WO2014077545A1 - Production method for polycondensation resin - Google Patents

Production method for polycondensation resin Download PDF

Info

Publication number
WO2014077545A1
WO2014077545A1 PCT/KR2013/010067 KR2013010067W WO2014077545A1 WO 2014077545 A1 WO2014077545 A1 WO 2014077545A1 KR 2013010067 W KR2013010067 W KR 2013010067W WO 2014077545 A1 WO2014077545 A1 WO 2014077545A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
condensate
acid
polycondensation
unit
Prior art date
Application number
PCT/KR2013/010067
Other languages
French (fr)
Korean (ko)
Inventor
칸다토모미치
시모다토모아키
장승현
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012250439A external-priority patent/JP2014098089A/en
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014077545A1 publication Critical patent/WO2014077545A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/04Preparatory processes

Definitions

  • the present invention relates to a method for producing a polycondensation resin. More specifically, the present invention relates to a process for producing a polycondensation resin capable of producing a polycondensation resin having stable quality.
  • Polycondensation resins such as polyamides, polycarbonates, polyesters, and the like each have excellent properties as engineer plastics, and thus are widely used in the automotive field, the electric and electronic fields, and the like.
  • a manufacturing method of polycondensation resin although various techniques are disclosed, the continuous polymerization method, the batch polymerization method, etc. are widely known.
  • the first condensation product is continuously polymerized in Japanese Patent Application Laid-Open No. 06-287299 or the like, and it is continuously high-polymerization (polymerization) in a short time in a melter to efficiently and stable high molecular weight.
  • a method of obtaining a polycondensation resin is disclosed.
  • such a continuous polymerization method is capable of obtaining a polycondensation resin having a stable molecular weight only under specific manufacturing conditions, increasing the amount of investment due to the increased number of auxiliary equipment, and is not suitable for the production of multi-component resins because it is not easy to convert resin varieties. You may not.
  • a low-condensation polycondensation resin of low molecular weight polycondensation resin is produced in Japanese Patent Application Laid-Open No. 08-59824 and the like, and then crystallized and / or granulated, and then it is vacuumed or inert gas.
  • a method for producing a high molecular weight polycondensation resin by solid phase polymerization in an atmosphere is disclosed.
  • the quality of the polycondensation resin produced It may change.
  • An object of the present invention is to provide a method for producing a polycondensation resin that can produce a polycondensation resin of stable quality in a batch polymerization method.
  • One aspect of the present invention relates to a method for producing a polycondensation resin.
  • the manufacturing method comprises the steps of preparing a lower order condensate by a polycondensation reaction; Discharging the lower condensate out of the system; And a step of polymerizing the discharged lower order condensate to produce a polycondensation resin, wherein the polycondensation reaction and polymerization are performed in a batch reactor, and the step of discharging the lower order condensate out of the system,
  • the lower condensate is discharged out of the system while replenishing the same kind of material as the by-product or the raw material of the polycondensation reaction in the system.
  • the same kind of material as the by-product or raw material may be replenished into the system to maintain the chemical equilibrium of the formation reaction of the lower condensate at the beginning of the lower condensate discharge.
  • the amount for replenishing the same kind of material as the by-product or raw material into the system so as to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of discharge is represented by Z (the same as the by-product or raw material). ⁇ 5% of the supply per unit time of material of the kind):
  • Z (unit: kg / hr) is a unit of a substance (vapor phase) of the same kind as a by-product or raw material introduced to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of lower condensate discharge.
  • P x (unit: kPa) is the pressure in the system
  • P y (unit: kPa) is the temperature in the system (temperature of the reaction solution)
  • V (unit: m 3 ) means the volume of the reaction solution
  • Y (unit: kg / m 3 ) Denotes the amount of saturated steam per unit volume (theoretical value) under the conditions of the temperature T and the saturated vapor pressure P y
  • L (unit: hr) means time for discharging all the lower condensates in the system.
  • the number average molecular weight of the lower condensate may be about 5 to about 50% of the number average molecular weight of the polycondensation resin.
  • the polycondensation resin may be polyamide, polycarbonate, or polyester.
  • the polycondensation resin may be formed by solid-phase polymerization of the lower condensate.
  • This invention has the effect of providing the manufacturing method of the polycondensation resin which can manufacture the polycondensation resin of stable quality in a batch polymerization method.
  • Method for producing a polycondensation resin according to the present invention is a batch polymerization method wherein the polycondensation reaction and polymerization is carried out in a batch reactor, (A) a step of preparing a lower condensate by a polycondensation reaction, (B) And discharging the lower condensate out of the system, and (C) polymerizing the discharged lower condensate to produce a polycondensation resin.
  • the present invention is carried out while the (B) the step of discharging the lower condensate out of the system is supplemented into the system (gas phase) material of the same kind as the by-products produced in the polycondensation reaction or the raw material (monomer) of the polycondensation reaction It is characterized by.
  • the material of the same kind as the by-product or raw material may vary depending on the resin to be polymerized.
  • the same material as the by-product may be used when preparing polyamide, polycarbonate, and the like, and polyester In manufacturing, the same kind of material as the raw material can be used.
  • a substance of the same kind as the by-product or raw material may be replenished into the system to maintain the chemical equilibrium state of the reaction of formation of the lower condensate at the start of discharging the lower condensate.
  • the polycondensation resin is not particularly limited, but may be polyamide, polycarbonate or polyester that can be produced on an industrial scale.
  • the polyamide is not particularly limited as can be obtained by polycondensation reaction of dicarboxylic acid with diamine and / or aminocarboxylic acid and (solid phase) polymerization (high polymerization).
  • polyhydric carboxylic acid components such as trimellitic acid, trimesic acid, a pyromellitic acid, can also be used together.
  • Non-limiting examples of the diamine include ethylenediamine, propanediamine, 1,4-butanediamine, 1,6-hexanediamine (hexamethylenediamine), 1,7-heptanediamine, 1,8-octanediamine, 1, 9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl-1,9-nonane Aliphatic diamines such as diamine, metaxylylenediamine and paraxylylenediamine; Cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, bis (4-aminocyclohexyl) methane, 1,3-bis
  • lactams such as laurolactam, aminocaproic acid, aminoundecanoic acid, and the like may be used, but are not limited thereto.
  • a phosphorus catalyst can be used for the purpose of improving the polycondensation rate and preventing deterioration during the polycondensation reaction.
  • the phosphorus-based catalyst may include hypophosphite, phosphate, hypophosphorous acid, phosphoric acid, phosphate ester, polymetaphosphates, polyphosphates, phosphine oxides, phosphonium halide compounds, and mixtures thereof, but are not limited thereto. .
  • hypophosphite, phosphate, hypophosphorous acid, phosphoric acid, mixtures thereof, and the like can be used.
  • hypophosphite sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite, aluminum hypophosphite, vanadium hypophosphite, manganese hypophosphite, zinc hypophosphite, lead hypophosphite, nickel hypophosphite, cobalt hypophosphite, tea Ammonium phosphite etc.
  • sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite, etc. can be used.
  • the phosphate salt examples include sodium phosphate, potassium phosphate, potassium dihydrogen phosphate, calcium phosphate, vanadium phosphate, magnesium phosphate, manganese phosphate, lead phosphate, nickel phosphate, cobalt phosphate, ammonium phosphate, and diammonium phosphate.
  • Ethyl octadecyl phosphate etc. can be used as said phosphate ester.
  • the polymetaphosphates examples include sodium trimethaphosphate, sodium pentametaphosphate, sodium hexametaphosphate, polymetaphosphate, and the like. As said polyphosphate, sodium tetrapolyphosphate etc. can be used.
  • hexamethylphosphoamide may be used as the phosphine oxides.
  • the phosphorus catalysts may be in the form of hydrates.
  • the addition amount of the phosphorus catalyst may be about 0.0001 to about 5 parts by weight, for example, about 0.001 to about 1 part by weight based on about 100 parts by weight of the monomer (injection raw material).
  • the addition time of the phosphorus catalyst may be added at any time until the completion of the (solid phase) polymerization, but is preferably between the time of starting the raw material input and the completion of the polycondensation of the lower condensate. Moreover, you may add in several times and may mix and add 2 or more types of different phosphorus catalysts.
  • this process can perform the said polycondensation reaction in presence of terminal blocker.
  • the use of the end-sealing agent makes it easier to control the molecular weight of the lower condensate and the finally produced polyamide, and can improve the melt stability of the lower condensate and the finally produced polyamide.
  • the terminal blocker is not particularly limited as long as it is a monofunctional compound having reactivity with a terminal amino group or a terminal carboxyl group in the lower condensate.
  • acid anhydrides such as monocarboxylic acid, monoamine, phthalic anhydride, monoisocyanate, monoacid halide, monoesters, monoalcohols and the like can be exemplified, but is not limited thereto.
  • the terminal blocker may be used alone or in combination of two or more thereof. Specifically, monocarboxylic acid or monoamine may be used in consideration of reactivity and sealing end stability, and more specifically, monocarboxylic acid having excellent handleability may be used.
  • the monocarboxylic acid is not particularly limited as long as it is a monocarboxylic acid having reactivity with an amino group.
  • acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, benzoic acid, etc. Etc. can be used.
  • the monoamine is not particularly limited as long as it is a monoamine having reactivity with a carboxyl group.
  • aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine;
  • Alicyclic monoamines such as cyclohexylamine and dicyclohexylamine;
  • Aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine; Mixtures thereof and the like can be used.
  • butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, aniline, etc. may be used in view of reactivity, boiling point, bag end stability and price.
  • the amount of the end-sealing agent used may vary depending on the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the end-sealing agent used, but, for example, about 100 mole parts of dicarboxylic acid or diamine, 0.1 to about 15 mole parts.
  • the reaction can be accelerated by extracting by-products such as water produced by the polycondensation reaction out of the system.
  • by-products such as water produced by the polycondensation reaction out of the system.
  • the polycarbonate which has various structural units can be illustrated.
  • the polycarbonate may be an aromatic polycarbonate prepared by the reaction of a dihydric phenol with a carbonate precursor.
  • Non-limiting examples of the dihydric phenol include 4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2- Bis (4-hydroxyphenyl) propane (“bisphenol A"), 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxy Phenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, hydroquinone, resorcinol, catechol, etc.
  • bisphenol A 2,2-bis (3-methyl-4-hydroxyphenyl) propane
  • 2,2-bis (3,5-dimethyl-4-hydroxy Phenyl) propane 1,1-bis (4-hydroxyphen
  • the said dihydric phenol can be used individually or in mixture of 2 or more types.
  • bis (hydroxyphenyl) alkanes can be used, and specifically, 2,2-bis (4-hydroxyphenyl) propane can be used as a main raw material.
  • Examples of the carbonate precursor include carbonyl halide, carbonyl ester, haloformate, and the like, but are not limited thereto.
  • diaryl carbonates such as phosgene, dihaloformate of dihydric phenol, diphenyl carbonate, dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, and the like can be used.
  • Reel carbonate can be used.
  • the polycarbonate may include a branched structure in addition to the linear structure of the molecular chain of the polymer chain.
  • a branching agent for introducing such a branching structure 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ', ⁇ "-tris (4-hydroxyphenyl) -1,3,5-tri Isopropylbenzene, fluoroglucin, trimellitic acid, isatinbis (o-cresol), etc.
  • phenol, pt-butylphenol, pt-octylphenol, p-cumylphenol, etc. can be used. Can be used.
  • the polycondensation reaction can proceed at a sufficient rate without adding a catalyst, but a polymerization catalyst can be further used for the purpose of improving the reaction rate.
  • the polymerization catalyst is not particularly limited as long as it is a polycondensation catalyst used in this field, but alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide; Alkali metal salts, alkaline earth metal salts and quaternary ammonium salts of hydrides of boron or aluminum, such as lithium aluminum hydride, sodium borohydride and tetramethylammonium hydride; Hydrogen compounds of alkali metals and alkaline earth metals such as lithium hydride, sodium hydride and calcium hydride; Alkoxides of alkali metals and alkaline earth metals such as lithium methoxide, sodium ethoxide and calcium methoxide; Aryl oxides of alkali metals and alkaline earth metals such as lithium phenoxide, sodium phenoxide, magnesium phenoxide, LiO-Ar-OLi and NaO-Ar-ONa (Ar is
  • the amount of the polymerization catalyst used may vary depending on the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the polymerization catalyst used, but about 1 part by weight of about 100 parts by weight of the monomer (injection raw material).
  • the addition time of the polymerization catalyst may be added at any time until completion of the (solid phase) polymerization, but is preferably between the time of starting the raw material input and the completion of the polycondensation of the lower condensate. Moreover, you may add in several times and may mix and add 2 or more types of different polymerization catalysts.
  • This process can be accelerated by discharging the by-products such as aromatic monohydroxy compounds produced by the polycondensation reaction out of the system.
  • a method of carrying out the reaction under reduced pressure and / or a method of removing the by-products together with the inert gas after introduction of the inert gas may be used.
  • polyester obtained by making the acyl compound of the compound which has aliphatic diol or phenolic hydroxyl group, and aromatic dicarboxylic acid or aromatic dicarboxylic acid ester react can be illustrated.
  • the aliphatic diol may be, for example, one having an alkylene group having 2 to 10 carbon atoms, but is not limited thereto. Specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,3-propanediol, 1,4-butanediol, 1,2-ethanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexane dimethanol, trimethylolpropane, neopentylglycol, methylpentane Diols, mixtures thereof, and the like.
  • the alkylene group of the aliphatic diol may be substituted with an alkyl group, a halogen atom
  • the acyl compound which acylated the phenolic hydroxyl group of aromatic diol and / or aromatic hydroxycarboxylic acid with fatty acid anhydride can be used.
  • the compound having a phenolic hydroxyl group may have one or more phenolic hydroxyl groups, but from the viewpoint of reactivity, it is preferable to have one or two phenolic hydroxyl groups.
  • the compound which has the said phenolic hydroxyl group has only one phenolic hydroxyl group, it is preferable that it contains one carboxyl group.
  • aromatic diol and aromatic hydroxycarboxylic acid are especially preferable.
  • aromatic diol include 4,4'-dihydroxybiphenyl ("4,4'-biphenol"), hydroquinone, resorcinol, methylhydroquinone, chlorohydroquinone, acetoxyhydroquinone, nitrohydroquinone, 1, 4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4 -Hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2 -Bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxy-3-chloropheny
  • Acylates are obtained by acylating the compound having a phenolic hydroxyl group as described above.
  • Acetylate can be illustrated as an acylate, but it is not limited to this.
  • the acylation may be to react the compound having an phenolic hydroxyl group and the acylating agent.
  • an acyl anhydride or a halide is typical.
  • the acyl group in the said acylating agent is aliphatic carboxylic acid, such as alkanoic acid (acetic acid, propionic acid, butyric acid, pivalic acid, etc.), higher alkanoic acid, such as palmitic acid, aromatic carboxylic acid, such as benzoic acid, and aryl fatty acids, such as phenylacetic acid. Can be derived from.
  • alkanoic acid acetic acid, propionic acid, butyric acid, pivalic acid, etc.
  • higher alkanoic acid such as palmitic acid
  • aromatic carboxylic acid such as benzoic acid
  • aryl fatty acids such as phenylacetic acid.
  • fatty acid anhydride is especially preferable.
  • fatty acid anhydride acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, 2 ethylhexanoic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, trichloroacetic anhydride, monobromide anhydride Mother acetic acid, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, ⁇ -bromo anhydride Propionic acid, mixtures thereof and the like can be exemplified. From the viewpoint of price and handleability, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride and the like can be used,
  • the amount of the fatty acid anhydride may be about 1.0 to about 1.2 equivalents based on the phenolic hydroxyl group.
  • the amount of the fatty acid anhydride used is less than about 1.0 equivalent with respect to the phenolic hydroxyl group, there is a fear that the equilibrium during the acylation reaction is shifted toward the fatty acid anhydride, and thus unreacted aromatic diol or aromatic dicar when polymerization with polyester Acid may sublimate and the reaction system may be closed.
  • the usage-amount of the said fatty acid anhydride exceeds about 1.2 equivalent with respect to the said phenolic hydroxyl group, there exists a possibility that a polyester may color.
  • the acylation reaction may be performed at about 130 to about 180 ° C., for example, at about 140 to about 160 ° C. for about 15 minutes to about 20 hours, for example, about 30 minutes to about 5 hours.
  • aromatic dicarboxylic acid or aromatic dicarboxylic acid ester which reacts with the acyl compound of the compound having an aliphatic diol or phenolic hydroxyl group may be referred to collectively as aromatic dicarboxylic acids.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, methyl terephthalic acid and methyl Isophthalic acid, diphenylether-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, diphenylketone-4,4'-dicarboxylic acid, 2,2'- Diphenyl propane-4,4'- dicarboxylic acid, mixtures thereof, etc. can be illustrated.
  • terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and the like are easily available and widely used.
  • ester such as methyl, ethyl, propyl, phenyl, of the said aromatic dicarboxylic acid can be illustrated. These can be used individually or in mixture of 2 or more types.
  • the reaction of the acylate of the compound having an aliphatic diol or phenolic hydroxyl group with aromatic dicarboxylic acids can proceed at a sufficient rate without adding a catalyst, but a polymerization catalyst can be further used for the purpose of improving the reaction rate.
  • a polymerization catalyst a polycondensation catalyst used in this field can be used without limitation.
  • the polymerization catalyst used for polycarbonate manufacture (polycondensation reaction) mentioned above can be used.
  • the amount of the polymerization catalyst used may vary depending on the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the polymerization catalyst to be used. 5 parts by weight, for example about 0.0005 to about 1 part by weight.
  • the addition time of the polymerization catalyst may be added at any time until completion of the (solid phase) polymerization, but is preferably between the time of starting the raw material input and the completion of the polycondensation of the lower condensate. Moreover, you may add in several times and may mix and add 2 or more types of different polymerization catalysts.
  • esterification reaction of aliphatic diols and aromatic dicarboxylic acids is performed at about 160 ° C. or more and less than about 250 ° C.
  • the polycondensation reaction may be performed at about 250 ° C to about 350 ° C.
  • polyester in order to manufacture polyester from the acyl compound and aromatic dicarboxylic acid of the compound which has a phenolic hydroxyl group, after acylating and aromatic dicarboxylic acid of the compound which has a phenolic hydroxyl group is subjected to esterification reaction or transesterification reaction, , Polycondensation reaction can be carried out.
  • This process can be accelerated by discharging the by-products generated by the polycondensation reaction and the like out of the system.
  • a method of carrying out the reaction under reduced pressure and / or a method of removing the by-products together with the inert gas after introduction of the inert gas may be used.
  • the by-product of the polyester polycondensation reaction (esterification reaction) of the aliphatic diol and the aromatic dicarboxylic acids is water or alcohol formed from the hydroxyl group of the aromatic dicarboxylic acid or the alkoxy group of the aromatic dicarboxylic acid ester. Etc., such water or alcohol may be discharged out of the system to shift the equilibrium so that the production of polyester is advantageous.
  • the by-products of the polycondensation reaction (esterification reaction or transesterification reaction) of the acyl compound and aromatic dicarboxylic acid of the compound which has a phenolic hydroxyl group are monocarboxylic acid, a monocarboxylic acid ester, etc. Acids, monocarboxylic acid esters, and the like can be discharged out of the system in order to shift the equilibrium so that the production of the product (polyester) is favored.
  • a part of the outflowing monocarboxylic acid or the like is refluxed to the reactor, so that the raw material (aromatic dicarboxylic acids or the like) evaporated or sublimed together with the monocarboxylic acid or the like may be returned to the reactor together with the reflux.
  • acylating agents such as unreacted fatty acid anhydrides contained in the acylates are also evaporated during the reaction. It is preferable to discharge (distillate) out.
  • low-condensation products such as a polyamide, a polycarbonate, and polyester
  • the solvent may be water or alcohols such as methanol and ethanol.
  • an excess of raw materials such as aliphatic diols and by-products may be used as the solvent.
  • the polycondensation reaction can be carried out by raising the temperature and increasing the pressure, usually under stirring conditions. At this time, the reaction temperature (polymerization temperature) can be adjusted after the raw material input, the reaction pressure (polymerization pressure) can be adjusted in accordance with the progress of the polymerization.
  • the reaction temperature, the reaction pressure and the reaction time can be appropriately set depending on the resin to be produced, and are not particularly limited.
  • the reaction temperature may be about 170 to about 400 ° C.
  • the reaction pressure may be about 0.5 to about 3 kPa MPa
  • the reaction time may be about 0.5 to about 10 hours.
  • the produced lower condensate is discharged from the reaction vessel (in the system).
  • the present invention is characterized by a process for extracting the lower condensate out of the system. Specifically, the process produces the same type of (gas phase) material as the by-products produced in the polycondensation reaction or the raw material (monomer) of the polycondensation reaction, for example, the generation of the lower condensate at the start of discharge of the lower condensate. In order to maintain the chemical equilibrium of the reaction, the lower condensate is discharged out of the system while replenishing into the system.
  • the space of the lower condensate discharged increases, so that the reaction solution (liquid state) and the gas phase in the system are increased. It was found that the change in the equilibrium of the solution-phase maintained was found, and as a result, the chemical equilibrium of the formation reaction of the lower condensate is different from the state at the start of discharging the lower condensate.
  • the "products of the same kind as the by-products produced in the polycondensation reaction or the raw material (monomer) of the polycondensation reaction", which are supplemented into the system, are used for the kind of the polycondensation resin to be manufactured, that is, the raw material (monomer) to be used.
  • the by-product in the production of polyamide, is water, in the production of polycarbonate, the by-product is an aromatic monohydroxy compound and the like, in the production of polyester prepared from aliphatic diols and aromatic dicarboxylic acids
  • the by-products are water, alcohols, and the like, and in the production of polyesters prepared from acylates and aromatic dicarboxylic acids of compounds having phenolic hydroxyl groups, the by-products are monocarboxylic acids such as fatty acids, monocarboxylic acid esters and the like.
  • the process of replenishing the same kind of material as the by-product or raw material into the system so as to maintain the chemical equilibrium state of the reaction of formation of the lower condensate at the start of discharging the lower condensate specifically, the lower condensate It means the introduction of the same kind of material as the by-product or raw material into the system so that the vapor pressure of the by-product in the system can be maintained at the start of discharge.
  • the supply amount (steam supply rate) per unit time of the substance (vapor phase) can be obtained by, for example, the following formula (1).
  • Equation 1 Z (unit: kg / hr) is a unit of a substance (vapor phase) of the same kind as a by-product or raw material introduced to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of lower condensate discharge.
  • Supply per hour (steam feed rate)
  • P x (unit: kPa) means the pressure in the system
  • V (unit: m 3 ) means the capacity of the reaction solution
  • Y (unit: kg / m 3 ) means the amount of saturated steam (theoretical value) per unit volume under the conditions of the temperature T and saturated vapor pressure P y ,
  • L (unit: hr) means time to discharge all lower condensate in a system.
  • the anthoin constant of ethylene glycol was described as an example of an aromatic monohydroxy compound (by-product in polycarbonate manufacture), and an example of phenol and aliphatic diol (raw material in polyester manufacture).
  • Such an antoin constant for example, with reference to a chemical manual, NIST WebBook, etc., a known value of the compound can be applied.
  • Equation 2 P ws (unit: kPa) means Wagner's exact water vapor pressure
  • P c is the critical pressure 22120 kPa
  • A is -7.76451
  • B is 1.45838
  • C is -2.7758
  • D is -1.23303
  • T x is 1- (T / T c ), where T c is 647.3 K as the critical temperature and T (unit: K) is the temperature of the reaction solution).
  • P aw (unit: bar) means a saturated vapor pressure
  • T (unit: K) is the temperature of the reaction solution
  • A, B and C are the antho constants, for phenol, A is 4.24688, B is 1509.677, C is -98.949, and for ethylene glycol, A is 4.97012, B is 1914.951, C is -84.996.
  • the saturated vapor amount (theoretical value) Y per unit volume can be calculated by the ideal gas state equation by the ideal gas state equation using the saturated vapor pressure Py at a predetermined temperature T of the by-product or raw material obtained by the above formula ( At this time, the volume is calculated as 1 m 3 ).
  • Y (unit: kg / m 3 ) means the amount of saturated steam per unit volume (theoretical value) under the conditions of temperature T and saturated vapor pressure P y ,
  • P y (unit: kPa) means the saturated vapor pressure (theoretical value) per unit volume at temperature T (unit: K),
  • T (unit: K) is the temperature of the reaction solution
  • Mw (unit: g / mol) is the weight average molecular weight of the by-product or raw material
  • R is a gas constant, 8.3145.
  • the amount of steam X may represent the amount of steam in the system at the start of discharging the lower condensate out of the system.
  • the by-products of the gas phase are supplemented to maintain the vapor amount (X) in the system, thereby maintaining a chemical equilibrium state.
  • V unit: m 3
  • the amount (unit: kg) of steam (unit: kg) added to maintain the steam amount X is equal to Y ⁇ ( P x / P y ) ⁇ V.
  • the steam supply amount Z per unit time for adding the steam amount for a predetermined time L can be represented by the above formula (1).
  • each numerical unit of said Formulas 1-4 can be used suitably matching a pressure, a volume, etc., and each unit of Formulas 1-4 is referred to as a reference.
  • the amount of a substance of the same kind as a by-product or raw material supplemented into the system at the time of the lower condensate discharge, so as to maintain the chemical equilibrium of the lower condensate formation reaction at the beginning of the lower condensate discharge It can be in the numerical range of ⁇ 5%, for example ⁇ 3%, specifically ⁇ 1% of the steam feed rate (steam feed rate) Z per unit time calculated by. Within this range, it is possible to maintain the chemical equilibrium state of the lower order condensate formation reaction at the start of discharge.
  • the present invention discharges the lower condensate while introducing the same kind of by-product or raw material into the system at the steam supply rate as described above, without changing the chemical equilibrium state of the polycondensation reaction from the start of the discharge to the end of the discharge.
  • the lower condensate can be discharged. Thereby, the molecular weight of the lower order condensate obtained after discharge
  • the present invention can obtain a low-order condensate having a narrow molecular weight distribution by the above procedure, and by using this as a raw material for obtaining a high-molecular weight polycondensate, a polycondensation resin of stable quality having a narrow molecular weight distribution can be obtained.
  • the vapor of a substance of the same kind as the by-product or raw material supplied into the system can obtain the effect of the present invention even if supplied into the reaction solution, but in order to obtain a more excellent effect, it is preferably introduced into the gas phase part.
  • the lower condensate discharged from the reaction vessel can be recovered to the vessel at atmospheric pressure under an inert gas atmosphere.
  • the inert gas atmosphere may prevent oxidative deterioration of the lower condensate, and the oxygen concentration may be 1% by volume or less.
  • the rate of discharge from the reaction vessel of the lower condensate may be appropriately adjusted according to the size of the reaction vessel, the amount of contents in the reaction vessel, the temperature, the size of the outlet, the length of the discharge nozzle, and the like.
  • the logarithmic viscosity (IV) of the lower condensate may be about 0.05 to about 1.50 dL / g, for example about 0.08 to about 1.00 dL / g, specifically about 0.10 to about 0.80 dL / g.
  • the variation in the molecular weight of the polycondensate according to the time difference of discharging is suppressed, and therefore there is no variation due to the lapse of the discharging time even for the logarithmic viscosity (IV) of the lower condensate.
  • IV logarithmic viscosity
  • the logarithmic viscosity averages of the samples sampled every predetermined time are also in the above-mentioned ranges, and their standard deviations may be about 0.05 or less, for example, less than about 0.04, and the coefficient of variation may be about 2.5 or less, for example, about 2.0 or less. have.
  • the sampling every predetermined time is not particularly limited, but may be, for example, sampling performed every about 10 minutes.
  • the logarithmic viscosity IV can be obtained by the method of the Example mentioned later.
  • the number average molecular weight of the lower condensate is about 5 to about 50%, for example about 7 to about 50%, specifically about 8 to about 50%, of the number average molecular weight of the finally obtained polycondensation resin Can be.
  • the number average molecular weight of the lower condensate may be about 500 to about 25,000 g / mol, for example about 700 to about 20,000 g / mol, specifically about 800 to about 18,000 g / mol.
  • the number average molecular weight of the condensate is polymethyl methacrylate (pMMA) as the standard material in the case of polyamide and polyester, and polystyrene is used in the case of polycarbonate, Means the value measured by gel permeation chromatography (GPC).
  • the lower order condensate discharged from the reaction vessel by the above-described method since its temperature drops to about 100 ° C. or less instantaneously by the latent heat of evaporation of water at the time of discharge, hardly causes thermal deterioration and deterioration by oxygen. Do not.
  • the low-order condensate may be subjected to high polymerization in the state as it is to obtain a polycondensation resin.
  • the low-condensation product is preferably subjected to high polymerization by solid-phase polymerization to obtain a polycondensation resin.
  • the lower condensate discharged evaporates most of the moisture entrained by the sensible heat of the lower condensate, the lower condensate can be cooled and dried simultaneously.
  • the efficiency of drying and cooling can be improved, and when a cyclone-type solid-gas separation device is installed as the discharge container of the lower condensate, Out-of-system scattering can be suppressed, discharge treatment can be performed under high gas flux, and drying and cooling efficiency can be improved.
  • the low-order condensate obtained in this way has a high logarithmic viscosity as described above and a low residual amount of the unreacted product, and thus does not cause fusion or agglomeration between the low-order condensate particles at the time of high polymerization by solid phase polymerization described later.
  • Solid phase polymerization can be carried out at a high temperature, and deterioration due to side reactions can be small.
  • the low-density condensate may be subjected to a high polymerization degree, which will be described later, after performing a treatment to increase the specific gravity of the volume, a compacting process to uniform the particle diameter, and a granulation treatment.
  • a lower order condensate such as a polycarbonate
  • a crystallization solvent when melted or in solution state.
  • the method of treating with the crystallization solvent is not particularly limited, but in general, the lower condensate of polycarbonate is stirred in the crystallization solvent to crystallize in a slurry state, or the lower condensate and the crystallization solvent are used in a mixer or kneader. Crystallization by mixing or kneading.
  • a device having a high speed stirring blade such as a waring blender, a device having a swirl pump with a cutter, or the like can be used.
  • a device (generally referred to as a mixer or kneader) (such as a powder industry manual, a daily industrial newspaper, pages 644 to 648, etc.) can be used, for example, a cone blender, Ribbon blenders, shovel mixers, pug mixers, Henschel mixers, brabenders, twin screw kneaders and the like can be used.
  • crystallization solvent examples include esters such as ethyl acetate; Ethers such as diethyl ether; Ketones such as acetone and methyl ethyl ketone; Etc. can be illustrated.
  • Hydrocarbons such as hexane and an octane
  • Cyclic hydrocarbons such as cyclohexane
  • Etc. can also be used as a crystallization solvent.
  • acetone is preferable because it can manufacture the low order condensate of polycarbonate with a large specific surface area.
  • the polycondensation resin is produced by polymerizing the low-order condensate discharged from the reaction vessel (in the system). It is preferable that the polycondensation resin of this invention is obtained by carrying out high polymerization degree by solid-phase-polymerizing the said lower order condensate.
  • the solid phase polymerization can be carried out continuously using the lower order condensate obtained from the reaction vessel, and can be carried out after drying the lower order condensate taken out of the reaction vessel. Further, the lower order condensate taken out of the reaction vessel may be stored once, and the lower order condensate removed from the reaction vessel may be carried out after the compacting or granulation treatment. When high polymerization degree is carried out by solid state polymerization, polycondensation resin with less thermal degradation can be obtained.
  • the polymerization method and conditions for solid-phase polymerization of the lower condensate are not particularly limited, and any method and conditions can be used to perform high polymerization while maintaining a solid state without causing fusion, aggregation, or deterioration of the lower condensate.
  • solid phase polymerization may be performed in an inert gas atmosphere such as helium gas, argon gas, nitrogen gas, carbon dioxide gas or under reduced pressure.
  • the temperature of the solid phase polymerization is not particularly limited, but the maximum reaction temperature may be, for example, about 170 to about 350 ° C.
  • the time to reach the highest reaction temperature may be at any point from the solid phase polymerization start to the end.
  • solid phase polymerization apparatus used in the present process, and any known apparatus can be used.
  • a solid-state polymerization apparatus a uniaxial disk type
  • the reaction time of the solid phase polymerization is not particularly limited, but may be, for example, about 1 to about 20 hours.
  • the lower order condensate may be mechanically stirred or agitated by gas flow.
  • various fiber materials such as glass fibers and carbon fibers, inorganic powder fillers, organic powder fillers, colorants, and ultraviolet rays, if necessary, in a step of preparing a lower condensate, a solid phase polymerization step, or any step after the solid phase polymerization.
  • Additives such as absorbents, light stabilizers, antioxidants, antistatic agents, flame retardants, crystallization accelerators, plasticizers, lubricants, and other polymers may be added.
  • the polycondensation resin produced according to the production method of the present invention is excellent and stable in physical properties such as heat resistance, mechanical performance, low water absorption, chemical resistance and the like. Accordingly, the polycondensation resin may be used alone or as necessary in the form of a composition with the aforementioned various additives or other polymers, and various molding methods and spinning methods conventionally used for polycondensation resins, for example, injection molding, blow molding, It can shape
  • the sample solution was prepared by dissolving the sample in a solvent at a concentration of 0.5 g / dL.
  • Polyamide used 96% concentrated sulfuric acid as solvent, polycarbonate used dichloromethane, and polyester used o-chlorophenol.
  • the number of drops of the solvent and the sample solution were measured using a Uberode viscometer at a temperature of 25 ° C. and calculated by Equation 5 below.
  • Equation 5 ⁇ rel is t1 / t0 (where t1 is the number of falling seconds of the sample and t0 is the number of falling seconds of the blank), and c is the solution concentration (g / dL).
  • the column used three LF-804, the solvent was tetrahydrofuran (THF), and polystyrene was used as a standard sample.
  • the measurement conditions of GPC were column temperature 40 degreeC, and solvent flow volume 1.0 ml / min.
  • the data processing software calculated
  • the sample in an amorphous state was heated at 30 ° C. to 350 ° C. at a temperature increase rate of 10 ° C./min under a nitrogen atmosphere at a flow rate of 10 ml / min, and then held for 5 minutes. Then, it measured to 200 degreeC by the temperature-fall rate of 10 degree-C / min, and measured the endothermic peak temperature by melting at the time of temperature rising as the melting point and the exothermic peak temperature by crystallization at the time of temperature-fall as crystallization temperature, respectively.
  • the YI value was measured using the NW-11 compact colorimeter made by Nippon Denshoku Kogyo Co., Ltd.
  • P ws (unit: kPa) means Wagner's exact water vapor pressure
  • P c is the critical pressure 22120 kPa
  • A is -7.76451
  • B is 1.45838
  • C is -2.7758
  • D is -1.23303
  • x is 1- (T / T c ), where T c is 647.3 K as the critical temperature and T (unit: K) is the temperature of the reaction solution).
  • P aw (unit: bar) means saturated vapor pressure
  • T (unit: K) is the temperature of the reaction solution
  • A, B and C is an antho constant, in the case of phenol, A is 4.24688 , B is 1509.677, C is -98.949, and for ethylene glycol, A is 4.97012, B is 1914.951, and C is -84.996.
  • the contents were stirred, the temperature was raised to 130 ° C. over 1 hour, and the contents were confirmed to be a homogeneous solution.
  • the internal temperature was raised to 250 ° C. over 3 hours and maintained. After the internal pressure reached 3.8 MPa, the reaction was continued for 2 hours while distilling off water to maintain the same temperature and pressure. Thereafter, while maintaining the reaction temperature at 250 ° C, the pressure was lowered to 3.4 MPa for 30 minutes, and at the time point at which 51 kg of water was distilled off (25% by weight of the reaction liquid), the reaction was terminated, and the discharge operation was started. It was.
  • reaction liquid volume at the start of discharge was 128 liters.
  • the opening of the bottom discharge valve and the discharge control valve was adjusted to discharge the reaction solution for 1.1 hours. While the reaction liquid is discharged, in order to maintain the chemical equilibrium of the reaction liquid state (chemical equilibrium of the formation reaction of the lower condensate), an amount of water vapor that can maintain a constant amount of water, which is a by-product of the reaction and a solvent, is added to the gas phase. Supplied.
  • the supply rate Z of steam calculates the saturated steam pressure P y (P ws ) (250 ° C., 4.0 MPa) at the temperature in the autoclave according to the Wagner equation (Formula 2), and based on the following formulas 1 and 4, Saturated water vapor volume Y (16.5 kg / m 3 under the same conditions) and saturated water vapor volume Y ⁇ (P x / P y ) [kg / m 3 ] in the reaction system are calculated, taking into account the volume (V) and the discharge time (L). Thereby, the amount of water vapor introduced (water vapor introduction rate) per unit time was 1.6 kg / hour:
  • Z (unit: kg / hr) is a unit of a substance (vapor phase) of the same kind as a by-product or raw material introduced to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of lower condensate discharge.
  • P x (unit: kPa) is the pressure in the system
  • P y (unit: kPa) is the temperature in the system (temperature of the reaction solution)
  • V (unit: m 3 ) means the volume of the reaction solution
  • Y (unit: kg / m 3 ) Denotes the amount of saturated steam per unit volume (theoretical value) under the conditions of the temperature T and the saturated vapor pressure P y
  • L (unit: hr) means time for discharging all the lower condensates in the system.
  • Equation 4 Y (unit: kg / m 3 ) means the amount of saturated steam per unit volume (theoretical value) under the conditions of temperature T and saturated vapor pressure P y , P y (unit: kPa) is the temperature T (unit: K) means the saturated vapor pressure (theoretical value) per unit volume, T (unit: K) is the temperature of the reaction solution, Mw (unit: g / mol) is the weight average molecular weight of the by-product or raw material, R is the gas As a constant, it is 8.3145.
  • the water vapor was supplied into the autoclave using a metering pump, passed through a preheater, and supplied by saturated water vaporization.
  • the temperature of the reactor was maintained at 250 ° C., and the pressure regulating valve was maintained at 3.4 MPa in the fully closed state.
  • the resulting lower condensate was discharged from the bottom discharge valve to the vessel at room temperature (25 ° C.) and atmospheric pressure under a nitrogen atmosphere.
  • the operation of discharging the lower condensate was able to discharge the whole amount stably.
  • the low order condensate immediately after the discharge was a temperature of 83 ° C. and a water content of 1.8% by weight.
  • the variation in the ash was very small and the quality was stable.
  • Melting point by DSC measurement was 324 ° C, crystallization temperature was 294 ° C, YI was 2, Mn was 12,000 g / mol, and sufficiently high polymerized color, high heat-resistant polyamide was obtained.
  • reaction liquid amount at the start of discharge was 88.8L.
  • the opening degree of the bottom discharge valve and the discharge control valve was adjusted to discharge this for 0.9 hours.
  • the vapor is supplied to the gas phase in an amount sufficient to maintain a constant amount of water, which is a byproduct of the reaction and a solvent, so as to maintain the chemical equilibrium of the reaction liquid state (the chemical equilibrium of the production reaction of the lower condensate). It was.
  • the feed rate Z of steam determines the saturated steam pressure P y (P ws ) (260 ° C., 4.7 MPa) at the temperature in the autoclave according to the Wagner equation, and is the same as in Example 1, wherein the equations 1 and 4 Based on this, the amount of saturated water vapor Y (19.1 kg / m 3 under the same conditions) and the amount of water vapor Y ⁇ (P x / P y ) [kg / m 3 ] in the reaction system are calculated, and the volume (V) and the discharge time (L) are calculated. ), The water vapor supply amount (water vapor supply rate) per unit time was 1.6 kg / hour. Here, the water vapor was supplied into the autoclave using a metering pump, passed through a preheater, and supplied by saturated water vaporization.
  • the temperature of the reactor was maintained at 260 ° C., the pressure regulating valve was kept in a fully closed state, and the steam pressure was maintained at 4.0 MPa.
  • the resulting lower condensate was discharged from the bottom discharge valve to the vessel at room temperature (25 ° C.) and atmospheric pressure under a nitrogen atmosphere.
  • the operation of discharging the lower condensate was able to discharge the whole amount stably.
  • the low order condensate immediately after the discharge was a temperature of 85 ° C. and a water content of 2.3% by weight. Sampling was carried out every 0.1 hours from the start of discharge, and the logarithmic viscosity (IV) was measured for each sample.
  • the average value of the samples IV was 0.16 dL / g, standard deviation 0.003, and coefficient of variation 2%.
  • the variation in the ash was very small and the quality was stable.
  • Mn of the obtained lower condensate was 1,500 g / mol.
  • fusing point by DSC measurement was 301 degreeC, the crystallization temperature was 268 degreeC, YI was 5, Mn was 14,500 g / mol, and the high heat resistant polyamide which was sufficiently high polymerization degree was obtained.
  • the low-order condensate was synthesized under the same conditions as in Example 1 except that water vapor was not supplied at the time of discharge operation. As a result, since the contents liquid solidified at the time of about 80% discharge, the discharge operation was stopped. Sampling was performed every 0.1 hours from the start of discharge, and the average value of IV of the obtained lower-order condensate was 0.15 dL / g, standard deviation 0.027, and coefficient of variation 18%. The variation in the batch was large. In addition, Mn of the obtained lower condensate was 1,500 g / mol.
  • the supply rate Z of phenol obtains the saturated phenol vapor pressure P y (0.01 P AW ) (240 ° C., 400 kPa) at the temperature in the autoclave from the above-mentioned antoin formula (Equation 3).
  • the volume (V) and the discharge time (L) were considered to be 19.1 g / hour.
  • the supply of phenol was carried out in a high temperature HPLC pump, in an autoclave, as saturated phenol vapor.
  • the temperature of the reactor was maintained at 240 ° C., the pressure regulating valve was kept in a fully closed state, and the phenol vapor pressure was maintained at 400 kPa.
  • the resulting lower condensate was discharged from the bottom discharge valve to the vessel at room temperature (25 ° C.) and atmospheric pressure under a nitrogen atmosphere.
  • the operation of discharging the lower condensate was able to discharge the whole amount stably. Samples taken after 0 minutes, 5 minutes, 10 minutes, and 15 minutes after discharge were measured, and the algebraic viscosity (IV) of each sample was measured. As a result, all were 0.14 dL / g. Very small, stable quality.
  • the lower condensate of the polycarbonate collected in the container was ground, acetone was added, crystallized, and dried under reduced pressure at 100 ° C. to obtain a polymer powder.
  • IV of the lower polycondensate (granule) of the obtained polycarbonate was 0.14 dL / g, Tm was 226 degreeC, and Mn was 2,900 g / mol.
  • the resulting lower condensate was subjected to solid phase polymerization in the same manner as in Example 3.
  • the variation in the ash was about twice as large as in Example 3.
  • Mn of the obtained polycarbonate was 12,100 g / mol.
  • the ethylene glycol was supplied into an autoclave by a high temperature HPLC pump and performed as saturated ethylene glycol vapor.
  • the temperature of the reaction vessel was maintained at 280 ° C, the pressure regulating valve was kept in a fully closed state, and the ethylene glycol vapor pressure was maintained at 750 kPa.
  • the resulting lower condensate was extracted and cooled in water in a strand shape from the bottom discharge valve, and pelletized with a strand cutter to obtain a lower condensate of polyethylene terephthalate.
  • the operation of discharging the lower condensate was stable, allowing the entire discharge. After 0 minutes of discharge, 10 minutes later, 20 minutes later, 30 minutes later, and 60 minutes later, samples were taken, and the logarithmic viscosity (IV) of those samples was measured.
  • the lower order condensate of polyethylene terephthalate was obtained.
  • the obtained lower condensate IV is discharged at 0.53 dL / g after 0 minutes, 0.53 dL / g after 10 minutes, 0.54 dL / g after 20 minutes, 0.55 dL / g after 30 minutes, and 0.57 dL / g after 60 minutes.
  • the IV tended to increase toward the end of. Mn was 15,800 g / mol.
  • the obtained lower order condensate was subjected to solid phase polymerization in the same manner as in Example 4.
  • the variation in the ash was about four times larger than in the examples.
  • Mn of obtained polyester (polyethylene terephthalate) was 33,300 g / mol.
  • the polycondensation resin produced according to the production method of the present invention does not vary in molecular weight according to the time difference at the time of discharging the lower condensate, thereby obtaining stable quality. Moreover, it turns out that the polycondensation resin of stable quality is obtained by the (solid state) superposition

Abstract

The production method for a polycondensation resin of the present invention comprises the processes of: producing a low-order condensate by means of a polycondensation reaction; discharging the low-order condensate outside the system; and producing a polycondensation resin by subjecting the discharged low-order condensate to polymerisation. Here, the polycondensation reaction and the polymerisation are carried out in a batch type reaction vessel, and, in the process of discharging the low-order condensate outside the system, the low-order condensate is discharged outside the system while by-products produced in the polycondensation reaction or substances of the same kind as the raw materials of the polycondensation reaction are supplemented into the system. The production method makes it possible to produce a polycondensation resin of stable quality, in a batch type polymerisation method.

Description

중축합 수지의 제조방법Manufacturing method of polycondensation resin
본 발명은 중축합 수지의 제조방법에 관한 것이다. 보다 구체적으로 회분식 중합 방법에 있어서, 안정적인 품질의 중축합 수지를 제조할 수 있는 중축합 수지의 제조방법에 관한 것이다.The present invention relates to a method for producing a polycondensation resin. More specifically, the present invention relates to a process for producing a polycondensation resin capable of producing a polycondensation resin having stable quality.
폴리아미드를 비롯하여, 폴리카보네이트, 폴리에스테르 등의 중축합 수지는 각각 엔지니어 플라스틱으로서 우수한 특성을 지니고 있으므로, 자동차 분야, 전기전자 분야 등에서 폭넓게 사용되고 있다. 중축합 수지의 제조 방법으로는, 각종 기술이 개시되어 있으나, 연속 중합 방법이나 회분(batch)식 중합 방법 등이 널리 알려져 있다.Polycondensation resins such as polyamides, polycarbonates, polyesters, and the like each have excellent properties as engineer plastics, and thus are widely used in the automotive field, the electric and electronic fields, and the like. As a manufacturing method of polycondensation resin, although various techniques are disclosed, the continuous polymerization method, the batch polymerization method, etc. are widely known.
예를 들어, 연속 중합 방법으로는 일본 공개특허공보 평06-287299호 등에 1차 축합물을 연속 중합하고, 이를 용융기에서 단시간에 연속 고중합도화(고분자량화)하여 효율적으로 안정적인 고분자량의 중축합 수지를 얻는 방법이 개시되어 있다. 그러나, 이러한 연속 중합 방법은 특정 제조 조건에서만 안정적인 분자량의 중축합 수지를 얻을 수 있으며, 부대 설비 기기가 많아져 투자액이 증가할 수 있고, 수지 품종의 전환이 용이하지 않으므로 다품종 수지의 제조에는 적합하지 않을 수 있다.For example, as a continuous polymerization method, the first condensation product is continuously polymerized in Japanese Patent Application Laid-Open No. 06-287299 or the like, and it is continuously high-polymerization (polymerization) in a short time in a melter to efficiently and stable high molecular weight. A method of obtaining a polycondensation resin is disclosed. However, such a continuous polymerization method is capable of obtaining a polycondensation resin having a stable molecular weight only under specific manufacturing conditions, increasing the amount of investment due to the increased number of auxiliary equipment, and is not suitable for the production of multi-component resins because it is not easy to convert resin varieties. You may not.
또한, 회분식 중합 방법으로는 일본 공개특허공보 평08-59824호 등에 저분자량인 중축합 수지의 저차 축합물을 제작하고, 결정화 및/또는 분립(粉粒)화 시킨 후, 이것을 진공 하 또는 불활성 가스 분위기 하에서 고상 중합시켜, 고분자량의 중축합 수지를 제조하는 방법이 개시되어 있다. 그러나, 이러한 통상적인 회분식 중합 방법은 각 회분(batch)으로부터 중축합물을 배출할 때, 배출 시간차에 의해 중축합물의 분자량이 불규칙하게 분포될 우려가 있으며, 그 결과, 제조되는 중축합 수지의 품질이 변동될 우려가 있다.In addition, as a batch polymerization method, a low-condensation polycondensation resin of low molecular weight polycondensation resin is produced in Japanese Patent Application Laid-Open No. 08-59824 and the like, and then crystallized and / or granulated, and then it is vacuumed or inert gas. A method for producing a high molecular weight polycondensation resin by solid phase polymerization in an atmosphere is disclosed. However, in such a conventional batch polymerization method, when discharging the polycondensate from each batch, there is a fear that the molecular weight of the polycondensate is irregularly distributed by the discharge time difference, and as a result, the quality of the polycondensation resin produced It may change.
본 발명의 목적은 회분식 중합 방법에 있어서, 안정적인 품질의 중축합 수지를 제조할 수 있는 중축합 수지의 제조방법을 제공하기 위한 것이다.An object of the present invention is to provide a method for producing a polycondensation resin that can produce a polycondensation resin of stable quality in a batch polymerization method.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
본 발명의 하나의 관점은 중축합 수지의 제조방법에 관한 것이다. 상기 제조방법은 중축합 반응으로 저차 축합물을 제조하는 공정; 상기 저차 축합물을 계 밖으로 배출하는 공정; 및 배출한 저차 축합물을 중합하여 중축합 수지를 제조하는 공정을 포함하며, 상기 중축합 반응 및 중합은 회분(batch)식 반응기에서 수행되는 것이고, 상기 저차 축합물을 계 밖으로 배출하는 공정은, 상기 중축합 반응에서 생성되는 부산물 또는 중축합 반응의 원료와 동일한 종류의 물질을 계 내로 보충하면서 상기 저차 축합물을 계 밖으로 배출하는 것을 특징으로 한다.One aspect of the present invention relates to a method for producing a polycondensation resin. The manufacturing method comprises the steps of preparing a lower order condensate by a polycondensation reaction; Discharging the lower condensate out of the system; And a step of polymerizing the discharged lower order condensate to produce a polycondensation resin, wherein the polycondensation reaction and polymerization are performed in a batch reactor, and the step of discharging the lower order condensate out of the system, The lower condensate is discharged out of the system while replenishing the same kind of material as the by-product or the raw material of the polycondensation reaction in the system.
구체예에서, 상기 부산물 또는 원료와 동일한 종류의 물질은 상기 저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 계 내로 보충할 수 있다.In an embodiment, the same kind of material as the by-product or raw material may be replenished into the system to maintain the chemical equilibrium of the formation reaction of the lower condensate at the beginning of the lower condensate discharge.
구체예에서, 상기 부산물 또는 원료와 동일한 종류의 물질을 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 계 내로 보충하기 위한 양은 하기 식 1로 표시되는 Z(부산물 또는 원료와 동일한 종류의 물질의 단위 시간 당 공급량)의 ±5%일 수 있다:In an embodiment, the amount for replenishing the same kind of material as the by-product or raw material into the system so as to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of discharge is represented by Z (the same as the by-product or raw material). ± 5% of the supply per unit time of material of the kind):
[식 1][Equation 1]
Figure PCTKR2013010067-appb-I000001
Figure PCTKR2013010067-appb-I000001
상기 식 1에서, Z(단위: kg/hr)는 저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 투입되는 부산물 또는 원료와 동일한 종류의 물질(증기상)의 단위 시간 당 공급량(증기 공급 속도)이고, Px(단위: kPa)는 계 내의 압력을 의미하고, Py(단위: kPa)는 계 내의 온도(반응 용액의 온도) T(단위: K, T[K]=T'[℃]+273.15)에서의 단위 체적당 포화 증기압(이론치)를 의미하며, V(단위: m3)는 반응 용액의 용량을 의미하고, Y(단위: kg/m3)는 상기 온도 T 및 포화 증기압 Py의 조건에서 단위 체적당 포화 증기량(이론치)를 의미하며, L(단위: hr)은 계 내의 저차 축합물을 모두 배출하기 위한 시간을 의미한다.In Equation 1, Z (unit: kg / hr) is a unit of a substance (vapor phase) of the same kind as a by-product or raw material introduced to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of lower condensate discharge. Supply per hour (steam feed rate), P x (unit: kPa) is the pressure in the system, P y (unit: kPa) is the temperature in the system (temperature of the reaction solution) T (unit: K, T [ K] = T '[° C.] + 273.15) means the saturated vapor pressure (theoretical value) per unit volume, V (unit: m 3 ) means the volume of the reaction solution, Y (unit: kg / m 3 ) Denotes the amount of saturated steam per unit volume (theoretical value) under the conditions of the temperature T and the saturated vapor pressure P y , and L (unit: hr) means time for discharging all the lower condensates in the system.
구체예에서, 상기 저차 축합물의 수평균분자량은 상기 중축합 수지의 수평균분자량의 약 5 내지 약 50%일 수 있다.In embodiments, the number average molecular weight of the lower condensate may be about 5 to about 50% of the number average molecular weight of the polycondensation resin.
구체예에서, 상기 중축합 수지는 폴리아미드, 폴리카보네이트, 또는 폴리에스테르일 수 있다.In embodiments, the polycondensation resin may be polyamide, polycarbonate, or polyester.
구체예에서, 상기 중축합 수지는 상기 저차 축합물을 고상 중합하여 형성된 것일 수 있다.In embodiments, the polycondensation resin may be formed by solid-phase polymerization of the lower condensate.
본 발명은 회분식 중합 방법에 있어서, 안정적인 품질의 중축합 수지를 제조할 수 있는 중축합 수지의 제조방법을 제공하는 발명의 효과를 갖는다.This invention has the effect of providing the manufacturing method of the polycondensation resin which can manufacture the polycondensation resin of stable quality in a batch polymerization method.
이하, 본 발명을 상세히 설명하면, 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 중축합 수지의 제조방법은 중축합 반응 및 중합이 회분(batch)식 반응기에서 수행되는 회분식 중합 방법으로서, (A) 중축합 반응으로 저차 축합물을 제조하는 공정, (B) 상기 저차 축합물을 계 밖으로 배출하는 공정, 및 (C) 배출한 저차 축합물을 중합하여 중축합 수지를 제조하는 공정을 포함한다. 본 발명은 상기 (B) 저차 축합물을 계 밖으로 배출하는 공정이 상기 중축합 반응에서 생성되는 부산물 또는 중축합 반응의 원료(단량체)와 동일한 종류의 (기체상) 물질을 계 내로 보충하면서 수행되는 것을 특징으로 한다.Method for producing a polycondensation resin according to the present invention is a batch polymerization method wherein the polycondensation reaction and polymerization is carried out in a batch reactor, (A) a step of preparing a lower condensate by a polycondensation reaction, (B) And discharging the lower condensate out of the system, and (C) polymerizing the discharged lower condensate to produce a polycondensation resin. The present invention is carried out while the (B) the step of discharging the lower condensate out of the system is supplemented into the system (gas phase) material of the same kind as the by-products produced in the polycondensation reaction or the raw material (monomer) of the polycondensation reaction It is characterized by.
구체예에서, 상기 부산물 또는 원료와 동일한 종류의 물질은, 중합하고자 하는 수지에 따라 달라질 수 있으며, 예를 들면, 폴리아미드, 폴리카보네이트 등의 제조 시, 부산물과 동일한 물질을 사용할 수 있고, 폴리에스테르 제조 시, 원료와 동일한 종류의 물질을 사용할 수 있다.In an embodiment, the material of the same kind as the by-product or raw material may vary depending on the resin to be polymerized. For example, the same material as the by-product may be used when preparing polyamide, polycarbonate, and the like, and polyester In manufacturing, the same kind of material as the raw material can be used.
또한, 상기 부산물 또는 원료와 동일한 종류의 물질은 상기 저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 계 내로 보충할 수 있다.In addition, a substance of the same kind as the by-product or raw material may be replenished into the system to maintain the chemical equilibrium state of the reaction of formation of the lower condensate at the start of discharging the lower condensate.
(A) 저차 축합물을 제조하는 공정 (A) process for producing a lower order condensate
본 공정에서는 단량체의 중축합 반응을 실시하여 중축합 수지의 저차 축합물을 제조한다.In this process, the polycondensation reaction of a monomer is performed and the low-order condensate of polycondensation resin is manufactured.
구체예에서, 상기 중축합 수지는, 특별히 제한되지 않지만, 공업적 규모로 생산 가능한 폴리아미드, 폴리카보네이트 또는 폴리에스테르일 수 있다.In embodiments, the polycondensation resin is not particularly limited, but may be polyamide, polycarbonate or polyester that can be produced on an industrial scale.
이하, 폴리아미드, 폴리카보네이트 및 폴리에스테르의 합성에 이용되는 단량체, 촉매 등에 대해서 설명한다.Hereinafter, the monomer, catalyst, etc. which are used for synthesis | combination of a polyamide, a polycarbonate, and polyester are demonstrated.
<폴리아미드><Polyamide>
상기 폴리아미드는 디카르복실산과 디아민 및/또는 아미노카르복실산의 중축합 반응 및 (고상) 중합(고중합도화)에 의해 얻어질 수 있는 것으로서 특별히 한정되지 않는다.The polyamide is not particularly limited as can be obtained by polycondensation reaction of dicarboxylic acid with diamine and / or aminocarboxylic acid and (solid phase) polymerization (high polymerization).
상기 디카르복실산의 비한정적인 예로는, 말론산, 디메틸말론산, 숙신산, 글루타르산, 아디프산, 2-메틸아디프산, 트리메틸아디프산, 피멜산, 2,2-디메틸글루타르산, 3,3-디에틸숙신산, 수베르산, 아젤라산, 세바스산, 운데칸2산, 도데칸2산 등의 지방족 디카르복실산; 1,3-시클로펜탄디카르복실산, 1,4-시클로헥산디카르복실산 등의 지환식 디카르복실산; 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르복실산, 2,7-나프탈렌디카르복실산, 1,4-나프탈렌디카르복실산, 1,4-페닐렌디옥시디아세트산, 1,3-페닐렌디옥시디아세트산, 디펜산, 4,4'-옥시디벤조산, 디페닐 메탄-4,4'-디카르복실산, 디페닐설폰-4,4'-디카르복실산, 4,4'-바이페닐디카르복실산 등의 방향족 디카르복실산; 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다. 또한, 필요에 따라, 트리멜리트산, 트리메신산, 피로멜리트산 등의 다가 카르복실산 성분을 소량 병용할 수도 있다.Non-limiting examples of the dicarboxylic acid, malonic acid, dimethyl malonic acid, succinic acid, glutaric acid, adipic acid, 2-methyl adipic acid, trimethyl adipic acid, pimelic acid, 2,2-dimethylglu Aliphatic dicarboxylic acids such as taric acid, 3,3-diethyl succinic acid, suberic acid, azelaic acid, sebacic acid, undecane diacid, and dodecane diacid; Alicyclic dicarboxylic acids such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; Terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenyl Rendioxydiacetic acid, diphenic acid, 4,4'-oxydibenzoic acid, diphenyl methane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, 4,4'- Aromatic dicarboxylic acids such as biphenyldicarboxylic acid; Etc. can be illustrated. These can be used individually or in mixture of 2 or more types. Moreover, if necessary, a small amount of polyhydric carboxylic acid components, such as trimellitic acid, trimesic acid, a pyromellitic acid, can also be used together.
상기 디아민의 비한정적인 예로는, 에틸렌디아민, 프로판디아민, 1,4-부탄디아민, 1,6-헥산디아민(헥사메틸렌디아민), 1,7-헵탄디아민, 1,8-옥탄디아민, 1,9-노난디아민, 1,10-데칸디아민, 1,11-운데칸디아민, 1,12-도데칸디아민, 2-메틸-1,5-펜탄디아민, 3-메틸-1,5-펜탄디아민, 2,2,4-트리메틸-1,6-헥산디아민, 2,4,4-트리메틸-1,6-헥산디아민, 2-메틸-1,8-옥탄디아민, 5-메틸-1,9-노난디아민, 메타자일릴렌디아민, 파라자일릴렌디아민 등의 지방족 디아민; 시클로헥산디아민, 메틸시클로헥산디아민, 이소포론디아민, 비스(4-아미노시클로헥실)메탄, 1,3-비스아미노메틸시클로헥산, 1,4-비스아미노메틸시클로헥산, 노보난디메탄아민, 트리시클로데칸디메탄아민 등의 지환식 디아민; 파라페닐렌디아민, 메타페닐렌디아민, 4,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐에테르 등의 방향족 디아민; 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.Non-limiting examples of the diamine include ethylenediamine, propanediamine, 1,4-butanediamine, 1,6-hexanediamine (hexamethylenediamine), 1,7-heptanediamine, 1,8-octanediamine, 1, 9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl-1,9-nonane Aliphatic diamines such as diamine, metaxylylenediamine and paraxylylenediamine; Cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, bis (4-aminocyclohexyl) methane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, norbornanedimethanamine, tricyclo Alicyclic diamines such as decandimethanamine; Aromatic diamines such as paraphenylenediamine, metaphenylenediamine, 4,4'-diaminodiphenylsulfone, and 4,4'-diaminodiphenyl ether; Etc. can be illustrated. These can be used individually or in mixture of 2 or more types.
또한, 상기 아미노카르복실산으로는, 라우로락탐 등의 락탐, 아미노카프로산, 아미노운데칸산 등을 사용할 수 있으나, 이에 제한되지 않는다.As the aminocarboxylic acid, lactams such as laurolactam, aminocaproic acid, aminoundecanoic acid, and the like may be used, but are not limited thereto.
폴리아미드의 제조 시, 중축합 속도의 향상 및 중축합 반응 시의 열화 방지 등의 목적으로 인계 촉매를 이용할 수 있다. 상기 인계 촉매로는 차아인산염, 인산염, 차아인산, 인산, 인산에스테르, 폴리메타인류, 폴리인산류, 포스핀옥사이드류, 포스포늄할로겐 화합물, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 예를 들면, 차아인산염, 인산염, 차아인산, 인산, 이들의 혼합물 등을 사용할 수 있다. 상기 차아인산염으로는 차아인산나트륨, 차아인산칼륨, 차아인산칼슘, 차아인산마그네슘, 차아인산알루미늄, 차아인산바나듐, 차아인산망간, 차아인산아연, 차아인산납, 차아인산니켈, 차아인산코발트, 차아인산암모늄 등을 사용할 수 있고, 구체적으로, 차아인산나트륨, 차아인산칼륨, 차아인산칼슘, 차아인산마그네슘 등을 사용할 수 있다. 상기 인산염으로는 인산나트륨, 인산칼륨, 인산이수소칼륨, 인산칼슘, 인산바나듐, 인산마그네슘, 인산망간, 인산납, 인산니켈, 인산코발트, 인산암모늄, 인산수소이암모늄 등을 사용할 수 있다. 상기 인산에스테르로는 인산에틸옥타데실 등을 사용할 수 있다. 상기 폴리메타인산류로는 트리메타인산나트륨, 펜타메타인산나트륨, 헥사메타인산나트륨, 폴리메타인산 등을 사용할 수 있다. 상기 폴리인산류로는 테트라폴리인산나트륨 등을 사용할 수 있다. 또한, 상기 포스핀옥사이드류로는 헥사메틸포스포아미드 등을 사용할 수 있다. 상기 인계 촉매들은 수화물의 형태일 수도 있다.In the production of polyamide, a phosphorus catalyst can be used for the purpose of improving the polycondensation rate and preventing deterioration during the polycondensation reaction. Examples of the phosphorus-based catalyst may include hypophosphite, phosphate, hypophosphorous acid, phosphoric acid, phosphate ester, polymetaphosphates, polyphosphates, phosphine oxides, phosphonium halide compounds, and mixtures thereof, but are not limited thereto. . For example, hypophosphite, phosphate, hypophosphorous acid, phosphoric acid, mixtures thereof, and the like can be used. As the hypophosphite, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite, aluminum hypophosphite, vanadium hypophosphite, manganese hypophosphite, zinc hypophosphite, lead hypophosphite, nickel hypophosphite, cobalt hypophosphite, tea Ammonium phosphite etc. can be used, Specifically, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite, etc. can be used. Examples of the phosphate salt include sodium phosphate, potassium phosphate, potassium dihydrogen phosphate, calcium phosphate, vanadium phosphate, magnesium phosphate, manganese phosphate, lead phosphate, nickel phosphate, cobalt phosphate, ammonium phosphate, and diammonium phosphate. Ethyl octadecyl phosphate etc. can be used as said phosphate ester. Examples of the polymetaphosphates include sodium trimethaphosphate, sodium pentametaphosphate, sodium hexametaphosphate, polymetaphosphate, and the like. As said polyphosphate, sodium tetrapolyphosphate etc. can be used. In addition, hexamethylphosphoamide may be used as the phosphine oxides. The phosphorus catalysts may be in the form of hydrates.
상기 인계 촉매의 첨가량은 단량체(주입 원료) 약 100 중량부에 대하여, 약 0.0001 내지 약 5 중량부, 예를 들면 약 0.001 내지 약 1 중량부일 수 있다. 또한, 상기 인계 촉매의 첨가 시기는 (고상) 중합 완료까지라면 언제든 첨가시켜도 되지만, 원료 투입 시부터 저차 축합물의 중축합 완료까지의 사이인 것이 바람직하다. 또한, 여러 번으로 나누어 첨가해도 되며, 2종 이상의 다른 인계 촉매를 혼합하여 첨가할 수도 있다.The addition amount of the phosphorus catalyst may be about 0.0001 to about 5 parts by weight, for example, about 0.001 to about 1 part by weight based on about 100 parts by weight of the monomer (injection raw material). The addition time of the phosphorus catalyst may be added at any time until the completion of the (solid phase) polymerization, but is preferably between the time of starting the raw material input and the completion of the polycondensation of the lower condensate. Moreover, you may add in several times and may mix and add 2 or more types of different phosphorus catalysts.
또한, 본 공정은 상기 중축합 반응을 말단봉지제의 존재 하에 실시할 수 있다. 말단봉지제를 사용하면 저차 축합물 및 최종적으로 제조하는 폴리아미드의 분자량 조절이 보다 용이해지며, 저차 축합물 및 최종적으로 제조하는 폴리아미드의 용융안정성이 향상될 수 있다. 상기 말단봉지제로는 저차 축합물에서의 말단 아미노기 또는 말단 카르복실기와 반응성을 가지는 단관능성의 화합물이면 특별히 제한은 없다. 예를 들면, 모노카르복실산, 모노아민, 무수프탈산 등의 산무수물, 모노이소시아네이트, 모노산 할로겐화물, 모노에스테르류, 모노알코올류 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 말단봉지제는 단독 또는 2종 이상 혼합하여 사용할 수도 있다. 구체적으로, 반응성 및 봉지말단 안정성 등을 고려하여, 모노카르복실산 또는 모노아민을 사용할 수 있으며, 더욱 구체적으로는 취급 용이성이 우수한 모노카르복실산을 사용할 수 있다.In addition, this process can perform the said polycondensation reaction in presence of terminal blocker. The use of the end-sealing agent makes it easier to control the molecular weight of the lower condensate and the finally produced polyamide, and can improve the melt stability of the lower condensate and the finally produced polyamide. The terminal blocker is not particularly limited as long as it is a monofunctional compound having reactivity with a terminal amino group or a terminal carboxyl group in the lower condensate. For example, acid anhydrides such as monocarboxylic acid, monoamine, phthalic anhydride, monoisocyanate, monoacid halide, monoesters, monoalcohols and the like can be exemplified, but is not limited thereto. The terminal blocker may be used alone or in combination of two or more thereof. Specifically, monocarboxylic acid or monoamine may be used in consideration of reactivity and sealing end stability, and more specifically, monocarboxylic acid having excellent handleability may be used.
상기 모노카르복실산으로는 아미노기와 반응성을 갖는 모노카르복실산이면 특별히 제한은 없고, 예를 들어, 아세트산, 프로피온산, 부티르산, 발레르산, 카프로산, 카프릴산, 라우르산, 트리데실산, 미리스트산, 팔미트산, 스테아르산, 피바린산, 이소부틸산 등의 지방족 모노카르복실산; 시클로헥산카르복실산 등의 지환식 모노카르복실산; 벤조산, 톨루인산, α-나프탈렌카르복실산, β-나프탈렌카르복실산, 메틸나프탈렌카르복실산, 페닐아세트산 등의 방향족 모노카르복실산; 이들의 혼합물 등을 사용할 수 있다. 구체적으로는 반응성, 봉지말단 안정성, 가격 등의 점에서 아세트산, 프로피온산, 부티르산, 발레르산, 카프로산, 카프릴산, 라우르산, 트리데실산, 미리스트산, 팔미트산, 스테아르산, 벤조산 등을 사용할 수 있다.The monocarboxylic acid is not particularly limited as long as it is a monocarboxylic acid having reactivity with an amino group. For example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, micro Aliphatic monocarboxylic acids such as list acid, palmitic acid, stearic acid, pivaric acid and isobutyl acid; Alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid; Aromatic monocarboxylic acids such as benzoic acid, toluic acid, α-naphthalene carboxylic acid, β-naphthalene carboxylic acid, methylnaphthalene carboxylic acid, and phenylacetic acid; Mixtures thereof and the like can be used. Specifically, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecyl acid, myristic acid, palmitic acid, stearic acid, benzoic acid, etc. Etc. can be used.
상기 모노아민으로는 카르복실기와 반응성을 갖는 모노아민이면 특별히 제한은 없다. 예를 들면, 메틸아민, 에틸아민, 프로필아민, 부틸아민, 헥실아민, 옥틸아민, 데실아민, 스테아릴아민, 디메틸아민, 디에틸아민, 디프로필아민, 디부틸아민 등의 지방족 모노아민; 시클로헥실아민, 디시클로헥실아민 등의 지환식 모노아민; 아닐린, 톨루이딘, 디페닐아민, 나프틸아민 등의 방향족 모노아민; 이들의 혼합물 등을 사용할 수 있다. 구체적으로는 반응성, 비점, 봉지말단 안정성 및 가격 등의 점에서 부틸아민, 헥실아민, 옥틸아민, 데실아민, 스테아릴아민, 시클로헥실아민, 아닐린 등을 사용할 수 있다.The monoamine is not particularly limited as long as it is a monoamine having reactivity with a carboxyl group. For example, aliphatic monoamines, such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine; Alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; Aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine; Mixtures thereof and the like can be used. Specifically, butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, aniline, etc. may be used in view of reactivity, boiling point, bag end stability and price.
저차 축합물 제조 시, 말단봉지제의 사용량은 사용하는 말단봉지제의 반응성, 비점, 반응장치, 반응조건 등에 따라 다를 수 있지만, 예를 들면, 디카르복실산 또는 디아민 약 100 몰부에 대하여, 약 0.1 내지 약 15 몰부일 수 있다.In the preparation of the lower condensate, the amount of the end-sealing agent used may vary depending on the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the end-sealing agent used, but, for example, about 100 mole parts of dicarboxylic acid or diamine, 0.1 to about 15 mole parts.
본 공정은 중축합 반응에 의해서 생성되는 물 등의 부산물을 계 밖으로 추출함으로써, 그 반응이 촉진될 수 있다. 이를 위하여, 감압 하에 반응을 수행하는 방범 및/또는 불활성 가스 도입 후, 상기 부산물을 불활성 가스와 함께 제거하는 방법을 사용할 수 있다.In this step, the reaction can be accelerated by extracting by-products such as water produced by the polycondensation reaction out of the system. To this end, it is possible to use a method of removing the by-products together with an inert gas after crime prevention and / or introduction of an inert gas to carry out the reaction under reduced pressure.
<폴리카보네이트><Polycarbonate>
상기 폴리카보네이트로는, 특별히 제한은 없고, 각종 구조 단위를 갖는 폴리카보네이트를 예시할 수 있다. 통상적으로, 상기 폴리카보네이트는 2가 페놀과 카보네이트 전구체와의 반응에 의해 제조되는 방향족 폴리카보네이트일 수 있다.There is no restriction | limiting in particular as said polycarbonate, The polycarbonate which has various structural units can be illustrated. Typically, the polycarbonate may be an aromatic polycarbonate prepared by the reaction of a dihydric phenol with a carbonate precursor.
상기 2가 페놀의 비한정적인 예로는, 4,4'-디히드록시비페닐, 비스(4-히드록시페닐)메탄, 1,1-비스(4-히드록시페닐)에탄, 2,2-비스(4-히드록시페닐)프로판("비스페놀 A"), 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 1,1-비스(4-히드록시페닐)시클로헥산, 비스(4-히드록시페닐)에테르, 비스(4-히드록시페닐)설파이드, 비스(4-히드록시페닐)설폰, 비스(4-히드록시페닐)설폭사이드, 비스(4-히드록시페닐)케톤, 히드로퀴논, 레졸시놀, 카테콜 등을 예시할 수 있다. 상기 2가 페놀은 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 예를 들면, 비스(히드록시페닐)알칸류를 사용할 수 있고, 구체적으로, 2,2-비스(4-히드록시페닐)프로판을 주원료로 하여 사용할 수 있다.Non-limiting examples of the dihydric phenol include 4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2- Bis (4-hydroxyphenyl) propane ("bisphenol A"), 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxy Phenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, hydroquinone, resorcinol, catechol, etc. can be illustrated. The said dihydric phenol can be used individually or in mixture of 2 or more types. For example, bis (hydroxyphenyl) alkanes can be used, and specifically, 2,2-bis (4-hydroxyphenyl) propane can be used as a main raw material.
상기 카보네이트 전구체로는 카보닐할라이드, 카보닐에스테르, 할로포르메이트 등을 예시할 수 있으나, 이에 제한되지 않는다. 예를 들면, 포스겐, 2가 페놀의 디할로포르메이트, 디페닐카보네이트 등의 디아릴카보네이트, 디메틸카보네이트, 디에틸카보네이트 등의 디알킬카보네이트 등을 사용할 수 있고, 구체적으로, 디페닐카보네이트 등의 디아릴카보네이트를 사용할 수 있다. Examples of the carbonate precursor include carbonyl halide, carbonyl ester, haloformate, and the like, but are not limited thereto. For example, diaryl carbonates such as phosgene, dihaloformate of dihydric phenol, diphenyl carbonate, dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, and the like can be used. Reel carbonate can be used.
상기 폴리카보네이트는 중합체 사슬의 분자 구조가 직쇄 구조인 것 외에도 분지 구조인 것을 포함할 수 있다. 이러한 분지 구조를 도입하기 위한 분지제로는 1,1,1-트리스(4-히드록시페닐)에탄, α,α',α"-트리스(4-히드록시페닐)-1,3,5-트리이소프로필벤젠, 플루오로글루신, 트리멜리트산, 이사틴비스(o-크레졸) 등을 사용할 수 있다. 또한, 분자량 조절제로서, 페놀, p-t-부틸페놀, p-t-옥틸페놀, p-큐밀페놀 등을 사용할 수 있다.The polycarbonate may include a branched structure in addition to the linear structure of the molecular chain of the polymer chain. As a branching agent for introducing such a branching structure, 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ', α "-tris (4-hydroxyphenyl) -1,3,5-tri Isopropylbenzene, fluoroglucin, trimellitic acid, isatinbis (o-cresol), etc. Moreover, as a molecular weight modifier, phenol, pt-butylphenol, pt-octylphenol, p-cumylphenol, etc. can be used. Can be used.
본 공정(저차 축합물 제조 공정)에서, 상기 중축합 반응은 촉매를 첨가하지 않아도 충분한 속도로 진행시킬 수 있지만, 반응 속도를 향상시킬 목적으로 중합 촉매를 더욱 사용할 수 있다.In this step (lower condensate production step), the polycondensation reaction can proceed at a sufficient rate without adding a catalyst, but a polymerization catalyst can be further used for the purpose of improving the reaction rate.
이러한 중합 촉매로는, 이 분야에서 이용되고 있는 중축합 촉매이면 특별히 제한되지 않으나, 수산화리튬, 수산화나트륨, 수산화칼륨, 수산화칼슘 등의 알칼리 금속 및 알칼리 토금속의 수산화물류; 수소화알루미늄 리튬, 수소화붕소 나트륨, 수소화붕소 테트라메틸암모늄 등의 붕소 또는 알루미늄의 수소화물의 알칼리 금속염, 알칼리 토금속염, 제4급 암모늄염류; 수소화리튬, 수소화나트륨, 수소화칼슘 등의 알칼리 금속 및 알칼리 토금속의 수소화합물류; 리튬메톡사이드, 나트륨에톡사이드, 칼슘메톡사이드 등의 알칼리 금속 및 알칼리 토금속의 알콕사이드류; 리튬페녹사이드, 나트륨페녹사이드, 마그네슘페녹사이드, LiO-Ar-OLi, NaO-Ar-ONa(Ar는 아릴기) 등의 알칼리 금속 및 알칼리 토금속의 아릴옥사이드류; 아세트산 리튬, 아세트산 칼슘, 벤조산 나트륨 등의 알칼리 금속 및 알칼리 토금속의 유기산염류; 산화아연, 아세트산아연, 아연페녹사이드 등의 아연화합물류; 산화붕소, 붕산, 붕산 나트륨, 붕산 트리메틸, 붕산 트리부틸, 붕산 트리페닐 등의 붕소 화합물류; 산화규소, 규산 나트륨, 테트라알킬규소, 테트라아릴규소, 디페닐에틸에톡시규소 등의 규소 화합물류; 산화 게르마늄, 사염화게르마늄, 게르마늄 에톡사이드, 게르마늄 페녹사이드 등의 게르마늄 화합물류; 산화 주석, 디알킬주석옥사이드, 디알킬주석카복실레이트, 아세트산 주석, 에틸주석 트리뷰톡사이드 등의 알콕시기 또는 아릴옥시기와 결합한 주석 화합물, 유기 주석 화합물 등의 주석 화합물류; 산화 납, 아세트산 납, 탄산 납, 염기성 탄산염, 납 및 유기 납의 알콕사이드 또는 아릴옥사이드 등의 납 화합물류; 제4급 암모늄염, 제4급 포스포늄염, 제4급 아르소늄염 등의 오늄 화합물류; 산화 안티몬(3산화안티몬 등), 아세트산 안티몬 등의 안티몬 화합물류; 아세트산 망간, 탄산 망간, 붕산 망간 등의 망간 화합물류; 산화티타늄, 티타늄의 알콕사이드 또는 아릴옥사이드 등의 티타늄 화합물류; 아세트산 지르코늄, 산화지르코늄, 지르코늄의 알콕사이드 또는 아릴옥사이드, 지르코늄 아세틸아세톤 등의 지르코늄 화합물류; 등의 촉매를 예시할 수 있다. 상기 중합 촉매는, 단독 또는 2종 이상 혼합하여 사용할 수 있다.The polymerization catalyst is not particularly limited as long as it is a polycondensation catalyst used in this field, but alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide; Alkali metal salts, alkaline earth metal salts and quaternary ammonium salts of hydrides of boron or aluminum, such as lithium aluminum hydride, sodium borohydride and tetramethylammonium hydride; Hydrogen compounds of alkali metals and alkaline earth metals such as lithium hydride, sodium hydride and calcium hydride; Alkoxides of alkali metals and alkaline earth metals such as lithium methoxide, sodium ethoxide and calcium methoxide; Aryl oxides of alkali metals and alkaline earth metals such as lithium phenoxide, sodium phenoxide, magnesium phenoxide, LiO-Ar-OLi and NaO-Ar-ONa (Ar is an aryl group); Organic acid salts of alkali metals and alkaline earth metals such as lithium acetate, calcium acetate and sodium benzoate; Zinc compounds such as zinc oxide, zinc acetate and zinc phenoxide; Boron compounds, such as boron oxide, boric acid, sodium borate, trimethyl borate, tributyl borate, and triphenyl borate; Silicon compounds such as silicon oxide, sodium silicate, tetraalkylsilicon, tetraarylsilicon and diphenylethylethoxysilicon; Germanium compounds such as germanium oxide, germanium tetrachloride, germanium ethoxide and germanium phenoxide; Tin compounds such as tin compounds bound with alkoxy groups or aryloxy groups such as tin oxide, dialkyl tin oxide, dialkyl tin carboxylate, tin acetate, and ethyl tin tributoxide, and organic tin compounds; Lead compounds such as lead oxide, lead acetate, lead carbonate, basic carbonate, lead and organic lead alkoxides or aryl oxides; Onium compounds such as quaternary ammonium salts, quaternary phosphonium salts and quaternary arsonium salts; Antimony compounds, such as antimony oxide (antimony trioxide etc.) and antimony acetate; Manganese compounds such as manganese acetate, manganese carbonate and manganese borate; Titanium compounds such as titanium oxide, titanium alkoxide or aryl oxide; Zirconium compounds such as zirconium acetate, zirconium oxide, zirconium alkoxide or aryl oxide, zirconium acetylacetone; Catalysts, such as these, can be illustrated. The said polymerization catalyst can be used individually or in mixture of 2 or more types.
폴리카보네이트의 저차 축합물을 제조 시, 상기 중합 촉매의 사용량은, 사용하는 중합 촉매의 반응성, 비점, 반응 장치, 반응 조건 등에 따라 달라질 수 있으나, 단량체(주입 원료) 약 100 중량부에 대해서 약 1×10-9 내지 약 1 중량부, 예를 들면 약 1×10-7 내지 약 1×10-3 중량부일 수 있다. 또한, 상기 중합 촉매의 첨가 시기는 (고상) 중합 완료까지라면 언제든 첨가시켜도 되지만, 원료 투입 시부터 저차 축합물의 중축합 완료까지의 사이인 것이 바람직하다. 또한, 여러 번으로 나누어 첨가해도 되며, 2종 이상의 다른 중합 촉매를 혼합하여 첨가할 수도 있다.When preparing the lower polycondensate of polycarbonate, the amount of the polymerization catalyst used may vary depending on the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the polymerization catalyst used, but about 1 part by weight of about 100 parts by weight of the monomer (injection raw material). X 10 -9 to about 1 part by weight, for example about 1 x 10 -7 to about 1 x 10 -3 parts by weight. The addition time of the polymerization catalyst may be added at any time until completion of the (solid phase) polymerization, but is preferably between the time of starting the raw material input and the completion of the polycondensation of the lower condensate. Moreover, you may add in several times and may mix and add 2 or more types of different polymerization catalysts.
본 공정은 중축합 반응에 의해 생성되는 방향족 모노히드록시 화합물 등의 부산물을 계 밖으로 배출하는 것에 의해 그 반응이 촉진될 수 있다. 이를 위하여, 감압 하에 반응을 수행하는 방법 및/또는 불활성 가스 도입 후, 상기 부산물을 불활성 가스와 함께 제거하는 방법을 사용할 수 있다.This process can be accelerated by discharging the by-products such as aromatic monohydroxy compounds produced by the polycondensation reaction out of the system. To this end, a method of carrying out the reaction under reduced pressure and / or a method of removing the by-products together with the inert gas after introduction of the inert gas may be used.
<폴리에스테르><Polyester>
상기 폴리에스테르로는, 특별히 제한은 없고, 지방족 디올 또는 페놀성 수산기를 갖는 화합물의 아실화물과, 방향족 디카르복실산 또는 방향족 디카르복실산 에스테르를 반응시켜서 얻어지는 폴리에스테르를 예시할 수 있다.There is no restriction | limiting in particular as said polyester, The polyester obtained by making the acyl compound of the compound which has aliphatic diol or phenolic hydroxyl group, and aromatic dicarboxylic acid or aromatic dicarboxylic acid ester react can be illustrated.
상기 지방족 디올은 예를 들면, 탄소수 2 내지 10개의 알킬렌기를 갖는 것일 수 있으나, 이에 제한되지 않는다. 구체적으로, 에틸렌글리콜, 프로필렌글리콜, 트리메틸렌글리콜, 1,3-부탄디올, 1,3-프로판디올, 1,4-부탄디올, 1,2-에탄디올, 1,5-펜탄디올, 1,6-헥산디올, 1,7-헵탄디올, 1,8-옥탄디올, 1,9-노난디올, 1,10-데칸디올, 1,4-시클로헥산 디메탄올, 트리메틸올프로판, 네오펜틸글리콜, 메틸펜탄디올, 이들의 혼합물 등을 예시할 수 있다. 또한, 상기 지방족 디올의 알킬렌기는 본 발명에 의한 에스테르화 반응에 관여하지 않는 알킬기, 할로겐 원자, 에테르기 등이 치환되어 있는 것일 수 있다.The aliphatic diol may be, for example, one having an alkylene group having 2 to 10 carbon atoms, but is not limited thereto. Specifically, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,3-propanediol, 1,4-butanediol, 1,2-ethanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexane dimethanol, trimethylolpropane, neopentylglycol, methylpentane Diols, mixtures thereof, and the like. In addition, the alkylene group of the aliphatic diol may be substituted with an alkyl group, a halogen atom, an ether group and the like not involved in the esterification reaction according to the present invention.
상기 페놀성 수산기를 갖는 화합물의 아실화물로는, 방향족 디올 및/또는 방향족 히드록시카르복실산의 페놀성 수산기를, 지방산 무수물로 아실화한 아실화물을 사용할 수 있다. 상기 페놀성 수산기를 갖는 화합물은 페놀성 수산기를 1개 이상 가질 수 있으나, 반응성의 관점에서, 페놀성 수산기를 1개 또는 2개 갖는 것이 바람직하다. 또한, 상기 페놀성 수산기를 갖는 화합물이 페놀성 수산기를 1개만 가질 경우, 카르복실기를 1개 포함하는 것이 바람직하다. 상기 페놀성 수산기를 갖는 화합물로는 방향족 디올 및 방향족 히드록시카르복실산이 특히 바람직하다. 상기 방향족 디올로는, 4,4'-디히드록시비페닐("4,4'-비페놀"), 히드로퀴논, 레졸시놀, 메틸히드로퀴논, 클로로히드로퀴논, 아세톡시히드로퀴논, 나이트로히드로퀴논, 1,4-디히드록시나프탈렌, 1,5-디히드록시나프탈렌, 1,6-디히드록시나프탈렌, 2,6-디히드록시나프탈렌, 2,7-디히드록시나프탈렌, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(4-히드록시-3,5-디메틸페닐)프로판, 2,2-비스(4-히드록시-3,5-디클로로페닐)프로판, 2,2-비스(4-히드록시-3-메틸페닐)프로판, 2,2-비스(4-히드록시-3-클로로페닐)프로판, 비스-(4-히드록시페닐)메탄, 비스-(4-히드록시-3,5-디메틸페닐)메탄, 비스-(4-히드록시-3,5-디클로로페닐)메탄, 비스-(4-히드록시-3,5-디브로모페닐)메탄, 비스-(4-히드록시-3-메틸페닐)메탄, 비스-(4-히드록시-3-클로로페닐)메탄, 1,1-비스(4-히드록시페닐)시클로헥산, 비스-(4-히드록시페닐)에테르(4,4'-디히드록시디페닐에테르), 비스-(4-히드록시페닐)케톤, 비스-(4-히드록시-3,5-디메틸페닐)케톤, 비스-(4-히드록시-3,5-디클로로페닐)케톤, 비스-(4-히드록시페닐)설파이드, 비스-(4-히드록시페닐)설폰, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 이들 중, 4,4'-디히드록시비페닐, 히드로퀴논, 레졸시놀, 2,6-디히드록시나프탈렌, 2,2-비스(4-히드록시페닐)프로판 및 비스-(4-히드록시페닐)설폰 등이 입수가 용이하여 널리 사용된다.As an acyl compound of the compound which has the said phenolic hydroxyl group, the acyl compound which acylated the phenolic hydroxyl group of aromatic diol and / or aromatic hydroxycarboxylic acid with fatty acid anhydride can be used. The compound having a phenolic hydroxyl group may have one or more phenolic hydroxyl groups, but from the viewpoint of reactivity, it is preferable to have one or two phenolic hydroxyl groups. Moreover, when the compound which has the said phenolic hydroxyl group has only one phenolic hydroxyl group, it is preferable that it contains one carboxyl group. As a compound which has the said phenolic hydroxyl group, aromatic diol and aromatic hydroxycarboxylic acid are especially preferable. Examples of the aromatic diol include 4,4'-dihydroxybiphenyl ("4,4'-biphenol"), hydroquinone, resorcinol, methylhydroquinone, chlorohydroquinone, acetoxyhydroquinone, nitrohydroquinone, 1, 4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4 -Hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2 -Bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) propane, bis- (4-hydroxyphenyl) methane, bis- (4-hydroxy -3,5-dimethylphenyl) methane, bis- (4-hydroxy-3,5-dichlorophenyl) methane, bis- (4-hydroxy-3,5-dibromophenyl) methane, bis- (4 -Hydroxy-3-methylphenyl) methane, bis- (4-hydroxy-3-chlorophenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis- (4- Hydroxyphenyl) ether (4,4'-dihydroxydiphenyl ether), bis- (4-hydroxyphenyl) ketone, bis- (4-hydroxy-3,5-dimethylphenyl) ketone, bis- ( 4-hydroxy-3,5-dichlorophenyl) ketone, bis- (4-hydroxyphenyl) sulfide, bis- (4-hydroxyphenyl) sulfone, mixtures thereof and the like can be exemplified, but is not limited thereto. . Among them, 4,4'-dihydroxybiphenyl, hydroquinone, resorcinol, 2,6-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane and bis- (4-hydroxy Phenyl) sulfone etc. are easy to obtain and are widely used.
상기와 같은 페놀성 수산기를 갖는 화합물을 아실화하면 아실화물이 얻어진다. 아실화물로서는 아세틸화물을 예시할 수 있으나, 이에 한정되지 않는다. 여기서, 상기 아실화는 페놀성 수산기를 갖는 화합물과 아실화제를 반응시키는 것일 수 있다. 상기 아실화제로는, 아실무수물 또는 할로겐화물이 대표적이다. 상기 아실화제 중의 아실기는, 알칸산(아세트산, 프로피온산, 부티르산, 피발산 등) 등의 지방족 카르복실산, 팔미트산 등의 고급 알칸산, 벤조산 등의 방향족 카르복실산, 페닐아세트산 등의 아릴 지방산으로부터 유도할 수 있다. 상기 아실화제로는 지방산 무수물이 특히 바람직하다. 상기 지방산 무수물로는, 무수 아세트산, 무수 프로피온산, 무수 부티르산, 무수 아이소부티르산, 무수 발레르산, 무수 피발산, 무수 2에틸헥산산, 무수 모노클로로아세트산, 무수 디클로로아세트산, 무수 트리클로로아세트산, 무수 모노브로모아세트산, 무수 디브로모아세트산, 무수 트리브로모아세트산, 무수 모노플루오로아세트산, 무수 디플루오로아세트산, 무수 트리플루오로아세트산, 무수 글루타르산, 무수 말레산, 무수 숙신산, 무수 β-브로모프로피온산, 이들의 혼합물 등을 예시할 수 있다. 가격과 취급성의 관점에서, 무수 아세트산, 무수 프로피온산, 무수 부티르산, 무수 이소부티르산 등이 사용될 수 있고, 바람직하게는 무수 아세트산이 사용될 수 있다.Acylates are obtained by acylating the compound having a phenolic hydroxyl group as described above. Acetylate can be illustrated as an acylate, but it is not limited to this. Here, the acylation may be to react the compound having an phenolic hydroxyl group and the acylating agent. As said acylating agent, an acyl anhydride or a halide is typical. The acyl group in the said acylating agent is aliphatic carboxylic acid, such as alkanoic acid (acetic acid, propionic acid, butyric acid, pivalic acid, etc.), higher alkanoic acid, such as palmitic acid, aromatic carboxylic acid, such as benzoic acid, and aryl fatty acids, such as phenylacetic acid. Can be derived from. As said acylating agent, fatty acid anhydride is especially preferable. As said fatty acid anhydride, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, 2 ethylhexanoic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, trichloroacetic anhydride, monobromide anhydride Mother acetic acid, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, glutaric anhydride, maleic anhydride, succinic anhydride, β-bromo anhydride Propionic acid, mixtures thereof and the like can be exemplified. From the viewpoint of price and handleability, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride and the like can be used, preferably acetic anhydride can be used.
상기 페놀성 수산기를 갖는 화합물의 아실화 반응 시, 상기 지방산 무수물의 사용량은 해당 페놀성 수산기에 대하여 약 1.0 내지 약 1.2 당량일 수 있다. 상기 지방산 무수물의 사용량이, 해당 페놀성 수산기에 대하여 약 1.0 당량 미만인 경우, 아실화 반응 시의 평형이 지방산 무수물 쪽으로 이동할 우려가 있고, 이에 따라, 폴리에스테르로 중합 시 미반응 방향족 디올 또는 방향족 디카르복실산이 승화하여, 반응계가 폐쇄될 우려가 있다. 또한, 상기 지방산 무수물의 사용량이, 해당 페놀성 수산기에 대하여 약 1.2 당량을 초과할 경우, 폴리에스테르가 착색될 우려가 있다.In the acylation reaction of the compound having a phenolic hydroxyl group, the amount of the fatty acid anhydride may be about 1.0 to about 1.2 equivalents based on the phenolic hydroxyl group. When the amount of the fatty acid anhydride used is less than about 1.0 equivalent with respect to the phenolic hydroxyl group, there is a fear that the equilibrium during the acylation reaction is shifted toward the fatty acid anhydride, and thus unreacted aromatic diol or aromatic dicar when polymerization with polyester Acid may sublimate and the reaction system may be closed. Moreover, when the usage-amount of the said fatty acid anhydride exceeds about 1.2 equivalent with respect to the said phenolic hydroxyl group, there exists a possibility that a polyester may color.
상기 아실화 반응은 약 130 내지 약 180℃, 예를 들면 약 140 내지 약 160℃에서 약 15분 내지 약 20시간, 예를 들면 약 30분 내지 약 5시간 동안 수행할 수 있다.The acylation reaction may be performed at about 130 to about 180 ° C., for example, at about 140 to about 160 ° C. for about 15 minutes to about 20 hours, for example, about 30 minutes to about 5 hours.
본 발명에서, 상기 지방족 디올 또는 페놀성 수산기를 갖는 화합물의 아실화물과 반응하는 방향족 디카르복실산 또는 방향족 디카르복실산 에스테르는 방향족 디카르복실산류라 통칭할 수 있다.In the present invention, the aromatic dicarboxylic acid or aromatic dicarboxylic acid ester which reacts with the acyl compound of the compound having an aliphatic diol or phenolic hydroxyl group may be referred to collectively as aromatic dicarboxylic acids.
상기 방향족 디카르복실산으로는, 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르복실산, 1,5-나프탈렌디카르복실산, 4,4'-비페닐디카르복실산, 메틸테레프탈산, 메틸이소프탈산, 디페닐에테르-4,4'-디카르복실산, 디페닐설폰-4,4'-디카르복실산, 디페닐케톤-4,4'-디카르복실산, 2,2'-디페닐프로판-4,4'-디카르복실산, 이들의 혼합물 등을 예시할 수 있다. 이들 중, 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르복실산 등이 입수가 용이하여 널리 사용된다.Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, methyl terephthalic acid and methyl Isophthalic acid, diphenylether-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, diphenylketone-4,4'-dicarboxylic acid, 2,2'- Diphenyl propane-4,4'- dicarboxylic acid, mixtures thereof, etc. can be illustrated. Among them, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and the like are easily available and widely used.
또한, 상기 방향족 디카르복실산 에스테르로는, 상기 방향족 디카르복실산의 메틸, 에틸, 프로필, 페닐 등의 에스테르를 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.Moreover, as said aromatic dicarboxylic acid ester, ester, such as methyl, ethyl, propyl, phenyl, of the said aromatic dicarboxylic acid can be illustrated. These can be used individually or in mixture of 2 or more types.
상기 지방족 디올 또는 페놀성 수산기를 갖는 화합물의 아실화물과 방향족 디카르복실산류와의 반응은 촉매를 첨가하지 않아도 충분한 속도로 진행시킬 수 있지만, 반응 속도를 향상시킬 목적으로 중합 촉매를 더욱 사용할 수 있다. 상기 중합 촉매로는, 이 분야에서 이용되고 있는 중축합 촉매를 제한 없이 사용할 수 있다. 예를 들면, 전술한 폴리카보네이트 제조(중축합 반응)에 사용되는 중합 촉매를 사용할 수 있다.The reaction of the acylate of the compound having an aliphatic diol or phenolic hydroxyl group with aromatic dicarboxylic acids can proceed at a sufficient rate without adding a catalyst, but a polymerization catalyst can be further used for the purpose of improving the reaction rate. . As the polymerization catalyst, a polycondensation catalyst used in this field can be used without limitation. For example, the polymerization catalyst used for polycarbonate manufacture (polycondensation reaction) mentioned above can be used.
폴리에스테르의 저차 축합물 제조 시, 중합 촉매의 사용량은, 사용하는 중합 촉매의 반응성, 비점, 반응 장치, 반응 조건 등에 따라 달라질 수 있으나, 단량체(주입 원료) 약 100 중량부에 대하여 약 0.0001 내지 약 5 중량부, 예를 들면 약 0.0005 내지 약 1 중량부일 수 있다. 또한, 상기 중합 촉매의 첨가 시기는 (고상) 중합 완료까지라면 언제든 첨가시켜도 되지만, 원료 투입 시부터 저차 축합물의 중축합 완료까지의 사이인 것이 바람직하다. 또한, 여러 번으로 나누어 첨가해도 되며, 2종 이상의 다른 중합 촉매를 혼합하여 첨가할 수도 있다.In preparing the lower condensate of polyester, the amount of the polymerization catalyst used may vary depending on the reactivity, boiling point, reaction apparatus, reaction conditions, etc. of the polymerization catalyst to be used. 5 parts by weight, for example about 0.0005 to about 1 part by weight. The addition time of the polymerization catalyst may be added at any time until completion of the (solid phase) polymerization, but is preferably between the time of starting the raw material input and the completion of the polycondensation of the lower condensate. Moreover, you may add in several times and may mix and add 2 or more types of different polymerization catalysts.
본 공정(저차 축합물 제조 공정)에서, 지방족 디올과 방향족 디카르복실산류로부터 폴리에스테르를 제조하기 위하여, 우선, 약 160℃ 이상 약 250℃ 미만에서 지방족 디올과 방향족 디카르복실산류를 에스테르화 반응시킨 후, 약 250 내지 약 350℃에서 중축합 반응을 수행할 수 있다. 또한, 페놀성 수산기를 갖는 화합물의 아실화물과 방향족 디카르복실산류로부터 폴리에스테르를 제조하기 위하여, 페놀성 수산기를 갖는 화합물의 아실화물과 방향족 디카르복실산류를 에스테르화 반응 또는 에스테르 교환 반응시킨 후, 중축합 반응을 수행할 수 있다. In this step (lower condensate production step), in order to produce polyester from aliphatic diols and aromatic dicarboxylic acids, first, esterification reaction of aliphatic diols and aromatic dicarboxylic acids is performed at about 160 ° C. or more and less than about 250 ° C. After the polymerization, the polycondensation reaction may be performed at about 250 ° C to about 350 ° C. In addition, in order to manufacture polyester from the acyl compound and aromatic dicarboxylic acid of the compound which has a phenolic hydroxyl group, after acylating and aromatic dicarboxylic acid of the compound which has a phenolic hydroxyl group is subjected to esterification reaction or transesterification reaction, , Polycondensation reaction can be carried out.
본 공정은 중축합 반응 등에 의해 생성되는 부산물을 계 밖으로 배출하는 것에 의해 그 반응이 촉진될 수 있다. 이를 위하여, 감압 하에 반응을 수행하는 방법 및/또는 불활성 가스 도입 후, 상기 부산물을 불활성 가스와 함께 제거하는 방법을 사용할 수 있다.This process can be accelerated by discharging the by-products generated by the polycondensation reaction and the like out of the system. To this end, a method of carrying out the reaction under reduced pressure and / or a method of removing the by-products together with the inert gas after introduction of the inert gas may be used.
구체예에서, 상기 지방족 디올과 방향족 디카르복실산류의 폴리에스테르 중축합 반응(에스테르화 반응)에 따른 부산물은 방향족 디카르복실산의 히드록시기 또는 방향족 디카르복실산 에스테르의 알콕시기로부터 형성된 물 또는 알코올 등이며, 이러한 물 또는 알코올을 폴리에스테르의 생성이 유리해지도록 평형을 이동시키기 위하여, 계 밖으로 배출할 수 있다.In an embodiment, the by-product of the polyester polycondensation reaction (esterification reaction) of the aliphatic diol and the aromatic dicarboxylic acids is water or alcohol formed from the hydroxyl group of the aromatic dicarboxylic acid or the alkoxy group of the aromatic dicarboxylic acid ester. Etc., such water or alcohol may be discharged out of the system to shift the equilibrium so that the production of polyester is advantageous.
또한, 페놀성 수산기를 갖는 화합물의 아실화물과 방향족 디카르복실산류의 중축합 반응(에스테르화 반응 또는 에스테르 교환 반응)에 따른 부산물은 모노카르복실산, 모노카르복실산 에스테르 등이며, 이러한 모노카르복실산, 모노카르복실산 에스테르 등을 생성물(폴리에스테르)의 생성이 유리해지도록 평형을 이동시키기 위하여, 계 밖으로 배출할 수 있다. 필요에 따라, 유출되는 모노카르복실산 등의 일부를 반응기로 환류시킴으로써, 모노카르복실산 등과 함께 증발 또는 승화한 원료(방향족 디카르복실산류 등)를 환류액과 함께 반응기로 되돌릴 수도 있다. 또한, 페놀성 수산기를 갖는 화합물의 아실화물과 방향족 디카르복실산류의 에스테르화 반응 또는 에스테르 교환 반응 시, 상기 아실화물에 포함된 미반응된 지방산 무수물 등의 아실화제도, 상기 반응 중에 증발시켜서 계 밖으로 배출(증류)하는 것이 바람직하다.In addition, the by-products of the polycondensation reaction (esterification reaction or transesterification reaction) of the acyl compound and aromatic dicarboxylic acid of the compound which has a phenolic hydroxyl group are monocarboxylic acid, a monocarboxylic acid ester, etc. Acids, monocarboxylic acid esters, and the like can be discharged out of the system in order to shift the equilibrium so that the production of the product (polyester) is favored. If necessary, a part of the outflowing monocarboxylic acid or the like is refluxed to the reactor, so that the raw material (aromatic dicarboxylic acids or the like) evaporated or sublimed together with the monocarboxylic acid or the like may be returned to the reactor together with the reflux. In addition, during the esterification or transesterification reaction of the acylates of the compounds having phenolic hydroxyl groups with aromatic dicarboxylic acids, acylating agents such as unreacted fatty acid anhydrides contained in the acylates are also evaporated during the reaction. It is preferable to discharge (distillate) out.
본 발명의 저차 축합물 제조 공정에서, 폴리아미드, 폴리카보네이트, 폴리에스테르 등의 저차 축합물은, 각각의 단량체 등을 예를 들어, 통상 이용되는 가압 중합조에 주입하고, 무용매 또는 용매 중에서, 교반 조건 하에 중축합 반응을 수행함으로써 합성된다.In the low-condensation product manufacturing process of this invention, low-condensation products, such as a polyamide, a polycarbonate, and polyester, inject | pour each monomer etc. into the pressure polymerization tank used normally, for example, stirring in a solventless solvent or a solvent. Synthesized by carrying out the polycondensation reaction under conditions.
상기 용매는 물 또는 메탄올, 에탄올 등의 알코올류일 수 있다. 또한, 반응 초기에는 지방족 디올 등의 과잉의 원료, 부산물 등이 용매로 사용될 수도 있다.The solvent may be water or alcohols such as methanol and ethanol. In the initial stage of the reaction, an excess of raw materials such as aliphatic diols and by-products may be used as the solvent.
상기 중축합 반응은 통상적으로 교반 조건 하에, 승온 및 승압하는 것에 의해 행해질 수 있다. 이때, 반응 온도(중합 온도)는 원료 투입 후 조절할 수 있고, 반응 압력(중합 압력)은 중합의 진행에 맞춰 조절될 수 있다.The polycondensation reaction can be carried out by raising the temperature and increasing the pressure, usually under stirring conditions. At this time, the reaction temperature (polymerization temperature) can be adjusted after the raw material input, the reaction pressure (polymerization pressure) can be adjusted in accordance with the progress of the polymerization.
본 공정에서, 반응 온도, 반응 압력 및 반응 시간은, 제조하고자는 수지에 따라 적절하게 설정될 수 있으며, 특별히 제한되는 것이 아니다. 예를 들면, 반응 온도는 약 170 내지 약 400℃일 수 있고, 반응 압력은 약 0.5 내지 약 3 MPa일 수 있으며, 반응 시간은 약 0.5 내지 약 10시간일 수 있다. 또한, 반응 용기에 저차 축합물의 부착 방지, 중축합 반응의 균일한 진행, 입경이 일치하는 1차 중축합물 분체의 생성 등의 관점에서, 상기 중축합 반응은 교반 하에 행하는 것이 바람직하다.In this process, the reaction temperature, the reaction pressure and the reaction time can be appropriately set depending on the resin to be produced, and are not particularly limited. For example, the reaction temperature may be about 170 to about 400 ° C., the reaction pressure may be about 0.5 to about 3 kPa MPa, and the reaction time may be about 0.5 to about 10 hours. Moreover, it is preferable to perform the said polycondensation reaction under stirring from a viewpoint of prevention of adhesion of a lower order condensate to a reaction container, uniform progress of a polycondensation reaction, formation of the primary polycondensate powder with a particle size, etc.
(B) 저차 축합물을 계 밖으로 배출하는 공정 (B) process to discharge the lower condensate out of the system
다음으로, 본 공정에서는 제조된 저차 축합물을 반응 용기(계 내)로부터 배출한다.Next, in the present step, the produced lower condensate is discharged from the reaction vessel (in the system).
본 발명은 저차 축합물을 계 밖으로 추출하는 공정에 특징이 있다. 구체적으로, 상기 공정은 상기 중축합 반응에서 생성되는 부산물 또는 중축합 반응의 원료(단량체)와 동일한 종류의 (기체상) 물질을, 예를 들면, 저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록, 계 내로 보충하면서 상기 저차 축합물을 계 밖으로 배출하는 것이다. 이러한 특징에 의해, 저차 축합물을 계 밖으로 추출할 때의 배출의 시간차에 의해 생기는 저차 축합물의 분자량의 변동을 억제할 수 있고, 그 결과, 안정적인 품질의 중축합 수지를 얻을 수 있다.The present invention is characterized by a process for extracting the lower condensate out of the system. Specifically, the process produces the same type of (gas phase) material as the by-products produced in the polycondensation reaction or the raw material (monomer) of the polycondensation reaction, for example, the generation of the lower condensate at the start of discharge of the lower condensate. In order to maintain the chemical equilibrium of the reaction, the lower condensate is discharged out of the system while replenishing into the system. With this feature, it is possible to suppress fluctuations in the molecular weight of the lower order condensate caused by the time difference of discharge when the lower order condensate is extracted out of the system, and as a result, a polycondensation resin of stable quality can be obtained.
즉, 본 발명은 상기 중축합 반응에 의해 제조된 저차 축합물을 반응기(계 내)로부터 배출 시, 배출된 저차 축합물만큼의 공간이 증가하여, 계 내의 반응 용액(액체 상태)과 기상 사이에서 유지되어 있던 용액-기상의 평형에 변화가 생기고, 그 결과, 저차 축합물의 생성 반응의 화학 평형이 저차 축합물의 배출 개시 시의 상태와 달라진다는 점을 찾아낸 것이다.That is, in the present invention, when the lower condensate produced by the polycondensation reaction is discharged from the reactor (in the system), the space of the lower condensate discharged increases, so that the reaction solution (liquid state) and the gas phase in the system are increased. It was found that the change in the equilibrium of the solution-phase maintained was found, and as a result, the chemical equilibrium of the formation reaction of the lower condensate is different from the state at the start of discharging the lower condensate.
본 발명에 있어서, 계 내로 보충하는 "중축합 반응에서 생성되는 부산물 또는 중축합 반응의 원료(단량체)와 동일한 종류의 물질"은 제조하고자 하는 중축합 수지의 종류, 즉, 사용 원료(단량체)에 따라 달라질 수 있으며, 예를 들면, 폴리아미드 제조 시, 부산물은 물이고, 폴리카보네이트 제조 시, 부산물은 방향족 모노히드록시 화합물 등이며, 지방족 디올과 방향족 디카르복실산류로부터 제조되는 폴리에스테르의 제조 시, 부산물은 물, 알코올 등이고, 페놀성 수산기를 갖는 화합물의 아실화물과 방향족 디카르복실산류로부터 제조되는 폴리에스테르 제조 시, 부산물은 지방산 등의 모노카르복실산, 모노카르복실산 에스테르 등이다.In the present invention, the "products of the same kind as the by-products produced in the polycondensation reaction or the raw material (monomer) of the polycondensation reaction", which are supplemented into the system, are used for the kind of the polycondensation resin to be manufactured, that is, the raw material (monomer) to be used. For example, in the production of polyamide, the by-product is water, in the production of polycarbonate, the by-product is an aromatic monohydroxy compound and the like, in the production of polyester prepared from aliphatic diols and aromatic dicarboxylic acids The by-products are water, alcohols, and the like, and in the production of polyesters prepared from acylates and aromatic dicarboxylic acids of compounds having phenolic hydroxyl groups, the by-products are monocarboxylic acids such as fatty acids, monocarboxylic acid esters and the like.
또한, 본 발명에 있어서, 상기 부산물 또는 원료와 동일한 종류의 물질을 저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 계 내로 보충하는 과정은, 구체적으로, 저차 축합물 배출 개시 시의 계 내의 부산물의 증기압을 유지할 수 있도록, 계 내로 부산물 또는 원료와 동일한 종류의 물질을 도입하는 것을 의미한다. 여기서, 저차 축합물 배출 개시 시의 계 내의 부산물 또는 원료의 증기압을 유지(저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지)할 수 있도록 투입되는 부산물 또는 원료와 동일한 종류의 물질(증기상)의 단위 시간 당 공급량(증기 공급 속도)은 예를 들면, 하기 식 1에 의해 얻을 수 있다.Further, in the present invention, the process of replenishing the same kind of material as the by-product or raw material into the system so as to maintain the chemical equilibrium state of the reaction of formation of the lower condensate at the start of discharging the lower condensate, specifically, the lower condensate It means the introduction of the same kind of material as the by-product or raw material into the system so that the vapor pressure of the by-product in the system can be maintained at the start of discharge. Here, the same kind as the by-product or raw material introduced to maintain the vapor pressure of the by-product or raw material in the system at the start of the lower condensate discharge (maintain the chemical equilibrium state of the reaction of formation of the lower condensate at the start of the lower condensate discharge) The supply amount (steam supply rate) per unit time of the substance (vapor phase) can be obtained by, for example, the following formula (1).
[식 1][Equation 1]
Figure PCTKR2013010067-appb-I000002
Figure PCTKR2013010067-appb-I000002
상기 식 1에서, Z(단위: kg/hr)는 저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 투입되는 부산물 또는 원료와 동일한 종류의 물질(증기상)의 단위 시간 당 공급량(증기 공급 속도)이고, In Equation 1, Z (unit: kg / hr) is a unit of a substance (vapor phase) of the same kind as a by-product or raw material introduced to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of lower condensate discharge. Supply per hour (steam feed rate),
Px(단위: kPa)는 계 내의 압력을 의미하고,P x (unit: kPa) means the pressure in the system,
Py(단위: kPa)는 계 내의 온도(반응 용액의 온도) T(단위: K, T[K]=T'[℃]+273.15)에서의 단위 체적당 포화 증기압(이론치)를 의미하며,P y (unit: kPa) means the saturated vapor pressure (theoretical value) per unit volume at the temperature in the system (temperature of the reaction solution) T (unit: K, T [K] = T '[° C.] + 273.15),
V(단위: m3)는 반응 용액의 용량을 의미하고,V (unit: m 3 ) means the capacity of the reaction solution,
Y(단위: kg/m3)는 상기 온도 T 및 포화 증기압 Py의 조건에서 단위 체적당 포화 증기량(이론치)를 의미하며,Y (unit: kg / m 3 ) means the amount of saturated steam (theoretical value) per unit volume under the conditions of the temperature T and saturated vapor pressure P y ,
L(단위: hr)은 계 내의 저차 축합물을 모두 배출하기 위한 시간을 의미한다.L (unit: hr) means time to discharge all lower condensate in a system.
여기서, Py 및 Y는 하기와 같이 구할 수 있다.Here, P y and Y can be obtained as follows.
상기 포화 증기압(이론치) Py는, 부산물 또는 원료가 물일 경우, 하기 식 2로 표시되는 바그너 식(Wagner equation)으로부터 포화 수증기압(Py = Pws)을 산출할 수 있고, 부산물 또는 원료가 유기 화합물인 경우, 하기 식 3으로 표시되는 안토인 식(Antoine equation)으로부터 포화 증기압(Py = 0.01 Paw)을 산출할 수 있다. 하기에, 유기 화합물로서, 방향족 모노히드록시 화합물(폴리카보네이트 제조 시의 부산물)의 예로서 페놀, 및 지방족 다이올(폴리에스테르 제조 시의 원료)의 예로서 에틸렌글리콜의 안토인 상수를 기재하였다. 이러한 안토인 상수는, 예를 들어, 화학편람, NIST WebBook 등을 참조로 하여, 해당 화합물의 공지의 수치가 적용될 수 있다.When the by-product or raw material is water, the saturated vapor pressure (theoretical value) Py can calculate the saturated water vapor pressure (P y = P ws ) from a Wagner equation represented by Equation 2 below, and the by-product or raw material is an organic compound. In the case of, the saturated vapor pressure (P y = 0.01 P aw ) can be calculated from the Antoine equation represented by the following equation (3). Below, as an organic compound, the anthoin constant of ethylene glycol was described as an example of an aromatic monohydroxy compound (by-product in polycarbonate manufacture), and an example of phenol and aliphatic diol (raw material in polyester manufacture). Such an antoin constant, for example, with reference to a chemical manual, NIST WebBook, etc., a known value of the compound can be applied.
[식 2][Equation 2]
Figure PCTKR2013010067-appb-I000003
Figure PCTKR2013010067-appb-I000003
상기 식 2에서, Pws(단위: kPa)는 바그너의 엄밀 수증기압을 의미하고, In Equation 2, P ws (unit: kPa) means Wagner's exact water vapor pressure,
Pc는 임계압으로서 22120 kPa이며,P c is the critical pressure 22120 kPa,
A는 -7.76451, B는 1.45838, C는 -2.7758, D는 -1.23303이며,A is -7.76451, B is 1.45838, C is -2.7758, D is -1.23303,
x는 1-(T/Tc)(여기서, Tc는 임계온도로서 647.3 K이고, T(단위: K)는 반응용액의 온도임)이다.x is 1- (T / T c ), where T c is 647.3 K as the critical temperature and T (unit: K) is the temperature of the reaction solution).
[식 3][Equation 3]
Figure PCTKR2013010067-appb-I000004
Figure PCTKR2013010067-appb-I000004
상기 식 3에서, Paw(단위: bar)는 포화 증기압을 의미하고,In Formula 3, P aw (unit: bar) means a saturated vapor pressure,
T(단위: K)는 반응용액의 온도이며,T (unit: K) is the temperature of the reaction solution,
A, B 및 C는 안토인 상수로서, 페놀의 경우, A는 4.24688, B는 1509.677, C는 -98.949이고, 에틸렌글리콜의 경우, A는 4.97012, B는 1914.951, C는 -84.996이다.A, B and C are the antho constants, for phenol, A is 4.24688, B is 1509.677, C is -98.949, and for ethylene glycol, A is 4.97012, B is 1914.951, C is -84.996.
상기 단위 체적당의 포화 증기량(이론치) Y는 상기 식에 의해 얻어진, 부산물 또는 원료의 소정의 온도 T에서의 포화 증기압 Py를 이용하여, 이상기체 상태방정식에 의해, 하기 식 4로 산출할 수 있다(이때, 체적 1m3로서 산출).The saturated vapor amount (theoretical value) Y per unit volume can be calculated by the ideal gas state equation by the ideal gas state equation using the saturated vapor pressure Py at a predetermined temperature T of the by-product or raw material obtained by the above formula ( At this time, the volume is calculated as 1 m 3 ).
[식 4][Equation 4]
Figure PCTKR2013010067-appb-I000005
Figure PCTKR2013010067-appb-I000005
상기 식 4에서, Y(단위: kg/m3)는 온도 T 및 포화 증기압 Py의 조건에서 단위 체적당 포화 증기량(이론치)를 의미하고,In Formula 4, Y (unit: kg / m 3 ) means the amount of saturated steam per unit volume (theoretical value) under the conditions of temperature T and saturated vapor pressure P y ,
Py(단위: kPa)는 온도 T(단위: K)에서의 단위 체적당 포화 증기압(이론치)를 의미하고,P y (unit: kPa) means the saturated vapor pressure (theoretical value) per unit volume at temperature T (unit: K),
T(단위: K)는 반응용액의 온도이고,T (unit: K) is the temperature of the reaction solution,
Mw(단위: g/mol) 는 부산물 또는 원료의 중량평균분자량이며,Mw (unit: g / mol) is the weight average molecular weight of the by-product or raw material,
R은 기체상수로서, 8.3145이다.R is a gas constant, 8.3145.
상기 식 1에 있어서, [Y×(Px/Py)]는, 반응계 내의 단위 체적당 포화 증기량 X(단위: kg/m3)이다. 즉, 포화 증기압(이론치) Py, 포화 증기압 Py에서의 단위 체적당의 포화 증기량 Y, 및 반응계 내의 압력 Px를 보일 샤를의 법칙에 근거해서 산출함으로써, 반응계 내의 단위 체적당 포화 증기량 X가 X = Y×(Px/Py)[kg/m3]로서 산출된다. 이와 같이, 상기 증기량 X는 저차 축합물을 계 밖으로 배출하는 시작 시점에서의 계 내의 증기량을 나타낼 수 있다.In the formula 1, [Y × (P x / P y)] , the saturated amount of steam in the reaction system per unit suitable X: (unit kg / m 3). That is, by calculating the saturated vapor pressure (theoretical value) P y , the saturated vapor amount Y per unit volume at the saturated vapor pressure P y , and the pressure P x in the reaction system based on Boyle's law, the saturated vapor amount X per unit volume in the reaction system is X. = Y × (P x / P y ) [kg / m 3 ]. As such, the amount of steam X may represent the amount of steam in the system at the start of discharging the lower condensate out of the system.
본 발명은 저차 축합물을 계 밖으로 배출할 때, 상기 증기량(X)을 계 내에서 유지할 수 있도록, 기상의 부산물을 보충하며, 이를 통해 화학 평형 상태를 유지할 수 있다. 반응 용액의 배출에 의해 생기는 공간용적 증가분 V(단위: m3)에 대해서, 상기 증기량 X를 유지하도록 첨가하는 증기(부산물 또는 원료와 동일한 종류의 물질)의 양(단위: kg)은 Y×(Px/Py)×V로 표시될 수 있다. 또한, 소정의 시간 L 동안 상기 증기량을 첨가하기 위한 단위 시간당 증기 공급량(Z)는, 상기 식 1로 표시할 수 있다.In the present invention, when the lower condensate is discharged out of the system, the by-products of the gas phase are supplemented to maintain the vapor amount (X) in the system, thereby maintaining a chemical equilibrium state. Regarding the space volume increase V (unit: m 3 ) generated by the discharge of the reaction solution, the amount (unit: kg) of steam (unit: kg) added to maintain the steam amount X is equal to Y × ( P x / P y ) × V. In addition, the steam supply amount Z per unit time for adding the steam amount for a predetermined time L can be represented by the above formula (1).
본 발명에 있어서, 상기 식 1 내지 4의 각 수치 단위는 압력, 체적 등에 적절하게 정합시켜서 사용할 수 있고, 식 1 내지 4의 각 단위는 참고로서 참조된다.In this invention, each numerical unit of said Formulas 1-4 can be used suitably matching a pressure, a volume, etc., and each unit of Formulas 1-4 is referred to as a reference.
구체예에서, 저차 축합물 배출 개시 시의 상기 저차 축합물 생성 반응의 화학 평형 상태를 유지하도록, 저차 축합물 배출 시 계 내로 보충하는 부산물 또는 원료와 동일한 종류의 물질의 양은, 상기 식 1 내지 4에 의해 산출된 단위 시간당 증기 공급량(증기 공급 속도) Z의 ±5%, 예를 들면 ±3%, 구체적으로 ±1%의 수치 범위일 수 있다. 상기 범위에서, 배출 개시 시의 저차 축합물 생성 반응의 화학 평형 상태를 유지할 수 있다.In an embodiment, the amount of a substance of the same kind as a by-product or raw material supplemented into the system at the time of the lower condensate discharge, so as to maintain the chemical equilibrium of the lower condensate formation reaction at the beginning of the lower condensate discharge, It can be in the numerical range of ± 5%, for example ± 3%, specifically ± 1% of the steam feed rate (steam feed rate) Z per unit time calculated by. Within this range, it is possible to maintain the chemical equilibrium state of the lower order condensate formation reaction at the start of discharge.
본 발명은 상기와 같은 증기 공급 속도로 계 내로 부산물 또는 원료와 동일한 종류의 물질을 도입하면서 저차 축합물을 배출함으로써, 배출 개시 시부터 배출 종료 시까지 중축합 반응의 화학 평형 상태를 변동시키는 일 없이, 저차 축합물을 배출할 수 있다. 이에 따라, 배출 후의 얻어지는 저차 축합물의 분자량이, 배출 시의 시간차에 따라 변동되지 않는다. 즉, 본 발명은 상기 과정에 의해 분자량 분포가 좁은 저차 축합물을 얻을 수 있고, 이를 고분자량의 중축합물을 얻기 위한 원료로 이용함으로써, 분자량 분포가 좁은 안정적인 품질의 중축합 수지를 얻을 수 있다.The present invention discharges the lower condensate while introducing the same kind of by-product or raw material into the system at the steam supply rate as described above, without changing the chemical equilibrium state of the polycondensation reaction from the start of the discharge to the end of the discharge. In addition, the lower condensate can be discharged. Thereby, the molecular weight of the lower order condensate obtained after discharge | emission does not change with time difference at the time of discharge | release. That is, the present invention can obtain a low-order condensate having a narrow molecular weight distribution by the above procedure, and by using this as a raw material for obtaining a high-molecular weight polycondensate, a polycondensation resin of stable quality having a narrow molecular weight distribution can be obtained.
구체예에서, 계 내로 공급되는 부산물 또는 원료와 동일한 종류의 물질의 증기는, 반응 용액 내에 공급되어도 본 발명의 효과를 얻을 수 있으나, 더욱 우수한 효과를 얻기 위하여, 기상부에 도입하는 것이 바람직하다.In the embodiment, the vapor of a substance of the same kind as the by-product or raw material supplied into the system can obtain the effect of the present invention even if supplied into the reaction solution, but in order to obtain a more excellent effect, it is preferably introduced into the gas phase part.
또한, 상기 저차 축합물의 배출 공정은, 중축합 반응의 저차 축합물의 생성 반응의 화학 평형을 유지하기 위하여, 온도, 압력 등을 반응 시의 조건과 동일하게유지하는 것이 바람직하다.In the discharge step of the lower condensate, in order to maintain the chemical equilibrium of the production reaction of the lower condensate of the polycondensation reaction, it is preferable to maintain the temperature, the pressure and the like as the conditions at the time of the reaction.
구체예에서, 반응 용기로부터 배출된 저차 축합물은, 불활성 가스 분위기 하, 대기압에서 용기에 회수될 수 있다. 상기 불활성 가스 분위기는 저차 축합물의 산화 열화를 방지한다는 점에서, 산소농도가 1 체적% 이하일 수 있다.In an embodiment, the lower condensate discharged from the reaction vessel can be recovered to the vessel at atmospheric pressure under an inert gas atmosphere. The inert gas atmosphere may prevent oxidative deterioration of the lower condensate, and the oxygen concentration may be 1% by volume or less.
구체예에서, 저차 축합물의 반응 용기로부터의 배출 속도는, 반응 용기의 크기, 반응 용기 내의 내용물의 양, 온도, 배출구의 크기, 배출 노즐부의 길이 등에 따라서 적절하게 조절할 수 있다. 상기 저차 축합물의 대수점도(IV)는 약 0.05 내지 약 1.50 dL/g, 예를 들면 약 0.08 내지 약 1.00 dL/g, 구체적으로 약 0.10 내지 약 0.80 dL/g일 수 있다. 본 발명은 저차 축합물을 배출할 때, 배출의 시간차에 따른 중축합물의 분자량의 편차가 억제되므로, 저차 축합물의 대수점도(IV)에 대해서도 배출 시간의 경과에 의한 편차가 없다. 예를 들어, 배출한 저차 축합물을 소정 시간마다 샘플링할 경우, 각 시료의 대수점도 편차가 매우 작다. 즉, 소정 시간마다 샘플링한 시료의 대수점도 평균치도 전술한 범위 내이며, 그들의 표준편차가 약 0.05 이하, 예를 들면 약 0.04 미만일 수 있으며, 변동 계수는 약 2.5 이하, 예를 들면 약 2.0 이하일 수 있다. 또한, 소정 시간마다의 샘플링이란, 특별히 제한되지 않지만, 예를 들어, 약 10분마다 행하는 샘플링 등일 수 있다. 또한, 상기 대수점도(IV)는 후술하는 실시예의 방법을 따라서 얻을 수 있다.In embodiments, the rate of discharge from the reaction vessel of the lower condensate may be appropriately adjusted according to the size of the reaction vessel, the amount of contents in the reaction vessel, the temperature, the size of the outlet, the length of the discharge nozzle, and the like. The logarithmic viscosity (IV) of the lower condensate may be about 0.05 to about 1.50 dL / g, for example about 0.08 to about 1.00 dL / g, specifically about 0.10 to about 0.80 dL / g. In the present invention, when discharging the lower condensate, the variation in the molecular weight of the polycondensate according to the time difference of discharging is suppressed, and therefore there is no variation due to the lapse of the discharging time even for the logarithmic viscosity (IV) of the lower condensate. For example, when the discharged lower order condensate is sampled every predetermined time, the algebraic viscosity variation of each sample is very small. That is, the logarithmic viscosity averages of the samples sampled every predetermined time are also in the above-mentioned ranges, and their standard deviations may be about 0.05 or less, for example, less than about 0.04, and the coefficient of variation may be about 2.5 or less, for example, about 2.0 or less. have. The sampling every predetermined time is not particularly limited, but may be, for example, sampling performed every about 10 minutes. In addition, the logarithmic viscosity IV can be obtained by the method of the Example mentioned later.
구체예에서, 상기 저차 축합물의 수평균분자량은, 최종적으로 얻어지는 중축합 수지의 수평균분자량의 약 5 내지 약 50%, 예를 들면 약 7 내지 약 50%, 구체적으로 약 8 내지 약 50%일 수 있다. 예를 들어, 상기 저차 축합물의 수평균분자량은, 약 500 내지 약 25,000 g/mol, 예를 들면 약 700 내지 약 20,000 g/mol, 구체적으로 약 800 내지 약 18,000 g/mol일 수 있다. 본 명세서에서, 축합물의 수평균분자량은, 폴리아미드 및 폴리에스테르의 경우에는 표준물질로서 폴리메틸메타크릴레이트(pMMA)를 사용하고, 폴리카보네이트의 경우에는 폴리스타이렌을 사용하여, 후술하는 실시예의 조건의 겔 침투 크로마토그래피(gel permeation chromatography: GPC)에 의해 측정한 값을 의미한다.In embodiments, the number average molecular weight of the lower condensate is about 5 to about 50%, for example about 7 to about 50%, specifically about 8 to about 50%, of the number average molecular weight of the finally obtained polycondensation resin Can be. For example, the number average molecular weight of the lower condensate may be about 500 to about 25,000 g / mol, for example about 700 to about 20,000 g / mol, specifically about 800 to about 18,000 g / mol. In the present specification, the number average molecular weight of the condensate is polymethyl methacrylate (pMMA) as the standard material in the case of polyamide and polyester, and polystyrene is used in the case of polycarbonate, Means the value measured by gel permeation chromatography (GPC).
폴리아미드의 경우, 상기 방법에 의해 반응 용기로부터 배출된 저차 축합물은, 배출 시의 물의 증발 잠열에 의해서 그 온도가 순간적으로 약 100℃ 이하로 떨어지므로, 열적 열화 및 산소에 의한 열화가 거의 생기지 않는다. 상기 저차 축합물은 그대로의 상태에서 고중합도화시켜 중축합 수지를 얻을 수 있으나, 저차 축합물을 고상 중합함으로써 고중합도화시켜 중축합 수지를 얻는 것이 바람직하다.In the case of polyamide, the lower order condensate discharged from the reaction vessel by the above-described method, since its temperature drops to about 100 ° C. or less instantaneously by the latent heat of evaporation of water at the time of discharge, hardly causes thermal deterioration and deterioration by oxygen. Do not. The low-order condensate may be subjected to high polymerization in the state as it is to obtain a polycondensation resin. However, the low-condensation product is preferably subjected to high polymerization by solid-phase polymerization to obtain a polycondensation resin.
배출되는 저차 축합물은 저차 축합물이 가지는 현열(顯熱)에 의해 동반되는 수분의 대부분을 증발시키기 때문에, 본 공정에서 저차 축합물의 냉각과 건조처리는 동시에 이루어질 수 있다. 또한, 질소 등의 불활성 가스 분위기 하에서 배출 처리를 수행할 경우, 건조 및 냉각의 효율을 높일 수 있고, 상기 저차 축합물의 배출 용기로서 사이클론형의 고체-기체 분리 장치를 설치할 경우, 배출 시, 분말의 계외 비산을 억제할 수 있고, 높은 가스 선속 하에서 배출 처리를 행할 수 있어, 건조 및 냉각 효율을 높일 수 있다.Since the lower condensate discharged evaporates most of the moisture entrained by the sensible heat of the lower condensate, the lower condensate can be cooled and dried simultaneously. In addition, when the discharge treatment is performed in an inert gas atmosphere such as nitrogen, the efficiency of drying and cooling can be improved, and when a cyclone-type solid-gas separation device is installed as the discharge container of the lower condensate, Out-of-system scattering can be suppressed, discharge treatment can be performed under high gas flux, and drying and cooling efficiency can be improved.
이와 같이 해서 얻어지는 저차 축합물은, 대수점도가 상기와 같이 높고, 미반응물의 잔존량도 낮기 때문에, 후술하는 고상 중합에 의한 고중합도화 시에, 저차 축합물 입자 간의 융착이나 응집을 일으키는 일 없이 높은 온도에서 고상 중합을 행할 수 있으며, 부반응에 의한 열화가 적을 수 있다The low-order condensate obtained in this way has a high logarithmic viscosity as described above and a low residual amount of the unreacted product, and thus does not cause fusion or agglomeration between the low-order condensate particles at the time of high polymerization by solid phase polymerization described later. Solid phase polymerization can be carried out at a high temperature, and deterioration due to side reactions can be small.
필요에 따라서, 상기 저차 축합물은 부피 비중을 높이는 처리, 입경을 균일하게 하기 위한 컴팩팅(compacting) 처리, 입자화 처리 등을 수행한 후, 후술하는 고중합도화를 수행할 수 있다.If necessary, the low-density condensate may be subjected to a high polymerization degree, which will be described later, after performing a treatment to increase the specific gravity of the volume, a compacting process to uniform the particle diameter, and a granulation treatment.
구체예에서, 폴리카보네이트 등의 저차 축합물은 용융 상태나 용액 상태일 경우, 결정화 용매로 처리함으로써, 분말 형태, 과립 형태 등의 형상으로 얻을 수 있다. 상기 결정화 용매로 처리하는 방법은 특별한 제한은 없으나, 통상적으로, 폴리카보네이트의 저차 축합물을 해당 결정화 용매 중에서 교반하여, 슬러리 상태로 결정화시키거나, 저차 축합물과 해당 결정화 용매를 혼합기 또는 혼련기를 사용하여, 혼합 또는 혼련하면서 결정화할 수 있다. 슬러리 상태로 결정화할 경우, 워링 블렌더(Waring blender) 등의 고속 교반 날개를 가진 장치나, 커터 부착 소용돌이 펌프를 구비한 장치 등이 이용될 수 있다. 또한, 혼합기 또는 혼련기를 이용해서 결정화할 경우, 일반적으로 혼합기, 혼련기라 불리는 기기(분체 공업편람, 일간공업신문사, 644 내지 648 페이지에 기재된 기기 등)를 사용할 수 있고, 예를 들면, 콘 블렌더, 리본 블렌더, 셔블 믹서, 퍼그믹서-헨셸믹서, 브라벤더, 2축 혼련기 등을 사용할 수 있다.In a specific example, a lower order condensate, such as a polycarbonate, can be obtained in the form of powder form, a granule form, etc. by processing with a crystallization solvent, when melted or in solution state. The method of treating with the crystallization solvent is not particularly limited, but in general, the lower condensate of polycarbonate is stirred in the crystallization solvent to crystallize in a slurry state, or the lower condensate and the crystallization solvent are used in a mixer or kneader. Crystallization by mixing or kneading. When crystallizing in a slurry state, a device having a high speed stirring blade such as a waring blender, a device having a swirl pump with a cutter, or the like can be used. In addition, when crystallizing using a mixer or a kneader, a device (generally referred to as a mixer or kneader) (such as a powder industry manual, a daily industrial newspaper, pages 644 to 648, etc.) can be used, for example, a cone blender, Ribbon blenders, shovel mixers, pug mixers, Henschel mixers, brabenders, twin screw kneaders and the like can be used.
상기 결정화 용매의 예로는, 아세트산 에틸 등의 에스테르류; 디에틸에테르 등의 에테르류; 아세톤, 메틸에틸케톤 등의 케톤류; 등을 예시할 수 있다. 또한, 결정화의 온도 조건에 따라, 헥산, 옥탄 등의 탄화수소류; 사이클로헥산 등의 환식 탄화수소류; 등도 결정화 용매로서 사용할 수 있다. 이 중, 아세톤은 비표면적이 넓은 폴리카보네이트의 저차 축합물을 제조할 수 있어 바람직하다.Examples of the crystallization solvent include esters such as ethyl acetate; Ethers such as diethyl ether; Ketones such as acetone and methyl ethyl ketone; Etc. can be illustrated. Moreover, according to the temperature conditions of crystallization, Hydrocarbons, such as hexane and an octane; Cyclic hydrocarbons such as cyclohexane; Etc. can also be used as a crystallization solvent. Among these, acetone is preferable because it can manufacture the low order condensate of polycarbonate with a large specific surface area.
(C) 배출한 저차 축합물을 중합하여 중축합 수지를 제조하는 공정 (C) polymerizing the discharged low order condensate to produce a polycondensation resin
본 공정에서는 상기 반응 용기(계 내)로부터 배출된 저차 축합물을 중합하여 중축합 수지를 제조한다. 본 발명의 중축합 수지는 상기 저차 축합물을 고상 중합함으로써 고중합도화하여 얻어지는 것이 바람직하다.In this step, the polycondensation resin is produced by polymerizing the low-order condensate discharged from the reaction vessel (in the system). It is preferable that the polycondensation resin of this invention is obtained by carrying out high polymerization degree by solid-phase-polymerizing the said lower order condensate.
구체예에서, 상기 고상 중합은 반응 용기로부터 취득한 그대로의 저차 축합물을 사용하여 연속으로 실시할 수 있고, 반응 용기에서 꺼낸 저차 축합물을 건조시킨 뒤에 실시할 수 있다. 또한, 반응 용기에서 꺼낸 저차 축합물을 일단 저장한 뒤에 실시할 수 있으며, 반응 용기에서 꺼낸 저차 축합물에 상기 컴팩팅 처리나 입자화 처리를 한 후 실시할 수도 있다. 고상 중합에 의해 고중합도화하면 열적 열화가 보다 적은 중축합 수지를 얻을 수 있다.In a specific example, the solid phase polymerization can be carried out continuously using the lower order condensate obtained from the reaction vessel, and can be carried out after drying the lower order condensate taken out of the reaction vessel. Further, the lower order condensate taken out of the reaction vessel may be stored once, and the lower order condensate removed from the reaction vessel may be carried out after the compacting or granulation treatment. When high polymerization degree is carried out by solid state polymerization, polycondensation resin with less thermal degradation can be obtained.
저차 축합물을 고상 중합할 때의 중합 방법 및 조건은 특별히 제한되지 않으며, 저차 축합물의 융착, 응집, 열화 등을 일으키는 일 없이 고체 상태를 유지하면서 고중합도화를 실시할 수 있는 방법 및 조건이면 된다. 바람직하게는, 저차 축합물 및 생성되는 중축합 수지의 산화 열화를 방지하기 위해 헬륨 가스, 아르곤 가스, 질소 가스, 탄산 가스 등의 불활성 가스 분위기 중 또는 감압 하에서 고상 중합할 수 있다.The polymerization method and conditions for solid-phase polymerization of the lower condensate are not particularly limited, and any method and conditions can be used to perform high polymerization while maintaining a solid state without causing fusion, aggregation, or deterioration of the lower condensate. . Preferably, in order to prevent oxidative deterioration of the lower order condensate and the resulting polycondensation resin, solid phase polymerization may be performed in an inert gas atmosphere such as helium gas, argon gas, nitrogen gas, carbon dioxide gas or under reduced pressure.
상기 고상 중합의 온도는 특별히 제한되지 않지만, 최고 반응 온도가 예를 들면 약 170 내지 약 350℃일 수 있다. 또한, 최고 반응 온도에의 도달은, 고상 중합 개시로부터 종료까지의 어느 시점이어도 된다.The temperature of the solid phase polymerization is not particularly limited, but the maximum reaction temperature may be, for example, about 170 to about 350 ° C. In addition, the time to reach the highest reaction temperature may be at any point from the solid phase polymerization start to the end.
본 공정에서 이용되는 고상 중합 장치는 특별한 제한이 없으며, 공지된 모든 장치를 사용할 수 있다. 고상 중합 장치의 구체예로는 1축 디스크식, 니더, 2축 패들식, 종형 탑식 장치, 종형 탑식 기기, 회전드럼식 또는 더블콘형 고상 중합 장치, 건조기기 등을 예시할 수 있다.There is no particular limitation on the solid phase polymerization apparatus used in the present process, and any known apparatus can be used. As a specific example of a solid-state polymerization apparatus, a uniaxial disk type | mold, a kneader, a biaxial paddle type | mold, a vertical column type apparatus, a vertical column type apparatus, a rotary drum type or a double cone type solid state polymerization apparatus, a dryer, etc. can be illustrated.
상기 고상 중합의 반응시간은 특별히 제한되지 않지만, 예를 들면, 약 1 내지 약 20시간일 수 있다. 상기 고상 중합 반응 중에 저차 축합물을 기계적으로 교반하거나 기체류에 의해 교반할 수도 있다.The reaction time of the solid phase polymerization is not particularly limited, but may be, for example, about 1 to about 20 hours. During the solid phase polymerization reaction, the lower order condensate may be mechanically stirred or agitated by gas flow.
본 발명에서는 저차 축합물을 제조하는 공정, 고상 중합하는 공정 또는 고상 중합 후의 임의의 단계에서, 필요에 따라, 유리섬유, 탄소섬유 등의 각종 섬유재료, 무기분말상 필러, 유기분말상 필러, 착색제, 자외선흡수제, 광안정제, 산화방지제, 대전방지제, 난연제, 결정화촉진제, 가소제, 윤활제 등의 첨가제, 다른 폴리머 등을 첨가할 수도 있다.In the present invention, various fiber materials such as glass fibers and carbon fibers, inorganic powder fillers, organic powder fillers, colorants, and ultraviolet rays, if necessary, in a step of preparing a lower condensate, a solid phase polymerization step, or any step after the solid phase polymerization. Additives such as absorbents, light stabilizers, antioxidants, antistatic agents, flame retardants, crystallization accelerators, plasticizers, lubricants, and other polymers may be added.
본 발명의 제조방법에 따라 제조되는 중축합 수지는, 내열성, 역학성능, 저흡수성, 내약품성 등의 물성이 우수하고 안정적이다. 따라서, 상기 중축합 수지는 단독 또는 필요에 따라 전술한 각종 첨가제나 다른 폴리머와의 조성물 형태로, 중축합 수지에 대해서 종래부터 이용되고 있는 각종 성형법이나 방사법, 예를 들어, 사출 성형, 블로우 성형, 압출 성형, 압축 성형, 연신, 진공 성형 등의 성형법이나 용융 방사법 등에 의해, 각종 성형품이나 섬유 등으로 성형할 수 있다. 상기 성형법 등에 의해 얻어지는 섬유 등의 성형품은, 엔지니어링 플라스틱으로서의 용도를 비롯하여, 전자 전기 부품, 자동차 부품, 사무기 부품 등의 산업자재나 공업재료, 가정용품 등의 각종 용도에 유용하다.The polycondensation resin produced according to the production method of the present invention is excellent and stable in physical properties such as heat resistance, mechanical performance, low water absorption, chemical resistance and the like. Accordingly, the polycondensation resin may be used alone or as necessary in the form of a composition with the aforementioned various additives or other polymers, and various molding methods and spinning methods conventionally used for polycondensation resins, for example, injection molding, blow molding, It can shape | mold with various molded articles, a fiber, etc. by the shaping | molding methods, such as extrusion molding, compression molding, extending | stretching, vacuum forming, melt spinning, etc. Molded articles, such as fibers obtained by the molding method, are useful for various uses, such as industrial plastics, industrial materials, household goods, such as electronic and electrical parts, automobile parts, and office equipment parts, as well as applications as engineering plastics.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
물성 평가 방법Property evaluation method
대수점도(IV), 분자량, 융점, 결정화 온도 및 색상의 평가는 하기 방법에 의해 실시하였다.The evaluation of logarithmic viscosity (IV), molecular weight, melting point, crystallization temperature and color were carried out by the following method.
(1) 대수점도(IV)(1) Algebraic viscosity (IV)
시료를 0.5 g/dL의 농도로 용매에 용해시켜 시료 용액을 조제하였다. 폴리아미드는 용매로서 96% 진한 황산을 사용하였고, 폴리카보네이트는 디클로로메탄을 사용하였으며, 폴리에스테르는 o-클로로페놀을 사용하였다. 용매 및 시료 용액을 25℃의 온도에서 우베로데 점도계를 이용하여 낙하 초 수를 측정하고 이하의 식 5에 의해 산출하였다.The sample solution was prepared by dissolving the sample in a solvent at a concentration of 0.5 g / dL. Polyamide used 96% concentrated sulfuric acid as solvent, polycarbonate used dichloromethane, and polyester used o-chlorophenol. The number of drops of the solvent and the sample solution were measured using a Uberode viscometer at a temperature of 25 ° C. and calculated by Equation 5 below.
[식 5][Equation 5]
ηinh(대수점도) = In(ηrel)/cη inh (algebra viscosity) = In (η rel ) / c
상기 식 5에서, ηrel는 t1/t0(여기서, t1: 시료의 낙하 초 수, t0: 블랭크(blank)의 낙하 초 수)이고, c는 용액 농도(g/dL)이다.In Equation 5, η rel is t1 / t0 (where t1 is the number of falling seconds of the sample and t0 is the number of falling seconds of the blank), and c is the solution concentration (g / dL).
(2) 분자량(2) molecular weight
쇼와덴코(昭和電工)사 제품인 Shodex GPC-101을 이용해서, 수지 샘플 10 mg을 10 g의 용매에 용해시켜서 분자량(수평균분자량(Mn) 및 중량평균분자량(Mw), 단위: g/mol) 측정에 사용하였다. 폴리아미드 및 폴리에스테르의 분자량의 측정 시, 칼럼은 HFIP-806M을 2개 이용하고, 용매는 헥사플루오로아이소프로판올(HFIP)을 이용하였으며, 표준 시료로서 폴리메틸메타크릴레이트(pMMA)를 사용하였다. 폴리카보네이트의 분자량 측정 시, 칼럼은 LF-804를 3개, 용매를 테트라하이드로퓨란(THF), 표준 시료로서 폴리스티렌을 사용하였다. GPC의 측정 조건은, 칼럼 온도 40℃, 용매 유량 1.0 ml/분으로 하였다. 데이터 처리 소프트는 상기와 동일한 회사 제품인 SIC-480II를 사용해서 수평균분자량(Mn) 및 중량평균분자량(Mw)을 구하였다.Molecular weight (number average molecular weight (Mn) and weight average molecular weight (Mw), unit: g / mol) by dissolving 10 mg of a resin sample in 10 g of solvent using Shodex GPC-101 manufactured by Showa Denko Co., Ltd. ) Was used for the measurement. In measuring the molecular weight of polyamide and polyester, two columns of HFIP-806M were used, the solvent was hexafluoroisopropanol (HFIP), and polymethylmethacrylate (pMMA) was used as a standard sample. In measuring the molecular weight of the polycarbonate, the column used three LF-804, the solvent was tetrahydrofuran (THF), and polystyrene was used as a standard sample. The measurement conditions of GPC were column temperature 40 degreeC, and solvent flow volume 1.0 ml / min. The data processing software calculated | required number average molecular weight (Mn) and weight average molecular weight (Mw) using SIC-480II which is the same company product as the above.
(3) 융점, 결정화 온도(3) melting point, crystallization temperature
세이코(Seiko) 인스트루먼트 주식회사에서 제조한 DSC를 이용하여 비결정화 상태의 샘플을 10 ml/분의 유속으로 질소 분위기 하, 승온 속도 10 ℃/분으로 30℃에서 350℃까지 승온시킨 후, 5분간 유지하고, 강온 속도 10℃/분으로 200℃까지 측정하여, 승온 시의 융해에 의한 흡열 피크 온도를 융점, 강온 시의 결정화에 의한 발열 피크 온도를 결정화 온도로 하여 각각 측정하였다.Using a DSC manufactured by Seiko Instruments, Inc., the sample in an amorphous state was heated at 30 ° C. to 350 ° C. at a temperature increase rate of 10 ° C./min under a nitrogen atmosphere at a flow rate of 10 ml / min, and then held for 5 minutes. Then, it measured to 200 degreeC by the temperature-fall rate of 10 degree-C / min, and measured the endothermic peak temperature by melting at the time of temperature rising as the melting point and the exothermic peak temperature by crystallization at the time of temperature-fall as crystallization temperature, respectively.
(4) 색상(YI)(4) color (YI)
닛폰덴쇼쿠고교 주식회사(日本電色工業株式會社)에서 제조한 소형 색채백도계 NW-11을 이용하여 YI치를 측정하였다.The YI value was measured using the NW-11 compact colorimeter made by Nippon Denshoku Kogyo Co., Ltd.
(5) 포화 증기압(5) saturated steam pressure
부산물 또는 원료가 물일 경우, 하기 식 2로 표시되는 바그너 식으로부터 포화 증기압(Py, Py = Pws)을 계산하였고, 유기 화합물(페놀, 에틸렌글리콜)인 경우, 하기 식 3으로 표시되는 안토인 식(Antoine equation)으로부터 포화 증기압(Py, Py = 0.01 Paw)을 계산하였다.When the by-product or raw material is water, the saturated vapor pressure (P y , P y = P ws ) was calculated from the Wagner equation represented by Equation 2 below, and in the case of an organic compound (phenol, ethylene glycol), an antholite represented by Equation 3 below Saturated vapor pressures (P y , P y = 0.01 P aw ) were calculated from the Antoine equation.
[식 2][Equation 2]
Figure PCTKR2013010067-appb-I000006
Figure PCTKR2013010067-appb-I000006
상기 식 2에서, Pws(단위: kPa)는 바그너의 엄밀 수증기압을 의미하고, Pc는 임계압으로서 22120 kPa이며, A는 -7.76451, B는 1.45838, C는 -2.7758, D는 -1.23303이며, x는 1-(T/Tc)(여기서, Tc는 임계온도로서 647.3 K이고, T(단위: K)는 반응용액의 온도임)이다.In Formula 2, P ws (unit: kPa) means Wagner's exact water vapor pressure, P c is the critical pressure 22120 kPa, A is -7.76451, B is 1.45838, C is -2.7758, D is -1.23303 , x is 1- (T / T c ), where T c is 647.3 K as the critical temperature and T (unit: K) is the temperature of the reaction solution).
[식 3][Equation 3]
Figure PCTKR2013010067-appb-I000007
Figure PCTKR2013010067-appb-I000007
상기 식 3에서, Paw(단위: bar)는 포화 증기압을 의미하고, T(단위: K)는 반응용액의 온도이며, A, B 및 C는 안토인 상수로서, 페놀의 경우, A는 4.24688, B는 1509.677, C는 -98.949이고, 에틸렌글리콜의 경우, A는 4.97012, B는 1914.951, C는 -84.996이다.In Formula 3, P aw (unit: bar) means saturated vapor pressure, T (unit: K) is the temperature of the reaction solution, A, B and C is an antho constant, in the case of phenol, A is 4.24688 , B is 1509.677, C is -98.949, and for ethylene glycol, A is 4.97012, B is 1914.951, and C is -84.996.
실시예Example
실시예 1: 폴리아미드의 제조Example 1: Preparation of Polyamide
원료로서, 테레프탈산 44.84 kg(0.270 kmol = 65 mol%), 아디프산 21.24 kg(0.145 kmol = 35 mol%), 1,6-헥사메틸렌디아민 48.93 kg(0.421 kmol = 100 mol%), 말단봉지제로서 벤조산 1.52 kg(0.012 kmol = 디카르복실산 100 몰부에 대하여, 3 몰부), 촉매로서 차아인산나트륨 1수화물 115g(투입 원료 100 중량부에 대하여, 0.1 중량부) 및 물 77.8 kg(투입 원료 100 중량부에 대하여, 40 중량부)을 분축기, 압력조정밸브, 내시용 창, 액면계 및 바닥부 배출밸브를 구비한 내용적 500L의 오토클레이브 반응조에 주입하고, 질소 치환을 실시하였다. 다음으로, 내용물을 교반하며, 1시간에 걸쳐서 130℃까지 승온시키고, 내용물이 균일 용액이 되는 것을 확인하였다. 다음으로, 3시간에 걸쳐서 내부 온도를 250℃까지 승온시키고 유지하였다. 내압이 3.8 MPa에 도달한 후에는, 동일 온도 및 압력을 유지하도록 물을 증류 제거하면서 2시간 동안 반응을 계속하였다. 그 후 반응 온도를 250℃로 유지하면서, 압력을 30분 동안 3.4 MPa까지 저하시키고, 51 kg의 물 증류 제거를 확인한 시점(반응액 수분 25 중량%)에서, 반응을 종료하고, 배출 조작을 개시하였다.As raw materials, 44.84 kg (0.270 kmol = 65 mol%) of terephthalic acid, 21.24 kg (0.145 kmol = 35 mol%) of adipic acid, 48.93 kg (0.421 kmol = 100 mol%) of 1,6-hexamethylenediamine, terminal sealant 1.52 kg of benzoic acid (0.012 kmol = 3 mol parts relative to 100 mol parts of dicarboxylic acid), 115 g of sodium hypophosphite monohydrate (0.1 part by weight based on 100 parts by weight of the input raw material) and 77.8 kg of water (the input raw material 100) 40 parts by weight) was injected into a 500L autoclave reactor equipped with a partial condenser, a pressure regulating valve, an end window, a liquid level gauge, and a bottom discharge valve, and subjected to nitrogen substitution. Next, the contents were stirred, the temperature was raised to 130 ° C. over 1 hour, and the contents were confirmed to be a homogeneous solution. Next, the internal temperature was raised to 250 ° C. over 3 hours and maintained. After the internal pressure reached 3.8 MPa, the reaction was continued for 2 hours while distilling off water to maintain the same temperature and pressure. Thereafter, while maintaining the reaction temperature at 250 ° C, the pressure was lowered to 3.4 MPa for 30 minutes, and at the time point at which 51 kg of water was distilled off (25% by weight of the reaction liquid), the reaction was terminated, and the discharge operation was started. It was.
배출 개시 시의 반응액량이 128L인 것을 액면계에서 확인하였다. 반응액을 1.1시간 동안 배출하도록 바닥부 배출밸브 및 배출량 조정밸브의 개방도를 조절하였다. 반응액이 배출되는 동안, 반응 액체 상태의 화학 평형(저차 축합물의 생성 반응의 화학 평형)을 유지하기 위하여, 반응의 부산물 및 용매인 수분의 양을 일정하게 유지할 수 있는 양의 수증기를 기상부에 공급하였다. 수증기의 공급 속도 Z는, 상기 바그너 식(식 2)에 따라, 오토클레이브 내 온도에서의 포화 수증기압 Py(Pws)(250℃, 4.0 MPa)를 구하고, 하기 식 1 및 4에 의거하여, 포화 수증기량 Y(동일 조건에서 16.5 kg/m3)와, 반응계 내의 포화 수증기량 Y×(Px/Py)[kg/m3]를 산출하고, 체적(V), 배출 시간(L)을 고려함으로써, 단위시간당의 수증기 도입량(수증기 도입 속도)을 1.6 kg/시간으로 하였다:It was confirmed by a liquid level meter that the reaction liquid volume at the start of discharge was 128 liters. The opening of the bottom discharge valve and the discharge control valve was adjusted to discharge the reaction solution for 1.1 hours. While the reaction liquid is discharged, in order to maintain the chemical equilibrium of the reaction liquid state (chemical equilibrium of the formation reaction of the lower condensate), an amount of water vapor that can maintain a constant amount of water, which is a by-product of the reaction and a solvent, is added to the gas phase. Supplied. The supply rate Z of steam calculates the saturated steam pressure P y (P ws ) (250 ° C., 4.0 MPa) at the temperature in the autoclave according to the Wagner equation (Formula 2), and based on the following formulas 1 and 4, Saturated water vapor volume Y (16.5 kg / m 3 under the same conditions) and saturated water vapor volume Y × (P x / P y ) [kg / m 3 ] in the reaction system are calculated, taking into account the volume (V) and the discharge time (L). Thereby, the amount of water vapor introduced (water vapor introduction rate) per unit time was 1.6 kg / hour:
[식 1][Equation 1]
Figure PCTKR2013010067-appb-I000008
Figure PCTKR2013010067-appb-I000008
상기 식 1에서, Z(단위: kg/hr)는 저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 투입되는 부산물 또는 원료와 동일한 종류의 물질(증기상)의 단위 시간 당 공급량(증기 공급 속도)이고, Px(단위: kPa)는 계 내의 압력을 의미하고, Py(단위: kPa)는 계 내의 온도(반응 용액의 온도) T(단위: K, T[K]=T'[℃]+273.15)에서의 단위 체적당 포화 증기압(이론치)를 의미하며, V(단위: m3)는 반응 용액의 용량을 의미하고, Y(단위: kg/m3)는 상기 온도 T 및 포화 증기압 Py의 조건에서 단위 체적당 포화 증기량(이론치)를 의미하며, L(단위: hr)은 계 내의 저차 축합물을 모두 배출하기 위한 시간을 의미한다.In Equation 1, Z (unit: kg / hr) is a unit of a substance (vapor phase) of the same kind as a by-product or raw material introduced to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of lower condensate discharge. Supply per hour (steam feed rate), P x (unit: kPa) is the pressure in the system, P y (unit: kPa) is the temperature in the system (temperature of the reaction solution) T (unit: K, T [ K] = T '[° C.] + 273.15) means the saturated vapor pressure (theoretical value) per unit volume, V (unit: m 3 ) means the volume of the reaction solution, Y (unit: kg / m 3 ) Denotes the amount of saturated steam per unit volume (theoretical value) under the conditions of the temperature T and the saturated vapor pressure P y , and L (unit: hr) means time for discharging all the lower condensates in the system.
[식 4][Equation 4]
Figure PCTKR2013010067-appb-I000009
Figure PCTKR2013010067-appb-I000009
상기 식 4에서, Y(단위: kg/m3)는 온도 T 및 포화 증기압 Py의 조건에서 단위 체적당 포화 증기량(이론치)를 의미하고, Py(단위: kPa)는 온도 T(단위: K)에서의 단위 체적당 포화 증기압(이론치)를 의미하고, T(단위: K)는 반응용액의 온도이고, Mw(단위: g/mol) 는 부산물 또는 원료의 중량평균분자량이며, R은 기체상수로서, 8.3145이다.In Equation 4, Y (unit: kg / m 3 ) means the amount of saturated steam per unit volume (theoretical value) under the conditions of temperature T and saturated vapor pressure P y , P y (unit: kPa) is the temperature T (unit: K) means the saturated vapor pressure (theoretical value) per unit volume, T (unit: K) is the temperature of the reaction solution, Mw (unit: g / mol) is the weight average molecular weight of the by-product or raw material, R is the gas As a constant, it is 8.3145.
여기서, 상기 수증기는 정량 펌프를 사용하여 오토클레이브 내에 공급하였고, 예열기를 통과시켜, 포화 수증기화하여 공급하였다. 배출 조작 동안, 반응조의 온도를 250℃로 유지하고, 압력조정밸브는 완전 폐쇄 상태에서, 수증기 압력을 3.4 MPa로 유지하였다. 생성된 저차 축합물을 바닥부 배출밸브로부터, 질소 분위기 하, 상온(25℃) 및 대기압 조건에서 용기에 배출하였다. 저차 축합물의 배출 조작은 안정적으로 전량 배출이 가능하였다. 배출 직후의 저차 축합물은 온도 83℃, 수분량 1.8 중량%였다. 배출 개시로부터 0.1시간마다 샘플링을 실시하고, 각각의 샘플에 대해서 대수점도(IV)를 측정한 결과, 각 샘플의 IV의 평균치는 0.13 dL/g, 표준편차 0.003, 변동 계수 2%였다. 즉, 회분 내에서의 변동이 대단히 작아, 품질이 안정적인 것이었다. 또한, 배출된 저차 축합물은 고형화되어, 이들 저차 축합물 전체를 분쇄 및 혼합했으며, 수평균분자량(Mn)은 1,200 g/mol이었다.Here, the water vapor was supplied into the autoclave using a metering pump, passed through a preheater, and supplied by saturated water vaporization. During the discharge operation, the temperature of the reactor was maintained at 250 ° C., and the pressure regulating valve was maintained at 3.4 MPa in the fully closed state. The resulting lower condensate was discharged from the bottom discharge valve to the vessel at room temperature (25 ° C.) and atmospheric pressure under a nitrogen atmosphere. The operation of discharging the lower condensate was able to discharge the whole amount stably. The low order condensate immediately after the discharge was a temperature of 83 ° C. and a water content of 1.8% by weight. Sampling was performed every 0.1 hours from the start of discharge, and the logarithmic viscosity (IV) was measured for each sample. As a result, the average value of IV of each sample was 0.13 dL / g, standard deviation 0.003, and a coefficient of variation of 2%. In other words, the variation in the ash was very small and the quality was stable. In addition, the discharged lower condensates solidified, and all of these lower condensates were pulverized and mixed, and the number average molecular weight (Mn) was 1,200 g / mol.
얻어진 저차 축합물 10 kg을 내용적 50L의 오일쟈켓 부착 코니컬 텀블러에 주입하고, 질소 치환한 후에 0.13 kPa까지 감압하였다. 진공을 유지한 채, 가열 오일을 순환시켜서, 내부온도를 245℃까지 2시간에 걸쳐서 승온시킨 후, 동일 온도에서 5시간 고상 중합 반응을 계속하였다. 소정 반응 시간 경과 후에 실온(25℃)까지 냉각시켜, 고중합도화된 폴리아미드를 얻었다.10 kg of the obtained lower-order condensate was injected into a conical tumbler with an internal volume of 50 L of oil jacket, and the pressure was reduced to 0.13 kPa after nitrogen replacement. The heating oil was circulated while maintaining the vacuum, and the internal temperature was raised to 245 ° C. over 2 hours, and then the solid phase polymerization reaction was continued at the same temperature for 5 hours. After the predetermined reaction time had elapsed, the mixture was cooled to room temperature (25 ° C) to obtain a highly polymerized polyamide.
얻어진 폴리아미드(중축합 수지)의 IV의 평균치(n=10)는 0.86 dL/g, 표준편차 0.015, 변동 계수 2%였다. 회분 내에서의 변동이 대단히 작아, 품질이 안정적인 것이었다. DSC 측정에 의한 융점은 324℃, 결정화 온도는 294℃, YI는 2, Mn은 12,000 g/mol이었으며, 충분히 고중합도화된 색상 양호한, 고내열 폴리아미드가 얻어졌다.The average value (n = 10) of IV of obtained polyamide (polycondensation resin) was 0.86 dL / g, the standard deviation 0.015, and the coefficient of variation 2%. The variation in the ash was very small and the quality was stable. Melting point by DSC measurement was 324 ° C, crystallization temperature was 294 ° C, YI was 2, Mn was 12,000 g / mol, and sufficiently high polymerized color, high heat-resistant polyamide was obtained.
실시예 2: 폴리아미드의 제조Example 2: Preparation of Polyamide
미리 조정한 폴리아미드 66염 45.00 kg(0.172 kmol), 테레프탈산 33.60 kg(0.202 kmol), 헥사메틸렌디아민 64.5 중량%의 수용액 35.10 kg(헥사메틸렌디아민으로서 0.195 kmol), 증류수 12.5 kg를, 분축기, 압력조정밸브, 내시용 창문, 액면계 및 바닥부 배출밸브를 구비한 내용적 500L의 오토클레이브 반응조에 주입하고, 질소 치환을 실시하였다. 이를 교반하면서 1시간 동안 130℃까지 승온시켜, 내용물이 균일용액이 되는 것을 확인하였다. 그 후, 3.5시간 동안 내부온도를 255℃까지 승온시켜 유지하였다. 그 후 30분 동안 유지하고, 반응 온도 260℃, 내압 4.0 MPa로 반응을 종료시키고, 배출 조작을 개시하였다.45.00 kg (0.172 kmol) of polyamide 66 salt prepared in advance, 33.60 kg (0.202 kmol) of terephthalic acid, 35.10 kg (0.195 kmol as hexamethylenediamine) of 64.5% by weight of hexamethylenediamine, 12.5 kg of distilled water Injected into a 500L autoclave reactor equipped with a control valve, an end window, a liquid level gauge, and a bottom discharge valve, nitrogen replacement was performed. It heated up to 130 degreeC for 1 hour, stirring, and confirmed that the content became a homogeneous solution. Thereafter, the internal temperature was maintained at 255 ° C. for 3.5 hours. It hold | maintained for 30 minutes after that, reaction was complete | finished by reaction temperature 260 degreeC and internal pressure 4.0 MPa, and discharge operation | movement was started.
배출 개시 시의 반응액량이 88.8L인 것을 액면계에서 확인하였다. 이것을 0.9시간 동안 배출하도록 바닥부 배출밸브 및 배출량 조정밸브의 개방도를 조절하였다. 반응액이 배출되는 동안, 반응 액체 상태의 화학 평형(저차 축합물의 생성 반응의 화학 평형)을 유지하도록, 반응의 부산물 및 용매인 수분의 양을 일정하게 유지할 수 있는 양의 수증기를 기상부에 공급하였다. 수증기의 공급 속도 Z는, 상기 바그너 식에 따라, 오토클레이브 내 온도에서의 포화 수증기압 Py(Pws)(260℃, 4.7 MPa)를 구하고, 실시예 1과 동일한 방법으로, 상기 식 1 및 4에 의거하여, 포화 수증기량 Y(동일 조건에서 19.1 kg/m3)와, 반응계 내의 수증기량 Y×(Px/Py)[kg/m3]를 산출하고, 체적(V), 배출 시간(L)을 고려함으로써, 단위 시간당의 수증기 공급량(수증기 공급 속도)을 1.6 kg/시간으로 하였다. 여기서, 상기 수증기는 정량 펌프를 사용하여 오토클레이브 내에 공급하였고, 예열기를 통과시켜, 포화 수증기화하여 공급하였다.It was confirmed by a liquid level meter that the reaction liquid amount at the start of discharge was 88.8L. The opening degree of the bottom discharge valve and the discharge control valve was adjusted to discharge this for 0.9 hours. While the reaction solution is discharged, the vapor is supplied to the gas phase in an amount sufficient to maintain a constant amount of water, which is a byproduct of the reaction and a solvent, so as to maintain the chemical equilibrium of the reaction liquid state (the chemical equilibrium of the production reaction of the lower condensate). It was. The feed rate Z of steam determines the saturated steam pressure P y (P ws ) (260 ° C., 4.7 MPa) at the temperature in the autoclave according to the Wagner equation, and is the same as in Example 1, wherein the equations 1 and 4 Based on this, the amount of saturated water vapor Y (19.1 kg / m 3 under the same conditions) and the amount of water vapor Y × (P x / P y ) [kg / m 3 ] in the reaction system are calculated, and the volume (V) and the discharge time (L) are calculated. ), The water vapor supply amount (water vapor supply rate) per unit time was 1.6 kg / hour. Here, the water vapor was supplied into the autoclave using a metering pump, passed through a preheater, and supplied by saturated water vaporization.
배출 조작 동안, 반응조의 온도를 260℃로 유지하고, 압력조정밸브는 완전 폐쇄 상태로, 수증기 압력을 4.0 MPa로 유지하였다. 생성된 저차 축합물은 바닥부 배출밸브로부터, 질소 분위기 하, 상온(25℃) 및 대기압 조건에서 용기에 배출하였다. 저차 축합물의 배출 조작은 안정적으로 전량 배출이 가능하였다. 배출 직후의 저차 축합물은 온도 85℃, 수분량 2.3 중량%였다. 배출 개시로부터 0.1시간마다 샘플링을 실시하고, 각각의 샘플에 대해서 대수점도(IV)를 측정한 결과, 샘플의 IV의 평균치는 0.16 dL/g, 표준편차 0.003, 변동 계수 2%였다. 회분 내에서의 변동이 대단히 작아, 품질이 안정적인 것이었다. 또한, 얻어진 저차 축합물의 Mn은 1,500 g/mol이었다.During the discharge operation, the temperature of the reactor was maintained at 260 ° C., the pressure regulating valve was kept in a fully closed state, and the steam pressure was maintained at 4.0 MPa. The resulting lower condensate was discharged from the bottom discharge valve to the vessel at room temperature (25 ° C.) and atmospheric pressure under a nitrogen atmosphere. The operation of discharging the lower condensate was able to discharge the whole amount stably. The low order condensate immediately after the discharge was a temperature of 85 ° C. and a water content of 2.3% by weight. Sampling was carried out every 0.1 hours from the start of discharge, and the logarithmic viscosity (IV) was measured for each sample. As a result, the average value of the samples IV was 0.16 dL / g, standard deviation 0.003, and coefficient of variation 2%. The variation in the ash was very small and the quality was stable. In addition, Mn of the obtained lower condensate was 1,500 g / mol.
얻어진 저차 축합물 10 kg를, 내용적 50L의 오일 쟈켓 부착 코니컬 텀블러에 주입하고, 질소 치환한 후에 0.13 kPa까지 감압시켰다. 진공을 유지한 채, 가열 오일을 순환시켜서, 내부온도를 245℃까지 2시간에 걸쳐서 승온시킨 후, 동일 온도에서 5시간 고상 중합 반응을 계속하였다. 소정의 반응 시간 경과 후에 실온(25℃)까지 냉각시켜, 고중합도화된 폴리아미드가 얻어졌다.10 kg of the resulting lower condensate was injected into a conical tumbler with an inner volume of 50 L of oil jacket, and the pressure was reduced to 0.13 kPa after nitrogen replacement. The heating oil was circulated while maintaining the vacuum, and the internal temperature was raised to 245 ° C. over 2 hours, and then the solid phase polymerization reaction was continued at the same temperature for 5 hours. After predetermined reaction time passed, it cooled to room temperature (25 degreeC), and the high polymerization degree polyamide was obtained.
얻어진 폴리아미드의 IV의 평균치(n=10)는 0.95 dL/g, 표준편차 0.025, 변동 계수 3%였다. 회분 내에서의 변동이 대단히 작아 품질이 안정적인 것이었다. DSC 측정에 의한 융점은 301℃, 결정화 온도는 268℃, YI는 5, Mn은 14,500 g/mol이었고, 충분히 고중합도화된 색상 양호한, 고내열 폴리아미드가 얻어졌다.The average value (n = 10) of IV of the obtained polyamide was 0.95 dL / g, the standard deviation 0.025, and the coefficient of variation 3%. The variation in the ash was so small that the quality was stable. Melting | fusing point by DSC measurement was 301 degreeC, the crystallization temperature was 268 degreeC, YI was 5, Mn was 14,500 g / mol, and the high heat resistant polyamide which was sufficiently high polymerization degree was obtained.
비교예 1: 폴리아미드의 제조Comparative Example 1: Preparation of Polyamide
배출 조작 시 수증기의 공급을 행하지 않은 것 이외에는, 실시예 1과 동일한 조건으로 저차 축합물의 합성을 실시하였다. 그 결과, 약 80% 정도 배출한 시점에서 내용액이 고형화되었기 때문에, 배출 조작을 중지하였다. 배출 개시로부터 0.1시간마다 샘플링을 실시하여, 얻어진 저차 축합물의 IV의 평균치는 0.15 dL/g, 표준편차 0.027, 변동 계수 18%였다. 회분 내에서의 변동이 큰 것이었다. 또한, 얻어진 저차 축합물의 Mn은 1,500 g/mol이었다.The low-order condensate was synthesized under the same conditions as in Example 1 except that water vapor was not supplied at the time of discharge operation. As a result, since the contents liquid solidified at the time of about 80% discharge, the discharge operation was stopped. Sampling was performed every 0.1 hours from the start of discharge, and the average value of IV of the obtained lower-order condensate was 0.15 dL / g, standard deviation 0.027, and coefficient of variation 18%. The variation in the batch was large. In addition, Mn of the obtained lower condensate was 1,500 g / mol.
얻어진 저차 축합물을 실시예 1과 동일한 방법으로 고상 중합을 수행한 결과, 반응 종료 후에 저분자량물 유래의 장치 내 부착물이 많이 보였다. 얻어진 폴리아미드의 IV의 평균치(n=10)는 0.68 dL/g, 표준편차 0.038, 변동 계수 6%였다. 실시예의 폴리아미드에 비해서 IV가 낮고, 회분 내의 변동도 큰 것이었다. DSC 측정에 의한 융점은 315℃, 결정화 온도는 295℃, YI는 8, Mn은 9,800 g/mol이었다.As a result of performing solid-phase polymerization of the obtained lower-order condensate in the same manner as in Example 1, many deposits in the device derived from the low molecular weight material were observed after the completion of the reaction. The average value (n = 10) of IV of the obtained polyamide was 0.68 dL / g, the standard deviation 0.038, and the coefficient of variation 6%. Compared with the polyamide of the Example, IV was low and the variation in ash was also large. Melting | fusing point by DSC measurement was 315 degreeC, the crystallization temperature was 295 degreeC, YI was 8, and Mn was 9,800 g / mol.
비교예 2: 폴리아미드의 제조Comparative Example 2: Preparation of Polyamide
배출 조작 시 물을 정량 펌프에서 15 L/시간으로 공급하고, 수증기압을 4.0 MPa로 유지한 것 이외에는, 실시예 2와 동일한 조건에서 저차 축합물의 합성을 수행하였다. 그 결과, 배출 조작은 양호하게 행할 수 있었지만, 배출 개시로부터 0.1시간마다 샘플링을 실시하여, 얻어진 저차 축합물의 IV의 평균치는 0.13 dL/g, 표준편차 0.025, 변동 계수 19%였다. 즉, 회분 내에서의 변동이 큰 것이었다. 또한, 얻어진 저차 축합물의 Mn은 1,200 g/mol이었다.Synthesis of the lower order condensate was carried out under the same conditions as in Example 2, except that water was supplied at a metering pump at 15 L / hour and the water vapor pressure was maintained at 4.0 MPa during the discharge operation. As a result, although the discharge operation was satisfactory, the average value of IV of the low-order condensate obtained by sampling every 0.1 hours from the start of discharge was 0.13 dL / g, standard deviation 0.025, and coefficient of variation 19%. In other words, the variation in the batch was large. In addition, Mn of the obtained lower condensate was 1,200 g / mol.
얻어진 저차 축합물을 실시예 2와 동일한 방법으로 고상 중합한 결과, 반응 종료 후에 저분자량물 유래의 장치 내 부착물이 많이 보였다. 얻어진 폴리아미드의 IV 평균치(n=10)는 0.71 dL/g, 표준편차 0.043, 변동 계수 6%였다. 실시예와 비교해서 IV가 낮고, 회분 내의 변동도 큰 것이었다. DSC 측정에 의한 융점은 300℃, 결정화 온도는 275℃, YI는 9, Mn은 10,300 g/mol이었다.As a result of solid-phase polymerization of the obtained lower order condensate in the same manner as in Example 2, many deposits in the device derived from the low molecular weight substance were observed after the completion of the reaction. The IV average value (n = 10) of the obtained polyamide was 0.71 dL / g, the standard deviation 0.043, and the variation coefficient 6%. Compared with the Example, IV was low and the variation in ash was also large. Melting | fusing point by DSC measurement was 300 degreeC, crystallization temperature was 275 degreeC, YI was 9, and Mn was 10,300 g / mol.
실시예 3: 폴리카보네이트의 합성Example 3: Synthesis of Polycarbonate
내용적 2L 오토클레이브 교반조, 컨덴서, 감압 장치를 가진 중합 반응 장치 교반조에, 2,2-비스(4-히드록시페닐)프로판 456 g(2 mol), 디페닐카보네이트 446 g(2.08 mol), 및 수산화 칼륨 0.112 mg을 넣고, 온도 240℃, 압력 1.3 kPa(10 torr)에서, 2시간 동안 반응 부산물인 페놀을 교반조로부터 유출시키면서 중축합반응을 수행하였다. 반응 종료 후, 감압을 정지하고, 온도는 240℃로 유지한 채, 고온용 HPLC 펌프에서, 페놀 12.8g을 계 내로 공급하고, 압력을 페놀의 포화 증기압인 400 kPa로 하였다. 반응액량은 540 mL였다. 이를 0.25시간 동안 배출하도록 바닥부 배출밸브 및 배출량 조정밸브의 개방도를 조절하였다. 반응액이 배출되는 동안, 반응 액체 상태의 화학 평형(저차 축합물의 생성 반응의 화학 평형)을 유지하기 위해서, 반응의 부산물인 페놀의 양을 일정하게 유지할 수 있는 양의 페놀을 기상부에 공급하였다. 페놀의 공급 속도 Z는, 상기 안토인 식(식 3)으로부터, 오토클레이브 내 온도에서의 포화 페놀 증기압 Py(0.01 PAW)(240℃, 400 kPa)를 구하고, 실시예 1과 마찬가지로, 식 1 및 4에 의거하여, 포화 페놀 증기량 Y(동일 조건에서 8.8 g/L = 8.8 kg/m3)와, 반응계 내의 포화 페놀 증기량 Y×(Px/Py)[kg/m3]를 산출하고, 체적(V), 배출 시간(L)을 고려하여, 19.1g/시간으로 하였다. 페놀의 공급은 고온용 HPLC 펌프에서, 오토클레이브 내에 공급하여, 포화 페놀 증기로서 수행하였다.Into a polymerization reactor stirring vessel having an internal volume 2L autoclave stirring tank, a condenser, and a pressure reducing device, 456 g (2 mol) of 2,2-bis (4-hydroxyphenyl) propane, 446 g (2.08 mol) of diphenyl carbonate, And 0.112 mg of potassium hydroxide was added, and the polycondensation reaction was carried out at a temperature of 240 ° C. and a pressure of 1.3 kPa (10 torr) while leaving phenol as a reaction by-product out of the stirring tank for 2 hours. After completion | finish of reaction, pressure reduction was stopped and the temperature was maintained at 240 degreeC, 12.8 g of phenols were supplied in the system with the high temperature HPLC pump, and the pressure was 400 kPa which is the saturated vapor pressure of phenol. The reaction solution amount was 540 mL. The opening degree of the bottom discharge valve and the discharge control valve was adjusted to discharge this for 0.25 hours. In order to maintain the chemical equilibrium of the reaction liquid state (chemical equilibrium of the formation reaction of the lower condensate) while the reaction liquid was discharged, an amount of phenol was supplied to the gas phase to maintain a constant amount of phenol as a byproduct of the reaction. . The supply rate Z of phenol obtains the saturated phenol vapor pressure P y (0.01 P AW ) (240 ° C., 400 kPa) at the temperature in the autoclave from the above-mentioned antoin formula (Equation 3). on the basis of the first and fourth, saturated phenol steam quantity Y and (8.8 g / L = 8.8 kg / m 3 under the same conditions), saturation in the reaction system phenol steam quantity Y × calculating the (P x / P y) [ kg / m 3] The volume (V) and the discharge time (L) were considered to be 19.1 g / hour. The supply of phenol was carried out in a high temperature HPLC pump, in an autoclave, as saturated phenol vapor.
배출 조작 동안, 반응조의 온도를 240℃로 유지하고, 압력조정밸브는 완전 폐쇄 상태로, 페놀 증기압력을 400 kPa로 유지하였다. 생성된 저차 축합물은 바닥부 배출밸브로부터, 질소 분위기 하, 상온(25℃) 및 대기압 조건에서 용기에 배출하였다. 저차 축합물의 배출 조작은 안정적으로 전량 배출이 가능하였다. 배출 0분 후, 5분 후, 10분 후, 및 15분 후의 샘플을 채취하고, 각각의 샘플의 대수점도(IV)를 측정한 결과, 모두, 0.14 dL/g이었으므로, 회분 내에서의 변동이 대단히 작아, 품질이 안정적인 것이었다. 용기에서 포집한 폴리카보네이트의 저차 축합물을 분쇄하고, 아세톤을 첨가한 후, 결정화시키고, 이를 100℃에서 감압 건조시켜 폴리머 분체를 얻었다. 얻어진 폴리카보네이트의 저차 축합물(입상체)의 IV는 0.14 dL/g, Tm은 226℃, Mn은 2,900 g/mol이었다.During the discharge operation, the temperature of the reactor was maintained at 240 ° C., the pressure regulating valve was kept in a fully closed state, and the phenol vapor pressure was maintained at 400 kPa. The resulting lower condensate was discharged from the bottom discharge valve to the vessel at room temperature (25 ° C.) and atmospheric pressure under a nitrogen atmosphere. The operation of discharging the lower condensate was able to discharge the whole amount stably. Samples taken after 0 minutes, 5 minutes, 10 minutes, and 15 minutes after discharge were measured, and the algebraic viscosity (IV) of each sample was measured. As a result, all were 0.14 dL / g. Very small, stable quality. The lower condensate of the polycarbonate collected in the container was ground, acetone was added, crystallized, and dried under reduced pressure at 100 ° C. to obtain a polymer powder. IV of the lower polycondensate (granule) of the obtained polycarbonate was 0.14 dL / g, Tm was 226 degreeC, and Mn was 2,900 g / mol.
상기 폴리카보네이트 저차 축합물 100g을 유리제의 500 mL의 회전식 증발기에 주입하고, 회전수 30 rpm, 220℃, 0.13 kPa의 진공 하에서 2시간 동안 고상 중합시켰다. 얻어진 폴리카보네이트의 IV의 평균치(n=5)는, 0.45 dL/g, 표준편차 0.006, 변동 계수 1.4%였다. 회분 내에서의 변동이 대단히 작아, 품질이 안정적인 것이었다. 또한, 얻어진 폴리카보네이트의 Mn은 11,800 g/mol이었다.100 g of the polycarbonate lower condensate was injected into a glass 500 mL rotary evaporator and subjected to solid phase polymerization under a rotation speed of 30 rpm, 220 ° C., and vacuum at 0.13 kPa for 2 hours. The average value (n = 5) of IV of the obtained polycarbonate was 0.45 dL / g, the standard deviation 0.006, and the coefficient of variation 1.4%. The variation in the ash was very small and the quality was stable. In addition, Mn of the obtained polycarbonate was 11,800 g / mol.
비교예 3: 폴리카보네이트의 합성Comparative Example 3: Synthesis of Polycarbonate
중축합 반응 종료 후, 감압을 정지하고, 온도는 240℃로 유지한 채, 페놀 대신에, 질소를 이용해서, 배출 중에도 압력을 400 kPa로 한 것 이외에는 상기 실시예 3와 동일한 방법으로, 폴리카보네이트의 저차 축합물을 얻었다. 얻어진 저차 축합물의 IV는, 배출 0분 후 0.14 dL/g, 5분 후 0.15 dL/g, 10분 후 0.15 dL/g, 15분 후 0.16 dL/g으로, 배출의 후반으로 갈수록 IV가 상승하는 경향을 보였다. Mn은 3,100 g/mol이었다. After completion of the polycondensation reaction, the pressure reduction was stopped and the temperature was maintained at 240 ° C., except that phenol was used instead of phenol, and the pressure was set to 400 kPa even during discharge, in the same manner as in Example 3 above, polycarbonate Lower order condensates were obtained. The IV of the obtained lower condensate is 0.14 dL / g after 0 minutes of discharge, 0.15 dL / g after 5 minutes, 0.15 dL / g after 10 minutes, 0.16 dL / g after 15 minutes, and the IV rises toward the second half of the discharge. Showed a tendency. Mn was 3,100 g / mol.
얻어진 저차 축합물을 상기 실시예 3과 동일한 방법으로 고상 중합시켰다. 얻어진 폴리카보네이트의 IV의 평균치(n=5)는, 0.46 dL/g, 표준편차 0.012, 변동 계수 2.6%였다. 회분 내에서의 변동은 실시예 3과 비교해서 약 2배 컸다. 또한, 얻어진 폴리카보네이트의 Mn은 12,100 g/mol이었다.The resulting lower condensate was subjected to solid phase polymerization in the same manner as in Example 3. The average value (n = 5) of IV of the obtained polycarbonate was 0.46 dL / g, the standard deviation 0.012, and the coefficient of variation 2.6%. The variation in the ash was about twice as large as in Example 3. In addition, Mn of the obtained polycarbonate was 12,100 g / mol.
실시예 4: 폴리에스테르의 합성Example 4: Synthesis of Polyester
내용적 2L의 오토클레이브 교반조, 컨덴서, 감압 장치를 가진 중합 반응 장치의 교반조에, 테레프탈산 830 g(5 mol), 에틸렌글리콜 372g(6 mol), 및 3산화안티몬 373 mg을 투입하고, 반응에서 생성된 물을 유출시키면서, 온도 260℃, 압력 100 kPa에서, 5시간 동안 에스테르화 반응을 실시하였다. 다음으로, 온도를 280℃로 승온시키는 동시에, 압력을 서서히 5 torr까지 감압시키고, 2시간 동안 반응 부산물인 물을 교반조로부터 유출시키면서 중축합 반응을 수행하였다.830 g (5 mol) of terephthalic acid, 372 g (6 mol) of ethylene glycol, and 373 mg of antimony trioxide were added to a stirring tank of a polymerization reactor having an internal volume of 2 L of an autoclave stirring tank, a condenser, and a decompression device. The esterification reaction was performed for 5 hours at the temperature of 260 degreeC and the pressure of 100 kPa, flowing out the produced water. Next, the temperature was raised to 280 ° C, the pressure was gradually reduced to 5 torr, and the polycondensation reaction was carried out while flowing water, which was a reaction byproduct, out of the stirring bath for 2 hours.
반응 종료 후, 감압을 정지하고, 온도는 280℃로 유지한 채, 고온용 HPLC 펌프에서, 반응 원료인 에틸렌글리콜을 10.8g 계 내로 도입하고, 압력을 에틸렌글리콜의 포화 증기압인 750 kPa로 하였다. 반응액량은 960 mL였다. 이를 1시간에 배출하도록 바닥부 배출밸브 및 배출량 조정밸브의 개방도를 조절하였다. 반응액이 배출되는 동안, 반응 액체 상태의 화학 평형(저차 축합물의 생성 반응의 화학 평형)을 유지하기 위해서, 반응 원료인 에틸렌글리콜의 양을 일정하게 유지할 수 있는 양의 에틸렌글리콜을 기상부에 공급하였다. 에틸렌글리콜의 공급 속도 Z는, 안토인 식으로부터, 오토클레이브 내 온도에서의 포화 에틸렌글리콜 증기압 Py(Paw)(280℃에서는 750 kPa)를 구하고, 실시예 1과 마찬가지로, 식 (1) 및 (6)에 의거해서, 포화 에틸렌글리콜 증기량 Y(동일 조건에서 10.1g/L = 10.1 kg/㎥)와, 반응계 내의 포화 에틸렌글리콜 증기량 Y×(Px/Py)[kg/㎥]를 산출하고, 체적(V), 배출 시간(L)을 고려함으로써, 9.7g/시간으로 하였다. 에틸렌글리콜의 공급은 고온용 HPLC 펌프에서, 오토클레이브 내에 도입하여, 포화 에틸렌글리콜 증기로서 행하였다. After completion | finish of reaction, pressure reduction was stopped and the temperature was maintained at 280 degreeC, the ethylene glycol which is a reaction raw material was introduce | transduced into 10.8 g system with the high temperature HPLC pump, and the pressure was set to 750 kPa which is the saturated vapor pressure of ethylene glycol. The reaction liquid amount was 960 mL. The opening degree of the bottom discharge valve and the discharge control valve was adjusted to discharge it in one hour. While the reaction liquid is discharged, in order to maintain the chemical equilibrium of the reaction liquid state (chemical equilibrium of the formation reaction of the lower condensate), an amount of ethylene glycol is supplied to the gas phase to maintain a constant amount of ethylene glycol as a reaction raw material. It was. The feed rate Z of ethylene glycol determines the saturated ethylene glycol vapor pressure P y (P aw ) (750 kPa at 280 ° C) at the temperature in the autoclave from the anthroid formula, and the formula (1) and Based on (6), the amount of saturated ethylene glycol vapor Y (10.1 g / L = 10.1 kg / m <3> in the same conditions) and the amount of saturated ethylene glycol vapor Y * (P x / P y ) [kg / m 3] in the reaction system are calculated. And, considering the volume (V) and the discharge time (L), it was 9.7 g / hour. The ethylene glycol was supplied into an autoclave by a high temperature HPLC pump and performed as saturated ethylene glycol vapor.
배출 조작 동안, 반응조의 온도를 280℃로 유지하고, 압력조정밸브는 완전 폐쇄 상태로, 에틸렌글리콜 증기압력을 750 kPa에 유지하였다. 생성된 저차 축합물은 바닥부 배출밸브로부터, 스트랜드 형상으로 수중에 추출하여 냉각시키고, 스트랜드 커터에서 펠렛으로 하여, 폴리에틸렌테레프탈레이트의 저차 축합물을 얻었다. 저차 축합물의 배출 조작은 안정적이어서 전량 배출이 가능하였다. 배출 0분 후, 10분 후, 20분 후, 30분 후, 60분 후의 샘플을 채취하고, 그들 샘플의 대수점도(IV)를 측정한 결과, 모두, 0.52 dL/g였다. 회분 내에서의 변동이 대단히 작아, 품질이 안정적인 것이었다. 얻어진 폴리에틸렌테레프탈레이트 저차 축합물의 IV는 0.52 dL/g, Mn은 14,800 g/mol이었다.During the discharge operation, the temperature of the reaction vessel was maintained at 280 ° C, the pressure regulating valve was kept in a fully closed state, and the ethylene glycol vapor pressure was maintained at 750 kPa. The resulting lower condensate was extracted and cooled in water in a strand shape from the bottom discharge valve, and pelletized with a strand cutter to obtain a lower condensate of polyethylene terephthalate. The operation of discharging the lower condensate was stable, allowing the entire discharge. After 0 minutes of discharge, 10 minutes later, 20 minutes later, 30 minutes later, and 60 minutes later, samples were taken, and the logarithmic viscosity (IV) of those samples was measured. As a result, all were 0.52 dL / g. The variation in the ash was very small and the quality was stable. IV of the obtained polyethylene terephthalate lower condensate was 0.52 dL / g, and Mn was 14,800 g / mol.
상기 펠렛 100g을 유리제의 500 mL의 회전식 증발기에 주입하고, 질소 분위기 하, 170℃에서 2시간 동안 결정화시킨 후, 회전수 30 rpm, 220℃, 0.13 kPa의 진공 하에 12시간 동안 고상 중합시켰다. 얻어진 폴리에틸렌테레프탈레이트의 IV의 평균치(n=5)는 0.86 dL/g, 표준편차 0.004, 변동 계수 0.5%였다. 회분 내에서의 변동이 대단히 작아, 품질이 안정적인 것이었다. 또한, 얻어진 폴리에스테르(폴리에틸렌테레프탈레이트)의 Mn은 31,100 g/mol이었다.100 g of the pellet was injected into a 500 mL glass rotary evaporator, crystallized at 170 ° C. for 2 hours under a nitrogen atmosphere, and then solidified for 12 hours under vacuum of 30 rpm, 220 ° C., and 0.13 kPa. The average value (n = 5) of IV of the obtained polyethylene terephthalate was 0.86 dL / g, the standard deviation 0.004, and the coefficient of variation 0.5%. The variation in the ash was very small and the quality was stable. Moreover, Mn of obtained polyester (polyethylene terephthalate) was 31,100 g / mol.
비교예 4: 폴리에스테르의 합성Comparative Example 4: Synthesis of Polyester
중축합 반응 종료 후, 감압을 정지하고, 온도는 280℃에 유지한 채, 에틸렌글리콜 대신에, 질소를 사용하여, 배출 중에도 압력을 750 kPa로 유지한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 폴리에틸렌테레프탈레이트의 저차 축합물을 얻었다. 얻어진 저차 축합물의 IV는, 배출 0분 후 0.53 dL/g, 10분 후 0.53 dL/g, 20분 후 0.54 dL/g, 30분 후 0.55 dL/g, 60분 후 0.57 dL/g으로, 배출의 후반으로 갈수록 IV가 상승하는 경향을 보였다. Mn은 15,800 g/mol이었다.After completion of the polycondensation reaction, the pressure reduction was stopped and the temperature was maintained at 280 ° C., except that ethylene glycol was used instead of ethylene glycol, except that the pressure was maintained at 750 kPa even during discharge. The lower order condensate of polyethylene terephthalate was obtained. The obtained lower condensate IV is discharged at 0.53 dL / g after 0 minutes, 0.53 dL / g after 10 minutes, 0.54 dL / g after 20 minutes, 0.55 dL / g after 30 minutes, and 0.57 dL / g after 60 minutes. The IV tended to increase toward the end of. Mn was 15,800 g / mol.
얻어진 저차 축합물을 실시예 4와 동일한 방법으로 고상 중합시켰다. 얻어진 폴리에틸렌테레프탈레이트의 IV의 평균치(n=5)는, 0.90 dL/g, 표준편차 0.016, 변동 계수 1.8%였다. 회분 내에서의 변동은, 실시예와 비교해서 약 4배 컸다. 또한, 얻어진 폴리에스테르(폴리에틸렌테레프탈레이트)의 Mn은 33,300 g/mol이었다.The obtained lower order condensate was subjected to solid phase polymerization in the same manner as in Example 4. The average value (n = 5) of IV of the obtained polyethylene terephthalate was 0.90 dL / g, the standard deviation 0.016, and the coefficient of variation 1.8%. The variation in the ash was about four times larger than in the examples. Moreover, Mn of obtained polyester (polyethylene terephthalate) was 33,300 g / mol.
실시예 1 및 2, 비교예 1 및 2의 저차 축합물 제조 조건을 표 1에, 평가 결과를 표 2에 나타내었다. 또한, 실시예 3 및 4, 비교예 3 및 4의 저차 축합물 제조 조건을 표 3에, 평가 결과를 표 4에 나타내었다.The conditions for producing the lower order condensates of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1, and the evaluation results are shown in Table 2. In addition, the conditions of manufacturing the lower order condensate of Examples 3 and 4 and Comparative Examples 3 and 4 are shown in Table 3, and the evaluation results are shown in Table 4 below.
표 1
Figure PCTKR2013010067-appb-T000001
Table 1
Figure PCTKR2013010067-appb-T000001
표 2
Figure PCTKR2013010067-appb-T000002
TABLE 2
Figure PCTKR2013010067-appb-T000002
표 3
Figure PCTKR2013010067-appb-T000003
TABLE 3
Figure PCTKR2013010067-appb-T000003
표 4
Figure PCTKR2013010067-appb-T000004
Table 4
Figure PCTKR2013010067-appb-T000004
표 2 및 표 4로부터, 본 발명의 제조방법에 따라 제조된 중축합 수지는 저차 축합물 배출 시의 시간차에 따라 분자량이 변동하지 않아, 안정적인 품질을 얻을 수 있음을 알 수 있다. 또한, 안정적인 품질의 저차 축합물의 (고상) 중합에 의해, 안정적인 품질의 중축합 수지가 얻어지는 것을 알 수 있다.From Table 2 and Table 4, it can be seen that the polycondensation resin produced according to the production method of the present invention does not vary in molecular weight according to the time difference at the time of discharging the lower condensate, thereby obtaining stable quality. Moreover, it turns out that the polycondensation resin of stable quality is obtained by the (solid state) superposition | polymerization of the lower order condensate of stable quality.
발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or variations of the invention may be readily made by those skilled in the art, and all such modifications or changes may be considered to be included within the scope of the present invention.

Claims (6)

  1. 중축합 반응으로 저차 축합물을 제조하는 공정;Preparing a lower order condensate by a polycondensation reaction;
    상기 저차 축합물을 계 밖으로 배출하는 공정; 및Discharging the lower condensate out of the system; And
    배출한 저차 축합물을 중합하여 중축합 수지를 제조하는 공정을 포함하며,And polymerizing the discharged lower order condensate to produce a polycondensation resin,
    상기 중축합 반응 및 중합은 회분(batch)식 반응기에서 수행되는 것이고,The polycondensation reaction and polymerization is to be carried out in a batch reactor,
    상기 저차 축합물을 계 밖으로 배출하는 공정은, 상기 중축합 반응에서 생성되는 부산물 또는 중축합 반응의 원료와 동일한 종류의 물질을 계 내로 보충하면서 상기 저차 축합물을 계 밖으로 배출하는 것을 특징으로 하는 중축합 수지의 제조방법.The step of discharging the lower condensate out of the system, wherein the lower condensate is discharged out of the system while replenishing a substance of the same kind as a by-product or a raw material of the polycondensation reaction into the system. Method for producing a synthetic resin.
  2. 제1항에 있어서, 상기 부산물 또는 원료와 동일한 종류의 물질은 상기 저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 계 내로 보충하는 것을 특징으로 하는 중축합 수지의 제조방법.The polycondensation resin according to claim 1, wherein a substance of the same kind as the by-product or raw material is supplemented into the system to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of discharging the lower condensate. Way.
  3. 제1항에 있어서, 상기 부산물 또는 원료와 동일한 종류의 물질을 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 계 내로 보충하기 위한 양은 하기 식 1로 표시되는 Z(부산물 또는 원료와 동일한 종류의 물질의 단위 시간 당 공급량)의 ±5%인 것을 특징으로 하는 중축합 수지의 제조방법:The method of claim 1, wherein the amount for replenishing a substance of the same kind as the by-product or raw material into the system so as to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of discharging is represented by Z (by-product or raw material) Method for producing a polycondensation resin, characterized in that ± 5% of the supply amount per unit time of the same kind of material):
    [식 1][Equation 1]
    Figure PCTKR2013010067-appb-I000010
    Figure PCTKR2013010067-appb-I000010
    상기 식 1에서, Z(단위: kg/hr)는 저차 축합물 배출 개시 시의 상기 저차 축합물의 생성 반응의 화학 평형 상태를 유지하도록 투입되는 부산물 또는 원료와 동일한 종류의 물질(증기상)의 단위 시간 당 공급량(증기 공급 속도)이고, Px(단위: kPa)는 계 내의 압력을 의미하고, Py(단위: kPa)는 계 내의 온도(반응 용액의 온도) T(단위: K, T[K]=T'[℃]+273.15)에서의 단위 체적당 포화 증기압(이론치)를 의미하며, V(단위: m3)는 반응 용액의 용량을 의미하고, Y(단위: kg/m3)는 상기 온도 T 및 포화 증기압 Py의 조건에서 단위 체적당 포화 증기량(이론치)를 의미하며, L(단위: hr)은 계 내의 저차 축합물을 모두 배출하기 위한 시간을 의미한다.In Equation 1, Z (unit: kg / hr) is a unit of a substance (vapor phase) of the same kind as a by-product or raw material introduced to maintain a chemical equilibrium state of the reaction of formation of the lower condensate at the start of lower condensate discharge. Supply per hour (steam feed rate), P x (unit: kPa) is the pressure in the system, P y (unit: kPa) is the temperature in the system (temperature of the reaction solution) T (unit: K, T [ K] = T '[° C.] + 273.15) means the saturated vapor pressure (theoretical value) per unit volume, V (unit: m 3 ) means the volume of the reaction solution, Y (unit: kg / m 3 ) Denotes the amount of saturated steam per unit volume (theoretical value) under the conditions of the temperature T and the saturated vapor pressure P y , and L (unit: hr) means time for discharging all the lower condensates in the system.
  4. 제1항에 있어서, 상기 저차 축합물의 수평균분자량은 상기 중축합 수지의 수평균분자량의 약 5 내지 약 50%인 것을 특징으로 하는 중축합 수지의 제조방법.The method of claim 1, wherein the number average molecular weight of the lower condensate is about 5 to about 50% of the number average molecular weight of the polycondensation resin.
  5. 제1항에 있어서, 상기 중축합 수지는 폴리아미드, 폴리카보네이트, 또는 폴리에스테르인 것을 특징으로 하는 중축합 수지의 제조방법.The method of claim 1, wherein the polycondensation resin is polyamide, polycarbonate, or polyester.
  6. 제1항에 있어서, 상기 중축합 수지는 상기 저차 축합물을 고상 중합하여 형성된 것을 특징으로 하는 중축합 수지의 제조방법.The method for producing a polycondensation resin according to claim 1, wherein the polycondensation resin is formed by solid-phase polymerization of the low-order condensate.
PCT/KR2013/010067 2012-11-14 2013-11-07 Production method for polycondensation resin WO2014077545A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-250439 2012-11-14
JP2012250439A JP2014098089A (en) 2012-11-14 2012-11-14 Method for producing polycondensation resin
KR10-2013-0123643 2013-10-16
KR1020130123643A KR20140061957A (en) 2012-11-14 2013-10-16 Method for preparing polycondensation resin
KR1020130129606A KR101685747B1 (en) 2012-11-14 2013-10-29 Method for preparing polycondensation resin
KR10-2013-0129606 2013-10-29

Publications (1)

Publication Number Publication Date
WO2014077545A1 true WO2014077545A1 (en) 2014-05-22

Family

ID=50731406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010067 WO2014077545A1 (en) 2012-11-14 2013-11-07 Production method for polycondensation resin

Country Status (1)

Country Link
WO (1) WO2014077545A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020007040A1 (en) * 2000-01-20 2002-01-17 Zahr George E Polyamide chain extension process and related polyamide product
JP2002030138A (en) * 2000-07-14 2002-01-31 Toray Ind Inc Process for producing polyester
JP2004123570A (en) * 2002-09-30 2004-04-22 Is:Kk Method for removing colored substances from ethylene glycol decomposition product solution of polyester
KR20070012448A (en) * 2004-04-20 2007-01-25 제너럴 일렉트릭 캄파니 Method for preparing a polycarbonate oligomer mixture at low temperature for manufacturing polycarbonate
KR20090081350A (en) * 2009-05-21 2009-07-28 코리아 피티지 주식회사 Pyropyllite catalyst for the preparation of polytetramethylene ether glycol-diester and method of preparing polytetramethylene ether glycol-diester using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020007040A1 (en) * 2000-01-20 2002-01-17 Zahr George E Polyamide chain extension process and related polyamide product
JP2002030138A (en) * 2000-07-14 2002-01-31 Toray Ind Inc Process for producing polyester
JP2004123570A (en) * 2002-09-30 2004-04-22 Is:Kk Method for removing colored substances from ethylene glycol decomposition product solution of polyester
KR20070012448A (en) * 2004-04-20 2007-01-25 제너럴 일렉트릭 캄파니 Method for preparing a polycarbonate oligomer mixture at low temperature for manufacturing polycarbonate
KR20090081350A (en) * 2009-05-21 2009-07-28 코리아 피티지 주식회사 Pyropyllite catalyst for the preparation of polytetramethylene ether glycol-diester and method of preparing polytetramethylene ether glycol-diester using the same

Similar Documents

Publication Publication Date Title
JP6898163B2 (en) Liquid crystal polyester resin composition and molded article
JP5504923B2 (en) Method for producing liquid crystal polyester composition and connector
KR100845762B1 (en) Liquid crystalline polyester resin composition and molded product thereof
TW201840638A (en) Wholly aromatic polyester and polyester resin composition
WO2015080438A1 (en) Polyamide resin and method for manufacturing same
KR101557531B1 (en) Method for preparing polycondensation resin
JPH0251524A (en) Preparation of aromatic polyester composition
EP0367278B1 (en) A process for producing aromatic polyesters
US5015723A (en) Process for producing aromatic polyesters
WO2014077545A1 (en) Production method for polycondensation resin
US20030193039A1 (en) Liquid crystalline polyester resin composition and its molded article
US20060231793A1 (en) Liquid crystalline polymer composition
KR101685747B1 (en) Method for preparing polycondensation resin
JP2838119B2 (en) Manufacturing method of aromatic polyester
US7009026B2 (en) Method for producing a liquid crystalline polyester and the liquid crystalline polyester
JP3419070B2 (en) Method for producing aromatic polyester
WO2015080436A1 (en) Polyamide resin and method for manufacturing same
JP2619517B2 (en) Polyarylate resin composition
WO2015080426A1 (en) Polyamide molded body and method for manufacturing same
JPH0753690A (en) Production of polyester
JPH0251523A (en) Aromatic polyester
KR101767688B1 (en) Method of preparing wholly aromatic liquid crystalline polyester resin and wholly aromatic liquid crystalline polyester resin compound
JP2004083829A (en) Liquid crystalline polyester and method for producing the same
JP2004002645A (en) Liquid-crystal polyester resin composition and its molding
JP2758521B2 (en) Method for producing high polymerization degree polyester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854306

Country of ref document: EP

Kind code of ref document: A1