WO2014077515A1 - Method for preparing water dispersive conductive macromolecule for solid condenser - Google Patents

Method for preparing water dispersive conductive macromolecule for solid condenser Download PDF

Info

Publication number
WO2014077515A1
WO2014077515A1 PCT/KR2013/009160 KR2013009160W WO2014077515A1 WO 2014077515 A1 WO2014077515 A1 WO 2014077515A1 KR 2013009160 W KR2013009160 W KR 2013009160W WO 2014077515 A1 WO2014077515 A1 WO 2014077515A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
water
polymer
formula
sulfonic acid
Prior art date
Application number
PCT/KR2013/009160
Other languages
French (fr)
Korean (ko)
Inventor
이정열
김동민
변자훈
안민석
홍우성
박성연
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Publication of WO2014077515A1 publication Critical patent/WO2014077515A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/125Intrinsically conductive polymers comprising aliphatic main chains, e.g. polyactylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a method for producing a water-dispersible conductive polymer for solid capacitors obtained by introducing a new dopant.
  • Electrically conductive polymers have been used in a variety of organic electronic devices, including the development of electroluminescent (“EL”) devices for light emitting displays.
  • EL electroluminescent
  • Such electrically conductive polymers include polyacetylene, polyaniline, polypyri, and polythiophene, which are used as electrolytes for solid capacitors.
  • plethiophene has been studied a lot because of its high light transmittance and stability against oxygen or heat, but it is difficult to make a desired solution after polymerization because of low solubility in both water and organic solvents.
  • a water-dispersible conductive polymer polymerization method has been studied.
  • the prior art is a dopant and a dispersant using a sulfonate group emulsifier of polystyrene sulfonate (PSS), polystyrene sulfonate imidazole salt, Nafion, aliphatic or benzene
  • PSS polystyrene sulfonate
  • imidazole salt Nafion
  • 3,4-ethylenedioxythiophene (3,4- 1 161 (110 1; 1 ⁇ 01) 1 11 ⁇ 2, or less ED0T) monomers in a dispersion phase (Dispersion polymerizat ion) in the water phase is used have.
  • the conductive polymer according to the above method can exhibit a structure represented by the following general formula.
  • the conductive polymer is excellent in electrical properties, but the physical properties that can withstand high voltage are remarkably insufficient. [General Formula]
  • Another object of the present invention is to prepare the new dopant, and to use it for the conductive polymer polymerization, the electrical properties are similar to the existing, the breakdown voltage (break down voltage) of the solid conductive polymer used for the capacitor Method for producing a water-dispersible conductive polymer for solid capacitors 13009160
  • the present invention is the sodium styrenesulfonate 10 to 30% by weight (solid content), sodium vinylsulfonate, acrylamido methylpropane sulfonic acid and 5 to 20% by weight (solid content) of a sulfonic acid monomer selected from the group consisting of a mixture thereof, an initiator 0.5 to 2 weight percent, and
  • a method for preparing a polymer of Chemical Formula 1 for use as a dopant of a conductive polymer for a solid capacitor is provided.
  • R is -S0 3 H, -C0-NH-C (CH 3 ) 2-CH 2 -S0 3 H or C3 ⁇ 4—S0 3 H,
  • n is an integer from 25 to 500
  • the initiator may use an azo water-soluble initiator.
  • the polymerization is preferably performed for 3 hours to 6 hours at a temperature of 40 ° C to 8 (C.
  • the polymer of Formula 1 has a weight average molecular weight of 5,000 to
  • the present invention also polymerizes an aqueous dispersion comprising a polymer of Formula 1, 3,4-ethylenedioxythiophene, an oxidizing agent, a reducing agent and water as a dopant, It is represented by the following formula 2, comprising the step of treating with an on-exchange resin
  • a method of manufacturing a water-dispersible conductive polymer for a capacitor is provided.
  • R is -S0 3 H, -C ()-NH-C (C3 ⁇ 4) 2 -CH 2 -S0 3 H or -CH 2 -S0 3 H,
  • n is an integer from 25 to 500
  • n is an integer from 3 to 10)
  • the composition may include 2 to 10% by weight of the polymer of Formula 1, 0.5 to 2% by weight of 3,4-ethylenedioxythiophene, 0.005% by weight of oxidizing agent, 0.5 to 2% by weight of reducing agent and 86 to 96% by weight of water. Can be.
  • the present invention exhibits a high break down voltage compared to conventional ones by using dopants for certain novel sulfonic acid polymers, 13009160
  • the solid capacitor using the water-dispersible conductive polymer as a solid electrolyte has a feature that can withstand high voltage with excellent electrical properties.
  • Figure 1 shows the particle size analysis results of the polymer for Examples 6 to 8 and Comparative Example 1.
  • the present invention provides a novel polymer copolymer (Polymeric copolymer) that can be used as a dopant of a conductive polymer for a solid capacitor by copolymerizing a sulfonic acid monomer and a sodium styrene sulfonate monomer having a specific substituent.
  • the present invention relates to a method for producing a water-dispersible conductive polymer for a solid capacitor exhibiting a high break down voltage characteristics by using the novel polymeric polymer using a dopant and a dispersant.
  • sulfonic acid monomers 5 to 20 selected from the group consisting of 10 to 30% by weight of sodium styrenesulfonate (solid content), sodium vinylsulfonate, acrylamido methylpropane sulfonic acid and mixtures thereof
  • a polymer of formula (I) for use as a dopant of a polymer for a solid capacitor comprising the step of polymerizing a composition comprising amount% (solid content), 0.5 to 2 weight% initiator, and 52 to 84.5 weight 3 ⁇ 4 water
  • a manufacturing method is provided.
  • R is -S0 3 H, -C0-NH-C (CH 3 ) 2 -CH 2 -S0 3 H or -C3 ⁇ 4-S0 3 H,
  • n is an integer from 25 to 500
  • the monomer uses sodium styrene sulfonate and the sulfonic acid monomer described above.
  • the sodium styrenesulfonate in the monomer content in the composition is characterized by using more than 50% of the sulfonic acid monomer ratio.
  • the weight ratio of sodium styrenesulfonate and the aforementioned sulfonic acid monomers in the total monomers may be 51:49 to 80:20.
  • the present invention can give a breakdown voltage effect superior to the existing dopants by polymerizing using sodium styrenesulfonate in excess of the specific sulfonic acid monomers described above.
  • the sulfonic acid monomer and sodium styrenesulfonate may be used in an aqueous solution of 15 to 50% by weight, respectively.
  • the sulfonic acid monomer of the present invention may be selected from the group consisting of 5 to 20% by weight sodium vinylsulfonate aqueous solution, 1 to 10% by weight acrylamido methylpropane sulfonic acid aqueous solution and mixtures thereof. Can be.
  • the sodium vinyl sulfonate and acrylamido methyl propane sulfonic acid when used in combination, they may be used in a weight ratio of 50:50 to 80:20 within the range of the sulfonic acid monomer. All.
  • polyvinylsulphonic-co-styrenesulfonic acid (Polyvinylsulfonic-co-styrenesulfonic acid) may be prepared.
  • the storage stability during polymerization of the water-dispersible conductive polymer may be poor and precipitation may occur, exceeding 30% by weight There is a problem with the voltage improvement.
  • the content of the specific sulfonate monomer is less than 5% by weight, the yield voltage improvement effect of the water-disperse polymerized conductive polymer is insignificant.
  • the content of the specific sulfonate monomer is greater than 20% by weight, the electrical properties and storage stability of the water-dispersible polymerized polymer are improved. It is generally bad.
  • the initiator is preferably used in the content range capable of initiating polymerization with respect to the composition for preparing the entire dopant, and therefore it is preferable to use 0.5 to 2% by weight.
  • the initiator may use an azo-based water-soluble initiator, but the type is not particularly limited, and any water-soluble initiator well known in the art may be used.
  • the polymerization is preferably performed for 3 hours to 6 hours at a temperature of 40 to 80 ° C.
  • sodium styrenesulfonate when preparing the dopant of Formula 1, sodium styrenesulfonate is used by completely dissolving in the water of the above-described range, it is preferable to proceed with the polymerization after adding a water-soluble initiator.
  • the polymer of Formula 1 of the present invention may have a weight average molecular weight of 5,000 to 100,000.
  • the present invention can provide a water-dispersible conductive polymer for a solid capacitor obtained by using the polymer of the formula (1) as a dopant.
  • a number including the above-described polymer of Formula 1, 3,4-ethylenedioxythiophene, an oxidizing agent, a reducing agent and water as a dopant Provided is a method for preparing a water-dispersible conductive polymer for a solid capacitor represented by the following Chemical Formula 2, comprising polymerizing an aqueous dispersion and treating with an ion exchange resin.
  • R is -S0 3 H, -C0-NH-C (CH 3 ) 2-CH 2 -S0 3 H or -CH 2 -S0 3 H o
  • n is an integer from 25 to 500
  • n is an integer from 3 to 10)
  • novel dopant of the present invention is used in the conductive polymer polymerization of Chemical Formula 2, and its electrical characteristics are similar to those of the conventional one, and it is possible to greatly improve the breakdown voltage of the solid conductive polymer used for the capacitor.
  • composition used during the polymerization is an aqueous dispersion, 2 to 10% by weight of the polymer of the formula (1), 0.5 to 2% by weight of 3,4-ethylenedioxythiophene, 3 ⁇ 4>, oxidation KR2013 / 009160
  • the ion exchange resin treatment can be carried out by passing the polymerized aqueous dispersion through the ion exchange resin, the conditions are not particularly limited.
  • an acidic divalent silver exchange resin such as a sulfonic acid cation exchange resin, a basic anion exchange resin, or the like can be used.
  • the oxidizing agent in the group consisting of iron para-luene sulfate (111), iron benzene sulfate (111), iron meta-luene sulfate (111), trifluororosulphate (III) and ferric sulfate (III) One or more selected may be used, preferably ferric sulfate (III) ol.
  • the reducing agent may be used one or more selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate and persulfate.
  • the polymerization is preferably performed for 24 hours to 72 hours at a temperature of 5 ° C to 30 ° C.
  • the present invention provides a water dispersion conductive polymer for a solid capacitor represented by the formula (2) obtained by the above method and has a total solid content of 0.5 to 4 weight 3 ⁇ 4.
  • the bonding structure represented by the formula (2) is a structure known to be an ionic bond.
  • the total solid content of the water-dispersible conductive polymer is 4wt3 ⁇ 4> or more, there is a problem in the manufacturing process due to the high viscosity of the polymerization solution, and if the total solid content is less than 0.5 wt%, the electrical properties of the conductive polymer water dispersion solution are insufficient.
  • the polymer of Chemical Formula 1 is used as a dopant, the yield polymerization can be greatly improved while satisfying the above conditions.
  • the present invention is a solid dispersion of the water-dispersible conductive polymer It is possible to provide a solid capacitor including the solution. Since the solid capacitor includes a structure well known in the art, a detailed description thereof will be omitted.
  • the polymer of Chemical Formula 1 of the present invention is prepared by using a composition including sodium styrenesulfonate of 50% or more of all monomers, and when used as a dopant, the breakdown voltage can be improved than before. Therefore, the present invention can secure not only the electrical properties of the water-dispersible conductive polymer, but also an excellent effect that can withstand high voltage.
  • a single polymerization was performed for each monomer of Table 1 to prepare a homopolymer including 30 wt% of solid content and 70 wt 3% of DI water.
  • the polymerization method monomer 148.5 g, initiator (V-50, 2,2'-Azobis (2- met ' hylpropionamidine) dihydrochloride) 1.5g, about 1% of the monomer, 350g deionized water and then put 65 ° C.
  • the homopolymer was prepared by reacting for 4hr at.
  • the polymerization rate was 98% or more, and the weight average molecular weight was about 30,000.
  • the sheet resistance (Simco, ST-4) of the water-dispersible conductive polymer was 8 or less and there was no significant difference.
  • the dopant and the water-dispersible conductive polymer were prepared by the following method.
  • the homopolymer was measured according to the weight mass method. The polymerization rate was 98% and the weight average molecular weight was about 28,000.
  • Example 2 Dopant Preparation
  • the homopolymer was measured according to the weight mass method. The polymerization rate was 98% and the weight average molecular weight was about 45,000.
  • Example 3 Dopant Preparation
  • the single polymer was measured according to the weight mass method.
  • the polymerization rate was 98% or more, and the weight average molecular weight was about 40,000.
  • Example 4 Dopant Preparation
  • TriLite SM410 an ion exchange resin
  • Example 5 shows missing values.

Abstract

The present invention relates to a method for preparing a polymer for use as a dopant of a macromolecule for a solid condenser, and to a method for preparing a water dispersive conductive macromolecule for a solid condenser using same. More particularly, according to the present invention, provided is a method for preparing a water dispersive conductive macromolecule having excellent electrical properties and showing a higher breakdown voltage with respect to conventional macromolecules by using a sulfonic acid-based polymer such as polyvinylsulfonic-co-styrenesulfonic acid as a dopant, wherein the sulfonic acid-based polymer is obtained by the polymerization of sodium styrenesulfonate and a particular sulfonic acid-based monomer.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고체 콘덴서용 수분산 전도성 고분자의 제조방법  Manufacturing method of water-dispersible conductive polymer for solid capacitor
【기술분야】  Technical Field
본 발명은 신규한 도판트를 도입하여 얻어진 고체 콘덴서용 수분산 전도성 고분자의 제조방법에 관한 것이다.  The present invention relates to a method for producing a water-dispersible conductive polymer for solid capacitors obtained by introducing a new dopant.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
전기 전도성 고분자는 발광 디스플레이용 전자발광 ("EL") 소자의 개 발을 포함하는 다양한 유기 전자 소자에서 사용되어 왔다.  Electrically conductive polymers have been used in a variety of organic electronic devices, including the development of electroluminescent (“EL”) devices for light emitting displays.
이러한 전기 전도성 고분자로는 플리아세틸렌, 폴리아닐린, 폴리피를, 폴리티오펜 등이 있으며, 이들은 고체 콘덴서의 전해질로 사용되고 있다. 이중에서 플리티오펜은 높은 광투과도와산소나 열에 대한 안정성을 가지고 있기 때문에 많이 연구되었으나 물과 유기용매에 모두 용해도가낮아 중합 후 원하는 용액을 만들어 이용하는 데에 어려움이 있었다. 또한 이러한 문 제점을 해결하기 위해, 수분산 전도성 고분자 중합 방법이 연구되고 있다. 예를 들어 , 수분산성 전도성 고분자 중합 방법에 있어서, 종래 기술 은 폴리스티렌 술포네이트 (PSS), 폴리스티렌 술포네이트 이미다졸염, 나피 온 (Nafion), 지방족 또는 벤젠의 술포네이트기 유화제를 이용한 도판트 및 분산제를 사용하여, 3,4-에틸렌디옥시티오펜(3,4- 1 161 (110 1;1^01)1 1½, 이하 ED0T) 단량체를 수상에서 분산 중합 (Dispersion polymerizat ion)을 진 행하는 방법이 사용되고 있다.  Such electrically conductive polymers include polyacetylene, polyaniline, polypyri, and polythiophene, which are used as electrolytes for solid capacitors. Among them, plethiophene has been studied a lot because of its high light transmittance and stability against oxygen or heat, but it is difficult to make a desired solution after polymerization because of low solubility in both water and organic solvents. In addition, to solve this problem, a water-dispersible conductive polymer polymerization method has been studied. For example, in the water-dispersible conductive polymer polymerization method, the prior art is a dopant and a dispersant using a sulfonate group emulsifier of polystyrene sulfonate (PSS), polystyrene sulfonate imidazole salt, Nafion, aliphatic or benzene Using 3,4-ethylenedioxythiophene (3,4- 1 161 (110 1; 1 ^ 01) 1 1½, or less ED0T) monomers in a dispersion phase (Dispersion polymerizat ion) in the water phase is used have.
상기 방법에 따른 전도성 고분자는 하기 일반식으로 표시되는 구조를 나타낼내는 수 있는데, 상기 PSS를 도판트로 이용하는 경우 전기적 특성은 우수하지만 고전압에서 견딜 수 있는 물성이 현저히 부족하였다. [일반식] The conductive polymer according to the above method can exhibit a structure represented by the following general formula. When the PSS is used as a dopant, the conductive polymer is excellent in electrical properties, but the physical properties that can withstand high voltage are remarkably insufficient. [General Formula]
Figure imgf000004_0001
Figure imgf000004_0001
【발명의 내용】 [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명의 목적은 고체 콘덴서용 고분자의 도판트로 사용하기 위한 특정 중합체의 제조방법을 제공하는 것이다.  It is an object of the present invention to provide a process for preparing a particular polymer for use as a dopant of a polymer for solid capacitors.
또한 본 발명의 다른 목적은 상기 신규 도판트를 제조하여, 이를 전 도성 고분자 중합에 이용할 뿐 아니라, 전기적 특성은 기존과 유사하며, 콘 덴서용으로 쓰이는 고체 전도성 고분자의 항복 전압 (break down voltage) 의 개선 효과가 뛰어난 고체 콘덴서용 수분산 전도성 고분자의 제조방법을 13009160 In addition, another object of the present invention is to prepare the new dopant, and to use it for the conductive polymer polymerization, the electrical properties are similar to the existing, the breakdown voltage (break down voltage) of the solid conductive polymer used for the capacitor Method for producing a water-dispersible conductive polymer for solid capacitors 13009160
제공하는 것이다. To provide.
【과제의 해결 수단】 [Measures of problem]
본 발명은 소듐 스티렌술포네이트 10 내지 30 중량 % (고형분), 소듐 비닐술포네이트, 아크릴아미도 메틸프로판 술폰산 및 이들의 흔 합물로 이루어진 군에서 선택된 술폰산계 단량체 5 내지 20 중량 % (고형분), 개시제 0.5 내지 2 중량 %, 및  The present invention is the sodium styrenesulfonate 10 to 30% by weight (solid content), sodium vinylsulfonate, acrylamido methylpropane sulfonic acid and 5 to 20% by weight (solid content) of a sulfonic acid monomer selected from the group consisting of a mixture thereof, an initiator 0.5 to 2 weight percent, and
물 52 내지 84.5 중량 %를 포함하는 조성물을 중합하는 단계를 포함하 Polymerizing the composition comprising 52 to 84.5 weight% of water.
"ΰτ, " ΰτ ,
고체 콘덴서용 전도성 고분자의 도판트로 사용하기 위한, 하기 화학 식 1의 중합체의 제조방법을 제공한다.  Provided is a method for preparing a polymer of Chemical Formula 1 for use as a dopant of a conductive polymer for a solid capacitor.
[화학식 1]  [Formula 1]
Figure imgf000005_0001
Figure imgf000005_0001
(상기 식에서, R은 -S03H, -C0-NH-C(CH3)2-CH2-S03H또는 C¾— S03H 이 며, Wherein R is -S0 3 H, -C0-NH-C (CH 3 ) 2-CH 2 -S0 3 H or C¾—S0 3 H,
m은 25 내지 500 의 정수이다)  m is an integer from 25 to 500)
상기 개시제는 아조계 수용성 개시제를 사용할 수 있다. 또한 상기 중합은 40°C 내지 8( C의 온도에서 3시간 내지 6시간 동안 수행하는 것이 바람직하다. 상기 화학식 1의 중합체는 중량평균분자량이 5,000 내지 The initiator may use an azo water-soluble initiator. In addition, the polymerization is preferably performed for 3 hours to 6 hours at a temperature of 40 ° C to 8 (C. The polymer of Formula 1 has a weight average molecular weight of 5,000 to
100, 000일 수 있다. It may be 100, 000.
또한 본 발명은 도판트로서 상술한 화학식 1의 중합체, 3 ,4-에틸렌디 옥시티오펜, 산화제, 환원제 및 물을 포함하는 수성 분산액을 중합하고, 이 온 교환 수지로 처 리하는 단계를 포함하는, 하기 화학식 2로 표시되
Figure imgf000006_0001
콘덴서용 수분산 전도성 고분자의 제조방법을 제공한다.
The present invention also polymerizes an aqueous dispersion comprising a polymer of Formula 1, 3,4-ethylenedioxythiophene, an oxidizing agent, a reducing agent and water as a dopant, It is represented by the following formula 2, comprising the step of treating with an on-exchange resin
Figure imgf000006_0001
Provided is a method of manufacturing a water-dispersible conductive polymer for a capacitor.
[화학식 2]  [Formula 2]
Figure imgf000006_0002
Figure imgf000006_0002
(상기 식에서, R은 -S03H , -C()-NH-C(C¾)2-CH2-S03H 또는 -CH2-S03H 이 며, Wherein R is -S0 3 H, -C ()-NH-C (C¾) 2 -CH 2 -S0 3 H or -CH 2 -S0 3 H,
m은 25 내지 500 의 정수이고,  m is an integer from 25 to 500,
n은 3 내지 10 의 정수이다)  n is an integer from 3 to 10)
상기 조성물은 화학식 1의 중합체 2 내지 10 중량 %, 3,4-에 틸렌디옥시티오 펜 0.5 내지 2 중량 %, 산화제 0.005 중량 %, 환원제 0.5 내지 2 중량 ¾ 및 물 86 내지 96 중량 %을 포함할 수 있다 . The composition may include 2 to 10% by weight of the polymer of Formula 1, 0.5 to 2% by weight of 3,4-ethylenedioxythiophene, 0.005% by weight of oxidizing agent, 0.5 to 2% by weight of reducing agent and 86 to 96% by weight of water. Can be.
【발명의 효과】  【Effects of the Invention】
본 발명은 특정 한 신규의 술폰산 중합체를 도판트를 사용함으로써, 기존 대비 높은 항복 전압 (high break down vol tage)을 나타내고, 전기 적 13009160 The present invention exhibits a high break down voltage compared to conventional ones by using dopants for certain novel sulfonic acid polymers, 13009160
특성이 우수한 수분산 전도성 고분자를 제공할 수 있다. 따라서, 상기 수 분산 전도성 고분자를 고체 전해질로 사용한 고체 콘덴서는 우수한 전기 특 성으로 고전압에서 견딜 수 있는 특징이 있다. It is possible to provide a water-dispersible conductive polymer having excellent properties. Therefore, the solid capacitor using the water-dispersible conductive polymer as a solid electrolyte has a feature that can withstand high voltage with excellent electrical properties.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 실시예 6~8 및 비교예 1에 대한 고분자의 입도 분석 결과를 나타낸 것이다.  Figure 1 shows the particle size analysis results of the polymer for Examples 6 to 8 and Comparative Example 1.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하에서 본 발명을 상세하게 설명한다.  Hereinafter, the present invention will be described in detail.
본 발명은 특정 치환기를 갖는 술폰산계 단량체와 소듐 스티렌술포네 이트 단량체를 공중합하여 고체 콘덴서용 전도성 고분자의 도판트로 사용할 수 있는 신규한 고분자성 공중합체 (Polymeric copolymer)를 제공한다. 또 한 본 발명은 상기 신규한 고분자성 중합체를 도판트와 분산제를 이용함으 로써, 높은 항복 전압 (high break down voltage) 특성을 나타내는 고체 콘 덴서용 수분산 전도성 고분자의 제조방법에 관한 것이다.  The present invention provides a novel polymer copolymer (Polymeric copolymer) that can be used as a dopant of a conductive polymer for a solid capacitor by copolymerizing a sulfonic acid monomer and a sodium styrene sulfonate monomer having a specific substituent. In addition, the present invention relates to a method for producing a water-dispersible conductive polymer for a solid capacitor exhibiting a high break down voltage characteristics by using the novel polymeric polymer using a dopant and a dispersant.
본 발명의 구현예에 따라, 소듐 스티렌술포네이트 10 내지 30 중 량% (고형분), 소듐 비닐술포네이트, 아크릴아미도 메틸프로판 술폰산 및 이 들의 흔합물로 이루어진 군에서 선택된 술폰산계 단량체 5 내지 20 중 량% (고형분), 개시제 0.5 내지 2 중량 %, 및 물 52 내지 84.5 중량 ¾를 포함 하는 조성물을 중합하는 단계를 포함하는, 고체 콘덴서용 고분자의 도판트 로 사용하기 위한, 하기 화학식 1의 중합체의 제조방법이 제공된다. According to an embodiment of the present invention, in the sulfonic acid monomers 5 to 20 selected from the group consisting of 10 to 30% by weight of sodium styrenesulfonate (solid content), sodium vinylsulfonate, acrylamido methylpropane sulfonic acid and mixtures thereof Of a polymer of formula (I) for use as a dopant of a polymer for a solid capacitor, comprising the step of polymerizing a composition comprising amount% (solid content), 0.5 to 2 weight% initiator, and 52 to 84.5 weight ¾ water A manufacturing method is provided.
[화학식 1] [Formula 1]
Figure imgf000008_0001
Figure imgf000008_0001
(상기 식에서, R은 -S03H, -C0-NH-C(CH3)2-CH2-S03H 또는 -C¾-S03H 이 며, Wherein R is -S0 3 H, -C0-NH-C (CH 3 ) 2 -CH 2 -S0 3 H or -C¾-S0 3 H,
m은 25 내지 500의 정수이다)  m is an integer from 25 to 500)
상기 화학식 1의 중합체 제조시 사용하는 조성물에 있어서, 단량체는 소듐스티렌술포네이트와 상술한 술폰산계 단량체를 사용한다. 이때, 본 발 명에서는 조성물 중의 단량체 함량에서 소듐 스티렌술포네이트가 술폰산계 단량체 비율 대비 50% 이상으로 사용하는 특징이 있다. 예를 들면, 전체 단량체 중 소듐스티렌술포네이트와 상술한 술폰산계 단량체의 중량비는 51:49 내지 80:20일 수 있다.  In the composition used when preparing the polymer of Chemical Formula 1, the monomer uses sodium styrene sulfonate and the sulfonic acid monomer described above. At this time, in the present invention, the sodium styrenesulfonate in the monomer content in the composition is characterized by using more than 50% of the sulfonic acid monomer ratio. For example, the weight ratio of sodium styrenesulfonate and the aforementioned sulfonic acid monomers in the total monomers may be 51:49 to 80:20.
따라서, 본 발명은 상술한 특정 술폰산계 단량체보다 과량으로 소듐 스티렌술포네이트를 사용하여 중합함으로써, 기존 도판트 보다 우수한 항복 전압 효과를 부여할 수 있다.  Therefore, the present invention can give a breakdown voltage effect superior to the existing dopants by polymerizing using sodium styrenesulfonate in excess of the specific sulfonic acid monomers described above.
또한 본 발명에서 술폰산계 단량체 및 소듐 스티렌술포네이트는 각각 15 내지 50 중량 %의 수용액 상태로 사용할 수 있다. 예를 들면, 본 발명의 술폰산계 단량체는 5 내지 20 중량 %의 소듐 비닐술포네이트 수용액, 1 내지 10 중량 %의 아크릴아미도 메틸프로판 술폰산 수용액 및 이들의 흔합물로 이 루어진 군에서 선택된 것을 사용할 수 있다. 또한 상기 소듐 비닐술포네이 트와 아크릴아미도 메틸프로판 술폰산을 흔합하여 사용하는 경우 상기 술폰 산계 단량체의 범위내에서 50:50 내지 80 :20의 중량비로 흔합 사용할 수 있 다. In the present invention, the sulfonic acid monomer and sodium styrenesulfonate may be used in an aqueous solution of 15 to 50% by weight, respectively. For example, the sulfonic acid monomer of the present invention may be selected from the group consisting of 5 to 20% by weight sodium vinylsulfonate aqueous solution, 1 to 10% by weight acrylamido methylpropane sulfonic acid aqueous solution and mixtures thereof. Can be. In addition, when the sodium vinyl sulfonate and acrylamido methyl propane sulfonic acid are used in combination, they may be used in a weight ratio of 50:50 to 80:20 within the range of the sulfonic acid monomer. All.
또한 상기 술포네이트계 단량체 중에서 소듬 비닐 술포네이트를 사용 하는 것이 바람직하며, 이러한 경우 폴리비닐술포닉 -co-스티렌술폰산 (Polyvinylsulfonic-co-styrenesulfonic acid)을 제조할 수 있다.  In addition, it is preferable to use sintered vinyl sulfonate among the sulfonate monomers, and in this case, polyvinylsulphonic-co-styrenesulfonic acid (Polyvinylsulfonic-co-styrenesulfonic acid) may be prepared.
이때 본 발명의 신규한 도판트를 제조하는 과정에서, 소듐 스티렌술 포네이트의 함량이 10 중량 % 미만이면 수분산 전도성 고분자 중합시 보관 안정성이 나쁘며 침전이 생길 수 있으며, 30 중량 %를 초과하면 항복전압 개 선에 문제가 있다.  At this time, in the process of manufacturing the novel dopant of the present invention, if the content of sodium styrenesulfonate is less than 10% by weight, the storage stability during polymerization of the water-dispersible conductive polymer may be poor and precipitation may occur, exceeding 30% by weight There is a problem with the voltage improvement.
또한 상기 특정 술포네이트계 단량체의 함량이 5 중량 % 미만이면 수 분산 중합된 전도성 고분자의 항복 전압 향상 효과가 미미하고, 20 중량 %를 초과하면 수분산 중합된 전도성 고분자의 전기적 특성 및 보관 안정성이 상 대적으로 불량해진다.  In addition, when the content of the specific sulfonate monomer is less than 5% by weight, the yield voltage improvement effect of the water-disperse polymerized conductive polymer is insignificant. When the content of the specific sulfonate monomer is greater than 20% by weight, the electrical properties and storage stability of the water-dispersible polymerized polymer are improved. It is generally bad.
또한 상기 개시제는 전체 도판트 제조용 조성물에 대해 중합을 개시 할 수 있는 함량 범위로 사용하는 것이 바람직하며, 이에 따라 0.5 내지 2 중량 %로 사용하는 것이 좋다. 또한 상기 개시제는 아조계 수용성 개시제를 사용할 수 있으나, 그 종류가 특별히 한정되지는 않고 이 분야에 잘 알려진 수용성 개시제를 모두 사용 가능하다.  In addition, the initiator is preferably used in the content range capable of initiating polymerization with respect to the composition for preparing the entire dopant, and therefore it is preferable to use 0.5 to 2% by weight. In addition, the initiator may use an azo-based water-soluble initiator, but the type is not particularly limited, and any water-soluble initiator well known in the art may be used.
또한 상기 중합은 40 내지 80°C의 온도에서 3시간 내지 6시간 동안 수행하는 것이 바람직하다. In addition, the polymerization is preferably performed for 3 hours to 6 hours at a temperature of 40 to 80 ° C.
또한 본 발명에서 상기 화학식 1의 도판트를 제조시, 소듐 스티렌술 포네이트는 상술한 범위의 물에 완전히 녹여서 사용하고, 이후 수용성 개시 제를 넣고 중합을 진행하는 것이 바람직하다.  In addition, in the present invention, when preparing the dopant of Formula 1, sodium styrenesulfonate is used by completely dissolving in the water of the above-described range, it is preferable to proceed with the polymerization after adding a water-soluble initiator.
이러한 본 발명의 상기 화학식 1의 중합체는 중량평균분자량이 5,000 내지 100 ,000일 수 있다. 한편, 본 발명은 상술한 화학식 1의 중합체를 도판트로 사용하여 얻 어지는 고체 콘덴서용 수분산 전도성 고분자를 제공할 수 있다.  The polymer of Formula 1 of the present invention may have a weight average molecular weight of 5,000 to 100,000. On the other hand, the present invention can provide a water-dispersible conductive polymer for a solid capacitor obtained by using the polymer of the formula (1) as a dopant.
따라서 본 발명의 다른 구현예에 따라, 도판트로서 상술한 화학식 1 의 중합체, 3,4-에틸렌디옥시티오펜, 산화제, 환원제 및 물을 포함하는 수 성 분산액을 중합하고 , 이온 교환 수지로 처리하는 단계를 포함하는, 하기 화학식 2로 표시되는 고체 콘덴서용 수분산 전도성 고분자의 제조방법이 제 공된다. Therefore, according to another embodiment of the present invention, a number including the above-described polymer of Formula 1, 3,4-ethylenedioxythiophene, an oxidizing agent, a reducing agent and water as a dopant Provided is a method for preparing a water-dispersible conductive polymer for a solid capacitor represented by the following Chemical Formula 2, comprising polymerizing an aqueous dispersion and treating with an ion exchange resin.
[화학식 2]  [Formula 2]
Figure imgf000010_0001
Figure imgf000010_0001
(상기 식에서, R은 -S03H, -C0-NH-C(CH3)2-CH2-S03H 또 -CH2-S03H o 며 Wherein R is -S0 3 H, -C0-NH-C (CH 3 ) 2-CH 2 -S0 3 H or -CH 2 -S0 3 H o
m은 25 내지 500의 정수이고,  m is an integer from 25 to 500,
n은 3 내지 10의 정수이다)  n is an integer from 3 to 10)
본 발명의 신규 도판트는 화학식 2의 전도성 고분자 중합에 이용되어 전기적 특성은 기존과 유사하며, 콘덴서용으로 사용되는 고체 전도성 고분 자의 항복 전압을 크게 개선할 수 있다.  The novel dopant of the present invention is used in the conductive polymer polymerization of Chemical Formula 2, and its electrical characteristics are similar to those of the conventional one, and it is possible to greatly improve the breakdown voltage of the solid conductive polymer used for the capacitor.
또한 상기 중합시 이용하는 조성물은 수성 분산액으로서, 화학식 1의 중합체 2 내지 10 중량 %, 3,4-에틸렌디옥시티오펜 0.5 내지 2 중량 ¾>, 산화 KR2013/009160 In addition, the composition used during the polymerization is an aqueous dispersion, 2 to 10% by weight of the polymer of the formula (1), 0.5 to 2% by weight of 3,4-ethylenedioxythiophene, ¾>, oxidation KR2013 / 009160
제 0.005 중량 %, 환원제 0.5 내지 2 중량 % 및 물 86 내지 96 중량 %를 포함 할 수 있다. 0.005% by weight, 0.5 to 2% by weight of reducing agent and 86 to 96% by weight of water.
' 또한 본 발명에서는 상기 수성 분산액을 이용한 중합을 완료한 후, 이온교환 수지로 처리하는 단계를 수행할 수 있다. 'You can also perform the step of processing to then complete the polymerization using the aqueous dispersion, an ion exchange resin in the present invention.
상기 이온교환 수지 처리를 통해, 분해된 화학종, 부반웅 생성물, 미 반웅 단량체 및 이온성 불순물을 제거하고 pH를 조절할 수 있다.  Through the ion exchange resin treatment, decomposed chemical species, banbanung products, US banung monomer and ionic impurities can be removed and pH can be adjusted.
상기 이온 교환 수지 처리는 중합된 그대로의 수성 분산액을 이온 교 환 수지를 통과시켜 진행될 수 있으며, 그 조건이 특별히 한정되지는 않는 다. 또한, 이온 교환 수지는 술폰산 양이온 교환 수지와 같은 산성 양이은 교환 수지, 염기성 음이온 교환 수지 등을 사용할 수 있다.  The ion exchange resin treatment can be carried out by passing the polymerized aqueous dispersion through the ion exchange resin, the conditions are not particularly limited. As the ion exchange resin, an acidic divalent silver exchange resin such as a sulfonic acid cation exchange resin, a basic anion exchange resin, or the like can be used.
한편, 상기 산화제는 파라를루엔황산철 (111), 벤젠황산철 (111), 메타 를루엔황산철 (111), 트리플로로황산철 (III) 및 황산제 2철 (III)로 이루어진 군에서 선택된 1종 이상을 사용할 수 있고, 바람직하게는 황산제 2철 (III)올 사용한다.  On the other hand, the oxidizing agent in the group consisting of iron para-luene sulfate (111), iron benzene sulfate (111), iron meta-luene sulfate (111), trifluororosulphate (III) and ferric sulfate (III) One or more selected may be used, preferably ferric sulfate (III) ol.
또한 상기 환원제는 과황산칼륨, 과황산나트륨, 과황산암모늄 및 과 황산으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.  In addition, the reducing agent may be used one or more selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate and persulfate.
또한 본 발명에서 상기 중합은 5°C 내지 30°C의 온도에서 24시간 내 지 72시간 동안 수행하는 것이 바람직하다. In addition, in the present invention, the polymerization is preferably performed for 24 hours to 72 hours at a temperature of 5 ° C to 30 ° C.
또한 본 발명은 상기 방법으로 얻어지며 총고형분 함량이 0.5내지 4 중량 ¾인, 화학식 2로 표시되는 고체 콘덴서용 수분산 전도성 고분자를 제공 한다.  In another aspect, the present invention provides a water dispersion conductive polymer for a solid capacitor represented by the formula (2) obtained by the above method and has a total solid content of 0.5 to 4 weight ¾.
이때, 상기 화학식 2로 표시되는 결합구조는 이온 결합을 하는 것으 로 알려져 있는 구조이다. 그런데, 상기 수분산 전도성 고분자의 총 고형 분이 4wt¾> 이상이면 중합 용액의 점도가 높아 제조공정상 문제점이 있으며, 총 고형분이 0.5 wt% 미만이면 전도성 고분자 수분산 용액의 전기적인 특성 이 부족하다. 하지만, 본 발명에서는 상술한 화학식 1의 중합체를 도판트 로 사용하므로, 상기 조건을 만족하면서 항복 전합을 크게 향상시킬 수 있 다.  At this time, the bonding structure represented by the formula (2) is a structure known to be an ionic bond. However, if the total solid content of the water-dispersible conductive polymer is 4wt¾> or more, there is a problem in the manufacturing process due to the high viscosity of the polymerization solution, and if the total solid content is less than 0.5 wt%, the electrical properties of the conductive polymer water dispersion solution are insufficient. However, in the present invention, since the polymer of Chemical Formula 1 is used as a dopant, the yield polymerization can be greatly improved while satisfying the above conditions.
따라서 본 발명은 상기 화학식 2의 수분산 전도성 고분자를 고체 전 해질로 포함하는 고체 콘덴서를 제공할 수 있다. 상기 고체 콘덴서는 이 분야에 잘 알려진 구조를 포함하므로, 구체적인 설명은 생략하기로 한다. 이상과 같이, 본 발명의 상술한 화학식 1의 중합체는 전체 단량체 중 50% 이상의 소듐 스티렌술포네이트를 포함한 조성물을 사용하여 제조됨으로 써, 이를 도판트로 사용할 경우 항복 전압을 기존보다 향상시킬 수 있다. 따라서, 본 발명은 수분산성 전도성 고분자의 전기적 특성 뿐만 아니라, 고 전압에서 견딜 수 있는 우수한 효과를 확보 할 수 있다. 따라서, 상기 수 분산 전도성 고분자를 고체 전해질로 포함하는 고체 콘덴서의 전기적 특성 을 크게 개선할 수 있다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예 에 한정되는 것은 아니다. [참고예] Therefore, the present invention is a solid dispersion of the water-dispersible conductive polymer It is possible to provide a solid capacitor including the solution. Since the solid capacitor includes a structure well known in the art, a detailed description thereof will be omitted. As described above, the polymer of Chemical Formula 1 of the present invention is prepared by using a composition including sodium styrenesulfonate of 50% or more of all monomers, and when used as a dopant, the breakdown voltage can be improved than before. Therefore, the present invention can secure not only the electrical properties of the water-dispersible conductive polymer, but also an excellent effect that can withstand high voltage. Therefore, it is possible to greatly improve the electrical characteristics of the solid capacitor including the water dispersion conductive polymer as a solid electrolyte. Hereinafter, one preferred embodiment to aid the understanding of the present invention, the following examples are merely to illustrate the present invention is not limited to the scope of the following examples. [Reference Example]
1. 단일 단량체 중합  1. Monomer Polymerization
다음 표 1의 각 단량체에 대해 단일 중합을 진행하여, 고형분 30wt% 및 탈이온수 (D.I water) 70wt¾>를 포함하는 호모 폴리머를 제조하였다. 이 때 중합 방법은, 단량체 148.5 g, 개시제 (V-50, 2,2'-Azobis(2- met'hylpropionamidine)dihydrochloride)를 단량체 대비 1% 정도인 1.5g, 탈 이은수 350g을 넣은 다음 65°C에서 4hr 시간 동안 반웅하여 단일 중합체를 제조하였다. Next, a single polymerization was performed for each monomer of Table 1 to prepare a homopolymer including 30 wt% of solid content and 70 wt 3% of DI water. At this time, the polymerization method, monomer 148.5 g, initiator (V-50, 2,2'-Azobis (2- met ' hylpropionamidine) dihydrochloride) 1.5g, about 1% of the monomer, 350g deionized water and then put 65 ° C. The homopolymer was prepared by reacting for 4hr at.
상기 단일 중합체를 무게 질량법에 따라 측정한 결과, 중합율은 98% 이상이며, 중량평균분자량은 약 30,000정도였다.  As a result of measuring the homopolymer by weight mass method, the polymerization rate was 98% or more, and the weight average molecular weight was about 30,000.
이때, 단일 중합체를 이용한 수분산 전도성 고분자 중합율 (무게 중량 법)은 아래의 표 1과 같다.  At this time, the water dispersion conductive polymer polymerization rate (weight weight method) using a single polymer is shown in Table 1 below.
2. 수분산 전도성 고분자의 중합 2. Polymerization of Water Dispersive Conductive Polymers
각 단일 중합체 (고형분 30wt¾)를 이용하여, 수분산 전도성 고분자 중 합을 실시하였다. Each homopolymer (solid weight 30wt¾) is used to The sum was carried out.
각 단일 중합체 30g, EDOT 4.5g, 황산제 2철 (Ferric sulfate) 0.08g, 과황산칼륨 (potassium persulfate) 13.6g 및 탈이온수 1042g을 반웅기에 넣고 상온에서 24hr 교반해 주었다. 이후, 이후 교환 수지인 TriLite SM410250ml로 교반 용액을 2회 교환하여 주었다.  30 g of each homopolymer, EDOT 4.5 g, Ferric sulfate 0.08 g, potassium persulfate 13.6 g, and deionized water 1042 g were added to the reactor and stirred for 24 hours at room temperature. Thereafter, the stirring solution was exchanged twice with 250 ml of TriLite SM410, which is an exchange resin.
그 결과, 고형분이 약 1.24 %인 수분산 전도성 고분자를 얻었다. 이를 75mmx75mm의 글래스 기판에 1000rpm/16sec의 조건에서 코팅 후, 물성 을 측정하여 표 1에 결과를 나타내었다.  As a result, a water-dispersible conductive polymer having a solid content of about 1.24% was obtained. After coating it on a glass substrate of 75mmx75mm at 1000rpm / 16sec condition, the physical properties were measured and the results are shown in Table 1.
【표 11  Table 11
Figure imgf000013_0001
Figure imgf000013_0001
표 1에서 보면, 수분산 전도성 고분자의 면저항 (Simco, ST-4)은 8이 하를 나타내고 유의차가 없었다.  In Table 1, the sheet resistance (Simco, ST-4) of the water-dispersible conductive polymer was 8 or less and there was no significant difference.
[실시예] EXAMPLE
상기 참고예의 방법에 근거하여, 다음의 방법으로 도판트 및 수분산 전도성 고분자를 제조하였다.  Based on the method of the reference example, the dopant and the water-dispersible conductive polymer were prepared by the following method.
실시예 1: 도판트제조  Example 1 Preparation of Dopant
소듐 스티렌술포네이트 (Sodium styrenesulfonate) 31g 및 SVS 7g을 탈이온수 (D.I water) 90g에 완전히 녹인 후, 수용성 개시제인 V-50 0.38g을 넣어, 65°C에서 4hr 동안 반웅하여 중합체 (Polyvinyl sul fonic_co_ styrenesulfonic acid)를 제조하였다. 31 g of sodium styrenesulfonate and 7 g of SVS are completely dissolved in 90 g of DI water, and then 0.38 g of a water-soluble initiator, V-50, is added thereto and reacted at 65 ° C. for 4 hours to form a polymer (Polyvinyl sul fonic_co_ styrenesulfonic). acid) was prepared.
상기 단일 중합체를 무게 질량법에 따라 측정한 결과, 중합율은 98% 이며, 중량평균분자량은 28,000 정도였다. 실시예 2: 도판트제조  The homopolymer was measured according to the weight mass method. The polymerization rate was 98% and the weight average molecular weight was about 28,000. Example 2: Dopant Preparation
소듐 스티렌술포네이트 20.7g 및 25wt% 수용액인 AMPS 17. ¾을 탈이 온수 (D.I water) 90g에 완전히 녹인 후, 수용성 개시제인 V-50 0.38g을 넣 어, 65°C에서 4hr 동안 반웅하여 중합체를 제조하였다. 20.7 g of sodium styrenesulfonate and 25 wt% aqueous solution of AMPS 17.¾ After completely dissolved in 90 g of DI water, 0.38 g of a water-soluble initiator, V-50, was added thereto, and reaction was carried out at 65 ° C. for 4hr to prepare a polymer.
상기 단일 중합체를 무게 질량법에 따라 측정한 결과, 중합율은 98% 이며, 중량평균분자량은 45,000정도였다. 실시예 3: 도판트 제조  The homopolymer was measured according to the weight mass method. The polymerization rate was 98% and the weight average molecular weight was about 45,000. Example 3: Dopant Preparation
소듐 스티렌술포네이트 12.6g, SVS 12.6g 및 AMPS 12.6g을 탈이온수 (D.I water) 90g에 완전히 녹인 후, 수용성 개시제인 V-50 0.38g을 넣어, 65°C에서 4hr 동안 반웅하여 중합체를 제조하였다. After dissolving 12.6 g of sodium styrenesulfonate, 12.6 g of SVS, and 12.6 g of AMPS in 90 g of DI water, 0.38 g of a water-soluble initiator was added thereto, followed by reaction at 65 ° C. for 4hr. .
상기 단일 증합체를 무게 질량법에 따라 측정한 결과, 중합율은 98% 이상이며, 중량평균분자량은 40,000 정도였다. 실시예 4: 도판트 제조  The single polymer was measured according to the weight mass method. The polymerization rate was 98% or more, and the weight average molecular weight was about 40,000. Example 4: Dopant Preparation
소듐 스티렌술포네이트 22.8g, 수용액인 SVS 28.8g을 탈이온수 (D.I water) 68.4g에 완전히 녹인 후, 수용성 개시제인 V-500.38g을 넣어, 65°C 에서 4hr 동안 반웅하여 중합체를 제조하였다. After dissolving 22.8 g of sodium styrenesulfonate and 28.8 g of aqueous solution of SVS in 68.4 g of DI water, V-500.38 g of a water-soluble initiator was added thereto, and the reaction was carried out at 65 ° C. for 4 hours to prepare a polymer.
상기 단일 중합체를 무게 질량법에 따라 측정한 결과, 중합율은 98% 이상이며, 중량평균분자량은 40,000 정도였다. 실시예 5~8: 전도성 고분자제조  As a result of measuring the homopolymer by weight mass method, the polymerization rate was 98% or more, and the weight average molecular weight was about 40,000. Examples 5-8: Conductive Polymer Preparation
도판트로 실시예 1~4의 단일 중합체 30g을 사용하고, EDOT 4.5g, 황 산제 2철 (Ferric sulfate) 0.08g, 과황산칼륨 (potassium per sulfate) 13.6g 및 탈이온수 (D.I water) 1042 g을 반웅기에 넣고 상온에서 24hr 동안 교반하여 수성 분산액을 중합하여 주었다.  30 g of the homopolymer of Examples 1-4 were used as a dopant, 4.5 g of EDOT, 0.08 g of Ferric sulfate, 13.6 g of potassium per sulfate and 1042 g of DI water. The reaction mixture was stirred at room temperature for 24hr to polymerize the aqueous dispersion.
이후, 이온 교환 수지인 TriLite SM410 250ml로 상기 중합이 완료된 수성 분산액을 2회 교환하여 주었다.  Thereafter, 250 ml of TriLite SM410, an ion exchange resin, was exchanged twice with an aqueous dispersion in which the polymerization was completed.
그 결과, 고형분이 약 1.24 ¾인 수분산 전도성 고분자를 얻었다. 이를 75醒 x75讓의 글래스 기판에 1000rpm/16sec의 조건으로 코팅하였다. 비교예 1 As a result, a water-dispersible conductive polymer having a solid content of about 1.24 ¾ was obtained. This was coated on a glass substrate of 75 醒 x75 으로 under the condition of 1000 rpm / 16 sec. Comparative Example 1
18 wt% 수용성 폴리스티렌 술폰산 (Polystyrenesulfonic acid, Sigma-Adrich, Mw: -75,000) 50g, EDOT 4.5g, 황산제 2철 0.08g, 과황산칼륨 13.6g 및 탈이온수 1022g을 반응기에 넣고 상온에서 24hr 동안 교반해주었 다.  50 g of 18 wt% water-soluble polystyrene sulfonic acid (Sigma-Adrich, Mw: -75,000), 4.5 g of EDOT, 0.08 g of ferric sulfate, 13.6 g of potassium persulfate, and 1022 g of deionized water were added to the reactor and stirred for 24 hours at room temperature. I did it.
이후, 이온 교환 수지인 TriLite SM410 250ml로 상기 교반 용액을 2 회 교환하여 주었다.  Thereafter, the stirred solution was exchanged twice with 250 ml of TriLite SM410, an ion exchange resin.
그 결과, 고형분이 약 1.79 %인 수분산 전도성 고분자를 얻었다. 이를 75mm x75腿의 글래스 기판에 1000rpm/16sec의 조건에서 코팅하였다.  As a result, a water dispersion conductive polymer having a solid content of about 1.79% was obtained. It was coated on a glass substrate of 75 mm x 75 mm under conditions of 1000 rpm / 16 sec.
[실험예 1] Experimental Example 1
수분산성 전도성 고분자의 입도 측정  Particle Size Measurement of Water Dispersible Conductive Polymers
실시예 5~7 및 비교예 1의 고분자에 대하여 원심분리 방식의 입도측 정기인 CPS(DC24000, CPS Instrruments, Inc)를 통해 분석하였으며, 그 결과 를 도 1에 나타내었다. 이때 실시예 5는 결측치를 나타낸 것이다.  The polymers of Examples 5 to 7 and Comparative Example 1 were analyzed through CPS (DC24000, CPS Instrruments, Inc), which is a particle size measuring device of centrifugal separation, and the results are shown in FIG. 1. Example 5 shows missing values.
도 1에서 보면, 실시예 및 비교예의 경우 입도에 대한 유의차가 없었 다.  1, in the case of Examples and Comparative Examples there was no significant difference in particle size.
[실험예] Experimental Example
항복전압 (Break down Voltage) 측정  Breakdown Voltage Measurement
실시예 5~8 및 비교예 1의 전도성 고분자 100g을 각각 취해, 반응기 에 넣고 확장제인 에틸렌글리콜 5g 및 도막 평탄제인 Dynol- 607(Airproducts) 0.05g을 넣고 교반하였다. 이후, 직류 전압을 걸 수 있 는 양극 /음극 아연판인 10腿 X 40mm의 플레이트 (Plate)를 상기 교반 용액에 담근 후, 0.2mA의 동일 전류를 흘려주면서, 가변 전압을 0V → 1000V까지 인가하여 용액의 항복전압 (Break down voltage Point, 용액 BVD)를 측정하 였다. 또한 표 2에는 면저항 (Simco, ST-4) , 수분산성 전도성 고분자 중합 율 (무게 중량법), 용액 BVD, 입도에 대한 측정결과를 나타내었다.  100 g of the conductive polymers of Examples 5 to 8 and Comparative Example 1 were taken, respectively, and charged into a reactor, 5 g of ethylene glycol as an expanding agent, and 0.05 g of Dynol-607 (Airproducts) as a coating film flattening agent were stirred. Subsequently, after dipping a 10 腿 X 40 mm plate (Plate), which is a positive / cathode zinc plate capable of applying DC voltage, into the stirring solution, applying a variable voltage from 0 V to 1000 V while flowing the same current of 0.2 mA. Breakdown voltage (Break down voltage Point, solution BVD) was measured. Table 2 also shows the results of the sheet resistance (Simco, ST-4), the water-dispersible conductive polymer polymerization rate (weight gravimetric method), the solution BVD, the particle size.
【표 2] [Table 2]
Figure imgf000016_0001
Figure imgf000016_0001
상기 표 2의 결과를 통해, 본 발명의 실시예의 수분산 전도성 고분자 Through the results of Table 2, the water-dispersible conductive polymer of the embodiment of the present invention
(Polyvinyl sulfonic-co-styrenesulfonic acid도판트 /분산제를 이용한 고분 자)는 비교예 1에 비해, 최대 항복 전압 (Break down voltage)이 30%정도 더 개선되었음을 알 수 있다. (Polyvinyl sulfonic-co-styrenesulfonic acid dopant / polymer using a dispersant) compared to Comparative Example 1, it can be seen that the maximum breakdown voltage (Break down voltage) is improved by about 30%.

Claims

【특허 청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
소듐 스티 렌술포네이트 10 내지 30 중량 % (고형분) ,  Sodium styrenesulfonate 10-30% by weight (solid content),
소듐 비닐술포네이트, 아크릴아미도 메틸프로판 술폰산 및 이들의 흔 합물로 이루어진 군에서 선택된 술폰산계 단량체 5 내지 20 중량 % (고형분) 개시 제 0.5 내지 2 중량 ¾, 및  5-20% by weight of sulfonic acid monomer (solid content) selected from the group consisting of sodium vinylsulfonate, acrylamido methylpropane sulfonic acid and mixtures thereof 0.5-2 weight ¾, and
물 52 내지 84.5 중량 %를 포함하는 조성물을 증합하는 단계를 포함하 Incorporating a composition comprising from 52 to 84.5 weight% of water
_느_ 고체 콘덴서용 고분자의 도판트로 사용하기 위 한 , 하기 화학식 1의 중합체의 제조방법 . Method for preparing a polymer of formula (1) for use as a dopant of a polymer for a solid capacitor.
[화학식 1]  [Formula 1]
Figure imgf000017_0001
Figure imgf000017_0001
(상기 식에서, R은 -S03H, -C0-NH-C(CH3 )2-CH2-S03H 또는 -CH2-S03H 이 며 , Wherein R is -S0 3 H, -C0-NH-C (CH 3 ) 2-CH 2 -S0 3 H or -CH 2 -S0 3 H,
m은 25 내지 500 의 정수이 다)  m is an integer from 25 to 500)
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 술폰산계 단량체는 5 내지 20 중량 %의 소듐 비 닐술포네이트 수용액 , 1 내지 10 중량 %의 아크릴아미도 메틸프로판 술폰산 수용액 및 이들의 흔합물로 이루어진 군에서 선택된 화합물을 포함하는 , 화 학식 1의 중합체의 제조방법 . 【청구항 31 According to claim 1, wherein the sulfonic acid monomer comprises a compound selected from the group consisting of 5 to 20% by weight of sodium vinyl sulfonate aqueous solution, 1 to 10% by weight of acrylamido methylpropane sulfonic acid aqueous solution and mixtures thereof Method for producing a polymer of the formula (1). [Claim 31]
제 1항에 있어서, 개시제는 아조계 수용성 개시제를 사용하는 화학식 1의 중합체의 제조방법 . 【청구항 4】  The method of claim 1, wherein the initiator uses an azo water-soluble initiator. [Claim 4]
제 1항에 있어서, 상기 중합은 40 내지 80°C의 온도에서 3시간 내지 6 시간 동안수행하는, 화학식 1의 중합체의 제조방법 . The method of claim 1, wherein the polymerization is performed at a temperature of 40 to 80 ° C. for 3 to 6 hours.
【청구항 5】 [Claim 5]
제 1항에 있어서, 중량평균분자량이 5,000 내지 100,000인 화학식 1의 중합체의 제조방법 .  The method according to claim 1, wherein the weight average molecular weight is 5,000 to 100,000.
【청구항 6】 [Claim 6]
도판트로서 제 1항에 따른 화학식 1의 중합체, 3,4—에틸렌디옥시티오 펜, 산화제, 환원제 및 물을 포함하는 수성 분산액을 중합하고, 이온 교환 수지를 통해 정제하는 단계를 포함하는,  Polymerizing an aqueous dispersion comprising a polymer of formula 1 according to claim 1, 3,4—ethylenedioxythiophene, an oxidizing agent, a reducing agent and water as a dopant and purifying through an ion exchange resin,
하기 화학식 2로 표시되는 고체 콘덴서용 수분산 전도성 고분자의 제 조방법 . Method for producing a water-dispersible conductive polymer for a solid capacitor represented by the formula (2).
Figure imgf000019_0001
Figure imgf000019_0001
(상기 식에서, R은 -S03H , -C0-NH-C(CH3)2-CH2-S03H 또는 -CH2-S03H 이 며, Wherein R is -S0 3 H, -C0-NH-C (CH 3 ) 2 -CH 2 -S0 3 H or -CH 2 -S0 3 H,
m은 25 내지 500 의 정수이고,  m is an integer from 25 to 500,
n은 3 내지 10의 정수이 다)  n is an integer from 3 to 10)
【청구항 7】 [Claim 7]
제 6항에 있어서, 상기 수성 분산액은  The method of claim 6, wherein the aqueous dispersion is
화학식 1의 중합체 2 내지 10 중량 %, 3, 4-에 틸렌디옥시티오펜 0.5 내 지 2 중량 %, 산화제 0.005 중량 %, 환원제 0.5 내지 2 중량 ¾ 및 물 86 내지 96 중량 %를 포함하는, 고체 콘덴서용 수분산 전도성 고분자의 제조방법 . 【청구항 8】 2 to 10% by weight of the polymer of formula 1, 3, 4- ethylenedioxythiophene 0.5 to 2% by weight, 0.005% by weight of oxidizing agent, 0.5 to 2% by weight reducing agent and 86 to 96% by weight of water, solid capacitor Method for the Preparation of Water Dispersible Conductive Polymers [Claim 8]
제 6항에 있어서,  The method of claim 6,
상기 산화제는 파라를루엔황산철 (III), 벤젠황산철 (III), 메타를루엔 황산철 (III), 트리플로로황산철 (III) 및 황산제 2철 (III)로 이루어진 군에서 선택된 1종 이상을 사용하는 고체 콘덴서용 수분산 전도성 고분자의 제조방 법.  The oxidizing agent is selected from the group consisting of iron paraluene sulfate (III), benzene iron sulfate (III), iron metaluene iron (III), trifluorosulfate (III) and ferric sulfate (III) Method for producing a water-dispersible conductive polymer for solid capacitors using more than one species.
【청구항 9】 [Claim 9]
제 6항에 있어서,  The method of claim 6,
상기 환원제는 과황산칼륨, 과황산나트륨, 과황산암모늄 및 과황산으 로 이루어진 군에서 선택된 1종 이상을 사용하는 고체 콘덴서용 수분산 전 도성 고분자의 제조방법 . 【청구항 10】  The reducing agent is a method for producing a water-dispersible conductive polymer for a solid capacitor using at least one selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate and persulfate. [Claim 10]
게 6항에 있어서, 상기 중합은 5°C 내지 30°C의 은도에서 24시간 내지 72시간 동안 수행하는, 고체 콘덴서용 수분산 전도성 고분자의 제조방법. The method of claim 6, wherein the polymerization is performed for 24 hours to 72 hours at a temperature of 5 ° C to 30 ° C.
PCT/KR2013/009160 2012-11-13 2013-10-14 Method for preparing water dispersive conductive macromolecule for solid condenser WO2014077515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0128055 2012-11-13
KR1020120128055A KR101964200B1 (en) 2012-11-13 2012-11-13 Preparation method of conductive polymer for electrolytic capacitor

Publications (1)

Publication Number Publication Date
WO2014077515A1 true WO2014077515A1 (en) 2014-05-22

Family

ID=50731388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009160 WO2014077515A1 (en) 2012-11-13 2013-10-14 Method for preparing water dispersive conductive macromolecule for solid condenser

Country Status (2)

Country Link
KR (1) KR101964200B1 (en)
WO (1) WO2014077515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220073662A1 (en) * 2020-09-09 2022-03-10 Saudi Arabian Oil Company Sulfonated polymer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006461A (en) * 2001-07-13 2003-01-23 장관식 Solid Electrolyte And Method For Preparing The Same
KR20090120736A (en) * 2008-05-20 2009-11-25 한국생산기술연구원 A method for preparation of water dispersible polythiopene
KR20110119942A (en) * 2010-04-28 2011-11-03 (주) 파루 Manufacturing methods of electrode comprising pedot-pssa cathode and transparent conducting layer of the same to dye-sensitized solar cell electrode
KR20120089107A (en) * 2011-02-01 2012-08-09 삼성전기주식회사 Conductive polymer composition and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689222B2 (en) * 2004-09-22 2011-05-25 信越ポリマー株式会社 Conductive coating film and method for producing the same
TWI480258B (en) * 2008-03-28 2015-04-11 Asahi Kasei Finechem Co Ltd Vinyl sulfonic acid, a polymer thereof and a process for producing the same
JP5491246B2 (en) * 2010-03-25 2014-05-14 Necトーキン株式会社 Conductive polymer and method for producing the same, conductive polymer dispersion, solid electrolytic capacitor and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006461A (en) * 2001-07-13 2003-01-23 장관식 Solid Electrolyte And Method For Preparing The Same
KR20090120736A (en) * 2008-05-20 2009-11-25 한국생산기술연구원 A method for preparation of water dispersible polythiopene
KR20110119942A (en) * 2010-04-28 2011-11-03 (주) 파루 Manufacturing methods of electrode comprising pedot-pssa cathode and transparent conducting layer of the same to dye-sensitized solar cell electrode
KR20120089107A (en) * 2011-02-01 2012-08-09 삼성전기주식회사 Conductive polymer composition and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN D. ET AL.: "SYNTHESIS AND CHARACTERIZATION OF PEDOT DOPED WITH PSS-VS COPOLYMER", NEW CHEMICAL MATERIALS, February 2010 (2010-02-01) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220073662A1 (en) * 2020-09-09 2022-03-10 Saudi Arabian Oil Company Sulfonated polymer
US11820842B2 (en) * 2020-09-09 2023-11-21 Saudi Arabian Oil Company Sulfonated polymer

Also Published As

Publication number Publication date
KR101964200B1 (en) 2019-04-01
KR20140060996A (en) 2014-05-21

Similar Documents

Publication Publication Date Title
KR101813650B1 (en) Electrically conductive polymer composition and method for producing same
Lligadas et al. Ultrafast SET‐LRP of methyl acrylate at 25° C in alcohols
JP5435437B2 (en) COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
JP5435436B2 (en) Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
JP5869881B2 (en) Composite conductive polymer solution and method for producing the same
CN107771351A (en) Solid polymer electrolyte and the electrochemical appliance for including it
EP2238194A1 (en) Method for the production of conductive<i></i>polymers
TW201538531A (en) Polymer compound for a conductive polymer and method for manufacturing same
RU2013147829A (en) NEW POLYVINYL SULPHIC ACID, ITS APPLICATION AND METHOD FOR ITS PREPARATION
Kokubo et al. Anionic polymerization of methyl methacrylate in an ionic liquid
JP7310279B2 (en) Composite composed of polythiophene-polystyrene sulfonic acid copolymer and aqueous dispersion containing same
Tang et al. Synthesis of poly (sodium styrene sulfonate)-b-poly (butyl acrylate) block copolymers via RAFT emulsifier-free emulsion polymerization and their application in PEDOT aqueous dispersions
WO2014077515A1 (en) Method for preparing water dispersive conductive macromolecule for solid condenser
KR101866616B1 (en) Polymer compound for a conductive polymer and method for producing same
KR20090038191A (en) Poly(vinylphosphonic acid) and method for preparing the same
Strehmel et al. Homopolymerization of a highly polar zwitterionic methacrylate in ionic liquids and its copolymerization with a non-polar methacrylate
CN102876201B (en) Electronic component, conductive polymer composition and preparation method thereof
JP6785390B1 (en) Conductive polymer aqueous dispersion, conductive polymer coating film and its manufacturing method
US20150203639A1 (en) Polythiophene star copolymer capable of being self-doped by external stimulus, a method for producing the same, a conductive thin film using the same, and a method for producing the conductive thin film
KR101846617B1 (en) Polymer compound for a conductive polymer and method for producing same
Yilmaz et al. Preparation of electrorheological active ionomers from poly (2‐hydroxyethyl methacrylate)‐co‐poly (4‐vinyl pyridine)
CN103570898B (en) A kind of polymerization of block copolymer
JP5585627B2 (en) ION CONDUCTIVE POLYMER SUBSTANCE, PROCESS FOR PRODUCING THE SAME AND ION CONDUCTIVE POLYMER DERIVATIVE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855131

Country of ref document: EP

Kind code of ref document: A1