WO2014079067A1 - 一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置 - Google Patents

一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置 Download PDF

Info

Publication number
WO2014079067A1
WO2014079067A1 PCT/CN2012/085289 CN2012085289W WO2014079067A1 WO 2014079067 A1 WO2014079067 A1 WO 2014079067A1 CN 2012085289 W CN2012085289 W CN 2012085289W WO 2014079067 A1 WO2014079067 A1 WO 2014079067A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
pyrolysis
gaseous
barrel wall
channel
Prior art date
Application number
PCT/CN2012/085289
Other languages
English (en)
French (fr)
Inventor
张永发
郭小汾
徐英
翁力
刘科
田福海
Original Assignee
神华集团有限责任公司
北京低碳清洁能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神华集团有限责任公司, 北京低碳清洁能源研究所 filed Critical 神华集团有限责任公司
Priority to PCT/CN2012/085289 priority Critical patent/WO2014079067A1/zh
Publication of WO2014079067A1 publication Critical patent/WO2014079067A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B3/00Coke ovens with vertical chambers
    • C10B3/02Coke ovens with vertical chambers with heat-exchange devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B27/00Arrangements for withdrawal of the distillation gases
    • C10B27/02Arrangements for withdrawal of the distillation gases with outlets arranged at different levels in the chamber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/18Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge
    • C10B47/20Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge according to the moving bed type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • thermochemical reaction processes such as pyrolysis, gasification, and liquefaction, typically balance the reaction process and produce a series of lower value equilibrium products, including the majority of solids, such as coke, semi-coke, etc.; Tar, aqueous solution, etc.; and gases such as C0 2 , CO, CH 4 , etc.
  • the yield of valuable liquid products obtained by pyrolysis or dry distillation of carbonaceous materials is affected by a number of factors, depending on the type and nature of the carbonaceous material and on the specific operating conditions of the pyrolysis or retorting, in particular Depends on the temperature of the pyrolysis or retorting, and the residence time of the gaseous pyrolysis or retorting product under pyrolysis or retorting conditions, because staying in the pyrolysis or retorting conditions for a long time will make the gaseous pyrolysis products contain The gaseous tar or oil undergoes secondary cracking, so that the yield of the liquid product after condensation is greatly reduced.
  • the gaseous pyrolysis product is removed as soon as possible after its formation or rapidly leaving the pyrolysis or retorting conditions, and is rapidly chilled to freeze the inclusion of gaseous tar or oil.
  • the gaseous pyrolysis product maintains the yield of the pyrolysis product which is subsequently condensed from the gaseous state to a liquid state.
  • the Lurgi-Spudgas low temperature pyrolysis furnace consists of a drying section, a dry distillation section, and a cooling section.
  • the hot gas is heated to 150 ° C in a countercurrent flow of about 250 ° C ; in the dry distillation section
  • the dry raw coal is heated by the combustion gas to 500 ° C to 850 ° C.
  • the combustion gas is cooled to about 250 ° C, and the generated semi-coke enters the cooling section and is cooled by the circulating gas, from the dry distillation section.
  • the pyrolysis gas drawn from the top through the trachea is cooled, condensed and separated into tar, pyrolysis water and net gas.
  • the pyrolysis furnace cannot discharge the tar produced by coal retorting in time, and therefore, the liquid pyrolysis product-tar yield is low, the heat storage structure is complicated, and the flue gas waste heat utilization is insufficient.
  • CN1005987B discloses a "single-row carbonization chamber type continuous upright carbonization furnace with regenerator", which is composed of a lower small flue, a lower regenerator, a lower chute, a lower horizontal passage, a combustion chamber, a carbonization chamber, and an upper level.
  • the track, the upper chute, the upper regenerator and the upper small flue, etc., the furnace has the characteristics of high thermal efficiency of the furnace body, long furnace life, and small types of bricks, but the added regenerator and the connected combustion chamber are
  • the ramp area of the regenerator makes the internal structure of the furnace complicated, the maintenance is difficult, and the equipment investment and maintenance cost increase accordingly.
  • CN201071352Y discloses a "closed dry distillation layered carbonized tubular vertical coke oven", wherein the carbonization chamber adopts a cone-tube structure, and each carbonization chamber is divided into a drying section, a volatile section, a dry distillation section, and carbonization from top to bottom.
  • each section adopts a cone-shaped tubular carbonization tube, a gas venting hole is arranged between the section and the section, and a plurality of sets of cone-tube carbonization chambers are arranged in the coke oven body, each set of cones
  • the tubular carbonization chambers are sealed and separated, and a plurality of cone-tube carbonization chambers in each group are evenly distributed in the radial direction, and a buffer flow coal pipe is arranged between the end of the spiral coal feeder and the beginning of the spiral coal splitter.
  • the above coke oven is provided with a flue gas heat exchange tube, its thermal efficiency is less than that of the regenerative heat storage structure, and the use of a large heat exchange structure increases the investment and maintenance cost of the equipment.
  • the carbonization chamber of the above coke oven is divided into In many stages, but in the dry distillation section, the gaseous tar is also not discharged in time, so that secondary pyrolysis or cracking occurs, so the liquid product-tar yield is low.
  • No. 5,636,580 discloses a pyrolysis system which can be used for pyrolysis distillation of various feeds, comprising a pyrolysis gas extraction port through which the pyrolysis gas passing through the pyrolysis gas extraction port is directly condensed Various condensation products are produced. Feeding in the pyrolysis system The flow direction of the pyrolysis gas is exactly opposite, so the pyrolysis gas extraction port is actually only the pyrolysis gas outlet, and because of its position, it does not cause the pyrolysis gas containing the gaseous tar generated by pyrolysis to leave the heat quickly or immediately. The system is solved, so secondary pyrolysis or cracking is still unavoidable, so the yield of the liquid product-tar of this pyrolysis system is also low.
  • the key to increasing the yield of the liquid pyrolysis product is to avoid secondary cracking of the condensable pyrolysis product, thus requiring the formation of a gaseous pyrolysis product containing a condensable product.
  • the residence time of the gaseous pyrolysis product in the retorting or pyrolysis system is to increase the yield of the liquid pyrolysis product. It is vital.
  • the gaseous pyrolysis product leaves the pyrolysis or retorting environment within 10 seconds after its formation, and its temperature is rapidly lowered, the chance of secondary cleavage is greatly reduced. It is generally accepted that as long as the gaseous pyrolysis product is chilled to below 250 °C, the secondary cleavage and/or pyrolysis of the gaseous tar is immediately terminated.
  • a gaseous pyrolysis product collector is provided, the collector comprising:
  • At least one through passage on the wall of the barrel for passing gaseous pyrolysis products through the passage from the outside into the interior of the collector;
  • the gaseous pyrolysis product collector further comprises: at least one gas flow guiding plate located above the through passage and mounted on an inner surface of the barrel wall for allowing gaseous pyrolysis products entering the inside of the collector Flowing downward, more preferably, in the above gaseous pyrolysis product collector, the vertical cross-sectional shape of the baffle is an angle formed by the intersection of the ends of the two straight lines.
  • At least one through passage on the wall of the barrel for passing gaseous pyrolysis products through the passage from the outside into the interior of the collector;
  • At least one baffle positioned above the channel and mounted on an outer surface of the barrel wall for preventing solid carbonaceous material from entering the interior of the collector, wherein a vertical projection surface of the baffle covers the through passage ;
  • a gaseous pyrolysis product collector located above the through passage and mounted on an inner surface of the bucket wall for flowing a gaseous pyrolysis product entering the interior of the collector; gaseous heat at the bottom or lower portion of the bucket wall Decompose the product outlet.
  • At least one through passage on the wall of the barrel for passing gaseous pyrolysis products through the passage from the outside into the interior of the collector;
  • At least one baffle positioned above the channel and mounted on an outer surface of the barrel wall for preventing solid carbonaceous material from entering the interior of the collector, wherein a vertical projection surface of the baffle covers the through passage And the vertical cross-sectional shape of the baffle plate is an angle formed by the intersection of two straight end points; At least one airflow deflector located above the through passage and mounted on an inner surface of the bucket wall for flowing a gaseous pyrolysis product entering the interior of the collector; gaseous heat at the bottom or lower portion of the bucket wall Decompose the product outlet.
  • the through passage is preferably a hole, a groove, and/or a slit opening of any regular shape, more preferably a spiral groove;
  • the gaseous pyrolysis product outlet is typically connected to a gas collection tube; and the barrel wall preferably has a circular, elliptical, square, rectangular, polygonal, and/or any regular shape;
  • the baffle is vertical
  • the direction preferably forms an angle of 75°-85° with the outer surface of the barrel wall, and the angle formed by the baffle plate in the vertical direction with the outer surface of the barrel wall is adjustable according to operational requirements;
  • the guide plate preferably forms an angle of 35°-55° with the inner surface of the barrel wall in the vertical direction, and the angle formed by the air flow guiding plate in the vertical direction with the inner surface of the barrel wall is also adjustable according to operational requirements,
  • the airflow guiding plate may cover the through passage so as to clean the inside of the collector when necessary, and the air
  • At least one pyrolysis zone or dry distillation zone wherein a collector of at least one gaseous pyrolysis product or gaseous retorted product is disposed in each of the pyrolysis zone or the dry distillation zone, the collector comprising: a top sealed barrel wall;
  • At least one through passage on the wall of the barrel for passing gaseous pyrolysis products through the passage from the outside into the interior of the collector;
  • At least one baffle positioned above the channel and mounted on an outer surface of the barrel wall for preventing solid carbonaceous material from entering the interior of the collector, wherein a vertical projection surface of the baffle covers the through passage ;
  • the pyrolysis zone or the retorting zone may be a pyrolysis chamber or a retorting compartment.
  • the pyrolysis or retorting device further comprises: at least one combustion chamber, wherein a pair of combustion nozzles located at upper and lower ends of the combustion chamber are arranged in each combustion chamber, each burning Arranging a heat storage body near the burning nozzle to heat the hot flue gas generated by the combustion before exiting the combustion chamber, or the cold air or normal temperature air is burned before entering the combustion chamber and burning through the combustion nozzle and the fuel The regenerator is preheated.
  • a solid carbonaceous material pyrolysis or retorting apparatus comprising:
  • At least one pyrolysis zone or a dry distillation zone wherein a collector of at least one gaseous pyrolysis product or dry distillation product is disposed in each of the pyrolysis zone or the dry distillation zone, the collector comprising:
  • At least one through passage on the wall of the barrel for passing gaseous pyrolysis products through the passage from the outside into the interior of the collector;
  • At least one baffle positioned above the channel and mounted on an outer surface of the barrel wall for preventing solid carbonaceous material from entering the interior of the collector, wherein a vertical projection surface of the baffle covers the through passage ;
  • a gaseous pyrolysis product outlet located at the bottom or bottom of the barrel wall
  • At least one combustion zone or combustion chamber wherein a pair of combustion nozzles located at the upper and lower ends of the combustion zone or the combustion chamber are arranged in each combustion zone or combustion chamber, and a heat storage body is arranged near each combustion nozzle to make the hot smoke generated by the combustion
  • the gas is heated by the regenerator before it exits the combustion zone or the combustion chamber, or the cold air or ambient air is combusted into the combustion zone or combustion chamber through the combustion nozzle and the fuel.
  • the collector further comprises: at least one airflow guide located above the through passage and mounted on an inner surface of the tub wall a plate for flowing a gaseous pyrolysis product entering the interior of the collector downward, preferably, the vertical cross-sectional shape of the baffle plate in the collector is an angle formed by the intersection of two straight end points;
  • the valve is connected, so that the heat storage body alternately preheats the cold air or the normal temperature air and the hot flue gas after the heat exchange in a certain time interval, and the heat storage body is preferably a silicic acid resistant to a high temperature of 1000 ° C or higher.
  • Salt material particles, iron oxide or ferroferric oxide particles, and/or ceramic particles, more preferably porous particles; the pair of combustion nozzles may be intermittently interleaved to intermittently alternately add hot gases Regenerator and regenerator preheating cool air or air of room temperature.
  • a use of the above pyrolysis or retorting apparatus for pyrolysis or dry distillation of a solid carbonaceous material which may be selected from coal, coal direct liquefaction residue, heavy Residual oil, coke, petroleum coke, oil sands, shale oil, carbonaceous industrial waste or tailings, biomass, synthetic plastics, synthetic polymers, waste tires, municipal industrial waste, bitumen, and mixtures thereof,
  • the coal may further be a low grade coal having a water content of more than 15% by weight and a volatile content of more than 25% by weight, such as lignite or long flame coal.
  • FIG. 1 is a schematic view of a technical scheme of a gaseous pyrolysis product collector of the present invention
  • FIG. 2 is a schematic view of a preferred technical scheme of a gaseous pyrolysis product collector of the present invention
  • FIG. 3 is a schematic diagram of a gaseous pyrolysis product collector of the present invention
  • a schematic diagram of a preferred technical solution
  • Figure 4 is a schematic view showing a technical solution of the pyrolysis or retorting apparatus comprising the gaseous pyrolysis product collector shown in Figure 3 and the heat storage body shown in Figure 5;
  • Figure 5 is a schematic view showing the structure of the combustion chamber of the pyrolysis or retorting apparatus shown in Figure 4, which shows the relative positions of the regenerator and the burner.
  • DETAILED DESCRIPTION OF THE INVENTION The present invention is further explained in detail by the following description with reference to the accompanying drawings, wherein the corresponding or equivalent parts or features in the figures are denoted by the same reference numerals.
  • the gaseous pyrolysis product collector of the present invention is generally a barrel wall sealed by a tip; at least one through passage (16) on the wall of the barrel for passing gaseous pyrolysis products through the passage from the outside Inside the collector; at least one baffle plate (15) above the channel (16) and mounted on an outer surface of the barrel wall for preventing solid carbonaceous material from entering the interior of the collector, wherein The vertical projection surface of the baffle plate (15) covers the through passage (16); and the gaseous pyrolysis product outlet (7) at the bottom or lower portion of the barrel wall.
  • the above gaseous pyrolysis product collector may preferably further comprise: at least one gas flow guiding plate (17) located above the through passage (16) and mounted on the inner surface of the barrel wall, The gaseous pyrolysis product entering the interior of the collector is allowed to flow downward.
  • the airflow deflector (17) also prevents entry into the interior of the collector by a gaseous state
  • the pyrolysis product condensed to a liquid state is refluxed out of the collector, resulting in a decrease in the yield of the liquid pyrolysis product.
  • the vertical cross-sectional shape of the baffle plate (15) is an angle formed by the intersection of two straight end points, and such a structure may not be changed.
  • the flow direction of the carbonaceous material in the pyrolysis zone or the dry distillation zone can further prevent the solid carbonaceous material from entering the interior of the collector.
  • the gaseous pyrolysis product collector has various manifestations, components such as a barrel wall, a baffle plate (15), a through passage (16), a gas flow guide plate (17), and a gaseous pyrolysis.
  • the product outlet (7) also has a variety of configurations and modes of operation. Those of ordinary skill in the art, with the benefit of the above-described description of the present invention, can readily contemplate or design such structures and modes of operation. Here, in order to save space, detailed descriptions thereof are omitted.
  • the above gaseous pyrolysis product collector may be arranged in the direction of flow of the carbonaceous material in the pyrolysis zone or the dry distillation zone. Generally, there is a temperature difference between the inside and the outside of the collector, so that the gaseous pyrolysis product is not only
  • the collector is immediately or quickly removed from the pyrolysis or retorting environment, and the temperature of the gaseous pyrolysis product entering the collector is also somewhat reduced, with the result that the liquid pyrolysis product is retained or enhanced to the utmost extent. Yield.
  • the components of the above-mentioned gaseous pyrolysis product collector such as the barrel wall, the baffle plate (15), the through passage (16), the air flow guiding plate (17) And at least one surface of the gaseous pyrolysis product outlet (7) is coated with a thermal barrier coating, such as a high temperature resistant ceramic coating, such as a zirconia ceramic coating or a silicon carbide ceramic coating.
  • a thermal barrier coating such as a high temperature resistant ceramic coating, such as a zirconia ceramic coating or a silicon carbide ceramic coating.
  • the above gaseous pyrolysis product collector can be widely used in various indirect heat transfer and direct heat transfer pyrolysis or retorting devices or systems, which can greatly increase the yield of liquid pyrolysis products of the device and system.
  • the gaseous pyrolysis product collector is used in an indirect heat transfer pyrolysis or retorting apparatus or system, and more preferably, the gaseous pyrolysis product collector is used in an independent carbonization chamber and independent combustion.
  • the chamber is in a pyrolysis or retorting unit or system.
  • a pair of combustion nozzles located at upper and lower ends of the combustion chamber are preferably disposed in each of the independent combustion chambers, near each combustion nozzle.
  • Arranging a heat accumulator for combustion The hot flue gas or hot gas is heated by the regenerator before it exits the combustion chamber, or the cold air or normal temperature air is burned into the combustion chamber before being burned by the combustion nozzle and the fuel.
  • the combustion nozzle and the heat storage body can also have various structures and modes of operation.
  • those skilled in the art can easily conceive or design with their own common sense. These structures and modes of operation.
  • these structures and modes of operation are omitted.
  • the lower portion of the heat storage body may be connected to the reversing valve via a pipe for the heat storage.
  • the body alternately preheats the cold air or the normal temperature air and the heat exchanged hot flue gas in a certain time interval, so that the pair of combustion nozzles can be intermittently operated or operated intermittently.
  • the heat storage body is a silicate material particle having a high temperature of 1000 ° C or higher, iron oxide or ferroferric oxide particles, and/or ceramic particles, and more preferably, they are porous particles, such storage
  • the hot body can be purchased either commercially or by itself.
  • Exemplary examples of the silicate material porous particles or ceramic porous particles may be, for example, clay sintered porous particles or alumina porous particles.
  • a large amount of the above-mentioned particles aggregate or accumulate to form a heat accumulator as a whole, and there is a passage through which air passes through, and cold air or room temperature air is heated in contact with the surface of the hot particles while passing through the passages.
  • a pyrolysis or retorting apparatus or system comprising the above gaseous pyrolysis product collector and/or the above described regenerator may be used for pyrolysis or dry distillation of various solid carbonaceous materials, such as coal, direct liquefaction of coal, heavy residual oil , coke, petroleum coke, oil sands, shale oil, carbonaceous industrial waste or tailings, biomass, synthetic plastics, synthetic polymers, waste tires, municipal industrial waste, bitumen, and mixtures thereof, preferably used Low-grade coal with high water content and high volatile matter, such as low-grade coal having a water content of more than 15% by weight and a volatile content of more than 25% by weight, and particularly preferably used for pyrolysis or dry distillation of lignite or long flame coal.
  • various solid carbonaceous materials such as coal, direct liquefaction of coal, heavy residual oil , coke, petroleum coke, oil sands, shale oil, carbonaceous industrial waste or tailings, biomass, synthetic plastics
  • Figure 4 is a schematic illustration of one embodiment of the pyrolysis or retorting apparatus of the present invention comprising the gaseous pyrolysis product collector of Figure 3 and the thermal storage body of Figure 5. It has one Carbonization furnace with independent carbonization chamber and independent combustion chamber.
  • the structure of the furnace body of the carbonization furnace is shown in Fig. 4.
  • the top of the furnace is a coal loading vehicle (1), the coal loading vehicle (1) is moved by a rail mechanism, and the lower part is provided with a pneumatic lock valve (2), a carbonization chamber.
  • the gasification chamber (3) is provided with the gaseous pyrolysis product collector (5) shown in Fig. 3, and the combustion chamber (4) is provided with a combustion nozzle outlet ( 6), the lower part of the collector (5) is provided with a gaseous pyrolysis product outlet (7), an outlet
  • a cooling spray structure (8) is arranged in a space below the carbonization chamber (3), and a coke collecting system (9) - (14) is connected below.
  • the structure of the combustion chamber (4) of the above carbonization furnace is as shown in Fig. 5.
  • the pair of combustion nozzles (18) are located at the upper and lower ends of the combustion chamber, and are composed of a plurality of particles in the vicinity of each combustion nozzle (18).
  • a heat accumulator (19) the fuel pipe (21) abuts the combustion nozzle (18), and a space between the top of the regenerator (19) and the combustion nozzle (18) for storing the heated air and buffering the gas
  • the lower portion of the regenerator is connected to the reversing valve (20) through a pipe, so that the regenerator (19) alternately preheats the cold air or the normal temperature air and the hot flue gas after the heat exchange in a certain time interval.
  • the pair of combustion nozzles can be intermittently operated alternately, and the reversing valve (20) periodically changes the flow direction of the waste flue gas and the air under the action of the control system.
  • the gaseous pyrolysis product collector (5) is a top-sealed barrel wall-shaped container, and a plurality of fish scale-shaped baffles (15) are welded on the outer surface of the barrel wall, and welded on the inner surface of the barrel wall.
  • the outer liquid baffle, the top of the collector (5) is sealed by stainless steel plate, the lower end of the gaseous pyrolysis product outlet (7) is connected to a gas collecting pipe, and the collector (5) is internally and externally passed through the gas inlet hole.
  • the form of the through passage (16) is connected.
  • the baffle plate (15) has a scale of 75° to 85° opening to prevent the carbonaceous material from blocking the through passage (16) or entering the collector (5); because the carbonization chamber (3) is under negative pressure, Through the passage (16), the gaseous pyrolysis product formed in the carbonization chamber (3) can be discharged into the collector (5) from the carbonization chamber (3) in time; the air flow guide plate (17) is opened at 35° to 55°.
  • the gaseous pyrolysis product is deflected by the gas flow guiding plate (17) and then flows into the collector (5) and flows downward.
  • the gas flow guiding plate (17) also prevents condensation of pyrolysis products.
  • the droplets are refluxed from the collector (5) into the carbonization chamber (3); the gaseous pyrolysis products flow downward, through
  • the gas collecting pipe communicating with the lower outlet (7) is sent out, so that the gaseous pyrolysis product can be prevented from flowing through the high temperature layer, the furnace space or the furnace wall, thereby preventing the gaseous tar or oil contained in the gaseous pyrolysis product from continuing to withstand high temperature.
  • secondary thermal cracking occurs, as a result, the yield of the liquid pyrolysis product is greatly increased.
  • the opening degree or opening angle of the baffle plate (15) and the air flow guiding plate (17) can be adjusted according to operational requirements, and can be controlled according to the quantity or amount of gaseous pyrolysis products, and
  • the airflow guiding plate (17) can be closed to clean the inside of the collector (5), and the airflow guiding plate (17) can prevent the washing liquid from entering.
  • the carbonization chamber (3) thereby damaging the carbonization chamber
  • the gaseous pyrolysis products sent out through the gas collecting pipe are sequentially processed by a cyclone separation, an initial cooling heat exchange, a condensation and an electric tar catching, thereby obtaining tar and pure gas by separation.
  • a portion of the pure gas can be sent to the combustion chamber (4) for combustion as a fuel to provide heat for the dry distillation, and another portion of the pure gas can be sent to the spray cooler (8) of the semi-coke cooling section for use as a semi-coke cooling medium.
  • the remaining pure gas can be used as a fuel for residential life; and the tar can be used as a chemical raw material after being processed and separated.
  • the above part of the pure gas is sent to the combustion nozzle (18) through the fuel pipe (21), mixed with the air heated by the regenerator (19), and the hot flue gas pair obtained by the combustion is arranged with the above collector (5)
  • the carbonization chamber (3) is heated, and the residual heat of the high-temperature waste flue gas is absorbed by another relative regenerator (19), and the low-temperature waste flue gas after the heat exchange is passed through the reversing valve
  • the gas flow direction can be changed by the control system.
  • the semi-coke cooling device and the defocusing device are activated.
  • the lignite (I) was subjected to dry distillation and upgrading using the carbonization furnace shown in Fig. 4.
  • the industrial analysis and elemental analysis results of the lignite (I) used are shown in Tables 1 and 2 below, in which the industrial grade The basis for analysis and elemental analysis is air drying, while elemental analysis is only for organic analysis, excluding ash and moisture.
  • the process parameters and operating conditions of the carbonization furnace are as follows: Test coal 3. 0 kg, final temperature 600 ° C, heating rate 3 ° C / min, constant temperature 30 min.
  • the coal material is sent to the top of the carbonization furnace by the coal charging vehicle (1), and the coal material is added to the carbonization chamber (3) having the collector (5) through the pneumatic lock valve (2) for dry distillation.
  • the heat required for the carbonization of the coal is supplied by the combustion of the combustion gas by a pair of combustion nozzles (18) in the combustion chamber (4), and the high-temperature exhaust gas after combustion is supplied by the residual heat absorbed by the heat storage body (19).
  • Comparative Example 1 Example was repeated except that the collector (5) was removed from the carbonization chamber (3), the regenerator (19) was removed from the combustion chamber (4), and the rate of temperature increase was changed to 5 ° C / min. 1 experimental step.
  • the tar yield was 5.96%
  • the semi-coke yield was 59.60%
  • the thermal efficiency of the carbonization furnace was 77%.
  • Example 1 The experimental results of Example 1 and Comparative Example 1 are shown in Table 3 below. Tar yield weight % semi-coke yield weight % carbonization furnace thermal efficiency % Example 1 8. 44 64. 36 82 Comparative Example 1 5. 96 59. 60 77 By comparing the experimental data listed in Table 3, it is apparent that The carbon pyrolysis product-the tar yield and thermal efficiency of the carbonization furnace of the present invention are significantly higher than the tar yield and thermal efficiency of the conventional carbonization furnace.
  • Example 2
  • the lignite (II) was subjected to dry distillation and upgrading using the carbonization furnace shown in Fig. 4.
  • the industrial analysis and elemental analysis results of the lignite (II) used are shown in Tables 4 and 5 below, in which the benchmarks for industrial analysis and elemental analysis are It is an air drying base, and elemental analysis is only for organic matter analysis, excluding ash and moisture.
  • the process parameters and operating conditions of the carbonization furnace are as follows: test coal 3. 0 kg, pyrolysis final temperature 600 ° C, heating rate 3 ° C / min, constant temperature time 30 min.
  • the coal material is sent to the top of the carbonization furnace by the coal charging vehicle (1), and the coal material is added to the carbonization chamber (3) having the collector (5) through the pneumatic lock valve (2) for dry distillation.
  • the heat required for the carbonization of the coal is generated by the combustion of the gas from a pair of combustion nozzles (18) in the combustion chamber (4), and the high-temperature exhaust gas after combustion is sucked by the heat storage body (19) Provided by the waste heat of Na.
  • Comparative Example 2 Example was repeated except that the collector (5) was removed from the carbonization chamber (3), the regenerator (19) was removed from the combustion chamber (4), and the rate of temperature increase was changed to 5 ° C / min. 2 experimental steps.
  • Example 2 The experimental results of Example 2 and Comparative Example 2 are shown in Table 6 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种气态热解产物收集器(5)和包含该收集器(5)的热解或干馏装置,所述装置包括:至少一个热解区或干馏区和至少一个燃烧区或燃烧室(4),其中在每个热解区或干馏区中布置至少一个气态热解产物或干馏产物的收集器(5),所述收集器(5)包括:顶端密封的桶壁;至少一个位于桶壁上的贯穿通道(16);至少一个位于所述贯穿通道(16)上方并被安装在所述桶壁外表面上的挡料板(15),其中所述挡料板(15)的垂直投影面覆盖上述贯穿通道(16);位于桶壁底部或下部的气态热解产物出口(7),在每个燃烧区或燃烧室(4)中布置一对位于燃烧区或燃烧室(4)上下两端的燃烧喷嘴(18),每个燃烧喷嘴(18)附近布置蓄热体(19)。

Description

一种气态热解产物收 和应用该收集器的碳 #料热解或干馏装 置 技术领域 本发明涉及一种气态热解产物收集器和使用该收集器的碳质材 料热解或干馏装置。 背景技术 产生热、化学产物、或提质燃料的碳质材料热解或干馏可伴随有 一系列热化学反应过程。 常规热化学反应过程, 如热解、 气化和液化 典型地是平衡反应过程, 并产生一系列价值较低的平衡产物, 包括数 量占大多数的固体, 如焦、 半焦等; 液体, 如焦油、 含水溶液等; 和 气体, 如 C02、 CO、 CH4等。 通常, 气化产生应用受限的低级燃料 气体, 而热解所形成的有价值液态或气态产物的产率又较低。 因此, 如何提高碳质材料热解或干馏的有价值液态产物的产率是一个非常 令人感兴趣的和具有广阔经济价值的课题。
由碳质材料热解或干馏而获得的有价值液态产物的产率受多种 因素的影响, 其既取决于碳质材料的种类和特性, 也取决于热解或干 馏的具体操作条件, 特别是取决于热解或干馏的温度, 以及气态热解 或干馏产物在热解或干馏条件下的停留时间,因为长时间地停留在热 解或干馏条件下会使气态热解产物中所含的气态焦油或油发生二次 裂解, 从而使冷凝后的液态产物的产率大大降低。
因此, 通常为了维持或改善热解或干馏液态产物的产率, 尽量使 气态热解产物在其形成后立即或迅速离开热解或干馏条件,并被迅速 激冷以冻结包含气态焦油或油的气态热解产物,以保持随后由气态冷 凝为液态的热解产物的产率。
然而, 由于热解或干馏设备或装置结构的缺陷、 以及碳质材料本 身对气态热解产物流动的阻碍作用,很难做到热解或干馏的气态产物 在其形成后立即就被移出热解或干馏条件或环境。
例如, Lurgi-Spudgas低温热解炉由干燥段、干馏段、冷却段组成。 在干燥段中, 逆流而上约 250°C热气体将煤加热至 150°C ; 在干馏段 中, 干燥原煤被燃烧气体加热至 500°C〜850°C, 在煤受热发生热分 解后, 燃烧气体被冷却至约 250°C, 生成的半焦进入冷却段被循环 气冷却, 从干馏段顶部经气管引出的热解气经过冷却、 冷凝和分离, 变为焦油、热解水和净煤气。该热解炉无法及时排出煤干馏产生的焦 油, 因此, 液态热解产物 -焦油的产率较低, 而蓄热结构又复杂, 并 且烟气废热利用也不足。
CN1005987B公开了一种 "带蓄热室单排炭化室型连续式直立炭 化炉", 其由下小烟道、 下蓄热室、 下斜道、 下水平道、 燃烧室、 炭 化室、 上水平道、 上斜道、 上蓄热室及上小烟道等组成, 此炉具有炉 体热效率高, 炉体寿命长, 使用砖型种类少等特点, 但是增设的蓄热 室及连接燃烧室与蓄热室的斜道区使炉体内部结构变得复杂,维修困 难, 设备投资及维修费用也相应增加, 同时在煤料的干馏过程中, 因 煤料的堆积, 干馏产生的气态焦油不能及时排出, 因为煤气孔设置在 炉顶部, 在气态焦油上升的过程中会发生二次裂解, 所以液态热解产 物-焦油的产率并不高。
CN201071352Y公开了一种 "封闭干馏分层炭化管状立式焦炉", 其炭化室采用锥体管式结构, 每个炭化室从上到下依次分为烘干段、 挥发段、 干馏段、 炭化段和夹套水冷干熄焦室, 各段采用锥体管状炭 化管, 段与段之间设有煤气排气孔, 焦炉本体内设有多组锥体管式炭 化室, 每组锥体管式炭化室之间密封隔开, 每组内的多个锥体管式炭 化室沿径向平行均布,在螺旋给煤机末端和螺旋分煤机始端之间设有 缓冲流煤管, 螺旋分煤机末端和斗式提升机之间设有余煤溢流管, 从 斗式提升机到余煤溢流管之间封闭且相通, 整个过程全封闭, 煤气循 环利用。上述焦炉虽然设置了烟气热交换管, 但其热效率较蓄热结构 欠佳, 而且大型换热结构的使用, 会增加设备的投资及维修费用, 另 外, 上述焦炉的炭化室虽分为多段, 但在干馏段中同样存在气态焦油 不能及时排出, 从而发生二次热解或裂解的问题, 所以液态产物-焦 油的产率较低。
US5636580公开了一种热解系统,该热解系统可用于各种入料的 热解蒸馏, 其包括一个热解气体抽取口, 经过所述热解气体抽取口的 热解气体直接被冷凝, 从而产生各种冷凝产物。在该热解系统中入料 与热解气体的流向正好相反,因此上述热解气体抽取口其实仅是热解 气体出口, 由于所处的位置, 其并不能使热解产生的含有气态焦油的 热解气体迅速或立即离开热解系统, 所以, 二次热解或裂解仍然无法 避免, 因此, 这一热解系统的液态产物-焦油的产率也较低。
上述对比文献的公开内容在此全文引入以作参考。
通过对以上现有技术的描述和分析可知:提高液态热解产物产率 的关键是尽量避免可冷凝的热解产物发生二次裂解,这样就要求包含 可冷凝产物的气态热解产物在其形成后尽可能快地离开热解或干馏 环境, 最好是立即或迅速离开热解或干馏系统, 因此, 气态热解产物 在干馏或热解系统中的停留时间对于提高液态热解产物的产率至关 重要。 通常, 如果气态热解产物在其形成后的 10秒内离开热解或干 馏环境,并且其温度被迅速降低,发生二次裂解的机会就会大大降低。 通常认为: 只要气态热解产物被激冷到 250°C以下, 气态焦油的二次 裂解和 /或热解反应就会立即被终止。
综上所述, 为了克服上述现有技术中的缺陷, 并显著提高液态热 解产物的产率, 迫切需要对上述现有的热解设备或系统进行改进, 在 提高设备热效率的同时, 改善液态热解产物的产率。 发明内容 本发明的目的是提供一种可大幅度提高液态热解产物产率和设备 热效率的热解碳质材料的新装置和新方法, 其旨在克服上述缺陷或 解决上述问题的至少一部分、 甚至全部, 更具体地说, 本发明提供 了一种气态热解产物收集器和一种包含上述收集器和蓄热体的固态 碳质材料热解或干馏装置。 根据本发明第一方面, 提供一种气态热解产物收集器, 所述收集 器包括:
顶端密封的桶壁;
至少一个位于桶壁上的贯穿通道,用于使气态热解产物穿过所述 通道由外面进入所述收集器内部; 至少一个位于所述通道上方并被安装在所述桶壁外表面上的挡 料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡料 板的垂直投影面覆盖上述贯穿通道;
位于桶壁底部或下部的气态热解产物出口。 优选地, 上述气态热解产物收集器进一步包括: 至少一个位于所 述贯穿通道上方并被安装在所述桶壁内表面上的气流导向板,用于使 进入上述收集器内部的气态热解产物向下流动, 更优选地, 在上述气 态热解产物收集器中,所述挡料板的垂直横截面形状为由两条直线的 端点交叉形成的角。 根据本发明第二方面, 提供一种气态热解产物收集器, 所述收集 器包括:
顶端密封的桶壁;
至少一个位于桶壁上的贯穿通道,用于使气态热解产物穿过所述 通道由外面进入所述收集器内部;
至少一个位于所述通道上方并被安装在所述桶壁外表面上的挡 料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡料 板的垂直投影面覆盖上述贯穿通道;
至少一个位于所述贯穿通道上方并被安装在所述桶壁内表面上 的气流导向板,用于使进入上述收集器内部的气态热解产物向下流动; 位于桶壁底部或下部的气态热解产物出口。 根据本发明第三方面, 提供一种气态热解产物收集器, 所述收集 器包括:
顶端密封的桶壁;
至少一个位于桶壁上的贯穿通道,用于使气态热解产物穿过所述 通道由外面进入所述收集器内部;
至少一个位于所述通道上方并被安装在所述桶壁外表面上的挡 料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡料 板的垂直投影面覆盖上述贯穿通道,并且所述挡料板的垂直横截面形 状为由两条直线的端点交叉形成的角; 至少一个位于所述贯穿通道上方并被安装在所述桶壁内表面上 的气流导向板,用于使进入上述收集器内部的气态热解产物向下流动; 位于桶壁底部或下部的气态热解产物出口。 根据本发明第一至第三方面, 在所述气态热解产物收集器中, 上 述贯穿通道优选为孔、 槽、 和 /或任何规则形状的贯穿开口, 更优选 为螺旋状的槽口;所述气态热解产物出口通常与一个气体收集管相连; 而所述桶壁的横截面优选为圆形、 椭圆形、 方形、 矩形、 多边形、 和 /或任何规则形状; 所述挡料板沿垂直方向与所述桶壁的外表面优选 形成 75°-85°的角度, 并且所述挡料板沿垂直方向与所述桶壁的外表 面形成的角度根据操作要求是可调节的;所述气流导向板沿垂直方向 与所述桶壁内表面优选形成 35°-55°的角度, 并且所述气流导向板沿 垂直方向与所述桶壁内表面形成的角度根据操作要求也是可调节的, 更优选地, 所述气流导向板可覆盖所述贯穿通道, 以便必要时清洗所 述收集器内部,同时气流导向板也可进一步用于防止由气态冷凝为液 态的热解产物回流到所述收集器的外面。 根据本发明第四方面, 提供一种固态碳质材料热解或干馏装置, 该装置包括:
至少一个热解区或干馏区; 其中在每个热解区或干馏区中布置至 少一个气态热解产物或气态干馏产物的收集器, 所述收集器包括: 顶端密封的桶壁;
至少一个位于桶壁上的贯穿通道, 用于使气态热解产物穿过 所述通道由外面进入所述收集器内部;
至少一个位于所述通道上方并被安装在所述桶壁外表面上的 挡料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡 料板的垂直投影面覆盖上述贯穿通道;
位于桶壁底部或下部的气态热解产物出口。 在上述热解或干馏装置中, 所述热解区或干馏区可是热解室或干 馏室。 优选地, 上述热解或干馏装置进一步包括: 至少一个燃烧室, 其 中在每个燃烧室中布置一对位于燃烧室上下两端的燃烧喷嘴,每个燃 烧喷嘴附近布置蓄热体,以便使燃烧产生的热烟气在离开燃烧室前加 热所述蓄热体、或冷空气或常温空气在进入燃烧室中经燃烧喷嘴与燃 料进行燃烧之前被所述蓄热体预热。 根据本发明第五方面, 提供一种固态碳质材料热解或干馏装置, 该装置包括:
至少一个热解区或干馏区, 其中在每个热解区或干馏区中布置至 少一个气态热解产物或干馏产物的收集器, 所述收集器包括:
顶端密封的桶壁;
至少一个位于桶壁上的贯穿通道, 用于使气态热解产物穿过 所述通道由外面进入所述收集器内部;
至少一个位于所述通道上方并被安装在所述桶壁外表面上的 挡料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡 料板的垂直投影面覆盖上述贯穿通道;
位于桶壁底部或下部的气态热解产物出口; 和
至少一个燃烧区或燃烧室, 其中在每个燃烧区或燃烧室中布置一 对位于燃烧区或燃烧室上下两端的燃烧喷嘴,每个燃烧喷嘴附近布置 蓄热体,以便使燃烧产生的热烟气在离开燃烧区或燃烧室前加热所述 蓄热体、或冷空气或常温空气在进入燃烧区或燃烧室中经燃烧喷嘴与 燃料进行燃烧之前被所述蓄热体预热。 根据本发明第四和第五方面, 在所述的热解或干馏装置中, 所述 收集器进一步包括:至少一个位于所述贯穿通道上方并被安装在所述 桶壁内表面上的气流导向板,用于使进入上述收集器内部的气态热解 产物向下流动, 优选地, 所述收集器中的所述挡料板的垂直横截面形 状为由两条直线的端点交叉形成的角;位于所述燃烧区或燃烧室中的 所述烧嘴与蓄热体顶部之间优选存在一个空间,以便储存被蓄热体加 热的空气, 同时所述蓄热体的下部通常经管道与换向阀相连, 以便所 述蓄热体在一定的时间间隔内交错地预热冷空气或常温空气和排出 热交换后的热烟气, 所述蓄热体优选为耐 1000°C以上高温的硅酸盐 材料颗粒、 氧化铁或四氧化三铁颗粒、 和 /或陶瓷颗粒, 更优选为多 孔颗粒; 所述一对燃烧喷嘴可以间歇交错地工作, 以便间歇交错地使 热气体加热蓄热体和蓄热体预热冷空气或常温空气。 根据本发明第六方面, 提供一种上述热解或干馏装置的用途, 其 被用于热解或干馏固态碳质材料, 所述固态碳质材料可选自于煤、煤 直接液化残渣、 重质渣油、 焦、 石油焦、 油砂、 页岩油、 碳质工业废 料或尾矿、生物质、合成塑料、合成聚合物、废轮胎、市政工业废料、 沥青、和它们的混合物, 所述煤可进一步为含水量大于 15重量%和挥 发分大于 25重量%的低品位煤, 例如褐煤或长焰煤。 附图说明 图 1为本发明气态热解产物收集器一个技术方案的示意图; 图 2为本发明气态热解产物收集器一个优选技术方案的示意图; 图 3 为本发明气态热解产物收集器又一个优选技术方案的示意 图;
图 4为本发明包括图 3所示的气态热解产物收集器和图 5所示的 蓄热体的热解或干馏装置一个技术方案的示意图;
图 5为图 4所示的热解或干馏装置的燃烧室结构示意图,其给出 了蓄热体和烧嘴的相对位置。 具体实舫式 通过下面参考附图的描述进一步详细解释本发明,其中附图中所 示的相对应的或等同的部件或特征用相同的标记数表示。
如图 1所示,本发明气态热解产物收集器通常可由顶端密封的桶 壁; 至少一个位于桶壁上的贯穿通道 (16), 用于使气态热解产物穿 过所述通道由外面进入所述收集器内部;至少一个位于所述通道( 16 ) 上方并被安装在所述桶壁外表面上的挡料板 (15), 用于阻止固态碳 质材料进入上述收集器内部, 其中所述挡料板 (15 ) 的垂直投影面 覆盖上述贯穿通道 (16 ) ; 和位于桶壁底部或下部的气态热解产物出 口 (7)。
如图 2所示, 上述气态热解产物收集器优选地可进一步包括: 至 少一个位于所述贯穿通道(16)上方并被安装在所述桶壁内表面上的 气流导向板 (17), 用于使进入上述收集器内部的气态热解产物向下 流动。所述气流导向板(17 )还可防止进入所述收集器内部的由气态 冷凝为液态的热解产物回流到所述收集器外,从而导致液态热解产物 产率的降低。
如图 3所示, 在上述气态热解产物收集器中, 更优选地, 所述挡 料板(15)的垂直横截面形状为由两条直线的端点交叉形成的角, 这 样的结构可不改变碳质材料在热解区或干馏区的流动方向,同时可进 一步阻止固态碳质材料进入上述收集器内部。
如上所述, 所述气态热解产物收集器有多种表现形式, 其组成部 分、 例如桶壁、 挡料板 (15)、 贯穿通道 (16)、 气流导向板 (17)、 以及气态热解产物出口 (7) 也有多种结构和操作方式, 在本发明上 述描述的启示下,本领域普通技术人员凭借自己的专业常识可很容易 地构思或设计出这些结构和操作方式。 这里, 为了节省篇幅, 省去其 详细描述。
上述气态热解产物收集器在热解区或干馏区中可沿着碳质材料 流动的方向布置, 通常讲, 所述收集器内外之间会有一个温度差, 这 样,气态热解产物不仅经所述收集器被立即或迅速移出热解或干馏环 境之外,而且进入所述收集器中的气态热解产物温度还会有一定的降 低, 结果可最大程度地保留或提高液态热解产物的产率。为了使所述 收集器内外温差变得明显, 更优选地, 上述气态热解产物收集器的组 成部分、例如桶壁、挡料板(15)、贯穿通道(16)、气流导向板(17)、 以及气态热解产物出口 (7) 的至少一个表面涂覆有绝热涂层, 例如 耐高温陶瓷涂层,这样的示范性实例例如是氧化锆陶瓷涂层或碳化硅 陶瓷涂层。
上述气态热解产物收集器可被广泛用在各种间接传热和直接传 热的热解或干馏装置或系统中,其可使所述装置和系统的液态热解产 物的产率获得大幅度的提高, 优选地, 上述气态热解产物收集器被用 在间接传热的热解或干馏装置或系统中, 更优选地, 上述气态热解产 物收集器被用在具有独立炭化室和独立燃烧室的热解或干馏装置或 系统中。
当上述气态热解产物收集器被用在具有独立炭化室和独立燃烧 室的炭化炉中时,在每个独立燃烧室中优选布置一对位于燃烧室上下 两端的燃烧喷嘴, 每个燃烧喷嘴附近布置蓄热体, 以便使燃烧产生的 热烟气或热气体在离开燃烧室前加热所述蓄热体、或冷空气或常温空 气在进入燃烧室中经燃烧喷嘴与燃料进行燃烧之前被所述蓄热体预 执 、、、。
在燃烧喷嘴附近设置蓄热体的好处是显而易见的,其可充分利用 燃烧产生的热烟气或热气体的余热预热冷空气或常温空气,从而提高 炭化炉的热效率。
同样, 如上所述, 燃烧喷嘴和所述蓄热体也可具有多种结构和操 作方式, 在本发明上述描述的启示下, 本领域普通技术人员凭借自己 的专业常识可很容易地构思或设计出这些结构和操作方式。这里, 为 了节省篇幅, 省去其详细描述。
除了所述烧嘴与蓄热体顶部之间可存在一个空间, 以便储存被蓄 热体加热的空气外, 所述蓄热体的下部还可经管道与换向阀相连, 以 便所述蓄热体在一定的时间间隔内交错地预热冷空气或常温空气和 排出热交换后的热烟气, 这样, 所述一对燃烧喷嘴就可间歇交错地工 作或运行。
优选地, 所述蓄热体为耐 1000°C以上高温的硅酸盐材料颗粒、氧 化铁或四氧化三铁颗粒、 和 /或陶瓷颗粒, 更优选地, 它们是多孔的 颗粒, 这样的蓄热体既可以商购, 也可以自己制备。硅酸盐材料多孔 颗粒或陶瓷多孔颗粒的示范性实例可例如是粘土烧结多孔颗粒或氧 化铝多孔颗粒。在使用时, 大量的上述颗粒聚集或堆积形成一个蓄热 体整体, 其间会有空气穿越的通道, 冷空气或常温空气在穿越这些通 道时与上述热颗粒表面接触而被加热。
包括上述气态热解产物收集器和 /或上述蓄热体的热解或干馏装 置或系统可被用于热解或干馏各种固态碳质材料, 例如煤、煤直接液 化残渣、 重质渣油、 焦、 石油焦、 油砂、 页岩油、 碳质工业废料或尾 矿、生物质、合成塑料、合成聚合物、废轮胎、市政工业废料、沥青、 和它们的混合物, 而优选地被用于热解含水量高、挥发分也高的低级 煤种, 例如含水量大于 15重量%和挥发分大于 25重量%的低品位煤, 而特别优选地被用于热解或干馏褐煤或长焰煤。
图 4给出了本发明包括图 3所示的气态热解产物收集器和图 5所 示的蓄热体的热解或干馏装置一个技术方案的示意图。其为一个具有 独立炭化室和独立燃烧室的炭化炉。
所述炭化炉的炉体结构如图 4所示, 炉顶部为加煤车 (1), 加煤 车 (1) 通过轨道机构运动, 其下部设置有气动锁斗阀 (2), 炭化室
(3) 与燃烧室 (4) 交错相间排布, 炭化室 (3) 中设置有上述图 3 所示的气态热解产物收集器 (5), 燃烧室 (4) 中设置有燃烧喷嘴出 口 (6), 所述收集器 (5) 下部设置有气态热解产物出口 (7), 出口
(7)与一集气管相连, 炭化室(3)下部的空间中设置有冷却喷淋结 构 (8), 再下面连接有排焦系统 (9) - (14)。
上述炭化炉的燃烧室 (4) 的结构如图 5所示, 所述一对燃烧喷 嘴 (18) 位于燃烧室的上下两端, 在每个燃烧喷嘴 (18) 的附近有 由众多颗粒组成的蓄热体(19),燃料管道(21)紧靠燃烧喷嘴(18), 蓄热体(19)顶部与燃烧喷嘴(18)之间有一空间用于储存被加热的 空气并缓冲气体作用,而蓄热体的下部通过管道与换向阀(20)相连, 以便所述蓄热体(19)在一定的时间间隔内交错地预热冷空气或常温 空气和排出热交换后的热烟气,所述一对燃烧喷嘴可间歇交错地工作, 换向阀 (20) 在控制系统作用下, 定期变换废烟气与空气的流向。
所述气态热解产物收集器 (5) 为一顶端密封的桶壁状容器, 在 桶壁外表面上焊接有多个形成鱼鳞状的挡料板 (15), 而在桶壁内表 面上焊接有多个气流导向板(17), 以确保进入所述收集器(5) 中的 气态热解产物向下流动, 所述气流导向板(17)也可作为防止进入所 述收集器 (5) 中的由气态冷凝为液态的热解产物回流到所述收集器
(5)外面的液体挡板, 收集器(5)顶端采用不锈钢材质钢板密封焊 接, 下端的气态热解产物出口 (7) 与一集气管相连, 收集器(5) 内 部与外部通过进气孔形式的贯穿通道(16)相通。其中,挡料板(15) 呈 75° 〜 85° 开度鱼鳞状, 以防止碳质材料堵塞贯穿通道 (16) 或 进入收集器 (5) 中; 因为炭化室 (3) 呈负压状态, 贯穿通道 (16) 可及时将在炭化室(3) 中形成的气态热解产物从炭化室(3) 中排入 收集器 (5) 中; 气流导向板 (17) 呈 35° 〜 55° 开度齿状或倒刺 状, 气态热解产物经气流导向板 (17) 折流后进入所述收集器 (5) 中并向下流动, 气流导向板(17)也可防止冷凝的热解产物液滴从所 述收集器(5) 中回流到炭化室 (3) 中; 气态热解产物向下流动, 经 与下端出口 (7) 相通的集气管送出, 这样可避免气态热解产物流经 高温料层、炉体空间或炉墙, 从而避免气态热解产物中所含的气态焦 油或油因持续承受高温而发生二次热裂解, 结果, 液态热解产物的产 率被大幅度提高。
需要说明的是: 挡料板(15)和气流导向板(17) 的开合程度或 开合角度根据操作要求是可以调节的,其可依据气态热解产物的数量 或生成量进行控制, 另外, 在所述收集器 (5) 内部污垢较多时, 可 闭合气流导向板(17), 以对所述收集器(5) 内部进行清洗, 此时气 流导向板 (17) 可避免使洗液进入炭化室 (3) 中, 从而损坏炭化室
(3); 经所述集气管送出的气态热解产物依次通过旋风机分离、初冷 换热、 冷凝和电捕焦油等处理, 从而经分离获得焦油和纯净煤气。一 部分纯净煤气可被送至燃烧室 (4) 中作为燃料燃烧, 以便为干馏提 供热量, 另一部分纯净煤气可被送至半焦冷却段的喷淋冷却器 (8) 中作为半焦冷却介质使用,余下的纯净煤气可外送作为居民生活燃料 使用; 而焦油经加工分离后, 可作化工原料使用。
上述部分纯净煤气通过燃料管道 (21 ) 被输送至燃烧喷嘴 (18) 中, 与被蓄热体(19)加热的空气混合燃烧, 燃烧所获得的热烟气对 布置有上述收集器(5) 的炭化室(3)进行加热, 高温废烟气的余热 被另一相对的蓄热体(19)所吸收, 热交换后的低温废烟气经换向阀
(20) 由风机排出, 并经除尘 /脱硫处理后排入大气中。 通过换向阀
(20)变换气体流向,冷空气或常温空气通过另一相对的蓄热体(19) 被加热, 与煤气混合后经另一相对的燃烧喷嘴燃烧, 燃烧所获得的热 烟气同样对炭化室 (3) 进行加热, 从而达到循环蓄热效果, 换向阀
(20) 可通过控制系统变换气体流向。
在碳质材料热解或干馏完成后, 启动半焦冷却设备和排焦设备
(9) 〜(14), 将生成的半焦冷却并排出炭化炉外, 再通过半焦输送 设备, 将半焦输送至存储场所。 实施例 实施例 1
采用图 4所示的炭化炉对褐煤(I )进行干馏提质,所用褐煤(I ) 的工业分析和元素分析结果表示在下面的表 1和表 2中,其中工业分 析和元素分析的基准均是空气干燥基,而元素分析仅针对有机物进行 分析, 不包括灰分和水分。
1
Figure imgf000014_0002
Figure imgf000014_0001
Figure imgf000014_0003
所述炭化炉的工艺参数和操作条件如下: 试验用煤 3. 0kg, 终温 600°C, 升温速率 3°C/min, 恒温时间 30min。 通过皮带输送机, 用加煤车 (1 ) 将煤料送至炭化炉顶部, 再经 气动锁斗阀 (2 ) 将煤料加入到具有收集器 (5 ) 的炭化室 (3 ) 中进 行干馏, 煤干馏所需的热量由燃烧室 (4) 中一对燃烧喷嘴 (18 ) 燃 烧煤气所产生的热、 以及燃烧后的高温废气被所述蓄热体(19)所吸 纳的余热所提供。
试验完成后, 测得焦油产率为 11. 44重量%, 半焦产率为 64. 36 重量%, 炭化炉的热效率为 82%。 对比实施例 1 除了从炭化室 (3 ) 中除去收集器 (5)、 从燃烧室 (4) 中除去蓄 热体 (19)、 并将升温速率变为 5°C/min外, 重复实施例 1的实验步 骤。
试验完成后, 焦油产率为 5. 96%, 半焦产率为 59. 60%,, 炭化炉 的热效率为 77%。
实施例 1和对比实施例 1实验结果表示在下面表 3中。 焦油产率重量% 半焦产率重量% 炭化炉热效 率 % 实施例 1 8. 44 64. 36 82 对比实施例 1 5. 96 59. 60 77 通过比较表 3所列的实验数据, 可明显看出本发明的炭化炉液态 热解产物-焦油产率和热效率明显高于常规炭化炉的焦油产率和热效 率。 实施例 2
采用图 4所示的炭化炉对褐煤( II )进行干馏提质,所用褐煤( II ) 的工业分析和元素分析结果表示在下面的表 4和表 5中,其中工业分 析和元素分析的基准均是空气干燥基,而元素分析仅针对有机物进行 分析, 不包括灰分和水分。
4
Figure imgf000015_0001
5
Figure imgf000015_0002
所述炭化炉的工艺参数和操作条件如下: 试验用煤 3. 0kg, 热解 终温 600°C, 升温速率 3°C/min, 恒温时间 30min。
通过皮带输送机, 用加煤车 (1 ) 将煤料送至炭化炉顶部, 再经 气动锁斗阀 (2) 将煤料加入到具有收集器 (5) 的炭化室 (3) 中进 行干馏, 煤干馏所需的热量由燃烧室 (4) 中一对燃烧喷嘴 (18) 燃 烧煤气所产生的热、 以及燃烧后的高温废气被所述蓄热体(19)所吸 纳的余热所提供。
试验完成后, 焦油产率为 10. 16%, 半焦产率为 66. 53%, 炭化炉 热效率为 82%。
对比实施例 2 除了从炭化室 (3 ) 中除去收集器 (5)、 从燃烧室 (4) 中除去 蓄热体 (19)、 并将升温速率变为 5°C/min外, 重复实施例 2的实验 步骤。
试验完成后, 焦油产率为 4. 72%, 半焦产率为 61. 38%, 炭化炉热 效率为 77% 。
实施例 2和对比实施例 2实验结果表示在下面表 6中。
Figure imgf000016_0001
Figure imgf000016_0002
通过比较表 6所列的实验数据, 可明显看出本发明的炭化炉液态 热解产物-焦油产率和热效率明显高于常规炭化炉的焦油产率和热效 率。 本说明书所用的术语和表述方式仅被用作描述性、而非限制性的 术语和表述方式,在使用这些术语和表述方式时无意将已表示和描述 的特征或其组成部分的任何等同物排斥在外。 尽管已表示和描述了本发明的几个实施方式,但本发明不被限制 为所描述的实施方式。相反, 本领域普通技术人员应当意识到在不脱 离本发明原则和精神的情况下可对这些实施方式进行任何变通和改 进, 本发明的保护范围由所附的权利要求及其等同物所确定。

Claims

权利要求
1、 一种气态热解产物收集器, 包括: 顶端密封的桶壁; 至少一个位于桶壁上的贯穿通道,用于使气态热解产物穿过所述 通道由外面进入所述收集器内部; 至少一个位于所述通道上方并被安装在所述桶壁外表面上的挡 料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡料 板的垂直投影面覆盖上述贯穿通道; 位于桶壁底部或下部的气态热解产物出口。
2、 根据权利要求 1所述的气态热解产物收集器,进一步包括: 至少一个位于所述贯穿通道上方并被安装在所述桶壁内表面上 的气流导向板,用于使进入上述收集器内部的气态热解产物向下流动。
3、根据权利要求 1或 2所述的气态热解产物收集器, 其中所述挡 料板的垂直横截面形状为由两条直线的端点交叉形成的角。
4、 一种气态热解产物收集器, 包括: 顶端密封的桶壁; 至少一个位于桶壁上的贯穿通道,用于使气态热解产物穿过所述 通道由外面进入所述收集器内部; 至少一个位于所述通道上方并被安装在所述桶壁外表面上的挡 料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡料 板的垂直投影面覆盖上述贯穿通道; 至少一个位于所述贯穿通道上方并被安装在所述桶壁内表面上 的气流导向板,用于使进入上述收集器内部的气态热解产物向下流动; 位于桶壁底部或下部的气态热解产物出口。
5、 一种气态热解产物收集器, 包括: 顶端密封的桶壁; 至少一个位于桶壁上的贯穿通道,用于使气态热解产物穿过所述 通道由外面进入所述收集器内部; 至少一个位于所述通道上方并被安装在所述桶壁外表面上的挡 料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡料 板的垂直投影面覆盖上述贯穿通道,并且所述挡料板的垂直横截面形 状为由两条直线的端点交叉形成的角; 至少一个位于所述贯穿通道上方并被安装在所述桶壁内表面上 的气流导向板,用于使进入上述收集器内部的气态热解产物向下流动; 位于桶壁底部或下部的气态热解产物出口。
6、根据权利要求 1, 4和 5任何之一所述的气态热解产物收集器, 其中上述贯穿通道为孔、 槽、 和 /或任何规则形状的贯穿开口。
7、根据权利要求 6所述的气态热解产物收集器, 其中所述贯穿通 道为螺旋状的槽口。
8、根据权利要求 1, 4和 5任何之一所述的气态热解产物收集器, 其中上述气态热解产物出口与气体收集管相连。
9、根据权利要求 1, 4和 5任何之一所述的气态热解产物收集器, 其中所述桶壁的横截面为圆形、 椭圆形、 方形、 矩形、 多边形、 和 / 或任何规则形状。
10、根据权利要求 1, 4和 5任何之一所述的气态热解产物收集器, 其中所述挡料板沿垂直方向与所述桶壁的外表面形成 75°-85°的角度。
11、根据权利要求 1, 4和 5任何之一所述的气态热解产物收集器, 其中所述挡料板沿垂直方向与所述桶壁的外表面形成的角度根据操 作要求是可调节的。
12、根据权利要求 2, 4和 5任何之一所述的气态热解产物收集器, 其中所述气流导向板沿垂直方向与所述桶壁内表面形成 35°-55°的角 度。
13、根据权利要求 2, 4和 5任何之一所述的气态热解产物收集器, 其中所述气流导向板沿垂直方向与所述桶壁内表面形成的角度根据 操作要求是可调节的。
14、根据权利要求 2, 4和 5任何之一所述的气态热解产物收集器, 其中所述气流导向板可覆盖所述贯穿通道,以便清洗所述收集器内部。
15、根据权利要求 2, 4和 5任何之一所述的气态热解产物收集器, 其中气流导向板进一步用于防止由气态冷凝为液态的热解产物回流 到所述收集器的外面。
16、 一种固态碳质材料热解或干馏装置, 包括: 至少一个热解区或干馏区; 其中在每个热解区或干馏区中布置至 少一个气态热解产物或气态干馏产物的收集器, 所述收集器包括: 顶端密封的桶壁; 至少一个位于桶壁上的贯穿通道, 用于使气态热解产物穿过 所述通道由外面进入所述收集器内部; 至少一个位于所述通道上方并被安装在所述桶壁外表面上的 挡料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡 料板的垂直投影面覆盖上述贯穿通道; 位于桶壁底部或下部的气态热解产物出口。
17、根据权利要求 16所述的热解或干馏装置, 其中所述的热解区 或干馏区是热解室或干馏室。
18、 根据权利要求 17所述的热解或干馏装置, 进一步包括: 至少一个燃烧室, 其中在每个燃烧室中布置一对位于燃烧室上下 两端的燃烧喷嘴, 每个燃烧喷嘴附近布置蓄热体, 以便使燃烧产生的 热烟气在离开燃烧室前加热所述蓄热体、或冷空气或常温空气在进入 燃烧室中经燃烧喷嘴与燃料进行燃烧之前被所述蓄热体预热。
19、 一种固态碳质材料热解或干馏装置, 包括: 至少一个热解区或干馏区, 其中在每个热解区或干馏区中布置至 少一个气态热解产物或干馏产物的收集器, 所述收集器包括: 顶端密封的桶壁; 至少一个位于桶壁上的贯穿通道, 用于使气态热解产物穿过 所述通道由外面进入所述收集器内部; 至少一个位于所述通道上方并被安装在所述桶壁外表面上的 挡料板, 用于阻止固态碳质材料进入上述收集器内部, 其中所述挡 料板的垂直投影面覆盖上述贯穿通道; 位于桶壁底部或下部的气态热解产物出口; 和 至少一个燃烧区或燃烧室, 其中在每个燃烧区或燃烧室中布置一 对位于燃烧区或燃烧室上下两端的燃烧喷嘴,每个燃烧喷嘴附近布置 蓄热体,以便使燃烧产生的热烟气在离开燃烧区或燃烧室前加热所述 蓄热体、或冷空气或常温空气在进入燃烧区或燃烧室中经燃烧喷嘴与 燃料进行燃烧之前被所述蓄热体预热。
20、 根据权利要求 16-19任何之一所述的热解或干馏装置, 其中 所述收集器进一步包括: 至少一个位于所述贯穿通道上方并被安装在所述桶壁内表面上 的气流导向板,用于使进入上述收集器内部的气态热解产物向下流动。
21、 根据权利要求 16-19任何之一所述的热解或干馏装置, 其中 所述收集器中的所述挡料板的垂直横截面形状为由两条直线的端点 交叉形成的角。
22、 根据权利要求 18或 19所述的热解或干馏装置, 其中所述烧 嘴与蓄热体顶部之间存在一个空间, 以便储存被蓄热体加热的空气。
23、 根据权利要求 18或 19所述的热解或干馏装置, 其中所述蓄 热体的下部经管道与换向阀相连,以便所述蓄热体在一定的时间间隔 内交错地预热冷空气或常温空气和排出热交换后的热烟气。
24、 根据权利要求 18或 19所述的热解或干馏装置, 其中所述蓄 热体为耐 1000°C以上高温的硅酸盐材料颗粒、 氧化铁或四氧化三铁 颗粒、 和 /或陶瓷颗粒。
25、根据权利要求 24所述的热解或干馏装置, 其中所述颗粒是多 孔的。
26、 根据权利要求 18或 19所述的热解或干馏装置, 其中所述一 对燃烧喷嘴间歇交错地工作。
27、 一种根据权利要求 16-26任何之一所述的热解或干馏装置的 用途, 其被用于热解或干馏固态碳质材料。
28、根据权利要求 27所述的热解或干馏装置的用途, 其中所述固 态碳质材料选自于煤、 煤直接液化残渣、 重质渣油、 焦、 石油焦、 油 砂、页岩油、碳质工业废料或尾矿、生物质、合成塑料、合成聚合物、 废轮胎、 市政工业废料、 沥青、 和它们的混合物。
29、根据权利要求 28所述的热解或干馏装置的用途, 其中所述煤 进一步为含水量大于 15重量%和挥发分大于 25重量%的低品位煤。
30、 根据权利要求 29所述的热解或干馏装置的用途, 其中所述 煤进一步为褐煤或长焰煤。
PCT/CN2012/085289 2012-11-26 2012-11-26 一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置 WO2014079067A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085289 WO2014079067A1 (zh) 2012-11-26 2012-11-26 一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085289 WO2014079067A1 (zh) 2012-11-26 2012-11-26 一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置

Publications (1)

Publication Number Publication Date
WO2014079067A1 true WO2014079067A1 (zh) 2014-05-30

Family

ID=50775431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085289 WO2014079067A1 (zh) 2012-11-26 2012-11-26 一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置

Country Status (1)

Country Link
WO (1) WO2014079067A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088306A (zh) * 2021-03-23 2021-07-09 宁波连通设备集团有限公司 一种燃烧火焰炉内直接给热式多级串联湍动床热解提馏炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007093A (en) * 1975-04-30 1977-02-08 Svyatoslav Kirillovich Doilov Furnace for thermal processing of lump solid fuel
CN101020967A (zh) * 2007-03-16 2007-08-22 北京胜亚恒源热能技术开发有限公司 蓄热式卧式金属镁还原炉
CN102260559A (zh) * 2011-05-31 2011-11-30 李柏荣 优质煤产品生产装置及生产系统
CN102952555A (zh) * 2011-08-26 2013-03-06 北京低碳清洁能源研究所 一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007093A (en) * 1975-04-30 1977-02-08 Svyatoslav Kirillovich Doilov Furnace for thermal processing of lump solid fuel
CN101020967A (zh) * 2007-03-16 2007-08-22 北京胜亚恒源热能技术开发有限公司 蓄热式卧式金属镁还原炉
CN102260559A (zh) * 2011-05-31 2011-11-30 李柏荣 优质煤产品生产装置及生产系统
CN102952555A (zh) * 2011-08-26 2013-03-06 北京低碳清洁能源研究所 一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088306A (zh) * 2021-03-23 2021-07-09 宁波连通设备集团有限公司 一种燃烧火焰炉内直接给热式多级串联湍动床热解提馏炉
CN113088306B (zh) * 2021-03-23 2022-04-12 宁波连通设备集团有限公司 一种燃烧火焰炉内直接给热式多级串联湍动床热解提馏炉

Similar Documents

Publication Publication Date Title
CN102952555B (zh) 一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置
CN103666507B (zh) 一种内热式煤干馏炉、内热式煤干馏系统及煤干馏工艺方法
US10047296B2 (en) Thermal cycle continuous automated coal pyrolyzing furnace
JP6924305B2 (ja)
CN101544901A (zh) 生物质热裂解制取生物油的方法及装置
US20130062185A1 (en) Tunnel typed coking furnace with a movable sliding bed and the method using the same
CN203487094U (zh) 固体含碳物干燥、炭化、活化一体化设备
CN101289621B (zh) 用悬浮热解装置处理褐煤制备半焦、焦油和煤气的方法
WO2014044084A1 (zh) 一种低变质烟煤的煤热解炉
CN201343520Y (zh) 油页岩闪速干馏工艺装置
CN102816611A (zh) 一种煤热解气体的综合循环利用方法
CN101289622B (zh) 采用固体载热褐煤悬浮热解装置进行褐煤提质的方法
CN202786158U (zh) 一种煤热解气体的综合循环利用装置
CN105885893A (zh) 一种内外热式煤炭干馏装置及其干馏方法
CN102827619A (zh) 一体式干馏炉
CN108384560B (zh) 大型生物质及废物热解炉
CN107022363A (zh) 一种连续式生物质热解气逆流回用炭气联产设备
CN204644266U (zh) 一种干馏低变质烟煤的全循环干馏炉
WO2014079067A1 (zh) 一种气态热解产物收集器和应用该收集器的碳质材料热解或干馏装置
CN204125429U (zh) 一种二段式无焦油煤气发生炉
CN105925286A (zh) 粉煤快速热解装置
CN102925168A (zh) 一种热循环连续自动化煤热解方法
CN205933751U (zh) 一种内外热式煤炭干馏装置
CN205115383U (zh) 油页岩快速热解的系统
CN206318944U (zh) 一种煤粉沸腾干馏炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888690

Country of ref document: EP

Kind code of ref document: A1