WO2014080939A1 - 新規錯体およびその利用 - Google Patents

新規錯体およびその利用 Download PDF

Info

Publication number
WO2014080939A1
WO2014080939A1 PCT/JP2013/081276 JP2013081276W WO2014080939A1 WO 2014080939 A1 WO2014080939 A1 WO 2014080939A1 JP 2013081276 W JP2013081276 W JP 2013081276W WO 2014080939 A1 WO2014080939 A1 WO 2014080939A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
formula
group
sime
ligand
Prior art date
Application number
PCT/JP2013/081276
Other languages
English (en)
French (fr)
Inventor
侯 召民
隆則 島
少偉 胡
慶徳 遠藤
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Priority to US14/443,888 priority Critical patent/US9890184B2/en
Priority to EP13856069.3A priority patent/EP2924046A4/en
Priority to JP2014548596A priority patent/JP6004500B2/ja
Publication of WO2014080939A1 publication Critical patent/WO2014080939A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00805Details of the particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0222Metal clusters, i.e. complexes comprising 3 to about 1000 metal atoms with metal-metal bonds to provide one or more all-metal (M)n rings, e.g. Rh4(CO)12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • C07F11/005Compounds containing elements of Groups 6 or 16 of the Periodic Table compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a novel hydride complex capable of fixing a nitrogen atom, a production method thereof, and use of the hydride complex.
  • fixation of nitrogen atoms is known in nature as, for example, nitrogen fixation by rhizobia, it is industrially performed exclusively by the Harbor Bosch method.
  • the Harbor Bosch method is a technology that can only be performed efficiently under very high temperature and high pressure environments. Therefore, a technique for fixing nitrogen in a more relaxed environment is eagerly desired.
  • Non-Patent Documents 1 and 2 etc. There are reports of metal complexes that can fix nitrogen atoms (Non-Patent Documents 1 and 2 etc.) or hydride complexes (Non-Patent Documents 3 to 4 etc.), but nitrogen atoms can be easily removed from the complex as ammonia. For industrial applications, further new proposals are eagerly desired.
  • the present invention has been made in view of the above problems, and its object is to provide a novel hydride complex that fixes nitrogen in a relatively relaxed environment, a method for producing the same, and use of the hydride complex. To do.
  • the present invention provides any of the following. 1) A complex represented by the following formula (1A) or formula (1B), or a cationic or anionic complex of the complex,
  • M1 to M4 in the case of formula (1A), M1 to M3) are independently of each other Ti, Zr, Hf, V, Nb, Ta, Cr, Mo or W and L1 to L4 (where L1 to L3 in the case of formula (1A)) are independently of each other a ligand (Cp) containing a substituted or unsubstituted cyclopentadienyl derivative, diphenylamine type coordination A complex which is a ligand selected from a dipole, a diphenylphosphine type ligand, and a carboimidoamide type ligand. 2) L1 to L4 in the formula (1A) and the formula (1B) (in the case of the formula (1A), L1 to L3) are the same ligand, and the ligand is represented by the following formula (2) The complex of 1) shown by these.
  • R1 to R5 are independently of each other a hydrogen atom bonded to a carbon atom constituting the skeleton of the cyclopentadienyl ring; a hydrocarbyl group having 1 to 20 carbon atoms; A substituted metalloid group substituted by a hydrocarbyl group, an amide group, a phosphide group and / or an alkoxide group of ## STR4 ## * represents a bond with M1 to M4 (in the case of formula (1A), M1 to M3); 2 to 5 of R 5 are the hydrocarbyl group or substituted metalloid group, and one of the carbon atoms constituting the skeleton of the cyclopentadienyl ring shown in the formula (2) is a group 14 (It may be substituted with atoms (however, excluding carbon atoms and lead atoms) or group 15 atoms.) 3) In formula (2), all of R1 to R5 are methyl groups, or four of R1 to
  • the complex according to 2) which is a group.
  • the complex according to 6 which is a complex represented by the following formula (3) or a cationic or anionic complex of the complex.
  • M1 to M3 and L1 to L3 are the same as those in the formula (1A)
  • X1 to X3 are —H— or —N (H) —
  • At least one is —N (H) —, but in one or more —N (H) —, H may be substituted with a boryl group, a silyl group, or an alkyl group.
  • M1 to M3 are each independently Ti, Zr, Hf, V, Nb, Ta, Cr, Mo or W, and L1 to L3 are each independently substituted or unsubstituted.
  • M1 to M3 are each independently Ti (titanium atom), Zr (zirconium atom), Hf (hafnium atom), V (vanadium atom), Nb (niobium atom), Ta (tantalum atom) , Cr (chromium atom), Mo (molybdenum atom) or W (tungsten atom), preferably Ti, Zr, or Hf independently of each other.
  • M1 to M3 are preferably all the same atom, and M1 to M3 are more preferably all Ti.
  • M1 to M4 in formula (1B) are independently Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, or W, and are preferably independently Ti, Zr, or Hf. .
  • M1 to M4 are preferably all the same atom, and M1 to M4 are more preferably all Ti.
  • L1 to L3 are each independently a ligand containing a substituted or unsubstituted cyclopentadienyl derivative (referred to as “Cp ligand”), a diphenylamine type ligand, diphenylphosphine Type ligands and carboimidamide type ligands.
  • L1 to L3 are preferably all the same ligand, and L1 to L3 are more preferably all the same Cp ligand.
  • L1 to L4 each independently represent a substituted or unsubstituted Cp ligand, diphenylamine type ligand, diphenylphosphine type ligand, and carboimidoamide type ligand.
  • a ligand selected from L1 to L4 are preferably all the same ligand, and L1 to L4 are more preferably all the same Cp ligand.
  • the Cp ligand is ⁇ -bonded to the central metal M.
  • the Cp ligand is, for example, a non-bridged ligand.
  • the non-bridged ligand means a ligand having a coordination atom or a coordination group other than the cyclopentadienyl derivative, wherein the cyclopentadienyl derivative is ⁇ -bonded to the central metal.
  • the Cp ligand is, for example, a bridged ligand.
  • the bridged ligand means a ligand having a coordination atom or a coordination group in addition to the cyclopentadienyl derivative.
  • the Cp ligand is preferably a non-bridged ligand.
  • the substituted or unsubstituted cyclopentadienyl derivative contained in the Cp ligand is a substituted or unsubstituted cyclopentadienyl ring, a substituted or unsubstituted fluorenyl ring, a substituted or unsubstituted octahydrofluorenyl ring , A substituted or unsubstituted indenyl ring, and a substituted or unsubstituted tetrahydroindenyl ring.
  • the most preferred cyclopentadienyl derivative is a cyclopentadienyl ring having a substituent.
  • the cyclopentadienyl ring is represented by a composition formula: C 5 H 5-X R X.
  • X represents an integer of 0 to 5.
  • Each R independently represents a hydrocarbyl group; a substituted hydrocarbyl group; or a substituted metalloid group substituted with a hydrocarbyl group, an amide group, a phosphide group, and / or an alkoxide group.
  • One of C in the above composition formula may be substituted with a Group 14 atom (excluding a carbon atom and a lead atom) or a Group 15 atom.
  • the hydrocarbyl group is preferably a hydrocarbyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms), phenyl Group, benzyl group and the like, and most preferably a methyl group.
  • hydrocarbyl group having a substituent for example, at least one hydrogen atom of the hydrocarbyl group is substituted with a halogen atom, an amide group, a phosphide group, an alkoxy group, an aryloxy group, or the like
  • a hydrocarbyl group may be mentioned.
  • examples of the metalloid in the substituted metalloid group include germyl (Ge), stannyl (Sn), silyl (Si), and the like. Further, the number of substitutions of the substituents substituted on the metalloid group is determined by the type of metalloid (for example, in the case of a silyl group, the number of substitutions of the hydrocarbyl group (substituent) is 3).
  • the hydrocarbyl group as a substituent in the substituted metalloid group preferably has 1 to 20 carbon atoms.
  • At least one R of the cyclopentadienyl ring is a substituted metalloid group (preferably a silyl group) substituted with a hydrocarbyl group, and more preferably a trimethylsilyl group.
  • Preferred examples of the cyclopentadienyl ring include those represented by the following formula (2).
  • R 1 to R 5 are independently of each other a hydrogen atom bonded to a carbon atom constituting the skeleton of the cyclopentadienyl ring; a hydrocarbyl group having 1 to 20 carbon atoms; A substituted metalloid group substituted with a hydrocarbyl group, an amide group, a phosphide group and / or an alkoxide group, and * represents a bond with M1 to M3 shown in Formula (1A) or M1 to M4 shown in Formula (1B) And 2 to 5 of R1 to R5 are the hydrocarbyl group or substituted metalloid group.
  • one of the carbon atoms constituting the skeleton of the cyclopentadienyl ring shown in Formula (2) is substituted with a Group 14 atom (excluding the carbon atom and lead atom) or a Group 15 atom. May be.
  • L1 to L3 in the formula (1A) or L1 to L4 in the formula (1B) are preferably the same ligands shown in the above formula (2).
  • Examples of the cyclopentadienyl ring represented by the above formula (2) include the following.
  • R is independently substituted with a hydrocarbyl group having 1 to 20 carbon atoms, an amide group, a phosphide group and / or an alkoxide group.
  • a substituted metalloid group preferably a substituted metalloid group substituted with a hydrocarbyl group having 1 to 20 carbon atoms. More specifically, examples of the metalloid group include those shown in any of the following formulas (4).
  • R ′ independently represents a hydrocarbyl group having 1 to 8 carbon atoms, preferably a hydrocarbyl group having 1 to 6 carbon atoms, more preferably a hydrocarbyl group having 1 to 4 carbon atoms. (Preferably a chain alkyl group).
  • E represents N (nitrogen atom) or P (phosphorus atom).
  • R independently of each other is a hydrocarbyl group having 1 to 20 carbon atoms (preferably a chain alkyl group having 1 to 6 carbon atoms); A substituted metalloid group substituted with a hydrocarbyl group, an amide group, a phosphide group and / or an alkoxide group (preferably a substituted metalloid group substituted with a hydrocarbyl group having 1 to 20 carbon atoms).
  • the metalloid group include those shown in any of the above formulas (4).
  • n represents an integer of 1 to 5
  • E represents a heteroatom such as N (nitrogen atom) P (phosphorus atom), As (arsenic atom), N Or it is preferable that it is P.
  • cyclopentadienyl ring represented by the above formula (2) more preferably, in the formula (2), all of R1 to R5 are methyl groups (corresponding to the formula (3-8)), And four of R1 to R5 are methyl groups and the other is a trialkylsilyl group having an alkyl group having 1 to 6 carbon atoms (corresponding to formula (3-1)).
  • the substituted or unsubstituted fluorenyl ring as the Cp ligand has a composition formula: C 13 H 9-X R X (X represents an integer of 0 to 9, and R has a substituent having 1 to 20 carbon atoms.
  • Examples of the substituted or unsubstituted octahydrofluorenyl ring as the Cp ligand include, for example, a composition formula: C 13 H 17-X R X (X represents an integer of 0 to 17, and R represents a carbon number A hydrocarbyl group or a substituted metalloid group which may have 1 to 20 substituents, and represented by the above-mentioned cyclopentadienyl ring: the same as R in C 5 H 5-X R X ) .
  • fluorenyl ring examples include those represented by the following formulas.
  • R independently represents a hydrocarbyl group or substituted metalloid group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms. More specifically, examples of the metalloid group include those shown in any of the above formulas (4).
  • Formulas (5-3) to (5-4) correspond to specific examples of the compounds represented by Formulas (5-1) to (5-2).
  • the Cp ligand is a substituted or unsubstituted indenyl ring (composition formula: C 9 H 7-X R X : X is an integer of 0 to 7) or a tetrahydroindenyl ring (composition formula: C 9 H 11-X R X : X may be an integer from 0 to 11.
  • R is the same as R in the cyclopentadienyl ring described above.
  • Preferred examples of the indenyl ring include those represented by the following formula (6).
  • R independently represents a hydrocarbyl group or substituted metalloid group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms. More specifically, examples of the metalloid group include those shown in any of the above formulas (4).
  • the diphenylamine type ligand refers to a ligand having a diphenylamine skeleton (—N (Ph) 2 ) in which two phenyl groups are bonded to a nitrogen atom.
  • the arbitrary hydrogen atom on the phenyl group includes, for example, a hydrocarbyl group having 1 to 20 carbon atoms, a metalloid group substituted with a hydrocarbyl group having 1 to 20 carbon atoms, a —PR 2 group, a —SR group, an —OR group, etc. It may be substituted with a substituent.
  • R in the —PR 2 group, —SR group, and —OR group independently of each other represents a hydrocarbyl group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, or a metalloid group substituted with the hydrocarbyl group. .
  • R in the —PR 2 group, —SR group, and —OR group independently of each other represents a hydrocarbyl group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, or a metalloid group substituted with the hydrocarbyl group.
  • two Rs contained in the —PR 2 group are the same.
  • Preferred diphenylamine type ligands include those represented by the following formula (7).
  • R independently represents a hydrocarbyl group or substituted metalloid group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms. More specifically, examples of the metalloid group include those shown in any of the above formulas (4).
  • R is a hydrocarbyl group, it is preferably an alkyl group or an aryl group.
  • the four R are preferably the same group.
  • the diphenylphosphine-type ligand refers to a ligand having a diphenylphosphine skeleton (—P (Ph) 2 ) in which two phenyl groups are bonded to a phosphorus atom.
  • a substituent such as a hydrocarbyl group having 1 to 20 carbon atoms, a metalloid group substituted with a hydrocarbyl group having 1 to 20 carbon atoms, an —SR group, or an —OR group. May be.
  • R in the —SR group and —OR group independently represents a hydrocarbyl group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, or a metalloid group substituted with the hydrocarbyl group.
  • Preferred diphenylphosphine type ligands include those represented by the following formula (8).
  • R independently represents a hydrocarbyl group or substituted metalloid group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms. More specifically, examples of the metalloid group include those shown in any of the above formulas (4).
  • R is a hydrocarbyl group, it is preferably an alkyl group or an aryl group.
  • the carboimidamide type ligand refers to a ligand having a structure (—N ⁇ C—NH—structure) represented by the following formula (9).
  • R can take any group independently of each other.
  • R independently of each other has 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms.
  • R is a hydrocarbyl group, it is preferably an alkyl group or an aryl group. More specifically, examples of the carboimide amide type ligand include N1, N1-diphenylbenzenecarboimide.
  • each of the hydride complex represented by the formula (1A) and the hydride complex represented by the formula (1B) is not only a neutral complex but also a cationic complex or an anionic property obtained from the neutral complex. It may be a complex of Specifically, for example, neutral complexes [ ⁇ (C 5 Me 4 SiMe 3) Ti ⁇ 3 ( ⁇ 3 -H) ( ⁇ 2 -H) 6] obtained from [ ⁇ (C 5 Me 4 SiMe 3) Ti ⁇ 3 ( ⁇ -H) 6 ] [B (C 6 F 5 ) 4 ] or [ ⁇ (C 5 Me 4 SiMe 3 ) Ti ⁇ 3 ( ⁇ -H) 5 ] [ ⁇ B (C 6 F 5 ) 4 ⁇ 2 ] and other cationic complexes; [ ⁇ (C 5 Me 4 SiMe 3 ) Ti ⁇ 3 ( ⁇ 3 -H) ( ⁇ 2 -H) 6 ] Li [ ⁇ (C 5 Me 4 SiMe 3 ) Anionic complexes such as Ti ⁇ 3 ( ⁇ -H) 8
  • M in the formula (10) is the same as M1 to M3 in the formula (1A)
  • L in the formula (10) is the same as L1 to L3 in the formula (1A). That is, if only one type of compound represented by formula (10) is used, a complex represented by formula (1A) having the same M1 to M3 and the same L1 to L3 can be obtained.
  • R in the formula (10) represents a monoanionic ligand independently of each other. More specifically, R represents a monoanionic ligand such as hydride, halide, substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, alkoxy group or aryloxy group, amide group or phosphino group, and the like. However, it is not limited to these. Among these, each R is preferably independently a hydrocarbyl group which may have a substituent having 1 to 20 carbon atoms, and more preferably a trimethylsilylmethyl group.
  • halide examples include chloride, bromide, fluoride, and iodide.
  • the above hydrocarbyl group having 1 to 20 carbon atoms is preferably a methyl group, ethyl group, propyl group, butyl group, amyl group, isoamyl group, hexyl group, isobutyl group, heptyl group, octyl group, nonyl group, decyl group.
  • alkyl groups such as cetyl group and 2-ethylhexyl group
  • unsubstituted hydrocarbyl groups such as phenyl group and benzyl group
  • substituted hydrocarbyl groups such as substituted benzyl group, trialkylsilylmethyl group and bis (trialkylsilyl) methyl group But you can.
  • Examples of preferred hydrocarbyl groups include methyl group, ethyl group, phenyl group, substituted or unsubstituted benzyl group, and trialkylsilylmethyl group, and more preferred examples include trimethylsilylmethyl group.
  • alkoxy group or aryloxy group include a methoxy group and a substituted or unsubstituted phenoxy group.
  • amide group examples include preferably a dimethylamide group, a diethylamide group, a methylethylamide group, a di-t-butylamide group, a diisopropylamide group, an unsubstituted or substituted diphenylamide group.
  • Preferred examples of the phosphino group include a diphenylphosphino group, a dicyclohexylphosphino group, a diethylphosphino group, and a dimethylphosphino group.
  • alkylidene examples are preferably methylidene, ethylidene, and propylidene.
  • Rs may be bonded to each other or together to form a dianionic ligand (dianion ligand) or a trianionic ligand (trianion ligand).
  • dianionic ligands include alkylidene, dienes, cyclometallated hydrocarbyl groups, bidentate chelate ligands, and the like.
  • Contact between the compound represented by the formula (10) and the hydrogen molecule can be preferably carried out in a solvent capable of dissolving the compound represented by the formula (10).
  • the type of the solvent may be selected according to the type of the compound represented by formula (10), and examples thereof include hexane, pentane, heptane, and a mixed solvent obtained by mixing two or more of these.
  • the temperature of the solvent at the time of contact is not particularly limited, and may be selected according to the type of the solvent, etc. .
  • the hydrogen molecules are supplied in a state of being pressurized above normal pressure and below 5 atm (atm).
  • the contact time (reaction time) between the compound represented by formula (10) and the hydrogen molecule is not particularly limited, but in one example, it is in the range of 4 to 24 hours, preferably in the range of 12 to 24 hours. . Further, the molar ratio of the compound represented by the formula (10) and the hydrogen molecule used for contact may be supplied in consideration of the reaction equivalent amount, and is not particularly limited.
  • the reaction product obtained by the reaction of the compound represented by the formula (10) with hydrogen molecules is, for example, washed and then crystallized in the first crystallization solvent to recover the solution phase. Then, it is preferable that the recovered solvent of the solution phase is replaced with a second crystallization solvent to be recrystallized and recovered as a precipitate obtained.
  • the first crystallization solvent include THF.
  • the 2nd solvent for crystallization hexane etc. are mentioned, for example.
  • the cationic complex of the hydride complex represented by the formula (1A) includes, for example, a neutral hydride complex, [Ph 3 C] [B (C 6 F 5 ) 4 ], B (C 6 F 5 ). 3 or a cocatalyst such as methylaluminoxane (MAO).
  • the anionic complex of the hydride complex represented by the formula (1A) is, for example, a combination of R—Li (organolithium compound) such as Me 3 SiCH 2 Li and H 2 with a neutral hydride complex; Or a combination of H 2 and a combination of NaH or KH and H 2 .
  • R represents, for example, an alkyl group or other hydrocarbon group.
  • the order etc. which add each element which comprises the said combination to a neutral hydride complex are not specifically limited.
  • the method for producing the hydride complex represented by the above formula (1B) is not particularly limited.
  • the hydride complex can be produced by bringing the compound represented by the above formula (10) into contact with a hydrogen molecule and a nitrogen molecule.
  • M in the formula (10) is the same as M1 to M4 in the formula (1B)
  • L in the formula (10) is the same as L1 to L4 in the formula (1B). That is, when only one type of compound represented by the formula (10) is used, a complex represented by the formula (1B) having the same M1 to M4 and the same L1 to L4 can be obtained.
  • the cationic or anionic complex of the hydride complex represented by the formula (1B) can be produced according to the production method of the cationic or anionic complex of the hydride complex represented by the formula (1A).
  • Nitrogen-fixed complex (nitrogen-fixed complex)
  • the present invention relates to a hydride complex represented by the formula (1A), a hydride complex represented by the formula (1B), and at least one complex selected from the group consisting of these cationic or anionic complexes, and a nitrogen molecule A complex obtained by bringing a nitrogen atom into contact (hereinafter referred to as “nitrogen-fixed complex”) is also provided.
  • a preferred example of the nitrogen-immobilized complex is a complex represented by the following formula (3), or a cationic or anionic complex of the complex.
  • M1 to M3 and L1 to L3 represent the same as in formula (1A), X1 to X3 represent —H— or —N (H) —, and at least one of X1 to X3 One (preferably 2 or 3) is —N (H) —.
  • “ ⁇ ” in X1 to X3 indicates an arm for bonding with M1 to M3.
  • the nitrogen atom is formed in a form in which the NN triple bond in the nitrogen molecule is broken and an NH bond is formed. It has been captured. Therefore, as described later, it is easy to release the incorporated nitrogen atom under relatively mild conditions.
  • At least one of X1 to X3 which is —N (H) — is a substituent such as a boryl group (for example, pinacolboryl group), a silyl group or an alkyl group.
  • a complex having a boron bond, a silicon bond, or a carbon bond can be used, for example, for the synthesis of nitrogen-containing organic compounds.
  • pinacol borane (HB pin) the formula (3) -N complexes represented by (H) - case of boronated
  • pinacol borane (HB pin) at least one of (36 mg, 0.3 mmol) Is reacted in the presence of C 6 D 6 within a temperature range of 20 ° C. to 80 ° C. within a range of 30 minutes to 12 hours.
  • nitrogen-fixing complex can be, for example, complexes represented by the above formula (3) or a cationic or anionic complex of the complex, the Lewis acid represented by the formula M5X n (defining Is a complex obtained by contacting with (described later).
  • a particularly preferred example is a complex represented by the following formula (3 ′), or a cationic or anionic complex of the complex.
  • the complex represented by the formula (3 ′) or the cationic or anionic complex of the complex is, for example, that all three of X1 to X3 among the complexes represented by the above formula (3) are —N ( H) - a complex of, or the cationic or anionic complex of the complex obtained by contacting the Lewis acid represented by the formula M5X n.
  • M1 to M3 are each independently Ti, Zr, Hf, V, Nb, Ta, Cr, Mo or W, and L1 to L3 are independently of each other substituted or unsubstituted cyclohexane.
  • a ligand selected from a ligand containing a pentadienyl derivative (Cp), a diphenylamine-type ligand, a diphenylphosphine-type ligand, and a carboimide amide-type ligand. Is the same as in the complex represented by the above formula (3).
  • the complex represented by the above formula (3) or a cationic or anionic complex of the complex if by reacting a Lewis acid represented by the formula M5X n obtaining complexes of formula (3 ') M1 to M3 and L1 to L3 in the formula (3 ′) are the same as those in the above formula (3).
  • M5 is, for example, Cu (copper), Zn (zinc), Sc (scandium) or Y (yttrium), X is F, Cl, Br, I or —OSO 2 CF 3 , and the number of X is N represents an integer represented by p-3 (where p represents the coordination number of M5, for example, when M5 is Cu, p is 4 and when Zn is Zn, p is 5) In the case of Sc, p is 6.
  • M5 is selected from Cu, Zn, or Sc, and as an example, X is Cl.
  • the present invention provides a method for producing ammonia using the complex represented by the above formula (1A), the complex represented by the formula (1B), these cationic or anionic complexes, or the above nitrogen-fixed complex. .
  • the complex includes a nitrogen fixation / conversion step in which hydrogen molecules and nitrogen molecules are brought into contact with each other.
  • the nitrogen fixation / conversion step may be performed, for example, by a process (A) in which a nitrogen molecule is brought into contact with the complex represented by the formula (1A) and nitrogen fixation is performed, and then a hydrogen molecule is further brought into contact. You may perform by the process (B) of making a hydrogen molecule and a nitrogen molecule contact simultaneously.
  • ammonia When ammonia is produced in the process (A), first, a nitrogen molecule is brought into contact with the complex represented by the formula (1A) to form a nitrogen-fixed complex represented by the formula (3). Next, it is presumed that ammonia is produced by contacting hydrogen molecules with the nitrogen-fixed complex represented by the formula (3). Moreover, it is estimated that the nitrogen fixed complex shown to Formula (3) will return to the complex shown to Formula (1A), if the nitrogen atom which was fix
  • the condition for bringing the nitrogen molecule into contact with the complex represented by the formula (1A) is not particularly limited.
  • the pressure is within the temperature range of ⁇ 30 ° C. to 200 ° C. and the pressure of the nitrogen molecule (nitrogen gas).
  • partial pressure in the case of a mixed gas may be in the range of 1 atm to 100 atm.
  • the contact time is not particularly limited, but is, for example, in the range of 1 hour to 24 hours.
  • the nitrogen molecule may be brought into contact with the complex represented by the formula (1A), for example, alone or as a component in the mixed gas.
  • the mixed gas may contain hydrogen molecules and nitrogen molecules, but preferably contains more nitrogen molecules in terms of moles.
  • one of X1 to X3 is —N (H) —, two are —N (H) —, and further three if necessary.
  • the number of moles of nitrogen molecules used in each step may be increased stepwise (or the pressure of nitrogen molecules is increased).
  • the conditions for bringing hydrogen molecules into contact with the nitrogen-immobilized complex represented by the formula (3) are not particularly limited.
  • the pressure partial pressure in the case of a mixed gas
  • the contact time is not particularly limited, but is, for example, in the range of 1 hour to 24 hours.
  • the hydrogen molecule may be brought into contact with the complex represented by the formula (3), for example, alone or as a component in the mixed gas.
  • the mixed gas may contain hydrogen molecules and nitrogen molecules, but preferably contains more hydrogen molecules in terms of moles.
  • the condition for bringing the hydrogen molecule and the nitrogen molecule into contact with the complex represented by the formula (1A) in parallel is not particularly limited, but for example, within a temperature range of 25 ° C. to 200 ° C. and
  • the pressure (partial pressure) of hydrogen molecules (hydrogen gas) may be in the range of 1 atm to 100 atm, and the pressure (partial pressure) of nitrogen molecules (nitrogen gas) may be in the range of 1 atm to 100 atm.
  • the contact time (reaction time) is not particularly limited, but is, for example, in the range of 1 hour to 24 hours. Note that a mixed gas containing other molecules in addition to hydrogen molecules and nitrogen molecules may be brought into contact with the complex represented by the formula (3).
  • ammonia when manufacturing ammonia by the said process (B), it is estimated that ammonia is manufactured through the complex shown to Formula (3) from the complex shown to Formula (1A) similarly to Process (A). . Accordingly, ammonia can be continuously produced by continuously applying the process (B) to the complex represented by the formula (1A) to continuously contact the hydrogen molecule and the nitrogen molecule.
  • the process of nitrogen fixing complex represented obtained formula (3) with (A) or process (B), by reacting a Lewis acid of the formula M5X n, equation (3 Lewis acid group is bonded Production of ammonia may be carried out by forming the Lewis acid complex shown in ') and further applying the process (B) to the Lewis acid complex (3').
  • M5 in the Lewis acid is the same as M5 in the complex (3 ′)
  • X in the Lewis acid is the same as X in the complex (3 ′).
  • N represents the number of X bonded to M5).
  • M5 represents a polyvalent element, preferably a metal atom, for example, an atom selected from Cu (copper), Zn (zinc), Sc (scandium), and Y (yttrium). Of these, Cu, Zn, and Sc are preferably selected.
  • X may be an atom selected from F, Cl, Br, I, and OSO 2 CF 3 .
  • a metal halide is preferable, for example, a Lewis acid selected from CuCl, ZnCl 2 , ScCl 3 and YCl 3 is more preferable, and CuCl, ZnCl 2 or ScCl 3 is more preferable among them. .
  • Lewis acid examples include Ag (OSO 2 CF 3 ), a Lewis acid represented by the formula EX 3 (where E is B, Al, Ga or In, and X is F, Cl, Br) , I, Ph (phenyl group) or C 6 F 5 ), a Lewis acid represented by formula EX 2 (where E is Ge or Sn, and X is F, Cl, Br, I, Ph or C 6 F 5 ), and Lewis acids containing transition metal atoms include FeCl 2 , RuCl 3 , RhCl 3 , IrCl 3 , PdCl 2 or PtCl 2 .
  • the conditions for bringing the Lewis acid into contact with the complex represented by the formula (3) are not particularly limited. For example, after stirring in the temperature range of 20 ° C. to 80 ° C. for 1 hour to 12 hours, ⁇ 35 ° C. to It may be allowed to stand in the temperature range of 20 ° C. for 1 hour to 24 hours.
  • the complex represented by the formula (1A) or the nitrogen-fixed complex represented by the formula (3) may be used in a state of being dissolved in a solvent or may be used as a solid.
  • the solvent include hexane, pentane, heptane, and a mixed solvent obtained by mixing two or more of these.
  • the carrier include silica gel, alumina (aluminum oxide), activated carbon, titania (titanium dioxide), etc., but electrons are contained in the 12CaO ⁇ 7Al 2 O 3 structure. The taken electride may be sufficient.
  • ammonia using the cationic or anionic complex of the complex shown to Formula (1A) it can carry out on the conditions substantially the same as the case where the complex shown to Formula (1A) is used. Moreover, also when manufacturing ammonia using the complex shown to Formula (1B), or the cationic or anionic complex of the said complex, it can carry out according to the case where the complex shown to Formula (1A) is used.
  • the present invention provides an ammonia in which the complex represented by the above formula (1A), the complex represented by the formula (1B), these cationic or anionic complexes, or the nitrogen-fixed complex represented by the above formula (3) is immobilized.
  • the complex represented by the above formula (1A), the complex represented by the formula (1B), these cationic or anionic complexes, or the nitrogen-fixed complex represented by the above formula (3) is immobilized.
  • these complexes or nitrogen-immobilized complexes may be fixed as solids on a column or the above-described support, or may be bound to the support in a form dissolved in a solvent (see FIG. 1). .
  • the present invention also provides an ammonia production apparatus provided with the above fixed bed (see FIG. 1).
  • the ammonia production apparatus preferably further includes a hydrogen supply facility and a nitrogen supply facility.
  • NMR spectroscopy Samples for NMR spectroscopy were prepared by using the Schlenk method or in a glove box using a J. Young valve NMR tube. 1 H, 13 C and 15 N NMR spectra were recorded on a JEOL-AL400 spectrometer, JNM-AL300 spectrometer or JNM-ECA600 spectrometer. IR spectra were recorded on a Shimazu IRPrestige-21 spectrometer using the Nujolmur method between KBr discs. Elemental analysis was performed by MICRO CORDER JM10.
  • Complex 1-Ti 908 mg, 1.81 mmol, 63%) as pale yellow crystals.
  • Complex 1-Ti 1 H NMR (C 6 D 6 , rt): 2.05 (s, 6H, C 5 Me 4 SiMe 3 ), 1.83 (s, 6H, C 5 Me 4 SiMe 3 ), 1.45 (s, 6H , TiCH 2 SiMe 3), 0.27 (s, 36H, C 5 Me 4 SiMe 3, TiCH 2 SiMe 3) 13 C NMR (C 6 D 6, rt):.
  • FIGS. 2 and 3 show the crystal structure models obtained as a result of the above analysis.
  • FIG. 2 shows the results of an X-ray crystallographic analysis of complex 3, with the two ⁇ 3 -imino ligands with positional disorder omitted for the purpose of clarity.
  • FIG. 3 shows the result of X-ray crystal structure analysis of 2-Ti.
  • FIGS. 5 and 6 show models of crystal structures 4 and 7 obtained as a result of the X-ray crystal analysis.
  • FIG. 6 shows the results of X-ray structural analysis of complex 7 (complex 7-THF).
  • FIG. 8 is a time-conversion curve for the reaction of complex 4 with N 2 in THF-d 8 ( ⁇ 30 ° C .: 0 to 63 min, ⁇ 10 ° C .: 63 to 185 min, 0 ° C .: 185 to 192 min, 20 ° C: 192-1113 min).
  • NMR spectra of the intermediate 5 (5-d 3: 62 MHz in THF, * THF-d 8, -70 °C / 5- 15 N: 60.81 MHz, THF-d 8, MeNO 2, -30 °C)
  • figure 9 shows the NMR spectrum of complex 6 (6: 400 MHz, THF-d 8 , -50 ° C / 6-d 3 : 62 MHz in THF, * THF-d 8 , -50 ° C / 6- 15 N : 60.81 MHz, THF-d 8 , MeNO 2 , ⁇ 50 ° C.).
  • a new catalytic process will be developed that produces ammonia from nitrogen and hydrogen using complexes 1, 7, and 8 as key catalysts. For example, it is possible to generate ammonia catalytically by heating the complex 8 under pressure using a mixed gas of nitrogen and hydrogen.
  • Pinacolborane (HB pin ) (36 mg, 0.28 mmol) was added at room temperature in the presence of C 6 D 6 to complex 9 (10 mg, 0.013 mmol) obtained by the reaction of complex 4 and nitrogen described above. By reacting for 30 minutes, dark green complex 11 having a boron bond on nitrogen (yield 78% based on the molar amount of complex 9) was obtained. Subsequently, red or orange complex 12 was obtained by reacting complex 11 with pinacol borane (HB pin ) in the presence of C 6 D 6 at 80 ° C. for 12 hours.
  • the present invention can be used for fixing nitrogen atoms or extracting fixed nitrogen atoms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Catalysts (AREA)

Abstract

 窒素原子の固定が可能な新規な錯体、及びその利用を提供する。式(1A)または式(1B)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体であって、M1~M4(但し、式(1A)の場合はM1~M3)は、互いに独立にTi、Zr、Hf、V、Nb、Ta、Cr、MoまたはWであり、L1~L4(但し、式(1A)の場合はL1~L3)は、互いに独立に、置換もしくは無置換のシクロペンタジエニル誘導体を含む配位子(Cp)、ジフェニルアミン型配位子、ジフェニルホスフィン型配位子、およびカルボイミドアミド型配位子から選択される配位子である、錯体。

Description

新規錯体およびその利用
 本発明は、窒素原子の固定が可能な新規ヒドリド錯体、その製造方法、及び当該ヒドリド錯体の利用に関するものである。
 窒素原子を固定しそれを利用する技術は、農業分野を含む工業分野においてきわめて重要である。窒素原子の固定は、自然界では、例えば根粒菌による窒素固定などとして知られているが、工業的には、専らハーバーボッシュ法によって行われている。
R. R. Schrock, Science 2003, 301, 76. Nishibayashi, Nature Chem. 2010, 2, 120. M. D. Fryzuk, et. al., Science 1997, 275, 1445. H. Kawaguchi et. al., Angew. Chem. Int. Ed.2007, 46, 8778.
 しかし、ハーバーボッシュ法は、非常に高温、高圧環境下でなければ効率的に行えない技術である。そのため、より緩和な環境下で窒素固定を行う技術が切望されている。
 なお、窒素原子の固定が可能な金属錯体(非特許文献1~2等)またはヒドリド錯体(非特許文献3~4等)の報告もなされているが、アンモニアとして錯体から取り出し易い形態で窒素原子を固定するものではなく、工業的な応用のためには、さらなる新規な提案が切望されている。
 本発明は上記の課題に鑑みてなされたものであって、比較的緩和な環境下で窒素固定をする新規なヒドリド錯体、その製造方法、及び当該ヒドリド錯体の利用を提供することをその目的とする。
 上記の課題を解決するために、本願発明は以下の何れかのものを提供する。
1)以下の式(1A)または式(1B)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体であって、
Figure JPOXMLDOC01-appb-C000005
 上記式(1A)および式(1B)において、M1~M4(但し、式(1A)の場合はM1~M3)は、互いに独立にTi、Zr、Hf、V、Nb、Ta、Cr、MoまたはWであり、L1~L4(但し、式(1A)の場合はL1~L3)は、互いに独立に、置換もしくは無置換のシクロペンタジエニル誘導体を含む配位子(Cp)、ジフェニルアミン型配位子、ジフェニルホスフィン型配位子、およびカルボイミドアミド型配位子から選択される配位子である、錯体。
2)式(1A)および式(1B)におけるL1~L4(但し、式(1A)の場合はL1~L3)は同一の配位子であって、当該配位子は以下の式(2)で示される、1)に記載の錯体。
Figure JPOXMLDOC01-appb-C000006
(式(2)において、R1~R5は互いに独立に、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、水素原子;炭素数1~20のヒドロカルビル基;或いは、炭素数1~20のヒドロカルビル基、アミド基、ホスフィド基及び/又はアルコキシド基が置換した置換メタロイド基;を指し、※はM1~M4(但し、式(1A)の場合はM1~M3)との結合を表し、R1~R5のうちの2個~5個が上記ヒドロカルビル基又は置換メタロイド基である。また、式(2)中に示すシクロペンタジエニル環の骨格を構成する炭素原子の一つは、第14族原子(但し、炭素原子及び鉛原子は除く)又は第15族原子により置換されていてもよい。)
3)式(2)中で、R1~R5のすべてがメチル基であるか、R1~R5のうちの4つがメチル基であり他の1つが炭素数1~5のアルキル基を有するトリアルキルシリル基である、2)に記載の錯体。
4)式(1A)および式(1B)におけるM1~M4(但し、式(1A)の場合はM1~M3)は、いずれもTiである、1)~3)の何れかに記載の錯体。
5)式(1A)で示される、1)~4)の何れかに記載の錯体。
6)上記1)~5)の何れかに記載の錯体と窒素分子とを接触させることによって窒素原子が取り込まれてなる錯体。
7)以下の式(3)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体である、6)に記載の錯体。
Figure JPOXMLDOC01-appb-C000007
(式(3)における、M1~M3およびL1~L3は、式(1A)と同じものを示し、X1~X3は、-H-または-N(H)-を示し、X1~X3のうちの少なくとも一つが-N(H)-である。ただし、1つまたは複数の-N(H)-においてHがボリル基、シリル基、またはアルキル基で置換されていてもよい。)
8)以下の式(3’)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体。
Figure JPOXMLDOC01-appb-C000008
[式(3’)における、M1~M3は、互いに独立にTi、Zr、Hf、V、Nb、Ta、Cr、MoまたはWであり、L1~L3は、互いに独立に、置換もしくは無置換のシクロペンタジエニル誘導体を含む配位子(Cp)、ジフェニルアミン型配位子、ジフェニルホスフィン型配位子、およびカルボイミドアミド型配位子から選択される配位子であり、、M5は、Cu、Zn、ScまたはYであり、Xは、F、Cl、Br、Iまたは-OSOCFであり、Xの個数を示すnは、p-3で表される整数を示す。(ここで、pは上記M5の配位数を示す。)]
9)上記1)~8)の何れかに記載の錯体に水素分子と窒素分子とを接触させるか、上記6)又は7)に記載の錯体に水素分子を接触させる接触工程を含む、アンモニアの製造方法。
10)上記1)~8)の何れかに記載の錯体を固定した、アンモニア製造用の固定床。
 比較的緩和な環境下で窒素固定をする新規なヒドリド錯体、その製造方法、及び当該ヒドリド錯体の利用を提供することができる。
本発明に係る金属ポリヒドリド錯体を用いて実施され得るアンモニア生成方法の一例を示す模式図である。 参考例に係る錯体分子の結晶構造を示す図である。 参考例に係る錯体分子の結晶構造を示す図である。 実施例に係る錯体分子のNMRスペクトルを示す図である。 実施例に係る錯体分子の結晶構造を示す図である。 実施例に係る錯体分子の結晶構造を示す図である。 実施例に係る錯体分子の時間-変換曲線を示す図である。 実施例に係る錯体分子の時間-変換曲線を示す図である。 実施例に係る錯体分子のNMRスペクトルを示す図である。 実施例に係る錯体分子のNMRスペクトルを示す図である。
 〔1.錯体〕
 (本発明に係る錯体)
 本発明に係る錯体の一例は、以下の式(1A)または式(1B)で示されるヒドリド錯体である。
Figure JPOXMLDOC01-appb-C000009
 上記式(1A)において、M1~M3は、互いに独立にTi(チタン原子)、Zr(ジルコニウム原子)、Hf(ハフニウム原子)、V(バナジウム原子)、Nb(ニオブ原子)、Ta(タンタル原子)、Cr(クロム原子)、Mo(モリブデン原子)またはW(タングステン原子)であり、好ましくは互いに独立にTi、Zr、またはHfである。M1~M3は好ましくは全てが同一の原子であり、M1~M3はより好ましくは全てがTiである。同様に、式(1B)における、M1~M4は、互いに独立にTi、Zr、Hf、V、Nb、Ta、Cr、MoまたはWであり、好ましくは互いに独立にTi、Zr、またはHfである。M1~M4は好ましくは全てが同一の原子であり、M1~M4はより好ましくは全てがTiである。
 上記式(1A)において、L1~L3は、互いに独立に、置換もしくは無置換のシクロペンタジエニル誘導体を含む配位子(「Cp配位子」と称する)、ジフェニルアミン型配位子、ジフェニルホスフィン型配位子、およびカルボイミドアミド型配位子から選択される配位子である。L1~L3は好ましくは全てが同一の配位子であり、L1~L3はより好ましくは全てが同一のCp配位子である。同様に、上記式(1B)において、L1~L4は、互いに独立に、置換もしくは無置換のCp配位子、ジフェニルアミン型配位子、ジフェニルホスフィン型配位子、およびカルボイミドアミド型配位子から選択される配位子である。L1~L4は好ましくは全てが同一の配位子であり、L1~L4はより好ましくは全てが同一のCp配位子である。
 本発明において、上記Cp配位子は、中心金属Mにπ結合している。Cp配位子は、例えば非架橋型配位子である。ここで、非架橋型配位子とは、シクロペンタジエニル誘導体が中心金属にπ結合して、シクロペンタジエニル誘導体以外の配位原子または配位基を有していない配位子を意味する。また、Cp配位子は、例えば架橋型配位子である。ここで架橋型配位子とは、シクロペンタジエニル誘導体に加えて、さらに配位原子または配位基を有している配位子を意味する。Cp配位子は、好ましくは非架橋型配位子である。
 Cp配位子に含まれる置換または無置換のシクロペンタジエニル誘導体とは、置換又は無置換のシクロペンタジエニル環、置換又は無置換のフルオレニル環、置換又は無置換のオクタヒドロフルオレニル環、置換または無置換のインデニル環、及び、置換又は無置換のテトラヒドロインデニル環からなる群より選択される何れかである。中でも、最も好ましいシクロペンタジエニル誘導体は、置換基を有するシクロペンタジエニル環である。
 シクロペンタジエニル環は、組成式:C5-Xで表される。ここでXは0~5の整数を表す。Rはそれぞれ独立して、ヒドロカルビル基;置換ヒドロカルビル基;或いは、ヒドロカルビル基、アミド基、ホスフィド基及び/又はアルコキシド基が置換した置換メタロイド基;を示す。なお、上記組成式におけるCの一つは、第14族原子(但し、炭素原子及び鉛原子は除く)又は第15族原子により置換されていてもよい。
 上記ヒドロカルビル基は、好ましくは炭素数1~20のヒドロカルビル基であるが、より好ましくは炭素数1~20(好ましくは炭素数1~10、さらに好ましくは炭素数1~6)のアルキル基、フェニル基、ベンジル基などであり、最も好ましくはメチル基である。
 また、置換基を有するヒドロカルビル基(上記置換ヒドロカルビル基)としては、例えば、ヒドロカルビル基の少なくとも1の水素原子が、ハロゲン原子、アミド基、ホスフィド基、アルコキシ基、またはアリールオキシ基などで置換されたヒドロカルビル基が挙げられる。
 また、置換メタロイド基におけるメタロイドは、例えば、ゲルミル(Ge)、スタニル(Sn)、シリル(Si)などが挙げられる。また、メタロイド基に置換した置換基の置換数は、メタロイドの種類によって決定される(例えばシリル基の場合は、ヒドロカルビル基(置換基)の置換数は3である)。なお、置換メタロイド基における置換基としてのヒドロカルビル基の炭素数は好ましくは1~20である。
 なお、好ましくは、シクロペンタジエニル環のRの少なくとも一つが、ヒドロカルビル基が置換した置換メタロイド基(好ましくはシリル基)であり、より好ましくはトリメチルシリル基である。
 好ましいシクロペンタジエニル環としては、以下の式(2)で表されるものが例示される。
Figure JPOXMLDOC01-appb-C000010
式(2)において、R1~R5は互いに独立に、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、水素原子;炭素数1~20のヒドロカルビル基;或いは、炭素数1~20のヒドロカルビル基、アミド基、ホスフィド基及び/又はアルコキシド基が置換した置換メタロイド基;を指し、※は式(1A)中に示すM1~M3との結合あるいは式(1B)中に示すM1~M4との結合を表し、R1~R5のうちの2個~5個が上記ヒドロカルビル基又は置換メタロイド基である。また、式(2)中に示すシクロペンタジエニル環の骨格を構成する炭素原子の一つは、第14族原子(但し、炭素原子及び鉛原子は除く)又は第15族原子により置換されていてもよい。なお、式(1A)におけるL1~L3、或いは、式(1B)におけるL1~L4は、上記式(2)に示した同一の配位子であることが好ましい。
 上記式(2)で表されるシクロペンタジエニル環として、例えば、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記の式(3-1)、(3-2)、(3-5)において、Rは互いに独立に、炭素数1~20のヒドロカルビル基、アミド基、ホスフィド基及び/又はアルコキシド基が置換した置換メタロイド基(好ましくは炭素数1~20のヒドロカルビル基が置換した置換メタロイド基)を指す。このメタロイド基は、より具体的には例えば、以下の式(4)中の何れかに示すものが挙げられる。なお、式(4)中のR’は、互いに独立に炭素数1~8のヒドロカルビル基を指し、好ましくは炭素数1~6のヒドロカルビル基であり、より好ましくは炭素数1~4のヒドロカルビル基(好ましくは鎖状アルキル基)を指す。
Figure JPOXMLDOC01-appb-C000012
 上記の式(3-5)において、Eは、N(窒素原子)又はP(リン原子)を指す。
 また、上記の式(3-6)において、Rは互いに独立に、炭素数1~20のヒドロカルビル基(好ましくは、炭素数1~6の鎖状アルキル基);或いは、炭素数1~20のヒドロカルビル基、アミド基、ホスフィド基及び/又はアルコキシド基が置換した置換メタロイド基(好ましくは炭素数1~20のヒドロカルビル基が置換した置換メタロイド基);を指す。このメタロイド基の例示は、たとえは、上記の式(4)の何れかに示すものが挙げられる。さらに、上記の式(3-6)において、nは1以上5以下の整数を指し、Eは、N(窒素原子)P(リン原子)、As(ヒ素原子)等のヘテロ原子を指し、N又はPであることが好ましい。
 また、上記式(2)で表されるシクロペンタジエニル環として、より好ましくは、式(2)中で、R1~R5のすべてがメチル基であるか(式(3-8)相当)、R1~R5のうちの4つがメチル基であり他の1つが炭素数1~6のアルキル基を有するトリアルキルシリル基であるもの(式(3-1)相当)が挙げられる。
 Cp配位子としての、置換又は無置換のフルオレニル環は、組成式:C139-X(Xは0~9の整数を示し、Rは炭素数1~20の置換基を有してもよいヒドロカルビル基または置換メタロイド基を示し、上記したシクロペンタジエニル環:C5-XのRと同様のものである)で表される。また、Cp配位子としての、置換又は無置換のオクタヒドロフルオレニル環としては、例えば組成式:C1317-X(Xは0~17の整数を示し、Rは炭素数1~20の置換基を有してもよいヒドロカルビル基または置換メタロイド基を示し、上記したシクロペンタジエニル環:C5-XのRと同様のものである)で表される。
 好ましいフルオレニル環としては、以下の式で表されるものが例示される。
Figure JPOXMLDOC01-appb-C000013
 上記の式(5-1)~(5-2)において、Rは互いに独立に、炭素数1~20、好ましくは炭素数1~6のヒドロカルビル基又は置換メタロイド基を指す。このメタロイド基は、より具体的には例えば、上記の式(4)中の何れかに示すものが挙げられる。式(5-3)~(5-4)は、式(5-1)~(5-2)で表される化合物の具体例に相当する。
 Cp配位子は、置換又は無置換のインデニル環(組成式:C7-X:Xは0~7の整数)またはテトラヒドロインデニル環(組成式:C11-X:Xは0~11の整数)などでもよい。ここでRは前記したシクロペンタジエニル環のRと同様である。
好ましいインデニル環としては、以下の式(6)で表されるものが例示される。
Figure JPOXMLDOC01-appb-C000014
 上記の式(6)において、Rは互いに独立に、炭素数1~20、好ましくは炭素数1~6のヒドロカルビル基又は置換メタロイド基を指す。このメタロイド基は、より具体的には例えば、上記の式(4)中の何れかに示すものが挙げられる。
 本発明において、上記ジフェニルアミン型配位子とは、窒素原子にフェニル基が二つ結合したジフェニルアミン骨格(-N(Ph)2)を有する配位子を指す。なお、フェニル基上の任意の水素原子は、例えば、炭素数1~20のヒドロカルビル基、炭素数1~20のヒドロカルビル基が置換したメタロイド基、-PR2基、-SR基、-OR基等の置換基で置換されていてもよい。ここで、-PR2基、-SR基、-OR基におけるRは、互いに独立に、炭素数1~20、好ましくは炭素数1~6のヒドロカルビル基又は当該ヒドロカルビル基が置換したメタロイド基を指す。なお、-PR2基に含まれる2つのR同士は同じであることが好ましい。
好ましいジフェニルアミン型配位子としては、以下の式(7)で表されるものが例示される。
Figure JPOXMLDOC01-appb-C000015
 上記の式(7)において、Rは互いに独立に、炭素数1~20、好ましくは炭素数1~6のヒドロカルビル基又は置換メタロイド基を指す。このメタロイド基は、より具体的には例えば、上記の式(4)中の何れかに示すものが挙げられる。なお、Rがヒドロカルビル基の場合、アルキル基又はアリール基であることが好ましい。また、式(7)において、4つのRは同一の基であることが好ましい。
 本発明において、上記ジフェニルホスフィン型配位子とは、リン原子にフェニル基が二つ結合したジフェニルホスフィン骨格(-P(Ph)2)を有する配位子を指す。なお、フェニル基上の任意の水素原子は、例えば、炭素数1~20のヒドロカルビル基、炭素数1~20のヒドロカルビル基が置換したメタロイド基、-SR基、-OR基等の置換基で置換されていてもよい。ここで、-SR基、-OR基におけるRは、互いに独立に、炭素数1~20、好ましくは炭素数1~6のヒドロカルビル基又は当該ヒドロカルビル基が置換したメタロイド基を指す。
好ましいジフェニルホスフィン型配位子としては、以下の式(8)で表されるものが例示される。
Figure JPOXMLDOC01-appb-C000016
 上記の式(8)において、Rは互いに独立に、炭素数1~20、好ましくは炭素数1~6のヒドロカルビル基又は置換メタロイド基を指す。このメタロイド基は、より具体的には例えば、上記の式(4)中の何れかに示すものが挙げられる。なお、Rがヒドロカルビル基の場合、アルキル基又はアリール基であることが好ましい。また、式(8)において、2つのRは同一の基であることが好ましい。
 本発明において、上記カルボイミドアミド型配位子とは、以下の式(9)に示す構造(-N=C-NH-構造)を有する配位子を指す。
Figure JPOXMLDOC01-appb-C000017
式(9)において、Rは互いに独立に任意の基をとり得るが、好ましいカルボイミドアミド型配位子としては、Rは互いに独立に、炭素数1~20、好ましくは炭素数1~6のヒドロカルビル基又は置換メタロイド基を指す。このメタロイド基は、より具体的には例えば、上記の式(4)中の何れかに示すものが挙げられる。なお、Rがヒドロカルビル基の場合、アルキル基又はアリール基であることが好ましい。より具体的には、上記カルボイミドアミド型配位子として、N1、N1-ジフェニルベンゼンカルボイミドアミド等が挙げられる。
 なお、式(1A)で示されるヒドリド錯体、及び、式(1B)で示されるヒドリド錯体は何れも、中性の錯体だけでなく、当該中性の錯体から得られるカチオン性の錯体またはアニオン性の錯体となっていてもよい。具体的には例えば、中性の錯体[{(C5Me4SiMe3)Ti}33-H)(μ2-H)6]から得られる[{(C5Me4SiMe3)Ti}3(μ-H)6][B(C6F5)4]もしくは[{(C5Me4SiMe3)Ti}3(μ-H)5][{B(C6F5)4}2]等のカチオン性の錯体;[{(C5Me4SiMe3)Ti}33-H)(μ2-H)6]から得られるLi[{(C5Me4SiMe3)Ti}3(μ-H)8]等のアニオン性の錯体;も、本発明に係る錯体の一例として包含される。
 (本発明に係る錯体の製造方法)
 上記の式(1A)で示されるヒドリド錯体の製造方法は特に限定されないが、例えば、式(10)に示す化合物と水素分子とを接触させることによって製造できる。
Figure JPOXMLDOC01-appb-C000018
なお、式(10)におけるMは、式(1A)中のM1~M3と同じであり、式(10)中におけるLは、式(1A)中のL1~L3と同じである。すなわち、式(10)に示す化合物を一種類のみ用いれば、式(1A)に示す錯体であってM1~M3が同一であり、かつL1~L3が同一である錯体が得られる。
 また、式(10)におけるRは、互いに独立に、モノアニオン性の配位子を表す。Rは、より具体的には、ヒドリド、ハライド、置換または無置換の、炭素数1~20のヒドロカルビル基、アルコキシ基またはアリールオキシ基、アミド基またはホスフィノ基、等のモノアニオン性の配位子が挙げられるがこれらに限定されない。これらの中でも、Rは、それぞれ独立して、炭素数1~20の置換基を有してよいヒドロカルビル基であることが好ましく、中でもトリメチルシリルメチル基であることがより好ましい。
 上記のハライドとしては、例えばクロリド、ブロミド、フルオリド、アイオダイドが挙げられる。
 炭素数1~20の上記のヒドロカルビル基としては、好ましくはメチル基、エチル基、プロピル基、ブチル基、アミル基、イソアミル基、ヘキシル基、イソブチル基、ヘプチル基、オクチル基、ノニル基、デシル基、セチル基、2-エチルヘキシル基などのアルキル基、フェニル基、ベンジル基などの無置換ヒドロカルビル基のほか、置換ベンジル基、トリアルキルシリルメチル基、ビス(トリアルキルシリル)メチル基などの置換ヒドロカルビル基でもよい。好ましいヒドロカルビル基の例には、メチル基、エチル基、フェニル基、置換または無置換ベンジル基、トリアルキルシリルメチル基が挙げられ、より好ましい例にはトリメチルシリルメチル基が挙げられる。
 上記のアルコキシ基またはアリールオキシ基としては、好ましくはメトキシ基、置換または無置換のフェノキシ基などを例示できる。
 上記のアミド基としては、好ましくはジメチルアミド基、ジエチルアミド基、メチルエチルアミド基、ジ-t-ブチルアミド基、ジイソプロピルアミド基、無置換または置換ジフェニルアミド基などを例示できる。
 上記のホスフィノ基としては、好ましくはジフェニルホスフィノ基、ジシクロヘキシルホスフィノ基、ジエチルホスフィノ基、ジメチルホスフィノ基などを例示できる。
 アルキリデンとしては、好ましくはメチリデン、エチリデン、プロピリデンなどを例示できる。
 また、R同士は互いに結合するか、一緒になって、ジアニオン性の配位子(ジアニオン配位子)またはトリアニオン性の配位子(トリアニオン配位子)となっていてもよい。例えば、ジアニオン性の配位子としては、アルキリデン、ジエン、シクロメタル化されたヒドロカルビル基、二座のキレート配位子などが挙げられる。
 式(10)に示す化合物と水素分子との接触は、好ましくは、式(10)に示す化合物を溶解可能な溶媒中で行うことができる。溶媒の種類は、式(10)に示す化合物の種類に応じて選択すればよいが、例えば、ヘキサン、ペンタン、ヘプタン、及び、これらの2種以上を混合した混合溶媒等が挙げられる。また、接触時の溶媒の温度は特に限定されず溶媒の種類等に応じて選択すればよいが、例えば25℃~80℃の範囲内であり、好ましくは40℃~60℃の範囲内である。また、溶媒内への水素分子の供給量を増やす目的では、水素分子(ガス)は加圧気体として供給することが好ましい。一例では、水素分子は、常圧を超え5気圧(atm)以下に加圧した状態で供給される。
 式(10)に示す化合物と水素分子との接触時間(反応時間)は特に限定されないが、一例では、4時間~24時間の範囲内であり、好ましくは12時間~24時間の範囲内である。また、接触に供される、式(10)に示す化合物と水素分子とのモル比はその反応等量を考慮して供給すればよく、特に限定されない。
 式(10)に示す化合物と水素分子との反応で得られた反応生成物は、例えば、洗浄等を行った後に、第一の結晶化用溶媒中に加えて結晶化させて溶液相を回収し、次いで、回収した上記溶液相の溶媒を第二の結晶化用溶媒に交換して再結晶化させて、得られる沈殿物として回収することが好ましい。第一の結晶化用溶媒は、例えば、THF等が挙げられる。また、第二の結晶化用溶媒は、例えば、ヘキサン等が挙げられる。
 なお、式(1A)で示されるヒドリド錯体のカチオン性の錯体は、例えば、中性のヒドリド錯体と、[Ph3C][B(C6F5)4]、B(C6F5)3またはメチルアルミノキサン(MAO)などの助触媒と、から製造することができる。さらに、式(1A)で示されるヒドリド錯体のアニオン性の錯体は、例えば、中性のヒドリド錯体に、Me3SiCH2LiなどのR-Li(有機リチウム化合物)とH2との組合せ;RMgBrなどのグリニア試薬とH2との組合せ;NaHまたはKHとH2との組合せ;の何れかを加える方法から製造することができる。なお、ここで、Rは、例えば、アルキル基、その他の炭化水素基を指す。また、上記組合せを構成する各要素を、中性のヒドリド錯体に加える順番等は特に限定されない。
 なお、式(1A)で示されるヒドリド錯体の製造方法に関しては、後述の実施例の記載も参照される。
 また、上記の式(1B)で示されるヒドリド錯体の製造方法は特に限定されないが、例えば、先に説明した式(10)に示す化合物と水素分子と窒素分子とを接触させることによって製造できる。
なお、式(10)におけるMは、式(1B)中のM1~M4と同じであり、式(10)中におけるLは、式(1B)中のL1~L4と同じである。すなわち、式(10)に示す化合物を一種類のみ用いれば、式(1B)に示す錯体であってM1~M4が同一であり、かつL1~L4が同一である錯体が得られる。また、式(1B)で示されるヒドリド錯体のカチオン性又はアニオン性の錯体は、式(1A)で示されるヒドリド錯体のカチオン性又はアニオン性の錯体の製造法に準じて製造することができる。
 〔2.窒素固定した錯体(窒素固定化錯体)〕
 本発明は、式(1A)で示されるヒドリド錯体、式(1B)で示されるヒドリド錯体、および、これらのカチオン性またはアニオン性の錯体からなる群から選択される少なくとも一種の錯体と、窒素分子とを接触させることによって得られる、窒素原子が取り込まれてなる錯体(以下、「窒素固定化錯体」と称する)も提供する。
 窒素固定化錯体の好ましい一例は、以下の式(3)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体である。
Figure JPOXMLDOC01-appb-C000019
 式(3)における、M1~M3およびL1~L3は、式(1A)と同じものを示し、X1~X3は、-H-または-N(H)-を示し、X1~X3のうちの少なくとも一つ(好ましくは2つか3つ)が-N(H)-である。なお、X1~X3の-は、M1~M3との結合の腕を指す。
 式(3)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体では、窒素分子内のNN三重結合が切断された形で、かつN-H結合を形成する形で窒素原子が取り込まれている。そのため、後述するように、取り込まれた窒素原子を比較的緩和な条件で放出し易い。
 また、式(3)で示される錯体において、-N(H)-であるX1~X3のうちの少なくとも一つのHをボリル基(例えば、ピナコールボリル基)、シリル基またはアルキル基等の置換基で置換し、ホウ素結合、ケイ素結合または炭素結合を有する錯体としてもよい。このように、窒素に各種の官能基を付加することにより、例えば含窒素有機化合物の合成等に用いることができる。
 例えば、ピナコールボラン(HBpin)を用いて、式(3)で示される錯体の-N(H)-の少なくとも1つをホウ素化させる場合、ピナコールボラン(HBpin)(36mg、0.3mmol)をC存在下で、20℃~80℃の温度範囲内で、30分~12時間の範囲内で反応させる。
 なお、式(3)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体の製造方法については、後述の〔3.アンモニアの製造方法〕欄において説明する。
 また、窒素固定化錯体のその他の例は、例えば、上述の式(3)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体に、式M5Xで表されるルイス酸(定義は後述する)を接触させることによって得られる錯体である。特に好ましい一例は、以下の式(3’)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体である。式(3’)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体は、例えば、上述の式(3)で示される錯体のうち、X1~X3の3つすべてが-N(H)-である錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体に、式M5Xで表されるルイス酸を接触させることによって得られる。
Figure JPOXMLDOC01-appb-C000020
式(3’)における、M1~M3は、互いに独立にTi、Zr、Hf、V、Nb、Ta、Cr、MoまたはWであり、L1~L3は、互いに独立に、置換もしくは無置換のシクロペンタジエニル誘導体を含む配位子(Cp)、ジフェニルアミン型配位子、ジフェニルホスフィン型配位子、およびカルボイミドアミド型配位子から選択される配位子であり、これら配位子の定義は、上記式(3)で示す錯体の場合と同一である。なお、上述の式(3)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体に、式M5Xで表されるルイス酸を反応させて式(3’)の錯体を得る場合、式(3’)中のM1~M3およびL1~L3は、上記式(3)と同じものとなる。M5は、例えば、Cu(銅)、Zn(亜鉛)、Sc(スカンジウム)またはY(イットリウム)であり、Xは、F、Cl、Br、Iまたは-OSOCFであり、Xの個数を示すnは、p-3で表される整数を示す(ここで、pは上記M5の配位数を示し、例えば、M5がCuの場合、上記pは4、Znの場合、上記pは5、Scの場合、上記pは6である。M5は、Cu、ZnまたはScから選択されることが好ましい。また、一例としては、XはClである。
 なお、式(3’)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体の製造方法については、後述の〔3.アンモニアの製造方法〕欄において説明する。
 〔3.アンモニアの製造方法〕
 本発明は、上記の式(1A)に示す錯体、式(1B)に示す錯体、これらのカチオン性もしくはアニオン性の錯体、または上記の窒素固定化錯体を用いてアンモニアを製造する方法を提供する。
 式(1A)に示す錯体を用いてアンモニアを製造する一例では、当該錯体に、水素分子と窒素分子とを接触させる窒素固定/転化工程を含んでいる。窒素固定/転化工程は、例えば、式(1A)に示す錯体に窒素分子を接触させて窒素固定を行った後に、水素分子をさらに接触させるというプロセス(A)で行ってもよく、当該錯体に水素分子と窒素分子とを同時並行で接触させるというプロセス(B)で行ってもよい。
 上記プロセス(A)でアンモニアの製造を行う場合、まず、式(1A)に示す錯体に窒素分子を接触させることによって、上記の式(3)に示す窒素固定化錯体が形成される。次いで、式(3)に示す窒素固定化錯体に水素分子が接触することによって、アンモニアが製造されると推定される。また、式(3)に示す窒素固定化錯体は、固定していた窒素原子が、アンモニアの製造に伴って放出されると、式(1A)に示す錯体に戻ると推定される。これによって、式(1A)に示す錯体に、プロセス(A)を繰り返し適用して水素分子と窒素分子とを継続的に接触させることによって、継続的にアンモニアを製造することができる。
 上記プロセス(A)において、式(1A)に示す錯体に窒素分子を接触させる条件は特に限定されないが、例えば、-30℃~200℃の温度範囲内で、かつ窒素分子(窒素ガス)の圧力(混合気体の場合は分圧)を1atm~100atmの範囲内として接触させればよい。接触時間(反応時間)は特に限定されないが、例えば、1時間~24時間の範囲内である。窒素分子は、例えば、窒素分子単独で、または混合気体中の一成分として、式(1A)に示す錯体に接触させればよい。混合気体は、水素分子及び窒素分子を含むものであってもよいが、モル数にして窒素分子をより多く含むものであることが好ましい。また、式(3)に示す窒素固定化錯体として、X1~X3のうちの一つが-N(H)-であるもの、二つが-N(H)-であるもの、さらに必要に応じて三つが-N(H)-であるものを段階的に生じさせる場合、各段階で用いる窒素分子のモル数を段階的に増加させて(あるいは窒素分子の圧力を上げて)もよい。
 プロセス(A)において、式(3)に示す窒素固定化錯体に水素分子を接触させる条件は特に限定されないが、例えば、-30℃~200℃の温度範囲内で、かつ水素分子(水素ガス)の圧力(混合気体の場合は分圧)を1atm~100atmの範囲内として接触させればよい。接触時間(反応時間)は特に限定されないが、例えば、1時間~24時間の範囲内である。水素分子は、例えば、水素分子単独で、または混合気体中の一成分として、式(3)に示す錯体に接触させればよい。混合気体は、水素分子及び窒素分子を含むものであってもよいが、モル数にして水素分子をより多く含むものであることが好ましい。
 また、上記プロセス(B)において、式(1A)に示す錯体に水素分子と窒素分子とを同時並行で接触させる条件は特に限定されないが、例えば、25℃~200℃の温度範囲内で、かつ水素分子(水素ガス)の圧力(分圧)を1atm~100atmの範囲内とし、窒素分子(窒素ガス)の圧力(分圧)を1atm~100atmの範囲内として接触させればよい。接触時間(反応時間)は特に限定されないが、例えば、1時間~24時間の範囲内である。なお、水素分子及び窒素分子に加えて他の分子を含む混合ガスを、式(3)に示す錯体に接触させてもよい。
 なお、上記プロセス(B)でアンモニアの製造を行う場合も、プロセス(A)と同様に、式(1A)に示す錯体から式(3)に示す錯体を経てアンモニアが製造されると推定される。これによって、式(1A)に示す錯体に、プロセス(B)を継続的に適用して水素分子と窒素分子とを継続的に接触させることで、継続的にアンモニアを製造することができる。
 また、プロセス(A)またはプロセス(B)で得られた式(3)に示す窒素固定化錯体に、式M5Xで表わされるルイス酸を反応させることにより、ルイス酸基が結合した式(3’)に示すルイス酸錯体を形成させ、当該ルイス酸錯体(3’)にプロセス(B)をさらに適用することによって、アンモニアの製造を行ってもよい。ここで、ルイス酸におけるM5は、錯体(3’)におけるM5と、ルイス酸におけるXは、錯体(3’)におけるXとそれぞれ同一である。また、nは、上記M5と結合しているXの個数を示す)。
なお、ルイス酸におけるM5は多価元素を示し、好ましくは金属の原子であり、例えば、Cu(銅)、Zn(亜鉛)、Sc(スカンジウム)およびY(イットリウム)から選択される原子であり、なかでもCu、ZnおよびScから選択されることが好ましい。また、Xは、F、Cl、Br、IおよびOSOCFから選択される原子が挙げられる。
 このようなルイス酸としては、金属ハロゲン化物が好ましく、例えばCuCl、ZnCl、ScClおよびYClから選択されるルイス酸がより好ましく、なかでもCuCl、ZnClまたはScClであることがより好ましい。
 また、ルイス酸のその他の例としては、Ag(OSOCF)、式EXで表わされるルイス酸(ここで、EはB、Al、GaまたはInであり、XはF、Cl、Br、I、Ph(フェニル基)またはCである。)、式EXで表されるルイス酸(ここでEはGeまたはSnであり、XはF、Cl、Br、I、PhまたはCである。)、および遷移金属原子を含むルイス酸として、FeCl、RuCl、RhCl、IrCl、PdClまたはPtClが挙げられる。
 式(3)に示す錯体に、ルイス酸を接触させる条件は特に限定されないが、例えば、20℃~80℃の温度範囲内で、1時間~12時間の範囲内で攪拌後に、-35℃~20℃の温度範囲内で、1時間~24時間の範囲内で静置すればよい。
 なお、式(1A)に示す錯体、または式(3)に示す窒素固定化錯体は、溶媒に溶解した状態で用いてもよいし、固体のまま用いてもよい。溶媒としては、例えば、ヘキサン、ペンタン、ヘプタン、及びこれらの2種以上を混合した混合溶媒等が挙げられる。錯体を担体に固定して用いる場合、当該担体としては、例えば、シリカゲル、アルミナ(酸化アルミニウム)、活性炭、チタニア(二酸化チタン)などが挙げられるが、12CaO・7Al2O3構造の中に電子を取り込んだエレクトライドであってもよい。
 なお、式(1A)に示す錯体のカチオン性またはアニオン性の錯体を用いてアンモニアの製造を行う場合は、式(1A)に示す錯体を用いる場合と実質的に同一の条件で行うことができる。また、式(1B)に示す錯体、または当該錯体のカチオン性もしくはアニオン性の錯体を用いてアンモニアの製造を行う場合も、式(1A)に示す錯体を用いる場合に準じて行うことができる。
 〔4.その他の応用〕
 本発明は、上記の式(1A)に示す錯体、式(1B)に示す錯体、これらのカチオン性もしくはアニオン性の錯体、または上記式(3)に示す窒素固定化錯体を固定化した、アンモニア製造用の固定床を提供する。固定床において、これら錯体、または窒素固定化錯体は、固体としてカラムまたは上記の担体等に固定されていてもよいし、溶媒に溶解した形で担体に結合されていてもよい(図1参照)。
 また、本発明は、上記の固定床を備えるアンモニア製造装置を提供する(図1参照)。アンモニア製造装置は、さらに水素供給設備、及び窒素供給設備を備えることが好ましい。
 〔1.材料および方法〕
 すべての反応を、シュレンク法を用いることによる酸素を含まない乾燥したアルゴン雰囲気、またはMbraunグローブボックスにおける窒素雰囲気もしくはアルゴン雰囲気のもとに、実施した。アルゴンを、Drycleanカラム(4A molecular sieves、Nikka Seiko Co.)およびGasclean GC-XRカラム(Nikka Seiko Co.)に通すことによって精製した。グローブボックスにおける窒素およびアルゴンを、銅/分子ふるい触媒ユニットを介して、常に循環させた。酸素および水分の濃度を、O2/H2O Combi-Analyzer(Mbraun)によってモニターして、いずれも常に1ppm未満に維持させた。NMRスペクトル測定のためのサンプルを、シュレンク法を用いることによってか、またはJ. Young valve NMR tubeを使用してグローブボックスにおいて、調製した。H、13Cおよび15NのNMRスペクトルを、JEOL-AL400スペクトロメータ、JNM-AL300スペクトロメータまたはJNM-ECA600スペクトロメータによって記録した。IRスペクトルを、KBrディスクの間においてヌジョールムル法を用いてShimazu IRPrestige-21スペクトロメータによって記録した。元素分析を、MICRO CORDER JM10によって実施した。無水のTHF、ヘキサン、ベンゼン、EtOおよびトルエンを、SPS-800溶媒精製システム(Mbraun)を使用して精製し、グローブボックスにおいて新しいNaチップに通して乾燥させた。CMeH(SiMe)を、Aldrichから購入し、入手した状態のままで使用した。他の試薬(TiCl、LiCHSiMe)を、入手した状態のままで使用した。
 〔2.参考例〕
 以下の化合物の略称は、後述の〔3.実施例〕に示す化学式の通りである。
 ((CMeSiMe)Ti(CHSiMe:錯体1-Ti)
 LiCHSiMe(812mg、8.63mmol)を、[(CMeSiMe)TiCl](1.0g、2.88mmol)の、-40℃のトルエンにおける攪拌懸濁物に対して穏やかに加えた。それから、混合物を、室温まで温め、3分にわたって攪拌した。真空下において溶媒を除去した後に、固体の残余物を、ヘキサンを用いて抽出し、ろ過した。減圧下において溶液の容積を減らした後に、オレンジ色の溶液を-33℃において一晩にわたって冷却して、淡黄色の結晶として錯体1-Ti(908mg、1.81mmol、63%)を得た。
錯体1-Ti:1H NMR (C6D6, rt): 2.05 (s, 6H, C5Me4SiMe3), 1.83 (s, 6H, C5Me4SiMe3), 1.45 (s, 6H, TiCH2SiMe3), 0.27 (s, 36H, C5Me4SiMe3, TiCH2SiMe3). 13C NMR (C6D6, rt): 128.4 (s, C5Me4SiMe3), 127.5 (s, C5Me4SiMe3), 122.6 (s, ipso-C5Me4SiMe3), 85.8 (s, TiCH2SiMe3), 16.0 (s, C5Me4SiMe3), 13.07 (s, C5Me4SiMe3), 3.0 (s, TiCH2SiMe3), 1.9 (s, C5Me4SiMe3). Anal. Calcd for C24H54Si4Ti: C, 57.32; H, 10.82. Found: C, 57.32; H, 10.50。
 ((CMeSiMeTi(μ-NH)(μ-H):錯体3)
 10mLのHiper Glass Cylinder(TAIATSU TECHNO(登録商標))における錯体1-Ti(100mg、0.199mmol)のヘキサン(2.0mL)溶液に、1気圧のNおよび4気圧のHを注入した。溶液を1日にわたって60℃において攪拌した。溶液の色は、淡黄色から黒紫色に変わった。反応の後に、溶液を蒸発させ、残余物を冷却したヘキサンを用いて洗浄して、黒紫色の固体として錯体3(45mg、0.045mmol、90%)を得た。X線回折試験に適した錯体3の単結晶を、室温において錯体3の濃縮したC溶液から得た。15N濃縮した化合物[(CMeSiMeTi(μ15NH)(μ-H)]:錯体3-15Nの調製を、親錯体3とまったく同じ方法にしたがって実施した。
錯体3:1H NMR (C6D6, rt): 11.01 (s, 2H, μ3-NH), 2.27 (s, 12H, C5Me4SiMe3), 2.03 (s, 12H, C5Me4SiMe3), 1.91 (s, 12H, C5Me4SiMe3), 1.88 (s, 12H, C5Me4SiMe3), 1.82 (s, 4H, μ-H), 0.49 (s, 18H, C5Me4SiMe3), 0.34 (s, 18H, C5Me4SiMe3). 13C NMR (C6D6, rt): 126.4 (s, C5Me4SiMe3), 125.6 (s, C5Me4SiMe3), 123.2 (s, C5Me4SiMe3), 122.2 (s, C5Me4SiMe3), 115.4 (s, ipso-C5Me4SiMe3), 114.7 (s, ipso-C5Me4SiMe3), 16.9 (s, C5Me4SiMe3), 13.9 (s, C5Me4SiMe3), 13.3 (s, C5Me4SiMe3), 3.2 (s, C5Me4SiMe3), 3.0 (s, C5Me4SiMe3). Calcd for C48H90N2Si4Ti4: C, 57.71; H, 9.08; N, 2.80. Found: C, 58.11; H, 8.78; N, 2.75.
錯体3-15N:1H NMR (C6D6, rt): 11.04 (d, JNH = 66.5 Hz, 15NH), 2.28 (s, 12H, C5Me4SiMe3), 2.04 (s, 12H, C5Me4SiMe3), 1.92 (s, 12H, C5Me4SiMe3), 1.89 (s, 12H, C5Me4SiMe3), 1.76 (s, 4H, μ-H), 0.50 (s, 18H, C5Me4SiMe3), 0.35 (s, 18H, C5Me4SiMe3). 13C NMR (C6D6, rt): 126.4 (s, C5Me4SiMe3), 125.6 (s, C5Me4SiMe3), 123.2 (s, C5Me4SiMe3), 122.2 (s, C5Me4SiMe3), 115.4 (s, ipso-C5Me4SiMe3), 114.7 (s, ipso-C5Me4SiMe3), 16.9 (s, C5Me4SiMe3), 13.9 (s, C5Me4SiMe3), 13.4 (s, C5Me4SiMe3), 3.2 (s, C5Me4SiMe3), 3.0 (s, C5Me4SiMe3). 15N NMR (60.81 MHz, C6D6, MeNO2, rt):σ 52.7 (s, JNH = 66.8 Hz, μ3-NH)。
 ((CMeSiMeTi(μ-H):錯体2-Ti)
 10mLのHiper Glass Cylinder(TAIATSU TECHNO(登録商標))における錯体1-Ti(252mg、0.501mmol)のヘキサン(2.0mL)溶液に、4気圧のHを注入した。淡黄色溶液を、17時間にわたって60℃において攪拌した。反応の後に、溶液は暗赤色に変わった。溶液を蒸発させ、-33℃のTHFにおいて結晶化させて、暗褐色の固体として錯体2-Ti(12mg、0.012mmol、10%)を得た。X線回折試験に適した錯体2-Tiの単結晶を、室温において濃縮したC溶液から得た。
錯体2-Ti:1H NMR (C6D6, rt): 2.41 (s, 24H, C5Me4SiMe3), 2.28 (s, 24H, C5Me4SiMe3), 0.52 (s, 36H, C5Me4SiMe3), -1.21 (s, 8H, μ-H). 13C NMR (C6D6, rt): 127.1 (s, C5Me4SiMe3), 122.4 (s, C5Me4SiMe3), 114.2 (s, ipso-C5Me4SiMe3), 18.3 (s, C5Me4SiMe3), 14.1 (s, C5Me4SiMe3), 3.7 (s, C5Me4SiMe3). Calcd for C48H92Si4Ti4: C, 59.25; H, 9.53. Found: C, 59.07; H, 8.69.
 (錯体3および錯体2-TiのX線結晶解析)
 X線解析のための結晶を上述のように得た。結晶を、グローブボックスにおける顕微鏡のもとに、グローブボックスにおいて扱い、薄壁のガラスキャピラリーに密閉した。データの回収を、CCD領域検出器を有しているBruker SMART APEX回折計によって、グラファイトによって単色化されたMo-Kα照射(λ=0.71073Å)を用いて、-100℃において実施した。結晶分類および単位セルの要素の決定をSMARTプログラムパッケージによって実施した。SAINTおよびSADABSを用いて未加工の構造データを処理して、データファイルを生成した。SHELXTLプログラムを用いて構造を明らかにした。2-Tiおよび3についての精密化を、完全行列最小二乗法によって水素以外の原子についてFに基づいて異方的に行なった。中立原子についての分析の散乱係数を、分析の全体を通して使用した。錯体2-TiにおけるH5およびH6原子の位置の乱れ(disorder)を50%の占有率において精密化した。錯体3におけるN1、N2、H2、H3、H4およびH5原子の位置の乱れを50%の占有率において精密化した。残りの電子密度は化学的な意味を有していなかった。
 以上の解析の結果として得られた結晶構造のモデルを、それぞれ図2および図3に示す。図2は、錯体3のX線結晶構造解析の結果を示し、明確化の目的で、位置の乱れ(disorder)のある二つのμ3-イミノ配位子は省略している。図3は、2-TiのX線結晶構造解析の結果を示す。
 〔3.実施例1〕
Figure JPOXMLDOC01-appb-C000021
 ((CMeSiMeTi(μ-H):錯体4)
 上述の錯体2-Tiの合成と同じ手順にしたがって得られた生成物から錯体2-Tiを結晶化させた後に、残りの溶液部分を減圧下において蒸発させ、-33℃のヘキサンにおいて結晶化させて、黒紫色の固体として錯体4(84mg、0.115mmol、69%)を得た。X線回折試験に適した錯体4の単結晶を、-33℃において濃縮した錯体4のTHF溶液から得た。錯体4のH NMRのスペクトル(400 MHz, Toluene-d8, 室温)を図4に示す。
錯体4:1H NMR (Toluene-d8, rt): 2.88 (s, 18H, C5Me4SiMe3), 2.66 (s, 7H, μ-H), 2.10 (s, 18H, C5Me4SiMe3), 0.25 (s, 27H, C5Me4SiMe3). 13C NMR (Toluene-d8, rt): 129.1 (obscured by Toluene-d8, C5Me4SiMe3), 123.3 (s, C5Me4SiMe3), 113.0 (s, ipso-C5Me4SiMe3), 17.2 (s, C5Me4SiMe3), 12.9 (s, C5Me4SiMe3), 2.5 (s, C5Me4SiMe3). 1H NMR (THF-d8, rt): 2.85 (s, 18H, C5Me4SiMe3), 2.53 (s, 7H, μ-H), 2.12 (s, 18H, C5Me4SiMe3), 0.12 (s, 27H, C5Me4SiMe3). 13C NMR (THF-d8, rt): 129.6 (s, C5Me4SiMe3), 123.8 (s, C5Me4SiMe3), 113.4 (s, ipso-C5Me4SiMe3), 17.5 (s, C5Me4SiMe3), 13.0 (s, C5Me4SiMe3), 2.6 (s, C5Me4SiMe3). Calcd for C36H70Si3Ti3: C, 59.17; H, 9.65. Found: C, 58.93; H, 8.79。
 ((CMeSiMeTi(μ-N)(μ-NH)(μ-H):錯体7)
Figure JPOXMLDOC01-appb-C000022
 Nのグローブボックスにおいて錯体4(101mg、0.138mmol)を、12時間にわたって室温のヘキサン(1.5mL)に溶解させた。溶液は褐色から黒紫色になった。反応後に、溶液を濃縮し、-33℃おいて結晶化させて、黒紫色の固体として錯体7(94mg、0.125mg、91%)を沈殿させた。X線回折試験に適した、THFが配位した錯体7-THFの単結晶を-33℃のTHFから得た。
錯体7:1H NMR (Toluene-d8, rt): 37.65 (brs, 1H, NH), 11.69 (s, 6H, C5Me4SiMe3), 6.93 (s, 6H, C5Me4SiMe3), 4.21 (s, 6H, C5Me4SiMe3), 3.99 (s, 6H, C5Me4SiMe3), 3.92 (s, 6H, C5Me4SiMe3), 3.89 (s, 6H, C5Me4SiMe3), 0.58 (s, 18H, C5Me4SiMe3), 0.42 (s, 9H, C5Me4SiMe3). 1H NMR (THF-d8, -70 ℃): 17.23 (brs, 1H, NH), 2.48 (s, 6H, C5Me4SiMe3), 2.13 (s, 12H, C5Me4SiMe3), 2.08 (s, 6H, C5Me4SiMe3), 1.95 (s, 6H, C5Me4SiMe3), 1.89 (s, 6H, C5Me4SiMe3), 0.19 (s, 18H, C5Me4SiMe3), 0.01 (s, 9H, C5Me4SiMe3).
7-15N:1H NMR (Toluene-d8, rt): 37.46 (d, JHN = 65.2 Hz, 1H, 15N-H), 11.62 (s, 6H, C5Me4SiMe3), 6.91 (s, 6H, C5Me4SiMe3), 4.20 (s, 6H, C5Me4SiMe3), 3.98 (s, 6H, C5Me4SiMe3), 3.92 (s, 6H, C5Me4SiMe3), 3.88 (s, 6H, C5Me4SiMe3), 0.59 (s, 18H, C5Me4SiMe3), 0.43 (s, 9H, C5Me4SiMe3). 1H NMR (THF-d8, -50 ℃): 17.62 (d, JHN = 63.6 Hz, 1H, 15N-H), 2.59 (s, 6H, C5Me4SiMe3), 2.32 (s, 6H, C5Me4SiMe3), 2.19 (s, 6H, C5Me4SiMe3), 2.15 (s, 6H, C5Me4SiMe3), 2.07 (s, 6H, C5Me4SiMe3), 2.01 (s, 6H, C5Me4SiMe3), 0.17 (s, 18H, C5Me4SiMe3), -0.01 (s, 9H, C5Me4SiMe3). 15NNMR (40.5 MHz, THF-d8, MeNO2, -50 ℃): σ 402.9 (s, μ-N), 46.9 (s, μ-NH). Calcd for C36H66N2Si3Ti3: C, 57.29; H, 8.81; N, 3.71. Found: C, 57.77; H, 8.73; N, 3.30。
 (錯体4および錯体7のX線結晶解析)
 錯体3および錯体2-Tiと同様に、錯体4および錯体7のX線結晶解析を行なった。解析結果のうち錯体4におけるH7原子の位置の乱れを61%の占有率において精密化した。残りの電子密度は化学的な意味を有していなかった。錯体3および錯体2-Tiを含めた結晶データおよび分析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000023
 X線結晶解析の結果として得られた4および7の結晶構造のモデルを図5および6に示す。図5は、錯体4のX線構造解析(H7 : H7D = 61 : 39)の結果を示す。図6は、錯体7(錯体7-THF)のX線構造解析の結果を示す。
 (トルエン-dにおけるNとの、4の反応)
 J. Young valne NMR sample tubeに、0.5mLのトルエン-dおよび錯体4(10mg、0.014mmol)を入れた。溶液を、液体窒素において凍結させ、脱気し、1気圧のNガスを加えた。溶液を0℃に維持し、反応をH NMRによってモニターした。3時間後に、錯体4は、H(σH 4.5)の形成をともなって中間体5(~75%)および錯体7(~10%)に変換された。それから、温度を0から20℃に上昇させた。4時間後に、中間体5は錯体7(~95%)に変換された。Nをともなった錯体4の時間-変換曲線を図7に示す。図7は、トルエン-d8中における、錯体4とNとの反応に関する時間-変換曲線である(0℃: 0~212 min, 20 ℃: 212~448 min)。
 上記反応における中間生成物(CMeSiMeTi(μ-η:η:η-N)(μ-H)(中間体5)のNMRのデータは以下の通りである。
中間体5:1H NMR (Toluene-d8, 0 ℃): 10.20 (s, 1H, Ti-H), 2.56 (s, 6H, C5Me4SiMe3), 2.01 (s, 6H, C5Me4SiMe3), 1.93 (s, 6H, C5Me4SiMe3), 1.89 (s, 6H, C5Me4SiMe3), 1.81 (s, 6H, C5Me4SiMe3), 1.66 (s, 6H, C5Me4SiMe3), 0.27 (s, 18H, C5Me4SiMe3), 0.01 (s, 9H, C5Me4SiMe3), -13.69 (s, 2H, Ti-H-Ti).
5-15N:15N NMR (60.81 MHz, Toluene-d8, MeNO2, -30 ℃): 262.8 (d, JNN = 21.0 Hz, N-N), 73.0 (d, JNN = 21.0 Hz, N-N).
5-d2H NMR (62 MHz, Toluene-d8, -30 ℃): 10.3 (s, 1D, μ-D), -13.9 (s, 2D, μ-D)。
 (THF-dにおけるNとの、錯体4の反応)
Figure JPOXMLDOC01-appb-C000024
 J. Young valve NMR sample tubeに、0.5mLのTHF-dおよび錯体4(15mg、0.019mmol)を入れた。溶液を液体窒素において凍結させ、脱気し、1気圧のNを加えた。溶液を-30℃に維持し、反応をH NMRによってモニターした。42分後に、錯体4は、H(σH 4.5)の形成をともなって中間体5(~80%)および7(~10%)に変換された。それから、温度を-30から-10℃に上昇させた。3時間後に、中間体5は錯体6(~95%)に変換された。最後に温度を20℃に上昇させた。19時間後に、錯体6は完全に錯体7(~94%)に変換された。Nをともなった錯体4の時間-変換曲線を図8に示す。図8は、THF-d中における、錯体4とNとの反応に関する時間-変換曲線である(-30 ℃: 0~63 min, -10 ℃: 63~185 min, 0 ℃: 185~192 min, 20 ℃: 192~1113 min)。
 上記反応における2つの中間生成物(CMeSiMeTi(μ-η:η:η-N)(μ-H)](中間体5)および(CMeSiMeTi(μ-N)(μ-N)(μ-H)](錯体6)のNMRのデータは以下の通りである。中間体5のNMRのスペクトル(5-d3:62 MHz in THF, *THF-d8, -70 ℃ / 5-15N:60.81 MHz, THF-d8, MeNO2, -30 ℃)を図9に、錯体6のNMRのスペクトル(6:400 MHz, THF-d8, -50 °C / 6-d3:62 MHz in THF, *THF-d8, -50 °C / 6-15N:60.81 MHz, THF-d8, MeNO2, -50 °C)を図10に示す。
中間体5:1H NMR (THF-d8, -30 ℃): 9.73 (s, 1H, Ti-H), 2.52 (s, 6H, C5Me4SiMe3), 2.00 (s, 6H, C5Me4SiMe3), 1.91 (s, 6H, C5Me4SiMe3), 1.84 (s, 6H, C5Me4SiMe3), 1.80 (s, 6H, C5Me4SiMe3), 1.72 (s, 6H, C5Me4SiMe3), 0.15 (s, 18H, C5Me4SiMe3), -0.10 (s, 9H, C5Me4SiMe3), -13.80 (s, 2H, Ti-H-Ti).
中間体5-15N:15N NMR (60.81 MHz, THF-d8, MeNO2, -30 ℃): 73.1 (d, JNN = 21.5 Hz, N-N), 262.9 (d, JNN = 21.5 Hz, N-N).
中間体5-d2H NMR (62 MHz, THF-d8, -70 ℃): 8.86 (s, 1D, μ-D), -13.72 (s, 2D,μ-D)。
錯体6:1H NMR (THF-d8, -70 ℃): 4.65 (t, JHH = 28.0 Hz, 1H, Ti-H-Ti), 2.67 (d, JHH= 28.0 Hz, 2H, Ti-H-Ti), 2.47 (s, 6H, C5Me4SiMe3), 2.20 (s, 6H, C5Me4SiMe3), 2.07 (s, 6H, C5Me4SiMe3), 2.02 (s, 12H, C5Me4SiMe3), 1.74 (obscured by THF-d8, C5Me4SiMe3), 0.26 (s, 18H, C5Me4SiMe3), 0.18 (s, 9H, C5Me4SiMe3).
錯体6-15N:15N NMR (60.81 MHz, THF-d8, MeNO2, -50 ℃): 593.4 (s, μ-N), 444.8 (s, μ-N).
錯体6-d2H NMR (62 MHz, THF-d8, -50 ℃): 4.56 (s, 1D, μ-D), 2.77 (s, 2D, μ-D)。
 (錯体を用いたアンモニア生成プロセス)
Figure JPOXMLDOC01-appb-C000025
 J. Young valve NMR sample tubeに、上記得られた錯体7(10mg、0.013mmol:反応式中のD)を入れた。脱気し、1気圧の15を加えた。系を24時間にわたって160℃に加熱した。反応終了後にNMRの結果から、85%以上の転化率において錯体8(反応式中のE)が生成されていることを確認した。なお、反応式中のLは(CMeSiMe)を表している。
8: 1H NMR (400 MHz, C6D6, rt): 14.02 (s, 3H, μ-NH), 2.34 (s, 18H, C5Me4SiMe3), 1.90 (s, 18H, C5Me4SiMe3), 0.32 (s, 27H, C5Me4SiMe3)。
 錯体1、7、および8を鍵触媒として窒素と水素からアンモニアを生成する新たな触媒プロセスが開発される。たとえば、錯体8に窒素および水素の混合ガスを用いて加圧加熱することで、アンモニアを触媒的に生成することが可能である。
 〔4.実施例2〕
 (チタンールイス酸錯体の合成)
Figure JPOXMLDOC01-appb-C000026
 実施例1において得られた錯体4に、1気圧のNを加えた。溶液を室温に維持した。
 錯体4は、Nが付加され、Hが生成されるとともに中間体7に変換された。この中間体7に、さらに1~20気圧のNを加え錯体9を得た。得られた錯体9(175mg、0.224mmol)のトルエン溶液に、ルイス酸MXnとしてCuCl(塩化銅)(22.2mg、0.224mmol)を加え、室温において1時間にわたって攪拌した。続いて、反応溶液を-35℃において一晩にわたって静置することによって、赤褐色の結晶としてチタン-塩化銅錯体10(MXn=CuCl)(162mg、0.184mmolおよび錯体9のモル量に対する収率82%)を得た。
錯体10(MXn=CuCl):1H NMR (C6D6, rt): 12.03 (brs, 3H, NH), 2.23 (s, 18H, C5Me4SiMe3), 1.86 (s, 18H, C5Me4SiMe3), 0.33 (s, 27H, Si(CH3)3). 13C{1H} NMR (C6D6, rt): 127.5 (s, C5Me4SiMe3), 124.9 (s, C5Me4SiMe3), 116.2 (s, ipso-C5Me4SiMe3), 15.1 (s, s, C5Me4SiMe3), 11.8 (s, C5Me4SiMe3), 2.36 (s, C5Me4SiMe3). 15N{1H} NMR (40.52 MHz, toluene-d8, MeNO2, rt): 406.1 (s, μ3-15N), 21.9 (s, μ2-15NH). Calcd for C36H66ClCuN4Si3Ti3: C, 49.03; H, 7.54; N, 6.35. found: C, 49.25; H, 7.48; N, 6.35。
 また、同じ方法にしたがって、深緑色結晶としてチタン-塩化亜鉛錯体10(MXn=ZnCl)(錯体9のモル量に対する収率58%)、赤色結晶としてチタン-塩化スカンジウム錯体10(MXn=ScCl)(錯体9のモル量に対する収率48%)を得た。
錯体10(MXn=ZnCl):1H NMR (C6D6, rt):2.14, 2.12, 2.09, 2.00, 1.97, 1.95 (s, 6×6H, C5Me4SiMe3), 0.31 (s, 18H, Si(CH3)3), 0.29 (s, 9H, Si(CH3)3). NH protons were not observed. Calcd for C36H66Cl2N4Si3Ti3Zn: C, 47.04; H, 7.24; N, 6.10. found: C, 47.07; H, 7.05; N, 6.01。
錯体10(MXn=ScCl):1H NMR (C6D6, rt):12.82 (brs, 3H, NH), 2.36 (s, 18H, C5Me4SiMe3), 2.20 (s, 18H, C5Me4SiMe3), 0.32 (s, 27H, Si(CH3)3)。
 (チタンールイス酸錯体への窒素-水素ガス付加によるアンモニア生成プロセス)
Figure JPOXMLDOC01-appb-C000027
 高圧フロー反応装置に錯体10(MXn=CuCl)の固体(11.9mg、13.5μmol)をとり、窒素ガス5気圧、水素ガス15気圧を加えて、160℃で4日間反応させた。ガス成分をインドフェノール法およびイオンクロマト分析により定量したところ錯体10のモル量に対し、約400%の収率のアンモニア(53.8μmol、399%)を得た。
 また、上記錯体10(12.5mg、14.2μmol)をシリカ(MCM-41など)またはアルミナなどの担体材料に担持した触媒を用いて、100℃の温度において5時間にわたって常圧の水素をフローさせたところ、錯体10のモル量に対し、ほぼ400%の収率のアンモニア(55.5μmol、391%)を得た。
 (窒素の官能基化)
Figure JPOXMLDOC01-appb-C000028
上述の錯体4と窒素との反応によって得られた錯体9(10mg、0.013mmol)に対して、ピナコールボラン(HBpin)(36mg、0.28mmol)をC存在下で、室温で30分にわたって反応させることによって、窒素上にホウ素結合を有する暗緑色の錯体11(錯体9のモル量に対する収率78%)を得た。続いて、錯体11に、ピナコールボラン(HBpin)を、C存在下で、80℃で12時間にわたって反応させることによって、赤色または橙色の錯体12を得た。また、上述の錯体4と窒素との反応によって得られた錯体7(10mg、0.013mmol)に対して、ピナコールボラン(HBpin)(16mg、0.13mmol)をC存在下で、室温で30分にわたって反応させることによって、窒素上にホウ素結合を有する錯体13(錯体7のモル量に対する収率50%)を得た。
 本発明は、窒素原子の固定または固定した窒素原子の取り出しに利用することができる。

Claims (10)

  1.  以下の式(1A)または式(1B)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体であって、
    Figure JPOXMLDOC01-appb-C000001
     上記式(1A)および式(1B)において、M1~M4(但し、式(1A)の場合はM1~M3)は、互いに独立にTi、Zr、Hf、V、Nb、Ta、Cr、MoまたはWであり、L1~L4(但し、式(1A)の場合はL1~L3)は、互いに独立に、置換もしくは無置換のシクロペンタジエニル誘導体を含む配位子(Cp)、ジフェニルアミン型配位子、ジフェニルホスフィン型配位子、およびカルボイミドアミド型配位子から選択される配位子である、
    錯体。
  2.  式(1A)および式(1B)におけるL1~L4(但し、式(1A)の場合はL1~L3)は同一の配位子であって、当該配位子は以下の式(2)で示される、請求項1に記載の錯体。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)において、R1~R5は互いに独立に、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、水素原子;炭素数1~20のヒドロカルビル基;或いは、炭素数1~20のヒドロカルビル基、アミド基、ホスフィド基及び/又はアルコキシド基が置換した置換メタロイド基;を指し、※はM1~M4(但し、式(1A)の場合はM1~M3)との結合を表し、R1~R5のうちの2個~5個が上記ヒドロカルビル基又は置換メタロイド基である。また、式(2)中に示すシクロペンタジエニル環の骨格を構成する炭素原子の一つは、第14族原子(但し、炭素原子及び鉛原子は除く)又は第15族原子により置換されていてもよい。)
  3. 式(2)中で、R1~R5のすべてがメチル基であるか、R1~R5のうちの4つがメチル基であり他の1つが炭素数1~5のアルキル基を有するトリアルキルシリル基である、請求項2に記載の錯体。
  4.  式(1A)および式(1B)におけるM1~M4(但し、式(1A)の場合はM1~M3)は、いずれもTiである、請求項1~3の何れか一項に記載の錯体。
  5.  式(1A)で示される、請求項1~4の何れか一項に記載の錯体。
  6.  請求項1~5の何れか一項に記載の錯体と窒素分子とを接触させることによって窒素原子が取り込まれてなる錯体。
  7.  以下の式(3)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体である、請求項6に記載の錯体。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)における、M1~M3およびL1~L3は、式(1A)と同じものを示し、X1~X3は、-H-または-N(H)-を示し、X1~X3のうちの少なくとも一つが-N(H)-である。ただし、1つまたは複数の-N(H)-においてHがボリル基、シリル基、またはアルキル基で置換されていてもよい。)
  8.  以下の式(3’)で示される錯体、または、当該錯体のカチオン性もしくはアニオン性の錯体。
    Figure JPOXMLDOC01-appb-C000004
    [式(3’)における、M1~M3は、互いに独立にTi、Zr、Hf、V、Nb、Ta、Cr、MoまたはWであり、L1~L3は、互いに独立に、置換もしくは無置換のシクロペンタジエニル誘導体を含む配位子(Cp)、ジフェニルアミン型配位子、ジフェニルホスフィン型配位子、およびカルボイミドアミド型配位子から選択される配位子であり、、M5は、Cu、Zn、ScまたはYであり、Xは、F、Cl、Br、Iまたは-OSOCFであり、Xの個数を示すnは、p-3で表される整数を示す。(ここで、pは上記M5の配位数を示す。)]
  9.  請求項1~8の何れか一項に記載の錯体に水素分子と窒素分子とを接触させるか、請求項6又は7に記載の錯体に水素分子を接触させる接触工程を含む、アンモニアの製造方法。
  10.  請求項1~8の何れか一項に記載の錯体を固定した、アンモニア製造用の固定床。
PCT/JP2013/081276 2012-11-20 2013-11-20 新規錯体およびその利用 WO2014080939A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/443,888 US9890184B2 (en) 2012-11-20 2013-11-20 Complex and use of same
EP13856069.3A EP2924046A4 (en) 2012-11-20 2013-11-20 NEW COMPLEX AND USE
JP2014548596A JP6004500B2 (ja) 2012-11-20 2013-11-20 新規錯体およびその利用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-254712 2012-11-20
JP2012254712 2012-11-20
JP2013-130982 2013-06-21
JP2013130982 2013-06-21

Publications (1)

Publication Number Publication Date
WO2014080939A1 true WO2014080939A1 (ja) 2014-05-30

Family

ID=50776119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081276 WO2014080939A1 (ja) 2012-11-20 2013-11-20 新規錯体およびその利用

Country Status (4)

Country Link
US (1) US9890184B2 (ja)
EP (1) EP2924046A4 (ja)
JP (1) JP6004500B2 (ja)
WO (1) WO2014080939A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2952082B2 (es) * 2022-03-21 2024-03-04 Univ Alcala Henares Complejos monociclopentadienilo para la sintesis de amoniaco

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083534A (ja) * 2002-08-29 2004-03-18 Japan Science & Technology Corp 新規な金属ヒドリドクラスターアニオン
JP2004115401A (ja) * 2002-09-25 2004-04-15 Japan Science & Technology Corp 新規な金属ポリヒドリドクラスター

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541349A (en) * 1994-09-12 1996-07-30 The Dow Chemical Company Metal complexes containing partially delocalized II-bound groups and addition polymerization catalysts therefrom
FR2887253A1 (fr) * 2005-06-20 2006-12-22 Phosphoenix Sarl Nouvelles arylphosphines p chirales ortho-fonctionnalisees et derives: leur preparation et utilisation en catalyse asymetrique
JP2008169201A (ja) * 2006-12-11 2008-07-24 Tokyo Univ Of Agriculture & Technology 新規光学活性ビアリールリン化合物とその製造方法
DE102008027005A1 (de) * 2008-06-05 2009-12-10 Merck Patent Gmbh Organische elektronische Vorrichtung enthaltend Metallkomplexe
US9586196B2 (en) * 2011-08-05 2017-03-07 Kyoto University Metal nanoparticle-PCP complex and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083534A (ja) * 2002-08-29 2004-03-18 Japan Science & Technology Corp 新規な金属ヒドリドクラスターアニオン
JP2004115401A (ja) * 2002-09-25 2004-04-15 Japan Science & Technology Corp 新規な金属ポリヒドリドクラスター

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
H. KAWAGUCHI ET AL., ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 8778
H.BRINTZINGER: "Formation of Ammonia by Insertion of Molecular Nitrogen into Metal- Hydride Bonds. II. Di-p-imino-bis (dicyclopentadienyltitanium(III)) as a Product of the Reaction between Di-p-hydrido-bis (dicyclopentadienyltitanium(III)) and Moleclar Nitrogen", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 88, no. 18, 1966, pages 4307 - 4308, XP008179433 *
J.O.DZIEGIELEWSKI ET AL.: "Photoreduction of moleclar nitrogen using the complex [ReH5(dppe) (PPh3)]", POLYHEDRON, vol. 16, no. 12, 1997, pages 1979 - 1981, XP055257630 *
J.O.DZIEGIELEWSKI ET AL.: "THE CYCLIC FIXATION AND REDUCTION OF MOLECULAR NITROGEN WITH [WH4 (Ph2PCH2CH2PPh2) 2] IN y-IRRADIATED SOLUTIONS", POLYHEDRON, vol. 10, no. 23/24, 1991, pages 2827 - 2832, XP055257626 *
M. D. FRYZUK ET AL., SCIENCE, vol. 275, 1997, pages 1445
N.MARTINEZ-ESPADA ET AL.: "Cyclopentadienyl and Alkynyl Copper(I) Derivatives with the [ {Ti (r5-CSMes) (p-NH) }3 (p3-N) ]Metalloligand", ORGANOMETALLICS, vol. 29, no. 24, 2010, pages 6732 - 6738, XP055257622 *
NATURE CHEM., vol. 2, 2010, pages 120
O.DZIEGIELEWSKI: "APPLICATION OF THE MOLYBDENUM(IV) HYDRIDE COMPLEXES IN CYCLOHEXANE SOLUTIONS TO THE RADIATION-CATALYTIC REDUCTION OF MOLECULAR NITROGEN", POLYHEDRON, vol. 9, no. 5, 1990, pages 645 - 651, XP055258234 *
R. R. SCHROCK, SCIENCE, vol. 301, 2003, pages 76
See also references of EP2924046A4 *
T.SHIMA ET AL.: "Dinitrogen Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex", SCIENCE, vol. 340, no. 6140, 28 June 2013 (2013-06-28), pages 1549 - 1552, XP055223986 *
T.SHIMA ET AL.: "Tetra-, Penta-, and Hexanuclear Yttrium Hydride Clusters from Half-Sandwich Bis(aminobenzyl) Complexes Containing Various Cyclopentadienyl Ligands", ORGANOMETALLICS, vol. 30, no. 9, 2011, pages 2513 - 2524, XP055257624 *

Also Published As

Publication number Publication date
JPWO2014080939A1 (ja) 2017-01-05
US9890184B2 (en) 2018-02-13
EP2924046A4 (en) 2016-07-13
EP2924046A1 (en) 2015-09-30
US20150291635A1 (en) 2015-10-15
JP6004500B2 (ja) 2016-10-12

Similar Documents

Publication Publication Date Title
Cummins et al. Synthesis of Terminal Vanadium (V) Imido, Oxo, Sulfido, Selenido, and Tellurido Complexes by Imido Group or Chalcogenide Atom Transfer to Trigonal Monopyramidal V [N3N](N3N=[(Me3SiNCH2CH2) 3N] 3-)
Fryzuk et al. Tridentate amidophosphine derivatives of the nickel triad: synthesis, characterization, and reactivity of nickel (II), palladium (II), and platinum (II) amide complexes
Evans et al. Synthesis and x-ray crystal structure of. mu.,. eta. 2-N-alkylformimidoyl complexes of erbium and yttrium: a structural comparison
Adatia et al. Chemistry of phosphido-bridged dimolybdenum complexes. Part 3. Reinvestigation of the reaction between [Mo 2 (η-C 5 H 5) 2 (CO) 6] and P 2 Ph 4; X-ray structures of [Mo 2 (η-C 5 H 5) 2 (µ-PPh 2) 2 (CO) 2],[Mo 2 (η-C 5 H 5) 2 (µ-PPh 2) 2 (µ-CO)], and trans-[Mo 2 (η-C 5 H 5) 2 (µ-PPh 2) 2 O (CO)]
Rausch et al. Formation of [(diphenylphosphino) cyclopentadienyl] thallium and its utility in the synthesis of heterobimetallic titanium-manganese complexes: the molecular structure of (. eta. 5-cyclopentadienyl) dicarbonyl [(. eta. 5-cyclopentadienyl)[. eta. 5-(diphenylphosphino) cyclopentadienyl] dichlorotitanium-P] manganese
Deetlefs et al. Stoichiometric and catalytic reactions of gold utilizing ionic liquids
Fleischer et al. Raman Spectroscopic Investigation and Coordination Behavior of the Polyimido SVI Anions [RS (NR) 3]− and [S (NR) 4] 2−
Elsner et al. Reactions of (η5-C5H5)(η5-C5Me5) Zr [Si (SiMe3) 3] X (X Cl, Me) complexes with carbon monoxide and the isocyanide 2, 6-Me2C6H3NC. Crystal structure of (η5-C5H5)(η5-C5Me5) Zr [η2-C (N-2, 6-Me2C6H3) Si (SiMe3) 3] Cl
Camp et al. CS 2 activation at uranium (iii) siloxide ate complexes: the effect of a Lewis acidic site
Braunschweig et al. Boryl‐and Bridging Boryleneiron Complexes from Aminodichloroboranes
Han et al. Synthesis and characterization of half-sandwich iridium complexes containing 2, 6 (7)-bis (4-pyridyl)-1, 4, 5, 8-tetrathiafulvalene and ancillary ortho-carborane-1, 2-dichalcogenolato ligands
Woo et al. Synthesis, reactivity, and characterization of the first donor-stabilized silylene complexes of osmium meso-tetra-p-tolylporphyrin (TTP) Os: SiR2. cntdot. THF (R= Me, Et, iso-Pr) and the molecular structure of (TTP) Os: SiEt2. cntdot. 2THF
Bai et al. Diverse coordination behaviors of the silyl-linked bis (amidinate) ligand [SiMe2 {NC (Ph) N (Ph)} 2] 2− to zirconium center
Eilrich et al. Cyclooligophosphanes and their coordination chemistry
Veith et al. Reactions of cyclic bis (amino) germylenes and-stannylenes with [CpFe (CO) 2] 2 and CpFe (CO) 2Me (Cp=. eta. 5-C5H5): syntheses and single-crystal x-ray structures of four new insertion compounds
Corey et al. Isolation and Structural Characterization of cis-and trans-Forms of [(. eta. 5-C5Me5) TiCl2] 2 [. mu.-. eta. 5:. eta. 5-(C5H3) 2 (SiMe2) 2]
Hyla-Kryspin et al. Pentadienyl as a Stronger Binding but More Reactive Ligand Than Cyclopentadienyl: Syntheses, Reactions, and Molecular Orbital Studies of Half-Open Titanocenes
JP6004500B2 (ja) 新規錯体およびその利用
Kaleta et al. Unusual bond activation processes in the reaction of group 4 cyclopentadienyl alkyne complexes with azobenzene
Ding et al. Pentamethyl-and 1, 2, 4-tri (tert-butyl) cyclopentadienyl containing p-block complexes–differences and similarities
Adiraju et al. Copper (I) complexes of anionic tridentate CNC pincer ligands
Horno et al. Preparation of Dimeric Monopentamethylcyclopentadienyltitanium (III) Dihalides and Related Derivatives
Gemel et al. Ruthenium tris (pyrazolyl) borate complexes. Formation and characterization of acetone, dimethylformamide and vinylidene complexes containing N, N-donor co-ligands
Hendershot et al. Synthesis and characterization of neopentyl-and [(trimethylsilyl) methyl] antimony compounds. Molecular structures of (Me3CCH2) 3Sb,(Me3CCH2) 3SbI2,(Me3SiCH2) 3Sb, and (Me3SiCH2) 3SbI2
Butcher et al. Synthesis and X-ray crystal structures of the samarium mono (pentamethylcyclopentadienyl) aryloxide complexes (η-C5Me5) Sm (O-2, 6-t-Bu2C6H3) 2 (THF) and [(η-C5Me5) Sm (O-2, 6-i-Pr2C6H3) 3Li (THF)]. Differences in metathesis chemistry of 2, 6-di-iso-propylphenoxide and 2, 6-di-tert-butylphenoxide ligands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548596

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14443888

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013856069

Country of ref document: EP