WO2014077103A1 - Electromagnetic switch - Google Patents

Electromagnetic switch Download PDF

Info

Publication number
WO2014077103A1
WO2014077103A1 PCT/JP2013/078896 JP2013078896W WO2014077103A1 WO 2014077103 A1 WO2014077103 A1 WO 2014077103A1 JP 2013078896 W JP2013078896 W JP 2013078896W WO 2014077103 A1 WO2014077103 A1 WO 2014077103A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
contact
electromagnetic switch
coil
magnetic field
Prior art date
Application number
PCT/JP2013/078896
Other languages
French (fr)
Japanese (ja)
Inventor
山田 剛司
繁彦 小俣
中里 成紀
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201380059820.1A priority Critical patent/CN104838464B/en
Publication of WO2014077103A1 publication Critical patent/WO2014077103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/44Magnetic coils or windings

Definitions

  • the present invention relates to an electromagnetic switch incorporating a resistor for suppressing current supplied to a starter motor.
  • an electromagnetic switch incorporating a resistor for suppressing a current to be supplied when starting a starting motor is disclosed (see, for example, Patent Document 1).
  • the magnetic field generated by the electromagnetic solenoid may be weak and it may not be possible to close the contacts of the electromagnetic switch disclosed in Patent Document 1 before the starting motor. .
  • the electromagnetic switch according to claim 1 comprises: a resistor for suppressing current flowing from the battery to a starter motor for starting the engine; a sub contact including a fixed contact and a movable contact arranged in parallel to the resistor;
  • a resistor for suppressing current flowing from the battery to a starter motor for starting the engine
  • a sub contact including a fixed contact and a movable contact arranged in parallel to the resistor
  • the resistor is disposed in the magnetic circuit of the solenoid coil and moves the movable contact when current flows.
  • the coil portion is formed in a coil shape surrounding the movable iron core so as to generate a second magnetic field for contacting the fixed contact in the same direction as the first magnetic field.
  • FIG. 5 is an electrical circuit diagram of a starter motor system with an electromagnetic switch connected. It is a figure which shows the shape of the resistor of an electromagnetic switch. It is a time chart at the time of operation of a starter motor system to which an electromagnetic switch in this embodiment is connected. It is a figure which shows the relationship between the suction
  • FIG. 1 is a cross-sectional view of an electromagnetic switch 10 in the present embodiment
  • FIG. 2 is an electrical circuit diagram of a starter motor system 1.
  • the starter motor system 1 includes a motor (starter motor) 2, a pinion 4, a shift lever 5, a main contact 7, a magnet switch 3 and the like.
  • the motor 2 generates the rotational force necessary to start the engine.
  • the pinion 4 transmits its own rotational force to the engine side ring gear 6.
  • the shift lever 5 pushes the pinion 4 in the direction of the ring gear 6 so that the pinion 4 meshes with the ring gear 6.
  • the main contact 7 controls energization of the motor 2 and operation of the shift lever 5.
  • the magnet switch 3 opens and closes the main contact 7 by energization.
  • the electromagnetic switch 10 is inserted in a circuit from the battery 9 to the main contact 7 of the starter motor system 1, and is configured of a resistor 30, a sub contact 20, an electromagnetic solenoid 11, and the like. Resistor 30 suppresses the current flowing from battery 9 to motor 2.
  • Sub contact 20 includes fixed contacts 22a and 22b and movable contact 21 arranged in parallel to resistor 30, and shorts resistor 30 in the closed state to energize motor 2 directly from battery 9. .
  • the electromagnetic solenoid 11 performs opening / closing control of the sub contact 20.
  • the electromagnetic solenoid 11 includes a coil case 18, a solenoid coil 12, a movable iron core 16 surrounded by the solenoid coil 12, a fixed iron core 17 and the like.
  • the coil case 18 has an opening only in the plane intersecting one of the axial directions.
  • the solenoid coil 12 is disposed inside the coil case 18 in a state supported by a bobbin 13 made of resin.
  • the coil case 18, the movable core 16 and the fixed core 17 constitute a magnetic circuit 19.
  • One end of the solenoid coil 12 is connected to an external terminal 14 connected to the controller 8.
  • the other end of the solenoid coil 12 is connected to a fixed core 17.
  • the fixed core 17 is connected to the ground circuit 15 via the coil case 18.
  • the sub contact 20 is disposed on the opposite side to the magnetic circuit 19 with the fixed core 17 interposed therebetween, and is configured by the movable contact 21, the fixed contacts 22 a and 22 b, and the contact case 23.
  • the movable contact 21 moves in synchronization with the movable core 16.
  • the contact case 23 holds the fixed contacts 22a and 22b.
  • the movable contact 21 is held at an initial position in a direction away from the fixed iron core 17 by a contact pressing spring 24.
  • the movable core 16 is held at an initial position in the direction away from the fixed core 17 by the return spring 25.
  • a first magnetic field generated by energization of the solenoid coil 12 from the battery 9 and a second magnetic field generated by the current flowing from the battery 9 to the motor 2 through the resistor 30 are generated in the same direction.
  • the fixed iron core 17 and the movable iron core 16 are magnetized by the first magnetic field and the second magnetic field, and the attractive force for attracting the movable iron core 16 toward the fixed iron core 17 overcomes the spring reaction force of the return spring 25. Therefore, the movable core 16 is sucked toward the fixed core 17.
  • the sub contact 20 When the sub contact 20 is closed, the current flowing from the battery 9 flowing through the resistor 30 to the motor 2 is short-circuited through the sub contact 20, so the suppression of the current flowing from the battery 9 to the motor 2 by the resistor 30 is cancelled. Be done. Thereafter, when the current flowing from the battery 9 to the motor 2 stops and the energization of the solenoid coil 12 is cut off, the movable contact 21 is returned to the initial position by the reaction force of the contact pressing spring 24 and is moved by the reaction force of the return spring 25 As the iron core 16 is returned to the initial position, the sub contact 20 is opened.
  • FIG. 3 shows the shape of the resistor 30 of the electromagnetic switch 10 in the present embodiment.
  • the resistor 30 is disposed in an air gap (space) surrounded by the outer periphery of the solenoid coil 12 and the coil case 18 in the magnetic circuit 19 of the electromagnetic solenoid 11, as shown in FIG.
  • the periphery of the resistor 30 is covered with a tubular insulating member.
  • the air gap and the insulating member constitute an insulating layer.
  • the resistor 30 has a coil portion 31 formed in a coil shape, and surrounds the solenoid coil 12 and the movable core 16 via the insulating layer. Both ends 32a and 32b of the resistor 30 are connected to the fixed contacts 22a and 22b, respectively.
  • the direction of the second magnetic field generated by the current flowing through the coil portion 31 of the resistor 30 when the resistor 30 is energized corresponds to the direction of the first magnetic field generated by the solenoid coil 12.
  • the resistor 30 In order for the amount of heat transfer from the resistor 30 to the coil case 18 to be larger than the amount of heat transfer from the resistor 30 to the solenoid coil 12, the resistor 30 is disposed closer to the coil case 18 in the air gap described above. Ru. By arranging in this manner, the solenoid coil 12 and the parts around it (for example, the bobbin 13) are less susceptible to thermal damage. Further, the sub contact 20 can not be closed, and when the large current for driving the motor 2 is continuously supplied to the resistor 30, the electromagnetic solenoid 11 may become inoperable due to the heat generation of the resistor 30. .
  • the time T R [s] from the start of energization of the resistor 30 to melting and the time for thermal damage that any of the components of the electromagnetic solenoid 11 excluding the resistor 30 become inoperable The resistor 30 is set such that T S [s] satisfies T R ⁇ T S.
  • the material and disconnection of the resistor 30 are performed so that the solenoid 30 is melted and broken before the components around the solenoid coil 12 and the solenoid coil 12 are thermally damaged.
  • the area is set. Even when the resistor 30 is melted and disconnected due to the long-time energization of the resistor 30, the electromagnetic switch 10 holds a circuit other than the resistor 30, and the first generated by the energization of the solenoid coil 12 from the battery 9 It is possible to bring the movable contact 21 into contact with the fixed contacts 22a and 22b by means of a magnetic field of Therefore, since the current from the battery 9 flows to the motor 2 through the closed sub contact 20, it is possible to start the engine.
  • the control device 8 energizes the magnet switch 3 and the main contact 7 is closed.
  • the pinion 4 is pushed out and engaged with the ring gear 6, and energization of the motor 2 from the battery 9 via the resistor 30 is started.
  • the current supplied to the motor 2 is limited by the resistor 30, and the motor 2 starts cranking of the engine while rotating at low speed.
  • the controller 8 After the motor 2 starts to rotate by closing the main contact 7 at time T1, the controller 8 starts energization of the solenoid coil 12 of the electromagnetic switch 10 by the battery 9 at time T2 after a predetermined timing has elapsed.
  • the contact 20 is closed.
  • the sub contact 20 When the sub contact 20 is closed, a circuit in which the resistor 30 is shorted is formed, so that the voltage of the battery 9 is fully applied to the motor 2, and the motor 2 starts cranking of the engine at high speed rotation.
  • the time chart which showed the time change of the switching state of each of the main contact 7 and the sub contact 20 at this time, the voltage of the battery 9, and the electric current which flows into the motor 2 is FIG.
  • the above-mentioned time T1 indicates the time when the main contact of the starter motor system 1 is closed
  • the above-mentioned time T2 indicates the time when the sub contact 20 is closed.
  • the voltage of the battery 9 at time T1 at the time of engine start due to the closing of the main contact of the starter motor system 1 remains at the voltage V1 by suppressing the current to the motor 2 by the resistor 30. That is, the current suppression to the motor 2 by the resistor 30 prevents the voltage drop of the battery 9 to a voltage lower than the voltage V1.
  • the motor 2 is rotating at a low speed
  • the voltage of the battery 9 remains at the voltage V2 by utilizing the counter electromotive voltage generated by the rotation of the motor 2. That is, the counter electromotive voltage generated by the rotation of the motor 2 prevents the voltage drop of the battery 9 to a voltage lower than the voltage V2. Therefore, it is possible to suppress the occurrence of a momentary power failure of the electrical component.
  • FIG. 5 when a voltage is applied to the solenoid coil 12 of the electromagnetic switch 10 to operate the sub contact 20, a suction force that acts on the movable core 16 in a direction toward the fixed core 17 and the movable core 16 are The relationship with the spring reaction force which presses in the direction away from the fixed iron core 17 is shown.
  • the spring reaction force for pressing the movable core 16 away from the fixed core 17 is the combined force of the contact pressure spring 24 and the return spring 25.
  • the return spring 25 always applies a reaction force to the movable core 16.
  • the contact pressure spring 24 starts to bend from the time when the movable contact 21 moving in synchronization with the movable core 16 contacts the fixed contacts 22a and 22b. Therefore, the contact pressure spring 24 acts as a spring that generates a spring reaction force after the sub contact 20 is closed.
  • the suction force on the movable core 16 necessary for closing the sub contact 20 as the movable core 16 is driven and moved is inversely proportional to the amount of gap between the movable core 16 and the fixed core 17. Therefore, the strength of the first magnetic field and the second magnetic field necessary for closing the sub contact 20 as the movable iron core 16 is driven and moved varies with the position of the movable iron core 16. Is the largest when in the initial position.
  • the current from the battery 9 to the motor 2 flows through the resistor 30, so that the largest movable magnetic core 16 is required.
  • the second magnetic field generated by the current flowing through the resistor 30 can be used to generate an attractive force on the movable core 16.
  • the movable core is driven only by the first magnetic field generated by the solenoid coil until the sub contact 20 is closed.
  • the first magnetic field that generates a suction force to the movable iron core 16 is required to be generated by the solenoid coil 12 until the sub contact 20 is closed.
  • the voltage can be lowered. Therefore, the range of the battery voltage in which the sub contact 20 operates can be expanded to the low voltage side, and the reliability of the starter motor system 1 can be improved.
  • the sub contact is closed by the movable iron core being attracted toward the fixed iron core by the magnetic field generated when current flows through the solenoid coil.
  • the suction force that drives the movable core is inversely proportional to the amount of gap between the movable core and the fixed core. Therefore, the strength of the magnetic field required to drive the movable iron in the initial state to close the sub contact is larger than the strength of the magnetic field required to maintain the sub contact in the closed state.
  • the coil specifications of the electromagnetic solenoid depend on the magnitude of the magnetic field that the movable core can attract when the sub contact is open.
  • the resistance value of the solenoid coil is decreased to increase the current flowing through the solenoid coil, thereby increasing the magnetic field generated by the solenoid coil. It is possible to do.
  • the current flowing through the solenoid coil increases, the amount of heat generation increases, which causes problems such as an increase in cost for measures against heat generation and an increase in power consumption.
  • Increasing the number of turns of the solenoid coil can also increase the magnetic field generated by the solenoid coil.
  • the cost increase due to the increase in the amount of material used for the solenoid coil and the increase in size of the electromagnetic solenoid due to the increase in volume (weight increase) of the solenoid coil become problems.
  • the electromagnetic solenoid In the conventional electromagnetic switch, the electromagnetic solenoid generates a magnetic field to open and close the sub contact while the voltage of the battery is lowered by the current flowing from the battery to the motor through the resistor. If the voltage drop of the battery when the motor is energized is large due to deterioration of the battery or the like, the magnetic field generated by the electromagnetic solenoid may be weakened to make it impossible to close the sub contact. In that case, if the state where the current flowing from the battery to the motor continues to be limited by the resistor continues, the start time of the engine becomes long.
  • the electromagnetic switch 10 in the present embodiment includes a resistor 30, a sub contact 20, a solenoid coil 12, and a movable iron core 16.
  • the resistor 30 suppresses the current flowing from the battery 9 to the motor 2 for starting the engine.
  • Sub contact 20 includes fixed contacts 22 a and 22 b and movable contact 21 arranged in parallel to resistor 30.
  • the solenoid coil 12 generates a first magnetic field by energization from the battery 9.
  • the movable core 16 is surrounded by the solenoid coil 12.
  • the resistor 30 has a coil portion 31 and is disposed in the magnetic circuit 19 of the solenoid coil 12.
  • the coil portion 31 of the resistor 30 surrounds the movable core 16 so as to generate a second magnetic field for bringing the movable contact 21 into contact with the fixed contacts 22a and 22b in the same direction as the first magnetic field when current flows. It is formed into a coil shape.
  • the electromagnetic switch 10 allows the resistor 30 built in the electromagnetic switch 10 to start closing the sub contact 20 requiring the largest magnetic field because the electromagnetic solenoid 11 is at the initial position.
  • the second magnetic field generated by the motor current flowing through the magnetic flux can be used as a suction force to the movable core 16. Since the first magnetic field that needs to be generated by the solenoid coil 12 can be small, the minimum operating voltage of the electromagnetic solenoid 11 can be lowered without an increase in weight or cost, and the reliability of the electromagnetic switch 11 at engine startup and Safety can be improved.
  • the attractive force generated on the movable core 16 by the second magnetic field generated by the motor current flowing through the resistor 30 does not exceed the spring reaction force which is the combined force of the contact pressing spring 25 and the return spring 24.
  • the suction force is smaller than the suction force required for the sub contacts 20 to close by contacting the fixed contacts 22a and 22b. That is, the sub contact 20 does not close immediately after the main contact 7 is closed at time T1 and current starts to flow in the resistor 30, but as shown in FIG. 4, the sub contact 20 is closed at time T2 after time T1. Close is preferred.
  • the resistor 30 is set such that the control of the energization from the battery 9 to the solenoid coil 12 by the control device 8 is required for the sub contact 20 to close.
  • the time from the time T1 at which the battery 9 starts energization to the starter motor system 1 to the time T2 at which the energization of the resistor 30 is short-circuited can be arbitrarily set without being affected by the specifications of the resistor 30 It becomes.
  • FIG. 6 shows a modification of the resistor 30.
  • the coil portion 31 included in the resistor 30 generates a suction force to the movable contact 16, and a single ring coil along with the boundary portions 34 a and 34 b between the end portions 32 a and 32 b of the resistor 30 and the coil portion 31. Molded into a shape.
  • the single-ring annular shape of the coil portion 31 is less than 360 degrees by the thickness of each of the tubular end portions 32 a and 32 b of the resistor 30.
  • the resistor 30 is based on the electrical resistivity ⁇ [ ⁇ m] of the resistor 30 determined by the material of the resistor 30, the total length L [m] of the resistor 30, and the cross-sectional area A [m 2 ] of the resistor 30.
  • the equation (2) is set to have the required resistance value R [ ⁇ ] of the resistor 30.
  • R ⁇ ⁇ (L / A) (2)
  • the required resistance value R of the resistor 30 is 10 m ⁇
  • the total length L [m] of the resistor 30 and the cross-sectional area A [m 2 ] of the resistor 30 are determined by the equation (2). In this manner, the material and the cross-sectional area of the resistor 30 are set so that the required resistance value can be obtained in the resistor 30.
  • the end 32 b of the resistor 30 is a multiple of the coil portion 31 of the resistor 30.
  • the annular ring protrudes outside the annular ring including the boundary 34 a between the end 32 a of the resistor 30 and the coil portion 31. That is, the ring including the boundary 34 b between the end 32 b of the resistor 30 and the coil portion 31 is different from the ring including the boundary 34 a.
  • the coil portion 31 of the resistor 30 has one of the end portions 32a and 32b of the resistor 30. There is no need to pass outside or inside the ring shape. Therefore, the outer diameter of the resistor 30 can be reduced, and as a result, the physical size of the electromagnetic switch 10 can be reduced.
  • the suction force acting on the movable core 16 is determined by the product nI of the number of turns n of the coil and the current I.
  • FIG. 7 shows another modified example of the resistor 30.
  • the coil portion 31 of the resistor 30 has a folded portion 33 and has two partial coils before and after the folded portion 33.
  • the directions in which the two partial coils are wound respectively are opposite to each other, and the numbers of coil turns of the two partial coils are different.
  • the strength of the magnetic field generated by each of the two partial coils is proportional to the number of turns of each of the two partial coils. Since the direction of the magnetic field generated by one of the two partial coils is exactly opposite to the direction of the magnetic field generated by the other of the two partial coils, the strength of the magnetic field generated by each of the two partial coils The two cancel each other. By changing the difference in the number of turns of the two partial coils, it is possible to adjust the strength of the second magnetic field without changing the resistance value.

Abstract

The purpose of the present invention is to make it possible to close a contact of an electromagnetic switch at the front stage of a starting motor even when a weak magnetic field is generated by an electromagnetic solenoid. The electromagnetic switch comprises: a resistor for restricting a current flowing from a battery to the starting motor for starting an engine; a sub-contact which includes a fixed contact and a movable contact arranged in parallel with the resistor; a solenoid coil which generates a first magnetic field in response to energization from the battery; and a movable core surrounded by the solenoid coil. The resistor is arranged in a magnetic circuit of the solenoid coil, which includes a coil portion formed in a coil shape to surround the movable core so that, when a current flows in the coil portion, a second magnetic field is generated in the same direction as the first magnetic field to bring the movable contact into contact with the fixed contact.

Description

電磁スイッチElectromagnetic switch
 本発明は、始動電動機への通電電流を抑制するための抵抗体を内蔵した電磁スイッチに関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an electromagnetic switch incorporating a resistor for suppressing current supplied to a starter motor.
 電装品の瞬間的な停電の発生を抑制するために、始動電動機を始動させる際に通電する電流を抑制するための抵抗体を内蔵した電磁スイッチが開示されている(例えば特許文献1参照)。 In order to suppress the occurrence of a momentary power failure of an electrical component, an electromagnetic switch incorporating a resistor for suppressing a current to be supplied when starting a starting motor is disclosed (see, for example, Patent Document 1).
特開2009-224315号公報JP, 2009-224315, A
 発熱量または体積(コイルの巻数)の制限が原因で、電磁ソレノイドによって生じる磁界が弱く、始動電動機(モータ)の前段の特許文献1に開示された電磁スイッチの接点を閉じることができない場合がある。 Due to the limitation of heat generation or volume (number of turns of coil), the magnetic field generated by the electromagnetic solenoid may be weak and it may not be possible to close the contacts of the electromagnetic switch disclosed in Patent Document 1 before the starting motor. .
 請求項1に記載の電磁スイッチは、エンジンを始動させる始動電動機にバッテリから流れる電流を抑制する抵抗体と、抵抗体に対して並列に配置される固定接点及び可動接点を含むサブ接点と、バッテリからの通電によって第1の磁界を生じさせるソレノイドコイルと、ソレノイドコイルに囲まれる可動鉄心とを備える電磁スイッチにおいて、抵抗体は、ソレノイドコイルの磁気回路内に配置され、電流が流れると可動接点を固定接点に接触させるための第2の磁界を第1の磁界と同一の方向に生じさせるように可動鉄心を囲むコイル状に成形されるコイル部を有することを特徴とする。 The electromagnetic switch according to claim 1 comprises: a resistor for suppressing current flowing from the battery to a starter motor for starting the engine; a sub contact including a fixed contact and a movable contact arranged in parallel to the resistor; In an electromagnetic switch comprising a solenoid coil generating a first magnetic field by energization from a coil and a movable core surrounded by the solenoid coil, the resistor is disposed in the magnetic circuit of the solenoid coil and moves the movable contact when current flows. The coil portion is formed in a coil shape surrounding the movable iron core so as to generate a second magnetic field for contacting the fixed contact in the same direction as the first magnetic field.
 本発明によれば、電磁ソレノイドによって生じる磁界が弱い場合であっても、始動電動機(モータ)の前段の電磁スイッチの接点を閉じることができる。 According to the present invention, even when the magnetic field generated by the electromagnetic solenoid is weak, it is possible to close the contact of the electromagnetic switch in the front stage of the starter motor.
電磁スイッチの断面図である。It is a sectional view of an electromagnetic switch. 電磁スイッチが接続された始動電動機システムの電気回路図である。FIG. 5 is an electrical circuit diagram of a starter motor system with an electromagnetic switch connected. 電磁スイッチの抵抗体の形状を示す図である。It is a figure which shows the shape of the resistor of an electromagnetic switch. 本実施の形態における電磁スイッチが接続された始動電動機システムの動作時のタイムチャートである。It is a time chart at the time of operation of a starter motor system to which an electromagnetic switch in this embodiment is connected. 電磁スイッチのサブ接点の動作時の吸引力とバネ反力との関係を示す図である。It is a figure which shows the relationship between the suction | attraction force at the time of operation | movement of the sub contact of an electromagnetic switch, and spring reaction force. 電磁スイッチの抵抗体の形状を示す図である。It is a figure which shows the shape of the resistor of an electromagnetic switch. 電磁スイッチの抵抗体の形状を示す図である。It is a figure which shows the shape of the resistor of an electromagnetic switch.
 以下に本発明の一実施の形態における電磁スイッチについて、図面を用いて詳細を説明する。図1は本実施の形態における電磁スイッチ10の断面図、図2は始動電動機システム1の電気回路図である。始動電動機システム1は、図2に示すように、モータ(始動電動機)2、ピニオン4、シフトレバー5、メイン接点7、及びマグネットスイッチ3等により構成されている。モータ2は、エンジンを始動させるのに必要な回転力を生み出す。ピニオン4は、自らの回転力をエンジン側リングギヤ6へ伝達する。シフトレバー5は、ピニオン4がリングギヤ6と噛み合うようにピニオン4をリングギヤ6方向に押し出す。メイン接点7は、モータ2への通電及びシフトレバー5の動作を制御する。マグネットスイッチ3は、通電によりメイン接点7を開閉する。 The details of the electromagnetic switch according to the embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of an electromagnetic switch 10 in the present embodiment, and FIG. 2 is an electrical circuit diagram of a starter motor system 1. As shown in FIG. 2, the starter motor system 1 includes a motor (starter motor) 2, a pinion 4, a shift lever 5, a main contact 7, a magnet switch 3 and the like. The motor 2 generates the rotational force necessary to start the engine. The pinion 4 transmits its own rotational force to the engine side ring gear 6. The shift lever 5 pushes the pinion 4 in the direction of the ring gear 6 so that the pinion 4 meshes with the ring gear 6. The main contact 7 controls energization of the motor 2 and operation of the shift lever 5. The magnet switch 3 opens and closes the main contact 7 by energization.
 電磁スイッチ10は、バッテリ9から始動電動機システム1のメイン接点7までの回路に挿入され、抵抗体30、サブ接点20、及び電磁ソレノイド11等により構成されている。抵抗体30は、バッテリ9からモータ2に流れる電流を抑制する。サブ接点20は、抵抗体30に対して並列に配置される固定接点22a及び22bと可動接点21とを含み、閉状態のときに抵抗体30を短絡してバッテリ9から直接モータ2に通電する。電磁ソレノイド11は、サブ接点20の開閉制御を行う。 The electromagnetic switch 10 is inserted in a circuit from the battery 9 to the main contact 7 of the starter motor system 1, and is configured of a resistor 30, a sub contact 20, an electromagnetic solenoid 11, and the like. Resistor 30 suppresses the current flowing from battery 9 to motor 2. Sub contact 20 includes fixed contacts 22a and 22b and movable contact 21 arranged in parallel to resistor 30, and shorts resistor 30 in the closed state to energize motor 2 directly from battery 9. . The electromagnetic solenoid 11 performs opening / closing control of the sub contact 20.
 電磁ソレノイド11は、コイルケース18、ソレノイドコイル12、ならびにソレノイドコイル12に囲まれる可動鉄心16及び固定鉄心17等から構成される。コイルケース18は、軸方向の一方に交差する面のみに開口を有する。ソレノイドコイル12は、コイルケース18の内側に樹脂製のボビン13によって支持された状態で配置されている。コイルケース18と、可動鉄心16及び固定鉄心17とが、磁気回路19を構成する。ソレノイドコイル12の一方の端部は、制御装置8と接続された外部端子14と結線される。ソレノイドコイル12のもう一方の端部は固定鉄心17と結線される。固定鉄心17は、コイルケース18を介してアース回路15に接続されている。 The electromagnetic solenoid 11 includes a coil case 18, a solenoid coil 12, a movable iron core 16 surrounded by the solenoid coil 12, a fixed iron core 17 and the like. The coil case 18 has an opening only in the plane intersecting one of the axial directions. The solenoid coil 12 is disposed inside the coil case 18 in a state supported by a bobbin 13 made of resin. The coil case 18, the movable core 16 and the fixed core 17 constitute a magnetic circuit 19. One end of the solenoid coil 12 is connected to an external terminal 14 connected to the controller 8. The other end of the solenoid coil 12 is connected to a fixed core 17. The fixed core 17 is connected to the ground circuit 15 via the coil case 18.
 サブ接点20は、固定鉄心17を挟んで磁気回路19とは反対側に配置され、可動接点21、固定接点22a及び22b、ならびに接点ケース23で構成される。可動接点21は、可動鉄心16と同期して移動する。接点ケース23は、固定接点22a及び22bを保持する。可動接点21は、接点押しバネ24により、固定鉄心17から離れる方向における初期位置に保持されている。可動鉄心16は、戻しバネ25により、固定鉄心17から離れる方向における初期位置に保持されている。 The sub contact 20 is disposed on the opposite side to the magnetic circuit 19 with the fixed core 17 interposed therebetween, and is configured by the movable contact 21, the fixed contacts 22 a and 22 b, and the contact case 23. The movable contact 21 moves in synchronization with the movable core 16. The contact case 23 holds the fixed contacts 22a and 22b. The movable contact 21 is held at an initial position in a direction away from the fixed iron core 17 by a contact pressing spring 24. The movable core 16 is held at an initial position in the direction away from the fixed core 17 by the return spring 25.
 バッテリ9からソレノイドコイル12への通電により生じる第1の磁界と、バッテリ9からモータ2に流れる電流が抵抗体30を流れることにより生じる第2の磁界とが同一方向に生じる。第1の磁界と第2の磁界とによって、固定鉄心17及び可動鉄心16が磁化し、可動鉄心16を固定鉄心17に向かって吸引する吸引力が戻しバネ25のバネ反力に打ち勝つことになるので、可動鉄心16が固定鉄心17に向かって吸引される。可動鉄心16に同期して移動する可動接点21が固定接点22a及び22bに接触することで、サブ接点20が閉じる。サブ接点20が閉じると、抵抗体30を流れていたバッテリ9からモータ2に流れる電流がサブ接点20を介して短絡されるので、抵抗体30によるバッテリ9からモータ2に流れる電流の抑制が解除される。その後、バッテリ9からモータ2に流れる電流が止まるとともに、ソレノイドコイル12への通電が切れると、接点押しバネ24の反力により可動接点21が初期位置に戻され、戻しバネ25の反力により可動鉄心16が初期位置に戻されることで、サブ接点20が開放される。 A first magnetic field generated by energization of the solenoid coil 12 from the battery 9 and a second magnetic field generated by the current flowing from the battery 9 to the motor 2 through the resistor 30 are generated in the same direction. The fixed iron core 17 and the movable iron core 16 are magnetized by the first magnetic field and the second magnetic field, and the attractive force for attracting the movable iron core 16 toward the fixed iron core 17 overcomes the spring reaction force of the return spring 25. Therefore, the movable core 16 is sucked toward the fixed core 17. When the movable contact 21 moving in synchronization with the movable core 16 contacts the fixed contacts 22a and 22b, the sub contact 20 is closed. When the sub contact 20 is closed, the current flowing from the battery 9 flowing through the resistor 30 to the motor 2 is short-circuited through the sub contact 20, so the suppression of the current flowing from the battery 9 to the motor 2 by the resistor 30 is cancelled. Be done. Thereafter, when the current flowing from the battery 9 to the motor 2 stops and the energization of the solenoid coil 12 is cut off, the movable contact 21 is returned to the initial position by the reaction force of the contact pressing spring 24 and is moved by the reaction force of the return spring 25 As the iron core 16 is returned to the initial position, the sub contact 20 is opened.
 図3は本実施の形態における電磁スイッチ10の抵抗体30の形状を示している。抵抗体30は、図1に示すように、電磁ソレノイド11の磁気回路19内の、ソレノイドコイル12の外周とコイルケース18とに囲まれたエアギャップ(空間)に配置される。抵抗体30の周囲は管状の絶縁部材で覆われる。そのエアギャップとその絶縁部材とが絶縁層を構成する。抵抗体30は、コイル状に成形されたコイル部31を有し、その絶縁層を介してソレノイドコイル12及び可動鉄心16を囲む。抵抗体30の両端部32a及び32bはそれぞれ固定接点22a及び22bに接続される。抵抗体30への通電時に抵抗体30のコイル部31を流れる電流によって生じる第2の磁界の方向は、ソレノイドコイル12への通電により生じる第1の磁界の方向と一致する。 FIG. 3 shows the shape of the resistor 30 of the electromagnetic switch 10 in the present embodiment. The resistor 30 is disposed in an air gap (space) surrounded by the outer periphery of the solenoid coil 12 and the coil case 18 in the magnetic circuit 19 of the electromagnetic solenoid 11, as shown in FIG. The periphery of the resistor 30 is covered with a tubular insulating member. The air gap and the insulating member constitute an insulating layer. The resistor 30 has a coil portion 31 formed in a coil shape, and surrounds the solenoid coil 12 and the movable core 16 via the insulating layer. Both ends 32a and 32b of the resistor 30 are connected to the fixed contacts 22a and 22b, respectively. The direction of the second magnetic field generated by the current flowing through the coil portion 31 of the resistor 30 when the resistor 30 is energized corresponds to the direction of the first magnetic field generated by the solenoid coil 12.
 抵抗体30からコイルケース18への伝熱量が、抵抗体30からソレノイドコイル12への伝熱量よりも大きくなるようにするため、抵抗体30は、上述したエアギャップにおいてコイルケース18寄りに配置される。このように配置することによって、ソレノイドコイル12及びその周辺の部品(例えばボビン13)が熱的損傷を受け難くなっている。また、サブ接点20を閉じることが出来ず、モータ2を駆動する大電流が連続的に抵抗体30に通電されたとき、抵抗体30の発熱によって電磁ソレノイド11が動作不能になる可能性がある。これを防止するために、抵抗体30の通電開始から溶断までの時間TR[s]と、抵抗体30を除く電磁ソレノイド11の構成部品のいずれかが動作不能になる熱的損傷を受ける時間TS[s]とが、TR<TSを満たすように、抵抗体30が設定され
ている。平均通電電流I[A]が流れる抵抗体30の、電気抵抗率ρ[Ωm]、体積比熱c[J/(m3K)]、断面積A[m2]、発熱量に占める放熱量の割合を示す放熱率α、通電前の温度θ0[℃]及び溶断温度θR[℃]と、抵抗体30の通電開始から溶断ま
での時間TR[s]とは、式(1)を満たす。
 {ρ×I2×(1-α)/(c×A2)}×TR=θR-θ0        (1)
In order for the amount of heat transfer from the resistor 30 to the coil case 18 to be larger than the amount of heat transfer from the resistor 30 to the solenoid coil 12, the resistor 30 is disposed closer to the coil case 18 in the air gap described above. Ru. By arranging in this manner, the solenoid coil 12 and the parts around it (for example, the bobbin 13) are less susceptible to thermal damage. Further, the sub contact 20 can not be closed, and when the large current for driving the motor 2 is continuously supplied to the resistor 30, the electromagnetic solenoid 11 may become inoperable due to the heat generation of the resistor 30. . In order to prevent this, the time T R [s] from the start of energization of the resistor 30 to melting and the time for thermal damage that any of the components of the electromagnetic solenoid 11 excluding the resistor 30 become inoperable The resistor 30 is set such that T S [s] satisfies T R <T S. The electrical resistivity [[Ω m], the volume specific heat c [J / (m 3 K)], the cross sectional area A [m 2 ], and the amount of heat dissipation in the calorific value of the resistor 30 through which the average current I [A] flows The heat release rate α indicating the ratio, the temperature θ 0 [° C.] before energization, the melting temperature θ R [° C], and the time T R [s] from the start of energization of the resistor 30 to the melting are expressed by Equation (1) Fulfill.
{Ρ × I 2 × (1 -α) / (c × A 2)} × T R = θ R -θ 0 (1)
 一例を説明する。抵抗体30に平均電流I=200[A]が流れ、ソレノイドコイル12周辺の構成部品がTS=5[s]で熱的損傷を受けるものとする。この場合において、抵抗体30を鋼線で構成するときは、抵抗体30の温度が溶断温度θR=1500[℃]に達すると抵抗体30が溶断する。式(1)によると、抵抗体30を構成する鋼線の線径が3.1[mm]であれば、連続通電時に電磁ソレノイド11が動作不能になる前に抵抗体30が溶断し、したがって通電が遮断されるということになる。 An example will be described. Average the resistor 30 the current I = 200 flows [A], component around the solenoid coil 12 is assumed to undergo thermal damage at T S = 5 [s]. In this case, when the resistor 30 is formed of a steel wire, the resistor 30 is melted when the temperature of the resistor 30 reaches the melting temperature θ R = 1500 [° C.]. According to the equation (1), if the wire diameter of the steel wire constituting the resistor 30 is 3.1 [mm], the resistor 30 is melted down before the electromagnetic solenoid 11 becomes inoperable at the time of continuous energization, therefore It means that energization is cut off.
 すなわち、抵抗体30に長時間通電が起きたとしても、ソレノイドコイル12及びソレノイドコイル12周辺の構成部品が熱的損傷を生じる前に抵抗体30が溶断するように、抵抗体30の材質及び断面積が設定されている。抵抗体30への長時間通電により抵抗体30が溶断した場合であっても、電磁スイッチ10は抵抗体30以外の回路を保持しており、バッテリ9からソレノイドコイル12への通電により生じる第1の磁界によって可動接点21を固定接点22a及び22bに接触させることが可能である。したがって、バッテリ9からの電流が、閉じたサブ接点20を介してモータ2に流れるので、エンジン始動を行うことが可能である。 That is, even if the resistor 30 is energized for a long time, the material and disconnection of the resistor 30 are performed so that the solenoid 30 is melted and broken before the components around the solenoid coil 12 and the solenoid coil 12 are thermally damaged. The area is set. Even when the resistor 30 is melted and disconnected due to the long-time energization of the resistor 30, the electromagnetic switch 10 holds a circuit other than the resistor 30, and the first generated by the energization of the solenoid coil 12 from the battery 9 It is possible to bring the movable contact 21 into contact with the fixed contacts 22a and 22b by means of a magnetic field of Therefore, since the current from the battery 9 flows to the motor 2 through the closed sub contact 20, it is possible to start the engine.
 上記構成を有する電磁スイッチ10が接続された始動電動機システム1において、エンジン始動時のモータ2の動作について説明する。エンジン始動要求が発生すると、制御装置8はマグネットスイッチ3に通電を行い、メイン接点7が閉じる。メイン接点7が閉じることで、ピニオン4が押し出されてリングギヤ6に噛み合わされるとともに、バッテリ9から抵抗体30を介してモータ2への通電が開始される。このとき、抵抗体30によりモータ2への通電電流は制限されており、モータ2は低速で回転しながらエンジンのクランキングを開始する。 In the starter motor system 1 to which the electromagnetic switch 10 having the above configuration is connected, an operation of the motor 2 at the time of engine start will be described. When an engine start request is generated, the control device 8 energizes the magnet switch 3 and the main contact 7 is closed. By closing the main contact 7, the pinion 4 is pushed out and engaged with the ring gear 6, and energization of the motor 2 from the battery 9 via the resistor 30 is started. At this time, the current supplied to the motor 2 is limited by the resistor 30, and the motor 2 starts cranking of the engine while rotating at low speed.
 時刻T1においてメイン接点7が閉じることによりモータ2が回転を開始した後、所定のタイミング経過後の時刻T2で制御装置8が電磁スイッチ10のソレノイドコイル12に対するバッテリ9による通電を開始することによりサブ接点20が閉じる。サブ接点20が閉じると、抵抗体30を短絡した回路が形成されるので、バッテリ9の電圧がモータ2へフルに印加され、モータ2は高速回転でエンジンのクランキングを開始する。このときの、メイン接点7及びサブ接点20のそれぞれの開閉状態と、バッテリ9の電圧と、モータ2に流れる電流との時間変化を示したタイムチャートが図4である。 After the motor 2 starts to rotate by closing the main contact 7 at time T1, the controller 8 starts energization of the solenoid coil 12 of the electromagnetic switch 10 by the battery 9 at time T2 after a predetermined timing has elapsed. The contact 20 is closed. When the sub contact 20 is closed, a circuit in which the resistor 30 is shorted is formed, so that the voltage of the battery 9 is fully applied to the motor 2, and the motor 2 starts cranking of the engine at high speed rotation. The time chart which showed the time change of the switching state of each of the main contact 7 and the sub contact 20 at this time, the voltage of the battery 9, and the electric current which flows into the motor 2 is FIG.
 図4に示すように、上述した時刻T1は始動電動機システム1のメイン接点を閉じた時刻を示し、上述した時刻T2はサブ接点20が閉じた時刻を示す。始動電動機システム1のメイン接点が閉じたことによるエンジン始動時の時刻T1におけるバッテリ9の電圧は、抵抗体30によりモータ2への電流を抑制することで電圧V1に留まっている。すなわち、抵抗体30によるモータ2への電流抑制は、電圧V1よりも低い電圧へのバッテリ9の電圧降下を防止している。また、時刻T2ではモータ2は低速で回転しており、バッテリ9の電圧は、モータ2の回転により発生する逆起電圧を利用することで、電圧V2に留まっている。すなわち、モータ2の回転により発生する逆起電圧は、電圧V2よりも低い電圧へのバッテリ9の電圧降下を防止している。そのため、電装品の瞬間的な停電の発生を抑制することができる。 As shown in FIG. 4, the above-mentioned time T1 indicates the time when the main contact of the starter motor system 1 is closed, and the above-mentioned time T2 indicates the time when the sub contact 20 is closed. The voltage of the battery 9 at time T1 at the time of engine start due to the closing of the main contact of the starter motor system 1 remains at the voltage V1 by suppressing the current to the motor 2 by the resistor 30. That is, the current suppression to the motor 2 by the resistor 30 prevents the voltage drop of the battery 9 to a voltage lower than the voltage V1. Further, at time T2, the motor 2 is rotating at a low speed, and the voltage of the battery 9 remains at the voltage V2 by utilizing the counter electromotive voltage generated by the rotation of the motor 2. That is, the counter electromotive voltage generated by the rotation of the motor 2 prevents the voltage drop of the battery 9 to a voltage lower than the voltage V2. Therefore, it is possible to suppress the occurrence of a momentary power failure of the electrical component.
 図5は、電磁スイッチ10のソレノイドコイル12に電圧が印加されて、サブ接点20が動作するときの、可動鉄心16に対して固定鉄心17へ向かう方向に作用する吸引力と、可動鉄心16を固定鉄心17から離れる方向に押し付けるバネ反力との関係を示している。可動鉄心16を固定鉄心17から離れる方向に押し付けるバネ反力は、接点押しバネ24及び戻しバネ25の合力である。戻しバネ25は可動鉄心16に対して常に反力を加えている。接点押しバネ24は、可動鉄心16と同期して移動する可動接点21が固定接点22a及び22bに接触した時点からたわみ始める。したがって、接点押しバネ24は、サブ接点20が閉じてからバネ反力を生じるバネとして作用する。 In FIG. 5, when a voltage is applied to the solenoid coil 12 of the electromagnetic switch 10 to operate the sub contact 20, a suction force that acts on the movable core 16 in a direction toward the fixed core 17 and the movable core 16 are The relationship with the spring reaction force which presses in the direction away from the fixed iron core 17 is shown. The spring reaction force for pressing the movable core 16 away from the fixed core 17 is the combined force of the contact pressure spring 24 and the return spring 25. The return spring 25 always applies a reaction force to the movable core 16. The contact pressure spring 24 starts to bend from the time when the movable contact 21 moving in synchronization with the movable core 16 contacts the fixed contacts 22a and 22b. Therefore, the contact pressure spring 24 acts as a spring that generates a spring reaction force after the sub contact 20 is closed.
 可動鉄心16を駆動して移動させることにともなってサブ接点20が閉じるために必要な、可動鉄心16に対する吸引力は、可動鉄心16と固定鉄心17との間のギャップ量に反比例する。そのため、可動鉄心16を駆動して移動させることにともなってサブ接点20が閉じるために必要な第1の磁界及び第2の磁界の強さは、可動鉄心16の位置によって変化し、可動鉄心16が初期位置にあるときに最も大きくなる。 The suction force on the movable core 16 necessary for closing the sub contact 20 as the movable core 16 is driven and moved is inversely proportional to the amount of gap between the movable core 16 and the fixed core 17. Therefore, the strength of the first magnetic field and the second magnetic field necessary for closing the sub contact 20 as the movable iron core 16 is driven and moved varies with the position of the movable iron core 16. Is the largest when in the initial position.
 可動鉄心16が初期位置からの移動を開始する前には、バッテリ9からモータ2への電流は抵抗体30を介して流れているため、最も大きい磁界の強さを必要とする可動鉄心16の移動開始からサブ接点20が閉じるまでの間、抵抗体30を流れる電流が作る第2の磁界を、可動鉄心16に対する吸引力を生じさせるために利用することができる。サブ接点20が閉じるまでの間、従来の電磁スイッチにおいてはソレノイドコイルが生じさせた第1の磁界のみにより可動鉄心が駆動される。これと比較して、本実施の形態における電磁スイッチにおいては、サブ接点20が閉じるまでの間、可動鉄心16に対して吸引力を生じさせる第1の磁界がソレノイドコイル12によって生じるために必要な電圧を低くすることができる。したがって、サブ接点20が動作するバッテリ電圧の範囲を低電圧側に拡大し、始動電動機システム1の信頼性を向上することができる。 Before the movable core 16 starts to move from the initial position, the current from the battery 9 to the motor 2 flows through the resistor 30, so that the largest movable magnetic core 16 is required. Between the start of movement and the closing of the sub contact 20, the second magnetic field generated by the current flowing through the resistor 30 can be used to generate an attractive force on the movable core 16. In the conventional electromagnetic switch, the movable core is driven only by the first magnetic field generated by the solenoid coil until the sub contact 20 is closed. In contrast to this, in the electromagnetic switch in the present embodiment, the first magnetic field that generates a suction force to the movable iron core 16 is required to be generated by the solenoid coil 12 until the sub contact 20 is closed. The voltage can be lowered. Therefore, the range of the battery voltage in which the sub contact 20 operates can be expanded to the low voltage side, and the reliability of the starter motor system 1 can be improved.
 従来の電磁ソレノイドにおいては、ソレノイドコイルに電流が流れたときに発生する磁界により、可動鉄心が固定鉄心に向かって吸引されることでサブ接点が閉じる。可動鉄心を駆動する吸引力は、可動鉄心と固定鉄心との間のギャップ量に反比例する。そのため、初期状態の可動鉄心を駆動してサブ接点を閉じるために必要な磁界の強さは、サブ接点の閉状態を維持するために必要な磁界の強さより大きい。電磁ソレノイドのコイル仕様は、サブ接点が開状態のときに可動鉄心が吸引可能となる磁界の大きさに依存して決まる。 In the conventional electromagnetic solenoid, the sub contact is closed by the movable iron core being attracted toward the fixed iron core by the magnetic field generated when current flows through the solenoid coil. The suction force that drives the movable core is inversely proportional to the amount of gap between the movable core and the fixed core. Therefore, the strength of the magnetic field required to drive the movable iron in the initial state to close the sub contact is larger than the strength of the magnetic field required to maintain the sub contact in the closed state. The coil specifications of the electromagnetic solenoid depend on the magnitude of the magnetic field that the movable core can attract when the sub contact is open.
 従来の電磁ソレノイドを低電圧で動作させ、電磁スイッチの信頼性を高めるためには、ソレノイドコイルの抵抗値を小さくしてソレノイドコイルを流れる電流を大きくすることで、ソレノイドコイルが生じさせる磁界を大きくすることが考えられる。ソレノイドコイルを流れる電流が増加すると、発熱量が増加し、発熱対策のためのコスト上昇や、消費電力増加などの問題が生じる。ソレノイドコイルの巻数を増やすことでもまた、ソレノイドコイルが生じさせる磁界を大きくすることが出来る。ソレノイドコイルの巻数が増えると、ソレノイドコイルの材料の使用量増加によるコスト上昇や、ソレノイドコイルの体積増加(重量増加)による電磁ソレノイドの体格増大が問題となる。 In order to operate the conventional electromagnetic solenoid at low voltage and improve the reliability of the electromagnetic switch, the resistance value of the solenoid coil is decreased to increase the current flowing through the solenoid coil, thereby increasing the magnetic field generated by the solenoid coil. It is possible to do. When the current flowing through the solenoid coil increases, the amount of heat generation increases, which causes problems such as an increase in cost for measures against heat generation and an increase in power consumption. Increasing the number of turns of the solenoid coil can also increase the magnetic field generated by the solenoid coil. When the number of turns of the solenoid coil is increased, the cost increase due to the increase in the amount of material used for the solenoid coil and the increase in size of the electromagnetic solenoid due to the increase in volume (weight increase) of the solenoid coil become problems.
 従来の電磁スイッチにおいて、電磁ソレノイドは、バッテリから抵抗体を介してモータへ流れる電流によってバッテリが電圧降下した状態で、磁界を生じてサブ接点を開閉する。バッテリの劣化などの原因によりモータ通電時のバッテリの電圧降下が大きいと、電磁ソレノイドが生じる磁界が弱まってサブ接点を閉じることが出来なくなる場合がある。その場合において、バッテリからモータへ流れる電流が抵抗体により制限され続けた状態が継続すると、エンジンの始動時間が長くなってしまう。 In the conventional electromagnetic switch, the electromagnetic solenoid generates a magnetic field to open and close the sub contact while the voltage of the battery is lowered by the current flowing from the battery to the motor through the resistor. If the voltage drop of the battery when the motor is energized is large due to deterioration of the battery or the like, the magnetic field generated by the electromagnetic solenoid may be weakened to make it impossible to close the sub contact. In that case, if the state where the current flowing from the battery to the motor continues to be limited by the resistor continues, the start time of the engine becomes long.
 バッテリの劣化などの原因によりサブ接点を閉じることができない状態においては、従来の電磁スイッチの抵抗体にモータを駆動する大電流が長時間流れると、抵抗体の溶断が生じる場合や、抵抗体周囲の電磁ソレノイドまたはボビン等の部品に熱的損傷が生じる場合がある。このような場合には、バッテリからモータへの通電経路が失われ、エンジンの始動が不可能な状態に陥る可能性がある。 In the state where the sub contact can not be closed due to the deterioration of the battery etc., if a large current for driving the motor flows to the resistor of the conventional electromagnetic switch for a long time, the resistor may be melted or In some cases, thermal damage may occur to components such as electromagnetic solenoids or bobbins. In such a case, there is a possibility that the conduction path from the battery to the motor is lost and the engine can not be started.
 本実施の形態における電磁スイッチ10は、抵抗体30と、サブ接点20と、ソレノイドコイル12と、可動鉄心16とを含む。抵抗体30は、エンジンを始動させるモータ2にバッテリ9から流れる電流を抑制する。サブ接点20は、抵抗体30に対して並列に配置される固定接点22a及び22bならびに可動接点21を含む。ソレノイドコイル12は、バッテリ9からの通電によって第1の磁界を生じさせる。可動鉄心16はソレノイドコイル12に囲まれる。抵抗体30は、コイル部31を有し、ソレノイドコイル12の磁気回路19内に配置される。抵抗体30のコイル部31は、電流が流れると可動接点21を固定接点22a及び22bに接触させるための第2の磁界を第1の磁界と同一の方向に生じさせるように可動鉄心16を囲むコイル状に成形される。 The electromagnetic switch 10 in the present embodiment includes a resistor 30, a sub contact 20, a solenoid coil 12, and a movable iron core 16. The resistor 30 suppresses the current flowing from the battery 9 to the motor 2 for starting the engine. Sub contact 20 includes fixed contacts 22 a and 22 b and movable contact 21 arranged in parallel to resistor 30. The solenoid coil 12 generates a first magnetic field by energization from the battery 9. The movable core 16 is surrounded by the solenoid coil 12. The resistor 30 has a coil portion 31 and is disposed in the magnetic circuit 19 of the solenoid coil 12. The coil portion 31 of the resistor 30 surrounds the movable core 16 so as to generate a second magnetic field for bringing the movable contact 21 into contact with the fixed contacts 22a and 22b in the same direction as the first magnetic field when current flows. It is formed into a coil shape.
 本実施の形態における電磁スイッチ10が上記構成を有することによって、電磁ソレノイド11が初期位置にあるために最も大きな磁界を必要とするサブ接点20の閉動作開始時に、電磁スイッチ10内蔵の抵抗体30を流れるモータ電流によって生じる第2の磁界を可動鉄心16に対する吸引力として利用することができる。ソレノイドコイル12が生じさせる必要がある第1の磁界が小さくてすむため、重量増加やコスト上昇無しに、電磁ソレノイド11の最低動作電圧を低くできて、エンジン始動時における電磁スイッチ11の信頼性及び安全性を向上させることができる。 The electromagnetic switch 10 according to the present embodiment having the above configuration allows the resistor 30 built in the electromagnetic switch 10 to start closing the sub contact 20 requiring the largest magnetic field because the electromagnetic solenoid 11 is at the initial position. The second magnetic field generated by the motor current flowing through the magnetic flux can be used as a suction force to the movable core 16. Since the first magnetic field that needs to be generated by the solenoid coil 12 can be small, the minimum operating voltage of the electromagnetic solenoid 11 can be lowered without an increase in weight or cost, and the reliability of the electromagnetic switch 11 at engine startup and Safety can be improved.
(変形例)
(1) 抵抗体30を流れるモータ電流が生じさせる第2の磁界により可動鉄心16に対して生じる吸引力は、接点押しバネ25及び戻しバネ24の合力であるバネ反力を超えず、可動接点21が固定接点22a及び22bに接触してサブ接点20が閉じるために必要な吸引力より小さいことが好ましい。すなわち、時刻T1にメイン接点7が閉じて抵抗体30に電流が流れ始めると直ちにサブ接点20が閉じるのではなく、図4に示すように、時刻T1よりも後の時刻T2にサブ接点20が閉じることが好ましい。サブ接点20が閉じるためには、制御装置8によるバッテリ9からソレノイドコイル12への通電制御が必要となるように、抵抗体30は設定される。これにより、バッテリ9から始動電動機システム1への通電を開始する時刻T1から抵抗体30への通電を短絡する時刻T2までの時間は、抵抗体30の仕様による影響を受けることなく任意に設定可能となる。
(Modification)
(1) The attractive force generated on the movable core 16 by the second magnetic field generated by the motor current flowing through the resistor 30 does not exceed the spring reaction force which is the combined force of the contact pressing spring 25 and the return spring 24. Preferably, the suction force is smaller than the suction force required for the sub contacts 20 to close by contacting the fixed contacts 22a and 22b. That is, the sub contact 20 does not close immediately after the main contact 7 is closed at time T1 and current starts to flow in the resistor 30, but as shown in FIG. 4, the sub contact 20 is closed at time T2 after time T1. Close is preferred. The resistor 30 is set such that the control of the energization from the battery 9 to the solenoid coil 12 by the control device 8 is required for the sub contact 20 to close. Thus, the time from the time T1 at which the battery 9 starts energization to the starter motor system 1 to the time T2 at which the energization of the resistor 30 is short-circuited can be arbitrarily set without being affected by the specifications of the resistor 30 It becomes.
(2) 図6は抵抗体30の変形例を示している。抵抗体30が有するコイル部31は、可動接点16に対する吸引力を発生させ、抵抗体30の両端部32a及び32bのそれぞれとコイル部31との境界部34a及び34bとともに1重の円環のコイル状に成形される。そのコイル部31が有する1重の円環形状は、抵抗体30の管状の両端部32a及び32bのそれぞれの太さの分だけ360度に満たない。抵抗体30は、抵抗体30の材質によって決まる抵抗体30の電気抵抗率ρ[Ωm]と、抵抗体30の全長L[m]と、抵抗体30の断面積A[m2]とに基づき、式(2)によって、要求される抵抗体30の抵抗値R[Ω]を持つように設定される。
 R=ρ×(L/A)                   (2)
(2) FIG. 6 shows a modification of the resistor 30. The coil portion 31 included in the resistor 30 generates a suction force to the movable contact 16, and a single ring coil along with the boundary portions 34 a and 34 b between the end portions 32 a and 32 b of the resistor 30 and the coil portion 31. Molded into a shape. The single-ring annular shape of the coil portion 31 is less than 360 degrees by the thickness of each of the tubular end portions 32 a and 32 b of the resistor 30. The resistor 30 is based on the electrical resistivity Ω [Ωm] of the resistor 30 determined by the material of the resistor 30, the total length L [m] of the resistor 30, and the cross-sectional area A [m 2 ] of the resistor 30. The equation (2) is set to have the required resistance value R [Ω] of the resistor 30.
R = ρ × (L / A) (2)
 例えば、要求される抵抗体30の抵抗値R=10[mΩ]であって、抵抗体30が鋼線によって構成される場合の電気抵抗率ρ=15.4×10-7[Ωm]であるとき、式(2)によって、抵抗体30の全長L[m]と抵抗体30の断面積A[m2]とが決定される。このようにして、抵抗体30において必要な抵抗値が得られるように、抵抗体30の材質及び断面積が設定されている。 For example, the required resistance value R of the resistor 30 is 10 mΩ, and the electrical resistivity = 1 = 15.4 × 10 −7 Ωm when the resistor 30 is formed of a steel wire. Sometimes, the total length L [m] of the resistor 30 and the cross-sectional area A [m 2 ] of the resistor 30 are determined by the equation (2). In this manner, the material and the cross-sectional area of the resistor 30 are set so that the required resistance value can be obtained in the resistor 30.
 図3に示す抵抗体30においては、抵抗体30の両端部32a及び32bとサブ接点20とを接続するために、抵抗体30の端部32bが、抵抗体30のコイル部31が有する多重の円環のうちの、抵抗体30の端部32aとコイル部31との境界部34aが含まれる円環の、外側にはみ出ている。すなわち、抵抗体30の端部32bとコイル部31との境界部34bが含まれる円環は、境界部34aが含まれる円環とは異なる。図6に示す抵抗体30においては、抵抗体30のコイル部31が有する円環形状は1重なので、抵抗体30の両端部32a及び32bのいずれかを抵抗体30のコイル部31が有する円環形状の外側または内側に通す必要が無い。そのため、抵抗体30の外径を小さくでき、結果として電磁スイッチ10の体格を小さく構成することができる。 In the resistor 30 shown in FIG. 3, in order to connect both end portions 32 a and 32 b of the resistor 30 and the sub contact 20, the end 32 b of the resistor 30 is a multiple of the coil portion 31 of the resistor 30. Of the annular ring, it protrudes outside the annular ring including the boundary 34 a between the end 32 a of the resistor 30 and the coil portion 31. That is, the ring including the boundary 34 b between the end 32 b of the resistor 30 and the coil portion 31 is different from the ring including the boundary 34 a. In the resistor 30 shown in FIG. 6, since the ring shape of the coil portion 31 of the resistor 30 is single, the coil portion 31 of the resistor 30 has one of the end portions 32a and 32b of the resistor 30. There is no need to pass outside or inside the ring shape. Therefore, the outer diameter of the resistor 30 can be reduced, and as a result, the physical size of the electromagnetic switch 10 can be reduced.
 可動鉄心16に働く吸引力は、コイルの巻数nと電流Iとの積nIによって決定される。例えば、ソレノイドコイル12の巻数n=200、かつソレノイドコイル12に通電される電流I=10[A]のとき、可動鉄心16に働く吸引力が戻しバネ25のバネ反力に打ち勝って可動鉄心16が固定鉄心17に向かって移動するものとする。すなわち、ソレノイドコイル12の巻数n=200と電流I=10[A]との積nI=2000のとき、可動鉄心16が固定鉄心17に向かって移動する。抵抗体30には、モータ2の駆動に必要な大電流I=500[A]が流れるものとする。抵抗体30の巻数n=1の場合であっても、抵抗体30の巻数n=1と電流I=500[A]との積nI=500であるから、抵抗体30は、可動鉄心16が固定鉄心17に向かって移動するのに必要なコイルの巻数nと電流Iとの積nI=2000のうちの25%を生成することができる。 The suction force acting on the movable core 16 is determined by the product nI of the number of turns n of the coil and the current I. For example, when the number n of turns of the solenoid coil 12 = 200 and the current I = 10 [A] supplied to the solenoid coil 12, the attraction force acting on the movable iron core 16 overcomes the spring reaction force of the return spring 25 and the movable iron core 16 Move toward the stationary core 17. That is, when the product nI = 2000 of the number of turns n = 200 of the solenoid coil 12 and the current I = 10 [A], the movable core 16 moves toward the fixed core 17. In the resistor 30, a large current I = 500 [A] necessary for driving the motor 2 flows. Since the product nI of the number of turns n = 1 of the resistor 30 and the current I = 500 [A] is nI = 500 even when the number of turns n of the resistor 30 is 1, the movable core 16 of the resistor 30 is It is possible to generate 25% of the product nI = 2000 of the number of coil turns n and the current I necessary to move towards the fixed core 17.
(3) 図7は抵抗体30の他の変形例を示している。抵抗体30のコイル部31は折り返し部33を有するとともに、折り返し部33の前後の2つの部分コイルを有する。それらの2つの部分コイルがそれぞれ巻かれる向きは互いに逆向きであり、それらの2つの部分コイルのそれぞれのコイル巻数は異なる。モータ通電時に抵抗体30のコイル部31を電流が流れることによって、2つの部分コイルのそれぞれが生じさせる磁界の強さは2つの部分コイルのそれぞれの巻数に比例する。2つの部分コイルのうちの一方が生じさせる磁界の向きは、2つの部分コイルのうちの他方が生じさせる磁界の向きとは正反対となるため、2つの部分コイルのそれぞれが生じさせる磁界の強さは互いに打ち消し合う。2つの部分コイルの巻数の差を変化させることによって、抵抗値を変化させずに第2の磁界の強さを調節することができる。 (3) FIG. 7 shows another modified example of the resistor 30. The coil portion 31 of the resistor 30 has a folded portion 33 and has two partial coils before and after the folded portion 33. The directions in which the two partial coils are wound respectively are opposite to each other, and the numbers of coil turns of the two partial coils are different. When a current flows through the coil portion 31 of the resistor 30 when the motor is energized, the strength of the magnetic field generated by each of the two partial coils is proportional to the number of turns of each of the two partial coils. Since the direction of the magnetic field generated by one of the two partial coils is exactly opposite to the direction of the magnetic field generated by the other of the two partial coils, the strength of the magnetic field generated by each of the two partial coils The two cancel each other. By changing the difference in the number of turns of the two partial coils, it is possible to adjust the strength of the second magnetic field without changing the resistance value.
 上述した実施の形態および変形例は、それぞれ組み合わせてもよい。 The above-described embodiment and modifications may be combined with each other.
1:始動電動機システム
2:モータ
3:マグネットスイッチ
4:ピニオン
5:シフトレバー
6:リングギヤ
7:メイン接点
8:制御装置
9:バッテリ
10:電磁スイッチ
11:電磁ソレノイド
12:ソレノイドコイル
13:ボビン
14:外部端子
15:アース回路
16:可動鉄心
17:固定鉄心
18:コイルケース
19:磁気回路
20:サブ接点
21:可動接点
22:固定接点
23:接点ケース
24:接点押しバネ
25:戻しバネ
30:抵抗体
31:コイル部
32:端部
33:折り返し部
34:境界部
1: Start motor system 2: Motor 3: Magnet switch 4: Pinion 5: Shift lever 6: Ring gear 7: Main contact 8: Control device 9: Battery 10: Electromagnetic switch 11: Electromagnetic solenoid 12: Solenoid coil 13: Bobbin 14: External terminal 15: Earth circuit 16: Movable iron core 17: Fixed iron core 18: Coil case 19: Magnetic circuit 20: Sub contact 21: Movable contact 22: Fixed contact 23: Contact case 24: Contact pressing spring 25: Return spring 30: Resistance Body 31: Coil portion 32: End portion 33: Folded portion 34: Boundary portion

Claims (6)

  1.  エンジンを始動させる始動電動機にバッテリから流れる電流を抑制する抵抗体と、
     前記抵抗体に対して並列に配置される固定接点及び可動接点を含むサブ接点と、
     前記バッテリからの通電によって第1の磁界を生じさせるソレノイドコイルと、
     前記ソレノイドコイルに囲まれる可動鉄心とを備える電磁スイッチにおいて、
     前記抵抗体は、前記ソレノイドコイルの磁気回路内に配置され、前記電流が流れると前記可動接点を前記固定接点に接触させるための第2の磁界を前記第1の磁界と同一の方向に生じさせるように前記可動鉄心を囲むコイル状に成形されるコイル部を有することを特徴とする電磁スイッチ。
    A resistor for suppressing the current flowing from the battery to a starter motor for starting the engine;
    A sub contact including a fixed contact and a movable contact arranged in parallel to the resistor;
    A solenoid coil that generates a first magnetic field by energization from the battery;
    An electromagnetic switch comprising: a movable core surrounded by the solenoid coil;
    The resistor is disposed in a magnetic circuit of the solenoid coil, and generates a second magnetic field for bringing the movable contact into contact with the fixed contact in the same direction as the first magnetic field when the current flows. An electromagnetic switch comprising: a coil portion formed in a coil shape surrounding the movable core.
  2.  請求項1に記載の電磁スイッチにおいて、
     前記第2の磁界により前記可動鉄心に対して生じる吸引力は、前記可動接点が前記固定接点に接触するために必要な吸引力より小さいことを特徴とする電磁スイッチ。
    In the electromagnetic switch according to claim 1,
    An electromagnetic switch characterized in that a suction force generated on the movable core by the second magnetic field is smaller than a suction force required for the movable contact to contact the fixed contact.
  3.  請求項2に記載の電磁スイッチにおいて、
     前記ソレノイドコイルの外周に絶縁部材とエアギャップとにより構成される絶縁層をさらに備え、
     前記抵抗体は、前記絶縁層を介し前記ソレノイドコイルを囲むことを特徴とする電磁スイッチ。
    In the electromagnetic switch according to claim 2,
    The solenoid coil further includes an insulating layer formed of an insulating member and an air gap on the outer periphery of the solenoid coil,
    The electromagnetic switch, wherein the resistor surrounds the solenoid coil through the insulating layer.
  4.  請求項3に記載の電磁スイッチにおいて、
     前記抵抗体は、通電時に前記ソレノイドコイル及び前記ソレノイドコイル周辺の部品が熱的損傷を生じる前に溶断するように、材質及び断面積が設定されていることを特徴とする電磁スイッチ。
    In the electromagnetic switch according to claim 3,
    An electromagnetic switch characterized in that a material and a cross-sectional area of the resistor are set so that the solenoid coil and components around the solenoid coil are melted and disconnected before being thermally damaged when energized.
  5.  請求項1~4のいずれか1項に記載の電磁スイッチにおいて、
     前記抵抗体は前記コイル部と端部とを含み、
     前記コイル部は、前記端部と前記コイル部との境界部とともに1重の円環のコイル状に成形されることを特徴とする電磁スイッチ。
    The electromagnetic switch according to any one of claims 1 to 4, wherein
    The resistor includes the coil portion and an end portion,
    An electromagnetic switch characterized in that the coil portion is formed into a single annular coil shape with a boundary portion between the end portion and the coil portion.
  6.  請求項1~4のいずれか1項に記載の電磁スイッチにおいて、
     前記抵抗体は2つの部分コイルを有し、
     前記2つの部分コイルがそれぞれ巻かれる向きは互いに逆向きであり、
     前記第2の磁界の強さは、前記2つの部分コイルの巻数の差に応じて定まることを特徴とする電磁スイッチ。
    The electromagnetic switch according to any one of claims 1 to 4, wherein
    The resistor has two partial coils,
    The directions in which the two partial coils are respectively wound are opposite to each other,
    An intensity of the second magnetic field is determined according to a difference in the number of turns of the two partial coils.
PCT/JP2013/078896 2012-11-16 2013-10-25 Electromagnetic switch WO2014077103A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380059820.1A CN104838464B (en) 2012-11-16 2013-10-25 Electromagnetic switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012252183A JP6057677B2 (en) 2012-11-16 2012-11-16 Electromagnetic switch
JP2012-252183 2012-11-16

Publications (1)

Publication Number Publication Date
WO2014077103A1 true WO2014077103A1 (en) 2014-05-22

Family

ID=50731021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078896 WO2014077103A1 (en) 2012-11-16 2013-10-25 Electromagnetic switch

Country Status (3)

Country Link
JP (1) JP6057677B2 (en)
CN (1) CN104838464B (en)
WO (1) WO2014077103A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072851B (en) * 2016-04-26 2020-10-27 三菱电机株式会社 Electromagnetic switch device for starter
CN109686603A (en) * 2018-12-29 2019-04-26 广东机电职业技术学院 A kind of electronic arc eliminating automobile electromagnetic switch
CN111792393A (en) * 2020-07-10 2020-10-20 郑川田 Iron and steel smelting ore feeding equipment protection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4719522Y1 (en) * 1968-11-18 1972-07-03
JP2001349250A (en) * 2000-03-31 2001-12-21 Siemens Automotive Corp Fuel injector and method for realizing high speed closing time in dual coil type fuel injector
JP2010225596A (en) * 2008-02-20 2010-10-07 Denso Corp Electromagnetic switch
JP2011523761A (en) * 2008-05-30 2011-08-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Meshing relay for starter of internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201196125Y (en) * 2008-05-19 2009-02-18 姚立亚 Vehicle starter with low-speed tooth-entering mechanism
JP4757325B2 (en) * 2009-04-28 2011-08-24 三菱電機株式会社 Auxiliary rotary starter electromagnetic switch
JP5569349B2 (en) * 2009-12-11 2014-08-13 株式会社デンソー Electromagnetic relay
CN102777305B (en) * 2012-06-25 2015-05-13 北京佩特来电器有限公司 Auxiliary engaged drive starter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4719522Y1 (en) * 1968-11-18 1972-07-03
JP2001349250A (en) * 2000-03-31 2001-12-21 Siemens Automotive Corp Fuel injector and method for realizing high speed closing time in dual coil type fuel injector
JP2010225596A (en) * 2008-02-20 2010-10-07 Denso Corp Electromagnetic switch
JP2011523761A (en) * 2008-05-30 2011-08-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Meshing relay for starter of internal combustion engine

Also Published As

Publication number Publication date
CN104838464B (en) 2017-03-22
JP2014102887A (en) 2014-06-05
JP6057677B2 (en) 2017-01-11
CN104838464A (en) 2015-08-12

Similar Documents

Publication Publication Date Title
US8492916B2 (en) Switching apparatus for starter
US9206781B2 (en) Auxiliary mesh type starter
CN102640251B (en) Electromagnetic relay
CN101877292B (en) Electromagnetic switch for auxiliary-rotation starter
JP2006266101A (en) Electromagnetic switch for starter
JP2009224315A (en) Solenoid switch
JP5949650B2 (en) Starter
WO2012040072A1 (en) Starter solenoid with rectangular coil winding
EP2619887A1 (en) Starter motor assembly with soft start solenoid
JP2010225596A (en) Electromagnetic switch
JP4367401B2 (en) Starter
US9938950B2 (en) Engine starting apparatus
WO2014077103A1 (en) Electromagnetic switch
JPWO2019102518A1 (en) Electromagnetic switch device for starter
US7414327B2 (en) Starter
US20170370341A1 (en) Motor vehicle starter provided with a thermal protection system
CN109599299B (en) Electromagnetic switch device for starter and starter
JP4075750B2 (en) Starter
JP2005163737A (en) Auxiliary rotation type starter
CN107869416B (en) Auxiliary meshing type starter
JP2012077695A (en) Engine starter and short-circuiting switch
JP6363052B2 (en) Engine starter
JP6341133B2 (en) Starter
JP2014044861A (en) Electromagnetic relay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855056

Country of ref document: EP

Kind code of ref document: A1