WO2014082266A1 - 一种上行mu-mimo的方法及系统 - Google Patents

一种上行mu-mimo的方法及系统 Download PDF

Info

Publication number
WO2014082266A1
WO2014082266A1 PCT/CN2012/085580 CN2012085580W WO2014082266A1 WO 2014082266 A1 WO2014082266 A1 WO 2014082266A1 CN 2012085580 W CN2012085580 W CN 2012085580W WO 2014082266 A1 WO2014082266 A1 WO 2014082266A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
uplink signal
mac
scheduling message
user equipment
Prior art date
Application number
PCT/CN2012/085580
Other languages
English (en)
French (fr)
Inventor
李龠
王建国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/085580 priority Critical patent/WO2014082266A1/zh
Priority to CN201280026191.8A priority patent/CN104205662B/zh
Priority to CN201710453652.4A priority patent/CN107196689B/zh
Publication of WO2014082266A1 publication Critical patent/WO2014082266A1/zh
Priority to US14/724,953 priority patent/US9554394B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/0391Spatial equalizers codebook-based design construction details of matrices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Definitions

  • the present invention belongs to the field of wireless communication technologies, and in particular, to a method and system for uplink MU-MIMO.
  • GSM Global System of Mobile communication
  • GPRS General Packet Radio Service Technology
  • WCDMA Wideband Code Division Multiple Access
  • CDMA-2000 CDMA-2000
  • time division-synchronous code division Time Division-Synchronous Code Division
  • WiMAX Worldwide Interoperability for Microwave Access
  • UE User Equipment
  • enhanced communication means such as coordinated multi-point transmission (Coordinated Multipoint, CoMP) to improve the reliability of user equipment at the edge of the cell, or carrier aggregation (Carrier Aggregation, CA)
  • CoMP Coordinated Multipoint
  • CA Carrier Aggregation
  • the concept of synthetic communication is proposed.
  • the synthetic communication whether it is uplink or downlink data transmission, it can be forwarded by other user equipment, wherein the user equipment Communication between the two can be achieved through short-distance technology such as WIFI or Bluetooth, or through long-term evolution D2D (Long Term Evolution Device-to-Device (LTE D2D) implementation, multi-user multi-user multi-user multi-user in LTE system Input Mul-tipe Output, MU-MIMO) is virtual multipe Input Mul-tipe Output, virtual-MIMO), ie the base station (evolved Node B, eNB) scheduling two user equipments to transmit respective data on the same time-frequency resource, thereby implementing MIMO transmission, and the disadvantage is that the channel orthogonality of the user equipment is required to be good, and the receiving information of the two user equipments at the base station is The noise ratio cannot be too different. Otherwise, the user equipment with
  • the user needs a method based on precoding, MU-MIMO with low channel conditions, low reception conditions, and high uplink spectrum efficiency.
  • the embodiment of the present invention provides an uplink MU-MIMO method to implement uplink MU-MIMO and improve uplink spectrum efficiency.
  • the method for uplink MU-MIMO includes:
  • the base station after the base station receives the uplink signal sent by the multiple user equipments after the preset fixed time, the base station further includes:
  • the base station checks the codeword, and if the codeword has an error, sends a retransmission scheduling message to the generating MAC The user equipment of the PDU or the plurality of user equipments to obtain a retransmission uplink signal uploaded by the user equipment.
  • the base station receives a retransmission uplink signal sent by one or more user equipments.
  • the method for uplink MU-MIMO includes:
  • the user equipment sends a sounding reference signal to the base station, so that the base station constructs a precoding matrix according to the sounding reference signal, and generates a first scheduling message according to the precoding matrix; and receives a first scheduling message sent by the base station,
  • the first scheduling message includes a layer mapping rule and a precoding matrix; generating at least one MAC according to the first scheduling message Layer user packet data unit MAC PDU, and transmitting the MAC PDU to enable the MAC PDU to be exchanged between the plurality of user equipments;
  • the uplink signal generated after the PDU is processed on each layer; the uplink signal is sent to the base station on the antenna.
  • the user equipment In a first possible implementation manner of the second aspect, the user equipment generates at least one MAC according to the first scheduling message.
  • Layer user packet data unit MAC PDU, and transmitting the MAC PDU, so that the MAC PDU is exchanged between the multiple user equipments includes:
  • the user equipment generates at least one MAC PDU and sends a MAC
  • the PDU is sent to other user equipments; the MAC PDUs generated by other user equipments are received.
  • the user equipment receives a first scheduling message that is sent by the base station, where the first scheduling message includes a layer mapping rule and a precoding matrix, including:
  • the user equipment pairs the MAC
  • the PDU performs channel coding, rate matching, and modulation to generate a corresponding codeword.
  • the layer mapping is performed on the codeword according to the layer mapping rule included in the first scheduling message; and the first scheduling message is included according to the first scheduling message.
  • the precoding matrix pre-encodes the layer using a corresponding precoding vector to obtain an uplink signal.
  • the sending, by the user equipment, the uplink signal to the base station on an antenna includes:
  • the user equipment If the user equipment generates the MAC a PDU, occupying a hybrid automatic repeat request process, transmitting the uplink signal to the base station on an antenna; if receiving all of the MAC The PDU, which occupies the hybrid automatic repeat request process, transmits the uplink signal to the base station on the antenna.
  • the method further includes:
  • the user equipment receives the retransmission scheduling message sent by the base station, and sends a retransmission uplink signal to the base station according to the retransmission scheduling message.
  • the user equipment according to the retransmission scheduling message, sending a retransmission uplink signal to the base station includes:
  • the user equipment retransmits the retransmission uplink signal separately according to the retransmission scheduling message; and retransmits the retransmission uplink signal according to the retransmission scheduling message according to the synchronization with other user equipments.
  • a base station includes:
  • the reference signal receiving unit is connected to the matrix construction unit, and configured to receive the sounding reference signals sent by the plurality of user equipments, where the plurality of user equipments meet short-distance transmission conditions;
  • a matrix construction unit which is respectively connected to the reference signal receiving unit and the message generating unit, and configured to construct a precoding matrix according to the received sounding reference signal;
  • a message generating unit which is respectively connected to the matrix construction unit and the message sending unit, and configured to generate a first scheduling message according to the precoding matrix
  • the message sending unit is configured to be connected to the message generating unit and the uplink signal receiving unit, and configured to send the first scheduling message to the multiple user equipments to schedule at least one user equipment of the multiple user equipments to generate at least one MAC Layer user packet data unit MAC PDU, and exchanges the MAC PDU between the plurality of user equipments by short-distance transmission technology;
  • the uplink signal receiving unit is connected to the message sending unit, and is configured to receive an uplink signal sent by the multiple user equipments after the preset fixed time, where the uplink signal is that the multiple user equipments respectively correspond to the MAC
  • the uplink signal generated after the PDU is processed.
  • the access point device further includes:
  • a codeword obtaining unit connected to the uplink signal receiving unit, configured to decode the uplink signal to obtain a codeword, and send the codeword into and generate the MAC
  • the hybrid automatic repeat request process corresponding to the user equipment of the PDU.
  • the access point device further includes:
  • codeword check unit which is respectively connected to the codeword obtaining unit and the retransmission scheduling message sending unit, for verifying the codeword
  • a retransmission scheduling message sending unit configured to be connected to the codeword checking unit, configured to send a retransmission scheduling message to generate the MAC if the codeword has an error
  • the access point device further includes:
  • the retransmission uplink signal receiving unit is connected to the retransmission scheduling message sending unit, and is configured to receive a retransmission uplink signal sent by one or more user equipments.
  • a fourth aspect a base station, where the base station includes:
  • the receiver is connected to the processor, and is configured to receive the sounding reference signals sent by the plurality of user equipments, where the plurality of user equipments meet the short-distance transmission condition; after the preset fixed time, receive the uplinks sent by the multiple user equipments Signal, the uplink signal is that the multiple user equipments respectively correspond to the MAC The uplink signal generated after the PDU is processed;
  • the receiver and the transmitter are respectively connected, configured to construct a precoding matrix according to the received sounding reference signal; and generate a first scheduling message according to the precoding matrix;
  • a transmitter configured to send the first scheduling message to the multiple user equipments, to schedule at least one user equipment of the multiple user equipments, to generate at least one MAC
  • the layer user groups the data unit MAC PDU and exchanges the MAC PDU between the plurality of user equipments by short-distance transmission techniques.
  • the processor is further configured to: decode the uplink signal to obtain a codeword, send the codeword into and generate the MAC The hybrid automatic repeat request process corresponding to the user equipment of the PDU.
  • the processor is further configured to verify the codeword
  • the transmitter is further configured to: if the codeword has an error, send a retransmission scheduling message to generate the MAC The user equipment of the PDU, or the plurality of user equipments, to obtain a retransmission uplink signal.
  • the receiver is further configured to receive a retransmission uplink signal sent by one or more user equipments.
  • a fifth aspect is a user equipment, where the user equipment includes:
  • the reference signal sending unit is connected to the scheduling message receiving unit, and configured to send the sounding reference signal to the base station, so that the base station constructs a precoding matrix according to the sounding reference signal, and generates a first scheduling message according to the precoding matrix;
  • Scheduling message receiving unit respectively, with reference signal transmitting unit and MAC
  • the PDU generating unit is configured to receive a first scheduling message sent by the base station, where the first scheduling message includes a layer mapping rule and a precoding matrix;
  • MAC a PDU generating unit configured to be connected to the scheduling message receiving unit and the uplink signal generating unit, respectively, configured to generate at least one MAC layer user packet data unit MAC PDU according to the first scheduling message, and send the MAC a PDU, such that the MAC PDU is exchanged between the plurality of user equipments;
  • An uplink signal generating unit which is respectively connected to the MAC PDU generating unit and the uplink signal sending unit, for the MAC The uplink signal generated after the PDU is processed on each layer;
  • the uplink signal sending unit is connected to the uplink signal generating unit, and configured to send the uplink signal to the base station on the antenna.
  • the MAC PDU generating unit is specifically configured to generate at least one MAC PDUs, and send MAC PDUs to other user equipments; receive MAC PDUs generated by other user equipments.
  • the uplink signal generating unit is specifically configured to use the MAC
  • the PDU performs channel coding, rate matching, and modulation to generate a corresponding codeword.
  • the layer mapping is performed on the codeword according to the layer mapping rule included in the first scheduling message; and the first scheduling message is included according to the first scheduling message.
  • the corresponding vector precodes the layer to obtain an uplink signal.
  • the uplink signal sending unit is specifically configured to: if the MAC is generated a PDU, occupying a hybrid automatic repeat request process, transmitting the uplink signal to the base station on an antenna; if receiving all of the MAC The PDU, which occupies the hybrid automatic repeat request process, transmits the uplink signal to the base station on the antenna.
  • the user equipment further includes:
  • the retransmission scheduling message receiving unit is connected to the uplink signal sending unit and the uplink signal retransmission unit, and is configured to receive the retransmission scheduling message sent by the base station;
  • the uplink signal retransmission unit is connected to the retransmission scheduling message receiving unit, and configured to send a retransmission uplink signal to the base station according to the retransmission scheduling message.
  • the uplink signal retransmission unit is specifically configured to separately retransmit the retransmitted uplink signal according to the retransmission scheduling message And retransmitting the retransmitted uplink signal in synchronization with other user equipments according to the retransmission scheduling message.
  • a sixth aspect is a user equipment, where the user equipment includes:
  • a transmitter coupled to the processor, configured to send the sounding reference signal to the base station, so that the base station constructs a precoding matrix according to the sounding reference signal, and generates a first scheduling message according to the precoding matrix; Deriving an uplink signal to the base station;
  • a receiver configured to receive, by the processor, a first scheduling message sent by the base station, where the first scheduling message includes a layer mapping rule and a precoding matrix;
  • a processor configured to be connected to the transmitter and the receiver, respectively, configured to generate at least one MAC according to the first scheduling message Layer user packet data unit MAC PDU, and transmitting the MAC PDU to enable the MAC PDU to be exchanged between the plurality of user equipments;
  • the uplink signal generated after the PDU is processed on each layer.
  • the processor is further configured to generate at least one MAC PDU
  • the transmitter is further configured to send a MAC PDU to other user equipments
  • the receiver is further configured to receive a MAC PDU generated by another user equipment.
  • the processor is further configured to use the MAC
  • the PDU performs channel coding, rate matching, and modulation to generate a corresponding codeword.
  • the layer mapping is performed on the codeword according to the layer mapping rule included in the first scheduling message; and the first scheduling message is included according to the first scheduling message.
  • the corresponding vector precodes the layer to obtain an uplink signal.
  • the transmitter is further configured to: if the MAC is generated a PDU, occupying a hybrid automatic repeat request process, transmitting the uplink signal to the base station on an antenna; if receiving all of the MAC The PDU, which occupies the hybrid automatic repeat request process, transmits the uplink signal to the base station on the antenna.
  • the receiver is further configured to receive the retransmission scheduling message sent by the base station;
  • the transmitter is further configured to send a retransmission uplink signal to the base station according to the retransmission scheduling message.
  • the transmitter is further configured to separately retransmit the retransmitted uplink signal according to the retransmission scheduling message;
  • the retransmission scheduling message is synchronously retransmitted with the other user equipments to retransmit the retransmission uplink signal.
  • a seventh aspect a system for uplink MU-MIMO, the system comprising:
  • the base station and/or the plurality of user equipments are The base station and/or the plurality of user equipments;
  • the short distance transmission condition is satisfied between the plurality of user equipments.
  • the base station in the embodiment of the present invention monitors the sounding reference signals sent by multiple user equipments, and the base station schedules multiple user equipments, and the user equipment generates and exchanges MAC addresses.
  • PDU while multiple user equipments process the MAC according to the same scheduling message
  • the PDU is simultaneously transmitted on the antenna, and multiple antennas of the same virtual user equipment are simultaneously transmitted.
  • the embodiment of the present invention greatly improves the uplink spectrum efficiency of the system.
  • FIG. 1 is a schematic diagram of a scenario of an uplink MU-MIMO system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an implementation of a method for uplink MU-MIMO according to another embodiment of the present invention
  • FIG. 3 is a flowchart of an implementation of a method for uplink MU-MIMO according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of performing uplink MU-MIMO between user equipments according to another embodiment of the present invention.
  • FIG. 5 is a sequence diagram of processing a first scheduling message between user equipments according to another embodiment of the present invention.
  • FIG. 6 is an interaction flowchart of a method for uplink MU-MIMO according to another embodiment of the present invention.
  • FIG. 7 is a block diagram showing the structure of a base station according to another embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of a base station according to another embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a user equipment according to another embodiment of the present invention.
  • FIG. 10 is a block diagram showing the structure of a user equipment according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a scenario applicable to an uplink MU-MIMO system according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment are shown.
  • the system includes a base station 1 and a plurality of user equipments 2.
  • the base station 1 is connected to the plurality of user equipments 2 in a wireless manner, and the plurality of user equipments 2 are on the same channel and are short.
  • the distance transmission condition is a terminal device having a wireless communication function.
  • a plurality of user equipments generally refer to any number of user equipments of not less than two, and multiple user equipments satisfy short-distance transmission conditions, as shown in the figure.
  • the base station 1 monitors the sounding reference signal Sounding sent by the plurality of user equipments 2, and the base station 1 combines the plurality of user equipments 2 as one virtual user equipment, and regards the antenna transmissions of the plurality of user equipments 2 as the same virtual
  • the plurality of antennas of the user equipment are transmitted, and the base station 1 obtains multiple antenna uplink channel matrices of the virtual user equipment according to the sounding reference signal sent by the virtual user equipment.
  • the base station 1 constructs a precoding matrix for uplink transmission of the virtual user equipment according to the uplink channel matrix. Based on the precoding matrix, the base station 1 generates and sends the first scheduling message to the virtual user equipment, to schedule the virtual user equipment to receive the scheduling message, and the virtual user equipment generates a MAC. Layer user packet data unit MAC PDU, the virtual user equipment pair MAC The PDU performs channel coding, rate matching, and modulation to obtain a codeword, and maps the codeword to at least two layers according to the layer mapping rule, after which the virtual user equipment utilizes precoding according to the first scheduling message.
  • MAC PDU Layer user packet data unit
  • the PDU performs channel coding, rate matching, and modulation to obtain a codeword, and maps the codeword to at least two layers according to the layer mapping rule, after which the virtual user equipment utilizes precoding according to the first scheduling message.
  • the matrix pre-codes the codewords of the multiple layers to generate an uplink signal, and the virtual user equipment sends an uplink signal on multiple antennas, and the base station 1 receives the virtual user equipment after a preset fixed time. Entering the uplink signal of joint precoding,
  • the short-distance transmission conditions are met between the plurality of user equipments 2 constituting the virtual user equipment, and the short-distance transmission technologies include, but are not limited to, WIFI, Bluetooth, and LTE. D2D.
  • the short-distance transmission technologies include, but are not limited to, WIFI, Bluetooth, and LTE. D2D.
  • the at least one user equipment of the plurality of user equipments 2 After the plurality of user equipments 2 send the sounding reference signals to the base station 1, the at least one user equipment of the plurality of user equipments 2 generates at least one MAC according to the received first scheduling message sent by the base station 1.
  • the PDU is then exchanged between the plurality of user equipments 2 for MAC PDUs. Through the MAC PDU interchange, all the user equipments 2 participating in the current MU-MIMO transmission obtain the same MAC. PDU.
  • the PDU performs channel coding, rate matching, and modulation to obtain a codeword.
  • the codeword is mapped to multiple layers, and the multiple user equipments 2 are instructed according to the first scheduling message in the precoding matrix.
  • Each of the user equipments 2 has a corresponding vector, and the layers are precoded to obtain an uplink signal. Different antennas of different UEs will use different precoding vectors in the precoding matrix.
  • the uplink signal is sent on the antennas of the multiple user equipments 2, and the uplink MU-MIMO of the joint precoding of multiple user equipments is completed.
  • multiple user equipments complete uplink MU-MIMO, and the user equipment independently transmits the same data.
  • the environment of a user equipment deteriorates, the throughput and/or reliability of data transmission of the user equipment will drop sharply. It does not affect the data upload of other user equipments.
  • multiple user equipments exchange data through short-distance transmission technology, there is no requirement for channel orthogonality between user equipments, and user equipments with poor channel conditions will not. Interference, wide application scenarios, and large gains.
  • FIG. 2 is a flowchart of an implementation of a method for uplink MU-MIMO according to another embodiment of the present invention.
  • the execution body of the embodiment is the base station 1 in FIG. 1, and the process is detailed as follows:
  • step S201 the base station receives the sounding reference signals sent by the plurality of user equipments, and the plurality of user equipments satisfy the short-distance transmission conditions.
  • the process of detecting a reference signal is described by taking a process of detecting a reference signal of one antenna of each user equipment as an example to describe a synthetic communication configuration process.
  • the first message in the first scheduling message is for convenience of description and reference, and the first scheduling message refers to a scheduling message sent by the base station.
  • the description herein as the first scheduling message does not mean that there must be a second scheduling message corresponding thereto in the specific implementation manner of the present invention.
  • the base station receives the sounding reference signals sent by the two user equipments, and the base station acquires the uplink channel matrix of the two user equipments according to the sounding reference signals, and determines whether the two user equipments meet the short-distance transmission conditions, if No, scheduling is performed according to the existing MIMO method. If yes, the two uplink channel matrices are combined according to the sounding reference signal to construct a precoding matrix.
  • step S202 the base station constructs a precoding matrix according to the received sounding reference signal.
  • the base station acquires the uplink channel matrix on the two user equipments according to the received sounding reference signal, and combines the uplink channel matrices of the two user equipments to construct a precoding matrix.
  • step S203 the base station generates a first scheduling message according to the precoding matrix.
  • the base station generates a first scheduling message according to the precoding matrix, and a scheduling message and a layer mapping rule of the base station.
  • step S204 the base station sends the first scheduling message to the multiple user equipments to schedule at least one user equipment of the multiple user equipments to generate at least one MAC address.
  • the layer user groups the data unit MAC PDU and exchanges the MAC PDU between the plurality of user equipments by short-distance transmission techniques.
  • the base station sends a first scheduling message to the two user equipments, so that at least one of the two user equipments generates a MAC.
  • PDU the two user equipments exchange MAC PDUs by short-distance transmission technology, and by interchange, two user equipments obtain the same MAC PDU.
  • MAC The PDU interchange is specifically: the user equipment generates at least one MAC PDU, and sends a MAC PDU to other user equipment; the user equipment receives a MAC generated by another user equipment. PDU.
  • the two user equipments respectively correspond to the MAC
  • the PDU performs channel coding, rate matching, and modulation to obtain a codeword.
  • the user equipment maps the codeword to two layers according to the layer mapping rule, and the user equipment according to the corresponding precoding vector and the two in the precoding matrix.
  • the layer pre-encodes the layer to obtain the uplink signal.
  • the method for the base station to enable the two user equipments to receive the first scheduling message at the same time includes: sending the first scheduling message twice, that is, sending a first scheduling message for each user equipment, and when synthesizing the communication configuration, Notifying the user equipment cell radio network temporary indication (Cell Radio Network Temporary Identifier C-RNTI), using the public wireless network identifiable by the user equipment to temporarily indicate the RNTI, these methods are all existing methods, and are not described herein again.
  • C-RNTI Cell Radio Network Temporary Identifier
  • step S205 the base station receives an uplink signal sent by the multiple user equipments after a preset fixed time, where the uplink signal is that the multiple user equipments respectively correspond to the MAC The uplink signal generated after the PDU is processed.
  • the MAC The PDU needs to interact between two user equipments first, so the traditional timing needs to be changed, so the base station needs moderate delay scheduling to avoid the time collision between the delayed scheduled data and the normal scheduling data. Therefore, after receiving the preset fixed time, the base station receives the uplink signals sent by the two user equipments, where the preset fixed time is a fixed value, which is greater than or equal to the preset time of the prior art.
  • the base station decodes the uplink signal to obtain a codeword, and sends the codeword into and generates the MAC address.
  • the hybrid automatic repeat request process corresponding to the user equipment of the PDU.
  • the number of the hybrid automatic repeat request process is the same as the number of the codewords.
  • the base station decodes the uplink signal to obtain a codeword, and sends the codeword into and generates the MAC address. After the hybrid automatic repeat request process corresponding to the user equipment of the PDU, the base station checks the codeword, and if the codeword has an error, sends a retransmission scheduling message to the generated MAC address. The user equipment of the PDU or the plurality of user equipments to obtain a retransmission uplink signal uploaded by the user equipment.
  • the base station checks the codeword, and if one or two of the codewords are incorrect, sending the retransmission scheduling message to the generating the MAC a user equipment of the PDU, or the plurality of user equipments; if the two codewords are incorrect, sending the retransmission scheduling message to the multiple user equipments, and other devices cooperate to generate the MAC
  • the user equipment of the PDU sends the retransmission uplink signal.
  • the base station receives a retransmission uplink signal sent by one or more user equipments.
  • the base station receives, by the user equipment that generates the MAC PDU, the uplink signal that is separately retransmitted.
  • the base station receives, the generating the MAC
  • the user equipment of the PDU cooperates with other user equipments to retransmit the uplink signal.
  • the data is exchanged between the multiple user equipments, and performing joint precoding to obtain an uplink signal, and multiple user equipments simultaneously send uplink signals to the base station on the respective antennas, thereby realizing
  • the uplink MU-MIMO method improves the uplink spectrum efficiency.
  • FIG. 3 is a flowchart of an implementation of a method for uplink MU-MIMO according to another embodiment of the present invention.
  • the execution body of the embodiment is the user equipment 2 in FIG.
  • step S301 the user equipment sends a sounding reference signal to the base station, so that the base station constructs a precoding matrix according to the sounding reference signal, and generates a first scheduling message according to the precoding matrix.
  • step S302 the user equipment receives a first scheduling message sent by the base station, where the first scheduling message includes a layer mapping rule and a precoding matrix.
  • the two user equipments receive the first scheduling message at the same time, and the first scheduling message includes a layer mapping rule and a precoding matrix, parses the first scheduling message, and obtains a precoding matrix and a scheduling message. And layer mapping rules.
  • the precoding matrix is constructed by an uplink channel matrix of two user equipments. The two user equipments obtain pre-coded portions of their own precoding according to the precoding matrix for precoding. Through this step, the user equipment has the same scheduling message and layer mapping rules.
  • step S303 the user equipment generates at least one MAC layer user packet data unit MAC according to the first scheduling message. And transmitting the MAC PDU to exchange the MAC PDU between the plurality of user equipments.
  • the user equipment generates at least one MAC layer user packet data unit MAC according to the first scheduling message.
  • PDU and sending the MAC PDU, so that the MAC PDU is exchanged between the multiple user equipments, the specific steps are:
  • Step 11 The two user equipments generate at least one MAC according to the scheduling message indication in the first scheduling message. PDU, there are the following situations:
  • a MAC PDU is generated by a user equipment, which is divided into two cases:
  • a user equipment generates a MAC PDU
  • One user equipment generates two MAC PDUs.
  • One MAC PDU is generated by each of the two user equipments.
  • step 12 the MAC PDUs are exchanged between the two user equipments.
  • MAC PDU interchange is specifically: if one user equipment generates 1 or 2 MACs The PDU transmits the MAC PDU to another user equipment by using a short-distance transmission technology; if two user equipments each generate one MAC PDU, the short-distance transmission technology exchanges MAC addresses between the two user equipments. PDU. It can also be described that the user equipment generates at least one MAC PDU and sends a MAC PDU to other user equipments; the user equipment receives MAC PDUs generated by other user equipments.
  • two user equipments obtain at least one MAC PDU.
  • step S304 the uplink signal generated by the user equipment after processing the MAC PDU on each layer.
  • the MAC is The uplink signal generated after the PDU is processed on each layer.
  • the specific steps include:
  • Step 21 The user equipment performs channel coding, rate matching, and modulation on the MAC PDU to generate a corresponding codeword.
  • Step 22 The user equipment performs layer mapping of the corresponding layer on the codeword according to a layer mapping rule included in the first scheduling message.
  • Step 23 The user equipment pre-codes the layer according to a corresponding vector in the precoding matrix included in the first scheduling message to obtain an uplink signal.
  • step S305 the user equipment sends the uplink signal to the base station on an antenna.
  • the uplink signals are simultaneously sent to the base station on the respective antennas.
  • the two user equipments complete the processing of the uplink MU-MIMO, as shown in FIG.
  • the timing of the corresponding processing is as shown in FIG. 5, wherein the MAC is The PDU needs to be exchanged between two user equipments. Therefore, the transmission time is changed from X+Z to X+Y+Z, and the processing time of Z subframes is increased.
  • the transmission time of the prior art is X+Z, which is 4 Sub-frames, then the transmission time X+Y+Z of the present invention is greater than 4 subframes, but X+Y+Z must be a fixed value, so the base station needs to delay scheduling with respect to the prior art, avoiding delayed scheduling data and normal scheduling. The temporal collision of data.
  • the user equipment sends the uplink signal on the antenna:
  • the PDU which occupies the hybrid automatic repeat request process, transmits the uplink signal to the base station on the antenna.
  • the user equipment that generates the MAC PDU occupies the MAC address.
  • the same number of hybrid PDUs are automatically retransmitted to the request process for transmission.
  • the user equipment receives all of the MACs
  • the PDU which occupies the hybrid automatic repeat request process, transmits the uplink signal to the base station on the antenna.
  • the MAC only the MAC is received.
  • the user equipment of the PDU does not occupy the hybrid automatic repeat request process for transmission, nor does it undertake retransmission. After the transmission, the cache is deleted. In the case where there are two MAC PDUs, only the MAC is received.
  • the user equipment of the PDU may also occupy a hybrid automatic repeat request process, and send the uplink signal to the base station on the antenna.
  • the base station After the base station checks the uplink signal, if an error is found, the retransmission scheduling message is sent to one or more user equipments.
  • the user equipment receives the retransmission scheduling message sent by the base station; and the user equipment sends a retransmission uplink signal to the base station according to the retransmission scheduling message.
  • the retransmission scheduling message may be sent to generate a MAC.
  • the user equipment of the PDU can also be sent to two user equipments participating in this precoding.
  • the user equipment sends a retransmission uplink signal to the base station according to the retransmission scheduling message.
  • the user equipment separately retransmits the uplink signal according to the retransmission scheduling message.
  • the user equipment retransmits the uplink signal in synchronization with other user equipments according to the retransmission scheduling message.
  • another user equipment can also occupy one process to send an uplink signal. If the rescheduling message feeds back that both of the codewords are wrong, another user equipment cooperates to generate two of the MACs. The user equipment of the PDU synchronizes retransmission. If the rescheduling message feedback has only one of the codeword errors, the user equipment that generates the two MAC PDUs is separately retransmitted, and the other user equipment deletes the buffer.
  • a plurality of user equipments are jointly scheduled by the base station, and data is exchanged between the user equipments. Since the information exchange is performed by using a short-distance transmission technology, and the workload of the base station is not increased, the user equipments perform joint precoding. Obtaining an uplink signal, multiple user equipments simultaneously send uplink signals to the base station on respective antennas, and the channel conditions between the user equipments themselves and the user equipments have limited impact on the uplink MU-MIMO, and the uplink spectrum is improved. Efficiency and application scenarios are also very extensive.
  • FIG. 6 is a flowchart showing an interaction process of an uplink MU-MIMO method according to another embodiment of the present invention. The process is detailed as follows.
  • Two user equipments send sounding reference signals to the base station.
  • the base station receives the sounding reference signals sent by the two user equipments, wherein the short distance transmission conditions are met between the user equipments.
  • the base station sends a first scheduling message to the two user equipments.
  • the base station receives the sounding reference signals sent by the two user equipments; constructs a precoding matrix according to the sounding reference signals; generates a first scheduling message according to the precoding matrix; and sends the first scheduling message to
  • the two user equipments generate a MAC by scheduling at least one of the two user equipments Layer user packet data unit MAC PDU, and exchanges the MAC between the two user equipments
  • the PDU is received by the two user equipments after the preset fixed time, and the uplink signal is an uplink signal generated by the two user equipments respectively processing the MAC PDU.
  • the two user equipments exchange MAC PDUs and perform joint precoding to generate uplink signals.
  • two user equipments receive a first scheduling message sent by the base station, and obtain at least one MAC according to the first scheduling message.
  • a layer user packet data unit MAC PDU a layer user packet data unit MAC PDU; an uplink signal generated after processing the MAC PDU on each layer; and transmitting the uplink signal to the base station on an antenna.
  • the two user equipments generate at least one MAC layer user packet data unit MAC according to the first scheduling message.
  • PDU and sending the MAC PDU, so that the MAC PDU is exchanged between the multiple user equipments, specifically: the user equipment generates at least one MAC PDU, and sends a MAC
  • the PDU is sent to other user equipments; the user equipments receive MAC PDUs generated by other user equipments.
  • the uplink signal generated by the user equipment after processing the MAC PDU on each layer is specifically:
  • the PDU performs channel coding, rate matching, and modulation to generate a corresponding codeword.
  • the layer mapping is performed on the codeword according to the layer mapping rule included in the first scheduling message; and the first scheduling message is included according to the first scheduling message.
  • the corresponding vector precodes the layer to obtain an uplink signal.
  • the user equipment sends the uplink signal to the base station on an antenna, specifically:
  • the PDU which occupies the hybrid automatic repeat request process, transmits the uplink signal to the base station on the antenna.
  • the base station After receiving the preset fixed time, the base station receives the uplink signal sent by the multiple user equipments.
  • the base station after receiving the preset fixed time, receives an uplink signal sent by two user equipments, where the uplink signal is that the two user equipments respectively correspond to the MAC address.
  • the uplink signal generated after the PDU is processed on each layer.
  • the base station decodes the uplink signal, sends the decoded codeword, and generates the MAC.
  • the hybrid automatic repeat request process corresponding to the user equipment of the PDU, the number of the hybrid automatic repeat request process being the same as the number of the codewords.
  • the base station checks the codeword, and if the codeword has an error, sends a retransmission scheduling message to generate the MAC address.
  • the base station checks the codeword, and if one or two of the codewords are incorrect, sending the retransmission scheduling message to generate the MAC a user equipment of the PDU, or two user equipments; the base station checks the codeword, and if the two codewords are incorrect, sends the retransmission scheduling message to two user equipments.
  • the user equipment receives the retransmission scheduling message sent by the base station.
  • the user equipment sends a retransmission uplink signal to the base station according to the retransmission scheduling message.
  • the user equipment retransmits the uplink signal separately according to the retransmission scheduling message, and the user equipment retransmits the uplink signal according to the retransmission scheduling message in synchronization with other user equipments.
  • the base station receives a retransmission uplink signal sent by one or more user equipments.
  • FIG. 7 shows a component structure of a base station according to another embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown.
  • the base station 1 includes:
  • the reference signal receiving unit 11 is connected to the matrix construction unit 12, and configured to receive the sounding reference signals sent by the plurality of user equipments, where the plurality of user equipments meet short-distance transmission conditions;
  • the matrix construction unit 12 is connected to the reference signal receiving unit 11 and the message generating unit 13, respectively, for constructing a precoding matrix according to the received sounding reference signal;
  • the message generating unit 13 is connected to the matrix constructing unit 12 and the message sending unit 14, respectively, for generating a first scheduling message according to the precoding matrix;
  • the message sending unit 14 is connected to the message generating unit 13 and the uplink signal receiving unit 15 respectively, and is configured to send the first scheduling message to the multiple user equipments to schedule at least one user equipment of the multiple user equipments, Generate at least one MAC Layer user packet data unit MAC PDU, and exchanges the MAC PDU between the plurality of user equipments by short-distance transmission technology;
  • the uplink signal receiving unit 15 is connected to the message sending unit 14 and configured to receive an uplink signal sent by the multiple user equipments after the preset fixed time, where the uplink signal is that the multiple user equipments respectively correspond to the MAC The uplink signal generated after the PDU is processed.
  • the base station 1 further includes:
  • the codeword obtaining unit 16 is connected to the uplink signal receiving unit 15 for decoding the uplink signal to obtain a codeword, and sending the codeword into and generating the MAC.
  • the hybrid automatic repeat request process corresponding to the user equipment of the PDU.
  • the base station 1 further includes:
  • the codeword check unit 17 is respectively connected to the codeword obtaining unit 16 and the retransmission scheduling message sending unit 18 for verifying the codeword;
  • the retransmission scheduling message sending unit 18 is connected to the codeword checking unit 17 and configured to send a retransmission scheduling message to generate the MAC address.
  • the base station 1 further includes:
  • the retransmission uplink signal receiving unit 19 is connected to the retransmission scheduling message sending unit 18 for receiving a retransmission uplink signal sent by one or more user equipments.
  • the base station provided in this embodiment may use the foregoing method for the corresponding uplink MU-MIMO.
  • the corresponding MU-MIMO method in FIG. 1 and FIG. 2 and details are not described herein again.
  • each unit included in the base station embodiment is only divided according to functional logic, but is not limited to the foregoing division, as long as the corresponding functions can be implemented;
  • the specific names are also for convenience of distinguishing from each other and are not intended to limit the scope of protection of the present application.
  • FIG. 8 is a block diagram showing a configuration of a base station according to another embodiment of the present invention.
  • the user equipment provided in this embodiment of the present invention may be used to implement the method in the corresponding embodiment of FIG. 2.
  • FIG. 2 For ease of description, only the implementation of the present invention is shown. For the relevant parts of the example, the specific technical details are not disclosed, please refer to the corresponding embodiment of FIG. 2 .
  • the base station 1 includes:
  • the receiver 11 is connected to the processor 12, and configured to receive the sounding reference signals sent by the plurality of user equipments, where the plurality of user equipments meet short-distance transmission conditions; after the preset fixed time, receive the multiple user equipments to send Uplink signal, the uplink signal is that the multiple user equipments respectively correspond to the MAC The uplink signal generated after the PDU is processed;
  • the processor 12 is respectively connected to the receiver 11 and the transmitter 13 for constructing a precoding matrix according to the received sounding reference signal, and generating a first scheduling message according to the precoding matrix;
  • the transmitter 13 is connected to the processor 12, and configured to send the first scheduling message to the multiple user equipments to schedule at least one user equipment of the multiple user equipments to generate at least one MAC address.
  • the layer user groups the data unit MAC PDU and exchanges the MAC PDU between the plurality of user equipments by short-distance transmission techniques.
  • the processor 12 is further configured to decode the uplink signal to obtain a codeword, and send the codeword into and generate the MAC address.
  • the hybrid automatic repeat request process corresponding to the user equipment of the PDU.
  • processor 12 is further configured to verify the codeword
  • the transmitter 13 is further configured to send a retransmission scheduling message to generate the MAC if the codeword has an error.
  • the receiver 11 is further configured to receive a retransmission uplink signal sent by one or more user equipments.
  • FIG. 8 do not constitute a limitation to a base station, and may include more or fewer components than those illustrated, or some components may be combined, or different component arrangements.
  • FIG. 9 shows a component structure of a user equipment according to another embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown.
  • the user equipment 2 includes:
  • the reference signal sending unit 21 is connected to the scheduling message receiving unit 22, and configured to send the sounding reference signal to the base station, so that the base station constructs a precoding matrix according to the sounding reference signal, and generates a first scheduling message according to the precoding matrix. ;
  • Scheduling message receiving unit 22 respectively with reference signal transmitting unit 21 and MAC
  • the PDU generating unit 23 is configured to receive a first scheduling message sent by the base station, where the first scheduling message includes a layer mapping rule and a precoding matrix;
  • the PDU generating unit 23 is connected to the scheduling message receiving unit 22 and the uplink signal generating unit 24, respectively, and configured to generate at least one MAC layer user packet data unit MAC according to the first scheduling message. a PDU, and sending the MAC PDU to exchange the MAC PDU between the plurality of user equipments;
  • the uplink signal generating unit 24 is respectively connected to the MAC PDU generating unit 23 and the uplink signal transmitting unit 25 for using the MAC
  • the uplink signal generated after the PDU is processed on each layer;
  • the uplink signal transmitting unit 25 is connected to the uplink signal generating unit 24 for transmitting the uplink signal to the base station on the antenna.
  • the MAC PDU generating unit 23 is specifically configured to generate at least one MAC PDU and send the MAC The PDU is sent to other user equipments; the MAC PDUs generated by other user equipments are received.
  • the uplink signal generating unit 24 is specifically configured to use the MAC
  • the PDU performs channel coding, rate matching, and modulation to generate a corresponding codeword.
  • the layer mapping is performed on the codeword according to the layer mapping rule included in the first scheduling message; and the first scheduling message is included according to the first scheduling message.
  • the corresponding vector precodes the layer to obtain an uplink signal.
  • the uplink signal sending unit 25 is specifically configured to generate the MAC address.
  • a PDU occupying a hybrid automatic repeat request process, transmitting the uplink signal to the base station on an antenna; if receiving all of the MAC
  • the PDU which occupies the hybrid automatic repeat request process, transmits the uplink signal to the base station on the antenna.
  • the user equipment 2 further includes:
  • the retransmission scheduling message receiving unit 26 is connected to the uplink signal sending unit 25 and the uplink signal retransmission unit 27, and is configured to receive the retransmission scheduling message sent by the base station;
  • the uplink signal retransmission unit 27 is connected to the retransmission scheduling message receiving unit 26, and is configured to send a retransmission uplink signal to the base station according to the retransmission scheduling message.
  • the uplink signal retransmission unit 27 is specifically configured to separately retransmit the retransmission uplink signal according to the retransmission scheduling message, and cooperate with other user equipments to synchronize retransmission according to the retransmission scheduling message. Retransmit the uplink signal.
  • the user equipment provided in this embodiment may use the corresponding uplink MU-MIMO method.
  • the user equipment provided in this embodiment may use the corresponding uplink MU-MIMO method.
  • the corresponding MU-MIMO method may use the corresponding uplink MU-MIMO method.
  • FIG. 1 and FIG. 3 For details, refer to the related description of the corresponding MU-MIMO method in FIG. 1 and FIG. 3, and details are not described herein again.
  • each unit included in the user equipment embodiment is only divided according to functional logic, but is not limited to the foregoing division, as long as the corresponding function can be implemented;
  • the specific names are also for convenience of distinguishing from each other and are not intended to limit the scope of protection of the present application.
  • FIG. 10 is a diagram showing the structure of a user equipment according to another embodiment of the present invention.
  • the access point device provided by the embodiment of the present invention can be used to implement the method in the corresponding embodiment of FIG. 3.
  • the access point device provided by the embodiment of the present invention can be used to implement the method in the corresponding embodiment of FIG. 3.
  • the specific technical details are not disclosed. Please refer to the corresponding embodiment of FIG. 3.
  • the user equipment 2 includes:
  • the transmitter 21 is connected to the processor 23, and configured to send the sounding reference signal to the base station, so that the base station constructs a precoding matrix according to the sounding reference signal, and generates a first scheduling message according to the precoding matrix; Sending the uplink signal to the base station;
  • the receiver 22 is connected to the processor 23, and configured to receive a first scheduling message sent by the base station, where the first scheduling message includes a layer mapping rule and a precoding matrix;
  • the processor 23 is connected to the transmitter 21 and the receiver 22, respectively, for generating at least one MAC according to the first scheduling message.
  • Layer user packet data unit MAC PDU and transmitting the MAC PDU to enable the MAC PDU to be exchanged between the plurality of user equipments;
  • the uplink signal generated after the PDU is processed on each layer.
  • processor 23 is further configured to generate at least one MAC PDU
  • the transmitter 21 is further configured to send a MAC PDU to other user equipments
  • the receiver 22 is further configured to receive MAC PDUs generated by other user equipments.
  • the processor 23 is further configured to use the MAC
  • the PDU performs channel coding, rate matching, and modulation to generate a corresponding codeword.
  • the layer mapping is performed on the codeword according to the layer mapping rule included in the first scheduling message; and the first scheduling message is included according to the first scheduling message.
  • the corresponding vector precodes the layer to obtain an uplink signal.
  • the transmitter 21 is further configured to: if the MAC is generated a PDU, occupying a hybrid automatic repeat request process, transmitting the uplink signal to the base station on an antenna; if receiving all of the MAC The PDU, which occupies the hybrid automatic repeat request process, transmits the uplink signal to the base station on the antenna.
  • the receiver 22 is further configured to receive the retransmission scheduling message sent by the base station.
  • the transmitter 21 is further configured to send a retransmission uplink signal to the base station according to the retransmission scheduling message.
  • the transmitter 21 is further configured to separately retransmit the retransmission uplink signal according to the retransmission scheduling message, and retransmit the weight according to the retransmission scheduling message. Send the uplink signal.
  • FIG. 10 do not constitute a limitation to the user equipment, and may include more or fewer components than those illustrated, or some components may be combined, or different component arrangements.
  • the method provided by the embodiment of the present invention may be completed in whole or in part by hardware related to the program instruction. For example, it can be done by running a program on a computer.
  • the program can be stored in a readable storage medium such as a random access memory, a magnetic disk, an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明适用于无线通信技术领域,提供了一种上行MU-MIMO的方法及系统,所述方法包括:用户设备发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息;接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵;根据所述第一调度消息,生成至少一个MAC层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU;对所述MAC PDU在各个层上进行处理后生成的上行信号;在天线上发送所述上行信号至所述基站。本发明,大幅提升了系统的上行频谱效率。

Description

一种上行MU-MIMO的方法及系统 技术领域
本发明属于无线通信技术领域,尤其涉及一种上行MU-MIMO的方法及系统。
背景技术
随着移动通信技术的快速发展,已经出现了多种制式的移动通信系统,例如,全球移动通讯系统(Global System of Mobile communication,GSM)网络、通用分组无线服务技术(General Packet Radio Service,GPRS)网络、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)网络、CDMA-2000网络、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)网络、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)网络等。这些移动通信系统除了提供语音通信业务之外,通常还提供数据通信业务,因此,用户可以使用这些移动通信系统所提供的数据通信业务来上传和下载各种数据。
目前,现有移动通信系统所提供的数据通信业务来上传和下载数据的方法有两类:
一方面,针对单台用户设备(User Equipment,UE)的方法,即使采用其他增强型的通信手段来提高用户设备的数据传输的可靠性和/或吞吐率,如多点协作传输(Coordinated Multipoint,CoMP)来提高处于小区边缘用户设备的可靠性,或载波聚合(Carrier Aggregation,CA )来提高用户的吞吐率,这类方法的缺点是一旦用户设备自身环境恶化,用户设备的数据传输的吞吐率和/或可靠性将会急剧下降;
另一方面,针对两台用户设备的方法,为了解决上述问题,合成通信的概念被提出,在合成通信下,无论是上行还是下行数据发送,都可以通过别的用户设备进行转发,其中用户设备之间的通信可以通过WIFI、蓝牙等短距离技术实现,也可以通过长期演进D2D(Long Term Evolution Device-to-Device,LTE D2D)实现, LTE系统中上行多用户多入多出(Multi-User Multipe Input Mul-tipe Output,MU-MIMO)的方式是虚拟多入多出(virtual Multipe Input Mul-tipe Output,virtual-MIMO),即基站(evolved Node B,eNB)调度两个用户设备在相同的时频资源上发送各自的数据,从而实现MIMO传输,其缺点是要求用户设备的信道正交性较好,而且两个用户设备在基站的接收信噪比不能相差太多,否则,信道条件较差的用户设备会受到较强干扰,因此,virtual-MIMO虽然有增益,但是应用场景比较受限,而且增益较小。
综上所述,用户需要一种基于预编码,对用户设备信道、接收条件低,上行频谱效率高的MU-MIMO的方式。
技术问题
有鉴于此,本发明实施例提供了一种上行MU-MIMO的方法,以实现上行MU-MIMO,提高上行频谱效率。
技术解决方案
第一方面,所述上行MU-MIMO的方法包括:
基站接收多个用户设备发送的探测参考信号,所述多个用户设备满足短距离传输条件;根据所述接收的探测参考信号,构造预编码矩阵;根据所述预编码矩阵生成第一调度消息;发送所述第一调度消息至所述多个用户设备,以调度所述多个用户设备中至少一个用户设备,生成至少一个MAC 层用户分组数据单元MAC PDU,并在所述多个用户设备之间通过短距离传输技术互换所述MAC PDU;在预设固定时间之后,接收所述多个用户设备发送的上行信号,所述上行信号是所述多个用户设备分别对所述MAC PDU进行处理后生成的上行信号。
在第一方面的第一种可能的实现方式中,所述基站在预设固定时间之后,接收所述多个用户设备发送的上行信号之后还包括:
所述基站解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述基站校验所述码字,如果所述码字有错误,发送重传调度消息至所述生成MAC PDU的用户设备或所述多个用户设备,以获得所述用户设备上传的重传上行信号。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述基站接收一个或多个用户设备发送的重传上行信号。
第二方面,所述上行MU-MIMO的方法包括:
用户设备发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息;接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵;根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU;对所述MAC PDU在各个层上进行处理后生成的上行信号;在天线上发送所述上行信号至所述基站。
在第二方面的第一种可能的实现方式中,所述用户设备根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU包括:
所述用户设备生成至少一个MAC PDU,并发送MAC PDU至其他用户设备;接收其他用户设备生成的MAC PDU。
在第二方面的第二种可能的实现方式中,所述用户设备接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵包括:
所述用户设备对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;根据所述第一调度消息包含的预编码矩阵,使用对应的预编码向量对所述层进行预编码,获得上行信号。
在第二方面的第三种可能的实现方式中,所述用户设备在天线上发送所述上行信号至所述基站包括:
所述用户设备如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站;如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式或第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述方法还包括:
所述用户设备接收基站发送的所述重传调度消息;根据所述重传调度消息,发送重传上行信号至所述基站。
结合第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述用户设备根据所述重传调度消息,发送重传上行信号至所述基站包括:
所述用户设备根据所述重传调度消息,单独重传所述重传上行信号;根据所述重传调度消息,与其他用户设备配合同步重传所述重传上行信号。
第三方面,一种基站,所述基站包括:
参考信号接收单元,与矩阵构造单元连接,用于接收多个用户设备发送的探测参考信号,所述多个用户设备满足短距离传输条件;
矩阵构造单元,分别与参考信号接收单元和消息生成单元连接,用于根据所述接收的探测参考信号,构造预编码矩阵;
消息生成单元,分别与矩阵构造单元和消息发送单元连接,用于根据所述预编码矩阵生成第一调度消息;
消息发送单元,分别与消息生成单元和上行信号接收单元连接,用于发送所述第一调度消息至所述多个用户设备,以调度所述多个用户设备中至少一个用户设备,生成至少一个MAC 层用户分组数据单元MAC PDU,并在所述多个用户设备之间通过短距离传输技术互换所述MAC PDU;
上行信号接收单元,与消息发送单元连接,用于在预设固定时间之后,接收所述多个用户设备发送的上行信号,所述上行信号是所述多个用户设备分别对所述MAC PDU进行处理后生成的上行信号。
在第三方面的第一种可能的实现方式中,所述访问接入点设备还包括:
码字获取单元,与上行信号接收单元连接,用于解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述访问接入点设备还包括:
码字校验单元,分别与码字获取单元和重传调度消息发送单元连接,用于校验所述码字;
重传调度消息发送单元,与码字校验单元连接,用于如果所述码字有错误,发送重传调度消息至生成所述MAC PDU的用户设备,或所述多个用户设备,以获得重传上行信号。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述访问接入点设备还包括:
重传上行信号接收单元,与重传调度消息发送单元连接,用于接收一个或多个用户设备发送的重传上行信号。
第四方面,一种基站,所述基站包括:
接收器,与处理器连接,用于接收多个用户设备发送的探测参考信号,所述多个用户设备满足短距离传输条件;在预设固定时间之后,接收所述多个用户设备发送的上行信号,所述上行信号是所述多个用户设备分别对所述MAC PDU进行处理后生成的上行信号;
处理器,分别接收器和发送器连接,用于根据所述接收的探测参考信号,构造预编码矩阵;根据所述预编码矩阵生成第一调度消息;
发送器,与处理器连接,用于发送所述第一调度消息至所述多个用户设备,以调度所述多个用户设备中至少一个用户设备,生成至少一个MAC 层用户分组数据单元MAC PDU,并在所述多个用户设备之间通过短距离传输技术互换所述MAC PDU。
在第四方面的第一种可能的实现方式中,所述处理器还用于,解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理器还用于,校验所述码字;
所述发送器还用于,如果所述码字有错误,发送重传调度消息至生成所述MAC PDU的用户设备,或所述多个用户设备,以获得重传上行信号。
结合第四方面的第二种可能的实现方式,在第三种可能的实现方式中,所述接收器还用于,接收一个或多个用户设备发送的重传上行信号。
第五方面,一种用户设备,所述用户设备包括:
参考信号发送单元,与调度消息接收单元连接,用于发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息;
调度消息接收单元,分别与参考信号发送单元和MAC PDU生成单元连接,用于接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵;
MAC PDU生成单元,分别与调度消息接收单元和上行信号生成单元连接,用于根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU;
上行信号生成单元,分别与MAC PDU生成单元和上行信号发送单元连接,用于对所述MAC PDU在各个层上进行处理后生成的上行信号;
上行信号发送单元,与上行信号生成单元连接,用于在天线上发送所述上行信号至所述基站。
在第五方面的第一种可能的实现方式中,所述MAC PDU生成单元具体用于生成至少一个MAC PDU,并发送MAC PDU至其他用户设备;接收其他用户设备生成的MAC PDU。
在第五方面的第二种可能的实现方式中,所述上行信号生成单元具体用于对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;根据所述第一调度消息包含的预编码矩阵中,对应的向量对所述层进行预编码,获得上行信号。
在第五方面的第三种可能的实现方式中,所述上行信号发送单元具体用于如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站;如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
结合第五方面或第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式或第五方面的第三种可能的实现方式,在第四种可能的实现方式中,所述用户设备还包括:
重传调度消息接收单元,分别与上行信号发送单元和上行信号重传单元连接,用于接收基站发送的所述重传调度消息;
上行信号重传单元,与重传调度消息接收单元连接,用于根据所述重传调度消息,发送重传上行信号至所述基站。
结合第五方面的第四种可能的实现方式,在第五种可能的实现方式中,所述上行信号重传单元具体用于根据所述重传调度消息,单独重传所述重传上行信号;根据所述重传调度消息,与其他用户设备配合同步重传所述重传上行信号。
第六方面,一种用户设备,所述用户设备包括:
发送器,与处理器连接,用于发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息;在天线上发送所述上行信号至所述基站;
接收器,与处理器连接,用于接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵;
处理器,分别与发送器和接收器连接,用于根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU;对所述MAC PDU在各个层上进行处理后生成的上行信号。
在第六方面的第一种可能的实现方式中,所述处理器还具体用于生成至少一个MAC PDU;
所述发送器还具体用于发送MAC PDU至其他用户设备;
所述接收器还具体用于接收其他用户设备生成的MAC PDU。
在第六方面的第二种可能的实现方式中,所述处理器还具体用于对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;根据所述第一调度消息包含的预编码矩阵中,对应的向量对所述层进行预编码,获得上行信号。
在第六方面的第三种可能的实现方式中,所述发送器还具体用于如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站;如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
结合第六方面或第六方面的第一种可能的实现方式或第六方面的第二种可能的实现方式或第六方面的第三种可能的实现方式,在第四种可能的实现方式中,所述接收器还用于接收基站发送的所述重传调度消息;
所述发送器还用于根据所述重传调度消息,发送重传上行信号至所述基站。
结合第六方面的第四种可能的实现方式,在第五种可能的实现方式中,所述发送器还具体用于根据所述重传调度消息,单独重传所述重传上行信号;根据所述重传调度消息,与其他用户设备配合同步重传所述重传上行信号。
第七方面,一种上行MU-MIMO的系统,所述系统包括:
所述基站和/或所述多个用户设备;
所述多个用户设备之间满足短距离传输条件。
有益效果
从上述方案中可以看出,本发明实施例基站监测多个用户设备发送的探测参考信号,基站调度多个用户设备,用户设备生成并互换MAC PDU,同时多个用户设备按照相同的调度消息处理所述MAC PDU并同时在天线上发射,如同一台虚拟用户设备的多条天线同时发射,与现有技术相比,本发明实施例大幅提升了系统的上行频谱效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例提供的上行MU-MIMO的系统的场景示意图;
图2是本发明另一实施例提供的上行MU-MIMO的方法的实现流程图;
图3是本发明另一实施例提供的上行MU-MIMO的方法的实现流程图;
图4是本发明另一实施例提供的用户设备间完成上行MU-MIMO的示意图;
图5是本发明另一实施例提供的用户设备间处理第一调度消息的时序图;
图6是本发明另一实施例提供的上行MU-MIMO的方法的交互流程图;
图7是本发明另一实施例提供的基站的组成结构框图;
图8是本发明另一实施例提供的基站的组成结构框图;
图9是本发明另一实施例提供的用户设备的组成结构框图;
图10是本发明另一实施例提供的用户设备的组成结构框图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
图1示出了本发明一实施例提供的上行MU-MIMO的系统所适用的场景示意图,为了便于说明,仅示出了与本实施例相关的部分。
如图1所示,该系统包括基站1、多个用户设备2,所述基站1通过无线方式与所述多个用户设备2连接通信,多个用户设备2处于同一个信道上,且满足短距离传输条件,是具有无线通信功能的终端设备。
为了实现上行MU-MIMO,提升系统上行频谱效率,在本发明实施例中,多个用户设备泛指不少于两个的任意数量的用户设备,多个用户设备满足短距离传输条件,如图1所示,基站1监测多个用户设备2发送的探测参考信号Sounding,基站1将多个用户设备2组合起来视为一个虚拟用户设备,将多个用户设备2的天线发射看作同一个虚拟用户设备的多条天线发射,基站1根据虚拟用户设备发送的探测参考信号,获得所述虚拟用户设备的多个天线上行信道矩阵。基站1根据所述上行信道矩阵,构造所述虚拟用户设备上行传输的预编码矩阵。基于所述预编码矩阵,基站1生成并发送所述第一调度消息至所述虚拟用户设备,以调度所述虚拟用户设备收到所述调度消息之后,所述虚拟用户设备生成MAC 层用户分组数据单元MAC PDU,所述虚拟用户设备对MAC PDU进行信道编码、速率匹配和调制,获得码字codeword,根据所述层映射规则,将所述码字映射到至少两个层,之后,所述虚拟用户设备根据第一调度消息,利用预编码矩阵对所述多个层的码字进行预编码,生成上行信号,所述虚拟用户设备在多个天线上发送上行信号,基站1在一个预设固定时间之后,接收所述虚拟用户设备发送的进过联合预编码的上行信号,
在本实施例中,构成所述虚拟用户设备的多个用户设备2之间满足短距离传输条件,所述短距离传输技术包括但不限于:WIFI、蓝牙和LTE D2D。多个用户设备2发送至基站1探测参考信号之后,根据接收到的基站1发送的第一调度消息,多个用户设备2中至少一个用户设备,生成至少一个MAC PDU,然后多个用户设备2之间进行互换MAC PDU。通过MAC PDU互换,使得所有参与本次MU-MIMO发送的多个用户设备2都获得相同的MAC PDU。多个用户设备2分别对MAC PDU进行信道编码、速率匹配和调制,获得码字,根据所述层映射规则,将所述码字映射到多个层,多个用户设备2根据所述预编码矩阵中第一调度消息所指示的每个用户设备2所各自对应的向量,对所述层进行预编码,获得上行信号,不同UE的不同天线,将使用预编码矩阵中的不同的预编码向量。在多个用户设备2的天线上发送所述上行信号,完成多个用户设备联合预编码的上行MU-MIMO。
本实施例,多个用户设备完成上行MU-MIMO,用户设备之间独立发送相同的数据,一旦某个用户设备自身环境恶化,用户设备的数据传输的吞吐率和/或可靠性将会急剧下降,并不影响其它的用户设备的数据上传,同时,多个用户设备通过短距离传输技术交换数据,对用户设备之间的信道正交性没有什么要求,信道条件较差的用户设备也不会受到干扰,应用场景广泛,而且增益大。
图2示出了本发明另一实施例提供的上行MU-MIMO的方法的实现流程,该实施例的执行主体为图1中的基站1,该方法过程详述如下:
在步骤S201中,基站接收多个用户设备发送的探测参考信号,所述多个用户设备满足短距离传输条件。
需要说明的是,通过上述实施例的描述可以看出两个与更多数量的用户设备,上行MU-MIMO的方法本质上没有改变,同理由于因为用户设备的天线多个和一个,上行MU-MIMO的方法本质上也没有改变,因此,本实施例和后续实施例中,以两个用户设备各有1个天线的探测参考信号过程为例,描述合成通信配置过程。其中,第一调度消息中的“第一”是为了表述和指代方便,第一调度消息是指基站发送的调度消息。本文中表述为第一调度消息,并不意味着在本发明的具体实现方式中一定会有与之对应的第二调度消息。
在本实施例中,基站接收两个用户设备发送的探测参考信号,基站根据探测参考信号,获取所述两个用户设备的上行信道矩阵,并判断是否两个用户设备满足短距离传输条件,如果否,按照现有MIMO的方法进行调度,如果是,根据所述探测参考信号,将所述两个的上行信道矩阵合并,构造预编码矩阵。
在步骤S202中,所述基站根据所述接收的探测参考信号,构造预编码矩阵。
在本实施例中,基站根据所述接收的探测参考信号,获取两个用户设备上的上行信道矩阵,将两个用户设备的上行信道矩阵合并,构造预编码矩阵。
在步骤S203中,所述基站根据所述预编码矩阵生成第一调度消息。
在本实施例中,基站根据所述预编码矩阵,以及基站的调度消息和层映射规则,生成第一调度消息。
在步骤S204中,所述基站发送所述第一调度消息至所述多个用户设备,以调度所述多个用户设备中至少一个用户设备,生成至少一个MAC 层用户分组数据单元MAC PDU,并在所述多个用户设备之间通过短距离传输技术互换所述MAC PDU。
在本实施例中,基站发送第一调度消息至所述两个用户设备,以使两个用户设备中的至少一个用户设备生成MAC PDU,所述两个用户设备通过短距离传输技术互换MAC PDU,通过互换,两个用户设备获得相同的MAC PDU。MAC PDU互换具体为:所述用户设备生成至少一个MAC PDU,并发送MAC PDU至其他用户设备;所述用户设备接收其他用户设备生成的MAC PDU。之后,两个用户设备分别对所述MAC PDU进行信道编码、速率匹配和调制,获得码字,用户设备根据所述层映射规则,将所述码字映射到两个层,用户设备根据所述预编码矩阵中对应预编码向量和两个所述层,对所述层进行预编码,获得所述上行信号。
其中,基站使两个用户设备同时收到所述第一调度消息的方法包括:发送第一调度消息两次,即为每个用户设备各发送一条第一调度消息、在合成通信配置的时候,告知所述用户设备小区无线网络临时标示(Cell Radio Network Temporary Identifier C-RNTI)、使用所述用户设备可识别的公共无线网络临时标示RNTI,这些方法都是现有方法,在此不再赘述。
在步骤S205中,所述基站在预设固定时间之后,接收所述多个用户设备发送的上行信号,所述上行信号是所述多个用户设备分别对所述MAC PDU进行处理后生成的上行信号。
在本实施例中,所述MAC PDU需要先在两个用户设备之间进行交互,所以传统的时序需要改变,因此基站需要适度延迟调度,避免延迟调度的数据和正常调度数据的时间上的碰撞。因此,基站在预设固定时间之后,接收两个用户设备发送的上行信号,所述预设固定时间为定值,大于等于现有技术的预设时间。
进一步的,所述基站解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程。
在本实施例中,所述混合自动重传请求进程的数量与所述码字数量相同。
更进一步的,在所述基站解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程之后,所述基站校验所述码字,如果所述码字有错误,发送重传调度消息至所述生成MAC PDU的用户设备或所述多个用户设备,以获得所述用户设备上传的重传上行信号。
具体的,所述基站校验所述码字,如果一个或两个所述码字错误,发送所述重传调度消息至所述生成所述MAC PDU的用户设备,或所述多个用户设备;如果两个所述码字错误,发送所述重传调度消息至所述多个用户设备,其他设备配合所述生成所述MAC PDU的用户设备发送所述重传上行信号。
更进一步的,所述基站接收一个或多个用户设备发送的重传上行信号。
具体的,一种情况,所述基站接收,所述生成MAC PDU的用户设备单独重传的所述上行信号。
另一种情况,所述基站接收,所述生成所述MAC PDU的用户设备与其他用户设备配合重传所述上行信号。
本实施例,通过同时调度多个用户设备,使多个用户设备之间互换数据,进行联合预编码,获得上行信号,多个用户设备同时在各自的天线上发送上行信号至基站,实现了上行MU-MIMO的方法,提高了上行频谱效率。
图3示出了本发明另一实施例提供的上行MU-MIMO的方法的实现流程,该实施例的执行主体为图1中的用户设备2,该方法过程详述如下:
在步骤S301中,用户设备发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息。
在步骤S302中,所述用户设备接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵。
在本实施例中,两个用户设备同时接收到所述第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵,解析所述第一调度消息,获得预编码矩阵、调度消息和层映射规则。其中预编码矩阵由两个用户设备的上行信道矩阵构造。两个用户设备根据预编码矩阵,获得属于自己的预编码向量部分进行预编码。通过本步骤,用户设备拥有相同的调度消息和层映射规则。
在步骤S303中,所述用户设备根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU。
在本实施例中,用户设备根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU,具体步骤为:
步骤11,两个用户设备根据所述第一调度消息中的调度消息指示,生成至少一个MAC PDU,有以下几种情况:
1、由一个用户设备生成MAC PDU,具体分为两种情况:
一个用户设备生成一个MAC PDU;
一个用户设备生成两个MAC PDU。
2、由两个用户设备各生成一个MAC PDU。
步骤12,两个用户设备之间互换MAC PDU。
MAC PDU互换具体为:如果一个用户设备生成了1个或者两个MAC PDU,通过短距离传输技术,将所述MAC PDU发送给另一个用户设备;如果两个用户设备各生成1个MAC PDU,通过短距离传输技术,两个用户设备之间互换MAC PDU。也可以这样描述,所述用户设备生成至少一个MAC PDU,并发送MAC PDU至其他用户设备;所述用户设备接收其他用户设备生成的MAC PDU。
通过上述步骤,两个用户设备获得至少一个MAC PDU。
在步骤S304中,所述用户设备对所述MAC PDU在各个层上进行处理后生成的上行信号。
在本实施例中,在用户设备获得所述MAC PDU之后,对所述MAC PDU在各个层上进行处理后生成的上行信号,具体步骤包括:
步骤21,所述用户设备对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;
步骤22,所述用户设备根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;
步骤23,所述用户设备根据所述第一调度消息包含的预编码矩阵中,对应的向量对所述层进行预编码,获得上行信号。
在步骤S305中,所述用户设备在天线上发送所述上行信号至所述基站。
在本实施例中,两个用户设备获得上行信号之后,同时在各自的天线上发送所述上行信号至所述基站。两个用户设备完成上行MU-MIMO的处理过程,参见图4所示。
其中,需要注意的是,两个用户设备从接收到所述第一调度消息开始,相应处理的时序如图5所示,其中,由于所述MAC PDU需要在两个用户设备之间交互,因此,发送时间由原来的X+Z变为X+Y+Z,增加了Z个子帧的处理时间,现有技术的发送时间X+Z,为4个子帧,那么本发明的发送时间X+Y+Z大于4个子帧,但是X+Y+Z一定是一个定值,所以基站相对于现有技术需要延迟调度,避免延迟调度的数据和正常调度数据的时间上的碰撞。
具体的,用户设备在天线上发送所述上行信号的情况是:
一种情况,所述用户设备如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
在本实施例中,生成MAC PDU的用户设备,占据与所述MAC PDU相同数量的混合自动重传请求进程,进行发送。
另一种情况,所述用户设备如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
在本实施例中,只接收所述MAC PDU的用户设备则不占据混合自动重传请求进程进行发送,也不承担重传,发送之后就删除缓存,在有两个所述MAC PDU的情况下,只接收所述MAC PDU的用户设备也可以占据一个混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
在基站校验上行信号之后,如果发现错误,发送重传调度消息至一个或多个用户设备。
优选的,所述用户设备接收基站发送的所述重传调度消息;所述用户设备根据所述重传调度消息,发送重传上行信号至所述基站。
在本实施例中,根据校验结果,所述重传调度消息可以发送至生成MAC PDU的用户设备,也可以发送给参与本次预编码的两个用户设备。所述用户设备根据所述重传调度消息,发送重传上行信号至所述基站,具体的,所述用户设备根据所述重传调度消息,单独重传所述上行信号; 所述用户设备根据所述重传调度消息,与其他用户设备配合同步重传所述上行信号。
在本实施例中,如果两个用户设备中一个用户设备生成两个所述MAC PDU,另一个用户设备也可以占据一个进程发送上行信号,如果重新调度消息反馈两个所述码字均错误,另一个用户设备配合生成两个所述MAC PDU的用户设备同步重传,如果重新调度消息反馈只有一个所述码字错误,由所述生成两个所述MAC PDU的用户设备单独重传,另一个用户设备删除缓存。
本实施例,通过基站共同调度多个用户设备,用户设备之间互换数据,由于信息互换是通过短距离传输技术进行的,并没有增加基站的工作负荷,用户设备各自进行联合预编码,获得上行信号,多个用户设备同时在各自的天线上发送上行信号至基站,用户设备之间本身的环境和用户设备之间的信道条件,对该上行MU-MIMO影响有限,并提高了上行频谱效率,应用场景也非常广泛。
图6示出了本发明另一实施例提供的上行MU-MIMO的方法的交互流程,该方法过程详述如下。
1、两个用户设备发送探测参考信号至基站。
在本实施例中,基站接收两个用户设备发送的探测参考信号,其中,用户设备之间满足短距离传输条件。
2、基站发送第一调度消息至所述两个用户设备。
在本实施例中,基站接收两个用户设备发送的探测参考信号;根据所述探测参考信号,构造预编码矩阵;根据所述预编码矩阵生成第一调度消息;发送所述第一调度消息至所述两个用户设备,以调度所述两个用户设备中至少一个用户设备生成MAC 层用户分组数据单元MAC PDU,并在所述两个用户设备之间互换所述MAC PDU;在预设固定时间之后,接收所述两个用户设备发送的上行信号,所述上行信号是所述两个用户设备分别对所述MAC PDU进行处理后生成的上行信号。
3、两个用户设备互换MAC PDU,进行联合预编码,生成上行信号。
在本实施例中,两个用户设备接收所述基站发送的第一调度消息;根据所述第一调度消息,获得至少一个MAC 层用户分组数据单元MAC PDU;对所述MAC PDU在各个层上进行处理后生成的上行信号;天线上发送所述上行信号至所述基站。
其中,两个用户设备根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU,具体为:所述用户设备生成至少一个MAC PDU,并发送MAC PDU至其他用户设备;所述用户设备接收其他用户设备生成的MAC PDU。
所述用户设备对所述MAC PDU在各个层上进行处理后生成的上行信号,具体为:
两个用户设备分别对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;根据所述第一调度消息包含的预编码矩阵中,对应的向量对所述层进行预编码,获得上行信号。
用户设备在天线上发送所述上行信号至所述基站,具体为:
用户设备如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站;
用户设备如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
4、基站在预设固定时间之后,接收所述多个用户设备发送的所述上行信号。
在本实施例中,基站在预设固定时间之后,接收两个用户设备发送的上行信号,所述上行信号是两个用户设备分别对所述MAC PDU在各个层上进行处理后生成的上行信号。之后,基站解码所述上行信号,将解码获得的码字送入,与生成所述MAC PDU的用户设备对应的混合自动重传请求进程,所述混合自动重传请求进程的数量与所述码字数量相同。
进一步的,所述基站校验所述码字,如果所述码字有错误,发送重传调度消息至生成所述MAC PDU的用户设备,或所述多个用户设备,以获得重传上行信号。
在本实施例中,基站校验所述码字,如果一个或两个所述码字错误,发送所述重传调度消息至生成所述MAC PDU的用户设备,或者两个用户设备;所述基站校验所述码字,如果两个所述码字错误,发送所述重传调度消息至两个用户设备。
进一步的,用户设备接收基站发送的所述重传调度消息。
更进一步的,所述用户设备根据所述重传调度消息,发送重传上行信号至所述基站。
具体的,所述用户设备根据所述重传调度消息,单独重传所述上行信号;所述用户设备根据所述重传调度消息,与其他用户设备配合同步重传所述上行信号。
更进一步的,所述基站接收一个或多个用户设备发送的重传上行信号。
图7示出了本发明另一实施例提供的基站的组成结构,为了便于说明,仅示出了与本发明实施例相关的部分。
该基站1包括:
参考信号接收单元11,与矩阵构造单元12连接,用于接收多个用户设备发送的探测参考信号,所述多个用户设备满足短距离传输条件;
矩阵构造单元12,分别与参考信号接收单元11和消息生成单元13连接,用于根据所述接收的探测参考信号,构造预编码矩阵;
消息生成单元13,分别与矩阵构造单元12和消息发送单元14连接,用于根据所述预编码矩阵生成第一调度消息;
消息发送单元14,分别与消息生成单元13和上行信号接收单元15连接,用于发送所述第一调度消息至所述多个用户设备,以调度所述多个用户设备中至少一个用户设备,生成至少一个MAC 层用户分组数据单元MAC PDU,并在所述多个用户设备之间通过短距离传输技术互换所述MAC PDU;
上行信号接收单元15,与消息发送单元14连接,用于在预设固定时间之后,接收所述多个用户设备发送的上行信号,所述上行信号是所述多个用户设备分别对所述MAC PDU进行处理后生成的上行信号。
进一步的是,所述基站1还包括:
码字获取单元16,与上行信号接收单元15连接,用于解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程。
进一步的是,所述基站1还包括:
码字校验单元17,分别与码字获取单元16和重传调度消息发送单元18连接,用于校验所述码字;
重传调度消息发送单元18,与码字校验单元17连接,用于发送重传调度消息至生成所述MAC PDU的用户设备,或所述多个用户设备,以获得重传上行信号。
进一步的是,所述基站1还包括:
重传上行信号接收单元19,与重传调度消息发送单元18连接,用于接收一个或多个用户设备发送的重传上行信号。
本实施例提供的基站可以使用在前述对应的上行MU-MIMO的方法,详情参见上述上行MU-MIMO的方法图1和图2对应实施例的相关描述,在此不再赘述。
本领域普通技术人员可以理解为所述基站实施例所包括的各个单元只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
图8示出了本发明另一实施例提供的基站的组成结构,本发明实施例提供的用户设备可以用于实施图2对应实施例的方法,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照图2对应实施例。
该基站1包括:
接收器11,与处理器12连接,用于接收多个用户设备发送的探测参考信号,所述多个用户设备满足短距离传输条件;在预设固定时间之后,接收所述多个用户设备发送的上行信号,所述上行信号是所述多个用户设备分别对所述MAC PDU进行处理后生成的上行信号;
处理器12,分别接收器11和发送器13连接,用于根据所述接收的探测参考信号,构造预编码矩阵;根据所述预编码矩阵生成第一调度消息;
发送器13,与处理器12连接,用于发送所述第一调度消息至所述多个用户设备,以调度所述多个用户设备中至少一个用户设备,生成至少一个MAC 层用户分组数据单元MAC PDU,并在所述多个用户设备之间通过短距离传输技术互换所述MAC PDU。
进一步的是,所述处理器12还用于解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程。
进一步的是,所述处理器12还用于校验所述码字;
所述发送器13还用于如果所述码字有错误,发送重传调度消息至生成所述MAC PDU的用户设备,或所述多个用户设备,以获得重传上行信号。
进一步的是,所述接收器11还用于接收一个或多个用户设备发送的重传上行信号。
本领域技术人员可以理解,图8中示出的组成结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图9示出了本发明另一实施例提供的用户设备的组成结构,为了便于说明,仅示出了与本发明实施例相关的部分。
该用户设备2包括:
参考信号发送单元21,与调度消息接收单元22连接,用于发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息;
调度消息接收单元22,分别与参考信号发送单元21和MAC PDU生成单元23连接,用于接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵;
MAC PDU生成单元23,分别与调度消息接收单元22和上行信号生成单元24连接,用于根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU;
上行信号生成单元24,分别与MAC PDU生成单元23和上行信号发送单元25连接,用于对所述MAC PDU在各个层上进行处理后生成的上行信号;
上行信号发送单元25,与上行信号生成单元24连接,用于在天线上发送所述上行信号至所述基站。
进一步的是,所述MAC PDU生成单元23具体用于生成至少一个MAC PDU,并发送MAC PDU至其他用户设备;接收其他用户设备生成的MAC PDU。
进一步的是,所述上行信号生成单元24具体用于对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;根据所述第一调度消息包含的预编码矩阵中,对应的向量对所述层进行预编码,获得上行信号。
进一步的是,所述上行信号发送单元25具体用于如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站;如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
进一步的是,该用户设备2还包括:
重传调度消息接收单元26,分别与上行信号发送单元25和上行信号重传单元27连接,用于接收基站发送的所述重传调度消息;
上行信号重传单元27,与重传调度消息接收单元26连接,用于根据所述重传调度消息,发送重传上行信号至所述基站。
进一步的是,所述上行信号重传单元27具体用于根据所述重传调度消息,单独重传所述重传上行信号;根据所述重传调度消息,与其他用户设备配合同步重传所述重传上行信号。
本实施例提供的用户设备可以使用在前述对应的上行MU-MIMO的方法,详情参见上述上行MU-MIMO的方法图1和图3对应实施例的相关描述,在此不再赘述。
本领域普通技术人员可以理解为所述用户设备实施例所包括的各个单元只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
图10示出了本发明另一实施例提供的用户设备的组成结构,本发明实施例提供的访问接入点设备可以用于实施图3对应实施例的方法,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照图3对应实施例。
该用户设备2包括:
发送器21,与处理器23连接,用于发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息;在天线上发送所述上行信号至所述基站;
接收器22,与处理器23连接,用于接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵;
处理器23,分别与发送器21和接收器22连接,用于根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU;对所述MAC PDU在各个层上进行处理后生成的上行信号。
进一步的是,所述处理器23还具体用于生成至少一个MAC PDU;
所述发送器21还具体用于发送MAC PDU至其他用户设备;
所述接收器22还具体用于接收其他用户设备生成的MAC PDU。
进一步的是,所述处理器23还具体用于对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;根据所述第一调度消息包含的预编码矩阵中,对应的向量对所述层进行预编码,获得上行信号。
进一步的是,所述发送器21还具体用于如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站;如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
进一步的是,所述接收器22还用于接收基站发送的所述重传调度消息。
进一步的是,所述发送器21还用于根据所述重传调度消息,发送重传上行信号至所述基站。
进一步的是,所述发送器21还具体用于根据所述重传调度消息,单独重传所述重传上行信号;根据所述重传调度消息,与其他用户设备配合同步重传所述重传上行信号。
本领域技术人员可以理解,图10中示出的组成结构并不构成对用户设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本发明实施例提供的方法,其全部或部分步骤是可以通过程序指令相关的硬件来完成。比如可以通过计算机运行程序来完成。该程序可以存储在可读取存储介质,例如,随机存储器、磁盘、光盘等。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (31)

  1. 一种上行MU-MIMO的方法,其特征在于,所述方法包括:
    基站接收多个用户设备发送的探测参考信号,所述多个用户设备满足短距离传输条件;
    所述基站根据所述接收的探测参考信号,构造预编码矩阵;
    所述基站根据所述预编码矩阵生成第一调度消息;
    所述基站发送所述第一调度消息至所述多个用户设备,以调度所述多个用户设备中至少一个用户设备,生成至少一个MAC 层用户分组数据单元MAC PDU,并在所述多个用户设备之间通过短距离传输技术互换所述MAC PDU;
    所述基站在预设固定时间之后,接收所述多个用户设备发送的上行信号,所述上行信号是所述多个用户设备分别对所述MAC PDU进行处理后生成的上行信号。
  2. 如权利要求1所述的方法,其特征在于,所述基站在预设固定时间之后,接收所述多个用户设备发送的上行信号之后,还包括:
    所述基站解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程。
  3. 如权利要求2所述的方法,其特征在于,在所述基站解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程之后,还包括:
    所述基站校验所述码字,如果所述码字有错误,发送重传调度消息至所述生成MAC PDU的用户设备或所述多个用户设备,以获得所述用户设备上传的重传上行信号。
  4. 如权利要求3所述的方法,其特征在于,在所述基站校验所述码字,如果所述码字有错误,发送重传调度消息至所述生成MAC PDU的用户设备或所述多个用户设备之后,还包括:
    所述基站接收一个或多个用户设备发送的重传上行信号。
  5. 一种上行MU-MIMO的方法,其特征在于,所述方法包括:
    用户设备发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息;
    所述用户设备接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵;
    所述用户设备根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU;
    所述用户设备对所述MAC PDU在各个层上进行处理后生成的上行信号;
    所述用户设备在天线上发送所述上行信号至所述基站。
  6. 如权利要求5所述的方法,其特征在于,所述用户设备根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU,包括:
    所述用户设备生成至少一个MAC PDU,并发送MAC PDU至其他用户设备; 和/或
    所述用户设备接收其他用户设备生成的MAC PDU。
  7. 如权利要求5所述的方法,其特征在于,所述用户设备接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵,包括:
    所述用户设备对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;
    所述用户设备根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;
    所述用户设备根据所述第一调度消息包含的预编码矩阵,使用对应的预编码向量对所述层进行预编码,获得上行信号。
  8. 如权利要求5所述的方法,其特征在于,所述用户设备在天线上发送所述上行信号至所述基站,包括:
    所述用户设备如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站;
    所述用户设备如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
  9. 如权利要求5、6、7或8所述的方法,其特征在于,在所述用户设备在天线上发送所述上行信号至所述基站之后,还包括:
    所述用户设备接收基站发送的所述重传调度消息;
    所述用户设备根据所述重传调度消息,发送重传上行信号至所述基站。
  10. 如权利要求9所述的方法,其特征在于,所述用户设备根据所述重传调度消息,发送重传上行信号至所述基站,包括:
    所述用户设备根据所述重传调度消息,单独重传所述重传上行信号;和
    所述用户设备根据所述重传调度消息,与其他用户设备配合同步重传所述重传上行信号。
  11. 一种基站,其特征在于,所述基站包括:
    参考信号接收单元,与矩阵构造单元连接,用于接收多个用户设备发送的探测参考信号,所述多个用户设备满足短距离传输条件;
    矩阵构造单元,分别与参考信号接收单元和消息生成单元连接,用于根据所述接收的探测参考信号,构造预编码矩阵;
    消息生成单元,分别与矩阵构造单元和消息发送单元连接,用于根据所述预编码矩阵生成第一调度消息;
    消息发送单元,分别与消息生成单元和上行信号接收单元连接,用于发送所述第一调度消息至所述多个用户设备,以调度所述多个用户设备中至少一个用户设备,生成至少一个MAC 层用户分组数据单元MAC PDU,并在所述多个用户设备之间通过短距离传输技术互换所述MAC PDU;
    上行信号接收单元,与消息发送单元连接,用于在预设固定时间之后,接收所述多个用户设备发送的上行信号,所述上行信号是所述多个用户设备分别对所述MAC PDU进行处理后生成的上行信号。
  12. 如权利要求11所述的基站,其特征在于,所述基站还包括:
    码字获取单元,与上行信号接收单元连接,用于解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程。
  13. 如权利要求12所述的基站,其特征在于,所述基站还包括:
    码字校验单元,分别与码字获取单元和重传调度消息发送单元连接,用于校验所述码字;
    重传调度消息发送单元,与码字校验单元连接,用于如果所述码字有错误,发送重传调度消息至生成所述MAC PDU的用户设备,或所述多个用户设备,以获得重传上行信号。
  14. 如权利要求13所述的基站,其特征在于,所述基站还包括:
    重传上行信号接收单元,与重传调度消息发送单元连接,用于接收一个或多个用户设备发送的重传上行信号。
  15. 一种基站,其特征在于,所述基站包括:
    接收器,与处理器连接,用于接收多个用户设备发送的探测参考信号,所述多个用户设备满足短距离传输条件;在预设固定时间之后,接收所述多个用户设备发送的上行信号,所述上行信号是所述多个用户设备分别对所述MAC PDU进行处理后生成的上行信号;
    处理器,分别接收器和发送器连接,用于根据所述接收的探测参考信号,构造预编码矩阵;根据所述预编码矩阵生成第一调度消息;
    发送器,与处理器连接,用于发送所述第一调度消息至所述多个用户设备,以调度所述多个用户设备中至少一个用户设备,生成至少一个MAC 层用户分组数据单元MAC PDU,并在所述多个用户设备之间通过短距离传输技术互换所述MAC PDU。
  16. 如权利要求15所述的基站,其特征在于,所述处理器还用于解码所述上行信号获得码字,将所述码字送入与生成所述MAC PDU的用户设备对应的混合自动重传请求进程。
  17. 如权利要求16所述的基站,其特征在于,所述处理器还用于校验所述码字;
    所述发送器还用于如果所述码字有错误,发送重传调度消息至生成所述MAC PDU的用户设备,或所述多个用户设备,以获得重传上行信号。
  18. 如权利要求17所述的基站,其特征在于,所述接收器还用于接收一个或多个用户设备发送的重传上行信号。
  19. 一种用户设备,其特征在于,所述用户设备包括:
    参考信号发送单元,与调度消息接收单元连接,用于发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息;
    调度消息接收单元,分别与参考信号发送单元和MAC PDU生成单元连接,用于接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵;
    MAC PDU生成单元,分别与调度消息接收单元和上行信号生成单元连接,用于根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU;
    上行信号生成单元,分别与MAC PDU生成单元和上行信号发送单元连接,用于对所述MAC PDU在各个层上进行处理后生成的上行信号;
    上行信号发送单元,与上行信号生成单元连接,用于在天线上发送所述上行信号至所述基站。
  20. 如权利要求19所述的用户设备,其特征在于,所述MAC PDU生成单元具体用于生成至少一个MAC PDU,并发送MAC PDU至其他用户设备;接收其他用户设备生成的MAC PDU。
  21. 如权利要求19所述的用户设备,其特征在于,所述上行信号生成单元具体用于对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;根据所述第一调度消息包含的预编码矩阵中,对应的向量对所述层进行预编码,获得上行信号。
  22. 如权利要求19所述的用户设备,其特征在于,所述上行信号发送单元具体用于如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站;如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
  23. 如权利要求19、20、21或22所述的用户设备,其特征在于,所述用户设备还包括:
    重传调度消息接收单元,分别与上行信号发送单元和上行信号重传单元连接,用于接收基站发送的所述重传调度消息;
    上行信号重传单元,与重传调度消息接收单元连接,用于根据所述重传调度消息,发送重传上行信号至所述基站。
  24. 如权利要求23所述的用户设备,其特征在于,所述上行信号重传单元具体用于根据所述重传调度消息,单独重传所述重传上行信号;根据所述重传调度消息,与其他用户设备配合同步重传所述重传上行信号。
  25. 一种用户设备,其特征在于,所述用户设备包括:
    发送器,与处理器连接,用于发送探测参考信号至基站,以使基站根据所述探测参考信号构造出预编码矩阵,并根据所述预编码矩阵生成第一调度消息;在天线上发送所述上行信号至所述基站;
    接收器,与处理器连接,用于接收所述基站发送的第一调度消息,所述第一调度消息包括层映射规则和预编码矩阵;
    处理器,分别与发送器和接收器连接,用于根据所述第一调度消息,生成至少一个MAC 层用户分组数据单元MAC PDU,并发送所述MAC PDU,以使所述多个用户设备之间互换所述MAC PDU;对所述MAC PDU在各个层上进行处理后生成的上行信号。
  26. 如权利要求25所述的用户设备,其特征在于,所述处理器还具体用于生成至少一个MAC PDU;
    所述发送器还具体用于发送MAC PDU至其他用户设备;
    所述接收器还具体用于接收其他用户设备生成的MAC PDU。
  27. 如权利要求25所述的用户设备,其特征在于,所述处理器还具体用于对所述MAC PDU进行信道编码、速率匹配和调制,生成对应的码字;根据所述第一调度消息包含的层映射规则,对所述码字进行相应的层的层映射;根据所述第一调度消息包含的预编码矩阵中,对应的向量对所述层进行预编码,获得上行信号。
  28. 如权利要求25所述的用户设备,其特征在于,所述发送器还具体用于如果生成所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站;如果接收全部所述MAC PDU,占据混合自动重传请求进程,在天线上发送所述上行信号至所述基站。
  29. 如权利要求25、26、27或28所述的用户设备,其特征在于,所述接收器还用于接收基站发送的所述重传调度消息;
    所述发送器还用于根据所述重传调度消息,发送重传上行信号至所述基站。
  30. 如权利要求29所述的用户设备,其特征在于,所述发送器还具体用于根据所述重传调度消息,单独重传所述重传上行信号;根据所述重传调度消息,与其他用户设备配合同步重传所述重传上行信号。
  31. 一种上行MU-MIMO的系统,其特征在于,所述系统包括:
    如权利要求11-14任一项所述的基站或如权利要求15-18任一项所述的基站,和/或如权利要求19-24任一项所述的用户设备或如权利要求15-30任一项所述的用户设备;
    所述用户设备之间满足短距离传输条件。
PCT/CN2012/085580 2012-11-29 2012-11-29 一种上行mu-mimo的方法及系统 WO2014082266A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/085580 WO2014082266A1 (zh) 2012-11-29 2012-11-29 一种上行mu-mimo的方法及系统
CN201280026191.8A CN104205662B (zh) 2012-11-29 2012-11-29 一种上行mu‑mimo的方法及系统
CN201710453652.4A CN107196689B (zh) 2012-11-29 2012-11-29 一种上行mu-mimo的方法及系统
US14/724,953 US9554394B2 (en) 2012-11-29 2015-05-29 Uplink MU-MIMO method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085580 WO2014082266A1 (zh) 2012-11-29 2012-11-29 一种上行mu-mimo的方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/724,953 Continuation US9554394B2 (en) 2012-11-29 2015-05-29 Uplink MU-MIMO method and system

Publications (1)

Publication Number Publication Date
WO2014082266A1 true WO2014082266A1 (zh) 2014-06-05

Family

ID=50827057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085580 WO2014082266A1 (zh) 2012-11-29 2012-11-29 一种上行mu-mimo的方法及系统

Country Status (3)

Country Link
US (1) US9554394B2 (zh)
CN (2) CN107196689B (zh)
WO (1) WO2014082266A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3148095A4 (en) * 2014-06-17 2017-07-05 Huawei Technologies Co. Ltd. Data transmission method and apparatus
WO2019170146A1 (en) * 2018-03-09 2019-09-12 Mediatek Inc. Frequency-selective precoding for uplink transmissions in mobile communications

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078836B (zh) * 2014-11-25 2019-11-19 华为技术有限公司 一种导频信号的生成方法及装置
EP3361809B1 (en) * 2015-10-29 2021-07-28 Huawei Technologies Co., Ltd. Multi-cell uplink cooperative communication method and base station
CN107690129A (zh) * 2016-08-04 2018-02-13 华为技术有限公司 协作消息传输的方法及终端
JPWO2018074071A1 (ja) * 2016-10-20 2019-08-08 シャープ株式会社 端末装置、基地局装置、および、通信方法
US10396871B2 (en) 2017-06-15 2019-08-27 At&T Intellectual Property I, L.P. Layer mapping subset restriction for 5G wireless communication systems
WO2019028834A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated SIGNALING OF TRANSMISSION RANK AND PRECODER IN NON-UPLINK CODE TRANSMISSION
US10313920B1 (en) 2017-09-27 2019-06-04 Sprint Spectrum L.P. Use of buffer fullness as basis to control application of MU-MIMO service
US11044129B2 (en) * 2017-12-21 2021-06-22 Qualcomm Incorporated Hierarchical communication for device-to-device communications
CN111313947A (zh) * 2020-02-25 2020-06-19 东南大学 一种设备间通信辅助的上行多用户发送方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080095268A1 (en) * 2006-10-18 2008-04-24 Carlos Aldana Method and system for choice of a steering matrix (q) for sounding in antenna selection
CN101252417A (zh) * 2006-07-14 2008-08-27 美国博通公司 在无线通信系统中传送信息的方法和系统
CN102498689A (zh) * 2009-07-30 2012-06-13 高通股份有限公司 上行链路多输入多输出的混合自动重传请求操作和解码状态发送

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9497006B2 (en) * 2009-08-06 2016-11-15 Lg Electronics Inc. Method and apparatus for transmitting uplink signals in wireless communication system for supporting multiple antenna transmission
CN102598568B (zh) * 2009-10-29 2015-03-18 联想创新有限公司(香港) 用于下行链路mimo的下行链路控制信令传输的方法和用户设备
TWI624187B (zh) * 2009-11-19 2018-05-11 內數位專利控股公司 多載波系統中分量載波啓動/止動
JP2011155334A (ja) * 2010-01-26 2011-08-11 Sharp Corp 通信システム及び移動局装置及び基地局装置及び処理方法
US20130213195A1 (en) * 2010-05-07 2013-08-22 Richard Abr. Herder Gmbh & Co. Kg Tool
CN102291209B (zh) * 2010-06-20 2014-04-02 上海贝尔股份有限公司 增强长期演进的管理设备中控制上行传输的方法及装置
US8934557B2 (en) 2010-06-30 2015-01-13 Telefonaktiebolaget L M Ericsson (Publ) Statistical joint precoding in multi-cell, multi-user MIMO
US8989089B2 (en) * 2011-08-18 2015-03-24 Ofinno Technologies, Llc Automobile data transmission
US8797966B2 (en) * 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252417A (zh) * 2006-07-14 2008-08-27 美国博通公司 在无线通信系统中传送信息的方法和系统
US20080095268A1 (en) * 2006-10-18 2008-04-24 Carlos Aldana Method and system for choice of a steering matrix (q) for sounding in antenna selection
CN102498689A (zh) * 2009-07-30 2012-06-13 高通股份有限公司 上行链路多输入多输出的混合自动重传请求操作和解码状态发送

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3148095A4 (en) * 2014-06-17 2017-07-05 Huawei Technologies Co. Ltd. Data transmission method and apparatus
US10205497B2 (en) 2014-06-17 2019-02-12 Huawei Technologies Co., Ltd. Signal transmission method and apparatus
US10778297B2 (en) 2014-06-17 2020-09-15 Huawei Technologies Co., Ltd. Signal transmission method and apparatus
WO2019170146A1 (en) * 2018-03-09 2019-09-12 Mediatek Inc. Frequency-selective precoding for uplink transmissions in mobile communications
US11082107B2 (en) 2018-03-09 2021-08-03 Mediatek Inc. Frequency-selective precoding for uplink transmissions in mobile communications

Also Published As

Publication number Publication date
CN104205662A (zh) 2014-12-10
US9554394B2 (en) 2017-01-24
US20150264700A1 (en) 2015-09-17
CN107196689A (zh) 2017-09-22
CN104205662B (zh) 2017-06-20
CN107196689B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2014082266A1 (zh) 一种上行mu-mimo的方法及系统
WO2021054689A1 (en) Method and apparatus for uci multiplexing in wireless communication systems
WO2018128474A1 (en) Method and apparatus for transmitting harq-ack/nack in wireless communication system
WO2018062925A1 (en) Method and device for performing a random access in wireless communication system
WO2016144100A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2020204524A1 (en) Method and apparatus for adjusting maximum uplink transmission power in wireless communication system
WO2018203718A1 (en) Method and apparatus for receiving downlink control channel in wireless communication system
EP3566378A1 (en) Method and apparatus for transmitting harq-ack/nack in wireless communication system
WO2016053026A1 (en) System and method for improving spectral efficiency and coverage for user equipments
WO2018034533A1 (en) Method and apparatus for grid mapping in a wireless communication system
WO2010107232A2 (en) Method of retransmission for supporting mimo in synchronous harq
WO2015167182A1 (en) Method and apparatus for reporting channel state information
WO2018084515A1 (ko) 무선 셀룰라 통신 시스템에서 데이터 전송 방법 및 장치
WO2011122835A2 (en) Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting mimo
WO2018097545A1 (ko) 셀룰라 통신 시스템에서 상향링크 전송 방법 및 장치
WO2011105809A2 (ko) 무선 접속 시스템에서 그룹 자원 할당 방법 및 장치
WO2021172899A1 (ko) 통신 시스템에서 단말의 소프트버퍼 관리 방법 및 장치
WO2022025599A1 (en) Method and apparatus for determination of uplink/downlink transport block size and modulation and coding scheme
WO2017030428A1 (ko) 트리거 정보를 이용하는 무선 통신 방법 및 무선 통신 단말
WO2014047816A1 (zh) 下行数据传输方法、基站及用户设备
WO2018084611A1 (ko) 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치
WO2023211049A1 (ko) 패킷 데이터 처리 제어 방법 및 장치
WO2022235095A1 (ko) Nr v2x에서 부분 센싱을 위한 후보 자원을 결정하는 방법 및 장치
WO2019139427A1 (ko) 네트워크 보안을 위한 장치 및 방법
WO2020116874A1 (ko) 네트워크 협력통신을 위한 채널상태정보 보고 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889383

Country of ref document: EP

Kind code of ref document: A1