WO2014079349A1 - 光信号的处理方法、光信号的发送节点及光节点 - Google Patents

光信号的处理方法、光信号的发送节点及光节点 Download PDF

Info

Publication number
WO2014079349A1
WO2014079349A1 PCT/CN2013/087429 CN2013087429W WO2014079349A1 WO 2014079349 A1 WO2014079349 A1 WO 2014079349A1 CN 2013087429 W CN2013087429 W CN 2013087429W WO 2014079349 A1 WO2014079349 A1 WO 2014079349A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
channel
information
node
optical signal
Prior art date
Application number
PCT/CN2013/087429
Other languages
English (en)
French (fr)
Inventor
付锡华
张新灵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/904,400 priority Critical patent/US9979487B2/en
Publication of WO2014079349A1 publication Critical patent/WO2014079349A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/026Optical medium access at the optical channel layer using WDM channels of different transmission rates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/072Monitoring an optical transmission system using a supervisory signal using an overhead signal

Definitions

  • the present invention relates to the field of communications, and in particular to a method for processing an optical signal, a transmitting node for an optical signal, and an optical node including a matrix of media channels.
  • BACKGROUND OF THE INVENTION The development trend of optical transmission technology presents a single channel higher rate (for example, single channel 400G/1T transmission), higher spectral efficiency, and higher order modulation format. Therefore, continuing to increase the rate is still the most clear and important development of optical transmission. The direction. High-speed transmission faces many limitations. There are two main aspects: On the one hand, optical transmission technology is developing to high-spectrum efficiency aggregation transmission and high-speed service interface transmission.
  • the over 100G (Beyond 100G) technology becomes the solution for the bandwidth growth demand.
  • the traditional 50GHz fixed grid (Wounded Grid) wavelength division multiplexing (Wavelength Division Multiplexing (WDM for short) cannot provide sufficient spectrum width to achieve over 100G technology. Due to the defects of the fixed grid, it is proposed that a wider flexible Grid related technology is required, and the multi-rate hybrid transmission and the super 100G modulation pattern flexibility of the super 100G result in different channel bandwidth requirements, if each channel Customizing the right bandwidth allows for full utilization of system bandwidth, resulting in a flexible grid system.
  • Embodiments of the present invention provide a method for processing an optical signal, a transmitting node of an optical signal, and an optical node having a matrix of a medium channel, to at least solve the problem of how to efficiently perform spectrum planning after introducing the flexible grid technology in the related art. Management issues.
  • a method for processing an optical signal comprising: a transmitting node of an optical signal inserting optical channel information in an overhead of an optical multiplexing segment of the optical signal; and/or, The transmitting node of the optical signal inserts the optical channel information and the optical carrier information in an overhead of the optical channel of the optical signal; wherein the optical channel information includes an identifier of the optical channel, and an identifier of an effective frequency sequence of the medium channel The frequency sequence width of the effective frequency sequence of the center frequency and the medium channel, and the spectrum slice granularity; the optical carrier information includes: the number of optical carriers included in the medium channel, the bit rate of the optical carrier included in the medium channel, and the medium channel The modulation format of the included optical carrier, the nominal center frequency of the optical carrier included in the medium channel, and the optical carrier frequency sequence width included in the medium channel, and the multiplexing method between the optical carriers.
  • the transmitting node of the optical signal inserts the optical channel information into the overhead of the optical channel, including an identifier of the optical channel, and supports the optical channel.
  • the optical carrier information includes: a bit rate of each optical carrier included in the medium channel, and each optical carrier included in the medium channel The modulation format, the nominal center frequency of each optical carrier included in the medium channel, and the frequency width of each optical carrier included in the medium channel, and the multiplexing method between the optical carriers.
  • the method further includes: receiving, by the optical intermediate node having the media channel matrix, the sending node The optical signal; the optical intermediate node performs the optical channel information obtained from the overhead of the optical multiplex section of the optical signal with the expected optical channel information received from a local management plane or a control plane. Comparing; if the same, the optical intermediate node demultiplexes the medium channel corresponding to the optical channel from the optical signal according to the acquired optical channel information, otherwise, the optical intermediate node prompts the optical signal Optical multiplex section configuration error
  • the method before the optical intermediate node receives the optical signal from the sending node, the method further includes: the management plane or the control plane directly sending the expected optical channel information to the intermediate optical node. .
  • the method further includes: the optical intermediate having the medium channel matrix The node obtains the optical channel information and the optical carrier information from an overhead of an optical channel of the optical signal; the optical intermediate node acquires the optical channel information and the optical carrier information from the local management Comparing the expected optical channel information received by the plane or the control plane with the expected optical carrier information; if the same, the optical intermediate node crosses the spectrum of the configured medium channel in the local management plane or the control plane
  • the connection information is used to switch the demultiplexed media channel to another optical fiber connected to the optical node.
  • the optical intermediate node prompts an optical channel with an incorrect configuration of the optical channel.
  • the method before the optical intermediate node receives the optical signal from the sending node, the method further includes: directly sending, by the management plane or the control plane, the expected optical channel information to the intermediate optical node. And the optical carrier information.
  • the method further includes: ending the service carried by the optical signal.
  • the termination point is based on the optical channel information and the optical carrier information acquired from the overhead of the optical channel of the optical signal, and according to the acquired optical channel information and location The optical carrier information is described, and the optical signal is demodulated.
  • a transmitting node for an optical signal including: an inserting module configured to insert optical channel information in an overhead of an optical multiplex section of an optical signal to be transmitted; and/or, Inserting the optical channel information and optical carrier information in an overhead of an optical channel of the optical signal; wherein the optical channel information includes an identifier of the optical channel, a nominal center frequency of the effective frequency sequence of the medium channel, and a medium channel Frequency sequence width of the effective frequency sequence, spectrum slice granularity; the optical carrier information includes: the number of optical carriers included in the medium channel, the bit rate of the optical carrier included in the medium channel, and the modulation of the optical carrier included in the medium channel The format, the nominal center frequency of the optical carrier included in the medium channel, the optical carrier frequency width included in the medium channel, and the multiplexing method between the optical carriers.
  • the optical channel information includes an identifier of the optical channel, a nominal center frequency of the effective frequency sequence of the medium channel, and a medium channel Frequency sequence width of the effective frequency sequence, spectrum slice granularity
  • an optical node having a media channel matrix including: a receiving module configured to receive an optical signal carrying bearer service data sent by an upstream node; and a comparison module configured to be The optical channel information obtained in the overhead of the optical multiplex section of the optical signal is compared with the expected optical channel information received from the local management plane or the control plane, where the optical channel information includes an identifier of the optical channel The nominal center frequency of the effective frequency sequence of the medium channel and the frequency sequence width of the effective frequency sequence of the medium channel, the spectrum slice granularity; and the optical multiplexing segment processing module, when the comparison result of the comparison module is the same, Demultiplexing a medium channel corresponding to the optical channel from the optical signal according to the acquired optical channel information, and If the comparison result of the comparison module is different, the optical multiplex section of the optical signal is configured incorrectly.
  • an optical node having a media channel matrix including: an acquiring module, configured to obtain optical channel information and optical carrier information from an overhead of an optical channel of the received optical signal,
  • the optical channel information includes an identifier of the optical channel, a nominal center frequency of the effective frequency sequence of the medium channel, a frequency sequence width of the effective frequency sequence of the medium channel, and a spectrum slice granularity.
  • the optical carrier information includes: a medium channel The number of optical carriers included, the bit rate of the optical carrier included in the medium channel, and the modulation format of the optical carrier included in the medium channel, the nominal center frequency of the optical carrier included in the medium channel, and the optical carrier included in the medium channel a frequency sequence width, a multiplexing method between the optical carriers; a determining module, configured to set the acquired optical channel information and the optical carrier information with the expected light received from the local management plane or control plane The channel information is compared with the expected optical carrier information; and the optical channel processing module is configured to be in the determining module If the result of the disconnection is the same, the demultiplexed medium channel is switched to another optical fiber connected to the optical node according to the spectrum cross-connection information of the media channel configured in the local management plane or the control plane.
  • the optical node having the media channel matrix further includes: a demodulation module, configured to demodulate the optical signal according to the optical channel information and the optical carrier information in an overhead of the optical channel acquired by the acquiring module .
  • the transmitting node adopting the optical signal inserts new optical channel information into the overhead of the optical multiplexing section of the optical signal, and/or the transmitting node of the optical signal inserts a new one in the overhead of the optical channel of the optical signal.
  • FIG. 1 is a flow chart of a method of processing an optical signal according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a structure of a transmitting node of an optical signal according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of an optical node having a medium channel matrix according to another embodiment of the present invention
  • FIG. 5 is a structural block diagram of an optical node having a media path matrix according to another preferred embodiment of the present invention
  • FIG. 6 is a schematic diagram of a mapping and multiplexing process of ODUCn-OTUCnAG-OChAG according to Embodiment 1 of the present invention
  • FIG. 8 is a schematic diagram of mapping and multiplexing processing of another ODUCn-OTUCnAG-OChAG according to Embodiment 1 of the present invention
  • FIG. 8 is a mapping and multiplexing process of ODUCn-OTUCnAG-z*OTUCmTG-OChAG according to Embodiment 1 of the present invention
  • 9 is a schematic diagram of a process of mapping, multiplexing, and optical signal transmission processing of five signals on the same optical fiber according to Embodiment 2 of the present invention
  • FIG. 10 is a diagram showing five signals in accordance with Embodiment 3 of the present invention. Schematic diagram of the mapping, multiplexing, and optical signal transmission processing flow on one fiber.
  • An embodiment of the present invention provides a method for processing an optical signal, where the method includes the following methods: In the first mode, the transmitting node of the optical signal inserts the optical channel information in the overhead of the optical multiplexing segment of the optical signal; The transmitting node inserts the optical channel information and the optical carrier information in the overhead of the optical channel of the optical signal; and the transmitting node of the optical signal inserts the optical channel information in the overhead of the optical multiplexing section of the optical signal, in the optical channel of the optical signal The optical channel information and the optical carrier information are inserted in the overhead.
  • the method for processing an optical signal according to the embodiment of the present invention is described in the following manner. 1 is a flowchart of a method for processing an optical signal according to an embodiment of the present invention.
  • the method includes: Step S102: A transmitting node of an optical signal inserts optical channel information in an overhead of an optical multiplexing segment of an optical signal. Step S104, the transmitting node of the optical signal inserts the optical channel information and the optical carrier information in the overhead of the optical channel of the optical signal; wherein, the optical channel information includes an identifier of the optical channel, and a nominal center frequency of the effective frequency sequence of the medium channel.
  • Optical carrier information includes: the number of optical carriers included in the medium channel, the bit rate of the optical carrier included in the medium channel, and the optical carrier included in the medium channel The modulation format, the nominal center frequency of the optical carrier included in the medium channel, and the optical carrier frequency width included in the medium channel, and the multiplexing method between the optical carriers.
  • the information and the new optical carrier information solve the problem of how to effectively perform spectrum planning and management after introducing flexible grid technology in related technologies, and improve the processing efficiency and accuracy of the system.
  • the transmitting node of the optical signal inserting the optical channel information in the overhead of the optical channel may include an identifier of the optical channel and supporting the optical channel payload.
  • the optical carrier information may include: a bit rate of each optical carrier included in the medium channel, and each optical carrier included in the medium channel The modulation format, the nominal center frequency of each optical carrier included in the medium channel, and the frequency width of each optical carrier included in the medium channel, and the multiplexing method between the optical carriers.
  • the optical intermediate node having the medium channel matrix receives the optical signal from the transmitting node; the optical intermediate node obtains the optical channel information obtained from the overhead of the optical multiplexing segment of the optical signal with the local management plane or control The expected optical channel information received by the plane is compared; if they are the same, the optical intermediate node demultiplexes the medium channel corresponding to the optical channel from the optical signal according to the acquired optical channel information; otherwise, the optical intermediate node prompts the optical signal The optical multiplex section is configured with an incorrect alarm.
  • the management plane or the control plane can directly deliver the expected optical channel information to the intermediate optical node.
  • the optical intermediate node having the media channel matrix acquires the optical channel information and the optical carrier information from the overhead of the optical channel of the optical signal; the optical intermediate node and the acquired optical channel information and the optical carrier information are from the local management plane. Or comparing the expected optical channel information received by the control plane with the expected optical carrier information; if they are the same, the optical intermediate node demultiplexes the optical cross-connection information of the media channel according to the local management plane or the control plane. The medium channel is switched to another fiber connected to the optical node. Otherwise, the optical intermediate node prompts an optical channel with an incorrect configuration of the optical channel.
  • the management plane or the control plane may directly deliver the expected optical channel information and optical carrier information to the intermediate optical node.
  • an embodiment of the present invention further provides a sending node of an optical signal.
  • 2 is a structural block diagram of a transmitting node of an optical signal according to an embodiment of the present invention. As shown in FIG. 2, the transmitting node includes: an inserting module 22 configured to insert light into an overhead of an optical multiplex section of an optical signal to be transmitted.
  • the optical channel information includes an identifier of the optical channel, a nominal center frequency of an effective frequency sequence of the medium channel, and The frequency sequence width of the effective frequency sequence of the medium channel and the spectrum slice size;
  • the optical carrier information includes: the number of optical carriers included in the medium channel, the bit rate of the optical carrier included in the medium channel, and the modulation of the optical carrier included in the medium channel The format, the nominal center frequency of the optical carrier included in the medium channel, the optical carrier frequency width included in the medium channel, and the multiplexing method between the optical carriers.
  • an embodiment of the present invention further provides an optical node having a matrix of media channels.
  • 3 is a structural block diagram of an optical node having a media path matrix according to an embodiment of the present invention. As shown in FIG.
  • the optical node includes: a receiving module 32, a comparing module 34, and an optical multiplexing segment processing module 36, wherein the receiving module 32.
  • the optical signal is used to receive the bearer service data sent by the upstream node.
  • the comparison module 34 is coupled to the receiving module 32, and is configured to directly manage the optical channel information obtained from the overhead of the optical multiplex section of the optical signal.
  • the optical multiplex section processing module 36 is coupled to the comparison module 34, and configured to compare the obtained result of the comparison module 34 to the same, and demultiplex the optical channel from the optical signal according to the acquired optical channel information. If the media channel and the comparison result of the comparison module 34 are different, the optical multiplex section of the optical signal is configured incorrectly.
  • the optical multiplex section processing module 36 is coupled to the comparison module 34, and configured to compare the obtained result of the comparison module 34 to the same, and demultiplex the optical channel from the optical signal according to the acquired optical channel information. If the media channel and the comparison result of the comparison module 34 are different, the optical multiplex section of the optical signal is configured incorrectly. Police.
  • the receiving module 32 receives the optical signal of the bearer service data sent by the upstream node by using the optical node with the medium channel matrix, and the comparison module 34 manages the optical channel information obtained from the overhead of the optical multiplex section of the optical signal.
  • the expected optical channel information received by the plane or the control plane is compared; the optical multiplex section processing module 36 demultiplexes the light from the optical signal according to the acquired optical channel information if the comparison result of the comparison module 34 is the same.
  • the media channel corresponding to the channel, and the optical multiplexing segment processing module 36 when the comparison result of the comparison module 34 is different, prompts an error that the optical multiplex section of the optical signal is configured incorrectly, and solves the related art.
  • a further embodiment of the present invention provides an optical node having a matrix of media channels.
  • 4 is a structural block diagram of an optical node having a media path matrix according to another embodiment of the present invention.
  • the optical node includes: an obtaining module 42, a determining module 44, and an optical channel processing module 46, wherein the acquiring module 42.
  • the optical channel information and the optical carrier information are obtained from an overhead of the optical channel of the received optical signal, where the optical channel information includes an identifier of the optical channel, a nominal center frequency of the effective frequency sequence of the medium channel, and a medium channel.
  • the optical carrier information includes: the number of optical carriers included in the medium channel, the bit rate of the optical carrier included in the medium channel, and the modulation format of the optical carrier included in the medium channel, The nominal center frequency of the optical carrier included in the medium channel and the optical carrier frequency width included in the medium channel, and the multiplexing method between the optical carriers;
  • the determining module 44 is coupled to the obtaining module 42 and configured to acquire the optical channel Information and optical carrier information with expected optical channel information and expected light received from a local management plane or control plane
  • the optical channel processing module 46 is coupled to the judging module 44, and is configured to, if the judgment result of the judging module 44 is the same, configure the cross-connection information of the medium channel according to the local management plane or the control plane.
  • the demultiplexed medium channel is switched to another optical fiber connected to the optical node, and in the case that the determination result of the determining module 44 is different, the optical channel of the optical signal is configured to be incorrectly configured.
  • the optical module and the optical carrier information obtained from the optical channel of the received optical signal are obtained by the obtaining module 42 by using the optical node having the medium channel matrix.
  • the determining module 44 manages the acquired optical channel information and optical carrier information locally.
  • the expected optical channel information received by the plane or the control plane is compared with the expected optical carrier information; if the determination result of the determining module 44 is the same, the optical channel processing module 46 configures the medium according to the local management plane or the control plane.
  • FIG. 5 is a structural block diagram of an optical node having a matrix of media channels according to another preferred embodiment of the present invention. As shown in FIG. 5, the optical node includes all the modules of the optical node shown in FIG.
  • Embodiment 1 This embodiment provides a data management solution for an optical transport network to at least solve the problem of how to efficiently perform spectrum planning and management after introducing the flexible grid technology in the related art.
  • 6 is a schematic diagram of a mapping and multiplexing processing procedure of ODUCn-OTUCnAG-OChAG according to Embodiment 1 of the present invention. As shown in FIG.
  • OTUCnAG is an OTU high-speed management group. It is a composite signal of N*100 gigabits per second. It consists of N 100G OTU frames.
  • OChAG is used to carry OTUCnAG's optical channel signal set. If these optical signals pass through the same route, OChAG provides a single entity to manage these signals; if these signals are routed differently, multiple optical channels OCh are required, then the same way The signal is managed through an optical channel.
  • ODU4 carrying the low-order optical channel data unit (ODUk) or packet service data and the low-order ODUCm (m ⁇ n) carrying the packet service data may also be combined.
  • FIG. 7 is another ODUCn- according to the first embodiment of the present invention.
  • FIG. 8 is an ODUCn-OTUCnAG-z*OTUCmTG according to the first embodiment of the present invention.
  • OTUCmTG rate is M times 100 gigabits per second, M is greater than or equal to 1 and M is less than N.
  • OTUCmTG Transport Group, m ⁇ n
  • OCh optical channel
  • Media Channel media channel
  • OMS optical multiplex section
  • the nominal frequency (Nominal Central Frequency) and the Slot Width spectrum slice granularity of the Effective Frequency Slot are supported by multiple media channels (Media Channel).
  • the optical multiplex section overhead includes an optical channel (OCh) identifier (Identifier).
  • the nominal frequency (Nominal Central Frequency) and the Slot Width are called the frequency slice granularity.
  • the node is based on an identifier of an optical channel (OCh) included in the optical multiplex section (Identifier ⁇ Nominal Central Frequency of the Effective Channel of the Media Channel and the frequency width of the frequency sequence) (Slot Width) information, frequency slice granularity, demultiplexing a medium channel corresponding to the optical channel from the optical signal.
  • the data management method of the optical transport network in this embodiment further includes: First, the management plane or the control plane configures an identifier of an expected optical channel (OCh) to a node that receives the optical signal (Identifier) to support all media channels of the optical channel payload (OCh Payload) (Media Channel ) The nominal frequency of the Effective Frequency Slot (Nominal Central Frequency) and the Slot Width, the frequency slice granularity; Second, the node receives from the optical multiplex section overhead (accept ) Optical channel (OCh) identifier (Identifier), media channel (Media Channel) effective frequency (Effective Frequency Slot) Nominal Central Frequency and Slot Width, frequency slice granularity; Then, the node compares the configured expected overhead and received overhead information, if the information If the data is not the same, a mismatch alarm is generated.
  • OCh optical channel
  • Identifier the optical signal
  • Media Channel Media Channel
  • the nominal frequency of the Effective Frequency Slot Nominal Central
  • the embodiment further provides a data management method for the optical transport network, including: the node inserts the optical channel into the overhead of the optical channel (OCh) (OCh) Identifier, the Nominal Central Frequency and the Slot Width of the Effective Channel of the Media Channel, and the optical carrier contained in the media channel ( Optical Carrier) The number, and the bit rate and modulation format of the optical carrier, and the multiplexing method between the optical carriers.
  • the optical channel (OCh) overhead includes an optical channel (OCh) identifier (Identifier), medium.
  • the nominal frequency (Nominal Central Frequency) and the Slot Width of the Effective Frequency Slot of the Media Channel the bit rate and modulation of each optical carrier included in the media channel Format, Nominal Central Frequency, and Slot Width information, multiplexing method between optical carriers.
  • the node includes an identifier of the optical channel (OCh) according to the overhead of the optical channel (OCh), and a nominal center frequency of the effective channel (Effective Frequency Slot) of the media channel (Nominal Central Frequency) And Slot Width, the number of optical carriers included in the media channel, the bit rate of the carrier, the carrier modulation format, the nominal center frequency of the carrier (Nominal Central Frequency), and the carrier frequency width (Slot Width)
  • the information, the multiplexing method between the optical carriers demodulates the optical signal.
  • the data management method of the optical transport network in this embodiment further includes: First, the management plane or the control plane configures an identifier of an expected optical channel (OCh) to a node that receives the optical signal. Nominal Central Frequency and Slot Width of the Effective Channel Slot of the Media Channel, the number of optical carriers included in the media channel, and the bit rate of the carrier , carrier modulation format, Nominal Central Frequency and Slot Width information of the carrier, multiplexing method between optical carriers; secondly, the node receives from the optical channel overhead ( Accept) the identifier of the optical channel (OCh), the nominal center frequency of the effective channel (Median Channel) (Nominal Central Frequency), and the Slot Width, the media channel Number of optical carriers included, carrier bit rate, carrier modulation format The Nominal Central Frequency and Slot Width information of the carrier, and the multiplexing method between the optical carriers; then, the node compares the configured expected overhead with the received overhead information, If the information is not the same
  • OMS Multiplex Section
  • 9 is a schematic diagram of a process of mapping, multiplexing, and optical signal transmission processing of five signals on the same optical fiber according to Embodiment 2 of the present invention. As shown in FIG. 9, a total of five services are transmitted on one optical fiber.
  • #1 and #4 are 100 gigabits per second signals, each occupying 50 GHz of spectrum resources, and adopting PM-QPSK (Polarization-multiplexed Quadrature Phase Shift Keying) modulation mode for single carrier transmission.
  • . #2 is a signal of lTbit/s (ie, lTb/s).
  • the payload of the OCh signal is supported by three optical signals (Optical Signal, referred to as OS), and each optical signal corresponds to a media channel (Media Channel).
  • the media channels (Media Channel) #2-1 and #2-2 corresponding to the two optical signals have a bit rate of 400 Gbit/s; the media channel #2-1 is composed of four subcarriers (Sub Carrier, which are all modulated by PM-QPSK).
  • each subcarrier has a bit rate of 100 gigabits per second, which occupies 75 GHz of spectrum resources;
  • Medium Channel #2-1 consists of two subcarriers that all use PM-16QAM modulation ( SC) SC1 and B SC2 transmission, each subcarrier bit rate is 200 gigabits per second, occupying 75 GHz spectrum resources; the remaining optical channel corresponding to the medium channel #2-3 has a bit rate of 200 gigabits per second.
  • the medium channel #2-3 is transmitted by two subcarriers (SC) SC1 and SC1 each adopting a PM-QPSK modulation scheme, and each subcarrier has a bit rate of 100 gigabits per second, occupying a total of 50 GHz spectrum resources.
  • the medium channel #3 is a signal of 400 Gbit/s (ie, Gigabit per second, referred to as Gb/s).
  • the payload of the OCh signal is supported by two optical signals (OS-Optical Signal), and each optical signal corresponds to one medium channel ( Media Channel), the media channels (Media Channel) #3-1 and #3-2 corresponding to the two optical signals are both 200 Gbit/s;
  • the medium channel #3-1 is a single subcarrier using the PM-16QAM modulation method ( SC) SC1 transmission, occupying 50 GHz spectrum resources.
  • the medium channel #3-2 is transmitted by two subcarriers (Sub Carriers, SC) which are both in the PM-QPSK modulation mode, and each subcarrier has a bit rate of 100 gigabits per second, which occupies 50 GHz spectrum resources.
  • #5 is the signal of lTbit/s.
  • the payload of the OCh signal is supported by an optical signal (OS).
  • the optical signal corresponds to a media channel (Media Channel), which is modulated by PM-16QAM.
  • the subcarriers (SC) SC1, SC2, SC3, SC4, and B SC5 are transmitted at a bit rate of 200 Gbit/s, occupying 200 GHz spectrum resources.
  • Table 1 describes the overhead byte information that needs to be inserted in the optical multiplex section and the optical channel layer according to the second embodiment of the present invention, where the effective frequency Slot of the medium channel (Nominal Central Frequency, referred to as The value of NCF) is represented by [NCF #XY], and the value of the Slot Width of the Effective Frequency Slot of the media channel is identified by Width #XY, X, and the number of the optical channel OCh is identified.
  • Y identifies the number of the optical signal or medium channel used to carry the optical channel OCh, and the relationship between the optical signal and the medium channel is 1 to 1.
  • the spectrum range allocated to subcarriers in the media channel is represented by [NCF #XYZ, Width #XYZ], where ⁇ denotes the number of the subcarrier.
  • the frequency slice granularity can be selected from 50 GHz or 100 GHz in a Fixed Grid, 6.25 Ghz, 12.5 GHz, 25 GHz, 50 GHz or 100 GHz in a Flexi Gird.
  • the multiplexing method between optical carriers may adopt NWDM or OFDM; if NWDM is adopted, there is no relationship between subcarriers; if OFDM is used, there is a relationship between subcarriers. Table 1
  • OCh-O OCh-O (OCh Overhead) OMS-O (OMS)
  • #4-1 #4-1-1, #4-1]
  • the processing flow of the optical channel and optical multiplex section management method in this example includes the following steps: Step 1, the optical signal sending node inserts the following information in the overhead of the optical multiplex section layer - optical channel #1 Identifier value: #1, and the value of the nominal center frequency (Nominal Central Frequency, NCF for short) and the Slot Width of the corresponding effective channel (Nffective Frequency Slot): [NCF #1 -1, Width #1-1].
  • the identifier value of the optical channel #2 #2, and the nominal frequency (Nominal Central Frequency, NCF for short) and the Slot Width of the corresponding effective frequency Slots of the three media channels Value: [NCF #2-1, Width #2-1], [NCF #2-2, Width #2-2], [NCF #2-3, Width #2-3] Identifier of Optical Channel #3 Value: #3, and the effective frequency of the corresponding 2 media channels (Effective
  • the identifier value of the optical channel #5 #5
  • the value of the nominal center frequency (Nominal Central Frequency, NCF for short) and the Slot Width of the corresponding effective channel of the media channel (Effective Frequency Slot) : [NCF #5-1, Width #5-1].
  • Step 2 The optical signal sending node inserts the following information into the overhead of the optical channel layer: Nominal Central Frequency (Nominal Central Frequency, referred to as NCF) of the Effective Frequency Slot of the #1 media channel corresponding to the optical channel #1 And the value of the Slot Width: [NCF #1-1, Width #1-1]
  • NCF Nominal Central Frequency
  • the media channel is transmitted through one subcarrier, and the spectral range value of the subcarrier is [NCF #1-1-1 , Width #1-1-1], the rate class is 100Gbit/s, and the modulation format is PM-QPSK.
  • Optical channel #2 and the corresponding three media channels are #2-1, #2-2 and #2-3, respectively.
  • the nominal center frequency of the effective frequency Slot (Nominal Central Frequency, referred to as The values of NCF) and Slot Width are [NCF #2-1, Width #2-1], [NCF #2-2, Width #2-2] [NCF #2-3, Width # 2-3] #2-1 Media channel is transmitted through 4 subcarriers.
  • the spectrum range values of subcarriers are [NCF #2-1-1, Width #2-1-1], [NCF #2-1- 2, Width #2-1-2], [NCF #2-1-3, Width #2-1-3], [NCF #2-1-4, Width #2-1-4], 4 subcarriers
  • the bit rate is 100 Gbit/s, and the modulation format is PM-QPSK.
  • the #2-2 media channel is transmitted through 2 subcarriers.
  • the spectral range values of the subcarriers are [NCF #2-2-1, Width #2 -2-1] [NCF #2-2-2, Width #2-2-2], the bit rate of both subcarriers is 200 Gbit/s, and the modulation format is PM-16QAM.
  • the #2-3 media channel is transmitted through 2 subcarriers.
  • the spectrum range values of the subcarriers are [NCF #2-3-1, Width #2-3-1] [NCF #2-3-2, Width #2 -3-2], the bit rate of both subcarriers is 100 Gbit/s, and the modulation format is PM-QPSK.
  • the two media channels corresponding to optical channel #3 are #3-1 and #3-2, respectively, and their nominal frequency (NCF) and frequency width (Slot Width) of the effective frequency Slot.
  • the values are [NCF #3-1, Width #3-1] and [NCF #3-2, Width #3-2].
  • the #3-1 media channel is transmitted through one subcarrier.
  • the spectrum range of the subcarrier is [NCF #3-1-1, Width #3-1-1], and the bit rate of the subcarrier is 200 Gbit/s.
  • the modulation format is PM-16QAM. #3-2
  • the media channel is transmitted through 2 subcarriers.
  • the spectrum range values of the subcarriers are [NCF #3-2-1, Width #3-2-1], [NCF #3-2-2, Width # 3-2-2], the bit rate of both subcarriers is 100 Gbit/s, and the modulation format is PM-QPSK.
  • the #4-1 media channel is transmitted through one subcarrier.
  • the spectrum range of the subcarrier is [NCF #4-1-1, Width #4-1-1], and the bit rate of the subcarrier is 100 Gbit/s.
  • the modulation format is PM-QPSK.
  • the value of the nominal center frequency (NCF) and the Slot Width of the effective frequency Slot corresponding to the optical channel #5 [NCF #5-1, Width #5-1].
  • the #5-1 media channel is transmitted through 4 subcarriers.
  • the spectrum range values of the subcarriers are [NCF #5-1-1, Width #5-1-1], [NCF #5-1-2, Width # 5-1-2], [NCF #5-1-3, Width #5-1-3], [NCF #5-1-4, Width #5-1-4], bit rate of 4 subcarriers
  • the 200Gbit/s modulation format is PM-16QAM.
  • Step 3 When the optical signal passes through the intermediate node having the media channel matrix, the identifier of the optical channel (OCh) and the effective frequency sequence of the media channel (Effective Frequency Slot) are obtained from the overhead information of the multiplex section layer. ) Nominal Central Frequency and Slot Width The frequency slice granularity, and the identifier of the optical channel (OCh) received by the node from the management plane or control plane, medium Nominal center frequency and frequency of the effective frequency sequence of the channel The expected value of the sequence width is compared. If the received value is different from the expected value, an optical multiplex section layer mismatch alarm is generated. If the received value is the same as the expected value, the media channel #1, #2-1 is obtained according to the received overhead information.
  • Step 4 The node immediately obtains the identifier of the optical channel (OCh) from the overhead information of the optical channel layer, the nominal center frequency and the frequency sequence width of the effective frequency sequence of the medium channel, and the number of optical carriers included in the medium channel, and the carrier.
  • OCh optical channel
  • OCh management plane or control plane
  • the spectrum cross-connection information of the media channel is configured according to the management plane or the control plane (including exchanging a section of the spectrum uniquely identified by the nominal center frequency and the carrier frequency width on one fiber to another) One of the other frequencies on the fiber that is uniquely identified by the nominal center frequency and the carrier frequency width), the medium channel is switched to another fiber connected to the node.
  • Step 5 If the node is an end point of the service carried by the optical signal, the node is based on the number of optical carriers included in the medium channel of the optical channel layer, the bit rate of the carrier, the carrier modulation format, the nominal center frequency of the carrier, and the carrier frequency.
  • Embodiment 3 This embodiment provides an OCh (Optical Channel) and OMS (Optical Multiplex Section) management method.
  • 10 is a schematic diagram of a process of mapping, multiplexing, and optical signal transmission processing of five signals on the same optical fiber according to Embodiment 3 of the present invention. As shown in FIG. 10, a total of five services are transmitted on one optical fiber. #1 and #4 are 100 gigabits per second signals, each occupying 50 GHz of spectrum resources, and adopting PM-QPSK (Polarization-multiplexed Quadrature Phase Shift Keying) modulation mode for single carrier transmission. .
  • PM-QPSK Polarization-multiplexed Quadrature Phase Shift Keying
  • the OTUCnAG is supported by three optical channels OCh-P.
  • Each OCh-P corresponds to one media channel (Media Channel), and two OCh-Ps correspond to The media channel (Media Channel) #2-1 and #2-2 have a bit rate of 400 Gbit/s; the media channel #2-1 is composed of four subcarriers (SC) SC1, SC2, SC3, and B each using PM-QPSK modulation.
  • SC subcarriers
  • each subcarrier bit rate is 100 gigabits per second, occupying 75 GHz spectrum resources; medium channel #2-1 is modulated by PM-16QAM
  • the two subcarriers (SCs) of the mode are transmitted by SCI and SC2, each subcarrier has a bit rate of 200 gigabits per second, which occupies 75 GHz of spectrum resources; the remaining one OCh-P corresponds to the media channel #2-3 with a bit rate of 200 gigabits per second, the media channel #2-3 is transmitted by two subcarriers (SC) SC1 and SC1 each using PM-QPSK modulation, each subcarrier has a bit rate of 100 gigabits per second, and occupies 50 GHz of spectrum resources. .
  • the payload of the OTUCnAG signal is supported by two OCh-Ps.
  • Each OCh-P corresponds to one media channel (Media Channel) and two OCh-Ps.
  • the corresponding media channel (Media Channel) #3-1 and #3-2 bit rate are both 200Gbit/s;
  • media channel #2-1 is transmitted by single subcarrier (SC) SC1 using PM-16QAM modulation mode, occupying 50GHz spectrum Resources.
  • the medium channel #3-2 is transmitted by two subcarriers (SC) SC1 and SC2 each adopting PM-QPSK modulation mode, and each subcarrier has a bit rate of 100 gigabits per second, which occupies 50 GHz spectrum resources.
  • #5 is the signal of lTbit/s.
  • the payload of the OTUCnAG signal is supported by an OCh-P, which corresponds to a media channel (Media Channel), and is composed of 5 subcarriers (SC) SC1 using PM-16QAM modulation.
  • SC2, SC3, SC4, and SC5 are transmitted at a bit rate of 200 Gbit/s, occupying 200 GHz of spectrum resources.
  • the overhead byte 5 information required to be inserted in the optical multiplex section and the optical channel layer according to Embodiment 3 of the present invention is described in Table 2, wherein the effective frequency Slot of the medium channel (NCF)
  • the value is represented by [NCF #XY], and the value of the Slot Width of the Effective Frequency Slot of the media channel is identified by Width #XY, X, and the number of the optical channel OCh is used.
  • the spectrum range allocated to subcarriers in the media channel is represented by [NCF #XYZ, Width #XYZ], where 0 represents the number of the subcarrier, and the frequency slice granularity can be selected as the Fixed Grid. 50GHz or 100GHz, 6.25Ghz, 12.5GHz, 25GHz, 50GHz or 100GHz in Flexi Gird (Flexible Grid).
  • the multiplexing method between optical carriers can use NWDM or OFDM; if NWDM is adopted, there is no relationship between subcarriers; if OFDM is used, there is a relationship between subcarriers. 5 Table 2
  • OCh-O OCh-O (OCh Overhead) OMS-O (OMS)
  • the processing flow of the OCh and OMS management methods in this example includes the following steps: Step 1: The transmitting node of the optical signal inserts the following information in the overhead of the optical multiplexing segment layer - the identifier value of the optical channel #1: #1, and the value of the nominal center frequency (NCF) and the Slot Width of the corresponding effective channel (Effective Frequency Slot): [NCF #1-1, Width #1-1].
  • Step 1 The transmitting node of the optical signal inserts the following information in the overhead of the optical multiplexing segment layer - the identifier value of the optical channel #1: #1, and the value of the nominal center frequency (NCF) and the Slot Width of the corresponding effective channel (Effective Frequency Slot): [NCF #1-1, Width #1-1].
  • optical channel #2-1 #2-1
  • value of the nominal center frequency (NCF) and the Slot Width of the corresponding effective channel [ NCF #2-1, Width #2-1]
  • the identifier value of optical channel #2-2: #2-2, and the value of the nominal center frequency (NCF) and the Slot Width of the corresponding effective channel [ NCF #2-2, Width #2-2]
  • the identifier value of the optical channel #3-1: #3-1, and the effective frequency sequence of the corresponding media channel Effective Frequency Slot
  • the nominal center frequency (NCF) and Slot Width values [NCF #3-1, Width #3-1].
  • NCF nominal center frequency
  • SCF #3-2 Width #3-2
  • Step 2 The optical signal sending node inserts the following information into the overhead of the optical channel layer: the nominal center frequency (NCF) and the frequency sequence width of the effective frequency Slot of the #1 media channel corresponding to the optical channel #1 ( Slot Width): [NCF #1-1, Width #1-1].
  • the media channel is transmitted through one subcarrier.
  • the spectrum range of the subcarrier is [NCF #1-1-1, Width #1-1-1], the rate class is 100 Gbit/s, and the modulation format is PM-QPSK.
  • the optical channel #2-1 and the corresponding media channel #2-1, the value of the nominal center frequency (NCF) and the Slot Width of the Effective Frequency Slot are [NCF #2- 1, Width #2-1] , #2-1
  • the media channel is transmitted through 4 subcarriers.
  • the spectrum range values of the subcarriers are [NCF #2-1-1, Width #2-1-1], [NCF #2-1-2, Width #2-1-2], [NCF #2-1-3, Width #2-1-3] [NCF #2-1-4, Width #2-1-4]
  • the bit rate of each of the four subcarriers is 100 Gbit/s, and the modulation format is PM-QPSK; the optical channel #2-2 and the corresponding media channel #2-2, the nominal of the effective frequency sequence (Effective Frequency Slot)
  • the values of the center frequency (NCF) and the Slot Width are [NCF #2-2, Width #2-2], #2-2
  • the media channel is transmitted through 2 subcarriers.
  • the spectrum range values of the subcarriers are [NCF #2-2-1, Width #2-2-1] [NCF #2-2-2, Width #2-2-2 ], the bit rate of both subcarriers is 200Gbit/s, and the modulation format is PM-16QAM.
  • the optical channel #2-3 and the corresponding media channel #2-3, the value of the nominal center frequency (NCF) and the Slot Width of the Effective Frequency Slot are [NCF #2- 3, Width #2-3]. #2-3
  • the media channel is transmitted through 2 subcarriers.
  • the spectrum range values of the subcarriers are [NCF #2-3-1, Width #2-3-1] [NCF #2-3-2, Width #2 -3-2], the bit rate of both subcarriers is 100 Gbit/s, and the modulation format is PM-QPSK.
  • the media channel corresponding to optical channel #3-1 is #3-1, and the value of the nominal center frequency (NCF) and the frequency sequence width (Slot Width) of the effective frequency sequence (Effective Frequency Slot) are [NCF #3 -1, Width #3-1] , #3-1
  • the media channel is transmitted by 1 subcarrier.
  • the spectrum range of the subcarrier is [NCF #3-1-1, Width #3-1-1], this sub
  • the carrier's bit rate is 200 Gbit/s
  • the modulation format is PM-16QAM.
  • the media channel corresponding to optical channel #3-2 is #3-2, and the values of the nominal center frequency (NCF) and the frequency sequence width (Slot Width) of the effective frequency Slot are [NCF #3 -2, Width #3-2].
  • #3-2 The media channel is transmitted through 2 subcarriers.
  • the spectrum range values of the subcarriers are [NCF #3-2-1, Width #3-2-1], [NCF #3-2-2, Width # 3-2-2], the bit rate of both subcarriers is 100 Gbit/s, and the modulation format is PM-QPSK.
  • the #4-1 media channel is transmitted through one subcarrier.
  • the spectrum range of the subcarrier is [NCF #4-1-1, Width #4-1-1], and the bit rate of the subcarrier is 100 Gbit/s.
  • the modulation format is PM-QPSK.
  • the value of the nominal center frequency (NCF) and the Slot Width of the effective frequency Slot corresponding to the optical channel #5 [NCF #5-1, Width #5-1].
  • the #5-1 media channel is transmitted through 4 subcarriers.
  • the spectrum range values of the subcarriers are [NCF #5-1-1, Width #5-1-1], [NCF #5-1-2, Width # 5-1-2], [NCF #5-1-3, Width #5-1-3], [NCF #5-1-4, Width #5-1-4], bit rate of 4 subcarriers
  • the 200Gbit/s modulation format is PM-16QAM.
  • Step 3 When the optical signal passes through the intermediate node having the media channel matrix, the identifier of the optical channel (OCh) and the effective frequency sequence of the media channel (Effective Frequency Slot) are obtained from the overhead information of the multiplex section layer.
  • Nominal Central Frequency and Slot Width The frequency slice granularity, and the identifier of the optical channel (OCh) received by the node from the management plane or control plane, medium Nominal center frequency and frequency of the effective frequency sequence of the channel The sequence width is compared with the expected value of the frequency slice granularity. If the received value is different from the expected value, an optical multiplex section layer mismatch alarm is generated. If the received value is the same as the expected value, according to the received overhead information, After media channel #1, #2-1, #2-2, #2-3 #3-1 #3, #4, and #5 filter, the media channel is demultiplexed.
  • Step 4 The node immediately obtains the identifier of the optical channel (OCh) from the overhead information of the optical channel layer, the nominal center frequency and the frequency sequence width of the effective frequency sequence of the medium channel, and the number of optical carriers included in the medium channel, and the carrier. Bit rate, carrier modulation format, nominal center frequency and carrier frequency width of the carrier, multiplexing method information between optical carriers, and expected optical channels configured with the management plane or control plane (OCh) identifier, nominal center frequency and Slot Width of the effective channel of the media channel, number of optical carriers included in the media channel, bit rate of the carrier, carrier modulation format, nominal center frequency of the carrier It compares with the carrier frequency width and the multiplexing method information between optical carriers. If the information is different, a mismatch alarm is generated.
  • OCh optical channel
  • the spectrum cross-connection information of the media channel is configured according to the management plane or the control plane (including exchanging a section of the spectrum uniquely identified by the nominal center frequency and the carrier frequency width on one fiber to another) One of the other frequencies on the fiber that is uniquely identified by the nominal center frequency and the carrier frequency width), the medium channel is switched to another fiber connected to the node.
  • Step 5 If the node is an end point of the service carried by the optical signal, the node is based on the number of optical carriers included in the medium channel of the optical channel layer, the bit rate of the carrier, the carrier modulation format, the nominal center frequency of the carrier, and the carrier frequency. The width information is used to demodulate the optical signal.
  • the embodiment of the present invention provides a method for processing an optical signal and a corresponding optical node, where the transmitting node that uses the optical signal inserts new channel information into the overhead of the optical multiplex section of the optical signal, and/or,
  • the method in which the transmitting node of the optical signal inserts new channel information and new optical carrier information in the overhead of the optical channel of the optical signal solves the problem of how to effectively perform spectrum planning and management after introducing the flexible grid technology in the related art. Improve the processing efficiency and accuracy of the system.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光信号的处理方法、光信号的发送节点及具备介质通道矩阵的光节点,其中,该方法包括:光信号的发送节点在光信号的光复用段的开销中插入光通道信息;和/或,光信号的发送节点在光信号的光通道的开销中插入光通道信息和光载波信息;其中,光通道信息包括光通道的标识符、介质通道的有效频序的标称中心频率和介质通道的有效频序的频序宽度、频谱片粒度;光载波信息包括:介质通道所包含的光载波的数量、介质通道所包含的光载波的比特速率和介质通道所包含的光载波的调制格式、介质通道所包含的光载波的标称中心频率和介质通道所包含的光载波频序宽度、光载波之间的复用方法。通过本发明,提高了系统的处理效率和精确度。

Description

光信号的处理方法、 光信号的发送节点及光节点 技术领域 本发明涉及通信领域, 具体而言, 涉及一种光信号的处理方法、 光信号的发送节 点及具备介质通道矩阵的光节点。 背景技术 光传输技术的发展趋势呈现单通道更高速率 (例如, 单通道 400G/1T传输)、 更 高频谱效率和高阶调制格式, 因此, 继续提升速率依然是光传输发展的最明确最重要 的方向。 高速传输面临很多的限制, 主要存在两个方面: 一方面, 光传输技术向高谱 效率汇聚传输和高速业务接口传输发展, 如果频谱效率无法继续提升, 则低速汇聚至 高速再传输意义不大, 但由于客户侧仍可能会有高速以太网接口, 仍需考虑高速接口 的传输问题, 400G将是频谱效率极限的一个临界点; 另一方面, 光传输技术向长距离 (长跨段和多跨段) 发展, 虽然通过采用低损耗光纤、 低噪声放大器、 减小跨段间距 等手段可以提升系统 OSNR, 但改善有限且难以取得重大突破, 工程上也难以实施。 随着承载网带宽需求越来越大, 超 100G (Beyond 100G) 技术成为带宽增长需求 的解决方案, 100G之上无论是 400G还是 1T, 传统的 50GHz固定栅格 (Fixed Grid) 的波分复用 (Wavelength Division Multiplexing, 简称为 WDM) 都无法提供足够的频 谱宽度实现超 100G 技术。 由于固定栅格的缺陷, 因此, 提出需要更宽的灵活栅格 (Flexible Grid) 相关技术中,超 100G的多速率混传和超 100G调制码型灵活性导致通道带宽需求 不同, 若每个通道定制合适的带宽, 可实现系统带宽的充分利用, 从而产生了灵活栅 格系统。 基于带宽需求持续增加对超高速 WDM 系统的需求, 从而引入对灵活栅格 (Flexible Grid)技术的需求, 但是, 如何有效地进行频谱规划和管理, 以及与现有系 统的兼容性等很多问题都有待解决。 针对相关技术中引入灵活栅格技术后如何有效地进行频谱规划和管理的问题, 例 如, 不再受限为超 100G于选择的固定速率, 目前尚未提出有效的解决方案。 发明内容 本发明实施例提供了一种光信号的处理方法、 光信号的发送节点及具备介质通道 矩阵的光节点, 以至少解决上述相关技术中引入灵活栅格技术后如何有效地进行频谱 规划和管理的问题。 根据本发明实施例的一个方面, 提供了一种光信号的处理方法, 所述方法包括: 光信号的发送节点在所述光信号的光复用段的开销中插入光通道信息; 和 /或, 所述光 信号的发送节点在所述光信号的光通道的开销中插入所述光通道信息和光载波信息; 其中, 所述光通道信息包括光通道的标识符、 介质通道的有效频序的标称中心频率和 介质通道的有效频序的频序宽度、 频谱片粒度; 所述光载波信息包括: 介质通道所包 含的光载波的数量、 介质通道所包含的光载波的比特速率和介质通道所包含的光载波 的调制格式、 介质通道所包含的光载波的标称中心频率和介质通道所包含的光载波频 序宽度、 光载波之间的复用方法。 优选地, 所述光通道的净荷通过多条介质通道支持时, 所述光信号的发送节点在 所述光通道的开销中插入所述光通道信息包括光通道的标识符、 支持该光通道净荷的 每条介质通道的有效频序的标称中心频率和支持该光通道净荷的所有介质通道的有效 频序的频序宽度、 频谱片粒度。 优选地, 当介质通道中不同光载波采用不同的调制方式和不同比特速率时, 所述 光载波信息包括: 介质通道所包含的每个光载波的比特速率、 介质通道所包含的每个 光载波的调制格式、 介质通道所包含的每个光载波的标称中心频率和介质通道所包含 的每个光载波频序宽度、 光载波之间的复用方法。 优选地, 所述光信号的发送节点在所述光信号的光复用段的开销中插入所述光通 道信息之后, 所述方法还包括: 具备介质通道矩阵的光中间节点接收来自所述发送节 点的所述光信号; 所述光中间节点将从所述光信号的光复用段的开销中获取的所述光 通道信息与从本地管理平面或控制平面接收到的预期的所述光通道信息做比较; 如果 相同, 则所述光中间节点根据获取的所述光通道信息, 从所述光信号中解复用出与光 通道对应的介质通道, 否则, 所述光中间节点提示所述光信号的光复用段配置错误的
优选地, 所述光中间节点接收来自所述发送节点的所述光信号之前, 所述方法还 包括:管理平面或者控制平面向所述中间光节点直接下发所述预期的所述光通道信息。 优选地, 所述光信号的发送节点在所述光信号的光通道的开销中插入所述光通道 信息和所述光载波信息之后, 所述方法还包括: 所述具备介质通道矩阵的光中间节点 从所述光信号的光通道的开销中获取所述光通道信息和所述光载波信息; 所述光中间 节点将获取的所述光通道信息和所述光载波信息与从所述本地管理平面或控制平面接 收到的预期的所述光通道信息和预期的所述光载波信息做比较; 如果相同, 则所述光 中间节点根据所述本地管理平面或控制平面中配置介质通道的频谱交叉连接信息, 将 解复用出的介质通道交换到与所述光节点连接的另一条光纤上, 否则, 所述光中间节 点提示所述光信号的光通道配置错误的告警。 优选地, 所述光中间节点接收来自所述发送节点的所述光信号之前, 所述方法还 包括: 管理平面或者控制平面向所述中间光节点直接下发所述预期的所述光通道信息 和所述光载波信息。 优选地, 所述光信号的发送节点在所述光信号的光通道的开销中插入所述光通道 信息和所述光载波信息之后, 所述方法还包括: 所述光信号所承载业务的终结点接收 到所述光信号时, 所述终结点根据从所述光信号的光通道的开销中获取的所述光通道 信息和所述光载波信息, 并根据获取的所述光通道信息和所述光载波信息, 解调该光 信号。 根据本发明实施例的另一方面, 提供了一种光信号的发送节点, 包括: 插入模块, 设置为在要发送的光信号的光复用段的开销中插入光通道信息; 和 /或, 设置为在所述 光信号的光通道的开销中插入所述光通道信息和光载波信息; 其中, 所述光通道信息 包括光通道的标识符、 介质通道的有效频序的标称中心频率和介质通道的有效频序的 频序宽度、 频谱片粒度; 所述光载波信息包括: 介质通道所包含的光载波的数量、 介 质通道所包含的光载波的比特速率和介质通道所包含的光载波的调制格式、 介质通道 所包含的光载波的标称中心频率和介质通道所包含的光载波频序宽度、 光载波之间的 复用方法。 根据本发明实施例的又一方面, 提供了一种具备介质通道矩阵的光节点, 包括: 接收模块, 设置为接收到来自上游节点发送的承载业务数据的光信号; 比较模块, 设 置为将从所述光信号的光复用段的开销中获取的光通道信息与从本地管理平面或控制 平面接收到的预期的所述光通道信息做比较, 其中, 所述光通道信息包括光通道的标 识符、 介质通道的有效频序的标称中心频率和介质通道的有效频序的频序宽度、 频谱 片粒度; 以及光复用段处理模块, 设置为所述比较模块的比较结果为相同的情况下, 根据获取的所述光通道信息从所述光信号中解复用出与光通道对应的介质通道, 以及 所述比较模块的比较结果为不相同的情况下, 提示所述光信号的光复用段配置错误的
根据本发明实施例的再一方面,提供了另一种具备介质通道矩阵的光节点,包括: 获取模块,设置为从接收到的光信号的光通道的开销中获取光通道信息和光载波信息, 其中, 所述光通道信息包括光通道的标识符、 介质通道的有效频序的标称中心频率和 介质通道的有效频序的频序宽度、 频谱片粒度; 所述光载波信息包括: 介质通道所包 含的光载波的数量、 介质通道所包含的光载波的比特速率和介质通道所包含的光载波 的调制格式、 介质通道所包含的光载波的标称中心频率和介质通道所包含的光载波频 序宽度、 光载波之间的复用方法; 判断模块, 设置为将获取的所述光通道信息和所述 光载波信息与从所述本地管理平面或控制平面接收到的预期的所述光通道信息和预期 的所述光载波信息做比较; 以及光通道处理模块, 设置为在所述判断模块的判断结果 为相同的情况下, 则根据所述本地管理平面或控制平面中配置介质通道的频谱交叉连 接信息, 将解复用出的介质通道交换到与所述光节点连接的另一条光纤上, 以及在所 述判断模块的判断结果为不相同的情况下,提示所述光信号的光通道配置错误的告警。 优选地, 该具备介质通道矩阵的光节点还包括: 解调模块, 设置为根据所述获取 模块获取的光通道的开销中的所述光通道信息和所述光载波信息, 解调该光信号。 通过本发明实施例, 采用光信号的发送节点在光信号的光复用段的开销中插入新 的光通道信息, 和 /或, 光信号的发送节点在光信号的光通道的开销中插入新的光通道 信息和新的光载波信息的方式, 解决了相关技术中引入灵活栅格技术后如何有效地进 行频谱规划和管理的问题, 提高了系统的处理效率和精确度。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据本发明实施例的光信号的处理方法的流程图; 图 2是根据本发明实施例的光信号的发送节点的结构框图; 图 3是根据本发明实施例的具备介质通道矩阵的光节点的结构框图; 图 4是根据本发明另一实施例的具备介质通道矩阵的光节点的结构框图; 图 5是根据本发明另一优选实施例的具备介质通道矩阵的光节点的结构框图; 图 6是根据本发明实施例一的 ODUCn-OTUCnAG-OChAG的映射和复用处理流程 的示意图; 图 7是根据本发明实施例一的另一 ODUCn-OTUCnAG-OChAG的映射和复用处理 流程的示意图; 图 8是根据本发明实施例一的 ODUCn-OTUCnAG-z*OTUCmTG-OChAG的映射 和复用处理流程的示意图; 图 9是根据本发明实施例二的 5个信号在同一条光纤上的映射、 复用和光信号传 送处理流程的示意图; 图 10是根据本发明实施例三的 5个信号在同一条光纤上的映射、复用和光信号传 送处理流程的示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本发明实施例提供了一种光信号的处理方法, 该方法包括如下几种方式: 方式一, 光信号的发送节点在光信号的光复用段的开销中插入光通道信息; 方式二、 光信号的发送节点在光信号的光通道的开销中插入光通道信息和光载波 信息; 方式三、 光信号的发送节点在光信号的光复用段的开销中插入光通道信息, 在光 信号的光通道的开销中插入光通道信息和光载波信息。 由于方式三涵盖了方式一和方式二, 以下以方式三为例对本发明实施例的光信号 的处理方法进行描述。 图 1是根据本发明实施例的光信号的处理方法的流程图, 如图 1所示, 该方法包括: 步骤 S102, 光信号的发送节点在光信号的光复用段的开销中插入光通道信息; 步骤 S104,光信号的发送节点在光信号的光通道的开销中插入光通道信息和光载 波信息; 其中, 光通道信息包括光通道的标识符、 介质通道的有效频序的标称中心频 率和介质通道的有效频序的频序宽度、 频谱片粒度; 光载波信息包括: 介质通道所包 含的光载波的数量、 介质通道所包含的光载波的比特速率和介质通道所包含的光载波 的调制格式、 介质通道所包含的光载波的标称中心频率和介质通道所包含的光载波频 序宽度、 光载波之间的复用方法。 通过上述步骤, 采用光信号的发送节点在光信号的光复用段的开销中插入新的光 通道信息, 和 /或, 光信号的发送节点在光信号的光通道的开销中插入新的光通道信息 和新的光载波信息的方式, 解决了相关技术中引入灵活栅格技术后如何有效地进行频 谱规划和管理的问题, 提高了系统的处理效率和精确度。 优选地, 光通道的净荷通过多条介质通道支持时, 步骤 S104中, 光信号的发送节 点在光通道的开销中插入光通道信息可以包括光通道的标识符、 支持该光通道净荷的 每条介质通道的有效频序的标称中心频率和支持该光通道净荷的所有介质通道的有效 频序的频序宽度、 频谱片粒度。 优选地, 当介质通道中不同光载波采用不同的调制方式和不同比特速率时, 光载 波信息可以包括: 介质通道所包含的每个光载波的比特速率、 介质通道所包含的每个 光载波的调制格式、 介质通道所包含的每个光载波的标称中心频率和介质通道所包含 的每个光载波频序宽度、 光载波之间的复用方法。 优选地,在步骤 S102之后,具备介质通道矩阵的光中间节点接收来自发送节点的 光信号; 光中间节点将从光信号的光复用段的开销中获取的光通道信息与从本地管理 平面或控制平面接收到的预期的光通道信息做比较; 如果相同, 则光中间节点根据获 取的光通道信息, 从光信号中解复用出与光通道对应的介质通道, 否则, 光中间节点 提示光信号的光复用段配置错误的告警。在步骤 S102之前,管理平面或者控制平面可 以向中间光节点直接下发预期的光通道信息。 优选地,在步骤 S104之后,具备介质通道矩阵的光中间节点从光信号的光通道的 开销中获取光通道信息和光载波信息; 光中间节点将获取的光通道信息和光载波信息 与从本地管理平面或控制平面接收到的预期的光通道信息和预期的光载波信息做比 较; 如果相同, 则光中间节点根据本地管理平面或控制平面中配置介质通道的频谱交 叉连接信息, 将解复用出的介质通道交换到与光节点连接的另一条光纤上, 否则, 光 中间节点提示光信号的光通道配置错误的告警。在步骤 S104之前,管理平面或者控制 平面可以向中间光节点直接下发预期的光通道信息和光载波信息。 优选地, 在步骤 S104之后, 光信号所承载业务的终结点接收到光信号时, 终结点 可以根据从光信号的光通道的开销中获取的光通道信息和光载波信息, 并根据获取的 光通道信息和光载波信息, 解调该光信号。 对应于上述方法, 本发明实施例还提供了一种光信号的发送节点。 图 2是根据本 发明实施例的光信号的发送节点的结构框图, 如图 2所示, 该发送节点包括: 插入模 块 22, 设置为在要发送的光信号的光复用段的开销中插入光通道信息; 和 /或, 设置为 在光信号的光通道的开销中插入光通道信息和光载波信息; 其中, 光通道信息包括光 通道的标识符、 介质通道的有效频序的标称中心频率和介质通道的有效频序的频序宽 度、 频谱片粒度; 光载波信息包括: 介质通道所包含的光载波的数量、 介质通道所包 含的光载波的比特速率和介质通道所包含的光载波的调制格式、 介质通道所包含的光 载波的标称中心频率和介质通道所包含的光载波频序宽度、 光载波之间的复用方法。 通过上述发送节点,采用插入模块 22在要发送的光信号的光复用段的开销中插入 光通道信息; 和 /或, 在光信号的光通道的开销中插入光通道信息和光载波信息, 解决 了相关技术中引入灵活栅格技术后如何有效地进行频谱规划和管理的问题, 提高了系 统的处理效率和精确度。 对应于上述方法, 本发明实施例还提供了一种具备介质通道矩阵的光节点。 图 3 是根据本发明实施例的具备介质通道矩阵的光节点的结构框图, 如图 3所示, 该光节 点包括: 接收模块 32, 比较模块 34和光复用段处理模块 36, 其中, 接收模块 32, 用 于接收到来自上游节点发送的承载业务数据的光信号; 比较模块 34, 耦合至接收模块 32, 设置为将从光信号的光复用段的开销中获取的光通道信息与从本地管理平面或控 制平面接收到的预期的光通道信息做比较, 其中, 光通道信息包括光通道的标识符、 介质通道的有效频序的标称中心频率和介质通道的有效频序的频序宽度、频谱片粒度; 光复用段处理模块 36, 耦合至比较模块 34, 设置为比较模块 34的比较结果为相同的 情况下, 根据获取的光通道信息从光信号中解复用出与光通道对应的介质通道, 以及 比较模块 34的比较结果为不相同的情况下, 提示光信号的光复用段配置错误的告警。 通过上述具备介质通道矩阵的光节点,接收模块 32接收到来自上游节点发送的承 载业务数据的光信号;比较模块 34将从光信号的光复用段的开销中获取的光通道信息 与从本地管理平面或控制平面接收到的预期的光通道信息做比较; 光复用段处理模块 36在比较模块 34的比较结果为相同的情况下, 根据获取的光通道信息从光信号中解 复用出与光通道对应的介质通道, 以及光复用段处理模块 36在比较模块 34的比较结 果为不相同的情况下, 提示光信号的光复用段配置错误的告警, 解决了相关技术中引 入灵活栅格技术后如何有效地进行频谱规划和管理的问题, 提高了系统的处理效率和 精确度。 对应于上述方法, 本发明还实施例提供了一种具备介质通道矩阵的光节点。 图 4 是根据本发明另一实施例的具备介质通道矩阵的光节点的结构框图, 如图 4所示, 该 光节点包括: 获取模块 42, 判断模块 44和光通道处理模块 46, 其中, 获取模块 42, 设置为从接收到的光信号的光通道的开销中获取光通道信息和光载波信息, 其中, 光 通道信息包括光通道的标识符、 介质通道的有效频序的标称中心频率和介质通道的有 效频序的频序宽度、频谱片粒度; 光载波信息包括: 介质通道所包含的光载波的数量、 介质通道所包含的光载波的比特速率和介质通道所包含的光载波的调制格式、 介质通 道所包含的光载波的标称中心频率和介质通道所包含的光载波频序宽度、 光载波之间 的复用方法; 判断模块 44, 耦合至获取模块 42, 设置为将获取的光通道信息和光载波 信息与从本地管理平面或控制平面接收到的预期的光通道信息和预期的光载波信息做 比较; 光通道处理模块 46, 耦合至判断模块 44, 设置为在判断模块 44的判断结果为 相同的情况下,则根据本地管理平面或控制平面中配置介质通道的频谱交叉连接信息, 将解复用出的介质通道交换到与光节点连接的另一条光纤上,以及在判断模块 44的判 断结果为不相同的情况下, 提示光信号的光通道配置错误的告警。 通过上述具备介质通道矩阵的光节点,采用获取模块 42从接收到的光信号的光通 道的开销中获取光通道信息和光载波信息;判断模块 44将获取的光通道信息和光载波 信息与从本地管理平面或控制平面接收到的预期的光通道信息和预期的光载波信息做 比较; 光通道处理模块 46在判断模块 44的判断结果为相同的情况下, 则根据本地管 理平面或控制平面中配置介质通道的频谱交叉连接信息, 将解复用出的介质通道交换 到与光节点连接的另一条光纤上, 以及光通道处理模块 46在判断模块 44的判断结果 为不相同的情况下, 提示光信号的光通道配置错误的告警, 解决了相关技术中引入灵 活栅格技术后如何有效地进行频谱规划和管理的问题, 提高了系统的处理效率和精确 度。 图 5是根据本发明另一优选实施例的具备介质通道矩阵的光节点的结构框图, 如 图 5所示, 该光节点包括图 4所示的光节点的所有模块之外, 还包括: 解调模块 52, 耦合至获取模块 42, 设置为根据获取模块 42获取的光通道的开销中的光通道信息和 光载波信息, 解调该光信号。 下面结合优选实施例和附图对上述实施例的实现过程进行详细说明。 实施例一 本实施例提供了一种光传送网的数据管理方案, 以至少解决上述相关技术中引入 灵活栅格技术后如何有效地进行频谱规划和管理的问题。 图 6是根据本发明实施例一的 ODUCn-OTUCnAG-OChAG的映射和复用处理流程 的示意图, 如图 6所示, 将分组业务数据映射到超级光通道数据单元(ODUCn, 表示 比 ODUk(k=0.1,2,2e,3,4)更高的速率, 并将 ODUCn映射进超级光通道传送单元(OTU High-speed Administrative Group, 简称为 OTUCnAG); 再将 OTU-nAG映射进超级光 通道 (OChAG); 其中, ODUCn、 OTUCnAG和 OChAG的速率均是 N倍的 100吉比 特每秒, ODUCn的支路时序大小为 100吉比特每秒, N为大于等于 2的正整数。 需要说明的是, OTUCnAG为 OTU高速管理组, 它是一个 N*100吉比特每秒的 复合信号,有 N个 100G OTU帧组成,比如, OTUC2AG为 200G比特每秒, OTUC4AG 表示 400G比特每秒; OChAG表示用来承载 OTUCnAG的光通道信号集合, 如果这些 光信号经过同一条路由时, OChAG提供单个实体来管理这些信号;如果这些信号经过 不同的路由,需要多个光通道 OCh,那么经过相同路由的信号通过一个光通道来管理。 优选地, 也可以将承载了低阶光通道数据单元(ODUk)或分组业务数据的 ODU4 和承载了分组业务数据的低阶的 ODUCm (m<n) 联合复用进高阶的 ODUCn, 其中, ODUk至少包括以下之一: ODU0、 ODUK ODU2、 ODU2e、 ODU3、 ODUflex; 将高 阶的 ODUCn映射进 OTUCnAG。 图 7是根据本发明实施例一的另一 ODUCn-OTUCnAG-OChAG的映射和复用处理 流程的示意图, 其中, OChAG ( OCh Administrative Group ) 所包含的多个光信号通过 离散的频谱来承载,并且经过相同的路由,如图 7所示,将 ODUCN映射进 OTUCnAG, OTUCnAG通过单个 OChAG、 OChAG里的光信号经过同一条路由, 并且占用离散的 频谱。 通过单个 OChAG实体来管理这些信号。 图 8是根据本发明实施例一的 ODUCn-OTUCnAG-z*OTUCmTG-OChAG的映射 和复用处理流程的示意图,其中, OChAG所包含的多个光信号通过离散的频谱来承载, 并且经过不相同的路由, 如图 8所示,将 ODUCn映射进 OTUCnAG, 再将 OTUCnAG 映射进 OChAG 包括: 将 OTUCnAG 反向复用进多个超级光通道传送单元 (OTUCmTG),再将 OTUCmTG映射进对应的光通道(Optical Channel,简称为 OCh); 其中, OTUCmTG速率均为 100吉比特每秒的 M倍, M大于等于 1且 M小于 N。 OTUCmTG (Transport Group, m<n)是一个复合信号, 它是一个 m*100G比特每秒。 每 个 OTUCmTG均具有相同的速率等级, 或者, 所有的 ODUSi均具有不同的速率等级。 本实施例提供了一种光传送网的数据管理方法, 它在光复用段 (Optical Multiplex Section, 简称为 0MS) 的开销中包含光通道(OCh) 的标识符(Identifier)、 介质通道 (Media Channel) 的有效频序 (Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency)和频序宽度 ( Slot Width ) 频谱片粒度(frequency slice granularity)。 优选地, 光通道的净荷(OCh Payload)通过多条介质通道(Media Channel)支持
(Support) 时, 光复用段开销包含光通道 (OCh) 的标识符 (Identifier) 支持该光通 道净荷 (OCh Payload ) 的所有介质通道 (Media Channel ) 的有效频序 (Effective Frequency Slot)的标称中心频率 (Nominal Central Frequency)和频序宽度 ( Slot Width ) 步页谱片粒度 ( frequency slice granularity )。 优选地, 节点根据光复用段包含的光通道 (OCh) 的标识符 (Identifier^ 介质通 道(Media Channel) 的有效频序(Effective Frequency Slot) 的标称中心频率(Nominal Central Frequency ) 和频序宽度 (Slot Width) 信息、 频谱片粒度 (frequency slice granularity), 从所述光信号中解复用出与光通道对应的介质通道。 在实施过程中, 本实施例中的光传送网的数据管理方法还包括: 首先, 管理平面 或者控制平面向接收光信号的节点配置期望 (expected) 的光通道 (OCh) 的标识符 ( Identifier) 支持该光通道净荷 (OCh Payload) 的所有介质通道 (Media Channel) 的有效频序 (Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency) 和频序宽度 (Slot Width)、 频谱片粒度 (frequency slice granularity); 其次, 节点从光 复用段开销中接收 (accept) 光通道 (OCh) 的标识符 (Identifier)、 介质通道 (Media Channel) 的有效频序 (Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency)和频序宽度(Slot Width)、 频谱片粒度(frequency slice granularity); 然后, 节点比较所配置的期望开销和接收到开销信息, 如果信息不相同, 则产生错配 (mismatch) 告警。 本实施例还提供了一种光传送网的数据管理方法, 包括: 节点在光通道 (Optical Channel, 简称为 OCh) 的开销中插入光通道(OCh) 的标识符(Identifier)、 介质通道 (Media Channel) 的有效频序 (Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency)和频序宽度(Slot Width),介质通道所包含的光载波(Optical Carrier) 数量、 以及光载波的比特速率和调制格式、 光载波之间的复用方法 (multiplexing method)。 优选地, 当介质通道 (Media Channel) 里不同光载波可采用不同的调制格式和比 特速率时, 光通道 (OCh) 的开销中包含光通道 (OCh) 的标识符 (Identifier)、 介质 通道(Media Channel)的有效频序(Effective Frequency Slot)的标称中心频率(Nominal Central Frequency) 和频序宽度 (Slot Width) , 介质通道包含的每个光载波 (Optical Carrier) 的比特速率、 调制格式、 标称中心频率 (Nominal Central Frequency) 和频序 宽度 (Slot Width) 信息、 光载波之间的复用方法 (multiplexing method )。 优选地,节点根据光通道(OCh)的开销中包含光通道(OCh)的标识符(Identifier )、 介质通道 (Media Channel) 的有效频序 (Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency)和频序宽度(Slot Width),介质通道包含的光载波(Optical Carrier)数量、载波的比特速率、载波调制格式、载波的标称中心频率(Nominal Central Frequency)和载波频序宽度(Slot Width)信息、 光载波之间的复用方法(multiplexing method), 解调光信号。 在实施过程中, 本实施例中的光传送网的数据管理方法还包括: 首先, 管理平面 或者控制平面向接收光信号的节点配置期望 (expected) 的光通道 (OCh) 的标识符 ( Identifier) 介质通道(Media Channel) 的有效频序(Effective Frequency Slot) 的标 称中心频率 (Nominal Central Frequency) 和频序宽度 (Slot Width), 介质通道包含的 光载波 (Optical Carrier) 数量、 载波的比特速率、 载波调制格式、 载波的标称中心频 率(Nominal Central Frequency)和载波频序宽度(Slot Width)信息、 光载波之间的复 用方法(multiplexing method);其次,节点从光通道开销中接收(accept)光通道(OCh) 的标识符(Identifier)、介质通道(Media Channel)的有效频序(Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency) 和频序宽度 (Slot Width), 介质通道包 含的光载波 (Optical Carrier) 数量、 载波的比特速率、 载波调制格式、 载波的标称中 心频率(Nominal Central Frequency)和载波频序宽度(Slot Width)信息、 光载波之间 的复用方法 (multiplexing method); 然后, 节点比较所配置的期望开销和接收到开销 信息, 如果信息不相同, 则产生错配 (mismatch) 告警。 实施例二 本实施例提供了一种光通道(Optical Channel, 简称为 OCh)和光复用段(Optical
Multiplex Section, 简称为 OMS ) 管理方法。 图 9是根据本发明实施例二的 5个信号 在同一条光纤上的映射、 复用和光信号传送处理流程的示意图, 如图 9所示, 在一条 光纤上, 共有 5个业务在上面传输, #1和 #4是 100吉比特每秒信号, 各占用 50GHz 的频谱资源,并采用 PM-QPSK ( Polarization-multiplexed Quadrature Phase Shift Keying, 偏振复用正交相移键控) 调制方式的单载波传输。 #2是 lTbit/s (即 lTb/s)的信号,该 OCh信号的净荷由三个光信号(Optical Signal, 简称为 OS) 支持, 每个光信号对应一条介质通道 (Media Channel), 其中两个光信号 对应的介质通道 (Media Channel) #2-1 和 #2-2 比特速率为 400Gbit/s; 介质通道 #2-1 由均采用 PM-QPSK调制方式的 4个子载波(Sub Carrier, 简称为 SC) SC1、 SC2、 SC3 和 SC4传送, 每个子载波比特速率为 100吉比特每秒, 共占用 75GHz频谱资源; 介 质通道 #2-1由均采用 PM-16QAM调制方式的 2个子载波 (SC) SC1禾 B SC2传送, 每 个子载波比特速率为 200吉比特每秒, 共占用 75GHz频谱资源; 剩下的一个光信号对 应的介质通道 #2-3的比特速率为 200吉比特每秒,该介质通道 #2-3由均采用 PM-QPSK 调制方式的 2个子载波(SC) SC1和 SC1传送, 每个子载波比特速率为 100吉比特每 秒, 共占用 50GHz频谱资源。
#3是 400Gbit/s (即吉比特每秒, 简称为 Gb/s) 的信号, 该 OCh信号的净荷由两 个光信号(OS-Optical Signal)支持, 每个光信号对应一条介质通道(Media Channel), 两个光信号对应的介质通道(Media Channel) #3-1和 #3-2比特速率均为 200Gbit/s; 介 质通道 #3-1由采用 PM-16QAM调制方式的单子载波 (SC) SC1传送, 占用 50GHz频 谱资源。介质通道 #3-2由均采用 PM-QPSK调制方式的 2个子载波(Sub Carrier, 简称 为 SC) SCI和 SC2传送, 每个子载波比特速率为 100吉比特每秒, 共占用 50GHz频 谱资源。
#5是 lTbit/s的信号, 该 OCh信号的净荷由一个光信号 (Optical Signal, 简称为 OS)支持, 该光信号对应一条介质通道(Media Channel), 由采用 PM-16QAM调制方 式的 5个子载波 (SC) SC1、 SC2、 SC3、 SC4禾 B SC5传送, 比特速率均为 200Gbit/s, 占用 200GHz频谱资源。 表 1中描述了根据本发明实施例二的需要在光复用段和光通道层插入的开销字节 信息, 其中, 介质通道的有效频序(Effective Frequency Slot)标称中心频率(Nominal Central Frequency, 简称为 NCF) 的值通过 [NCF #X-Y]来表示, 而介质通道的有效频 序(Effective Frequency Slot) 的频序宽度(Slot Width) 的值通过 Width #X-Y, X标识 了光通道 OCh的编号, Y标识用来承载光通道 OCh的光信号或介质通道的编号, 光 信号和介质通道之间的关系式 1 对 1。 在介质通道里分配给子载波的频谱范围通过 [NCF #X-Y-Z, Width #X-Y-Z]来表示,其中, Ζ表示子载波的编号。频谱片粒度(frequency slice granularity) 可选择 Fixed Grid (固定栅格)中的 50GHz或 100GHz, Flexi Gird (灵 活栅格)中的 6.25Ghz,12.5GHz, 25GHz, 50GHz或者 100GHz。 光载波之间的复用方法 (multiplexing method) 可以采用 NWDM或者 OFDM; 如果采用 NWDM, 子载波之 间不存在关系; 如采用 OFDM, 标明子载波之间存在关系。 表 1
OCh-O (OCh Overhead) OMS-O (OMS
Question: Ql l, laDI To be confirmed by Q6, laDI Overhead)
Question 11 laDI
ODU OTU OCh-P Network Effective Frequency Modulation Bit Rate Effective OCh
Media Frequency Range Format frequency identifier
Channe slot of the allocated slot of the
Network to Sub media
Media Carriers channel
Channel [NCF
[NCF #X-Y-Z,
#X-Y, Width
Width #X-Y-Z]
#X-Y]
ODU4 OTU4 OCh-P #1 [NCF Sub PM-QPSK [NCF #1
#1 #1-1, Carrier lOOGbit/s #1-1,
Width #1: [NCF Width
#1-1] #1-1-1, #1-1]
Width
#1-1-1]
Sub PM-QPSK
#2-1 [NCF Carrier lOOGbit/s [NCF
#2-1, #1: [NCF #2-1, #2
ODUCn OTUCnAG OCh-P Width #2-1-1, Width
#2 #2-1] Sub PM-QPSK #2-1]
Carrier lOOGbit/s
#2: [NCF
#2-1-2,
Sub PM-QPSK
Carrier lOOGbit/s
#3: [NCF
#2-1-3,
Width
Sub PM-QPSK
Carrier lOOGbit/s
#4: [NCF
#2-1-4,
#2-2 [NCF Sub PM-16QAM 200Gbit/s [NCF
#2-2, #2-2,
Sub PM-16QAM 200Gbit/s
Width Width
Carrier
#2-2] #2-2]
#2: [NCF
#2-2-2, #2-3 [NCF Sub PM-QPSK lOOGbit/s [NCF
#2-3, Carrier #2-3,
Width #1: [NCF Width
#2-3] #2-3-1, #2-3]
Sub PM-QPSK lOOGbit/s
Carrier
#2: [NCF
#2-3-2,
Width
#3-1 [NCF Sub PM-16QAM 200Gbit/s [NCF #3
ODUCn OTUCnAG OCh-P #3-1, Carrier #3-1,
#3 Width #1 : [NCF Width
#3-1] #3-1-1, #3-1]
#3-2 [NCF Sub PM-QPSK lOOGbit/s [NCF
#3-2, Carrier #3-2, Width #1 : [NCF Width #3-2] #3-2-1, #3-2]
Sub PM-QPSK lOOGbit/s
Carrier
#2: [NCF
#3-2-2,
ODU4 OTU4 OCh-P #4 [NCF Sub PM-QPSK lOOGbit/s [NCF #4
#4 #4-1, Carrier #4-1,
Width #1: [NCF Width
#4-1] #4-1-1, #4-1]
ODUCn OTUCnAG OCh-P #5 [NCF Sub PM-16QAM 200Gbit/s [NCF #5
#5 #5-1, Carrier #5-1,
Width #1: [NCF Width
#5-1] #5-1-1, #5-1]
Sub PM-16QAM 200Gbit/s
Carrier
#2: [NCF
#5-1-2,
Width
#5-1-2]
Sub PM-16QAM 200Gbit/s
Carrier
#3: [NCF
#5-1-3,
Sub PM-16QAM 200Gbit/s
Carrier
#4: [NCF
#5-1-4, Width
#5-1-4]
Sub PM-16QAM 200Gbit/s
Carrier
#5: [NCF
#5-1-5,
Width 在实施过程中,本实例中的光通道和光复用段管理方法的处理流程包括以下步骤: 步骤 1, 光信号的发送节点在光复用段层的开销里插入如下信息- 光通道 #1的标识符值: #1, 以及对应的介质通道的有效频序(Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency, 简称为 NCF) 和频序宽度 (Slot Width) 的值: [NCF #1-1, Width #1-1]。 光通道 #2 的标识符值: #2, 以及对应的三条介质通道的有效频序 (Effective Frequency Slot) 的标称中心频率(Nominal Central Frequency, 简称为 NCF)和频序宽 度(Slot Width)的值: [NCF #2-1, Width #2-1]、 [NCF #2-2, Width #2-2]、 [NCF #2-3, Width #2-3] 光通道 #3 的标识符值: #3, 以及对应的 2 条介质通道的有效频序 (Effective
Frequency Slot) 的标称中心频率(Nominal Central Frequency, 简称为 NCF)和频序宽 度 (Slot Width) 的值: [NCF #3-1, Width #3-1]和 [NCF #3-2, Width #3-2]。 光通道 #4的标识符值: #4, 以及对应的介质通道的有效频序(Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency, 简称为 NCF) 和频序宽度 (Slot Width) 的值: [NCF #4-1, Width #4-1]。 光通道 #5的标识符值: #5, 以及对应的介质通道的有效频序(Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency, 简称为 NCF) 和频序宽度 (Slot Width) 的值: [NCF #5-1, Width #5-1]。 步骤 2, 光信号发送节点在光通道层的开销里插入如下信息: 光通道 #1对应的 #1介质通道的有效频序(Effective Frequency Slot)的标称中心频 率(Nominal Central Frequency,简称为 NCF)和频序宽度( Slot Width)的值: [NCF #1-1, Width #1-1] 该介质通道通过一个子载波来传输, 子载波的频谱范围值为 [NCF #1-1-1, Width #1-1-1], 速率等级为 100Gbit/s, 调制格式为 PM-QPSK。 光通道 #2以及对应的三条介质通道, 分别是 #2-1, #2-2和 #2-3, 它们的有效频序 (Effective Frequency Slot)的标称中心频率(Nominal Central Frequency,简称为 NCF) 和频序宽度 (Slot Width) 的值分别是 [NCF #2-1, Width #2-1]、 [NCF #2-2, Width #2-2] [NCF #2-3, Width #2-3] #2-1介质通道通过 4个子载波来传输, 子载波的频谱范围值 分别为 [NCF #2-1-1, Width #2-1-1]、 [NCF #2-1-2, Width #2-1-2]、 [NCF #2-1-3, Width #2-1-3]、 [NCF #2-1-4, Width #2-1-4], 4个子载波的比特速率均为 100Gbit/s, 调制格式 均为 PM-QPSK; #2-2介质通道通过 2个子载波来传输, 子载波的频谱范围值分别为 [NCF #2-2-1, Width #2-2-1] [NCF #2-2-2, Width #2-2-2], 2个子载波的比特速率均为 200Gbit/s, 调制格式均为 PM-16QAM。 #2-3介质通道通过 2个子载波来传输, 子载波 的频谱范围值分别为 [NCF #2-3-1, Width #2-3-1] [NCF #2-3-2, Width #2-3-2], 2个子载 波的比特速率均为 100Gbit/s, 调制格式均为 PM-QPSK。 光通道 #3对应的 2条介质通道, 分别是 #3-1和 #3-2, 它们的有效频序 (Effective Frequency Slot)的标称中心频率(NCF)和频序宽度( Slot Width)的值分别是 [NCF #3-1, Width #3-1]和 [NCF #3-2, Width #3-2]。 #3-1介质通道通过 1个子载波来传输, 子载波 的频谱范围值为 [NCF #3-1-1, Width #3-1-1],该子载波的比特速率均为 200Gbit/s,调制 格式均为 PM-16QAM。 #3-2介质通道通过 2个子载波来传输, 子载波的频谱范围值分 别为 [NCF #3-2-1, Width #3-2-1]、 [NCF #3-2-2, Width #3-2-2], 2个子载波的比特速率均 为 100Gbit/s, 调制格式均为 PM-QPSK。 光通道 #4对应的介质通道的有效频序(Effective Frequency Slot) 的标称中心频率 (NCF) 和频序宽度 (Slot Width) 的值: [NCF #4-1, Width #4-1]。 #4-1介质通道通过 1个子载波来传输, 子载波的频谱范围值分别为 [NCF #4-1-1, Width #4-1-1], 该子载波 的比特速率均为 100Gbit/s, 调制格式均为 PM-QPSK。 光通道 #5对应的介质通道的有效频序(Effective Frequency Slot) 的标称中心频率 (NCF) 和频序宽度 ( Slot Width) 的值: [NCF #5-1, Width #5-1]。 #5-1介质通道通过 4 个子载波来传输, 子载波的频谱范围值分别为 [NCF #5-1-1, Width #5-1-1]、 [NCF #5-1-2, Width #5-1-2]、 [NCF #5-1-3, Width #5-1-3]、 [NCF #5-1-4, Width #5-1-4], 4个子 载波的比特速率均为 200Gbit/s, 调制格式均为 PM-16QAM。 步骤 3, 光信号经过具备介质通道矩阵的中间节点时, 从复用段层的开销信息获 取出光通道 (OCh) 的标识符 (Identifier)、 介质通道 (Media Channel) 的有效频序 (Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency) 和频序宽度 (Slot Width ) 频谱片粒度 (frequency slice granularity), 并与节点从管理平面或者控 制平面接收到的光通道 (OCh) 的标识符、 介质通道的有效频序的标称中心频率和频 序宽度期望值进行比较, 如果接收值与期望值不相同, 则产生光复用段层错配告警; 如果接收值与期望值相同,则根据接收到的上述开销信息,将介质通道 #1、 #2-1、 #2-2、 #2-3 #3-1、 #3-2、 #4和 #5过滤 ( filter), 将介质通道解复用出来。 步骤 4, 节点紧跟着从光通道层的开销信息里获取光通道 (OCh) 的标识符、 介 质通道的有效频序的标称中心频率和频序宽度, 介质通道包含的光载波数量、 载波的 比特速率、 载波调制格式、 载波的标称中心频率和载波频序宽度、 光载波之间的复用 方法(multiplexing method)信息, 与管理平面或者控制平面所配置的期望(expected) 的光通道 (OCh) 的标识符、 介质通道的有效频序的标称中心频率和频序宽度 (Slot Width) , 介质通道包含的光载波数量、 载波的比特速率、 载波调制格式、 载波的标称 中心频率和载波频序宽度、 光载波之间的复用方法(multiplexing method)信息进行比 较, 如果信息不相同, 则产生错配 (mismatch) 告警。 如果接收值与期望值相同, 则 根据管理平面或者控制平面配置介质通道的频谱交叉连接信息 (包括将一条光纤上的 某个以标称中心频率和载波频序宽度唯一标识的一段频谱交换到另一条光纤上的某个 以标称中心频率和载波频序宽度唯一标识的另一段频谱),将介质通道的交换到与节点 连接的另外一条光纤上。 步骤 5, 如果该节点为光信号所承载业务的终结点, 该节点则根据光通道层的介 质通道包含的光载波数量、 载波的比特速率、 载波调制格式、 载波的标称中心频率和 载波频序宽度、 光载波之间的复用方法(multiplexing method)信息, 对光信号进行解 调。 实施例三 本实施例提供了一种 OCh ( Optical Channel) 和 OMS ( Optical Multiplex Section) 管理方法。 图 10是根据本发明实施例三的 5个信号在同一条光纤上的映射、复用和光 信号传送处理流程的示意图,如图 10所示,在一条光纤上,共有 5个业务在上面传输, #1 和 #4 是 100 吉比特每秒信号, 各占用 50GHz 的频谱资源, 并采用 PM-QPSK ( Polarization-multiplexed Quadrature Phase Shift Keying,偏振复用正交相移键控) 调制 方式的单载波传输。
#2是 lTbit/s (简称为 Tb/s) 的信号, 该 OTUCnAG由三个光通道 OCh-P支持, 每个 OCh-P对应一条介质通道 (Media Channel), 其中两个 OCh-P对应的介质通道 (Media Channel )#2-1和 #2-2比特速率为 400Gbit/s;介质通道 #2-1由均采用 PM-QPSK 调制方式的 4个子载波 (SC) SC1、 SC2、 SC3禾 B SC4传送, 每个子载波比特速率为 100吉比特每秒, 共占用 75GHz频谱资源; 介质通道 #2-1 由均采用 PM-16QAM调制 方式的 2个子载波 (SC) SCI和 SC2传送, 每个子载波比特速率为 200吉比特每秒, 共占用 75GHz频谱资源; 剩下的一个 OCh-P对应的介质通道 #2-3的比特速率为 200 吉比特每秒, 该介质通道 #2-3由均采用 PM-QPSK调制方式的 2个子载波 (SC) SC1 和 SC1传送, 每个子载波比特速率为 100吉比特每秒, 共占用 50GHz频谱资源。
5 #3是 400Gbit/s (简称为 Gb/s) 的信号, 该 OTUCnAG信号的净荷由两个 OCh-P 支持, 每个 OCh-P对应一条介质通道 (Media Channel), 两个 OCh-P对应的介质通道 ( Media Channel ) #3-1 和 #3-2 比特速率均为 200Gbit/s ; 介质通道 #2-1 由采用 PM-16QAM调制方式的单子载波 (SC) SC1传送, 占用 50GHz频谱资源。 介质通道 #3-2由均采用 PM-QPSK调制方式的 2个子载波(SC) SC1和 SC2传送, 每个子载波0 比特速率为 100吉比特每秒, 共占用 50GHz频谱资源。
#5是 lTbit/s的信号, 该 OTUCnAG信号的净荷由一个 OCh-P支持, 该 OCh-P对 应一条介质通道 (Media Channel), 由采用 PM-16QAM调制方式的 5个子载波 (SC) SC1、 SC2、 SC3、 SC4和 SC5传送, 比特速率均为 200Gbit/s, 占用 200GHz频谱资源。 表 2中描述了根据本发明实施例三的需要在光复用段和光通道层插入的开销字节5 信息, 其中, 介质通道的有效频序 (Effective Frequency Slot) 标称中心频率 (NCF)
的值通过 [NCF #X-Y]来表示, 而介质通道的有效频序 (Effective Frequency Slot) 的 频序宽度 (Slot Width) 的值通过 Width #X-Y, X标识了光通道 OCh的编号, Y标识 用来承载光通道 OCh的 OCh-P或介质通道的编号, OCh-P和介质通道之间的关系式 1 对 1。在介质通道里分配给子载波的频谱范围通过 [NCF #X-Y-Z, Width #X-Y-Z]来表示,0 其中, Ζ表示子载波的编号,频谱片粒度(frequency slice granularity)可选择 Fixed Grid (固定栅格)中的 50GHz 或 100GHz, Flexi Gird (灵活栅格)中的 6.25Ghz,12.5GHz, 25GHz, 50GHz或者 100GHz。 光载波之间的复用方法 (multiplexing method) 可以采 用 NWDM或者 OFDM; 如果采用 NWDM, 子载波之间不存在关系; 如采用 OFDM, 标明子载波之间存在关系。 5 表 2
OCh-O (OCh Overhead) OMS-O (OMS
Question: Ql l, IaDI To be confirmed by Q6, IaDI Overhead)
Question 11 IaDI
ODU OTU OTU OCh Network Effective Frequency Module Format Bit Rate Effective OTS
Media frequency Range of Frequency identifier
Channel slot of the Sub Slot of the
Network Carrier media
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
在实施过程中, 本实例中的 OCh和 OMS管理方法的处理流程包括以下步骤: 步骤 1, 光信号的发送节点在光复用段层的开销里插入如下信息- 光通道 #1的标识符值: #1, 以及对应的介质通道的有效频序(Effective Frequency Slot)的标称中心频率 (NCF)和频序宽度 ( Slot Width)的值: [NCF #1-1, Width #1-1]。 光通道 #2-1 的标识符值: #2-1, 以及对应的介质通道的有效频序 (Effective Frequency Slot)的标称中心频率(NCF)和频序宽度(Slot Width)的值: [NCF #2-1, Width #2-1] 光通道 #2-2 的标识符值: #2-2, 以及对应的介质通道的有效频序 (Effective Frequency Slot)的标称中心频率(NCF)和频序宽度(Slot Width)的值: [NCF #2-2, Width #2-2] 光通道 #2-3 的标识符值: #2-3 , 以及对应的介质通道的有效频序 (Effective Frequency Slot)的标称中心频率(NCF )和频序宽度( Slot Width)的值: [NCF #2-3, Width #2-3] 光通道 #3-1 的标识符值: #3-1, 以及对应的介质通道的有效频序 (Effective Frequency Slot)的标称中心频率(NCF)和频序宽度(Slot Width)的值: [NCF #3-1, Width #3-1]。 光通道 #3-2 的标识符值: #3-2, 以及对应的介质通道的有效频序 (Effective
Frequency Slot)的标称中心频率(NCF)和频序宽度(Slot Width)的值: [NCF #3-2, Width #3-2] 光通道 #4的标识符值: #4, 以及对应的介质通道的有效频序(Effective Frequency Slot) 的标称中心频率 (NCF-Nominal Central Frequency)和频序宽度 (Slot Width) 的 值: [NCF #4-1, Width #4-1]。 光通道 #5的标识符值: #5, 以及对应的介质通道的有效频序(Effective Frequency Slot)的标称中心频率(NCF)和频序宽度(Slot Width)的值: [NCF #5-1, Width #5-1]。 步骤 2, 光信号发送节点在光通道层的开销里插入如下信息: 光通道 #1对应的 #1介质通道的有效频序(Effective Frequency Slot)的标称中心频 率 (NCF) 和频序宽度 (Slot Width) 的值: [NCF #1-1, Width #1-1]。 该介质通道通过 一个子载波来传输, 子载波的频谱范围值为 [NCF #1-1-1, Width #1-1-1], 速率等级为 100Gbit/s, 调制格式为 PM-QPSK。 光通道 #2-1以及对应的介质通道 #2-1, 它的有效频序 (Effective Frequency Slot) 的标称中心频率(NCF)和频序宽度(Slot Width)的值是 [NCF #2-1, Width #2-1] , #2-1 介质通道通过 4 个子载波来传输, 子载波的频谱范围值分别为 [NCF #2-1-1, Width #2-1-1]、 [NCF #2-1-2, Width #2-1-2]、 [NCF #2-1-3, Width #2-1-3] [NCF #2-1-4, Width #2-1-4], 4个子载波的比特速率均为 100Gbit/s, 调制格式均为 PM-QPSK; 光通道 #2-2以及对应的介质通道 #2-2, 它的有效频序 (Effective Frequency Slot) 的标称中心频率(NCF)和频序宽度(Slot Width)的值是 [NCF #2-2, Width #2-2], #2-2 介质通道通过 2 个子载波来传输, 子载波的频谱范围值分别为 [NCF #2-2-1, Width #2-2-1] [NCF #2-2-2, Width #2-2-2], 2个子载波的比特速率均为 200Gbit/s, 调制格式 均为 PM-16QAM。 光通道 #2-3以及对应的介质通道 #2-3, 它的有效频序 (Effective Frequency Slot) 的标称中心频率(NCF)和频序宽度(Slot Width)的值是 [NCF #2-3, Width #2-3]。 #2-3 介质通道通过 2 个子载波来传输, 子载波的频谱范围值分别为 [NCF #2-3-1, Width #2-3-1] [NCF #2-3-2, Width #2-3-2], 2个子载波的比特速率均为 100Gbit/s, 调制格式 均为 PM-QPSK。 光通道 #3-1对应的介质通道是 #3-1, 它的有效频序 (Effective Frequency Slot) 的 标称中心频率 (NCF) 和频序宽度 (Slot Width) 的值分别是 [NCF #3-1, Width #3-1] , #3-1 介质通道通过 1 个子载波来传输, 子载波的频谱范围值为 [NCF #3-1-1, Width #3-1-1], 该子载波的比特速率均为 200Gbit/s, 调制格式均为 PM-16QAM。 光通道 #3-2对应的介质通道是 #3-2, 它的有效频序 (Effective Frequency Slot) 的 标称中心频率 (NCF) 和频序宽度 (Slot Width) 的值分别是 [NCF #3-2, Width #3-2]。 #3-2介质通道通过 2个子载波来传输, 子载波的频谱范围值分别为 [NCF #3-2-1, Width #3-2-1]、 [NCF #3-2-2, Width #3-2-2], 2个子载波的比特速率均为 100Gbit/s, 调制格式 均为 PM-QPSK。 光通道 #4对应的介质通道的有效频序(Effective Frequency Slot) 的标称中心频率 (NCF) 和频序宽度 (Slot Width) 的值: [NCF #4-1, Width #4-1]。 #4-1介质通道通过 1个子载波来传输, 子载波的频谱范围值分别为 [NCF #4-1-1, Width #4-1-1], 该子载波 的比特速率均为 100Gbit/s, 调制格式均为 PM-QPSK。 光通道 #5对应的介质通道的有效频序(Effective Frequency Slot) 的标称中心频率 (NCF) 和频序宽度 ( Slot Width) 的值: [NCF #5-1, Width #5-1]。 #5-1介质通道通过 4 个子载波来传输, 子载波的频谱范围值分别为 [NCF #5-1-1, Width #5-1-1]、 [NCF #5-1-2, Width #5-1-2]、 [NCF #5-1-3, Width #5-1-3]、 [NCF #5-1-4, Width #5-1-4], 4个子 载波的比特速率均为 200Gbit/s, 调制格式均为 PM-16QAM。 步骤 3, 光信号经过具备介质通道矩阵的中间节点时, 从复用段层的开销信息获 取出光通道 (OCh) 的标识符 (Identifier)、 介质通道 (Media Channel) 的有效频序 (Effective Frequency Slot) 的标称中心频率 (Nominal Central Frequency) 和频序宽度 (Slot Width ) 频谱片粒度 (frequency slice granularity), 并与节点从管理平面或者控 制平面接收到的光通道 (OCh) 的标识符、 介质通道的有效频序的标称中心频率和频 序宽度和频谱片粒度 (frequency slice granularity) 期望值进行比较, 如果接收值与期 望值不相同, 则产生光复用段层错配告警; 如果接收值与期望值相同, 则根据接收到 的上述开销信息, 将介质通道 #1、 #2-1、 #2-2、 #2-3 #3-1 #3-2、 #4和 #5过滤 (filter) 后, 将介质通道解复用出来。 步骤 4, 节点紧跟着从光通道层的开销信息里获取光通道 (OCh) 的标识符、 介 质通道的有效频序的标称中心频率和频序宽度, 介质通道包含的光载波数量、 载波的 比特速率、 载波调制格式、 载波的标称中心频率和载波频序宽度、 光载波之间的复用 方法(multiplexing method)信息, 与管理平面或者控制平面所配置的期望(expected) 的光通道 (OCh) 的标识符、 介质通道的有效频序的标称中心频率和频序宽度 (Slot Width), 介质通道包含的光载波数量、 载波的比特速率、 载波调制格式、 载波的标称 中心频率和载波频序宽度、 光载波之间的复用方法(multiplexing method)信息进行比 较, 如果信息不相同, 则产生错配 (mismatch) 告警。 如果接收值与期望值相同, 则 根据管理平面或者控制平面配置介质通道的频谱交叉连接信息 (包括将一条光纤上的 某个以标称中心频率和载波频序宽度唯一标识的一段频谱交换到另一条光纤上的某个 以标称中心频率和载波频序宽度唯一标识的另一段频谱),将介质通道的交换到与节点 连接的另外一条光纤上。 步骤 5, 如果该节点为光信号所承载业务的终结点, 该节点则根据光通道层的介 质通道包含的光载波数量、 载波的比特速率、 载波调制格式、 载波的标称中心频率和 载波频序宽度信息, 对光信号进行解调。 综上所述, 本发明实施例提供了一种光信号的处理方法及对应的光节点, 采用光 信号的发送节点在光信号的光复用段的开销中插入新的通道信息, 和 /或, 光信号的发 送节点在光信号的光通道的开销中插入新的通道信息和新的光载波信息的方式, 解决 了相关技术中引入灵活栅格技术后如何有效地进行频谱规划和管理的问题, 提高了系 统的处理效率和精确度。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种光信号的处理方法, 包括:
光信号的发送节点在所述光信号的光复用段的开销中插入光通道信息;和 / 或,
所述光信号的发送节点在所述光信号的光通道的开销中插入所述光通道信 息和光载波信息;
其中, 所述光通道信息包括光通道的标识符、 介质通道的有效频序的标称 中心频率和介质通道的有效频序的频序宽度、 频谱片粒度; 所述光载波信息包 括: 介质通道所包含的光载波的数量、 介质通道所包含的光载波的比特速率和 介质通道所包含的光载波的调制格式、 介质通道所包含的光载波的标称中心频 率和介质通道所包含的光载波频序宽度、 光载波之间的复用方法。
2. 根据权利要求 1所述的方法, 其中, 所述光通道的净荷通过多条介质通道支持 时, 所述光信号的发送节点在所述光通道的开销中插入所述光通道信息包括光 通道的标识符、 支持该光通道净荷的每条介质通道的有效频序的标称中心频率 和支持该光通道净荷的所有介质通道的有效频序的频序宽度、 频谱片粒度。
3. 根据权利要求 1所述的方法, 其中, 当介质通道中不同光载波采用不同的调制 方式和不同比特速率时, 所述光载波信息包括: 介质通道所包含的每个光载波 的比特速率、 介质通道所包含的每个光载波的调制格式、 介质通道所包含的每 个光载波的标称中心频率和介质通道所包含的每个光载波频序宽度、 光载波之 间的复用方法。
4. 根据权利要求 1所述的方法, 其中, 所述光信号的发送节点在所述光信号的光 复用段的开销中插入所述光通道信息之后, 还包括:
具备介质通道矩阵的光中间节点接收来自所述发送节点的所述光信号; 所述光中间节点将从所述光信号的光复用段的开销中获取的所述光通道信 息与从本地管理平面或控制平面接收到的预期的所述光通道信息做比较;
如果相同, 则所述光中间节点根据获取的所述光通道信息, 从所述光信号 中解复用出与光通道对应的介质通道, 否则, 所述光中间节点提示所述光信号 的光复用段配置错误的告警。
5. 根据权利要求 4所述的方法, 其中, 所述光中间节点接收来自所述发送节点的 所述光信号之前, 还包括- 管理平面或者控制平面向所述中间光节点直接下发所述预期的所述光通道 信息。
6. 根据权利要求 1至 3中任一项所述的方法, 其中, 所述光信号的发送节点在所 述光信号的光通道的开销中插入所述光通道信息和所述光载波信息之后, 还包 括- 所述具备介质通道矩阵的光中间节点从所述光信号的光通道的开销中获取 所述光通道信息和所述光载波信息;
所述光中间节点将获取的所述光通道信息和所述光载波信息与从所述本地 管理平面或控制平面接收到的预期的所述光通道信息和预期的所述光载波信息 做比较;
如果相同, 则所述光中间节点根据所述本地管理平面或控制平面中配置介 质通道的频谱交叉连接信息, 将解复用出的介质通道交换到与所述光节点连接 的另一条光纤上, 否则, 所述光中间节点提示所述光信号的光通道配置错误的
7. 根据权利要求 6所述的方法, 其中, 所述光中间节点接收来自所述发送节点的 所述光信号之前, 还包括- 管理平面或者控制平面向所述中间光节点直接下发所述预期的所述光通道 信息和所述光载波信息。
8. 根据权利要求 1所述的方法, 其中, 所述光信号的发送节点在所述光信号的光 通道的开销中插入所述光通道信息和所述光载波信息之后, 还包括:
所述光信号所承载业务的终结点接收到所述光信号时, 所述终结点根据从 所述光信号的光通道的开销中获取的所述光通道信息和所述光载波信息, 并根 据获取的所述光通道信息和所述光载波信息, 解调该光信号。
9. 一种光信号的发送节点, 包括- 插入模块,设置为在要发送的光信号的光复用段的开销中插入光通道信息; 和 /或,设置为在所述光信号的光通道的开销中插入所述光通道信息和光载波信 其中, 所述光通道信息包括光通道的标识符、 介质通道的有效频序的标称 中心频率和介质通道的有效频序的频序宽度、 频谱片粒度; 所述光载波信息包 括: 介质通道所包含的光载波的数量、 介质通道所包含的光载波的比特速率和 介质通道所包含的光载波的调制格式、 介质通道所包含的光载波的标称中心频 率和介质通道所包含的光载波频序宽度、 光载波之间的复用方法。
10. 一种具备介质通道矩阵的光节点, 包括:
接收模块, 设置为接收到来自上游节点发送的承载业务数据的光信号; 比较模块, 设置为将从所述光信号的光复用段的开销中获取的光通道信息 与从本地管理平面或控制平面接收到的预期的所述光通道信息做比较, 其中, 所述光通道信息包括光通道的标识符、 介质通道的有效频序的标称中心频率和 介质通道的有效频序的频序宽度、 频谱片粒度; 以及
光复用段处理模块, 设置为所述比较模块的比较结果为相同的情况下, 根 据获取的所述光通道信息从所述光信号中解复用出与光通道对应的介质通道, 以及所述比较模块的比较结果为不相同的情况下, 提示所述光信号的光复用段 配置错误的告警。
11. 一种具备介质通道矩阵的光节点, 包括:
获取模块, 设置为从接收到的光信号的光通道的开销中获取光通道信息和 光载波信息, 其中, 所述光通道信息包括光通道的标识符、 介质通道的有效频 序的标称中心频率和介质通道的有效频序的频序宽度、 频谱片粒度; 所述光载 波信息包括: 介质通道所包含的光载波的数量、 介质通道所包含的光载波的比 特速率和介质通道所包含的光载波的调制格式、 介质通道所包含的光载波的标 称中心频率和介质通道所包含的光载波频序宽度、 光载波之间的复用方法; 判断模块, 设置为将获取的所述光通道信息和所述光载波信息与从所述本 地管理平面或控制平面接收到的预期的所述光通道信息和预期的所述光载波信 息做比较; 以及
光通道处理模块, 设置为在所述判断模块的判断结果为相同的情况下, 则 根据所述本地管理平面或控制平面中配置介质通道的频谱交叉连接信息, 将解 复用出的介质通道交换到与所述光节点连接的另一条光纤上, 以及在所述判断 模块的判断结果为不相同的情况下,提示所述光信号的光通道配置错误的告警。
12. 根据权利要求 11所述的光节点, 其中, 还包括:
解调模块, 设置为根据所述获取模块获取的光通道的开销中的所述光通道 信息和所述光载波信息, 解调该光信号。
PCT/CN2013/087429 2012-11-23 2013-11-19 光信号的处理方法、光信号的发送节点及光节点 WO2014079349A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/904,400 US9979487B2 (en) 2012-11-23 2013-11-19 Method for processing optical signal, optical signal sending node and optical node

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210483636.7A CN103840904B (zh) 2012-11-23 2012-11-23 光信号的处理方法、光信号的发送节点及光节点
CN201210483636.7 2012-11-23

Publications (1)

Publication Number Publication Date
WO2014079349A1 true WO2014079349A1 (zh) 2014-05-30

Family

ID=50775536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087429 WO2014079349A1 (zh) 2012-11-23 2013-11-19 光信号的处理方法、光信号的发送节点及光节点

Country Status (3)

Country Link
US (1) US9979487B2 (zh)
CN (1) CN103840904B (zh)
WO (1) WO2014079349A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10153861B2 (en) * 2015-07-30 2018-12-11 Infinera Corporation Digital link viewer for data center interconnect nodes
CN107800558B (zh) * 2016-09-05 2022-04-29 中兴通讯股份有限公司 故障确定、信息发送方法及装置、源端设备、宿端设备
CN108322367B (zh) 2017-01-16 2022-01-14 中兴通讯股份有限公司 一种业务传递的方法、设备和系统
GB2580867B (en) * 2018-10-25 2021-12-29 Cisco Tech Inc Methods, apparatuses and system for error control
CN113412589B (zh) * 2019-02-18 2024-03-22 昕诺飞控股有限公司 用于经由光信号通信的方法和系统
CN110247710B (zh) * 2019-05-10 2020-07-31 北京邮电大学 基于光ofdm空载波位置编码的多维调制信号处理方法及装置
CN117336635A (zh) * 2022-06-27 2024-01-02 中兴通讯股份有限公司 网络管理方法、网元、计算机可读介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452341A (zh) * 2002-04-18 2003-10-29 阿尔卡塔尔公司 光信号传送的控制方法和系统
CN101145881A (zh) * 2007-10-09 2008-03-19 中兴通讯股份有限公司 波分复用系统中传送监控信息的装置
US20080131117A1 (en) * 2006-12-05 2008-06-05 Electronics And Telecommunications Research Institute Method and apparatus for increasing transmission capacity in optical transport network
CN101686416A (zh) * 2008-09-27 2010-03-31 华为技术有限公司 通过光传送网传送光通道传输单元的方法、装置及网络系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7950017B1 (en) * 1999-04-23 2011-05-24 Avaya Inc. Apparatus and method for forwarding messages between two applications
US7095758B2 (en) * 2000-06-16 2006-08-22 Nippon Telegraph And Telephone Corporation Multiplexing and transmission apparatus
EP1463370B1 (en) * 2003-03-28 2008-03-05 Alcatel Lucent Transport network restoration method
CN100403660C (zh) * 2004-09-04 2008-07-16 华为技术有限公司 双纤光复用段共享保护环的保护方法及其节点装置
ATE417422T1 (de) * 2004-10-25 2008-12-15 Telecom Italia Spa Kommunikationsverfahren insbesondere für ein mobilfunknetz
JP4337814B2 (ja) * 2005-12-27 2009-09-30 日本電気株式会社 可視光通信装置、可視光通信システム、可視光通信方法及び可視光通信プログラム
US8849109B2 (en) * 2006-03-30 2014-09-30 Alcatel Lucent Fault isolation and provisioning for optical switches
CN201145881Y (zh) * 2008-01-21 2008-11-05 彭勇刚 自动断电、零功耗待机电脑电源控制器
WO2011063834A1 (en) * 2009-11-25 2011-06-03 Telefonaktiebolaget Lm Ericsson (Publ) Optical transport network alarms
WO2011121722A1 (ja) * 2010-03-30 2011-10-06 富士通株式会社 送信装置及び受信装置、並びに送信方法及び受信方法
JP5640719B2 (ja) * 2010-12-15 2014-12-17 日本電気株式会社 光伝送システム、送信器、受信器及び制御方法
JP5691543B2 (ja) * 2011-01-18 2015-04-01 富士通株式会社 光伝送装置
US8942557B2 (en) * 2012-03-05 2015-01-27 Infinera Corporation Super-channel optical parameters GMPLS signaling and routing extensions systems and methods
US9100139B2 (en) * 2012-04-30 2015-08-04 Juniper Networks, Inc. Optical communication link employing coherent detection and out of band channel identification
JP6019442B2 (ja) * 2012-06-22 2016-11-02 株式会社アウトスタンディングテクノロジー 空間光伝送を使用するコンテンツ提供システム
CN103997371B (zh) * 2013-02-18 2018-02-13 中兴通讯股份有限公司 光信号的检测方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452341A (zh) * 2002-04-18 2003-10-29 阿尔卡塔尔公司 光信号传送的控制方法和系统
US20080131117A1 (en) * 2006-12-05 2008-06-05 Electronics And Telecommunications Research Institute Method and apparatus for increasing transmission capacity in optical transport network
CN101145881A (zh) * 2007-10-09 2008-03-19 中兴通讯股份有限公司 波分复用系统中传送监控信息的装置
CN101686416A (zh) * 2008-09-27 2010-03-31 华为技术有限公司 通过光传送网传送光通道传输单元的方法、装置及网络系统

Also Published As

Publication number Publication date
US20160156413A1 (en) 2016-06-02
CN103840904A (zh) 2014-06-04
CN103840904B (zh) 2017-11-03
US9979487B2 (en) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2014079349A1 (zh) 光信号的处理方法、光信号的发送节点及光节点
US10887020B2 (en) Method and apparatus for transmitting and receiving client signal in optical transport network
US10003866B2 (en) Method and apparatus for transmitting and receiving client signal
CN103891222B (zh) 对光传输网络中的现有业务流调整大小的方法及装置
WO2012167551A1 (zh) 在光传送网上传送业务数据的方法、装置和系统
WO2014124596A1 (zh) 数据的映射、复用、解复用和解映射方法及装置
US20110318001A1 (en) Method and device for sending and receiving service data
CN103716108B (zh) 光传送网的数据映射方法及装置
WO2014124589A1 (zh) 一种反向复用中子帧错序的检测方法及节点
WO2014124595A1 (zh) 数据的映射、解映射方法及装置
WO2014059834A1 (zh) 数据传送方法及装置
WO2014124597A1 (zh) 光信号的检测方法、装置和系统
EP2884687B1 (en) Method and device for data mapping in optical transport network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14904400

Country of ref document: US