WO2014077578A1 - Battery module cooling device and battery module assembly comprising same - Google Patents

Battery module cooling device and battery module assembly comprising same Download PDF

Info

Publication number
WO2014077578A1
WO2014077578A1 PCT/KR2013/010287 KR2013010287W WO2014077578A1 WO 2014077578 A1 WO2014077578 A1 WO 2014077578A1 KR 2013010287 W KR2013010287 W KR 2013010287W WO 2014077578 A1 WO2014077578 A1 WO 2014077578A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
cooling
coupled
cooling plate
battery
Prior art date
Application number
PCT/KR2013/010287
Other languages
French (fr)
Korean (ko)
Inventor
권오성
임동훈
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2014077578A1 publication Critical patent/WO2014077578A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module cooling apparatus and a battery module assembly including the same.
  • secondary batteries are batteries that can be repeatedly used through a reverse charging and discharging process that converts chemical energy into electrical energy. Examples thereof include nickel-cadmium (Ni-Cd) batteries and nickel-hydrogen (Ni-MH) batteries. Batteries, lithium-metal batteries, lithium-ion (Ni-Ion) batteries, and lithium-ion polymer batteries (Li-Ion Polymer Battery, hereinafter referred to as "LIPB").
  • the secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator, and stores and generates electricity by using voltage differences between different positive and negative electrode materials.
  • discharge means to move electrons from a high voltage cathode to a low anode (generates electricity by the voltage difference between the anodes), and charge moves electrons from the anode to the cathode again.
  • the anode material receives electrons and lithium ions. To return to the original metal oxide. That is, when the secondary battery is charged, the charging current flows as the metal atoms move from the positive electrode to the negative electrode through the separator, and when discharged, the metal atoms move from the negative electrode to the positive electrode and the discharge current flows.
  • secondary batteries have attracted attention as energy sources that are widely used in IT products, automobile fields, and energy storage fields.
  • IT product field secondary batteries can be used continuously for a long time, miniaturization and weight reduction are required, and the automotive field demands high power, durability, and stability to solve the explosion risk.
  • Energy storage is to store the surplus power produced by wind, solar power, etc., can be applied to a secondary battery of a more relaxed condition as used as a fixed type.
  • lithium secondary batteries using carbon as a negative electrode instead of lithium metal have been developed, and have been used for more than 500 cycles and short charging times of 1 to 2 hours.
  • the lithium secondary battery has the highest unit cell voltage (3.0 to 3.7V) and excellent energy density among the existing secondary batteries, and may have characteristics optimized for mobile devices.
  • the lithium secondary battery is generally classified into a liquid electrolyte battery and a polymer electrolyte battery according to the type of electrolyte.
  • a battery using a liquid electrolyte is called a lithium ion battery
  • a battery using a polymer electrolyte is called a lithium polymer battery.
  • the exterior material of the lithium secondary battery may be formed in various kinds, and typical types of exterior materials include cylindrical, prismatic, and pouches.
  • an electrode assembly in which a positive electrode plate, a negative electrode plate, and a separator (separator) interposed therebetween is stacked or wound is provided.
  • the present invention was created to solve the problems of the prior art as described above, at least one unit battery module is inserted and installed between the unit battery module of the stacked battery module, it is possible to cool the heat generated from the battery module
  • the present invention provides a battery module cooling apparatus and a battery module assembly including the same.
  • At least one or more cooling plates are coupled to be in contact with one surface of a unit battery module in which battery cells are stacked, and a coupling groove is formed along an outer edge of the cooling plate. It is formed and coupled to be seated in the coupling groove, the cooling pipe which can flow the refrigerant in a hollow form inside, and corresponds to the upper cover member and the upper cover member coupled to cover the cooling pipe on one surface of the cooling plate. It may include a lower cover member coupled to the other surface of the cooling plate.
  • the inlet and the outlet for the access of the refrigerant of the cooling pipe may be formed side by side on the same side of the cooling plate.
  • the coupling groove formed in the cooling plate may be formed as a groove having a depth of 1/3 to 2/3 of the diameter of the cooling pipe.
  • the unit battery module is formed by stacking two battery cells, the partition member may be coupled between the battery cells.
  • the cooling plate may be formed of a thermally conductive material so that heat generated from the unit battery module can be transferred.
  • a pad member for preventing deformation of the battery cell coupled to the peripheral portion of the partition member may be further formed.
  • inlet and outlet portions of the cooling pipe may be formed with a refrigerant inlet control unit and a refrigerant discharge control unit, respectively, in order to control the amount of refrigerant flowing in the cooling pipe.
  • a battery module assembly includes a battery module in which a plurality of unit battery modules including at least one battery cell are stacked and a cooling device inserted into and coupled between the battery modules so as to contact one surface of the unit battery module.
  • the cooling device includes a cooling plate which is in surface contact with the unit cell module, a coupling groove is formed along an outer edge of one surface of the cooling plate, and is coupled to be seated in the coupling groove, and the refrigerant is hollow inside. It may include a cooling pipe that can flow, an upper cover member coupled to cover the cooling pipe on one surface of the cooling plate, and a lower cover member corresponding to the upper cover member and coupled to the other surface of the cooling plate.
  • the inlet and the outlet for the access of the refrigerant of the cooling pipe may be formed side by side on the same side of the cooling plate.
  • the coupling groove formed in the cooling plate may be formed as a groove having a depth of 1/3 to 2/3 of the diameter of the cooling pipe.
  • the unit battery module is formed by stacking two battery cells, the partition member may be coupled between the battery cells.
  • the cooling plate may be formed of a thermally conductive material so that heat generated from the unit battery module may be transferred to the cooling pipe outside the cooling plate.
  • a pad member for preventing deformation of the battery cell coupled to the peripheral portion of the partition member may be further formed.
  • a refrigerant inlet control unit and a refrigerant discharge control unit may be formed in the inlet and the outlet of the cooling pipe to control the amount of refrigerant flowing in the cooling pipe.
  • a battery module assembly further comprising an upper case coupled to one surface of the battery module and an upper cover to include the battery module and the cooling device, and a lower case coupled to the other surface of the battery module. It may include.
  • a cooling device is inserted between the unit battery modules constituting the battery module, and the cooling plate of the cooling device is formed in surface contact with the unit battery module to transfer heat to the outer portion, and inside the cooling pipe formed at the outer side of the cooling plate.
  • the cooling plate is formed to be in surface contact with the unit cell module, the cooling pipe is coupled to the separate member on the cooling plate, there is an effect that can ensure the stable storage and flow reliability of the refrigerant flowing in the cooling pipe.
  • the coupling groove for coupling the cooling pipe is formed on the cooling plate, thereby improving the precision of the coupling between the cooling pipe and the cooling plate, thereby ensuring the operation reliability of the cooling device by the cooling pipe.
  • the cooling pipe coupled to the cooling plate is formed on the inlet and outlet in the same direction on any one side of the cooling plate, the refrigerant control unit is coupled to each inlet and outlet, heat and cooling generated in the battery module Maintaining an appropriate temperature of the battery module according to the speed, there is an effect that can further improve the operating performance and reliability of the battery module assembly.
  • FIG. 1 is an exploded perspective view of a cooling plate assembly of a battery module cooling apparatus according to an embodiment of the present invention
  • FIG. 2 is a perspective view of the combination of the battery module cooling device and the refrigerant control unit according to an embodiment of the present invention
  • FIG. 3 is an exploded perspective view of a battery module cooling apparatus according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of a battery module assembly according to an embodiment of the present invention.
  • FIG 5 is a perspective view of a combination of the battery module assembly according to an embodiment of the present invention.
  • the battery cells 21 constituting the battery module 30 of the battery module assembly 1 according to the present invention may use a lithium secondary battery or a nickel-hydrogen secondary battery as a secondary battery capable of charging and discharging. It is apparent that the secondary battery capable of charging and discharging can be selectively applied to various types of secondary batteries by those skilled in the art.
  • a nickel-hydrogen secondary battery is a secondary battery that uses nickel as a positive electrode, a hydrogen storage alloy as a negative electrode, and an alkaline aqueous solution as an electrolyte, and has a large capacity per unit volume. Therefore, an energy source such as an electric vehicle (EV) or a hybrid vehicle (HEV) It may be suitable for use as.
  • EV electric vehicle
  • HEV hybrid vehicle
  • a porous polymer separator is disposed between a cathode and an anode using a metal oxide such as LiCoO 2 and a cathode active material as a cathode active material, and a lithium salt such as LiPF 6 is used .
  • It can be prepared by adding an aqueous electrolyte solution.
  • Lithium secondary batteries have high energy density, high operating voltage, and excellent storage characteristics, so that they can be applied to various electronic materials as well as energy sources of electric vehicles (EVs) and hybrid vehicles (HEVs).
  • the lithium secondary battery may be formed as a pouch type battery or a square battery including an electrode assembly and a pouch case surrounding and sealing the electrode assembly.
  • the pouch type case may be used by insulating the surface of a metallic thin plate such as an aluminum thin plate, and the insulating treatment is applied by modifying polypropylene made of a polymer resin, for example, CPP (Casted Polypropylene) as a heat seal layer.
  • a resin material such as nylon or polyethylene terephthalate (PET) may be formed.
  • PET polyethylene terephthalate
  • At least one battery cell 21 is stacked to form a unit battery module 20, in order to achieve a compactness of the battery module 30 is formed by stacking the unit battery module 20 and a thin and wide width and It may be formed of a secondary battery having a length.
  • the electrode assembly may be embedded in a case of the laminate sheet including the resin layer and the metal layer, and may have a structure in which the first tab portion 22 and the second tab portion 23 protruding from the electrode terminal protrude.
  • the electrode assembly may be formed in a pouch-type case of an aluminum laminate sheet.
  • the electrode assembly is formed to include an anode, a cathode, and a separator, and a separator is formed between the anode and the cathode.
  • a separator is formed between the anode and the cathode.
  • it may be formed in a winding type of a jelly-roll, or a stack type / stack folding type or the like.
  • detailed description will be omitted herein because it corresponds to the known art.
  • the unit battery module 20 may be formed of a unit battery module 20 of a minimum unit to which at least one battery cell 21 is electrically connected. At least two electrode terminals may be interconnected in series, and may be formed in a structure in which the connection parts of the electrode terminals are bent and stacked, and a cell cover formed of a rigid material such as aluminum surrounding the outer surface of the battery cell 21 (not shown in the drawings) May further include).
  • a partition member 24 may be included between two battery cells 21 stacked thereon.
  • the partition member 24 fixes the battery cell 21 and serves to protect the battery cell 21 from external shocks, vibrations and foreign substances.
  • the continuous laminated structure may have a "wh" form.
  • An additional non-slip pad (not shown) for preventing the slip of the battery cell 21 may be further formed here.
  • the pad member 25 may be further included on the partition member 24.
  • the pad member 25 may be attached to the battery cell 21 to act as a buffer of the battery cell 21 in a deformation or stacked structure.
  • each battery cell 21 has a first tab portion 22 and a second tab portion 23 for electrical connection protruding from one side thereof are formed in opposite directions on one side and the other side of the battery cell 21.
  • the first tab portion 22 and the second tab portion 23 for the electrical connection of the electrode may take a structure arranged side by side on one side of the battery cell 21, the type of the battery cell 21 And a variety of structures may be selected and applied according to the method of configuring the battery module 30.
  • the battery module 30 is formed by stacking at least one unit battery module 20, and there is no particular limitation on the number of stacking or stacking methods of the unit battery modules 20 forming the battery module 30.
  • the stacked view of the battery module 30 of the drawing shown in the present invention is only one embodiment of the battery module 30.
  • the battery module cooling apparatus 10 may be inserted and stacked between the unit battery modules 20 for cooling the battery module 30.
  • FIG. 1 is an exploded perspective view of a cooling plate assembly of a battery module cooling apparatus according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a battery module cooling apparatus and a refrigerant control unit according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of a battery module assembly according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of a battery module assembly according to an embodiment of the present invention
  • FIG. 5 is a perspective view of a combination of another battery module assembly according to an embodiment of the present invention. to be.
  • At least one cooling plate 11 is coupled to be in contact with one surface of the unit battery module 20 is formed by stacking the battery cells 21,
  • a coupling groove 11a is formed along an outer edge of one surface of the cooling plate 11, and coupled to be seated in the coupling groove 11a, and a cooling pipe 12 in which a refrigerant flows in a hollow shape,
  • An upper cover member 13 coupled to cover the cooling pipe 12 on one surface of the cooling plate 11 and a lower cover member corresponding to the upper cover member 13 and coupled to the other surface of the cooling plate 11 ( 14).
  • the cooling plate 11 constituting the battery module cooling device 10 is directly contacted with the battery cell 21 to transfer heat generated from the battery cell 21 to be formed at an outer edge of the cooling plate 11 to be described later.
  • the coolant may be cooled by the flowing cooling pipe 12.
  • the cooling plate 11 may be manufactured in a plate shape, as shown in FIG. 1, and may be stacked together in the stacking direction of the unit battery module 20 to be in surface contact with the battery cell 21.
  • the unit battery module 20 may include two battery cells 21, and the number of battery cells 21 included in the unit battery module 20 is not limited thereto. Of course. However, in consideration of the cooling efficiency and the stacking thickness of the entire battery module 30, it may be appropriate that the battery cells 21 are included in the unit battery module 20 and stacked in two units as one unit.
  • the cooling plate 11 is a member for heat transfer, and is preferably formed of a material having thermal conductivity. It may be formed of a metal material or a plastic material with thermal conductivity, and is not particularly limited to the material, it will be possible to select, apply a variety of conventionally known materials.
  • the cooling pipe 12 may be coupled to form a closed circuit at the outer portion of the cooling plate 11. It may be formed in a closed loop structure while forming one inlet and an outlet. As shown in FIG. 1, the cooling pipe 12 may be coupled to be seated in a coupling groove 11a formed along an edge of an outer portion of the cooling plate 11. By coupling the cooling pipe 12 to the coupling groove 11a formed on the cooling plate 11, the coupling and fixing of the cooling pipe 12 and the cooling plate 11 can be stably maintained. Since the cooling plate 11 is coupled to the center portion and the battery cell 21 so as to be in surface contact with each other, the cooling pipe 12 is preferably formed at the outermost portion of the cooling plate 11.
  • the cooling pipe 12 is stably coupled by forming the coupling groove 11a in the portion where the cooling pipe 12 is to be seated on the cooling plate 11.
  • the coupling groove 11a may be formed to a depth of 1/3 to 2/3 of the diameter of the cooling pipe 12.
  • the cooling pipe 12 may be coupled to the coupling groove 11a by using braze welding.
  • the cooling pipe 12 may be coupled using various methods.
  • the cooling pipe 12 has a hollow pipe shape to allow the refrigerant to flow therein.
  • a conventionally known material may be applied as the refrigerant, and in one embodiment of the present invention, water may be used as the refrigerant to use a cooling method of a water cooling method. Therefore, there is an advantage that the cooling device 10 can be driven using the coolant in the device to which the battery module 30 assembly is applied, without additional refrigerant injection.
  • the upper cover member 13 is a member coupled to the top of the assembly in which the cooling pipe 12 is coupled to one surface of the cooling plate 11.
  • the upper cover member 13 may be coupled to the cooling plate 11 to form a groove (not shown) in a corresponding position to cover the exposed cooling pipe 12. Accordingly, the upper cover member 13 may be formed to face the outer shape of the cooling pipe 12.
  • the upper cover member 13 accommodates and covers the cooling pipe 12 and functions to fix and protect the cooling pipe 12.
  • the lower cover member 14 may be coupled to the other surface of the cooling plate 11 so as to correspond to the upper cover member 13.
  • the upper cover member 13 and the lower cover member 14 may be combined to form the battery module cooling device 10.
  • Refrigerant control unit 40 may be coupled to the inlet and outlet of the cooling pipe 12, respectively.
  • the refrigerant inlet control unit includes the entire inlet of the cooling pipe 12.
  • the 41 is coupled, and the coolant discharge control unit 42 may be coupled to the cooling pipe 12 outlet as well.
  • the adjustment of the inflow or discharge of the refrigerant by the refrigerant control unit 40 can adjust the amount of refrigerant introduced and discharged by adjusting the cross-sectional area of the passage of the refrigerant control unit 40 in which the refrigerant flows, the refrigerant control unit 40 ) Can be further provided with a Baffle (adjusting device; not shown) for adjusting the refrigerant flow rate and the like.
  • a Baffle adjusting device; not shown
  • the battery module assembly 1 including the cooling device 10 includes a battery module 30 in which a plurality of unit battery modules 20 including at least one battery cell 21 are stacked. ); And a cooling device 10 inserted and coupled between the battery modules 30 to be in contact with one surface of the unit battery module 20, wherein the cooling device 10 is in surface contact with the unit battery module 20.
  • the cooling plate 11 is formed, the coupling groove 11a is formed along the outer edge of one surface of the cooling plate 11, is coupled to be seated in the coupling groove 11a, the inside of the refrigerant can flow in the hollow form
  • the cooling pipe 12, the upper cover member 13 and the upper cover member 13 are coupled to cover the cooling pipe 12 on one surface of the cooling plate 11 and the other surface of the cooling plate 11. It may include a lower cover member 14 coupled to.
  • Each component and the cooling device 10 of the battery module assembly 1 according to the present embodiment are overlapped with the corresponding components of the battery module cooling device 10 described above and the detailed description thereof will be omitted. However, in the present embodiment, with reference to FIG. 5, the overall configuration of the battery module assembly 1 will be described.
  • the battery module assembly 1 is formed by alternately stacking the battery module cooling device 10 and the unit battery module 20.
  • the side cover 60 is coupled to the front surface of the battery module assembly 1 shown in FIG. 5 together with the coolant control unit 40 to cover the front surface between the coolant inlet control unit 41 and the coolant discharge control unit 42. Can be.
  • Another side cover 70 may be coupled to the rear of the battery module assembly 1 such that a PCB (Printed Circuit Board) assembly (not shown) coupled to the battery module 30 is mounted and received therein.
  • PCB printed Circuit Board
  • the upper case 51 is coupled to protect the battery cell 21 of the unit battery module 20 exposed on the upper surface of the battery module assembly 1, the battery module assembly corresponding to the upper case 51 ( 1)
  • the lower case 52 may be coupled to the lower portion.
  • the upper case 51 and the lower case 52 prevent an operation error or failure of the battery module assembly 1 which may occur from the protection of the battery module assembly 1 device and the inflow of foreign substances.
  • the material of the upper case 51 and the lower case 52 is not particularly limited, but various members such as aluminum or other plastic materials may be selected and applied.

Abstract

A battery module cooling device according to one embodiment of the present invention comprises: a cooling plate coupled to one surface of a unit battery module, in which at least one battery cell is stacked, so as to be in a contact state therewith; a cooling pipe which includes a coupling groove formed along an external rim part of one surface of the cooling plate, is coupled with the coupling groove so as to be provided thereto, and has a hollow inner part in which a refrigerant flows; an upper cover member which is coupled with one surface of the cooling plate so as to cover the cooling pipe; and a lower cover member which corresponds to the upper cover member and is coupled with another surface of the cooling plate. According to the present invention, the heat generated by the battery module can be more effectively cooled.

Description

전지모듈 냉각장치 및 이를 포함하는 전지모듈 어셈블리Battery module cooling device and battery module assembly including the same
[관련출원의 상호참조][Cross References of Related Applications]
본 출원은 2012년 11월 13일 출원된 한국특허 출원번호 제10-2012-0128240호를 우선권 주장하고 있으며, 상기 특허 문헌의 내용은 참조를 위해 본 발명에 모두 포함된다.This application claims priority to Korean Patent Application No. 10-2012-0128240, filed November 13, 2012, the contents of which are incorporated by reference in their entirety for reference.
본 발명은 전지모듈 냉각장치 및 이를 포함하는 전지모듈 어셈블리에 관한 것이다. The present invention relates to a battery module cooling apparatus and a battery module assembly including the same.
일반적으로 이차전지는 화학에너지를 전기에너지로 변환하는 방전과 역방향인 충전과정을 통하여 반복 사용이 가능한 전지이며, 그 종류로는 니켈-카드뮴(Ni-Cd) 전지, 니켈-수소(Ni-MH) 전지, 리튬-금속 전지, 리튬-이온(Ni-Ion) 전지 및 리튬-이온 폴리머 전지(Li-Ion Polymer Battery, 이하 "LIPB"라 함) 등이 있다. In general, secondary batteries are batteries that can be repeatedly used through a reverse charging and discharging process that converts chemical energy into electrical energy. Examples thereof include nickel-cadmium (Ni-Cd) batteries and nickel-hydrogen (Ni-MH) batteries. Batteries, lithium-metal batteries, lithium-ion (Ni-Ion) batteries, and lithium-ion polymer batteries (Li-Ion Polymer Battery, hereinafter referred to as "LIPB").
이차전지는 양극, 음극, 전해질, 분리막으로 구성되며, 서로 다른 양극 및 음극 소재의 전압차이를 이용하여 전기를 저장 및 발생시킨다. 여기서, 방전이란 전압이 높은 음극에서 낮은 양극으로 전자를 이동시키는 것이며(양극의 전압 차이만큼 전기를 발생), 충전이란 전자를 다시 양극에서 음극으로 이동시키는 것으로 이때 양극물질은 전자와 리튬이온을 받아들여 원래의 금속산화물로 복귀하게 된다. 즉, 이차전지는 충전될 때 금속 원자가 분리막을 통하여 양극에서 음극으로 이동함에 따라 충전 전류가 흐르게 되고, 반대로 방전될 때 금속 원자는 음극에서 양극으로 이동하며 방전 전류가 흐르게 된다.The secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator, and stores and generates electricity by using voltage differences between different positive and negative electrode materials. Here, discharge means to move electrons from a high voltage cathode to a low anode (generates electricity by the voltage difference between the anodes), and charge moves electrons from the anode to the cathode again. The anode material receives electrons and lithium ions. To return to the original metal oxide. That is, when the secondary battery is charged, the charging current flows as the metal atoms move from the positive electrode to the negative electrode through the separator, and when discharged, the metal atoms move from the negative electrode to the positive electrode and the discharge current flows.
최근 이차전지는 IT제품, 자동차분야 및 에너지 저장분야 등에서 널리 사용됨으로써 각광받는 에너지원으로 주목받고 있다. IT제품 분야에서 이차전지는 장시간 연속사용이 가능하며, 소형화, 경량화가 요구되고 있으며, 자동차 분야에서는 고출력, 내구성 및 폭발위험을 해소하기 위한 안정성 등을 요구하고 있다. 에너지 저장분야는 풍력, 태양광 발전 등으로 생산한 잉여전력을 저장하는 것으로, 고정형으로 사용됨에 따라 보다 완화된 조건의 이차전지를 적용할 수 있다. 특히, 리튬 이차전지는 1970년대 초부터 연구개발이 진행되었고, 1990년 리튬금속 대신 탄소를 음극으로 이용한 리튬 이온전지가 개발되면서 실용화되었으며, 500회 이상의 사이클 수명과 1 내지 2시간의 짧은 충전시간을 특징으로 하여 이차전지 중 가장 판매 신장률이 높고 니켈-수소 전지에 비해서 30 내지 40% 정도 가벼워 경량화가 가능하다. 또한, 리튬 이차전지는 현존하는 이차전지 중 단위전지 전압(3.0 내지 3.7V)이 가장 높고 에너지밀도가 우수하여, 이동기기에 최적화된 특성을 가질 수 있다.Recently, secondary batteries have attracted attention as energy sources that are widely used in IT products, automobile fields, and energy storage fields. In the IT product field, secondary batteries can be used continuously for a long time, miniaturization and weight reduction are required, and the automotive field demands high power, durability, and stability to solve the explosion risk. Energy storage is to store the surplus power produced by wind, solar power, etc., can be applied to a secondary battery of a more relaxed condition as used as a fixed type. In particular, research and development of lithium secondary batteries has been in progress since the early 1970s, and since 1990, lithium ion batteries using carbon as a negative electrode instead of lithium metal have been developed, and have been used for more than 500 cycles and short charging times of 1 to 2 hours. It is characterized by the highest sales elongation among secondary batteries and a light weight of about 30 to 40% as compared to nickel-hydrogen batteries. In addition, the lithium secondary battery has the highest unit cell voltage (3.0 to 3.7V) and excellent energy density among the existing secondary batteries, and may have characteristics optimized for mobile devices.
이러한 리튬 이차전지는 일반적으로 전해액의 종류에 따라 액체 전해질 전지, 고분자 전해질 전지로 분류되며, 액체 전해질을 사용하는 전지를 리튬 이온전지라 하고, 고분자 전해질을 사용하는 전지를 리튬 폴리머전지라 한다. 또한, 리튬 이차전지의 외장재는 여러가지 종류로 형성될 수 있고, 대표적인 외장재의 종류는 원통형(Cylindrical), 각형(Prismatic), 파우치(Pouch) 등이 있다. 상기 리튬 이차전지의 외장재 내부에는 양극판, 음극판 및 그 사이에 개재되는 분리막(세퍼레이터, Separator)가 적층되거나 권취된 전극조립체가 구비된다.The lithium secondary battery is generally classified into a liquid electrolyte battery and a polymer electrolyte battery according to the type of electrolyte. A battery using a liquid electrolyte is called a lithium ion battery, and a battery using a polymer electrolyte is called a lithium polymer battery. In addition, the exterior material of the lithium secondary battery may be formed in various kinds, and typical types of exterior materials include cylindrical, prismatic, and pouches. In the exterior of the lithium secondary battery, an electrode assembly in which a positive electrode plate, a negative electrode plate, and a separator (separator) interposed therebetween is stacked or wound is provided.
종래, 이러한 이차전지의 전지셀을 포함한 전지모듈로부터 발생되는 열을 냉각시키기 위한 다양한 냉각시스템이 적용되어 왔다. 특히, 전지셀의 적층시에 간격을 두어 적층하고, 상기 간격을 이용하여 공기유로를 형성함으로써 냉각시키는 공냉방식이 있었다. 그러나, 이러한 공냉방식은 공기유로가 협소하여 냉각효율이 떨어지는 문제점과, 적층된 전지셀의 간격을 통한 냉각의 한계로 인해 전지셀로부터 발생되는 열의 효과적인 냉각 및 배출이 어려워짐에 따라 전지셀을 포함하고 있는 다양한 디바이스의 작동성능이 저하되거나, 디바이스 작동의 신뢰성이 현저히 떨어지는 심각한 문제점이 있었다. Conventionally, various cooling systems have been applied for cooling heat generated from battery modules including battery cells of such secondary batteries. In particular, there has been an air-cooling method in which battery cells are stacked at intervals at the time of lamination and cooled by forming an air flow path using the intervals. However, such an air cooling method includes a battery cell as it is difficult to effectively cool and discharge heat generated from the battery cell due to a narrow air flow path and a problem of decreasing cooling efficiency and limitation of cooling through the gap of stacked battery cells. There was a serious problem that the operating performance of the various devices are being degraded, or the reliability of device operation is significantly reduced.
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 적어도 하나 이상의 단위전지모듈이 적층된 전지모듈의 단위전지모듈 사이에 삽입, 설치되어, 전지모듈로부터 발생되는 열을 냉각시킬 수 있는 전지모듈 냉각장치 및 이를 포함한 전지모듈 어셈블리를 제공하기 위한 것이다. The present invention was created to solve the problems of the prior art as described above, at least one unit battery module is inserted and installed between the unit battery module of the stacked battery module, it is possible to cool the heat generated from the battery module The present invention provides a battery module cooling apparatus and a battery module assembly including the same.
본 발명의 일실시예에 따른 전지모듈 냉각장치는, 적어도 하나 이상이 전지셀이 적층되어 형성되는 단위전지모듈의 일면에 접촉되도록 결합되는 쿨링플레이트, 상기 쿨링플레이트 일면의 외곽 테두리부를 따라 결합홈이 형성되고, 상기 결합홈에 안착되도록 결합되며, 내부가 중공형태로 냉매가 유동할 수 있는 쿨링파이프, 상기 쿨링플레이트 일면에 상기 쿨링파이프를 커버하도록 결합되는 상부커버부재 및 상기 상부커버부재에 대응되며 상기 쿨링플레이트 타면에 결합되는 하부커버부재를 포함할 수 있다. In the battery module cooling apparatus according to an embodiment of the present invention, at least one or more cooling plates are coupled to be in contact with one surface of a unit battery module in which battery cells are stacked, and a coupling groove is formed along an outer edge of the cooling plate. It is formed and coupled to be seated in the coupling groove, the cooling pipe which can flow the refrigerant in a hollow form inside, and corresponds to the upper cover member and the upper cover member coupled to cover the cooling pipe on one surface of the cooling plate. It may include a lower cover member coupled to the other surface of the cooling plate.
본 발명의 일실시예에 따른 전지모듈 냉각장치로써, 상기 쿨링파이프의 냉매의 출입을 위한 입구부와 출구부는 상기 쿨링플레이트의 동일측면상에 나란히 형성될 수 있다. As a battery module cooling apparatus according to an embodiment of the present invention, the inlet and the outlet for the access of the refrigerant of the cooling pipe may be formed side by side on the same side of the cooling plate.
본 발명의 일실시예에 따른 전지모듈 냉각장치로써, 상기 쿨링플레이트에 형성된 상기 결합홈은 상기 쿨링파이프 직경의 1/3 내지 2/3의 깊이의 홈으로 형성될 수 있다. In the battery module cooling apparatus according to an embodiment of the present invention, the coupling groove formed in the cooling plate may be formed as a groove having a depth of 1/3 to 2/3 of the diameter of the cooling pipe.
본 발명의 일실시예에 따른 전지모듈 냉각장치로써, 상기 단위전지모듈은 두 개의 전지셀이 적층되어 형성되며, 상기 전지셀 사이에는 파티션부재가 결합될 수 있다. As a battery module cooling apparatus according to an embodiment of the present invention, the unit battery module is formed by stacking two battery cells, the partition member may be coupled between the battery cells.
본 발명의 일실시예에 따른 전지모듈 냉각장치로써, 상기 쿨링플레이트는 상기 단위전지모듈로부터 발생된 열이 전달될 수 있도록 열전도성 물질로 형성될 수 있다. As a battery module cooling apparatus according to an embodiment of the present invention, the cooling plate may be formed of a thermally conductive material so that heat generated from the unit battery module can be transferred.
본 발명의 일실시예에 따른 전지모듈 냉각장치로써, 상기 파티션부재의 둘레부분에는 결합되는 상기 전지셀의 변형 방지를 위한 패드부재가 더 형성될 수 있다. As a battery module cooling apparatus according to an embodiment of the present invention, a pad member for preventing deformation of the battery cell coupled to the peripheral portion of the partition member may be further formed.
본 발명의 일실시예에 따른 전지모듈 냉각장치로써, 상기 쿨링파이프 내부에 유동하는 냉매량을 조절하기 위해서 상기 쿨링파이프의 상기 입구부 및 출구부에 각각 냉매유입조절부와 냉매배출조절부가 형성될 수 있다. As a battery module cooling apparatus according to an embodiment of the present invention, inlet and outlet portions of the cooling pipe may be formed with a refrigerant inlet control unit and a refrigerant discharge control unit, respectively, in order to control the amount of refrigerant flowing in the cooling pipe. have.
본 발명의 일실시예에 따른 전지모듈 어셈블리는, 적어도 하나 이상의 전지셀이 포함되는 단위전지모듈이 복수개 적층되는 전지모듈 및 상기 단위전지모듈 일면에 접촉되도록 상기 전지모듈 사이에 삽입 결합되는 냉각장치를 포함하며, 상기 냉각장치는, 상기 단위전지모듈에 면 접촉되는 쿨링플레이트, 상기 쿨링플레이트 일면의 외곽 테두리부를 따라 결합홈이 형성되고, 상기 결합홈에 안착되도록 결합되며, 내부가 중공형태로 냉매가 유동할 수 있는 쿨링파이프, 상기 쿨링플레이트 일면에 상기 쿨링파이프를 커버하도록 결합되는 상부커버부재 및 상기 상부커버부재에 대응되며 상기 쿨링플레이트 타면에 결합되는 하부커버부재를 포함할 수 있다. A battery module assembly according to an embodiment of the present invention includes a battery module in which a plurality of unit battery modules including at least one battery cell are stacked and a cooling device inserted into and coupled between the battery modules so as to contact one surface of the unit battery module. The cooling device includes a cooling plate which is in surface contact with the unit cell module, a coupling groove is formed along an outer edge of one surface of the cooling plate, and is coupled to be seated in the coupling groove, and the refrigerant is hollow inside. It may include a cooling pipe that can flow, an upper cover member coupled to cover the cooling pipe on one surface of the cooling plate, and a lower cover member corresponding to the upper cover member and coupled to the other surface of the cooling plate.
본 발명의 일실시예에 따른 전지모듈 어셈블리로써, 상기 쿨링파이프의 냉매의 출입을 위한 입구부와 출구부는 상기 쿨링플레이트의 동일측면상에 나란히 형성될 수 있다. As a battery module assembly according to an embodiment of the present invention, the inlet and the outlet for the access of the refrigerant of the cooling pipe may be formed side by side on the same side of the cooling plate.
본 발명의 일실시예에 따른 전지모듈 어셈블리로써, 상기 쿨링플레이트에 형성된 상기 결합홈은 상기 쿨링파이프 직경의 1/3 내지 2/3의 깊이의 홈으로 형성될 수 있다. As a battery module assembly according to an embodiment of the present invention, the coupling groove formed in the cooling plate may be formed as a groove having a depth of 1/3 to 2/3 of the diameter of the cooling pipe.
본 발명의 일실시예에 따른 전지모듈 어셈블리로써, 상기 단위전지모듈은 두 개의 전지셀이 적층되어 형성되며, 상기 전지셀 사이에는 파티션부재가 결합될 수 있다. As a battery module assembly according to an embodiment of the present invention, the unit battery module is formed by stacking two battery cells, the partition member may be coupled between the battery cells.
본 발명의 일실시예에 따른 전지모듈 어셈블리로써, 상기 쿨링플레이트는 상기 단위전지모듈로부터 발생된 열이 상기 쿨링플레이트 외곽의 상기 쿨링파이프 쪽으로 전달될 수 있도록 열전도성 물질로 형성될 수 있다. As a battery module assembly according to an embodiment of the present invention, the cooling plate may be formed of a thermally conductive material so that heat generated from the unit battery module may be transferred to the cooling pipe outside the cooling plate.
본 발명의 일실시예에 따른 전지모듈 어셈블리로써, 상기 파티션부재의 둘레부분에는 결합되는 상기 전지셀의 변형 방지를 위한 패드부재가 더 형성될 수 있다. As a battery module assembly according to an embodiment of the present invention, a pad member for preventing deformation of the battery cell coupled to the peripheral portion of the partition member may be further formed.
본 발명의 일실시예에 따른 전지모듈 어셈블리로써, 상기 쿨링파이프 내부에 유동하는 냉매량을 조절하기 위해서 상기 쿨링파이프의 상기 입구부 및 출구부에 각각 냉매유입조절부와 냉매배출조절부가 형성될 수 있다. As a battery module assembly according to an embodiment of the present invention, a refrigerant inlet control unit and a refrigerant discharge control unit may be formed in the inlet and the outlet of the cooling pipe to control the amount of refrigerant flowing in the cooling pipe. .
본 발명의 일실시예에 따른 전지모듈 어셈블리로써, 상기 전지모듈 및 상기 냉각장치를 포함하도록 상기 전지모듈 일면에 결합되는 상부케이스 및 상기 상부커버에 대응되며 상기 전지모듈 타면에 결합되는 하부케이스를 더 포함할 수 있다. A battery module assembly according to an embodiment of the present invention, further comprising an upper case coupled to one surface of the battery module and an upper cover to include the battery module and the cooling device, and a lower case coupled to the other surface of the battery module. It may include.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in this specification and claims are not to be interpreted in a conventional and dictionary sense, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명에 따르면, 전지모듈로 발생된 열을 보다 효과적으로 냉각시킬 수 있는 효과가 있다. According to the present invention, there is an effect that can more effectively cool the heat generated by the battery module.
또한, 전지모듈을 이루는 단위전지모듈 사이에 냉각장치를 삽입하고, 냉각장치의 쿨링플레이트가 상기 단위전지모듈과 면접촉하도록 형성하여 열을 외곽부로 전달하고, 쿨링플레이트 외곽부에 형성된 쿨링파이프 내부에 유동하는 냉매를 이용하여 전달된 열을 냉각함으로써 냉각효율 및 신뢰성을 보다 향상시킬 수 있는 효과가 있다. In addition, a cooling device is inserted between the unit battery modules constituting the battery module, and the cooling plate of the cooling device is formed in surface contact with the unit battery module to transfer heat to the outer portion, and inside the cooling pipe formed at the outer side of the cooling plate. By cooling the heat transferred using the flowing refrigerant there is an effect that can further improve the cooling efficiency and reliability.
또한, 단위전지모듈에 면접촉하도록 쿨링플레이트가 형성되고, 쿨링플레이트상에 별도부재로 쿨링파이프가 결합됨으로써, 쿨링파이프 내부에 유동하는 냉매의 안정적인 보관 및 유동 신뢰성을 확보할 수 있는 효과가 있다. In addition, the cooling plate is formed to be in surface contact with the unit cell module, the cooling pipe is coupled to the separate member on the cooling plate, there is an effect that can ensure the stable storage and flow reliability of the refrigerant flowing in the cooling pipe.
또한, 쿨링플레이트상에 쿨링파이프 결합을 위한 결합홈이 형성됨으로써, 쿨링파이프와 쿨링플레이트의 결합의 정밀도를 보다 향상시켜, 쿨링파이프에 의한 냉각장치의 작동 신뢰성을 확보할 수 있는 효과가 있다. In addition, the coupling groove for coupling the cooling pipe is formed on the cooling plate, thereby improving the precision of the coupling between the cooling pipe and the cooling plate, thereby ensuring the operation reliability of the cooling device by the cooling pipe.
또한, 쿨링플레이트상에 결합된 쿨링파이프는 쿨링플레이트의 어느 일측면상에 동일방향으로 입구부와 출구부가 형성되며, 각 입구부와 출구부에 냉매조절부가 결합됨으로써, 전지모듈에서 발생된 열 및 냉각속도에 따라 적절한 전지모듈의 온도를 유지하여, 전지모듈 어셈블리의 작동 성능 및 구동의 신뢰성을 보다 향상시킬 수 있는 효과가 있다. In addition, the cooling pipe coupled to the cooling plate is formed on the inlet and outlet in the same direction on any one side of the cooling plate, the refrigerant control unit is coupled to each inlet and outlet, heat and cooling generated in the battery module Maintaining an appropriate temperature of the battery module according to the speed, there is an effect that can further improve the operating performance and reliability of the battery module assembly.
도 1은 본 발명의 일실시예에 따른 전지모듈 냉각장치의 쿨링플레이트 어셈블리의 분해 사시도;1 is an exploded perspective view of a cooling plate assembly of a battery module cooling apparatus according to an embodiment of the present invention;
도 2는 본 발명의 일실시예에 따른 전지모듈 냉각장치와 냉매조절부의 결합 사시도;2 is a perspective view of the combination of the battery module cooling device and the refrigerant control unit according to an embodiment of the present invention;
도 3은 본 발명의 일실시예에 따른 전지모듈 냉각장치의 분해 사시도;3 is an exploded perspective view of a battery module cooling apparatus according to an embodiment of the present invention;
도 4는 본 발명의 일실시예에 따른 전지모듈 어셈블리의 분해 사시도; 및4 is an exploded perspective view of a battery module assembly according to an embodiment of the present invention; And
도 5는 본 발명의 일실시예에 다른 전지모듈 어셈블리의 결합 사시도이다.5 is a perspective view of a combination of the battery module assembly according to an embodiment of the present invention.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, "일측", "타측", "일면", "타면". "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In addition, "one side", "other side", "one side", and "other side". Terms such as "first" and "second" are used to distinguish one component from another component, and the component is not limited by the terms. In the following description, detailed descriptions of related well-known techniques that may unnecessarily obscure the subject matter of the present invention will be omitted.
본 발명에 따른 전지모듈 어셈블리(1)의 전지모듈(30)을 구성하는 전지셀(21)들은 충방전이 가능한 이차전지로서 리튬이차전지 또는 니켈-수소 이차전지를 사용할 수 있으나, 반드시 여기에 한정되는 것은 아니며, 충방전이 가능한 이차전지라면 당업자에 다양한 종류의 이차전지를 선택 적용할 수 있음은 자명하다. 예를 들어,니켈-수소 이차전지는 양극에 니켈, 음극에 수소흡장합금, 전해질로 알카리 수용액을 사용한 이차전지로서 단위부피당 용량이 크므로 전기자동차(EV)나 하이브리드자동차(HEV) 등의 에너지원으로 사용하기 적합할 수 있다. 또한, 리튬이차전지는 구체적으로 양극 활물질을 LiCoO2 등의 금속 산화물과 음극활물질로 탄소 재료 등을 사용하여, 음극과 양극 사이에 다공성 고분자 분리막을 위치시키고, LiPF6 등의 리튬염을 함유한 비수성 전해액을 넣어서 제조할 수 있다. 충전시에 양극 활물질의 리튬 이온이 방출되어 음극의 탄소 층으로 삽입되고, 방전시에는 탄소 층의 리튬이온이 방출되어 양극 활물질로 삽입되며, 비수성 전해액은 음극과 양극 사이에서 리튬 이온이 이동하는 매질의 역할을 한다. 리튬이차전지는 에너지 밀도와 작동전압이 높고 보존특성이 우수하므로 전기자동차(EV)나 하이브리드자동차(HEV)의 에너지원 뿐만 아니라 다양한 전자제에 적용, 사용될 수 있다. The battery cells 21 constituting the battery module 30 of the battery module assembly 1 according to the present invention may use a lithium secondary battery or a nickel-hydrogen secondary battery as a secondary battery capable of charging and discharging. It is apparent that the secondary battery capable of charging and discharging can be selectively applied to various types of secondary batteries by those skilled in the art. For example, a nickel-hydrogen secondary battery is a secondary battery that uses nickel as a positive electrode, a hydrogen storage alloy as a negative electrode, and an alkaline aqueous solution as an electrolyte, and has a large capacity per unit volume. Therefore, an energy source such as an electric vehicle (EV) or a hybrid vehicle (HEV) It may be suitable for use as. In addition, in the lithium secondary battery, a porous polymer separator is disposed between a cathode and an anode using a metal oxide such as LiCoO 2 and a cathode active material as a cathode active material, and a lithium salt such as LiPF 6 is used . It can be prepared by adding an aqueous electrolyte solution. During charging, lithium ions of the positive electrode active material are released and inserted into the carbon layer of the negative electrode, and during discharging, lithium ions of the carbon layer are released and inserted into the positive electrode active material, and lithium ions are moved between the negative electrode and the positive electrode. Serves as a medium. Lithium secondary batteries have high energy density, high operating voltage, and excellent storage characteristics, so that they can be applied to various electronic materials as well as energy sources of electric vehicles (EVs) and hybrid vehicles (HEVs).
또한, 리튬이차전지는 전극조립체와 전극조립체를 감싸서 밀봉하는 파우치케이스를 포함하는 파우치형 전지 또는 각형 전지 등으로 형성될 수 있다. 특히, 파우치형 케이스는 알루미늄 박판과 같은 금속질 박판에 그 표면을 절연처리하여 사용될 수 있으며, 절연처리는 폴리머수지인 변성 폴리프로필렌, 예를 들어, CPP(Casted Polypropylene)가 열융착층을 이루며 도포되어 있고, 그 외측면에 나일론이나 폴리에틸렌테레프탈레이트(PET)와 같은 수지재가 형성될 수 있다. 본 구조는 리튬이차전지의 일실시예로서 설명된 것이며, 본 발명에서 이러한 구조는 전지의 형태 및 종류에 따라 당업자에 의해 적절히 변경하여 선택, 적용될 수 있음은 물론이다.In addition, the lithium secondary battery may be formed as a pouch type battery or a square battery including an electrode assembly and a pouch case surrounding and sealing the electrode assembly. In particular, the pouch type case may be used by insulating the surface of a metallic thin plate such as an aluminum thin plate, and the insulating treatment is applied by modifying polypropylene made of a polymer resin, for example, CPP (Casted Polypropylene) as a heat seal layer. On the outer surface thereof, a resin material such as nylon or polyethylene terephthalate (PET) may be formed. This structure is described as an embodiment of a lithium secondary battery, and in the present invention, such a structure can be selected and applied by appropriate changes by those skilled in the art according to the form and type of the battery.
전지셀(21)은 적어도 하나 이상이 적층되어 단위전지모듈(20)을 이루는 것으로, 단위전지모듈(20)이 적층되어 형성되는 전지모듈(30)의 콤팩트화를 이루기 위해 얇은 두께와 넓은 폭 및 길이를 가진 이차전지로 형성될 수 있다. 예를 들어, 수지층과 금속층을 포함하는 라미네이트시트의 케이스에 전극조립체가 내장되고, 전극단자를 이루는 제1 탭부(22)와 제2 탭부(23)가 돌출되어 있는 구조로 형성될 수 있으며, 특히, 알루미늄 라이네이트 시트의 파우치형 케이스에 전극조립체가 내장된 구조로 형성될 수 있다. At least one battery cell 21 is stacked to form a unit battery module 20, in order to achieve a compactness of the battery module 30 is formed by stacking the unit battery module 20 and a thin and wide width and It may be formed of a secondary battery having a length. For example, the electrode assembly may be embedded in a case of the laminate sheet including the resin layer and the metal layer, and may have a structure in which the first tab portion 22 and the second tab portion 23 protruding from the electrode terminal protrude. In particular, the electrode assembly may be formed in a pouch-type case of an aluminum laminate sheet.
여기서, 전극조립체는 양극, 음극 및 분리막을 포함하여 형성되며, 양극과 음극이 적층되는 사이에 분리막이 형성된다. 양극, 음극 및 분리막을 결합하는 방법에 따라, 젤리-롤(Jelly-roll)로 권취된 타입(Winding type)이거나, 스택형/ 스택폴딩형 등으로 형성될 수 있다. 이하 자세한 설명은 종래의 공지 기술레 해당하므로 여기서는 생략하기로 한다.Herein, the electrode assembly is formed to include an anode, a cathode, and a separator, and a separator is formed between the anode and the cathode. Depending on the method of bonding the positive electrode, the negative electrode, and the separator, it may be formed in a winding type of a jelly-roll, or a stack type / stack folding type or the like. Hereinafter, detailed description will be omitted herein because it corresponds to the known art.
단위전지모듈(20)은 적어도 하나 이상의 전지셀(21)들이 전기적으로 연결되는 최소단위의 단위전지모듈(20)로 형성될 수 있다. 적어도 둘 이상의 전극단자들이 직렬로 상호 연결되고, 전극단자들의 연결부가 절곡되어 적층되는 구조로 형성될 수 있으며, 전지셀(21)의 외면을 감싸는 알루미늄 등의 강성있는 재질로 형성된 셀커버(도면 미도시)를 더 포함할 수 있다. The unit battery module 20 may be formed of a unit battery module 20 of a minimum unit to which at least one battery cell 21 is electrically connected. At least two electrode terminals may be interconnected in series, and may be formed in a structure in which the connection parts of the electrode terminals are bent and stacked, and a cell cover formed of a rigid material such as aluminum surrounding the outer surface of the battery cell 21 (not shown in the drawings) May further include).
도 4에 도시된 바와 같이, 두 개의 전지셀(21)이 적층되는 면 사이에 파티션부재(24)를 포함하여 결합할 수 있다. 파티션부재(24)는 전지셀(21)을 고정하고 외부충격이나 진동 및 이물질로부터 전지셀(21)을 보호하는 역할을 한다. 일반적으로 연속 적층 구조에서는 "ㅁ"자 형태를 가질 수 있다. 여기에는 추가적으로 전지셀(21)의 미끄럼방지를 위한 미끄럼방지패드(미도시)가 더 형성될 수 있다. 파티션부재(24)상에는 패드부재(25)가 더 포함될 수 있다. 여기서, 패드부재(25)는 전지셀(21)에 부착되어 전지셀(21)의 변형이나 적층구조에서의 완충역할을 할 수 있다. As shown in FIG. 4, a partition member 24 may be included between two battery cells 21 stacked thereon. The partition member 24 fixes the battery cell 21 and serves to protect the battery cell 21 from external shocks, vibrations and foreign substances. In general, the continuous laminated structure may have a "wh" form. An additional non-slip pad (not shown) for preventing the slip of the battery cell 21 may be further formed here. The pad member 25 may be further included on the partition member 24. Here, the pad member 25 may be attached to the battery cell 21 to act as a buffer of the battery cell 21 in a deformation or stacked structure.
다만, 단위전지모듈(20)에 포함되는 전지셀(21)의 수는 여기에 한정되는 것은 아니고, 전지셀(21)의 적층면 사이에 파티션부재(24) 또는 패드부재(25)는 반드시 필요한 구성은 아니므로 생략할 수 있고, 기타 전지셀(21)의 결합의 위치나 기타 결합 신뢰성을 위한 별도 부재가 포함될 수 있음은 자명하다. 각 전지셀(21)에는 일측면으로터 돌출된 전기적 연결을 위한 제1 탭부(22) 및 제2 탭부(23)가 전지셀(21)의 일측면과 타측면에 상호 반대방향으로 형성된다. 도면에 도시되지 않았지만, 전극의 전기적 연결을 위한 제1 탭부(22)와 제2 탭부(23)는 전지셀(21) 일측면상에 나란히 배치되는 구조를 취할 수 있으며, 전지셀(21)의 종류 및 전지모듈(30)을 구성하는 방법에 따라 다양한 구조의 선택, 적용이 가능할 것이다. However, the number of battery cells 21 included in the unit battery module 20 is not limited thereto, and the partition member 24 or the pad member 25 is necessary between the stacked surfaces of the battery cells 21. Since it is not a configuration, it can be omitted, and it is apparent that a separate member for the coupling position or other coupling reliability of the other battery cells 21 may be included. Each battery cell 21 has a first tab portion 22 and a second tab portion 23 for electrical connection protruding from one side thereof are formed in opposite directions on one side and the other side of the battery cell 21. Although not shown in the drawing, the first tab portion 22 and the second tab portion 23 for the electrical connection of the electrode may take a structure arranged side by side on one side of the battery cell 21, the type of the battery cell 21 And a variety of structures may be selected and applied according to the method of configuring the battery module 30.
전지모듈(30)은 적어도 하나 이상의 단위전지모듈(20)이 적층되어 형성되는 것으로, 여기서, 전지모듈(30)을 형성하는 단위전지모듈(20)의 적층개수 또는 적층방법에는 특별한 제한이 없으며, 본 발명에서 도시한 도면의 전지모듈(30)의 적층모습은 전지모듈(30)에 대한 하나의 실시예에 불과하다. 특히, 본 발명에서는 전지모듈(30)의 냉각을 위해 단위전지모듈(20) 사이에 각각 전지모듈 냉각장치(10)가 삽입되어 적층될 수 있다. The battery module 30 is formed by stacking at least one unit battery module 20, and there is no particular limitation on the number of stacking or stacking methods of the unit battery modules 20 forming the battery module 30. The stacked view of the battery module 30 of the drawing shown in the present invention is only one embodiment of the battery module 30. In particular, in the present invention, the battery module cooling apparatus 10 may be inserted and stacked between the unit battery modules 20 for cooling the battery module 30.
이하, 전지모듈 냉각장치(10) 및 이를 포함한 전지모듈 어셈블리(1)에 대해 도면을 참조하여 자세히 설명하기로 한다. Hereinafter, the battery module cooling apparatus 10 and the battery module assembly 1 including the same will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 전지모듈 냉각장치의 쿨링플레이트 어셈블리의 분해 사시도, 도 2는 본 발명의 일실시예에 따른 전지모듈 냉각장치와 냉매조절부의 결합 사시도, 도 3은 본 발명의 일실시예에 따른 전지모듈 냉각장치의 분해 사시도, 도 4는 본 발명의 일실시예에 따른 전지모듈 어셈블리의 분해 사시도이고, 도 5는 본 발명의 일실시예에 다른 전지모듈 어셈블리의 결합 사시도이다.1 is an exploded perspective view of a cooling plate assembly of a battery module cooling apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view of a battery module cooling apparatus and a refrigerant control unit according to an embodiment of the present invention, and FIG. 4 is an exploded perspective view of a battery module assembly according to an embodiment of the present invention, FIG. 4 is an exploded perspective view of a battery module assembly according to an embodiment of the present invention, and FIG. 5 is a perspective view of a combination of another battery module assembly according to an embodiment of the present invention. to be.
본 발명의 일실시예에 따른 전지모듈 냉각장치(10)는, 적어도 하나 이상이 전지셀(21)이 적층되어 형성되는 단위전지모듈(20)의 일면에 접촉되도록 결합되는 쿨링플레이트(11), 상기 쿨링플레이트(11) 일면의 외곽 테두리부를 따라 결합홈(11a)이 형성되고, 상기 결합홈(11a)에 안착되도록 결합되며, 내부가 중공형태로 냉매가 유동할 수 있는 쿨링파이프(12), 상기 쿨링플레이트(11) 일면에 상기 쿨링파이프(12)를 커버하도록 결합되는 상부커버부재(13) 및 상기 상부커버부재(13)에 대응되며 상기 쿨링플레이트(11) 타면에 결합되는 하부커버부재(14)를 포함할 수 있다. Battery module cooling apparatus 10 according to an embodiment of the present invention, at least one cooling plate 11 is coupled to be in contact with one surface of the unit battery module 20 is formed by stacking the battery cells 21, A coupling groove 11a is formed along an outer edge of one surface of the cooling plate 11, and coupled to be seated in the coupling groove 11a, and a cooling pipe 12 in which a refrigerant flows in a hollow shape, An upper cover member 13 coupled to cover the cooling pipe 12 on one surface of the cooling plate 11 and a lower cover member corresponding to the upper cover member 13 and coupled to the other surface of the cooling plate 11 ( 14).
전지모듈 냉각장치(10)를 이루는 쿨링플레이트(11)는 직접적으로 전지셀(21)에 접촉되어 전지셀(21)로부터 발생되는 열이 전달됨으로써, 후술하는 쿨링플레이트(11) 외곽 테두리부에 형성된 냉매가 유동하는 쿨링파이프(12)에 의해 냉각될 수 있다. 쿨링플레이트(11)는, 도 1에 도시된 바와 같이, 판형으로 제작될 수 있으며, 전지셀(21)에 면접촉 하도록 단위전지모듈(20)의 적층방향으로 함께 적층될 수 있다. 단위전지모듈(20)은 상술한 바와 같이, 두 개의 전지셀(21)이 포함되어 형성될 수 있으며, 단위전지모듈(20)에 포함되는 전지셀(21)의 수는 여기에 제한되지 않음은 물론이다. 그러나, 냉각효율과 전지모듈(30) 전체의 적층두께를 고려하여 전지셀(21)은 2개를 하나의 단위로 하여 단위전지모듈(20)에 포함되어 적층되는 것이 적절할 것이다. 쿨링플레이트(11)는 열전달을 위한 부재로써, 열전도도가 있는 물질로 형성되는 것이 바람직하다. 열전도도가 있는 금속재질 또는 플라스틱재질로 형성될 수 있으며 그 재질에 특별한 제한을 두는 것은 아니며, 종래 공지의 다양한 물질의 선택, 적용이 가능할 것이다. The cooling plate 11 constituting the battery module cooling device 10 is directly contacted with the battery cell 21 to transfer heat generated from the battery cell 21 to be formed at an outer edge of the cooling plate 11 to be described later. The coolant may be cooled by the flowing cooling pipe 12. The cooling plate 11 may be manufactured in a plate shape, as shown in FIG. 1, and may be stacked together in the stacking direction of the unit battery module 20 to be in surface contact with the battery cell 21. As described above, the unit battery module 20 may include two battery cells 21, and the number of battery cells 21 included in the unit battery module 20 is not limited thereto. Of course. However, in consideration of the cooling efficiency and the stacking thickness of the entire battery module 30, it may be appropriate that the battery cells 21 are included in the unit battery module 20 and stacked in two units as one unit. The cooling plate 11 is a member for heat transfer, and is preferably formed of a material having thermal conductivity. It may be formed of a metal material or a plastic material with thermal conductivity, and is not particularly limited to the material, it will be possible to select, apply a variety of conventionally known materials.
쿨링파이프(12)는 쿨링플레이트(11)의 외곽부에 폐회로를 형성하도록 결합될 수 있다. 하나의 입구부와 출구부를 형성하면서 폐루프 구조로 형성될 수 있다. 도 1에 도시된 바와 같이, 쿨링파이프(12)는 쿨링플레이트(11)의 외곽부에 테두리를 따라 형성된 결합홈(11a)에 안착되도록 결합될 수 있다. 쿨링플레이트(11)상에 형성된 결합홈(11a)에 쿨링파이프(12)를 결합시킴으로써, 쿨링파이프(12)와 쿨링플레이트(11)의 결합 및 고정을 안정적으로 유지시킬 수 있다. 쿨링플레이트(11)는 그 중앙부와 전지셀(21)이 상호 면접촉 하도록 결합됨으로써 쿨링파이프(12)는 쿨링플레이트(11)의 최외곽에 형성되는 것이 바람직하다. 즉, 쿨링파이프(12)가 쿨링플레이트(11)상에 결합될 때, 그 결합이 와해되거나, 쿨링파이프(12)가 미끄러져 그 위치가 쿨링플레이트(11)상에 고정되지 않으면 전지모듈(30)의 냉각 신뢰성이 떨어지는 문제점이 발생될 수 있다. 그러므로, 쿨링플레이트(11)상에 쿨링파이프(12)가 안착될 부분에 결합홈(11a)을 형성함으로써 쿨링파이프(12)를 안정적으로 결합하는 것이다. 여기서, 결합홈(11a)은 쿨링파이프(12)의 직경의 1/3 내지 2/3의 깊이로 형성될 수 있다. 쿨링플레이트(11)상에 형성된 결합홈(11a)은 쿨링파이프(12)의 직경 1/3 내지 2/3의 깊이로 형성될 때, 쿨링플레이트(11)의 강성을 유지함과 동시에 쿨링파이프(12)를 쿨링플레이트(11)와의 결합력을 강화시킬 수 있다. 다만, 이는 본 발명의 일실시예에 따른 결합홈(11a)의 형성 깊이의 범위이며, 다양한 실시예가 적용될 수 있음은 물론이다. 여기서, 쿨링파이프(12)는 결합홈(11a)에 브레이즈 용접(braze welding)을 이용하여 결합될 수 있으며, 이외에도 다양한 방법을 이용한 결합이 가능할 것이다. The cooling pipe 12 may be coupled to form a closed circuit at the outer portion of the cooling plate 11. It may be formed in a closed loop structure while forming one inlet and an outlet. As shown in FIG. 1, the cooling pipe 12 may be coupled to be seated in a coupling groove 11a formed along an edge of an outer portion of the cooling plate 11. By coupling the cooling pipe 12 to the coupling groove 11a formed on the cooling plate 11, the coupling and fixing of the cooling pipe 12 and the cooling plate 11 can be stably maintained. Since the cooling plate 11 is coupled to the center portion and the battery cell 21 so as to be in surface contact with each other, the cooling pipe 12 is preferably formed at the outermost portion of the cooling plate 11. That is, when the cooling pipe 12 is coupled to the cooling plate 11, the coupling is broken, or if the cooling pipe 12 is slipped and its position is not fixed on the cooling plate 11, the battery module 30 A problem of low cooling reliability of a) may occur. Therefore, the cooling pipe 12 is stably coupled by forming the coupling groove 11a in the portion where the cooling pipe 12 is to be seated on the cooling plate 11. Here, the coupling groove 11a may be formed to a depth of 1/3 to 2/3 of the diameter of the cooling pipe 12. When the coupling groove 11a formed on the cooling plate 11 is formed to a depth of 1/3 to 2/3 of the diameter of the cooling pipe 12, the cooling pipe 11 maintains the rigidity of the cooling plate 11 and at the same time. ) Can enhance the bonding force with the cooling plate (11). However, this is a range of the forming depth of the coupling groove (11a) according to an embodiment of the present invention, of course, various embodiments can be applied. Here, the cooling pipe 12 may be coupled to the coupling groove 11a by using braze welding. In addition, the cooling pipe 12 may be coupled using various methods.
쿨링파이프(12)는 내부에 냉매가 유동할 수 있도록 중공 형태의 파이프 형상을 갖는다. 냉매로는 종래 공지의 물질이 적용될 수 있으며, 본 발명의 일실시예에서는 수냉방식의 냉각방식을 사용하기 위해 물을 냉매로 사용할 수 있다. 그러므로 별도의 냉매 주입 없이, 전지모듈(30) 어셈블리가 적용된 디바이스 내의 냉각수 등을 사용하여 냉각장치(10)를 구동할 수 있는 이점이 있다. The cooling pipe 12 has a hollow pipe shape to allow the refrigerant to flow therein. A conventionally known material may be applied as the refrigerant, and in one embodiment of the present invention, water may be used as the refrigerant to use a cooling method of a water cooling method. Therefore, there is an advantage that the cooling device 10 can be driven using the coolant in the device to which the battery module 30 assembly is applied, without additional refrigerant injection.
상부커버부재(13)는, 도 3에 도시된 바와 같이, 쿨링플레이트(11) 일면에 쿨링파이프(12)가 결합된 조립체의 상부에서 결합되는 부재이다. 상부커버부재(13)는 쿨링플레이트(11)상에 결합되어 노출된 쿨링파이프(12)를 커버하도록 대응위치에 홈(도면 미도시)이 형성될 수 있다. 따라서, 상부커버부재(13)는 쿨링파이프(12)의 외곽형상에 마주하도록 형성되는 것이 바람직할 것이다. 상부커버부재(13)는 쿨링파이프(12)를 내부에 수용, 커버하여 쿨링파이프(12)를 고정 및 보호할 수 있는 기능을 한다. As shown in FIG. 3, the upper cover member 13 is a member coupled to the top of the assembly in which the cooling pipe 12 is coupled to one surface of the cooling plate 11. The upper cover member 13 may be coupled to the cooling plate 11 to form a groove (not shown) in a corresponding position to cover the exposed cooling pipe 12. Accordingly, the upper cover member 13 may be formed to face the outer shape of the cooling pipe 12. The upper cover member 13 accommodates and covers the cooling pipe 12 and functions to fix and protect the cooling pipe 12.
하부커버부재(14)는 상부커버부재(13)에 대응되도록, 쿨링플레이트(11)의 타면에 결합될 수 있다. 상부커버부재(13)와 하부커버부재(14)가 결합하여 전지모듈 냉각장치(10)를 형성할 수 있다. The lower cover member 14 may be coupled to the other surface of the cooling plate 11 so as to correspond to the upper cover member 13. The upper cover member 13 and the lower cover member 14 may be combined to form the battery module cooling device 10.
냉매조절부(40)는 쿨링파이프(12)의 입구부와 출구부에 각각 결합될 수 있다. 특히, 도 2에 도시된 바와 같이, 적어도 하나 이상의 냉각장치(10)가 단위전지모듈(20)의 적층면사이에 형성될 때, 쿨링파이프(12)의 입구부 전체를 포함하도록 냉매유입조절부(41)가 결합되고, 쿨링파이프(12) 출구부에도 동일하게 냉매배출조절부(42)를 결합할 수 있다. 냉매조절부(40)를 통해 전지모듈(30)의 냉각속도 및 냉각정도를 제어부(도면 미도시)에서 조절하여 적절하게 전지모듈(30)이 냉각될 수 있도록 제어할 수 있다. 특히, 냉매조절부(40)에 의한 냉매의 유입량이나 배출량의 조절은 냉매가 유동하는 냉매조절부(40)의 통로의 단면적을 조절함으로써 유입 및 배출되는 냉매량을 조절할 수 있으며, 냉매조절부(40)상에 냉매유량 등을 조절하기 위한 Baffle(조절장치; 미도시)을 추가로 구비할 수 있음은 물론이다. 이러한 냉매조절부(40)를 통해 상기 설명한 바와 같이, 전지모듈 어셈블리(1)의 온도상승에 따른 적절한 냉각 시기의 선택 및 냉각의 정도를 적절하게 조절할 수 있는 것이다. Refrigerant control unit 40 may be coupled to the inlet and outlet of the cooling pipe 12, respectively. In particular, as shown in FIG. 2, when at least one cooling device 10 is formed between the stacked surfaces of the unit cell module 20, the refrigerant inlet control unit includes the entire inlet of the cooling pipe 12. The 41 is coupled, and the coolant discharge control unit 42 may be coupled to the cooling pipe 12 outlet as well. By controlling the cooling rate and the degree of cooling of the battery module 30 through the refrigerant control unit 40 in the control unit (not shown) it can be controlled to properly cool the battery module 30. In particular, the adjustment of the inflow or discharge of the refrigerant by the refrigerant control unit 40 can adjust the amount of refrigerant introduced and discharged by adjusting the cross-sectional area of the passage of the refrigerant control unit 40 in which the refrigerant flows, the refrigerant control unit 40 ) Can be further provided with a Baffle (adjusting device; not shown) for adjusting the refrigerant flow rate and the like. As described above through the refrigerant control unit 40, it is possible to appropriately control the selection of the appropriate cooling time and the degree of cooling according to the temperature rise of the battery module assembly (1).
본 발명의 일실시예에 따른 상기 냉각장치(10)가 포함된 전지모듈 어셈블리(1)는, 적어도 하나 이상의 전지셀(21)이 포함되는 단위전지모듈(20)이 복수개 적층되는 전지모듈(30); 및 상기 단위전지모듈(20) 일면에 접촉되도록 상기 전지모듈(30) 사이에 삽입 결합되는 냉각장치(10)를 포함하며, 상기 냉각장치(10)는, 상기 단위전지모듈(20)에 면 접촉되는 쿨링플레이트(11), 상기 쿨링플레이트(11) 일면의 외곽 테두리부를 따라 결합홈(11a)이 형성되고, 상기 결합홈(11a)에 안착 되도록 결합되며, 내부가 중공형태로 냉매가 유동할 수 있는 쿨링파이프(12), 상기 쿨링플레이트(11) 일면에 상기 쿨링파이프(12)를 커버하도록 결합되는 상부커버부재(13) 및 상기 상부커버부재(13)에 대응되며 상기 쿨링플레이트(11) 타면에 결합되는 하부커버부재(14)를 포함할 수 있다. The battery module assembly 1 including the cooling device 10 according to an embodiment of the present invention includes a battery module 30 in which a plurality of unit battery modules 20 including at least one battery cell 21 are stacked. ); And a cooling device 10 inserted and coupled between the battery modules 30 to be in contact with one surface of the unit battery module 20, wherein the cooling device 10 is in surface contact with the unit battery module 20. The cooling plate 11 is formed, the coupling groove 11a is formed along the outer edge of one surface of the cooling plate 11, is coupled to be seated in the coupling groove 11a, the inside of the refrigerant can flow in the hollow form The cooling pipe 12, the upper cover member 13 and the upper cover member 13 are coupled to cover the cooling pipe 12 on one surface of the cooling plate 11 and the other surface of the cooling plate 11. It may include a lower cover member 14 coupled to.
본 실시예에 따른 전지모듈 어셈블리(1)의 각 구성 및 냉각장치(10)는 상기에서 설명한 전지모듈 냉각장치(10)의 대응되는 각 구성과 그 설명이 중복되므로 자세한 설명은 생략한다. 다만, 본 실시예에서는 도 5를 참조하여, 전지모듈 어셈블리(1) 전체 구성에 대해 설명한다. Each component and the cooling device 10 of the battery module assembly 1 according to the present embodiment are overlapped with the corresponding components of the battery module cooling device 10 described above and the detailed description thereof will be omitted. However, in the present embodiment, with reference to FIG. 5, the overall configuration of the battery module assembly 1 will be described.
도 5에 도시된 바와 같이, 전지모듈 어셈블리(1)는 전지모듈 냉각장치(10)와 단위전지모듈(20)이 서로 번갈아가며 적층되어 형성된다. 도 5에 도시된 전지모듈 어셈블리(1) 전면에는 냉매조절부(40)와 함께, 냉매유입조절부(41)와 냉매배출조절부(42) 사이에 전면을 커버하도록 사이드커버(60)가 결합될 수 있다. 전지모듈 어셈블리(1) 후면에는 전지모듈(30)과 결합되는 PCB(Printed Circuit Board)어셈블리(도면 미도시)가 내부에 장착, 수용되도록 외부에 또 다른 사이드커버(70)가 결합될 수 있다. As shown in FIG. 5, the battery module assembly 1 is formed by alternately stacking the battery module cooling device 10 and the unit battery module 20. The side cover 60 is coupled to the front surface of the battery module assembly 1 shown in FIG. 5 together with the coolant control unit 40 to cover the front surface between the coolant inlet control unit 41 and the coolant discharge control unit 42. Can be. Another side cover 70 may be coupled to the rear of the battery module assembly 1 such that a PCB (Printed Circuit Board) assembly (not shown) coupled to the battery module 30 is mounted and received therein.
또한, 전지모듈 어셈블리(1) 상부면에 노출되는 단위전지모듈(20)의 전지셀(21)을 보호하기 위해 상부케이스(51)가 결합되고, 상부케이스(51)에 대응되는 전지모듈 어셈블리(1) 하부에 하부케이스(52)가 결합될 수 있다. 상부케이스(51) 및 하부케이스(52)는 전지모듈 어셈블리(1) 장치의 보호 및 이물질의 유입으로부터 발생될 수 있는 전지모듈 어셈블리(1)의 작동오류나 고장을 방지한다. 상부케이스(51) 및 하부케이스(52)의 재질에는 특별한 제한을 두지 않지만, 알루미늄이나 기타 플라스틱 재질 등 다양한 부재의 선택, 적용이 가능할 것이다. In addition, the upper case 51 is coupled to protect the battery cell 21 of the unit battery module 20 exposed on the upper surface of the battery module assembly 1, the battery module assembly corresponding to the upper case 51 ( 1) The lower case 52 may be coupled to the lower portion. The upper case 51 and the lower case 52 prevent an operation error or failure of the battery module assembly 1 which may occur from the protection of the battery module assembly 1 device and the inflow of foreign substances. The material of the upper case 51 and the lower case 52 is not particularly limited, but various members such as aluminum or other plastic materials may be selected and applied.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명에 따른 전지모듈 냉각장치 및 이를 포함하는 전지모듈 어셈블리는 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다. Although the present invention has been described in detail through specific embodiments, this is to specifically describe the present invention, the battery module cooling apparatus and the battery module assembly including the same according to the present invention are not limited thereto, and the technical spirit of the present invention. It will be apparent that modifications and improvements are possible by those skilled in the art.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.
[부호의 설명][Description of the code]
1: 전지모듈 어셈블리 1: battery module assembly
10: 전지모듈 냉각장치10: battery module cooling device
11: 쿨링플레이트 11: cooling plate
11a: 결합홈11a: coupling groove
12: 쿨링파이프 12: cooling pipe
13: 상부커버부재13: upper cover member
14: 하부커버부재 14: lower cover member
20: 단위전지모듈20: unit battery module
21: 전지셀 21: battery cell
22: 제1 탭부22: first tab portion
23: 제2 탭부 23: second tab portion
24: 파티션부재24: partition member
25: 패드 25: pad
30: 전지모듈30: battery module
40: 냉매조절부 40: refrigerant control unit
41: 냉매유입조절부41: refrigerant flow control unit
42: 냉매배출조절부 42: refrigerant discharge control unit
51: 상부케이스51: upper case
52: 하부케이스 52: lower case
60: 사이드커버60: side cover
70: 사이드커버70: side cover

Claims (15)

  1. 적어도 하나 이상이 전지셀이 적층되어 형성되는 단위전지모듈의 일면에 접촉되도록 결합되는 쿨링플레이트;At least one cooling plate coupled to be in contact with one surface of a unit battery module in which battery cells are stacked;
    상기 쿨링플레이트 일면의 외곽 테두리부를 따라 결합홈이 형성되고, 상기 결합홈에 안착되도록 결합되며, 내부가 중공형태로 냉매가 유동할 수 있는 쿨링파이프;A coupling groove is formed along an outer edge of one surface of the cooling plate, coupled to be seated in the coupling groove, and a cooling pipe in which a refrigerant flows in a hollow shape;
    상기 쿨링플레이트 일면에 상기 쿨링파이프를 커버하도록 결합되는 상부커버부재 및 An upper cover member coupled to one surface of the cooling plate to cover the cooling pipe;
    상기 상부커버부재에 대응되며 상기 쿨링플레이트 타면에 결합되는 하부커버부재를 포함하는 전지모듈 냉각장치. And a lower cover member corresponding to the upper cover member and coupled to the other surface of the cooling plate.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 쿨링파이프의 냉매의 출입을 위한 입구부와 출구부는 상기 쿨링플레이트의 동일측면상에 나란히 형성되는 전지모듈 냉각장치. The battery module cooling apparatus of the cooling pipe is formed in parallel with the inlet and the outlet for the entry and exit of the cooling plate on the same side of the cooling plate.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 쿨링플레이트에 형성된 상기 결합홈은 상기 쿨링파이프 직경의 1/3 내지 2/3의 깊이의 홈으로 형성되는 전지모듈 냉각장치. The coupling groove formed in the cooling plate is a battery module cooling device is formed of a groove of a depth of 1/3 to 2/3 of the diameter of the cooling pipe.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 단위전지모듈은 두 개의 전지셀이 적층되어 형성되며, 상기 전지셀 사이에는 파티션부재가 결합되는 전지모듈 냉각장치.The unit battery module is formed by stacking two battery cells, the battery module cooling device coupled to the partition member between the battery cells.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 쿨링플레이트는 상기 단위전지모듈로부터 발생된 열이 전달될 수 있도록 열전도성 물질로 형성되는 전지모듈 냉각장치. The cooling plate is a battery module cooling device is formed of a thermally conductive material so that the heat generated from the unit battery module can be transferred.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 파티션부재의 둘레부분에는 결합되는 상기 전지셀의 변형방지를 위한 패드부재가 더 형성되는 전지모듈 냉각장치. Battery module cooling apparatus further comprises a pad member for preventing deformation of the battery cell is coupled to the peripheral portion of the partition member.
  7. 청구항 2에 있어서,The method according to claim 2,
    상기 쿨링파이프 내부에 유동하는 냉매량을 조절하기 위해서 상기 쿨링파이프의 상기 입구부 및 출구부에 각각 냉매유입조절부와 냉매배출조절부가 형성되는 전지모듈 냉각장치. And a refrigerant inlet control unit and a refrigerant discharge control unit, respectively, in the inlet and the outlet of the cooling pipe in order to control the amount of refrigerant flowing in the cooling pipe.
  8. 적어도 하나 이상의 전지셀이 포함되는 단위전지모듈이 복수개 적층되는 전지모듈; 및A battery module in which a plurality of unit battery modules including at least one battery cell are stacked; And
    상기 단위전지모듈 일면에 접촉되도록 상기 전지모듈 사이에 삽입 결합되는 냉각장치를 포함하며, And a cooling device inserted into and coupled between the battery modules so as to contact one surface of the unit battery module.
    상기 냉각장치는,The cooling device,
    상기 단위전지모듈에 면 접촉되는 쿨링플레이트;A cooling plate in surface contact with the unit battery module;
    상기 쿨링플레이트 일면의 외곽 테두리부를 따라 결합홈이 형성되고, 상기 결합홈에 안착되도록 결합되며, 내부가 중공형태로 냉매가 유동할 수 있는 쿨링파이프;A coupling groove is formed along an outer edge of one surface of the cooling plate, coupled to be seated in the coupling groove, and a cooling pipe in which a refrigerant flows in a hollow shape;
    상기 쿨링플레이트 일면에 상기 쿨링파이프를 커버하도록 결합되는 상부커버부재 및 An upper cover member coupled to one surface of the cooling plate to cover the cooling pipe;
    상기 상부커버부재에 대응되며 상기 쿨링플레이트 타면에 결합되는 하부커버부재를 포함하는 전지모듈 어셈블리.And a lower cover member corresponding to the upper cover member and coupled to the other surface of the cooling plate.
  9. 청구항 8에 있어서, The method according to claim 8,
    상기 쿨링파이프의 냉매의 출입을 위한 입구부와 출구부는 상기 쿨링플레이트의 동일측면상에 나란히 형성되는 전지모듈 어셈블리.Battery module assembly formed in parallel with the inlet and outlet for the inlet and outlet of the cooling pipe of the cooling pipe on the same side of the cooling plate.
  10. 청구항 8에 있어서,The method according to claim 8,
    상기 쿨링플레이트에 형성된 상기 결합홈은 상기 쿨링파이프 직경의 1/3 내지 2/3의 깊이의 홈으로 형성되는 전지모듈 어셈블리. The coupling groove formed in the cooling plate is formed of a battery module assembly of the groove depth of 1/3 to 2/3 of the diameter of the cooling pipe.
  11. 청구항 8에 있어서,The method according to claim 8,
    상기 단위전지모듈은 두 개의 전지셀이 적층되어 형성되며, 상기 전지셀 사이에는 파티션부재가 결합되는 전지모듈 어셈블리.The unit battery module is formed by stacking two battery cells, a battery module assembly coupled between the battery cells.
  12. 청구항 8에 있어서,The method according to claim 8,
    상기 쿨링플레이트는 상기 단위전지모듈로부터 발생된 열이 상기 쿨링플레이트 외곽의 상기 쿨링파이프 쪽으로 전달될 수 있도록 열전도성 물질로 형성되는 전지모듈 어셈블리.The cooling plate is a battery module assembly formed of a thermally conductive material so that the heat generated from the unit battery module can be transferred to the cooling pipe outside the cooling plate.
  13. 청구항 11에 있어서,The method according to claim 11,
    상기 파티션부재의 둘레부분에는 결합되는 상기 전지셀의 변형 방지를 위한 패드부재가 더 형성되는 전지모듈 어셈블리.Battery module assembly further comprises a pad member for preventing deformation of the battery cell is coupled to the peripheral portion of the partition member.
  14. 청구항 9에 있어서,The method according to claim 9,
    상기 쿨링파이프 내부에 유동하는 냉매량을 조절하기 위해서 상기 쿨링파이프의 상기 입구부 및 출구부에 각각 냉매유입조절부와 냉매배출조절부 형성되는 전지모듈 어셈블리.And a refrigerant inlet control unit and a refrigerant discharge control unit, respectively, in the inlet and the outlet of the cooling pipe to control the amount of refrigerant flowing in the cooling pipe.
  15. 청구항 8에 있어서, The method according to claim 8,
    상기 전지모듈 및 상기 냉각장치를 포함하도록To include the battery module and the cooling device
    상기 전지모듈 일면에 결합되는 상부케이스 및An upper case coupled to one surface of the battery module;
    상기 상부커버에 대응되며 상기 전지모듈 타면에 결합되는 하부케이스를 더 포함하는 전지모듈 어셈블리.And a lower case corresponding to the upper cover and coupled to the other surface of the battery module.
PCT/KR2013/010287 2012-11-13 2013-11-13 Battery module cooling device and battery module assembly comprising same WO2014077578A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0128240 2012-11-13
KR1020120128240A KR101983391B1 (en) 2012-11-13 2012-11-13 Cooling Device for Battery Module and Battery Module Assembly having the same

Publications (1)

Publication Number Publication Date
WO2014077578A1 true WO2014077578A1 (en) 2014-05-22

Family

ID=50731428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010287 WO2014077578A1 (en) 2012-11-13 2013-11-13 Battery module cooling device and battery module assembly comprising same

Country Status (2)

Country Link
KR (1) KR101983391B1 (en)
WO (1) WO2014077578A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111357150A (en) * 2017-12-11 2020-06-30 三星Sdi株式会社 Battery module
US10720678B2 (en) 2015-12-04 2020-07-21 Lg Chem, Ltd. Indirect cooling system capable of uniformly cooling battery modules and battery pack including the same
CN114586222A (en) * 2020-04-29 2022-06-03 株式会社Lg新能源 Battery module and battery pack including the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324346B1 (en) 2015-04-29 2021-11-10 삼성에스디아이 주식회사 Cooling system for battery
US10249920B2 (en) * 2015-05-26 2019-04-02 Lg Chem, Ltd. Battery cell assembly
KR102082385B1 (en) * 2015-12-08 2020-02-27 주식회사 엘지화학 Cooling Member for Battery Module Comprising Member for Providing Coolant Flow Channels
KR20180091448A (en) 2017-02-07 2018-08-16 에이치엘그린파워 주식회사 Part fixing structure of battery module
KR102034495B1 (en) 2017-07-04 2019-10-21 에스케이이노베이션 주식회사 Battery Comprising Cooling Member
KR102364283B1 (en) 2017-12-01 2022-02-16 주식회사 엘지에너지솔루션 Battery Module Having Heat Dissipation Plate
KR20210133529A (en) * 2020-04-29 2021-11-08 주식회사 엘지에너지솔루션 Battery pack and device including the same
KR20220050396A (en) * 2020-10-16 2022-04-25 주식회사 엘지에너지솔루션 Battery pack and device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100115709A (en) * 2009-04-20 2010-10-28 주식회사 엘지화학 Frame member, frame assembly and battery cell assembly made therefrom and methods of making the same
JP2011124025A (en) * 2009-12-08 2011-06-23 Furukawa Electric Co Ltd:The Battery cooling device
KR20110126764A (en) * 2010-05-18 2011-11-24 주식회사 엘지화학 Cooling member of compact structure and excellent stability and battery module employed with the same
KR20110126765A (en) * 2010-05-18 2011-11-24 주식회사 엘지화학 Cooling member of novel structure and battery module employed with the same
KR101193079B1 (en) * 2012-05-01 2012-10-22 이상래 A production method of a cold or hot panel using a fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100115709A (en) * 2009-04-20 2010-10-28 주식회사 엘지화학 Frame member, frame assembly and battery cell assembly made therefrom and methods of making the same
JP2011124025A (en) * 2009-12-08 2011-06-23 Furukawa Electric Co Ltd:The Battery cooling device
KR20110126764A (en) * 2010-05-18 2011-11-24 주식회사 엘지화학 Cooling member of compact structure and excellent stability and battery module employed with the same
KR20110126765A (en) * 2010-05-18 2011-11-24 주식회사 엘지화학 Cooling member of novel structure and battery module employed with the same
KR101193079B1 (en) * 2012-05-01 2012-10-22 이상래 A production method of a cold or hot panel using a fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10720678B2 (en) 2015-12-04 2020-07-21 Lg Chem, Ltd. Indirect cooling system capable of uniformly cooling battery modules and battery pack including the same
CN111357150A (en) * 2017-12-11 2020-06-30 三星Sdi株式会社 Battery module
US11749856B2 (en) 2017-12-11 2023-09-05 Samsung Sdi Co., Ltd. Battery module
CN114586222A (en) * 2020-04-29 2022-06-03 株式会社Lg新能源 Battery module and battery pack including the same

Also Published As

Publication number Publication date
KR101983391B1 (en) 2019-05-28
KR20140062603A (en) 2014-05-26

Similar Documents

Publication Publication Date Title
WO2014077578A1 (en) Battery module cooling device and battery module assembly comprising same
WO2014014303A1 (en) Battery module assembly
WO2012086951A1 (en) Method and system for cooling lithium secondary batteries
WO2017104878A1 (en) Battery pack
WO2017052041A1 (en) Battery module and battery pack comprising same
WO2014081193A1 (en) Secondary battery module
WO2017217633A1 (en) Battery module, and battery pack and vehicle which comprise same module
WO2017209365A1 (en) Battery module, battery pack comprising same, and automobile
WO2014030910A1 (en) Battery module assembly and manufacturing method therefor
WO2015182909A1 (en) Battery module including water cooling structure
WO2013168856A1 (en) Battery module including high-efficiency cooling structure
KR20160016543A (en) Battery pack
CN209860115U (en) Battery module
KR20170021122A (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
WO2015126204A1 (en) Battery pack for automobile having improved cooling efficiency
WO2017146379A1 (en) Battery module, battery pack and vehicle having same
WO2017217641A1 (en) Battery module, and battery pack and vehicle comprising same
WO2019009625A1 (en) Battery module, and battery pack and vehicle including same
WO2021206383A1 (en) Battery pack and device including same
WO2021210771A1 (en) Battery module and battery pack including same
WO2022080754A1 (en) Battery module and battery pack including same
WO2021221340A1 (en) Battery pack and device including same
WO2022149888A1 (en) Battery module and battery pack including same
WO2021221310A1 (en) Battery module and battery pack including same
WO2019045365A1 (en) Pouch type secondary battery including heat transfer member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854280

Country of ref document: EP

Kind code of ref document: A1