl) aminobenzoate (N-succinimidyl (4-iodoacetyl) aminobenzoate) (SIAB), dimaleimide, dithio-bis- Nitrobenzoic acid (dithio-bis-nitrobenzoic acid) (DTNB), N-succinimidyl-S-acetyl-thioacetate (N-succinimidyl-S-acetyl-thioacetate) (SATA), N-succinimidyl-3- (2-pyridyl) Dithio) propionate (N-succinimidyl-3- (2-pyridyldithio) propionate) (SP P), succinimidyl 4- (N-maleimidomethyl) cyclohexane-1-carboxylate (succinimidyl) cyclohexane-1-carboxylate (SMCC), 6-hydrazinonicotideNIC ), M-maleimidobenzoyl-N-hydroxysuccinimide ester (MBC), and the like.
 修飾方法としては、例えば、レセプターが有するカルボキシル基を利用する場合、1-エチル-3-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC)等のカルボジイミド類でカルボキシル基を活性化させた後、アミノ基を有する化合物と反応させることができる。 As a modification method, for example, when the carboxyl group of the receptor is used, the carboxyl group is activated with carbodiimides such as 1-ethyl-3- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC). Then, it can be reacted with a compound having an amino group.
 レセプターの具体例としては、抗体、抗体断片、受容体、バインディングプロテイン、ペプチドなどが挙げられる。中でも、抗原との特異的結合性が高いことから、レセプターとしては抗体または抗体断片を用いることが好ましい。 Specific examples of receptors include antibodies, antibody fragments, receptors, binding proteins, peptides and the like. Among them, it is preferable to use an antibody or an antibody fragment as a receptor because of its high specific binding property to an antigen.
 抗体としては、モノクローナル抗体、ポリクローナル抗体、一本鎖抗体、改変抗体(例えば抗原認識部位のみヒト化した「ヒト化抗体」など)、キメラ抗体、2つのエピトープを同時に認識することができる二機能性抗体などが挙げられる。抗体は、IgA、IgD、IgE、IgG、IgMなど、いずれのクラスのものであってもよい。抗原への特異的結合性の観点からはモノクローナル抗体を用いることがより好ましい。 Examples of antibodies include monoclonal antibodies, polyclonal antibodies, single chain antibodies, modified antibodies (eg, “humanized antibodies” in which only the antigen recognition site is humanized), chimeric antibodies, and bifunctionality capable of simultaneously recognizing two epitopes. An antibody etc. are mentioned. The antibody may be of any class such as IgA, IgD, IgE, IgG, IgM. From the viewpoint of specific binding to an antigen, it is more preferable to use a monoclonal antibody.
 レセプターの製造は従来公知の方法により作製することができる。 The receptor can be produced by a conventionally known method.
 抗体は市販品を用いてもよい。 Commercially available antibodies may be used.
 なお、かかる抗体は、抗原との結合が阻害されない範囲内において修飾を受けたものであっても良い。かかる修飾の例としては、検出効率を向上するための、蛍光標識物質を化学結合で結合させた蛍光標識化、抗体を構成する原子を放射性同位体で標識する放射能標識化、対になる物質に対して特異的な結合性を示す物質を化学的に結合させた特異的結合対標識化(例えば多糖に結合性を示すレクチンを化学的に結合させた標識など)等が例示される。標識に用いられる標識物質としては、FITC(フルオレセインイソシアネート)またはテトラメチルローダミンイソシアネート等の蛍光物質、125I、32P、14C、35SまたはH等のラジオアイソトープ、アルカリホスファターゼ、ペルオキシダーゼ、β-ガラクトシダーゼまたはフィコエリトリン等の酵素が挙げられる。また、抗体とグリーン蛍光蛋白質(GFP)等の蛍光発光蛋白質などと融合させてもよい。 Such an antibody may be modified within a range where binding to an antigen is not inhibited. Examples of such modifications include fluorescent labeling in which a fluorescent labeling substance is bound by a chemical bond to improve detection efficiency, radioactive labeling in which the atoms constituting the antibody are labeled with a radioisotope, and a pairing substance Specific binding pair labeling in which a substance exhibiting specific binding property is chemically bound (for example, a label in which a lectin having binding property to a polysaccharide is chemically bound) and the like are exemplified. Examples of labeling substances used for labeling include fluorescent substances such as FITC (fluorescein isocyanate) or tetramethylrhodamine isocyanate, radioisotopes such as 125 I, 32 P, 14 C, 35 S or 3 H, alkaline phosphatase, peroxidase, β- Enzymes such as galactosidase or phycoerythrin are included. Alternatively, the antibody may be fused with a fluorescent protein such as green fluorescent protein (GFP).
 レセプターとしては抗原に対する反応性を有している限り抗体の断片であってもよく、抗体の断片としては、例えば、Fab断片、F(ab)’断片、単鎖抗体(scFv)、scFv-Fc、ミニボディー、ダイアボディー等の遺伝子工学的に作製されたコンジュゲート分子、あるいはポリエチレングリコール(PEG)等のタンパク質安定化作用を有する分子等で修飾されたそれらの誘導体等が挙げられる。 The receptor may be an antibody fragment as long as it has reactivity with the antigen. Examples of the antibody fragment include Fab fragment, F (ab) ′ 2 fragment, single chain antibody (scFv), scFv− Examples thereof include conjugate molecules prepared by genetic engineering such as Fc, minibody, and diabody, or derivatives thereof modified with a molecule having a protein stabilizing action such as polyethylene glycol (PEG).
 [電気泳動]
 本発明では、電気泳動下においても標的物質とレセプターとが特異的に結合することが必要であるため、レセプターが標的物質結合活性を維持する環境下で電気泳動を行う必要がある。したがって、電気泳動は標的物質-レセプター複合体非変性条件下で行う。「標的物質-レセプター複合体非変性条件下」とは、レセプターが標的物質結合能を維持している条件下であることを意味する。レセプターがタンパク質である場合には、具体的には、「標的物質-レセプター複合体非変性条件下」とは、タンパク質変性剤非存在下であることを指す。したがって、SDS-PAGEのように電気泳動前にサンプルを加熱しない。タンパク質変性剤としては、例えば陰イオン系界面活性剤(例えばSDS又はLDS)又はカオトロピック剤(尿素、ホルムアミド、グアニジン、ヨウ化カリウムなど)が挙げられる。タンパク質を未変性のまま泳動する泳動法としては、ポリアクリルアミドゲル電気泳動(PAGE)の一種であるnative pageが知られており、本発明においても、native pageを用いることができる。一般的なnative pageではトリス-グリシンシステムを使用した高いpH条件の緩衝液を用いるが、本発明では特定のpHに調製した緩衝液を用いる。
[Electrophoresis]
In the present invention, since it is necessary for the target substance and the receptor to specifically bind even under electrophoresis, it is necessary to perform electrophoresis in an environment in which the receptor maintains the target substance binding activity. Therefore, electrophoresis is performed under non-denaturing conditions of the target substance-receptor complex. The “under non-denaturing target substance-receptor complex” means a condition under which the receptor maintains the target substance binding ability. When the receptor is a protein, specifically, “target substance-receptor complex non-denaturing condition” refers to the absence of a protein denaturing agent. Therefore, the sample is not heated prior to electrophoresis as in SDS-PAGE. Examples of the protein denaturant include an anionic surfactant (for example, SDS or LDS) or a chaotropic agent (urea, formamide, guanidine, potassium iodide, etc.). A native page, which is a kind of polyacrylamide gel electrophoresis (PAGE), is known as an electrophoresis method for electrophoresis of proteins without denaturation. The native page can also be used in the present invention. In general native pages, a buffer solution having a high pH condition using a tris-glycine system is used. In the present invention, a buffer solution adjusted to a specific pH is used.
 電気泳動法としては、キャピラリー(ゾーン)電気泳動、マイクロチップ電気泳動等の無担体電気泳動法でも担体を用いた電気泳動法でもよい。 The electrophoresis method may be a carrier-free electrophoresis method such as capillary (zone) electrophoresis or microchip electrophoresis, or an electrophoresis method using a carrier.
 電気泳動に用いられる担体としては、アガロースゲル、アクリルアミド、デキストランのゲル、ろ紙、セルロースアセテート膜、下記記載のキャピラリー高分子が挙げられる。 Examples of the carrier used for electrophoresis include agarose gel, acrylamide, dextran gel, filter paper, cellulose acetate membrane, and capillary polymers described below.
 透明性が高く、電気的に中性であることからアクリルアミドを担体として用いることが好ましい。この際、アクリルアミドゲルは濃度勾配ゲルであっても均一濃度ゲルであってもよい。具体的には、4-16%(w/v)の濃度勾配ゲル、5-20%(w/v)濃度勾配ゲル、あるいは8%(w/v)~12%(w/v)の一定濃度ゲルを用いることができる。一般的には一定濃度ゲルよりは濃度勾配ゲルの方が、バンドがシャープである。アクリルアミドゲルは適宜調整してもよいし、市販品を用いてもよい。アクリルアミドゲルとしては、トリス-グリシンゲル(例えば、Novex(登録商標)トリス-グリシンゲル(Invitrogen社)等)、トリス-酢酸ゲル(例えばNuPAGE Novex(登録商標)(Invitrogen社))、またはビストリスゲル(例えば、NativePAGE Novex(登録商標)ビストリスゲル(Invitrogen社)など)が挙げられる。アクリルアミドゲルを製造する際に用いられる緩衝液のpHは6~8程度であることが好ましい。 It is preferable to use acrylamide as a carrier because it is highly transparent and electrically neutral. In this case, the acrylamide gel may be a concentration gradient gel or a uniform concentration gel. Specifically, a concentration gradient gel of 4-16% (w / v), a concentration gradient gel of 5-20% (w / v), or a constant value of 8% (w / v) to 12% (w / v) A concentration gel can be used. In general, a band is sharper in a concentration gradient gel than in a constant concentration gel. The acrylamide gel may be appropriately adjusted, or a commercially available product may be used. Examples of the acrylamide gel include a tris-glycine gel (for example, Novex (registered trademark) Tris-glycine gel (Invitrogen), etc.), a tris-acetic acid gel (for example, NuPAGE Novex (registered trademark) (Invitrogen)), or a bistris gel (for example, And NativePAGE Novex (registered trademark) Bistris gel (Invitrogen), etc.). The pH of the buffer used when producing the acrylamide gel is preferably about 6-8.
 泳動ゲル中にpH勾配を形成させた等電点電気泳動にも本発明は適用できる。 The present invention can also be applied to isoelectric focusing in which a pH gradient is formed in the electrophoresis gel.
 また、キャピラリー電気泳動に用いるキャピラリー内に分子ふるい効果を持たせるようなポリマーを泳動用緩衝液等と共に充填してもよい(キャピラリー高分子溶液電気泳動)。この際、キャピラリーに充填されるポリマー(キャピラリー高分子)としては、通常この分野で用いられているものであればよく、特に限定されないが、具体的には、ポリエチレンオキサイド(ポリエチレングリコール)、ポリプロピレンオキサイド等のポリエーテル類;ポリエチレンイミン等のポリアルキレンイミン;ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸メチル等のポリ(メタ)アクリル酸エステル等のポリ(メタ)アクリル酸系ポリマー;ポリアクリルアミド、ポリメタクリルアミド等のポリアミド系ポリマー;;ポリビニルアセテート,ポリビニルピロリドン、ポリビニルオキサゾリドン等のポリビニル系ポリマー;プルラン,エルシナン、キサンタン、デキストラン、グアガム等の水溶性ヒドロキシルポリマー;メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の水溶性セルロース;およびこれらの誘導体、ならびにこれらポリマーを構成するモノマーユニットのコポリマー等が挙げられる。 In addition, a polymer that has a molecular sieving effect may be filled in a capillary used for capillary electrophoresis together with a buffer for electrophoresis (capillary polymer solution electrophoresis). In this case, the polymer (capillary polymer) filled in the capillary is not particularly limited as long as it is usually used in this field. Specifically, polyethylene oxide (polyethylene glycol), polypropylene oxide Polyalkyleneimines such as polyethyleneimine; Poly (meth) acrylic acid polymers such as poly (meth) acrylic acid and poly (meth) acrylic acid esters such as methyl poly (meth) acrylate; Polyacrylamide Polyamide polymers such as polymethacrylamide; Polyvinyl polymers such as polyvinyl acetate, polyvinyl pyrrolidone and polyvinyl oxazolidone; Water-soluble hydroxyl polymers such as pullulan, erucinane, xanthan, dextran and guar gum; Cellulose, hydroxyethyl cellulose, water-soluble cellulose such as hydroxypropyl cellulose; and derivatives thereof, and copolymers such as a monomer unit constituting these polymers.
 電気泳動における印加電電圧は、通常この分野で用いられている範囲から適宜選択すればよく、通常5~2000V/cmの範囲で印加される。 The applied voltage in electrophoresis may be appropriately selected from the range usually used in this field, and is usually applied in the range of 5 to 2000 V / cm.
 電気泳動時間は通常、30~180分であり得る。迅速な分離という観点からは、泳動時間は数分~10分程度であることが好ましい。なお、電気泳動温度は、特に制限されないが、通常、室温(20~25℃)で行われる。 Electrophoresis time can usually be 30 to 180 minutes. From the viewpoint of rapid separation, the electrophoresis time is preferably about several minutes to 10 minutes. The electrophoresis temperature is not particularly limited, but is usually performed at room temperature (20 to 25 ° C.).
 電気泳動後に標的物質-レセプター複合体および遊離抗体を検出する方法としては、ゲル染色が挙げられる。レセプターがタンパク質である場合の染色方法としては、CBB(クマシーブリリアントブルー)染色法、銀染色法や、SYPRO(登録商標)Ruby Protein Stain(タカラバイオ社製)、Deep Purple Total Protein Stain(GEヘルスケアジャパン社製)などの色素を用いた染色法などが挙げられる。また、遊離抗体と分離された抗原-レセプター複合体のバンドを画像解析ソフトウェア等を用いて色素のシグナル強度を算出し、タンパク質量を定量することもできる。また、キャピラリー電気泳動の場合は、UV/VIS吸光光度計(フォトダイオードアレイ)等を用いて直接検出することができる。 As a method for detecting the target substance-receptor complex and free antibody after electrophoresis, gel staining can be mentioned. As a staining method when the receptor is a protein, CBB (Coomassie Brilliant Blue) staining method, silver staining method, SYPRO (registered trademark) Ruby Protein Stein (manufactured by Takara Bio Inc.), Deep Purple Total Protein Stain (GE Healthcare) A dyeing method using a dye such as Japan). Alternatively, the amount of the protein can be quantified by calculating the signal intensity of the dye for the band of the antigen-receptor complex separated from the free antibody using image analysis software or the like. In the case of capillary electrophoresis, it can be directly detected using a UV / VIS absorptiometer (photodiode array) or the like.
 (緩衝液)
 電気泳動に用いられる緩衝液は、標的物質-レセプター複合体の等電点を超え、かつレセプターの等電点の+2以下であるpHを有する。緩衝液のpHを標的物質-レセプター複合体の等電点を超えるように設定することで、複合体とレセプターとの電荷差が生じ、電気泳動において複合体と遊離レセプターとを分離することができる。また、緩衝液のpHがレセプターの等電点の+2を超えると、緩衝液中での複合体およびレセプター双方の負の電荷が大きくなるため、電荷に対する電荷差が小さくなり分離性が悪くなる。さらに好ましくは、緩衝液のpHはレセプターの等電点の+1.5以下かつ複合体の等電点の+1以上である。緩衝液のpHを複合体の等電点の+1以上とすることで、複合体が適度な電荷を有し、分離性がより高まる。ここで、「緩衝液のpHがレセプターの等電点の+1.5以下かつ複合体の等電点の+1以上である」とは、レセプターの等電点が7で、複合体の等電点が5である場合には、緩衝液のpHは6~8.5であることを意味する。なお、pHを調整する緩衝液はサンプルが電気泳動を行う際に接触する緩衝液すなわち、泳動用緩衝液(ランニングバッファー)である。
(Buffer solution)
The buffer used for electrophoresis has a pH that exceeds the isoelectric point of the target substance-receptor complex and is not more than +2 of the isoelectric point of the receptor. By setting the pH of the buffer so as to exceed the isoelectric point of the target substance-receptor complex, a charge difference is generated between the complex and the receptor, and the complex and the free receptor can be separated in electrophoresis. . Further, when the pH of the buffer exceeds the isoelectric point +2 of the receptor, the negative charges of both the complex and the receptor in the buffer are increased, so that the charge difference with respect to the charge is reduced and the separability is deteriorated. More preferably, the pH of the buffer is +1.5 or less of the isoelectric point of the receptor and +1 or more of the isoelectric point of the complex. By setting the pH of the buffer to +1 or more of the isoelectric point of the complex, the complex has an appropriate charge and the separability is further improved. Here, “the pH of the buffer is +1.5 or less of the isoelectric point of the receptor and +1 or more of the isoelectric point of the complex” means that the isoelectric point of the receptor is 7, and the isoelectric point of the complex Is 5 means that the pH of the buffer is 6 to 8.5. The buffer for adjusting the pH is a buffer solution that comes into contact with the sample when electrophoresis is performed, that is, a buffer solution for running (running buffer).
 標的物質、レセプターおよび複合体の構造が維持する観点からは、緩衝液のpHは強い酸性域や強いアルカリ域であることは望ましくない。また、本発明では複合体と遊離レセプターとの電荷差を利用しているため、緩衝液がアルカリ域である必要もない。かような観点からは、泳動用緩衝液のpHは6~8であることが好ましい。 From the viewpoint of maintaining the structure of the target substance, receptor and complex, it is not desirable that the pH of the buffer solution is a strong acidic region or a strong alkaline region. In the present invention, since the charge difference between the complex and the free receptor is used, the buffer solution does not need to be in the alkaline region. From such a viewpoint, the pH of the electrophoresis buffer is preferably 6-8.
 緩衝液のpH調整には、塩酸などの酸性物質や水酸化ナトリウムなどの塩基性物質を用いて適宜調整すればよい。 The pH of the buffer solution may be adjusted as appropriate using an acidic substance such as hydrochloric acid or a basic substance such as sodium hydroxide.
 なお、緩衝液の緩衝作用が失われないpH域に緩衝液のpHを調整する必要があり、所望の緩衝液のpHにあわせて緩衝液を適宜選択すればよい。例えば、pH7以下の酸性域では塩酸-塩化カリウム緩衝液、グリシン-塩酸緩衝液、クエン酸-リン酸緩衝液、クエン酸緩衝液等を、pH6~8程度の中性域では、トリス-塩酸緩衝液、リン酸緩衝液、トリス-グリシン緩衝液、トリス-トリシン緩衝溶液、ビス-トリス緩衝溶液、MES緩衝溶液、MOPS緩衝溶液、TES緩衝溶液、PIPES緩衝溶液、等を、pH8以上のアルカリ性域では、グリシン-水酸化ナトリウム緩衝液等を用いればよい。 In addition, it is necessary to adjust the pH of the buffer solution in a pH range where the buffer action of the buffer solution is not lost, and the buffer solution may be appropriately selected according to the pH of the desired buffer solution. For example, hydrochloric acid-potassium chloride buffer solution, glycine-hydrochloric acid buffer solution, citrate-phosphate buffer solution, citrate buffer solution, etc. in the acidic region of pH 7 or lower, and tris-hydrochloric acid buffer solution in the neutral region of about pH 6-8. Solution, phosphate buffer, tris-glycine buffer, tris-tricine buffer solution, bis-tris buffer solution, MES buffer solution, MOPS buffer solution, TES buffer solution, PIPES buffer solution, etc. Glycine-sodium hydroxide buffer or the like may be used.
 緩衝液としては、緩衝能を有する従来公知の緩衝液組成物を含有する溶液であれば特に限定されず、例えば、クエン酸、コハク酸、酒石酸、リンゴ酸等の有機酸、及び、その塩類等を含有する溶液等;グリシン、タウリン、アルギニン等のアミノ酸類;塩酸、硝酸、硫酸、リン酸、ホウ酸、酢酸等の無機酸、及び、その塩類等を含有する溶液等が挙げられる。レセプターがタンパク質である場合の泳動用緩衝液としては、例えば、トリス-グリシン緩衝液、トリス緩衝液、トリス-トリシン緩衝液、トリス-塩酸緩衝液等や、一般にタンパク質の電気泳動用緩衝液として使用される緩衝液が挙げられ、市販のタンパク質電気泳動用キット中に提供されている緩衝液等も使用することができる。泳動用緩衝液は、一般に電気泳動用緩衝液として使用される濃度で使用することができる。 The buffer solution is not particularly limited as long as it is a solution containing a conventionally known buffer solution composition having a buffer capacity, and examples thereof include organic acids such as citric acid, succinic acid, tartaric acid, malic acid, and salts thereof. Solutions containing amino acids; amino acids such as glycine, taurine and arginine; and solutions containing inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, boric acid and acetic acid, and salts thereof. As a buffer for electrophoresis when the receptor is a protein, for example, Tris-Glycine buffer, Tris buffer, Tris-Tricine buffer, Tris-HCl buffer, etc., and generally used as a buffer for protein electrophoresis The buffer solution etc. which are provided in the commercially available kit for protein electrophoresis can also be used. The electrophoresis buffer can be used at a concentration generally used as an electrophoresis buffer.
 本発明の分離法により、標的物質-レセプター複合体と遊離レセプターとを明確に分離することができる。したがって、本発明の分離法を用いれば、標的物質である標的物質を検出することができる。 The target substance-receptor complex and the free receptor can be clearly separated by the separation method of the present invention. Therefore, if the separation method of the present invention is used, a target substance that is a target substance can be detected.
 具体的には、本発明の第一実施形態の変形例は、標的物質と標的物質に特異的に結合するレセプターとを結合させて標的物質-レセプター複合体を形成させる段階と、電気泳動を行う段階と、標的物質を検出する段階と、を含み、前記レセプターの等電点は前記複合体の等電点より高く、前記電気泳動は、前記複合体非変性条件下で、前記複合体の等電点を超え、かつ前記レセプターの等電点の+2以下であるpHを持つ緩衝液中で行う、標的物質の検出方法である。ここで「検出」とは、「標的物質の存在、非存在、または濃度を検出」することを意味する。このような方法により、簡便にかつ特異的に標的物質を検出することができる。 Specifically, in the modification of the first embodiment of the present invention, a target substance and a receptor that specifically binds to the target substance are bound to form a target substance-receptor complex, and electrophoresis is performed. And detecting a target substance, wherein the isoelectric point of the receptor is higher than the isoelectric point of the complex, and the electrophoresis is performed under the non-denaturing condition of the complex. This is a method for detecting a target substance, which is carried out in a buffer solution having a pH exceeding the electric point and +2 or less of the isoelectric point of the receptor. Here, “detection” means “detecting the presence, absence or concentration of the target substance”. By such a method, the target substance can be detected simply and specifically.
 標的物質-レセプター複合体を形成させる段階、および、電気泳動を行う段階については、上記第一実施形態で記載したとおりである。 The step of forming the target substance-receptor complex and the step of performing electrophoresis are as described in the first embodiment.
 標的物質の検出方法としては、標的物質-レセプター複合体を可視化する方法であればいずれの方法も用いることができ、酵素免疫測定法(EIA)、放射免疫測定法(RIA)、蛍光免疫測定法(FIA)、化学発光免疫測定法(CLIA)を用いることができる。この際、標的物質に直接反応するレセプター(例えば、一次抗体)を標識してもよい(直接法)し、標識していない一次抗体等を用いて1度目の抗原レセプター反応を行い、一次抗体自体を抗原とする別の抗体(二次抗体)(間接法)を標識してもよい。 As a method for detecting the target substance, any method can be used as long as it is a method for visualizing the target substance-receptor complex. Enzyme immunoassay (EIA), radioimmunoassay (RIA), fluorescent immunoassay (FIA), chemiluminescence immunoassay (CLIA) can be used. At this time, a receptor (for example, primary antibody) that reacts directly with the target substance may be labeled (direct method), or the first antigen-receptor reaction is performed using an unlabeled primary antibody or the like, and the primary antibody itself. Alternatively, another antibody (secondary antibody) (indirect method) may be labeled.
 標識に用いられる標識物質としては、FITC(フルオレセインイソシアネート)、FITC(Fluorescein Isothiocyanate)、PE(phycoerythrin)、APC(Allophycocyanin)、Cy-3、Cy-5、テトラメチルローダミンイソシアネート等等の蛍光物質、125I、32P、14C、35SまたはH等のラジオアイソトープ、アルカリホスファターゼ、ペルオキシダーゼ(例えばセイヨウペルオキシダーゼ)、β-ガラクトシダーゼまたはフィコエリトリン等の酵素、アクリジニウムエステルなどの化学物質が挙げられる。酵素を標識物質として用いた場合には、酵素に依存する第2のシグナル(例えば無色の基質からの着色生成物の形成)を発生させてもよく、この場合標識酵素の他基質が必要となる。例えば、ペルオキシダーゼの場合、3,3’,5,5’-テトラメチルベンジジンなどが用いられ、アルカリホスファターゼの場合、パラニトロフェニルリン酸ナトリウムなどが用いられる。 As the labeling substance used for labeling, FITC (fluorescein isothiocyanate), FITC (Fluorescein Isothiocyanate), PE (phycoerythrin), APC (Allophycocyanin), Cy-3, Cy-5, the fluorescent substances such as tetramethylrhodamine isocyanate, 125 Examples include radioisotopes such as I, 32 P, 14 C, 35 S or 3 H, alkaline phosphatase, peroxidase (eg, peroxidase), enzymes such as β-galactosidase or phycoerythrin, and chemical substances such as acridinium esters. When an enzyme is used as a labeling substance, a second signal that depends on the enzyme (for example, formation of a colored product from a colorless substrate) may be generated. In this case, a substrate other than the labeling enzyme is required. . For example, 3,3 ′, 5,5′-tetramethylbenzidine or the like is used in the case of peroxidase, and sodium paranitrophenyl phosphate or the like is used in the case of alkaline phosphatase.
 標識物質により標識する方法は従来公知の方法を用いることができ、例えば、特定の官能基と結合を形成できる活性基と蛍光物質などの標識物質とが結合した標識物質活性基と、レセプターとを混合して標識する方法や活性基をその両端に具備する各種のクロスリンカーを用いて、標識物質とレセプターとをクロスリンカーを介して架橋することで標識する方法などがある。 As a method of labeling with a labeling substance, a conventionally known method can be used. For example, an active group capable of forming a bond with a specific functional group and a labeling substance active group in which a labeling substance such as a fluorescent substance is bound, and a receptor. There are a method of labeling by mixing, a method of labeling by cross-linking a labeling substance and a receptor through a crosslinker using various crosslinkers having active groups at both ends.
 間接法としては、ビオチン化抗体用いたLAB(Linked Avidin-Biotin)法、ABC(Avidin-Biotin Complex)法、LSAB(Linked Streptavidin-Biotin)法などが挙げられる。 Examples of the indirect method include LAB (Linked Avidin-Biotin) method, ABC (Avidin-Biotin Complex) method, LSAB (Linked Streptavidin-Biotin) method using biotinylated antibody.
 上記標識物質の検出法としては、従来公知の方法を用いることができる。酵素により生じた産物の検出および/または定量は、当該産物の吸光度を測定することにより行なうことができる。例えば、酵素基質として、3,3’,5,5’-テトラメチルベンジジンを用いた場合には、655nmにおける吸光度を測定すればよい。また、標識物質がラジオアイソトープの場合、放射線計数装置で測定すればよいし、蛍光物質の場合には蛍光励起して視覚化するか、定量を行う場合には、蛍光測定器や画像処理システムで測定すればよい。 As a method for detecting the labeling substance, a conventionally known method can be used. The detection and / or quantification of the product produced by the enzyme can be performed by measuring the absorbance of the product. For example, when 3,3 ′, 5,5′-tetramethylbenzidine is used as the enzyme substrate, the absorbance at 655 nm may be measured. In addition, when the labeling substance is a radioisotope, it may be measured with a radiation counter. In the case of a fluorescent substance, it is visualized by fluorescence excitation, or when quantification is performed, a fluorescence measuring instrument or an image processing system is used. Just measure.
 標的物質の定量は、例えば、既知濃度の標的物質が含まれる標準試料を用いて得られた蛍光強度を利用して検量線を作製することによって、試料中に含まれる標的物質の量を簡便に定量することができる。 The target substance can be quantified by, for example, creating a calibration curve using the fluorescence intensity obtained using a standard sample containing a known concentration of the target substance, thereby simplifying the amount of target substance contained in the sample. It can be quantified.
 上記検出方法は、特に標的物質が何らかの疾患に関与するマーカーである場合に臨床検査において非常に有用な手段となる。 The above detection method is a very useful means in clinical examination especially when the target substance is a marker related to some disease.
 例えば、ヒトC-ペプチドは31個のアミノ酸からなるペプチドであり、インスリン前駆物質であるプロインスリンの構成成分である。C-ペプチドはプロインスリンがエンドペプチダーゼにより切断されインスリンが血中へ放出される際に、分解産物として同時に放出される。したがって、C-ペプチドはインスリンの分泌動態の指標としての役割を果たし、血中C-ペプチドの動態は糖尿病患者等の内因性インスリンの分泌能を調べるために重要な指標となり得る。実際、C-ペプチドの測定は糖尿病の診断または治療に利用されており、更にはインスリノーマ、インスリン自己免疫症候群などの診断にも有用である。本発明の第一の実施形態の分離方法またはこの変形例の検出方法によれば、C-ペプチドのような低分子のペプチドであっても分離・検出可能であるため、これによりC-ペプチド量を定量化することができる。さらに、正常値と比較することにより、インスリンの分泌量を検査することができる。正常値より被験者のC-ペプチド量が低ければ、被験者のインスリン分泌能が低下していることがわかる。したがって、本発明の好適な実施形態は、標的物質がC-ペプチドである。 For example, human C-peptide is a peptide consisting of 31 amino acids and is a constituent of proinsulin, which is an insulin precursor. C-peptide is simultaneously released as a degradation product when proinsulin is cleaved by endopeptidase and insulin is released into the blood. Therefore, C-peptide plays a role as an indicator of insulin secretion kinetics, and blood C-peptide kinetics can be an important indicator for examining the secretory ability of endogenous insulin in diabetic patients and the like. In fact, the measurement of C-peptide is used for the diagnosis or treatment of diabetes, and is also useful for the diagnosis of insulinoma, insulin autoimmune syndrome and the like. According to the separation method of the first embodiment of the present invention or the detection method of this modified example, even a low molecular weight peptide such as C-peptide can be separated and detected. Can be quantified. Furthermore, the amount of insulin secreted can be examined by comparing with normal values. It can be seen that if the amount of C-peptide in the subject is lower than the normal value, the subject's ability to secrete insulin is reduced. Therefore, in a preferred embodiment of the present invention, the target substance is a C-peptide.
 また、本発明の他の実施形態は、第一の実施形態の分離・検出方法を用いた標的物質に関与する疾患の診断方法である。具体的には、被検者から試料を採取する段階と、前記試料中の標的物質と標的物質に特異的に結合するレセプターとを結合させて標的物質-レセプター複合体を形成させる段階と、電気泳動を行う段階と、標的物質を検出する段階と、標的物質の健常者の値と比較して被検者が標的物質に関与する疾患に罹患しているか否かを判定する段階と、を含み、前記レセプターの等電点は前記複合体の等電点より高く、前記電気泳動は、前記複合体非変性条件下で、前記複合体の等電点を超え、かつ前記レセプターの等電点の+2以下であるpHを持つ緩衝液中で行う、標的物質に関与する疾患の診断方法である。ここで、被検者又は健常者は、ヒト又はヒト以外の哺乳動物であることが好ましい。上記疾患としては、例えば、標的物質がC-ペプチドの場合、インスリンノーマ、肥満、肝疾患、クッシング症候群、末端肥大症、異常インスリン血症、インスリン自己免疫症候群、糖尿病、低血糖、低栄養状態、褐色細胞腫、下垂体副腎機能低下症などが挙げられる。健常者の値と比較して被験者のC-ペプチド量が高ければ、インスリンノーマ、肥満、肝疾患、クッシング症候群、末端肥大症、異常インスリン血症、インスリン自己免疫症候群などに罹患している可能性があり、健常者の値と比較して被験者のC-ペプチド量が低ければ、糖尿病、低血糖、低栄養状態、褐色細胞腫、下垂体副腎機能低下症などに罹患している可能性がある。 In addition, another embodiment of the present invention is a method for diagnosing a disease related to a target substance using the separation / detection method of the first embodiment. Specifically, collecting a sample from a subject, binding a target substance in the sample and a receptor that specifically binds to the target substance to form a target substance-receptor complex, Performing electrophoresis, detecting a target substance, and determining whether the subject suffers from a disease related to the target substance by comparing with a value of a healthy target substance. The isoelectric point of the receptor is higher than the isoelectric point of the complex, and the electrophoresis exceeds the isoelectric point of the complex under the non-denaturing condition of the complex and the isoelectric point of the receptor. This is a method for diagnosing a disease involving a target substance, which is performed in a buffer solution having a pH of +2 or less. Here, the subject or the healthy person is preferably a human or a non-human mammal. Examples of the disease include when the target substance is C-peptide, insulinoma, obesity, liver disease, Cushing syndrome, acromegaly, abnormal insulinemia, insulin autoimmune syndrome, diabetes, hypoglycemia, undernutrition, Examples include pheochromocytoma and hypopituitar adrenal function. If the subject's C-peptide level is higher than that of healthy subjects, they may have insulinoma, obesity, liver disease, Cushing's syndrome, acromegaly, abnormal insulinemia, insulin autoimmune syndrome, etc. If the subject's C-peptide level is lower than that of healthy subjects, the patient may be suffering from diabetes, hypoglycemia, malnutrition, pheochromocytoma, hypopituitar adrenal function, etc. .
 さらに、本発明の他の実施形態は、標的物質に特異的に結合し、該標的物質の等電点よりも高い等電点を有するレセプターと、標的物質-レセプター複合体の等電点を超え、かつレセプターの等電点の+2以下であるpHを持つ緩衝液を含む電気泳動用セットと、を含む標的物質に関与する疾患の検査キットである。 Furthermore, another embodiment of the present invention provides a receptor that specifically binds to a target substance and has an isoelectric point higher than the isoelectric point of the target substance, and exceeds the isoelectric point of the target substance-receptor complex. And a set for electrophoresis containing a buffer solution having a pH that is +2 or less of the isoelectric point of the receptor, and a test kit for a disease involving a target substance.
 検査キットに含まれるレセプターは、好適にはレセプターを含む容器を含む。レセプターは予め緩衝液に溶解された状態であってもよい。電気泳動用セットは上述したようなアッセイ用の緩衝液またはその濃縮ストック溶液を含む。電気泳動用セットには、その他、電気泳動槽、電気泳動用ガラス板、バッファー槽、スペーサー、コーム、クリップ、パワーサプライ、又はペリスタポンプ等の一般的な電気泳動用装置;電気泳動用試薬;ゲル等の担体;検出試薬等を含めることができる。 The receptor included in the test kit preferably includes a container containing the receptor. The receptor may be in a state preliminarily dissolved in a buffer solution. The electrophoresis set includes an assay buffer as described above or a concentrated stock solution thereof. The electrophoresis set includes other electrophoresis apparatuses such as electrophoresis tanks, glass plates for electrophoresis, buffer tanks, spacers, combs, clips, power supplies, or peristaltic pumps; reagents for electrophoresis; gels, etc. A carrier; a detection reagent and the like.
 さらに、標準サンプルとして濃度が既知である標的物質およびこれを含む容器をキットが含んでいてもよい。レセプターは、診断が容易となることから、蛍光物質等の標識物質で標識されていることが好ましい。キットに含まれる各試薬は、1試料測定分毎に容器に分注されて提供されていてもよく、複数試料測定分が各試薬毎に纏めて個々の容器に含まれて提供されてもよい。後者の場合は、用時に各試薬を所定の測定用容器に分注して使用する。試薬が1試料測定分毎に提供される場合は、各試薬を含む容器はカートリッジとして一体成形されてもよく、そのカートリッジの異なる区画に各試薬が格納されていてもよい。レセプターが凍結乾燥品としてキットに含まれる場合は、これらを溶解するために適した上述のような緩衝液が更にキットに含まれることがある。これらのレセプターが含まれる、あるいはキットに含まれることのあるアッセイ用のその他の容器はレセプターおよび標的物質と相互作用せず、アッセイに利用される反応、例えば酵素反応、化学発光反応を妨害しない材料であればどんな材質のものでもよい。必要であればそのような相互作用を起こさないように表面を予め処理して提供されてもよい。検査キットには、通常取り扱い説明書が添付される。 Furthermore, the kit may include a target substance having a known concentration as a standard sample and a container containing the target substance. The receptor is preferably labeled with a labeling substance such as a fluorescent substance because diagnosis is easy. Each reagent included in the kit may be provided by being dispensed into a container for each sample measurement, or a plurality of sample measurements may be provided for each reagent in a separate container. . In the latter case, each reagent is dispensed into a predetermined measurement container before use. When the reagent is provided for each sample measurement, the container containing each reagent may be integrally formed as a cartridge, and each reagent may be stored in a different section of the cartridge. When the receptor is included in the kit as a lyophilized product, a buffer as described above suitable for dissolving them may be further included in the kit. Other containers for assays that contain these receptors, or that may be included in kits, do not interact with receptors and target substances and do not interfere with the reactions used in the assay, such as enzyme reactions and chemiluminescent reactions Any material can be used. If necessary, the surface may be pre-treated to avoid such interaction. An instruction manual is usually attached to the test kit.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 (実施例1)
 1.Anti h-C-peptide antibody[7E10](abcam社製,Mouse monoclonal)をPBS緩衝溶液(10mM pH7.4)にて0.08mg/mLに希釈して、抗体溶液を調製した。Anti h-C-peptide antibodyの抗体の等電点は、キャピラリー等電点ゲル電気泳動により測定した結果pI6.1であった。
(Example 1)
1. Anti h-C-peptide antibody [7E10] (Abcam, Mouse monoclonal) was diluted to 0.08 mg / mL with PBS buffer solution (10 mM pH 7.4) to prepare an antibody solution. The isoelectric point of the anti hC-peptide antibody was pI6.1 as measured by capillary isoelectric focusing gel electrophoresis.
 2.C-Peptide(human)(Bachem社製)をPBS緩衝溶液(10mM pH7.4)にて4,2,1,0.5,0.25μMに希釈して、抗原溶液を調製した。 2. C-Peptide (human) (manufactured by Bachem) was diluted to 4, 2, 1, 0.5, 0.25 μM with a PBS buffer solution (10 mM pH 7.4) to prepare an antigen solution.
 3.1.で調製した抗体溶液20μL、2.で調製したそれぞれの濃度の抗原溶液4.7μL、およびPBS緩衝溶液(10mM pH7.4)20μLを混合した。その後、室温(25℃)にて1時間静置した。ここで、抗原-抗体複合体の等電点は、キャピラリー等電点ゲル電気泳動により測定した結果、pI5.9(抗原1つ結合)、pI5.6(抗原2つ結合)であった。 3.1. 1. 20 μL of antibody solution prepared in 1. 4.7 μL of the antigen solution of each concentration prepared in the above and 20 μL of PBS buffer solution (10 mM pH 7.4) were mixed. Then, it left still at room temperature (25 degreeC) for 1 hour. Here, the isoelectric points of the antigen-antibody complex were pI5.9 (one antigen binding) and pI5.6 (two antigen bindings) as measured by capillary isoelectric focusing gel electrophoresis.
 4.次いで、3.で調製した混合液にLoading Buffer(40%(w/v)グリセリン,0.4%(w/v)ブロモフェノールブルー(BPB),0.2Mトリス-HCl pH7.4)を14.9μL添加した。 4. Next, 3. 14.9 μL of Loading Buffer (40% (w / v) glycerin, 0.4% (w / v) bromophenol blue (BPB), 0.2 M Tris-HCl pH 7.4) was added to the mixed solution prepared in step 1 above. .
 5.4.で調製した混合液10μLをゲルウェルにアプライし、200V定電圧、室温(20~25℃)にて120分間、電気泳動を実施した。上記2.で調製した0.25、0.5、1、2、4μMのC-Peptideの各レーン中の量はそれぞれ0.6、1.2、2.4、4.8、9.5ngであった。使用した機材及び溶液は以下のとおりである。 5.4. 10 μL of the mixed solution prepared in (1) was applied to the gel well, and electrophoresis was performed at 200 V constant voltage and room temperature (20 to 25 ° C.) for 120 minutes. 2. The amount of 0.25, 0.5, 1, 2, 4 μM C-Peptide prepared in 1 in each lane was 0.6, 1.2, 2.4, 4.8, and 9.5 ng, respectively. . The equipment and solutions used are as follows.
 ・電気泳動装置 XCell SureLock Mini-Cell(Invitrogen社製)
 ・アクリルアミドゲル NativePAGE 4-16% ビストリスゲル,1.0mm, 10ウェル(Invitrogen社製)
 ・Cathode Buffer(ランニングバッファー) 25mM Tris,192mM Glycine ,pH7.4
 ・Anode Buffer 100mM Tris,pH7.8
・ Electrophoresis device XCell SureLock Mini-Cell (manufactured by Invitrogen)
Acrylamide gel NativePAGE 4-16% Vistris gel, 1.0 mm, 10 wells (Invitrogen)
・ Cathode Buffer (running buffer) 25 mM Tris, 192 mM Glycine, pH 7.4
-Anode Buffer 100 mM Tris, pH 7.8
 6.電気泳動終了後のゲルを銀染色kit WAKO(和光純薬社製)にて染色した。操作はkit添付の操作手順書にしたがって実施した。 6. The gel after electrophoresis was stained with a silver staining kit WAKO (manufactured by Wako Pure Chemical Industries, Ltd.). The operation was performed according to the operation procedure attached to the kit.
 結果を図1に示す。図1の結果から、抗体のバンドと抗原-抗体複合体のバンドとが明確に分離できたことがわかる。抗原-抗体複合体のバンドはC-peptideの量が増加するにつれバンドが濃くなり、一方で、抗体のバンドはC-peptideの量が増加するにつれバンドが薄くなっている。 The results are shown in FIG. From the results in FIG. 1, it can be seen that the antibody band and the antigen-antibody complex band were clearly separated. The band of the antigen-antibody complex becomes deeper as the amount of C-peptide increases, while the band of the antibody becomes thinner as the amount of C-peptide increases.
 (比較例1)
 電気泳動を実施する際のCathode Bufferを100mM コハク酸バッファー(pH5.4)に変更したこと以外は、実施例1と同様の方法により電気泳動を行った。結果を図2aに示す。
(比較例2)
 電気泳動を実施する際のCathode Bufferを25mM Tris,192mM Glycine バッファー(pH8.6)に変更した。またC-peptideの各レーン中の量については、2.4、4.8、9.5ngで行った。それ以外の操作については、実施例1と同様の方法により電気泳動を行った。
(Comparative Example 1)
Electrophoresis was performed in the same manner as in Example 1 except that the Cathode Buffer used for electrophoresis was changed to 100 mM succinate buffer (pH 5.4). The result is shown in FIG.
(Comparative Example 2)
The Cathode Buffer used for electrophoresis was changed to 25 mM Tris, 192 mM Glycine buffer (pH 8.6). The amount of C-peptide in each lane was 2.4, 4.8, and 9.5 ng. For other operations, electrophoresis was performed in the same manner as in Example 1.
 比較例では、図2に示すように抗体のバンドと抗原-抗体複合体のバンドとが明確に分離せず、抗原-抗体複合体のバンドを明確に検出することができなかった。結果を図2bに示す。 In the comparative example, as shown in FIG. 2, the antibody band and the antigen-antibody complex band were not clearly separated, and the antigen-antibody complex band could not be clearly detected. The result is shown in FIG.

Claims (3)

  1.  標的物質および標的物質に特異的に結合するレセプターの複合体と遊離レセプターとを分離する方法であって、
     前記レセプターの等電点は前記複合体の等電点より高く、
     前記電気泳動は、前記複合体非変性条件下で、前記複合体の等電点を超え、かつ前記レセプターの等電点の+2以下であるpHを持つ緩衝液中で行う、
     標的物質-レセプター複合体と遊離レセプターとを分離する方法。
    A method of separating a target substance and a complex of a receptor that specifically binds to the target substance and a free receptor,
    The isoelectric point of the receptor is higher than the isoelectric point of the complex;
    The electrophoresis is performed in a buffer solution having a pH that exceeds the isoelectric point of the complex and not more than +2 of the isoelectric point of the receptor under non-denaturing conditions of the complex.
    A method for separating a target substance-receptor complex from a free receptor.
  2.  前記標的物質の分子量が500~10,000である、請求項1に記載の方法。 The method according to claim 1, wherein the molecular weight of the target substance is 500 to 10,000.
  3.  前記緩衝液のpHがレセプターの等電点の+1.5以下かつ複合体の等電点の+1.0以上である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the pH of the buffer solution is +1.5 or less of the isoelectric point of the receptor and +1.0 or more of the isoelectric point of the complex.
PCT/JP2012/080748 2012-11-28 2012-11-28 Method for separating target-receptor complex and free receptor WO2014083637A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/080748 WO2014083637A1 (en) 2012-11-28 2012-11-28 Method for separating target-receptor complex and free receptor
PCT/JP2013/051607 WO2014083861A1 (en) 2012-11-28 2013-01-25 Method for separating target substance-receptor complex and free receptors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080748 WO2014083637A1 (en) 2012-11-28 2012-11-28 Method for separating target-receptor complex and free receptor

Publications (1)

Publication Number Publication Date
WO2014083637A1 true WO2014083637A1 (en) 2014-06-05

Family

ID=50827311

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/080748 WO2014083637A1 (en) 2012-11-28 2012-11-28 Method for separating target-receptor complex and free receptor
PCT/JP2013/051607 WO2014083861A1 (en) 2012-11-28 2013-01-25 Method for separating target substance-receptor complex and free receptors

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051607 WO2014083861A1 (en) 2012-11-28 2013-01-25 Method for separating target substance-receptor complex and free receptors

Country Status (1)

Country Link
WO (2) WO2014083637A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191368A (en) * 2002-11-29 2004-07-08 Institute Of Physical & Chemical Research Target molecule detection method
JP2005233944A (en) * 2004-01-20 2005-09-02 Japan Science & Technology Agency Method and chip for immunoassay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191368A (en) * 2002-11-29 2004-07-08 Institute Of Physical & Chemical Research Target molecule detection method
JP2005233944A (en) * 2004-01-20 2005-09-02 Japan Science & Technology Agency Method and chip for immunoassay

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIELSEN R.G. ET AL.: "Separation of antibody- antigen complexes by capillary zone electrophoresis, isoelectric focusing and high-performance size-exclusion chromatography.", J.CHROMATOGR., vol. 539, 1991, pages 177 - 185, XP001328037 *

Also Published As

Publication number Publication date
WO2014083861A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
US10753859B2 (en) Dual wavelength isoelectric focusing for determining drug load in antibody drug conjugates
Han et al. High throughput profiling of charge heterogeneity in antibodies by microchip electrophoresis
US10309975B2 (en) Functionalized eyewear device for detecting biomarker in tears
BR112020014894A2 (en) ELECTRODE FOR USE IN THE ELECTROCHEMICAL DETECTION OF A TARGET SPECIES, ELECTROCHEMICAL SPECTROMETER, USE OF AN ELECTRODE AND ELECTROCHEMICAL METHOD OF DETECTION OF A TARGET SPECIES
Wu et al. Imaged capillary isoelectric focusing: applications in the pharmaceutical industry and recent innovations of the technology
ES2805740T3 (en) Electrophoresis method with immunofixation with gel immuno-displacement of target components
KR20220012263A (en) Characterization of domain-specific charge variants of antibodies
EP3002588A1 (en) Biomarker for psychiatric and neurological disorders
JP2010107509A (en) Immunity replacement electrophoresis
US11782023B2 (en) Ce-western applications for antibody development
JP6157862B2 (en) Method for separating target substance-receptor complex and free receptor
US8480875B2 (en) Apparatus, compositions and methods for rapid competitive homogeneous assay
WO2014083637A1 (en) Method for separating target-receptor complex and free receptor
JP7428657B2 (en) Target substance separation and quantification methods
WO2011161430A1 (en) Assay for detecting frre light chains by capillary zone electrophoresis
KR20200025906A (en) Peptide cleaved specifically by pepsin and kit for diasnosing Laryngopharyngeal Reflux comprising the same
JP2010002393A (en) Detection method of target material
Coughlin et al. A simple enzyme–substrate localized conjugation method to generate immobilized, functional glutathione S-transferase fusion protein columns for affinity enrichment
CN112654639A (en) Systems and methods for affinity capillary electrophoresis
US10072097B2 (en) Compositions and methods for detection of protein S-nitrosylation and oxidation
US20210278403A1 (en) Lateral flow assay for assessing recombinant protein expression or reporter gene expression
JP2012131713A (en) Polyclonal antibody obtained from human dapit as immunogen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP