WO2014082186A1 - Antinebulizing sphere deflector, used in electrolytic cells for coating and production of metals - Google Patents

Antinebulizing sphere deflector, used in electrolytic cells for coating and production of metals Download PDF

Info

Publication number
WO2014082186A1
WO2014082186A1 PCT/CL2013/000076 CL2013000076W WO2014082186A1 WO 2014082186 A1 WO2014082186 A1 WO 2014082186A1 CL 2013000076 W CL2013000076 W CL 2013000076W WO 2014082186 A1 WO2014082186 A1 WO 2014082186A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflector
spheres
sphere
mesh
fogging
Prior art date
Application number
PCT/CL2013/000076
Other languages
Spanish (es)
French (fr)
Inventor
Pedro Aylwin GOMEZ
Original Assignee
New Tech Copper Spa.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Tech Copper Spa. filed Critical New Tech Copper Spa.
Publication of WO2014082186A1 publication Critical patent/WO2014082186A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • This development consists of a Sphere Deflector, to be used in electrolytic cells for metal production or metal coating, which are used in Mining and Electroplating.
  • One of the methods to reduce the emission of acid mist in the Electrolytic Cells uses a mantle of one or more layers of polypropylene spheres on the surface of the electrolyte.
  • part of the spheres crawls with it, covering the perforations of the perforated retention plates of the spheres, decreasing the flows, affecting the performance of the pumps and the operation itself, sometimes forcing it to stop the process to proceed to the cleaning of said elements, with the consequent loss of production.
  • the electrolytic deposit of metals is normally carried out in Masonry Cells, coated with electrical insulating materials, resistant to acids, alkalis and temperature.
  • a removable insulating structure to position anodes and cathodes described in Chilean Patent 45288 (application 1020-04), has been introduced into the Cell. In these cells, the fresh electrolyte is fed by a longitudinal end, while the spent electrolyte is discarded by the opposite longitudinal end.
  • one of the methods used to control the emission of acid mist is based on the use of a mantle of one or more layers of polypropylene spheres between 12 and 20 mm in diameter, on the surface of the electrolyte.
  • Figure 1 shows a front elevation view of the Sphere Deflector frame, in a version with two holes for mounting and a box to indicate marks.
  • Figure 2 shows a profile view of the Sphere Deflector frame.
  • Figure 3 shows a front elevation view of the Sphere Deflector frame, in a version with two holes for mounting, without box to indicate marks.
  • Figure 4 shows a front elevation view of the Sphere Deflector frame, in a version with four mounting holes.
  • Figure 5 shows a plan view of the separator for mounting the Sphere Deflector, in a circular version.
  • Figure 6 shows a plan view of the mesh of the Sphere Deflector.
  • Figure 7 shows a perspective view of the removable insulating structure to position anodes and cathodes, with the Ball Deflector pre-mounted at one of its ends.
  • Figure 8 shows a view in longitudinal vertical section of the end where the sump is located, of an Electrolytic Cell of metal production, with the Sphere Deflector of this Utility Model, mounted in its position.
  • Figure 9 shows a longitudinal vertical sectional view of the end where the sump is located, of an electrolytic cell of metal production, with the traditional Sphere retainer mounted in its position.
  • Figure 10 shows a top plan view of the end where the sump is located, of an electrolytic cell of metal production, with the Sphere deflector of this Development, mounted in its position.
  • Figure 11 shows a top plan view of the end where the sump is located, of an electrolytic cell of metal production, with the traditional Sphere retainer mounted in its position.
  • This development consists of a Sphere Deflector, to be installed at the entrance of the drain of the Electrolytic Cells that use polypropylene spheres, whether they are used in Electroplating or in the production of metals.
  • This Sphere Deflector comprises a beveled Frame (1) with two or more perforations for mounting (3), a mesh (2) to deflect the spheres, and two or more spacers (14) for mounting in the Electrolytic Cell in front of the sump .
  • the Sphere Deflector has materialized by manufacturing the Frame (1) in fiberglass reinforced plastic, leaving the mesh (2) of the Sphere Deflector inserted during its construction, at the center of the multiple layers of fiberglass applied, then making the perforations for assembly, in which the mesh crosslinking is rectangular and one of the spacing between rods is smaller than the diameter of the anti-fogging spheres used.
  • the Sphere Deflector has been materialized using two AISI 316 L stainless steel Frames (1), with four perforations (3) and a mesh (2) of the same material.
  • the Sphere Deflector is formed at the time of assembly by placing the mesh (2) between the two frames (1), fastening the three elements to the wall of the Cell, with four screws as fasteners and placing four circular washers (14) of a height less than the diameter of the spheres used, between the Sphere Deflector and the Wall of the Electrolytic Cell, in which the mesh cross-linking is square and its separation is smaller than the diameter of the anti-fogging spheres used.
  • the two mounting spacers (14) have been incorporated into the frame (1) during their manufacture in fiberglass reinforced plastic, thus being fixed to the frame of Figure 3.
  • the four mounting dividers (14), have been incorporated into the frame (1) during its manufacture in fiberglass reinforced plastic, thus being fixed to the frame as shown in Figure 4 .
  • the Sphere Deflector is pre-mounted in a removable insulating Structure to position anodes and cathodes, at the end that will face the Cell sink when introduced into it, as shown in Figure 7, facilitating its cleaning every time the Insulating Structure is removed from the Cell.
  • the Sphere Deflector was materialized by a pentagonal frame, formed by a non-bevelled upper horizontal straight section, two straight downward vertical bevels beveled on the outside, forming right angles one at each end of the horizontal section and two bevelled inclined straight sections forming obtuse angles with adjacent verticals.
  • the Sphere Deflector framework was materialized by a non-bevelled upper horizontal straight section, two vertical straight downward bevelled sections forming right angles one at each end of the horizontal section, and a circular bevelled section by the outer arch, with its center located above the arch.
  • the Mounting of the Ball Deflector to the Cell wall can also be carried out by means of other fixing systems that allow easy removal, such as the system that employs two circular perforations, one with a diameter greater than that of the bolt head that is fixed to the wall. and the other one with a diameter smaller than the head and slightly larger than the diameter of the cylindrical body of the fixing element, a perforation that connects to the perforation of greater diameter, by a straight groove of a width equal to the smaller diameter, taking care that preferably , the acute angle of the bevel is located in front of the sump wall.
  • other fixing systems that allow easy removal, such as the system that employs two circular perforations, one with a diameter greater than that of the bolt head that is fixed to the wall. and the other one with a diameter smaller than the head and slightly larger than the diameter of the cylindrical body of the fixing element, a perforation that connects to the perforation of greater diameter, by a straight groove of a width equal to the smaller diameter, taking care that preferably , the acute
  • This device being separated from the wall of the sump only by the thickness of the spacers (14), thickness with a dimension slightly smaller than the diameter of the spheres that are used, together with its beveled design causes the speed to accelerate in passing from the electrolyte to the sump, which causes it to desorb the dissolved oxygen in it.
  • the small separation to the wall of the sump frees longitudinal space in the Cell, which allows adding up to three anodes and cathodes more, increasing the production capacity of the same Cell by up to 5%.
  • the operating conditions were set according to those established by the Plant, except for the circulation of electrolyte that was 20 cubic meters per hour. After a week of operation, no spheres were observed that would have passed through the deflector mesh. The cell electrolyte was emptied, and the cathode was harvested. The campaign was carried out normally, not observing any operational problem despite having increased production by approximately 5%.
  • Another example of application was made in the same electrolytic cell of the copper production plant, this time assembling the Sphere Deflector of this Development, in front of the sump, with four circular separators 18 mm high, repeating the same conditions of the example previous, reproducing the same results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

This development consists in a sphere deflector, for use in electrolytic cells for metal production. The purpose of this deflector is to prevent saturation of the perforations in the perforated plates for retention of the spheres (used in the reduction of the acid mist), which reduce the flows and performance of the pumps, requiring, on occasion, halting of the process in order to clean said elements. By installing a sphere deflector of this type at the entry to the spent electrolyte tank, the design of the retention mesh, together with the bevelled edges of the frame thereof and the use of separators for holding the mesh at a specific distance from the wall of the cell where the tank is located, the spheres can be prevented from being entrained or from blocking the holes in the mesh, thereby preventing the spheres from compromising operation, as disclosed in figure 10.

Description

DEFLECTOR DE ESFERAS ANTINEBULIZANTES. EMPLEADO EN CELDAS DEFLECTOR OF ANTINEBULIZING SPHERES. EMPLOYEE IN CELLS
ELECTROLITICAS DE RECUBRIMIENTO Y PRODUCCION DE METALES, METAL COATING AND PRODUCTION ELECTROLYTICS,
Este desarrollo consiste en un Deflector de Esferas, para ser utilizado en celdas electrolíticas de producción de metales o de recubrimiento con metales, que se utilizan en la Minería y en Galvanoplastia. This development consists of a Sphere Deflector, to be used in electrolytic cells for metal production or metal coating, which are used in Mining and Electroplating.
Estas Celdas trabajan a temperaturas relativamente altas con respecto a la temperatura ambiente. Por ello es usual que se produzca una neblina, que es comúnmente ácida, por encima de la superficie del líquido. These cells work at relatively high temperatures with respect to room temperature. Therefore it is usual for a mist, which is commonly acidic, to occur above the surface of the liquid.
Uno de los métodos para disminuir la emisión de neblina ácida en las Celdas Electrolíticas, utiliza un manto de una o más capas de esferas de polipropileno sobre la superficie del electrolito. Al circular y recircular el electrolito, parte de las esferas se arrastra con él, tapando las perforaciones de las placas perforadas de retención de las esferas, disminuyendo los flujos, afectando el rendimiento de las bombas y de la operación misma, obligando en ocasiones a detener el proceso para proceder a la limpieza de dichos elementos, con la consiguiente pérdida de producción.  One of the methods to reduce the emission of acid mist in the Electrolytic Cells, uses a mantle of one or more layers of polypropylene spheres on the surface of the electrolyte. When the electrolyte circulates and recirculates, part of the spheres crawls with it, covering the perforations of the perforated retention plates of the spheres, decreasing the flows, affecting the performance of the pumps and the operation itself, sometimes forcing it to stop the process to proceed to the cleaning of said elements, with the consequent loss of production.
Al instalar el Deflector de Esferas de éste desarrollo, a la entrada del sumidero de electrolito gastado, el diseño de la malla de retención, junto a los bordes biselados de su marco y el empleo de separadores para mantener la malla a una determinada distancia del muro de la Celda en que se ubica el sumidero, se evita que las esferas sean arrastradas o tapen las aperturas de la malla, impidiendo que las esferas entorpezcan la operación. When installing the Sphere Deflector of this development, at the entrance of the spent electrolyte drain, the design of the retention mesh, next to the beveled edges of its frame and the use of separators to keep the mesh at a certain distance from the wall of the Cell in which the sump is located, it avoids that the spheres are dragged or cover the openings of the mesh, preventing the spheres from hindering the operation.
DESCRIPCIÓN DE LO CONOCIDO EN LA MATERIA DESCRIPTION OF THE KNOWN IN THE MATTER
El depósito electrolítico de metales, se realiza normalmente en Celdas de Albañilería, revestidas de materiales aislantes de la electricidad, resistentes a los ácidos, álcalis y temperatura. Para evitar una serie de problemas de operación de distinta naturaleza, se ha recurrido a introducir en la Celda, una estructura aislante removible para posicionar ánodos y cátodos, descrita en la Patente Chilena 45288 (solicitud 1020-04). En estas Celdas, el electrolito fresco se alimenta por un extremo longitudinal, en tanto que el electrolito gastado se descarta por el extremo longitudinal opuesto. The electrolytic deposit of metals is normally carried out in Masonry Cells, coated with electrical insulating materials, resistant to acids, alkalis and temperature. To avoid a series of operating problems of different nature, a removable insulating structure to position anodes and cathodes, described in Chilean Patent 45288 (application 1020-04), has been introduced into the Cell. In these cells, the fresh electrolyte is fed by a longitudinal end, while the spent electrolyte is discarded by the opposite longitudinal end.
El hecho que la electrólisis se realice a temperaturas del orden de los 50 grados Celsius, hace que se evapore algo de electrolito, en tanto la producción de gases en los electrodos, al escapar de la superficie arrastran gotas de electrolito, produciendo lo que se conoce como neblina ácida, que tiene efectos negativos para la salud de los operadores y efectos perjudiciales para los equipos y el ambiente. The fact that the electrolysis is carried out at temperatures of the order of 50 degrees Celsius, causes some electrolyte to evaporate, while the production of gases in the electrodes, when they escape from the surface they drag electrolyte drops, producing what is known as an acid mist, which has negative effects on the health of operators and detrimental effects on equipment and the environment.
En la producción de metales por electrólisis, asi como en galvanoplastia, uno de los métodos utilizados para controlar la emisión de la neblina ácida, se basa en el empleo de un manto de una o más capas de esferas de polipropileno de entre 12 a 20 mm de diámetro, sobre la superficie del electrolito. In the production of electrolysis metals, as well as in electroplating, one of the methods used to control the emission of acid mist is based on the use of a mantle of one or more layers of polypropylene spheres between 12 and 20 mm in diameter, on the surface of the electrolyte.
Al recircular el electrolito, estas esferas son arrastradas hacia el sumidero ubicado en un extremo de la Celda, en donde se instala un elemento retenedor de esferas, normalmente una placa con perforaciones de un diámetro menor al diámetro de las esferas, lo que posibilita que algunas de éstas tapen las perforaciones obstruyendo el flujo de salida del electrolito. Para aumentar el número de perforaciones y disminuir la posibilidad de obstrucción del flujo, se aumenta el área de la placa, doblando ésta hacia el interior de la Celda, para formar una especie de cajón, con lo cual se disminuye el problema de obstrucción del flujo de electrolito, pero que implica disminuir el largo útil de la celda, y el espacio disponible para colocar ánodos y cátodos, lo que disminuye su capacidad de producción. Entre los trabajos relacionados a dicho problema, en la búsqueda Nacional, se encontró la Patente registrada con el N° 46716 (Solicitud 684-06), en la que se desarrolló un Sistema y Método de lavado de Celdas para Naves Electrolíticas, que comprende una unidad de tratamiento de esferas antinebulizantes, junto con otras unidades, sin embargo, este tratamiento no resuelve el problema de la obstrucción del flujo de electrolito durante la operación. En la búsqueda Internacional, para evitar que el material de filtrado se tape, y que permita un flujo constante, se recurre a utilizar un separador consistente en una pluralidad de cuerpos esféricos, cada uno con un tubo central para evacuar el efluente, como el descrito en la Patente JP 55067309 (A) - 1980-05-21. Otra Patente sobre un separador esferas/líquido, se describe en la Patente US 4,576,765 de 18 de Marzo de 1986, que consiste en un conjunto de repisas de harneo. Ninguna de estas invenciones se emplea en las Celdas de producción o recubrimiento de metales, sea por su complejidad o por no ser apropiadas para esta aplicación. When the electrolyte is recirculated, these spheres are dragged into the sump located at one end of the Cell, where a sphere retaining element is installed, usually a plate with perforations of a diameter smaller than the diameter of the spheres, which allows some of these cover the perforations obstructing the flow of electrolyte output. To increase the number of perforations and decrease the possibility of flow obstruction, the area of the plate is increased, bending it towards the inside of the Cell, to form a kind of drawer, thereby reducing the problem of flow obstruction of electrolyte, but that implies reducing the useful length of the cell, and the space available to place anodes and cathodes, which decreases its production capacity. Among the works related to this problem, in the National search, the Patent registered with No. 46716 (Application 684-06) was found, in which a System and Method of Washing Cells for Electrolytic Ships was developed, comprising a Anti-fogging treatment unit, together with other units, however, this treatment does not solve the problem of electrolyte flow obstruction during operation. In the International search, to prevent the filtering material from clogging and allowing a constant flow, a separator consisting of a plurality of spherical bodies is used, each with a central tube to evacuate the effluent, as described in JP Patent 55067309 (A) - 1980-05-21. Another patent on a spheres / liquid separator is described in US Patent 4,576,765 of March 18, 1986, which consists of a set of shank shelves. None of these inventions are used in the Cells of production or coating of metals, either because of their complexity or because they are not appropriate for this application.
DESCRIPCION DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
La Figura 1 muestra una vista en elevación frontal del marco del Deflector de Esferas, en una versión con dos perforaciones para montaje y un recuadro para indicar marcas. Figure 1 shows a front elevation view of the Sphere Deflector frame, in a version with two holes for mounting and a box to indicate marks.
La Figura 2 muestra una vista en perfil del marco del Deflector de Esferas. Figure 2 shows a profile view of the Sphere Deflector frame.
La Figura 3 muestra una vista en elevación frontal del marco del Deflector de Esferas, en una versión con dos perforaciones para montaje, sin recuadro para indicar marcas. Figure 3 shows a front elevation view of the Sphere Deflector frame, in a version with two holes for mounting, without box to indicate marks.
La Figura 4 muestra una vista en elevación frontal del marco del Deflector de Esferas, en una versión con cuatro perforaciones para montaje. Figure 4 shows a front elevation view of the Sphere Deflector frame, in a version with four mounting holes.
La Figura 5 muestra una vista en planta del separador para montaje del Deflector de Esferas, en una versión circular. Figure 5 shows a plan view of the separator for mounting the Sphere Deflector, in a circular version.
La Figura 6 muestra una vista en Planta de la malla, del Deflector de Esferas. Figure 6 shows a plan view of the mesh of the Sphere Deflector.
La Figura 7 muestra una vista en perspectiva de la estructura aislante removible para posicionar ánodos y cátodos, con el Deflector de esferas pre-montado en uno de sus extremos. Figure 7 shows a perspective view of the removable insulating structure to position anodes and cathodes, with the Ball Deflector pre-mounted at one of its ends.
La Figura 8 muestra una vista en corte vertical longitudinal del extremo en el que se ubica el sumidero, de una Celda Electrolítica de producción de metales, con el Deflector de Esferas de este Modelo de Utilidad, montado en su posición. La Figura 9 muestra una vista en corte vertical longitudinal del extremo en el que se ubica el sumidero, de una Celda Electrolítica de producción de metales, con el retenedor de Esferas tradicional montado en su posición. Figure 8 shows a view in longitudinal vertical section of the end where the sump is located, of an Electrolytic Cell of metal production, with the Sphere Deflector of this Utility Model, mounted in its position. Figure 9 shows a longitudinal vertical sectional view of the end where the sump is located, of an electrolytic cell of metal production, with the traditional Sphere retainer mounted in its position.
La Figura 10 muestra una vista en Planta Superior del extremo en el que se ubica el sumidero, de una Celda Electrolítica de producción de metales, con el deflector de Esferas de este Desarrollo, montado en su posición. La Figura 11 muestra una vista en Planta Superior del extremo en el que se ubica el sumidero, de una Celda Electrolítica de producción de metales, con el retenedor de Esferas tradicional montado en su posición. Figure 10 shows a top plan view of the end where the sump is located, of an electrolytic cell of metal production, with the Sphere deflector of this Development, mounted in its position. Figure 11 shows a top plan view of the end where the sump is located, of an electrolytic cell of metal production, with the traditional Sphere retainer mounted in its position.
Los números indicados en las Figuras tienen el siguiente significado.  The numbers indicated in the Figures have the following meaning.
1. Marco del Deflector de Esferas. 1. Sphere Deflector Frame.
2. Malla del Deflector de Esferas.  2. Sphere Deflector Mesh.
3. Perforación para montaje del Deflector de Esferas.  3. Drilling for mounting the Sphere Deflector.
4. Recuadro para mostrar indicaciones, del Deflector de Esferas.  4. Box to show indications of the Sphere Deflector.
5. Espacio libre del marco, para ubicar la malla del Deflector de Esferas. 5. Free space of the frame, to locate the mesh of the Sphere Deflector.
6. Bisel en los bordes laterales e inferior del marco, del Deflector de Esferas.  6. Bevel on the side and bottom edges of the frame, of the Sphere Deflector.
7. Diámetro exterior del separador para montaje, del Deflector de Esferas.  7. Outside diameter of the separator for mounting, of the Sphere Deflector.
8. Diámetro interior del separador para montaje, del Deflector de Esferas.  8. Inside diameter of the separator for mounting, of the Sphere Deflector.
9. Cátodo.  9. Cathode.
10. Anodo. 10. Anode
11. Esferas de Polipropileno.  11. Polypropylene spheres.
12. Marco con malla del Deflector de Esferas.  12. Frame with sphere deflector mesh.
13. Sumidero.  13. Sump.
14. Separador de montaje del Deflector de Esferas.  14. Spreader Deflector mounting separator.
15. Muro exterior de Hormigón de la Celda Electrolítica de producción de metales.15. External wall of concrete of the electrolytic cell of metal production.
16. Cajón de retención de esferas de una Celda Electrolítica de producción de metales tradicional. DESCRIPCIÓN DEL DESARROLLO 16. Sphere retention drawer of a traditional Metal Production Electrolytic Cell. DEVELOPMENT DESCRIPTION
Este desarrollo consiste en un Deflector de Esferas, para ser instalado a la entrada del sumidero de las Celdas Electrolíticas que utilizan esferas de polipropileno, sea que se utilicen en Galvanoplastia o en la producción de metales. This development consists of a Sphere Deflector, to be installed at the entrance of the drain of the Electrolytic Cells that use polypropylene spheres, whether they are used in Electroplating or in the production of metals.
Este Deflector de Esferas comprende un Marco biselado (1 ) con dos o más perforaciones para montaje (3), una malla (2) para deflectar las esferas, y dos o más separadores (14) para el montaje en la Celda Electrolítica delante del sumidero. This Sphere Deflector comprises a beveled Frame (1) with two or more perforations for mounting (3), a mesh (2) to deflect the spheres, and two or more spacers (14) for mounting in the Electrolytic Cell in front of the sump .
En una realización de este Desarrollo, el Deflector de Esferas se ha materializado fabricando el Marco (1 ) en plástico reforzado con fibra de vidrio, dejando inserta durante su construcción la malla (2) del Deflector de Esferas, al centro de las múltiples capas de fibra de vidrio aplicadas, realizando luego las perforaciones para el montaje, en que el reticulado de la malla es rectangular y una de las separaciones entre varillas es inferior al diámetro de las esferas antinebulizantes utilizadas. In one embodiment of this Development, the Sphere Deflector has materialized by manufacturing the Frame (1) in fiberglass reinforced plastic, leaving the mesh (2) of the Sphere Deflector inserted during its construction, at the center of the multiple layers of fiberglass applied, then making the perforations for assembly, in which the mesh crosslinking is rectangular and one of the spacing between rods is smaller than the diameter of the anti-fogging spheres used.
En otra realización de este Desarrollo, el Deflector de Esferas se ha materializado utilizando dos Marcos (1) de acero inoxidable AISI 316 L, con cuatro perforaciones (3) y una malla (2) del mismo material. El Deflector de Esferas se forma al momento del montaje al ubicar la malla (2) entre los dos marcos (1 ), sujetando los tres elementos al muro de la Celda, con cuatro tornillos como elementos de fijación y colocando cuatro arandelas circulares (14) de una altura inferior al diámetro de las esferas utilizadas, entre el Deflector de Esferas y el Muro de la Celda Electrolítica, en que el reticulado de la malla es cuadrado y su separación es menor que el diámetro de las esferas antinebulizantes utilizadas. In another embodiment of this Development, the Sphere Deflector has been materialized using two AISI 316 L stainless steel Frames (1), with four perforations (3) and a mesh (2) of the same material. The Sphere Deflector is formed at the time of assembly by placing the mesh (2) between the two frames (1), fastening the three elements to the wall of the Cell, with four screws as fasteners and placing four circular washers (14) of a height less than the diameter of the spheres used, between the Sphere Deflector and the Wall of the Electrolytic Cell, in which the mesh cross-linking is square and its separation is smaller than the diameter of the anti-fogging spheres used.
En otra realización de este Desarrollo, los dos separadores de montaje (14) se han incorporado al marco (1 ) durante su fabricación en plástico reforzado con fibra de vidrio, quedando de este modo, fijos al marco de la Figura 3. In another embodiment of this Development, the two mounting spacers (14) have been incorporated into the frame (1) during their manufacture in fiberglass reinforced plastic, thus being fixed to the frame of Figure 3.
En otra realización de este Desarrollo, los cuatro separadores de montaje (14), se han incorporado al marco (1 ) durante su fabricación en plástico reforzado con fibra de vidrio, quedando de este modo, fijos al marco como el mostrado en la Figura 4. En otra realización de este Desarrollo el Deflector de Esferas se materializó en acero inoxidable AISI 316 L, tanto para los dos marcos (1 ) como para la malla (2), la que se ubicó al momento del montaje entre los dos marcos (1 ) y se fijó al muro de la Celda Electrolítica, mediante pernos de anclaje, previa colocación de los separadores (14) entre el muro y el marco adyacente (1 ). In another embodiment of this Development, the four mounting dividers (14), have been incorporated into the frame (1) during its manufacture in fiberglass reinforced plastic, thus being fixed to the frame as shown in Figure 4 . In another embodiment of this Development the Sphere Deflector materialized in AISI 316 L stainless steel, both for the two frames (1) and for the mesh (2), which was located at the time of assembly between the two frames (1) and it was fixed to the wall of the Electrolytic Cell, by means of anchor bolts, prior placement of the spacers (14) between the wall and the adjacent frame (1).
En otra realización de este Desarrollo el Deflector de Esferas se pre-monta en una Estructura aislante removible para posicionar ánodos y cátodos, en el extremo que enfrentará al sumidero de la Celda al introducirla en ella, como se muestra en la Figura 7, facilitando su limpieza cada vez que la Estructura aislante es removida de la Celda. In another embodiment of this Development the Sphere Deflector is pre-mounted in a removable insulating Structure to position anodes and cathodes, at the end that will face the Cell sink when introduced into it, as shown in Figure 7, facilitating its cleaning every time the Insulating Structure is removed from the Cell.
En otra realización de este Desarrollo, el Deflector de esferas se materializó mediante un marco pentagonal, formado por un tramo recto horizontal superior no biselado, dos tramos rectos verticales descendentes biselados por el exterior, formando ángulos rectos uno a cada extremo del tramo horizontal y dos tramos rectos inclinados biselados formando ángulos obtusos con los verticales adyacentes. In another embodiment of this Development, the Sphere Deflector was materialized by a pentagonal frame, formed by a non-bevelled upper horizontal straight section, two straight downward vertical bevels beveled on the outside, forming right angles one at each end of the horizontal section and two bevelled inclined straight sections forming obtuse angles with adjacent verticals.
En otra materialización de este Desarrollo, el marco del Deflector de Esferas se materializó mediante un tramo recto horizontal superior no biselado, dos tramos rectos verticales descendentes biselados por el exterior formando ángulos rectos uno a cada extremo del tramo horizontal, y un tramo circular biselado por el arco exterior, con su centro ubicado arriba del arco. In another materialization of this Development, the Sphere Deflector framework was materialized by a non-bevelled upper horizontal straight section, two vertical straight downward bevelled sections forming right angles one at each end of the horizontal section, and a circular bevelled section by the outer arch, with its center located above the arch.
El Montaje del Deflector de Esferas al muro de la Celda puede realizarse también mediante otros sistemas de fijación que permiten su remoción fácil, como el sistema que emplea dos perforaciones circulares, una de diámetro mayor que el de la cabeza del perno que se fija al muro y la otra de diámetro menor a la cabeza y ligeramente mayor que el diámetro del cuerpo cilindrico del elemento de fijación, perforación que se conecta a la perforación de mayor diámetro, por una ranura recta de un ancho igual al diámetro menor, cuidando que de preferencia, el ángulo agudo del bisel se ubique frente al muro del sumidero. The Mounting of the Ball Deflector to the Cell wall can also be carried out by means of other fixing systems that allow easy removal, such as the system that employs two circular perforations, one with a diameter greater than that of the bolt head that is fixed to the wall. and the other one with a diameter smaller than the head and slightly larger than the diameter of the cylindrical body of the fixing element, a perforation that connects to the perforation of greater diameter, by a straight groove of a width equal to the smaller diameter, taking care that preferably , the acute angle of the bevel is located in front of the sump wall.
Este aparato, por quedar separado del muro del sumidero solo por el espesor de los separadores (14), espesor con una dimensión ligeramente menor que el diámetro de las esferas que se utilicen, junto a su diseño biselado hace que se acelere la velocidad de pasada del electrolito al sumidero, lo que hace que desorba el oxigeno disuelto en él. This device, being separated from the wall of the sump only by the thickness of the spacers (14), thickness with a dimension slightly smaller than the diameter of the spheres that are used, together with its beveled design causes the speed to accelerate in passing from the electrolyte to the sump, which causes it to desorb the dissolved oxygen in it.
Al mismo tiempo, la pequeña separación al muro del sumidero, libera espacio longitudinal en la Celda, lo que permite agregar hasta tres ánodos y cátodos más, aumentando la capacidad de producción de la misma Celda hasta en un 5%. At the same time, the small separation to the wall of the sump, frees longitudinal space in the Cell, which allows adding up to three anodes and cathodes more, increasing the production capacity of the same Cell by up to 5%.
Otra característica de este Desarrollo, es que la separación de la malla del Deflector de Esferas es solo ligeramente inferior al diámetro de las esferas, con lo que se logra que no se tape con el sulfato que se cristaliza durante la operación de la Celda. Another characteristic of this Development is that the separation of the Mesh from the Sphere Deflector is only slightly smaller than the diameter of the spheres, so that it is not covered with the sulfate that crystallizes during the operation of the Cell.
EJEMPLOS DE APLICACIÓN APPLICATION EXAMPLES
Para probar este Desarrollo, en una Celda Electrolítica tradicional de producción de cobre con 60 cátodos y 61 ánodos, que usa esferas de polipropileno de 20 mm de diámetro, se desmontó su cajón de retención de esferas antinebulizantes y se instaló al interior de la Celda Electrolítica, una estructura aislante removible para posicionar ánodos y cátodos, con un Deflector de Esferas de este Desarrollo pre-montado, el que se ubicó delante del sumidero de electrolito, a una distancia de 18 mm de él. To test this Development, in a traditional electrolytic cell of copper production with 60 cathodes and 61 anodes, using polypropylene spheres of 20 mm in diameter, its drawer of retention of anti-fogging spheres was disassembled and installed inside the Electrolytic Cell , a removable insulating structure to position anodes and cathodes, with a Sphere Deflector of this pre-assembled Development, which was located in front of the electrolyte sink, at a distance of 18 mm from it.
A continuación se montaron 63 cátodos y 64 ánodos, se llenó la Celda con electrolito, se conectó la energía para proceder a depositar metal sobre los cátodos, iniciándose la alimentación de electrolito fresco y de gas de burbujeo, agregándose esferas de polipropileno de 20 mm de diámetro, hasta formar un manto de dos capas aproximadamente. Next, 63 cathodes and 64 anodes were mounted, the Cell was filled with electrolyte, the energy was connected to deposit metal on the cathodes, starting the feeding of fresh electrolyte and bubbling gas, adding 20 mm polypropylene spheres. diameter, to form a mantle of approximately two layers.
Las condiciones de operación se fijaron de acuerdo a las establecidas por la Planta, salvo para la circulación de electrolito que fue de 20 metros cúbicos por hora. Después de una semana de operación, no se observaron esferas que hubiesen atravesado la malla del Deflector. Se procedió a vaciar el electrolito de la Celda, y se procedió a efectuar la cosecha de los cátodos. La campaña efectuada se desarrolló con normalidad, no observándose ningún problema de operación a pesar de haberse aumentado la producción en aproximadamente un 5%. Otro ejemplo de aplicación se realizó en la misma Celda electrolítica de la planta de producción de cobre, esta vez montando el Deflector de Esferas de este Desarrollo, delante del sumidero, con cuatro separadores circulares de 18 mm de alto, repitiéndose las mismas condiciones del ejemplo anterior, reproduciéndose los mismos resultados. The operating conditions were set according to those established by the Plant, except for the circulation of electrolyte that was 20 cubic meters per hour. After a week of operation, no spheres were observed that would have passed through the deflector mesh. The cell electrolyte was emptied, and the cathode was harvested. The campaign was carried out normally, not observing any operational problem despite having increased production by approximately 5%. Another example of application was made in the same electrolytic cell of the copper production plant, this time assembling the Sphere Deflector of this Development, in front of the sump, with four circular separators 18 mm high, repeating the same conditions of the example previous, reproducing the same results.

Claims

REIVINDICACIONES
1. Aparato de retención de esferas antinebulizantes, empleado en Celdas Electrolíticas de recubrimiento y producción de metales, que se monta delante del sumidero de electrolito, CARACTERIZADO porque comprende un marco biselado exteriormente, de preferencia rectangular, en cuyo interior se aloja una malla reticulada con una separación inferior al diámetro de las esferas antinebulizantes utilizadas y perforaciones para montaje, en las que se ubican separadores de preferencia cilindricos perforados, de una altura ligeramente menor que las esferas antinebulizantes utilizadas. 1. Retention device for anti-fogging spheres, used in Electrolytic Cells for coating and producing metals, which is mounted in front of the electrolyte drain, CHARACTERIZED because it comprises an externally bevelled frame, preferably rectangular, inside which a mesh mesh with a separation smaller than the diameter of the anti-fogging spheres used and perforations for assembly, in which perforated cylindrical separators are located, of a height slightly smaller than the anti-fogging spheres used.
2. Aparato de retención de esferas antinebulizantes, empleado en Celdas Electrolíticas de recubrimiento y producción de metales, que se monta delante del sumidero de electrolito, según la Cláusula 1. , CARACTERIZADO porque el marco está biselado solo en los lados que quedan sumergidos en el electrolito.  2. Retention device for anti-fogging spheres, used in Electrolytic Cells for coating and producing metals, which is mounted in front of the electrolyte drain, according to Clause 1., CHARACTERIZED because the frame is beveled only on the sides that are submerged in the electrolyte.
3. Aparato de retención de esferas antinebulizantes, empleado en Celdas Electrolíticas de recubrimiento y producción de metales, que se monta delante del sumidero de electrolito, según la Cláusula 1. , CARACTERIZADO porque el reticulado de la malla es cuadrado y cuya separación entre varillas es inferior al diámetro de las esferas antinebulizantes utilizadas. 3. Retention apparatus for anti-fogging spheres, used in Electrolytic Cells for coating and producing metals, which is mounted in front of the electrolyte drain, according to Clause 1., CHARACTERIZED because the mesh cross-linking is square and whose spacing between rods is smaller than the diameter of the anti-fogging spheres used.
4. Aparato de retención de esferas antinebulizantes, empleado en Celdas Electrolíticas de recubrimiento y producción de metales, que se monta delante del sumidero de electrolito, según la Cláusula 1. , CARACTERIZADO porque el marco dispone como mínimo de dos perforaciones para montaje. 4. Retention device for anti-fogging spheres, used in Electrolytic Cells for coating and producing metals, which is mounted in front of the electrolyte drain, according to Clause 1., CHARACTERIZED because the frame has at least two holes for mounting.
PCT/CL2013/000076 2012-11-27 2013-10-18 Antinebulizing sphere deflector, used in electrolytic cells for coating and production of metals WO2014082186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2012003318 2012-11-27
CL3318-2012 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014082186A1 true WO2014082186A1 (en) 2014-06-05

Family

ID=50827001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2013/000076 WO2014082186A1 (en) 2012-11-27 2013-10-18 Antinebulizing sphere deflector, used in electrolytic cells for coating and production of metals

Country Status (1)

Country Link
WO (1) WO2014082186A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027811A1 (en) * 1994-04-12 1995-10-19 Bechtel Group, Inc. Electrode cap with integral tank cover for acid mist collection
WO1998000585A1 (en) * 1996-06-28 1998-01-08 Aon International, Inc. Control agent for reducing metal acid mist emissions from electrolytic cell operations
WO2005019502A1 (en) * 2003-08-22 2005-03-03 Bhp Billiton Innovation Pty. Ltd. Gas sparging
US20080302654A1 (en) * 2007-06-07 2008-12-11 Percy Danilo Yanez Castaneda Desludging System for Electrolytic Cells
WO2009016190A2 (en) * 2007-07-31 2009-02-05 Ancor Tecmin S. A. A system for monitoring, control and management of a plant where hydrometallurgical electrowinning and electrorefining processes for non ferrous metals are conducted

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027811A1 (en) * 1994-04-12 1995-10-19 Bechtel Group, Inc. Electrode cap with integral tank cover for acid mist collection
WO1998000585A1 (en) * 1996-06-28 1998-01-08 Aon International, Inc. Control agent for reducing metal acid mist emissions from electrolytic cell operations
WO2005019502A1 (en) * 2003-08-22 2005-03-03 Bhp Billiton Innovation Pty. Ltd. Gas sparging
US20080302654A1 (en) * 2007-06-07 2008-12-11 Percy Danilo Yanez Castaneda Desludging System for Electrolytic Cells
WO2009016190A2 (en) * 2007-07-31 2009-02-05 Ancor Tecmin S. A. A system for monitoring, control and management of a plant where hydrometallurgical electrowinning and electrorefining processes for non ferrous metals are conducted

Similar Documents

Publication Publication Date Title
AU2008289474B2 (en) Lateral exhaust enclosure-aided mist control system in metal electrowinning and electrorefining cells
US5470445A (en) Electrode cap with integral tank cover for acid mist collection
DE60319539T2 (en) METHOD AND SYSTEM FOR COOLING AN ELECTROLYSIS CELL FOR THE MANUFACTURE OF ALUMINUM
CN207604064U (en) A kind of dust-proof cabinet
Beukes et al. Copper electrowinning: theoretical and practical design
BRPI0918749B1 (en) electrode washing method and system
CN105862098B (en) Suitable for the scaffold system of pcb board plating
WO2014082186A1 (en) Antinebulizing sphere deflector, used in electrolytic cells for coating and production of metals
US6849172B2 (en) Electrolytic process and apparatus
CN201482410U (en) Copper electrodeposition acid mist absorbing device
ES2660840T3 (en) Electrolytic bath with ionic membrane
KR101226663B1 (en) Anode module and electroplating apparatus having it
CN201713594U (en) Plating bath anode copper ball adding box
CN203748403U (en) Automatic flushing stainless steel cage for big animal
CN210448707U (en) Circulating flue gas treatment tower
CN206359247U (en) dry absorption tower
CN210094465U (en) Snake catching device convenient to replace
ES2535870A2 (en) Bubble collector guide and use thereof
CN104674308A (en) Induced electrodeposition acid mist inhibition device and technology
CN206089846U (en) Novel concurrent flow electrolysis trough
GB1207614A (en) Method and device for operating mercury-process electrolytic cells
EP3222755A1 (en) Induced device and process for inhibiting electrodeposition of acid mist
US9556530B2 (en) Equipment and method for electrolytic recovery of metal
CN219907892U (en) Electrolytic aluminum anode gas collection treatment device
CN211587428U (en) Compound fertilizer production is with multiple sieving mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858366

Country of ref document: EP

Kind code of ref document: A1