WO2014077024A1 - Image processing device, image processing method and image processing program - Google Patents

Image processing device, image processing method and image processing program Download PDF

Info

Publication number
WO2014077024A1
WO2014077024A1 PCT/JP2013/074972 JP2013074972W WO2014077024A1 WO 2014077024 A1 WO2014077024 A1 WO 2014077024A1 JP 2013074972 W JP2013074972 W JP 2013074972W WO 2014077024 A1 WO2014077024 A1 WO 2014077024A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
resolution
processing
super
input image
Prior art date
Application number
PCT/JP2013/074972
Other languages
French (fr)
Japanese (ja)
Inventor
基広 浅野
高山 淳
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014546897A priority Critical patent/JPWO2014077024A1/en
Publication of WO2014077024A1 publication Critical patent/WO2014077024A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4053Super resolution, i.e. output image resolution higher than sensor resolution

Definitions

  • the present invention relates to an image processing apparatus, an image processing method, and an image processing program, and more particularly, to an image processing apparatus, an image processing method, and an image processing program for performing processing for improving resolution.
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-171843 extracts a high-frequency component of an input low-quality image to be restored and generates a high-frequency low-quality image when generating a high-quality image from the low-quality image. Disclosure of technology to increase the processing speed of interpolation processing by generating an image and partially determining whether or not to execute interpolation calculation processing for interpolating ultra-high frequency components and switching to execute interpolation calculation processing is doing.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-108161 acquires a plurality of low-resolution images as a device for acquiring high-resolution images, and generates a high-resolution image based on at least a part thereof.
  • a high-resolution image generating means for performing the high-resolution processing a setting means capable of setting the resolution enlargement ratio and the number of low-resolution images to be subjected to the high-resolution processing, and the generated high-resolution image And determining means for determining whether or not at least one of the enlargement ratio and the number of sheets needs to be changed, and determining that at least one of the enlargement ratio and the number of sheets needs to be changed,
  • An image processing apparatus capable of acquiring a high-resolution image having a target image quality while shortening the processing time by including a control unit that controls the setting unit so as to change at least one of them. It discloses.
  • Patent Document 3 Japanese Patent Laid-Open No. 2007-305113 (hereinafter referred to as Patent Document 3) is an image processing apparatus that generates a high resolution image using a representative image having a low resolution and a plurality of reference images, while switching the reference image. Repeated the alignment process, repeated the update process to update the pixel estimation value of the high-resolution image to be obtained, determined the pixels satisfying the end condition from the result of the alignment process or update process, and determined to satisfy the end condition An image processing apparatus that can reduce the amount of calculation without degrading the image quality after super-resolution by excluding pixels from the alignment process or the update process is disclosed.
  • the present invention has been made in view of such problems, and an object thereof is to provide an image processing apparatus, an image processing method, and an image processing program capable of speeding up a process for generating a high-resolution image.
  • an image processing apparatus executes a process of outputting a high-resolution image having more frequency information than an input image as an output image from a multi-viewpoint input image group.
  • An image processing apparatus that divides an input image to set partial areas, calculates a similarity between corresponding partial areas for a plurality of input images, and performs super solution for each partial area based on the similarity.
  • Determination means for determining whether image processing is necessary, first processing means for performing super-resolution processing on a partial area of the input image that is determined to be subjected to super-resolution processing in the determination means, Second processing means for executing processing for converting the resolution of the partial area of the input image determined not to be subjected to the super-resolution processing into the resolution of the output image.
  • the determination unit uses at least one of the density, the color value, and the sharpness of the partial region for calculating the similarity.
  • the determination unit calculates the similarity by performing template matching.
  • the second processing unit synthesizes partial areas of the plurality of input images that are determined not to be subjected to super-resolution processing.
  • the second processing means uses the partial area of one input image in the input image group as the partial area determined not to perform the super-resolution processing.
  • the determination unit determines whether or not the super-resolution processing for the partial area is necessary for each specific pixel of the partial area.
  • the input image is a color image composed of a plurality of color channels
  • the determination unit determines whether or not super-resolution processing is necessary for one of the plurality of color channels.
  • the input image is a color image composed of a plurality of color channels
  • the determination unit determines whether or not super-resolution processing is necessary for an image converted from the plurality of color channels to one channel.
  • the determination unit determines whether or not the super-resolution processing is necessary using an image obtained by reducing the input image.
  • the determination unit selects a prescribed number from the input image group and divides each of the selected input images to set a partial region.
  • the input image group is temporally continuous, and the determination unit selects the input image for each specific image in the order of continuous.
  • an image processing method is a method for generating, as an output image, a high-resolution image having more frequency information than an input image from a multi-viewpoint input image group.
  • a step of setting a region, a step of calculating a similarity between corresponding partial regions for a plurality of input images, a step of determining whether or not super-resolution processing is necessary for each partial region based on the similarity, and an input The step of executing the super-resolution processing on the partial area determined to perform the super-resolution processing of the image, and the resolution of the partial area of the input image that is determined not to perform the super-resolution processing, And a step of executing a process of converting to resolution.
  • an image processing program is a program for causing a computer to execute processing for generating, as an output image, a high-resolution image having more frequency information than an input image from a multi-viewpoint input image group.
  • a step of determining NO a step of executing super-resolution processing on a partial area of the input image determined to perform super-resolution processing, and a portion of the input image determined not to perform super-resolution processing And causing the computer to execute a process of converting the resolution of the region into the resolution of the output image.
  • a process for generating a high resolution image including a super-resolution process such as a refocus process, it is possible to speed up the process without degrading the image quality.
  • FIG. 1 is a block diagram illustrating a basic configuration of an image processing apparatus according to an embodiment. It is a block diagram which shows the structure of the digital camera which actualized the image processing apparatus. It is a block diagram which shows the structure of the personal computer which actualized the image processing apparatus. It is a figure showing the specific example of arrangement
  • FIG. 7 is a diagram illustrating a part of an input image from the camera when the subject in FIG. 6 is captured by the camera. It is a figure showing operation
  • step # 11 of FIG. It is a figure showing operation
  • FIG. 1 is a block diagram showing a basic configuration of an image processing apparatus 1 according to the present embodiment.
  • the image processing apparatus 1 includes an imaging unit 2, an image processing unit 3, and an image output unit 4.
  • the image capturing unit 2 captures an image of a subject to acquire an image (hereinafter also referred to as “input image”), and the image processing unit 3 performs an operation on the acquired input image.
  • input image an image
  • the image processing unit 3 performs an operation on the acquired input image.
  • a high-resolution output image (hereinafter also referred to as “high-resolution image”) having more frequency information than the input image is generated.
  • the image output unit 4 outputs this high resolution image to a display device or the like.
  • the imaging unit 2 captures an object (subject) and generates an input image. More specifically, the imaging unit 2 includes a camera 22 and an A / D (Analog to Digital) conversion unit 24 connected to the camera 22. The A / D converter 24 outputs an input image indicating the subject imaged by the camera 22.
  • a / D Analog to Digital
  • the camera 22 is an optical system for imaging a subject, and is an array camera.
  • the camera 22 uses N lenses 22a-1 to 22a-n (which are also referred to as lenses 22a, which are different from each other) arranged in a lattice shape, and the light collected by the lenses 22a is electrically And an image sensor 22b which is a device for converting the signal.
  • the A / D converter 24 converts a video signal (analog electrical signal) indicating a subject output from the image sensor 22b into a digital signal and outputs the digital signal.
  • the imaging unit 2 may further include a control processing circuit for controlling each part.
  • the image processing unit 3 generates a high-resolution image by performing the image processing method according to the present embodiment on the input image acquired by the imaging unit 2. More specifically, the image processing unit 3 includes a refocus processing unit 32, a super-resolution preprocessing unit 34, a super-resolution processing unit 36, and an image composition unit 38.
  • the refocus processing unit 32 executes refocus processing described later on a plurality of input images from the camera 22.
  • the super-resolution processing unit 36 performs super-resolution processing described later on the input image during the refocus processing.
  • the super-resolution processing is processing for generating frequency information that exceeds the Nyquist frequency of the input image.
  • the super-resolution pre-processing unit 34 performs pre-processing including determination processing to be described later, and distinguishes a target area for super-resolution processing and a non-target area in the input image.
  • the super-resolution preprocessing unit 34 includes a determination unit 341 for performing the determination process.
  • the image synthesis unit 38 performs a process of synthesizing an input image or an area of the input image where super-resolution processing is not performed.
  • the image output unit 4 outputs the high resolution image generated by the image processing unit 3 to a display device or the like.
  • the image processing apparatus 1 shown in FIG. 1 can be configured as a system in which each unit is embodied as an independent apparatus.
  • the image processing apparatus 1 may be embodied as a digital camera or a personal computer described below. Many. Therefore, as an implementation example of the image processing apparatus 1 according to the present embodiment, an implementation example with a digital camera and an implementation example with a PC (personal computer) will be described.
  • FIG. 2 is a block diagram showing a configuration of a digital camera 100 that embodies the image processing apparatus 1 shown in FIG. 2, components corresponding to the respective blocks constituting the image processing apparatus 1 shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1.
  • a digital camera 100 includes a CPU (Central Processing Unit) 102, a digital processing circuit 104, an image display unit 108, a card interface (I / F) 110, a storage unit 112, and a camera unit. 114.
  • CPU Central Processing Unit
  • I / F card interface
  • the CPU 102 controls the entire digital camera 100 by executing a program stored in advance.
  • the digital processing circuit 104 executes various digital processes including image processing according to the present embodiment.
  • the digital processing circuit 104 is typically configured by a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an LSI (Large Scale Integration), an FPGA (Field-Programmable Gate Array), or the like.
  • the digital processing circuit 104 includes an image processing circuit 106 for realizing the functions provided by the image processing unit 3 shown in FIG.
  • the image display unit 108 includes an input image provided by the camera unit 114, an output image generated by the digital processing circuit 104 (image processing circuit 106), various setting information related to the digital camera 100, and a control GUI (Graphical User Interface) screen is displayed.
  • GUI Graphic User Interface
  • the card interface (I / F) 110 is an interface for writing image data generated by the image processing circuit 106 to the storage unit 112 or reading image data or the like from the storage unit 112.
  • the storage unit 112 is a storage device that stores image data generated by the image processing circuit 106 and various types of information (setting values such as control parameters and operation modes of the digital camera 100).
  • the storage unit 112 includes a flash memory, an optical disk, a magnetic disk, and the like, and stores data in a nonvolatile manner.
  • the camera unit 114 generates an input image by imaging a subject.
  • a digital camera 100 shown in FIG. 2 is obtained by mounting the entire image processing apparatus 1 according to the present embodiment as a single apparatus. That is, the user can visually recognize a high-resolution image on the image display unit 108 by imaging the subject using the digital camera 100.
  • FIG. 3 is a block diagram showing a configuration of a personal computer 200 that embodies the image processing apparatus 1 shown in FIG.
  • the imaging unit 2 for acquiring an input image is not mounted, and an input image acquired by an arbitrary imaging unit 2 is input from the outside. Even such a configuration can be included in the image processing apparatus 1 according to the embodiment of the present invention.
  • components corresponding to blocks constituting the image processing apparatus 1 shown in FIG. 1 are denoted by the same reference numerals as those in FIG.
  • the personal computer 200 includes a personal computer main body 202, a monitor 206, a mouse 208, a keyboard 210, and an external storage device 212.
  • the personal computer main body 202 is typically a general-purpose computer according to a general-purpose architecture, and includes a CPU, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like as basic components.
  • the personal computer main body 202 can execute an image processing program 204 for realizing a function provided by the image processing unit 3 shown in FIG.
  • Such an image processing program 204 is stored and distributed in a storage medium such as a CD-ROM (Compact Disk-Read Only Memory) or distributed from a server device via a network.
  • the image processing program 204 is stored in a storage area such as a hard disk of the personal computer main body 202.
  • Such an image processing program 204 implements processing by calling necessary modules among program modules provided as part of an operating system (OS) executed by the personal computer main body 202 at a predetermined timing and order. It may be configured as follows. In this case, the image processing program 204 itself does not include a module provided by the OS, and image processing is realized in cooperation with the OS. Further, the image processing program 204 may be provided by being incorporated in a part of some program instead of a single program. Even in such a case, the image processing program 204 itself does not include a module that is commonly used in the program, and image processing is realized in cooperation with the program. Even such an image processing program 204 that does not include some modules does not depart from the spirit of the image processing apparatus 1 according to the present embodiment.
  • OS operating system
  • image processing program 204 may be realized by dedicated hardware.
  • the monitor 206 displays a GUI screen provided by an operating system (OS), an image generated by the image processing program 204, and the like.
  • OS operating system
  • the mouse 208 and the keyboard 210 each accept a user operation and output the contents of the accepted user operation to the personal computer main body 202.
  • the external storage device 212 stores an input image acquired by some method, and outputs this input image to the personal computer main body 202.
  • a device that stores data in a nonvolatile manner such as a flash memory, an optical disk, or a magnetic disk is used.
  • a personal computer 200 shown in FIG. 3 is obtained by mounting a part of the image processing apparatus 1 according to the present embodiment as a single apparatus.
  • the image processing apparatus 1 obtains a high-resolution image by performing refocus processing on a plurality of input images at different viewpoints obtained by photographing with the camera 22 that is an array camera. At this time, the image processing apparatus 1 includes a region where super-resolution processing is performed for an in-focus region in a high-resolution image (image with a large number of pixels) after refocus processing, and a region which is not performed for an out-of-focus region. By distinguishing, super-resolution processing is performed at high speed.
  • Refocus processing 1 As a first example of refocusing, first refocusing processing will be described.
  • the first refocus processing does not include super-resolution processing.
  • FIG. 4 is a diagram showing a specific example of the arrangement of the lenses 22 a included in the camera 22.
  • the camera 22 is an array camera including 16 lenses 22a-1 to 22a-16 (lenses A to P) arranged in a grid pattern.
  • the intervals (base line lengths) between the lenses A to P in FIG. 4 are uniform in both the vertical and horizontal directions.
  • FIG. 5 is a diagram showing the flow of the first refocus processing.
  • each of the 16 input images obtained from the camera 22 of FIG. 4 has a length proportional to the baseline length from the reference image of the input images. Are moved in parallel (step # 11), and these are combined (step # 12), and the combined image is output. Since the first refocus processing does not include super-resolution processing, the resolution of the input image is equal to the resolution of the output image.
  • FIG. 6 is a diagram showing a specific example of the shooting situation.
  • one first subject (apple) arranged at a position near the camera 22 on the front surface (Z direction) of the camera 22 and a position far from the camera 22 and the camera 22.
  • two second subjects (mandarin oranges) of the same type arranged at the same distance from the camera are photographed by the camera 22.
  • FIG. 7 is an input image from the camera 22 when the subject of FIG. 6 is photographed by the camera 22, and among the 16 lenses A to P, the lens A, which is an array of 3 vertical and horizontal grids.
  • B, C, E, F, G, I, J, and K are diagrams representing input images.
  • Input images A, B, C, E, F, G, I, J, and K represent that they are input images from lenses A, B, C, E, F, G, I, J, and K, respectively.
  • Lenses A, B, C, lenses E, F, G, and lenses I, J, K are arranged at equal intervals in that order in the X direction in the positional relationship with the subject in FIG.
  • the lenses B, F, J and the lenses C, G, K are arranged at equal intervals in the Y direction in that order.
  • the position of the image of the apple that is the first subject in the input image is -X from the reference position by the distance c in the order of lens arrangement in the input image from the lens arranged in the X direction. Deviation in direction. In the input image from the lens arranged in the Y direction, the distance d is shifted from the reference position in the ⁇ Y direction by the distance d in the lens arrangement order.
  • the position of the second mandarin orange image in the input image is shifted from the reference position in the ⁇ X direction by a distance a in the order of lens arrangement in the input image from the lens arranged in the X direction.
  • the distance b is shifted from the reference position in the ⁇ Y direction by the distance b in the lens arrangement order.
  • the input image is translated in step # 11 so that the position of the mandarin orange in each input image is matched.
  • FIG. 8 is a diagram showing the operation in Step # 11 when the focus target is the orange that is the second subject.
  • the moving distance of input image B is (a, 0)
  • the moving distance of input image C is such that the base line length from input image A as a reference is twice that of input image B. Therefore, (2a, 0) is obtained. Thereafter, the other input images are moved by the movement distance obtained in the same manner.
  • All input images are translated by a length proportional to the baseline length from the reference input image, and then synthesized in step # 12. Specifically, an average value of 16 pixel values is output for each pixel.
  • FIG. 9 shows a composite image of the input image group in FIG.
  • the mandarin oranges are translated and matched so as to match the positions of the mandarin oranges as described above, the mandarin oranges are in focus in the synthesized image, but the apples are positioned in the input images (disparity). ) Is different, the focus is blurred. That is, in the first refocus processing, as the number of input images with different viewpoints increases, a subject whose position does not match in each input image appears to be naturally blurred.
  • the input image is translated in step # 11 so that the position of the apple in each input image matches.
  • FIG. 10 is a diagram showing the operation in step # 11 when the focus target is the first object, phosphorus.
  • the moving distance of input image B is (c, 0)
  • the moving distance of input image C is such that the base line length from input image A as a reference is twice that of input image B. Therefore, (2c, 0) is obtained. Thereafter, the other input images are moved by the movement distance obtained in the same manner.
  • the position of the apple in each input image matches the position in the reference input image A as shown in FIG.
  • the position of the mandarin orange is different for all input images.
  • FIG. 11 shows a composite image of the input image group in FIG.
  • the apples are synthesized after being translated so as to match the positions of the apples as described above, the apples are in focus in the synthesized image, but the oranges are in the positions (parallaxes) in each input image. ) Is different, the focus is blurred.
  • FIG. 12 is a diagram illustrating a composite image when the input image group of FIG. 7 is combined without performing the process of step # 11.
  • the apple in this case, neither the apple nor the orange is in focus in the composite image.
  • the orange since the orange is farther from the camera 22 than the apple, the orange has a smaller parallax than the apple. For this reason, in FIG. 12, the degree of apples is greater than the degree of oranges.
  • the second refocus process includes a super-resolution process.
  • FIG. 13 is a diagram showing the flow of the second refocusing process.
  • Resolution processing is performed (step # 22). Since the second refocus processing includes super-resolution processing, the resolution of the output image becomes higher than the resolution of the input image.
  • the output image may have a resolution of 3200 ⁇ 2400 pixels.
  • step # 21 in the second refocusing process, as described later in the super-resolution process, a process for improving the resolution is performed using information on sub-pixels (decimal pixels). Integer pixels are translated. For example, assuming that the movement amount (a, 0) is (15.25, 0) in the input image B of FIG. 7, in step # 21, 15 pixels are translated in parallel, and the remaining 0.25 pixels will be described later. This is used as a part of deterioration information in super-resolution (FIGS. 16 and 17).
  • FIG. 14 is a diagram showing the flow of super-resolution processing in step # 22.
  • the super processing when the processing described in the paper “Fast and Robust Multiframe Super Resolution” (IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004 page.1327-1344) is performed. The flow of resolution processing is shown.
  • one of the input images is subjected to an interpolation process such as a bilinear method to convert the resolution of the input image to a high resolution that is the resolution after the super-resolution process.
  • an output candidate image as an initial image is generated.
  • step # 32 a BTV (Bilateral Total Variation) amount for robust convergence to noise is calculated.
  • step # 33 the generated output candidate images are compared with the 16 input images, and a residual is calculated.
  • FIG. 15 is a diagram showing details of the process in step # 33. That is, referring to FIG. 15, in step # 33, the generated output candidate image includes each input image and its deterioration information (information indicating the relationship between the super-resolution image and the input image). Is converted into an input image size (reduction in resolution) based on (# 41), and the difference from the 16 input images is calculated and recorded (# 42). Then, the difference is returned to the size after the super-resolution processing (# 43) to be a residual.
  • step # 34 the residual and the BTV amount calculated from the output candidate image generated in step # 31 are reduced, and the next output candidate image is generated.
  • steps # 31 to # 34 are repeated until the output candidate image converges, and the converged output candidate image is output as an output image after the super-resolution processing.
  • the number of iterations may be a predetermined number of times such as the number of times of convergence (for example, 200 times), or a convergence determination may be made for each series of processing, and may be repeated according to the result. .
  • FIG. 16 is a diagram for explaining the deterioration information used in step # 41.
  • Deterioration information refers to information representing the relationship of each input image with respect to a high-resolution image after super-resolution processing, and is represented, for example, in a matrix format.
  • the deterioration information includes a shift amount (for the remaining small number of translated pixels) at each sub-pixel level of each input image, a down-sampling amount, a blur amount, and the like.
  • the deterioration information is defined by a matrix indicating the conversion when each of the input image and the high-resolution image after super-resolution processing is expressed in a one-dimensional vector.
  • FIG. 17 is a diagram illustrating a specific example of deterioration information.
  • the amount of pixel shift is 0.25 pixels and the downsampling amount is defined as 1/4 in the vertical and horizontal directions as deterioration information.
  • the degradation information includes 1 in 16 locations.
  • a coefficient of / 16 is listed. Therefore, when the pixel shift amount is 0.25 pixel, each 16 pixels of the high resolution image contributes by 1/16 of the shift amount.
  • FIG. 18 is a diagram illustrating a specific example of the input image (a) and the high-resolution image (b) before and after the super-resolution processing.
  • FIGS. 18A and 18B the same figure is shown in which a thick band spreads from the left to the right and becomes linear, and there is a limit that can be identified as a line. It is added with a bold line.
  • the limit that can be identified as a line in the high-resolution image of FIG. 18B is on the left side than the limit that can be identified as a line in the input image of FIG.
  • 18 (b) is more detailed. That is, in the high resolution image of FIG. 18B, information on the frequency exceeding the Nyquist frequency of the input image is generated. Thus, even a portion that cannot be read as characters in the input image is reproduced so that it can be read in a high-resolution image that has been subjected to super-resolution processing.
  • the super-resolution processing method shown in FIG. 14 is an example, and other methods may be used.
  • the BTV amount may be another term.
  • the image processing apparatus 1 performs preprocessing for determining whether or not to perform super-resolution processing for each partial region.
  • the necessity for the super-resolution process when performing the refocus process is determined in advance, but the prior determination of the necessity of the super-resolution process is included in the super-resolution process included in the refocus process.
  • the present invention is not limited to image processing, and whether it is super-resolution processing other than refocus processing can be similarly determined in advance.
  • FIG. 19 is a flowchart showing the flow of operations in the image processing apparatus 1 according to the present embodiment. Again, according to the above example, one high-resolution image of 3200 ⁇ 2400 pixels is generated from 16 input images having a low resolution of 800 ⁇ 600 pixels.
  • step S101 a process for acquiring 16 input images is executed (step S101).
  • a low-resolution image of 800 ⁇ 600 pixels is input.
  • step S103 a process of moving the input images other than the reference image in parallel by a length proportional to the baseline length from the reference image is performed. Then, pre-processing for super-resolution processing is performed (step S105), and it is determined for each partial region whether or not super-resolution processing is necessary.
  • step S109 For the partial area determined to be subjected to the super-resolution processing (YES in step S107), the super-resolution processing as described above is performed (step S109).
  • the resolution is converted to the resolution of the high-resolution image (3200 ⁇ 2400 pixels) (step S111), and then the image composition process is performed. (Step S113).
  • blur may be generated from one or a plurality of input images using a Gaussian filter or the like instead of the image composition processing.
  • step S109 the partial region that has been super-resolution processed in step S109 and the partial region that has been subjected to image composition processing in step S113 after conversion to high resolution in step S111 (or in which blur is generated) are 3200 ⁇ .
  • a high-resolution image of 2400 pixels is output (step S115).
  • FIG. 20 is a flowchart showing the flow of preprocessing in step S105.
  • a predetermined number for determination for example, four input images A, C, I, K, etc.
  • the determination process itself can be speeded up.
  • the subsequent determination processing may be performed using all the 16 input images. Thereby, the determination accuracy can be improved.
  • the image for determination is subjected to resolution conversion to a lower resolution such as 1/2 pixel (400 ⁇ 300 pixels) both vertically and horizontally (step S203).
  • a lower resolution such as 1/2 pixel (400 ⁇ 300 pixels) both vertically and horizontally
  • an interpolation process such as a bilinear method may be employed, or a nearest neighbor method corresponding to a thinning process may be employed in order to perform at high speed.
  • each image after resolution conversion is divided into partial areas of a predetermined size, such as 10 ⁇ 10 pixels (step S205), and the similarity is calculated for each partial area (step S207). ). Based on the similarity, the presence / absence of super-resolution processing is determined for each partial region (step S209).
  • the partial area is a blurred area that is out of focus after refocusing even if super-resolution processing is performed. is there. Therefore, super-resolution processing for the partial area is not necessary. Therefore, in the image processing apparatus 1 according to the present embodiment, if the calculated similarity is equal to or less than a preset threshold value and the region of the determination image is clearly different (if not similar). Then, it is determined that the super-resolution processing is unnecessary for the partial area.
  • the similarity is higher as the comparison target is similar. For example, the color value (average color), density, sharpness, or a combination of at least two of these can be used for calculating the similarity.
  • edge components are extracted using a first derivative such as Sobel, a second derivative such as Laplacian, and the like, There is a method of determining whether the similarity based on the result of adding the pixel differences is equal to or less than a threshold value.
  • template matching such as SAD (Sum of Absolute Difference) or NCC (Normalized Cross Correlation) may be performed.
  • the similarity determination may be performed for each specific pixel such as every two pixels. In this way, the determination process can be further speeded up.
  • the similarity determination may be performed on any one channel (for example, G). Alternatively, for example, it may be performed using only one channel converted by weighting RGB channels such as luminance. In this way, the determination process can be further speeded up.
  • the similarity determination may be performed for frames at a predetermined interval (for example, every three frames) according to the sequence of frames.
  • the result of the most recent frame used for the determination may be used for a frame that is an input image that is not used for the similarity determination. In this way, the determination process can be further speeded up.
  • FIG. 21 is a diagram showing the determination result in step S209.
  • the gray area has a calculated similarity less than (or less than) a preset threshold value
  • the area of the determination image is not similar
  • the white area has a similarity value of the threshold value. This indicates that it is determined that the region of the determination image is similar as described above (or exceeds the threshold value).
  • the image processing apparatus 1 performs super-resolution processing only on the white area in FIG.
  • the bicubic method is adopted, and all the input images for 16 images are converted to the resolution of the high resolution image, and the converted images are synthesized. That is, pixel values are added for each pixel, and the average value is output.

Abstract

An image forming device (1) comprises a super-resolution preprocessing unit (34), a super-resolution processing unit (36), and an image synthesis unit (38) in an image processing unit (3) for executing a process in which, from a group of multi-view input images, outputs a high resolution image as an output image, said high resolution image having more frequency information than an input image. The super-resolution preprocessing unit (34): splits an input image to establish subregions, and calculates the degree of similarity between corresponding subregions with regard to a plurality of input images; and includes an assessment unit (341) for determining whether super-resolution processing is necessary for each subregion on the basis of the degree of similarity. The super-resolution processing unit (36) executes super-resolution processing for subregions deemed to require super-resolution processing of the input image. The image synthesis unit (38) performs processing that includes a process for converting the resolution of subregions deemed not to require super-resolution processing of the input image to the resolution of the output image.

Description

画像処理装置、画像処理方法および画像処理プログラムImage processing apparatus, image processing method, and image processing program
 この発明は画像処理装置、画像処理方法および画像処理プログラムに関し、特に、解像度を向上させる処理を行なう画像処理装置、画像処理方法および画像処理プログラムに関する。 The present invention relates to an image processing apparatus, an image processing method, and an image processing program, and more particularly, to an image processing apparatus, an image processing method, and an image processing program for performing processing for improving resolution.
 低解像度である多視点の入力画像群から1枚の高解像度画像を生成する画像処理技術がある。このような処理は、超解像処理とも呼ばれる。 There is an image processing technology that generates a single high-resolution image from a low-resolution multi-viewpoint input image group. Such processing is also called super-resolution processing.
 たとえば、特開2011-171843号公報(以下、特許文献1)は、低画質画像から高画質画像を生成する際に、入力された復元対象の低画質画像の高周波成分を抽出して高周波低画質画像を生成し、超高周波成分を補間する補間演算処理を実行するか否かを部分的に判断して切り替えて補間演算処理を実行することで、補間処理における処理速度を高速化する技術を開示している。 For example, Japanese Patent Laid-Open No. 2011-171843 (hereinafter referred to as Patent Document 1) extracts a high-frequency component of an input low-quality image to be restored and generates a high-frequency low-quality image when generating a high-quality image from the low-quality image. Disclosure of technology to increase the processing speed of interpolation processing by generating an image and partially determining whether or not to execute interpolation calculation processing for interpolating ultra-high frequency components and switching to execute interpolation calculation processing is doing.
 また、特開2010-108161号公報(以下、特許文献2)は、高解像度画像を取得する装置として、複数枚の低解像度の画像を取得し、その少なくとも一部に基づいて高解像度画像を生成する高解像化処理を実施する高解像度画像生成手段と、解像度の拡大率、および高解像化処理が施される低解像度画像の枚数を設定可能な設定手段と、生成された高解像度画像に応じて、拡大率および枚数の少なくとも一方の変更が必要か否かを判定する判定手段と、拡大率および枚数の少なくとも一方の変更が必要と判定されたことを条件に、拡大率および枚数の少なくとも一方を変更するように設定手段を制御する制御手段とを備えることで、処理時間を短縮しつつ、目標とする画質を有する高解像度画像を取得することができる画像処理装置を開示している。 Japanese Patent Laid-Open No. 2010-108161 (hereinafter referred to as Patent Document 2) acquires a plurality of low-resolution images as a device for acquiring high-resolution images, and generates a high-resolution image based on at least a part thereof. A high-resolution image generating means for performing the high-resolution processing, a setting means capable of setting the resolution enlargement ratio and the number of low-resolution images to be subjected to the high-resolution processing, and the generated high-resolution image And determining means for determining whether or not at least one of the enlargement ratio and the number of sheets needs to be changed, and determining that at least one of the enlargement ratio and the number of sheets needs to be changed, An image processing apparatus capable of acquiring a high-resolution image having a target image quality while shortening the processing time by including a control unit that controls the setting unit so as to change at least one of them. It discloses.
 また、特開2007-305113号公報(以下、特許文献3)は、低解像度である代表画像および複数の参照画像を用いて高解像度画像を生成する画像処理装置であって、参照画像を切り換えながら位置合わせ処理を繰り返し、求めるべき高解像度画像の画素推定値を更新する更新処理を繰り返し、位置合わせ処理または更新処理の結果から終了条件を満たす画素を判定して、終了条件を満たすと判定された画素を位置合わせ処理または更新処理から除外することで、超解像後の画質を低下させることなく、演算量を削減することのできる画像処理装置を開示している。 Japanese Patent Laid-Open No. 2007-305113 (hereinafter referred to as Patent Document 3) is an image processing apparatus that generates a high resolution image using a representative image having a low resolution and a plurality of reference images, while switching the reference image. Repeated the alignment process, repeated the update process to update the pixel estimation value of the high-resolution image to be obtained, determined the pixels satisfying the end condition from the result of the alignment process or update process, and determined to satisfy the end condition An image processing apparatus that can reduce the amount of calculation without degrading the image quality after super-resolution by excluding pixels from the alignment process or the update process is disclosed.
特開2011-171843号公報JP 2011-171843 A 特開2010-108161号公報JP 2010-108161 A 特開2007-305113号公報JP 2007-305113 A
 しかしながら、上記の特許文献1~3に開示された技術を採用した場合、画像のすべての位置において超解像処理が行なわれる。すなわち、画像においてピントのあっていないぼける位置についても超解像処理が行なわれるため、その位置の処理分、無駄な処理となり、高解像度画像を生成するための処理に時間がかかるという問題がある。 However, when the techniques disclosed in Patent Documents 1 to 3 are employed, super-resolution processing is performed at all positions of the image. That is, since the super-resolution processing is performed even on the unfocused position in the image, there is a problem that the processing for that position is wasteful and processing for generating a high-resolution image takes time. .
 本発明はこのような問題に鑑みてなされたものであって、高解像度画像を生成する処理を高速化できる画像処理装置、画像処理方法および画像処理プログラムを提供することを目的としている。 The present invention has been made in view of such problems, and an object thereof is to provide an image processing apparatus, an image processing method, and an image processing program capable of speeding up a process for generating a high-resolution image.
 上記目的を達成するために、本発明のある局面に従うと、画像処理装置は、多視点の入力画像群から、入力画像よりも多い周波数情報を持つ高解像度画像を出力画像として出力する処理を実行する画像処理装置であって、入力画像を分割して部分領域を設定し、複数の入力画像について対応する部分領域の間の類似度を算出して、類似度に基づいて部分領域ごとに超解像処理の要否を判定するための判定手段と、入力画像の、判定手段において超解像処理を行なうと判定された部分領域について超解像処理を実行するための第1の処理手段と、入力画像の、判定手段において超解像処理を行なわないと判定された部分領域の解像度を、出力画像の解像度に変換する処理を実行するための第2の処理手段とを備える。 In order to achieve the above object, according to an aspect of the present invention, an image processing apparatus executes a process of outputting a high-resolution image having more frequency information than an input image as an output image from a multi-viewpoint input image group. An image processing apparatus that divides an input image to set partial areas, calculates a similarity between corresponding partial areas for a plurality of input images, and performs super solution for each partial area based on the similarity. Determination means for determining whether image processing is necessary, first processing means for performing super-resolution processing on a partial area of the input image that is determined to be subjected to super-resolution processing in the determination means, Second processing means for executing processing for converting the resolution of the partial area of the input image determined not to be subjected to the super-resolution processing into the resolution of the output image.
 好ましくは、判定手段は、類似度の算出に、部分領域の濃度、色値、鮮鋭度のうちの少なくとも1つを用いる。 Preferably, the determination unit uses at least one of the density, the color value, and the sharpness of the partial region for calculating the similarity.
 好ましくは、判定手段は、テンプレートマッチングを行なって類似度を算出する。
 好ましくは、第2の処理手段は、複数の入力画像の、超解像処理を行なわないと判定された部分領域を合成する。
Preferably, the determination unit calculates the similarity by performing template matching.
Preferably, the second processing unit synthesizes partial areas of the plurality of input images that are determined not to be subjected to super-resolution processing.
 好ましくは、第2の処理手段は、超解像処理を行なわないと判定された部分領域に、入力画像群のうちの1つの入力画像の当該部分領域を用いる。 Preferably, the second processing means uses the partial area of one input image in the input image group as the partial area determined not to perform the super-resolution processing.
 好ましくは、判定手段は、部分領域の特定画素ごとに当該部分領域についての超解像処理の要否を判定する。 Preferably, the determination unit determines whether or not the super-resolution processing for the partial area is necessary for each specific pixel of the partial area.
 好ましくは、入力画像は、複数の色チャンネルから構成されるカラー画像であり、判定手段は、複数の色チャンネルのうちの1チャンネルについて超解像処理の要否を判定する。 Preferably, the input image is a color image composed of a plurality of color channels, and the determination unit determines whether or not super-resolution processing is necessary for one of the plurality of color channels.
 好ましくは、入力画像は、複数の色チャンネルから構成されるカラー画像であり、判定手段は、複数の色チャンネルから1チャンネルに変換した画像について、超解像処理の要否を判定する。 Preferably, the input image is a color image composed of a plurality of color channels, and the determination unit determines whether or not super-resolution processing is necessary for an image converted from the plurality of color channels to one channel.
 好ましくは、判定手段は、入力画像を縮小した画像を用いて超解像処理の要否を判定する。 Preferably, the determination unit determines whether or not the super-resolution processing is necessary using an image obtained by reducing the input image.
 好ましくは、判定手段は、入力画像群のうちから規定枚数を選択し、選択した入力画像のそれぞれを分割して部分領域を設定する。 Preferably, the determination unit selects a prescribed number from the input image group and divides each of the selected input images to set a partial region.
 より好ましくは、入力画像群は時間的に連続するものであり、判定手段は、連続の順に従って特定画像ごとに入力画像を選択する。 More preferably, the input image group is temporally continuous, and the determination unit selects the input image for each specific image in the order of continuous.
 本発明の他の局面に従うと、画像処理方法は多視点の入力画像群から入力画像よりも多い周波数情報を持つ高解像度画像を出力画像として生成する方法であって、入力画像を分割して部分領域を設定するステップと、複数の入力画像について対応する部分領域の間の類似度を算出するステップと、類似度に基づいて部分領域ごとに超解像処理の要否を判定するステップと、入力画像の、超解像処理を行なうと判定された部分領域について超解像処理を実行するステップと、入力画像の、超解像処理を行なわないと判定された部分領域の解像度を、出力画像の解像度に変換する処理を実行するステップとを備える。 According to another aspect of the present invention, an image processing method is a method for generating, as an output image, a high-resolution image having more frequency information than an input image from a multi-viewpoint input image group. A step of setting a region, a step of calculating a similarity between corresponding partial regions for a plurality of input images, a step of determining whether or not super-resolution processing is necessary for each partial region based on the similarity, and an input The step of executing the super-resolution processing on the partial area determined to perform the super-resolution processing of the image, and the resolution of the partial area of the input image that is determined not to perform the super-resolution processing, And a step of executing a process of converting to resolution.
 本発明のさらに他の局面に従うと、画像処理プログラムは、コンピューターに多視点の入力画像群から入力画像よりも多い周波数情報を持つ高解像度画像を出力画像として生成する処理を実行させるプログラムであって、入力画像を分割して部分領域を設定するステップと、複数の入力画像について対応する部分領域の間の類似度を算出するステップと、類似度に基づいて部分領域ごとに超解像処理の要否を判定するステップと、入力画像の、超解像処理を行なうと判定された部分領域について超解像処理を実行するステップと、入力画像の、超解像処理を行なわないと判定された部分領域の解像度を、出力画像の解像度に変換する処理を実行するステップとをコンピューターに実行させる。 According to still another aspect of the present invention, an image processing program is a program for causing a computer to execute processing for generating, as an output image, a high-resolution image having more frequency information than an input image from a multi-viewpoint input image group. A step of setting a partial region by dividing the input image, a step of calculating a similarity between corresponding partial regions for a plurality of input images, and a step of super-resolution processing for each partial region based on the similarity. A step of determining NO, a step of executing super-resolution processing on a partial area of the input image determined to perform super-resolution processing, and a portion of the input image determined not to perform super-resolution processing And causing the computer to execute a process of converting the resolution of the region into the resolution of the output image.
 この発明によると、リフォーカス処理などの超解像処理を含む高解像度画像を生成する処理において、画質を落とすことなく処理を高速化することができる。 According to the present invention, in a process for generating a high resolution image including a super-resolution process such as a refocus process, it is possible to speed up the process without degrading the image quality.
実施の形態にかかる画像処理装置の構成の基本的構成を示すブロック図である。1 is a block diagram illustrating a basic configuration of an image processing apparatus according to an embodiment. 画像処理装置を具現化したデジタルカメラの構成を示すブロック図である。It is a block diagram which shows the structure of the digital camera which actualized the image processing apparatus. 画像処理装置を具現化したパーソナルコンピューターの構成を示すブロック図である。It is a block diagram which shows the structure of the personal computer which actualized the image processing apparatus. カメラに含まれるレンズの配置の具体例を表わした図である。It is a figure showing the specific example of arrangement | positioning of the lens contained in a camera. 第1のリフォーカス処理の流れを表わした図である。It is a figure showing the flow of the 1st refocus process. 撮影状況の具体例を表わした図である。It is a figure showing the specific example of the imaging | photography condition. 図6の被写体をカメラで撮影したときの、カメラからの入力画像の一部を表わした図である。FIG. 7 is a diagram illustrating a part of an input image from the camera when the subject in FIG. 6 is captured by the camera. 図5のステップ#11での動作を表わした図である。It is a figure showing operation | movement in step # 11 of FIG. 図8の入力画像群の合成画像を表わす図である。It is a figure showing the synthesized image of the input image group of FIG. 図5のステップ#11での動作を表わした図である。It is a figure showing operation | movement in step # 11 of FIG. 図10の入力画像群の合成画像を表わす図である。It is a figure showing the synthesized image of the input image group of FIG. 図5のステップ#11の処理を行なうことなく図7の入力画像群を合成したときの合成画像を表わす図である。It is a figure showing a synthesized image when the input image group of FIG. 7 is synthesized without performing the process of step # 11 of FIG. 第2のリフォーカス処理の流れを表わした図である。It is a figure showing the flow of the 2nd refocus process. 図13のステップ#22での超解像処理の流れを表わした図である。It is a figure showing the flow of the super-resolution process in step # 22 of FIG. 図14のステップ#33での処理の詳細を表わした図である。It is a figure showing the detail of the process in step # 33 of FIG. 劣化情報を説明するための図である。It is a figure for demonstrating deterioration information. 劣化情報の具体例を表わした図である。It is a figure showing the specific example of deterioration information. 超解像処理の前後での、入力画像(a)と高解像度画像(b)との具体例を表わした図である。It is a figure showing the specific example of the input image (a) and the high resolution image (b) before and after super-resolution processing. 画像処理装置での動作の流れを表わすフローチャートである。It is a flowchart showing the flow of operation | movement in an image processing apparatus. 図19のステップS105での前処理の流れを表わすフローチャートである。It is a flowchart showing the flow of the pre-processing in step S105 of FIG. 図20のステップS209での判定結果を表わした図である。It is a figure showing the determination result in step S209 of FIG.
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらの説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, these descriptions will not be repeated.
 <システム構成>
 図1は、本実施の形態にかかる画像処理装置1の構成の基本的構成を示すブロック図である。
<System configuration>
FIG. 1 is a block diagram showing a basic configuration of an image processing apparatus 1 according to the present embodiment.
 図1を参照して、画像処理装置1は、撮像部2と、画像処理部3と、画像出力部4とを含む。図1に示す画像処理装置1においては、撮像部2が被写体を撮像することで画像(以下、「入力画像」とも称する)を取得し、画像処理部3がこの取得された入力画像に対して後述するような画像処理を行なうことで、入力画像よりも周波数情報の多い高解像度の出力画像(以下、「高解像度画像」とも称する)を生成する。そして、画像出力部4は、この高解像度画像を表示デバイスなどへ出力する。 Referring to FIG. 1, the image processing apparatus 1 includes an imaging unit 2, an image processing unit 3, and an image output unit 4. In the image processing apparatus 1 illustrated in FIG. 1, the image capturing unit 2 captures an image of a subject to acquire an image (hereinafter also referred to as “input image”), and the image processing unit 3 performs an operation on the acquired input image. By performing image processing as will be described later, a high-resolution output image (hereinafter also referred to as “high-resolution image”) having more frequency information than the input image is generated. Then, the image output unit 4 outputs this high resolution image to a display device or the like.
 撮像部2は、対象物(被写体)を撮像して入力画像を生成する。より具体的には、撮像部2は、カメラ22と、カメラ22と接続されたA/D(Analog to Digital)変換部24とを含む。A/D変換部24は、カメラ22により撮像された被写体を示す入力画像を出力する。 The imaging unit 2 captures an object (subject) and generates an input image. More specifically, the imaging unit 2 includes a camera 22 and an A / D (Analog to Digital) conversion unit 24 connected to the camera 22. The A / D converter 24 outputs an input image indicating the subject imaged by the camera 22.
 カメラ22は、被写体を撮像するための光学系であって、アレイカメラである。すなわち、カメラ22は、格子状に配置された視点の異なるN個のレンズ22a-1~22a-n(これらを代表させて、レンズ22aとも称する)と、レンズ22aにより集光された光を電気信号に変換するデバイスである撮像素子22bとを含む。A/D変換部24は、撮像素子22bから出力される被写体を示す映像信号(アナログ電気信号)をデジタル信号に変換して出力する。撮像部2はさらに、各部分を制御するための制御処理回路などを含み得る。 The camera 22 is an optical system for imaging a subject, and is an array camera. In other words, the camera 22 uses N lenses 22a-1 to 22a-n (which are also referred to as lenses 22a, which are different from each other) arranged in a lattice shape, and the light collected by the lenses 22a is electrically And an image sensor 22b which is a device for converting the signal. The A / D converter 24 converts a video signal (analog electrical signal) indicating a subject output from the image sensor 22b into a digital signal and outputs the digital signal. The imaging unit 2 may further include a control processing circuit for controlling each part.
 画像処理部3は、撮像部2によって取得された入力画像に対して、本実施の形態に従う画像処理方法を実施することで高解像度画像を生成する。より具体的には、画像処理部3は、リフォーカス処理部32と、超解像度前処理部34と、超解像処理部36と、画像合成部38とを含む。 The image processing unit 3 generates a high-resolution image by performing the image processing method according to the present embodiment on the input image acquired by the imaging unit 2. More specifically, the image processing unit 3 includes a refocus processing unit 32, a super-resolution preprocessing unit 34, a super-resolution processing unit 36, and an image composition unit 38.
 リフォーカス処理部32は、カメラ22からの複数の入力画像に対して後述するリフォーカス処理を実行する。 The refocus processing unit 32 executes refocus processing described later on a plurality of input images from the camera 22.
 超解像処理部36は、上記リフォーカス処理の際に、入力画像に対して後述する超解像処理を行なう。超解像処理とは、入力画像が持つナイキスト周波数を超える周波数情報を生成する処理である。その際に、超解像度前処理部34は、後述する判定処理を含む前処理を行なって、入力画像のうち、超解像処理を行なう対象の領域と行なわない領域とを区別する。超解像度前処理部34は、上記判定処理を行なうための判定部341を含む。 The super-resolution processing unit 36 performs super-resolution processing described later on the input image during the refocus processing. The super-resolution processing is processing for generating frequency information that exceeds the Nyquist frequency of the input image. At that time, the super-resolution pre-processing unit 34 performs pre-processing including determination processing to be described later, and distinguishes a target area for super-resolution processing and a non-target area in the input image. The super-resolution preprocessing unit 34 includes a determination unit 341 for performing the determination process.
 画像合成部38は、入力画像または入力画像のうちの超解像処理を行なわない領域を合成する処理を行なう。 The image synthesis unit 38 performs a process of synthesizing an input image or an area of the input image where super-resolution processing is not performed.
 画像出力部4は、画像処理部3によって生成される高解像度画像を表示デバイスなどへ出力する。 The image output unit 4 outputs the high resolution image generated by the image processing unit 3 to a display device or the like.
 図1に示す画像処理装置1は、各部を独立の装置で具現化したシステムとして構成することもできるが、汎用的には、以下に説明するデジタルカメラやパーソナルコンピューターなどとして具現化される場合が多い。そこで、本実施の形態に従う画像処理装置1の具現化例として、デジタルカメラでの具現化例とPC(パーソナルコンピューター)での具現化例とについて説明する。 The image processing apparatus 1 shown in FIG. 1 can be configured as a system in which each unit is embodied as an independent apparatus. However, for general purposes, the image processing apparatus 1 may be embodied as a digital camera or a personal computer described below. Many. Therefore, as an implementation example of the image processing apparatus 1 according to the present embodiment, an implementation example with a digital camera and an implementation example with a PC (personal computer) will be described.
 図2は、図1に示す画像処理装置1を具現化したデジタルカメラ100の構成を示すブロック図である。図2において、図1に示す画像処理装置1を構成するそれぞれのブロックに対応するコンポーネントには、図1と同一の参照符号を付している。 FIG. 2 is a block diagram showing a configuration of a digital camera 100 that embodies the image processing apparatus 1 shown in FIG. 2, components corresponding to the respective blocks constituting the image processing apparatus 1 shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1.
 図2を参照して、デジタルカメラ100は、CPU(Central Processing Unit)102と、デジタル処理回路104と、画像表示部108と、カードインターフェイス(I/F)110と、記憶部112と、カメラ部114とを含む。 Referring to FIG. 2, a digital camera 100 includes a CPU (Central Processing Unit) 102, a digital processing circuit 104, an image display unit 108, a card interface (I / F) 110, a storage unit 112, and a camera unit. 114.
 CPU102は、予め格納されたプログラムなどを実行することで、デジタルカメラ100の全体を制御する。デジタル処理回路104は、本実施の形態に従う画像処理を含む各種のデジタル処理を実行する。デジタル処理回路104は、典型的には、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、LSI(Large Scale Integration)、FPGA(Field-Programmable Gate Array)などによって構成される。このデジタル処理回路104は、図1に示す画像処理部3が提供する機能を実現するための画像処理回路106を含む。 The CPU 102 controls the entire digital camera 100 by executing a program stored in advance. The digital processing circuit 104 executes various digital processes including image processing according to the present embodiment. The digital processing circuit 104 is typically configured by a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an LSI (Large Scale Integration), an FPGA (Field-Programmable Gate Array), or the like. The digital processing circuit 104 includes an image processing circuit 106 for realizing the functions provided by the image processing unit 3 shown in FIG.
 画像表示部108は、カメラ部114により提供される入力画像、デジタル処理回路104(画像処理回路106)によって生成される出力画像、デジタルカメラ100に係る各種設定情報、および、制御用GUI(Graphical User Interface)画面などを表示する。 The image display unit 108 includes an input image provided by the camera unit 114, an output image generated by the digital processing circuit 104 (image processing circuit 106), various setting information related to the digital camera 100, and a control GUI (Graphical User Interface) screen is displayed.
 カードインターフェイス(I/F)110は、画像処理回路106によって生成された画像データを記憶部112へ書き込み、あるいは、記憶部112から画像データなどを読み出すためのインターフェイスである。記憶部112は、画像処理回路106によって生成された画像データや各種情報(デジタルカメラ100の制御パラメーターや動作モードなどの設定値)を格納する記憶デバイスである。この記憶部112は、フラッシュメモリー、光学ディスク、磁気ディスクなどからなり、データを不揮発的に記憶する。 The card interface (I / F) 110 is an interface for writing image data generated by the image processing circuit 106 to the storage unit 112 or reading image data or the like from the storage unit 112. The storage unit 112 is a storage device that stores image data generated by the image processing circuit 106 and various types of information (setting values such as control parameters and operation modes of the digital camera 100). The storage unit 112 includes a flash memory, an optical disk, a magnetic disk, and the like, and stores data in a nonvolatile manner.
 カメラ部114は、被写体を撮像することで入力画像を生成する。
 図2に示すデジタルカメラ100は、本実施の形態に従う画像処理装置1の全体を単体の装置として実装したものである。すなわち、ユーザーは、デジタルカメラ100を用いて被写体を撮像することで、画像表示部108において高解像度の画像を視認することができる。
The camera unit 114 generates an input image by imaging a subject.
A digital camera 100 shown in FIG. 2 is obtained by mounting the entire image processing apparatus 1 according to the present embodiment as a single apparatus. That is, the user can visually recognize a high-resolution image on the image display unit 108 by imaging the subject using the digital camera 100.
 図3は、図1に示す画像処理装置1を具現化したパーソナルコンピューター200の構成を示すブロック図である。図3に示すパーソナルコンピューター200では、入力画像を取得するための撮像部2が搭載されておらず、任意の撮像部2によって取得された入力画像が外部から入力される構成となっている。このような構成であっても、本発明の実施の形態に従う画像処理装置1に含まれ得る。なお、図3においても、図1に示す画像処理装置1を構成するそれぞれのブロックに対応するコンポーネントには、図1と同一の参照符号を付している。 FIG. 3 is a block diagram showing a configuration of a personal computer 200 that embodies the image processing apparatus 1 shown in FIG. In the personal computer 200 shown in FIG. 3, the imaging unit 2 for acquiring an input image is not mounted, and an input image acquired by an arbitrary imaging unit 2 is input from the outside. Even such a configuration can be included in the image processing apparatus 1 according to the embodiment of the present invention. In FIG. 3 as well, components corresponding to blocks constituting the image processing apparatus 1 shown in FIG. 1 are denoted by the same reference numerals as those in FIG.
 図3を参照して、パーソナルコンピューター200は、パーソナルコンピューター本体202と、モニター206と、マウス208と、キーボード210と、外部記憶装置212とを含む。 3, the personal computer 200 includes a personal computer main body 202, a monitor 206, a mouse 208, a keyboard 210, and an external storage device 212.
 パーソナルコンピューター本体202は、典型的には、汎用的なアーキテクチャーに従う汎用コンピューターであり、基本的な構成要素として、CPU、RAM(Random Access Memory)、ROM(Read Only Memory)などを含む。パーソナルコンピューター本体202は、図1に示す画像処理部3が提供する機能を実現するための画像処理プログラム204が実行可能になっている。このような画像処理プログラム204は、CD-ROM(Compact Disk-Read Only Memory)などの記憶媒体に格納されて流通し、あるいは、ネットワークを介してサーバー装置から配信される。そして、画像処理プログラム204は、パーソナルコンピューター本体202のハードディスクなどの記憶領域内に格納される。 The personal computer main body 202 is typically a general-purpose computer according to a general-purpose architecture, and includes a CPU, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like as basic components. The personal computer main body 202 can execute an image processing program 204 for realizing a function provided by the image processing unit 3 shown in FIG. Such an image processing program 204 is stored and distributed in a storage medium such as a CD-ROM (Compact Disk-Read Only Memory) or distributed from a server device via a network. The image processing program 204 is stored in a storage area such as a hard disk of the personal computer main body 202.
 このような画像処理プログラム204は、パーソナルコンピューター本体202で実行されるオペレーティングシステム(OS)の一部として提供されるプログラムモジュールのうち必要なモジュールを、所定のタイミングおよび順序で呼出して処理を実現するように構成されてもよい。この場合、画像処理プログラム204自体には、OSが提供するモジュールは含まれず、OSと協働して画像処理が実現される。また、画像処理プログラム204は、単体のプログラムではなく、何らかのプログラムの一部に組込まれて提供されてもよい。このような場合にも、画像処理プログラム204自体には、当該何らかのプログラムにおいて共通に利用されるようなモジュールは含まれず、当該何らかのプログラムと協働して画像処理が実現される。このような一部のモジュールを含まない画像処理プログラム204であっても、本実施の形態に従う画像処理装置1の趣旨を逸脱するものではない。 Such an image processing program 204 implements processing by calling necessary modules among program modules provided as part of an operating system (OS) executed by the personal computer main body 202 at a predetermined timing and order. It may be configured as follows. In this case, the image processing program 204 itself does not include a module provided by the OS, and image processing is realized in cooperation with the OS. Further, the image processing program 204 may be provided by being incorporated in a part of some program instead of a single program. Even in such a case, the image processing program 204 itself does not include a module that is commonly used in the program, and image processing is realized in cooperation with the program. Even such an image processing program 204 that does not include some modules does not depart from the spirit of the image processing apparatus 1 according to the present embodiment.
 もちろん、画像処理プログラム204によって提供される機能の一部または全部を専用のハードウェアによって実現してもよい。 Of course, some or all of the functions provided by the image processing program 204 may be realized by dedicated hardware.
 モニター206は、オペレーティングシステム(OS)が提供するGUI画面、画像処理プログラム204によって生成される画像などを表示する。 The monitor 206 displays a GUI screen provided by an operating system (OS), an image generated by the image processing program 204, and the like.
 マウス208およびキーボード210は、それぞれユーザー操作を受付け、その受付けたユーザー操作の内容をパーソナルコンピューター本体202へ出力する。 The mouse 208 and the keyboard 210 each accept a user operation and output the contents of the accepted user operation to the personal computer main body 202.
 外部記憶装置212は、何らかの方法で取得された入力画像を格納しており、この入力画像をパーソナルコンピューター本体202へ出力する。外部記憶装置212としては、フラッシュメモリ、光学ディスク、磁気ディスクなどのデータを不揮発的に記憶するデバイスが用いられる。 The external storage device 212 stores an input image acquired by some method, and outputs this input image to the personal computer main body 202. As the external storage device 212, a device that stores data in a nonvolatile manner such as a flash memory, an optical disk, or a magnetic disk is used.
 図3に示すパーソナルコンピューター200は、本実施の形態に従う画像処理装置1の一部を単体の装置として実装したものである。 A personal computer 200 shown in FIG. 3 is obtained by mounting a part of the image processing apparatus 1 according to the present embodiment as a single apparatus.
 <動作概要>
 画像処理装置1では、アレイカメラであるカメラ22で撮影されることで得られる、それぞれ異なる視点の複数の入力画像をリフォーカス処理して、高解像度画像を得る。このとき、画像処理装置1は、リフォーカス処理後の高解像度の画像(画素数の多い画像)においてピントの合う領域について超解像処理を行なう領域、ピントの合わない領域については行なわない領域と区別することで、高速に超解像処理を行なう。
<Overview of operation>
The image processing apparatus 1 obtains a high-resolution image by performing refocus processing on a plurality of input images at different viewpoints obtained by photographing with the camera 22 that is an array camera. At this time, the image processing apparatus 1 includes a region where super-resolution processing is performed for an in-focus region in a high-resolution image (image with a large number of pixels) after refocus processing, and a region which is not performed for an out-of-focus region. By distinguishing, super-resolution processing is performed at high speed.
 (リフォーカス処理1)
 リフォーカスの第1の例として、第1のリフォーカス処理について説明する。第1のリフォーカス処理は、超解像処理を含まない。
(Refocus processing 1)
As a first example of refocusing, first refocusing processing will be described. The first refocus processing does not include super-resolution processing.
 図4は、カメラ22に含まれるレンズ22aの配置の具体例を表わした図である。図4の例では、一例として、カメラ22が、格子状に配置された16個のレンズ22a-1~22a-16(レンズA~P)を含むアレイカメラであるものとする。図4のレンズA~Pの間隔(基線長)は、縦方向および横方向ともに均一であるものとする。 FIG. 4 is a diagram showing a specific example of the arrangement of the lenses 22 a included in the camera 22. In the example of FIG. 4, as an example, it is assumed that the camera 22 is an array camera including 16 lenses 22a-1 to 22a-16 (lenses A to P) arranged in a grid pattern. Assume that the intervals (base line lengths) between the lenses A to P in FIG. 4 are uniform in both the vertical and horizontal directions.
 図5は、第1のリフォーカス処理の流れを表わした図である。図5を参照して、第1の例では、図4のカメラ22から得られた16枚の入力画像のそれぞれが、入力画像のうちの基準となる画像からの基線長に比例した長さ分、平行に移動され(ステップ#11)、これらが画像合成されて(ステップ#12)、合成後の画像が出力される。第1のリフォーカス処理は超解像処理を含まないため、入力画像の解像度と出力画像の解像度とが等しい。 FIG. 5 is a diagram showing the flow of the first refocus processing. Referring to FIG. 5, in the first example, each of the 16 input images obtained from the camera 22 of FIG. 4 has a length proportional to the baseline length from the reference image of the input images. Are moved in parallel (step # 11), and these are combined (step # 12), and the combined image is output. Since the first refocus processing does not include super-resolution processing, the resolution of the input image is equal to the resolution of the output image.
 図6は、撮影状況の具体例を表わした図である。図6を参照して、一例として、カメラ22の正面(Z方向)に、カメラ22から近い位置に配置された1つの第1の被写体(りんご)と、カメラ22から遠い位置であってカメラ22からの距離が同じ位置に配置された同一種類の2つの第2の被写体(みかん)とをカメラ22で撮影したものとする。 FIG. 6 is a diagram showing a specific example of the shooting situation. With reference to FIG. 6, as an example, one first subject (apple) arranged at a position near the camera 22 on the front surface (Z direction) of the camera 22 and a position far from the camera 22 and the camera 22. It is assumed that two second subjects (mandarin oranges) of the same type arranged at the same distance from the camera are photographed by the camera 22.
 図7は、図6の被写体をカメラ22で撮影したときの、カメラ22からの入力画像であって、16個のレンズA~Pのうち、縦横3個の格子状の配列分であるレンズA,B,C,E,F,G,I,J,Kからの入力画像を表わした図である。入力画像A,B,C,E,F,G,I,J,Kは、それぞれ、レンズA,B,C,E,F,G,I,J,Kからの入力画像であることを表わしている。レンズA,B,C、レンズE,F,G、およびレンズI,J,Kは、図6の被写体との位置関係ではX方向にその順に等間隔で配置され、レンズA,E,I、レンズB,F,J、およびレンズC,G,KはY方向にその順に等間隔で配置されている。 FIG. 7 is an input image from the camera 22 when the subject of FIG. 6 is photographed by the camera 22, and among the 16 lenses A to P, the lens A, which is an array of 3 vertical and horizontal grids. , B, C, E, F, G, I, J, and K are diagrams representing input images. Input images A, B, C, E, F, G, I, J, and K represent that they are input images from lenses A, B, C, E, F, G, I, J, and K, respectively. ing. Lenses A, B, C, lenses E, F, G, and lenses I, J, K are arranged at equal intervals in that order in the X direction in the positional relationship with the subject in FIG. The lenses B, F, J and the lenses C, G, K are arranged at equal intervals in the Y direction in that order.
 図7を参照して、レンズ22aからの距離が無限遠にある被写体の視差を0とすると、レンズAの視点からの入力画像Aにおける第1の被写体(りんご)と第2の被写体(みかん)とそれぞれの位置を基準位置とすると、第1の被写体であるりんごの画像の入力画像における位置は、X方向に配置されたレンズからの入力画像ではレンズの配置順に距離cずつ基準位置から-X方向にずれる。Y方向に配置されたレンズからの入力画像ではレンズの配置順に距離dずつ基準位置から-Y方向にずれる。第2の被写体であるみかんの画像の入力画像における位置は、X方向に配置されたレンズからの入力画像ではレンズの配置順に距離aずつ基準位置から-X方向にずれる。Y方向に配置されたレンズからの入力画像ではレンズの配置順に距離bずつ基準位置から-Y方向にずれる。 Referring to FIG. 7, when the parallax of a subject whose distance from the lens 22a is infinite is 0, the first subject (apple) and the second subject (mandarin orange) in the input image A from the viewpoint of the lens A And the respective positions as reference positions, the position of the image of the apple that is the first subject in the input image is -X from the reference position by the distance c in the order of lens arrangement in the input image from the lens arranged in the X direction. Deviation in direction. In the input image from the lens arranged in the Y direction, the distance d is shifted from the reference position in the −Y direction by the distance d in the lens arrangement order. The position of the second mandarin orange image in the input image is shifted from the reference position in the −X direction by a distance a in the order of lens arrangement in the input image from the lens arranged in the X direction. In the input image from the lens arranged in the Y direction, the distance b is shifted from the reference position in the −Y direction by the distance b in the lens arrangement order.
 フォーカス対象を第2の被写体であるみかんとすると、上記ステップ#11では、各入力画像におけるみかんの位置を一致させるよう入力画像が平行移動される。 Suppose that the mandarin orange to be focused is the second subject, the input image is translated in step # 11 so that the position of the mandarin orange in each input image is matched.
 図8は、フォーカス対象を第2の被写体であるみかんとしたときの上記ステップ#11での動作を表わした図である。図8を参照して、入力画像Bの移動距離が(a,0)である場合、入力画像Cの移動距離は、基準とする入力画像Aからの基線長が入力画像Bのそれの2倍であるため(2a,0)となる。以降、他の入力画像も同様にして得られる移動距離分、移動させる。 FIG. 8 is a diagram showing the operation in Step # 11 when the focus target is the orange that is the second subject. Referring to FIG. 8, when the moving distance of input image B is (a, 0), the moving distance of input image C is such that the base line length from input image A as a reference is twice that of input image B. Therefore, (2a, 0) is obtained. Thereafter, the other input images are moved by the movement distance obtained in the same manner.
 基準とする入力画像A以外の入力画像を上記のように平行移動すると、図8に示されたように、各入力画像でのみかんの位置が、基準とする入力画像Aでの位置と一致するものの、りんごの位置はすべての入力画像で異なる。 When the input images other than the reference input image A are translated as described above, the position of the orange in each input image coincides with the position in the reference input image A as shown in FIG. However, the position of the apple is different for all input images.
 すべての入力画像が基準とする入力画像からの基線長に比例した長さ分、平行移動された後、上記ステップ#12で合成される。具体的には、画素ごとに、16枚分の画素値の平均値が出力される。 All input images are translated by a length proportional to the baseline length from the reference input image, and then synthesized in step # 12. Specifically, an average value of 16 pixel values is output for each pixel.
 図9は、図8の入力画像群の合成画像を表わす図である。図9に示されるように、上記のようにみかんの位置を一致させるように平行移動させた後に合成すると、合成画像においてみかんはピントが合っているものの、りんごは各入力画像での位置(視差)が異なる分、ピントがぼける。つまり、この上記第1のリフォーカス処理では、視点の異なる入力画像が多いほど、各入力画像において位置の一致していない被写体は自然にぼけたように見えることになる。 FIG. 9 shows a composite image of the input image group in FIG. As shown in FIG. 9, when the mandarin oranges are translated and matched so as to match the positions of the mandarin oranges as described above, the mandarin oranges are in focus in the synthesized image, but the apples are positioned in the input images (disparity). ) Is different, the focus is blurred. That is, in the first refocus processing, as the number of input images with different viewpoints increases, a subject whose position does not match in each input image appears to be naturally blurred.
 同様に、フォーカス対象を第1の被写体であるりんごとすると、上記ステップ#11では、各入力画像におけるりんごの位置を一致させるよう入力画像が平行移動される。 Similarly, when the focus object is the apple that is the first subject, the input image is translated in step # 11 so that the position of the apple in each input image matches.
 図10は、フォーカス対象を第1の被写体であるりんごとしたときの上記ステップ#11での動作を表わした図である。図10を参照して、入力画像Bの移動距離が(c,0)である場合、入力画像Cの移動距離は、基準とする入力画像Aからの基線長が入力画像Bのそれの2倍であるため(2c,0)となる。以降、他の入力画像も同様にして得られる移動距離分、移動させる。 FIG. 10 is a diagram showing the operation in step # 11 when the focus target is the first object, phosphorus. Referring to FIG. 10, when the moving distance of input image B is (c, 0), the moving distance of input image C is such that the base line length from input image A as a reference is twice that of input image B. Therefore, (2c, 0) is obtained. Thereafter, the other input images are moved by the movement distance obtained in the same manner.
 基準とする入力画像A以外の入力画像を上記のように平行移動すると、図10に示されたように、各入力画像でのりんごの位置が、基準とする入力画像Aでの位置と一致するものの、みかんの位置はすべての入力画像で異なる。 When the input image other than the reference input image A is translated as described above, the position of the apple in each input image matches the position in the reference input image A as shown in FIG. However, the position of the mandarin orange is different for all input images.
 図11は、図10の入力画像群の合成画像を表わす図である。図11に示されるように、上記のようにりんごの位置を一致させるように平行移動させた後に合成すると、合成画像においてりんごはピントが合っているものの、みかんは各入力画像での位置(視差)が異なる分、ピントがぼける。 FIG. 11 shows a composite image of the input image group in FIG. As shown in FIG. 11, if the apples are synthesized after being translated so as to match the positions of the apples as described above, the apples are in focus in the synthesized image, but the oranges are in the positions (parallaxes) in each input image. ) Is different, the focus is blurred.
 なお、図12は、上記ステップ#11の処理を行なうことなく図7の入力画像群を合成したときの合成画像を表わす図である。図12を参照して、この場合、合成画像では、りんごにもみかんにもピントが合っていない。この例の場合、みかんの方がりんごよりもカメラ22からの位置が遠いため、みかんの視差の方がりんごよりも小さい。そのため、図12では、みかんのぼける具合に比べてりんごのぼける具合の方が大きくなる。 Note that FIG. 12 is a diagram illustrating a composite image when the input image group of FIG. 7 is combined without performing the process of step # 11. Referring to FIG. 12, in this case, neither the apple nor the orange is in focus in the composite image. In the case of this example, since the orange is farther from the camera 22 than the apple, the orange has a smaller parallax than the apple. For this reason, in FIG. 12, the degree of apples is greater than the degree of oranges.
 (リフォーカス処理2)
 リフォーカスの第2の例として、第2のリフォーカス処理について説明する。第2のリフォーカス処理は、超解像処理を含む。
(Refocus process 2)
As a second example of refocusing, a second refocusing process will be described. The second refocus process includes a super-resolution process.
 図13は、第2のリフォーカス処理の流れを表わした図である。図13を参照して、第2の例では、図4のカメラ22から得られた16枚の入力画像のそれぞれが第1の処理と同様に平行に移動された後(ステップ#21)、超解像処理される(ステップ#22)。第2のリフォーカス処理は超解像処理を含むため、出力画像の解像度が入力画像の解像度よりも高くなる。一例として、入力画像が800×600画素の解像度であるとき、出力画像の解像度が3200×2400画素の解像度となり得る。 FIG. 13 is a diagram showing the flow of the second refocusing process. Referring to FIG. 13, in the second example, after each of the 16 input images obtained from the camera 22 of FIG. 4 is moved in parallel as in the first process (step # 21), Resolution processing is performed (step # 22). Since the second refocus processing includes super-resolution processing, the resolution of the output image becomes higher than the resolution of the input image. As an example, when the input image has a resolution of 800 × 600 pixels, the output image may have a resolution of 3200 × 2400 pixels.
 なお、上記ステップ#21での平行移動では、第2のリフォーカス処理では、超解像処理にて後述するようにサブピクセル(小数画素)の情報を用いて解像度を向上させる処理を行なうため、整数画素、平行移動される。たとえば、図7の入力画像Bで移動量(a,0)が(15.25,0)であったとすると、上記ステップ#21では15画素だけ平行移動され、残りの0.25画素は後述する超解像での劣化情報の一部(図16、図17)として用いられる。 In the parallel movement in step # 21, in the second refocusing process, as described later in the super-resolution process, a process for improving the resolution is performed using information on sub-pixels (decimal pixels). Integer pixels are translated. For example, assuming that the movement amount (a, 0) is (15.25, 0) in the input image B of FIG. 7, in step # 21, 15 pixels are translated in parallel, and the remaining 0.25 pixels will be described later. This is used as a part of deterioration information in super-resolution (FIGS. 16 and 17).
 図14は、上記ステップ#22での超解像処理の流れを表わした図である。図14では、具体例として、論文「Fast and Robust Multiframe Super Resolution」(IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004 page.1327-1344)に記載された処理を行なう場合の超解像処理の流れが示されている。 FIG. 14 is a diagram showing the flow of super-resolution processing in step # 22. In FIG. 14, as a specific example, the super processing when the processing described in the paper “Fast and Robust Multiframe Super Resolution” (IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004 page.1327-1344) is performed. The flow of resolution processing is shown.
 図14を参照して、ステップ#31で、入力画像のうちの1枚に対してバイリニア法等の補間処理を施して入力画像の解像度を超解像処理後の解像度である高解像度に変換することで、初期画像としての出力候補画像が生成される。 Referring to FIG. 14, in step # 31, one of the input images is subjected to an interpolation process such as a bilinear method to convert the resolution of the input image to a high resolution that is the resolution after the super-resolution process. Thus, an output candidate image as an initial image is generated.
 ステップ#32で、ノイズにロバストに収束させるためのBTV(Bilateral Total Variation)量が算出される。 In step # 32, a BTV (Bilateral Total Variation) amount for robust convergence to noise is calculated.
 ステップ#33で、上記生成された出力候補画像と16枚分の入力画像とが比較されて、残差が算出される。図15は、ステップ#33での処理の詳細を表わした図である。すなわち、図15を参照して、ステップ#33では、上記生成された出力候補画像が、各入力画像とその劣化情報(超解像後の画像と入力画像との間の関係を示す情報)とに基づいて入力画像サイズに変換(低解像度化)されて(#41)、16枚分の入力画像との差異が算出され、記録される(#42)。そして、その差異が、超解像処理後のサイズに戻され(#43)、残差とされる。 In step # 33, the generated output candidate images are compared with the 16 input images, and a residual is calculated. FIG. 15 is a diagram showing details of the process in step # 33. That is, referring to FIG. 15, in step # 33, the generated output candidate image includes each input image and its deterioration information (information indicating the relationship between the super-resolution image and the input image). Is converted into an input image size (reduction in resolution) based on (# 41), and the difference from the 16 input images is calculated and recorded (# 42). Then, the difference is returned to the size after the super-resolution processing (# 43) to be a residual.
 ステップ#34で、上記ステップ#31で生成された出力候補画像から算出された残差とBTV量とが減ぜられて次の出力候補画像が生成される。 In step # 34, the residual and the BTV amount calculated from the output candidate image generated in step # 31 are reduced, and the next output candidate image is generated.
 上記ステップ#31~#34の処理が、出力候補画像が収束するまで繰り返され、収束した出力候補画像が超解像処理後の出力画像として出力される。 The processes in steps # 31 to # 34 are repeated until the output candidate image converges, and the converged output candidate image is output as an output image after the super-resolution processing.
 繰り返しは、おおよそ充分に収束する回数(たとえば200回)などの、予め規定された回数であってもよいし、一連の処理の都度、収束判定がなされ、その結果に応じて繰り返されてもよい。 The number of iterations may be a predetermined number of times such as the number of times of convergence (for example, 200 times), or a convergence determination may be made for each series of processing, and may be repeated according to the result. .
 図16は、上記ステップ#41で用いられる劣化情報を説明するための図である。
 劣化情報とは、超解像処理後の高解像度画像に対する入力画像それぞれの関係を表わす情報を指し、たとえば行列形式で表わされる。劣化情報には、入力画像それぞれのサブピクセルレベルでのずれ量(平行移動した残りの少数画素分)、ダウンサンプリング量、およびぼけ量などが含まれる。
FIG. 16 is a diagram for explaining the deterioration information used in step # 41.
Deterioration information refers to information representing the relationship of each input image with respect to a high-resolution image after super-resolution processing, and is represented, for example, in a matrix format. The deterioration information includes a shift amount (for the remaining small number of translated pixels) at each sub-pixel level of each input image, a down-sampling amount, a blur amount, and the like.
 図16を参照して、劣化情報は、入力画像および超解像処理後の高解像度画像それぞれを1次元のベクトル表現した場合に、その変換を示す行列で規定される。 Referring to FIG. 16, the deterioration information is defined by a matrix indicating the conversion when each of the input image and the high-resolution image after super-resolution processing is expressed in a one-dimensional vector.
 図17は、劣化情報の具体例を表わした図である。
 図17を参照して、劣化情報として、画素のずれ量が0.25画素、およびダウンサンプリング量が縦方向および横方向それぞれに1/4が規定されているものとする。入力画像の内の1画素に対応した1か所と、超解像処理後の高解像度画像の16か所の16画素とが対応しているときに、劣化情報には、16か所に1/16の係数が記載されている。そのため、画素のずれ量が0.25画素である場合、高解像度画像の16画素それぞれに対してはそのずれ量の1/16分、寄与することになる。
FIG. 17 is a diagram illustrating a specific example of deterioration information.
Referring to FIG. 17, it is assumed that the amount of pixel shift is 0.25 pixels and the downsampling amount is defined as 1/4 in the vertical and horizontal directions as deterioration information. When one location corresponding to one pixel in the input image corresponds to 16 pixels in 16 locations in the high-resolution image after super-resolution processing, the degradation information includes 1 in 16 locations. A coefficient of / 16 is listed. Therefore, when the pixel shift amount is 0.25 pixel, each 16 pixels of the high resolution image contributes by 1/16 of the shift amount.
 図18は、超解像処理の前後での、入力画像(a)と高解像度画像(b)との具体例を表わした図である。図18(a),図18(b)それぞれにおいて、左側から右側に向けて太い帯が広がって線状になる様が表わされた同じ図が表わされており、線として識別できる限界が太線で付加されている。 FIG. 18 is a diagram illustrating a specific example of the input image (a) and the high-resolution image (b) before and after the super-resolution processing. In each of FIGS. 18A and 18B, the same figure is shown in which a thick band spreads from the left to the right and becomes linear, and there is a limit that can be identified as a line. It is added with a bold line.
 図18に表わされたように、図18(a)の入力画像において線として識別できる限界よりも、図18(b)の高解像度画像において線として識別できる限界の方が左側にあり、図18(b)の方が細部まで再現されていることが分かる。つまり、図18(b)の高解像度画像では、入力画像のナイキスト周波数を超えた周波数の情報が生成されている。このことで、入力画像では文字として読み取ることのできない部分であっても、超解像処理された高解像度画像では読み取れられるように再現されることになる。 As shown in FIG. 18, the limit that can be identified as a line in the high-resolution image of FIG. 18B is on the left side than the limit that can be identified as a line in the input image of FIG. It can be seen that 18 (b) is more detailed. That is, in the high resolution image of FIG. 18B, information on the frequency exceeding the Nyquist frequency of the input image is generated. Thus, even a portion that cannot be read as characters in the input image is reproduced so that it can be read in a high-resolution image that has been subjected to super-resolution processing.
 なお、図14に表わされた超解像処理の方法は一例であって、他の方法であっても、よい。たとえば、複数の入力画像から1枚の高解像度画像を生成する再構成型超解像処理である場合、BTV量が別の項であってもよい。 Note that the super-resolution processing method shown in FIG. 14 is an example, and other methods may be used. For example, in the case of reconstruction type super-resolution processing that generates one high-resolution image from a plurality of input images, the BTV amount may be another term.
 (課題の説明)
 超解像処理を含む第2のリフォーカス処理は、超解像処理によって、超解像処理を行なわない第1のリフォーカス処理よりも高画質の高解像度画像を得ることができる。しかしながら、上述のように超解像処理において繰り返しによる収束演算を行なうため、処理速度が第1のリフォーカス処理と比較して非常に遅くなる。
(Explanation of issues)
In the second refocusing process including the super-resolution process, a high-resolution image with higher image quality can be obtained by the super-resolution process than in the first refocusing process in which the super-resolution process is not performed. However, since the convergence calculation is repeatedly performed in the super-resolution processing as described above, the processing speed is very slow compared to the first refocus processing.
 そこで、本実施の形態にかかる画像処理装置1は、部分領域ごとに、超解像処理を行なうか否かを判定する前処理を行なう。 Therefore, the image processing apparatus 1 according to the present embodiment performs preprocessing for determining whether or not to perform super-resolution processing for each partial region.
 なお、本例では、リフォーカス処理を行なう際の超解像処理について要否を事前に判定するものとしているが、超解像処理の要否の事前の判定はリフォーカス処理に含まれる超解像処理に限定されるものでなく、リフォーカス処理以外での超解像処理であっても同様に事前に要否を判定することができる。 In this example, the necessity for the super-resolution process when performing the refocus process is determined in advance, but the prior determination of the necessity of the super-resolution process is included in the super-resolution process included in the refocus process. The present invention is not limited to image processing, and whether it is super-resolution processing other than refocus processing can be similarly determined in advance.
 <動作フロー>
 図19は、本実施の形態にかかる画像処理装置1での動作の流れを表わすローチャートである。ここでも、上記の例に従って、800×600画素の低解像度である16枚の入力画像から、3200×2400画素の1枚の高解像度画像を生成するものとする。
<Operation flow>
FIG. 19 is a flowchart showing the flow of operations in the image processing apparatus 1 according to the present embodiment. Again, according to the above example, one high-resolution image of 3200 × 2400 pixels is generated from 16 input images having a low resolution of 800 × 600 pixels.
 図19を参照して、まず、16枚の入力画像を取得する処理が実行される(ステップS101)。ここでは、800×600画素の低解像度の画像が入力されるものとする。 Referring to FIG. 19, first, a process for acquiring 16 input images is executed (step S101). Here, it is assumed that a low-resolution image of 800 × 600 pixels is input.
 次に、入力画像うちの基準となる画像以外のものについて、基準となる画像からの基線長に比例した長さ分、平行に移動する処理が行なわれる(ステップS103)。そして、超解像処理用の前処理が行なわれ(ステップS105)、部分領域ごとに、超解像処理の要否が判定される。 Next, a process of moving the input images other than the reference image in parallel by a length proportional to the baseline length from the reference image is performed (step S103). Then, pre-processing for super-resolution processing is performed (step S105), and it is determined for each partial region whether or not super-resolution processing is necessary.
 超解像処理を行なうと判定された部分領域については(ステップS107でYES)、上述のような超解像処理が行なわれる(ステップS109)。 For the partial area determined to be subjected to the super-resolution processing (YES in step S107), the super-resolution processing as described above is performed (step S109).
 超解像処理を行なわないと判定された部分領域については(ステップS107でNO)、解像度が高解像度画像の解像度(3200×2400画素)に変換された後(ステップS111)、画像合成処理が施される(ステップS113)。 For the partial area determined not to be subjected to the super-resolution process (NO in step S107), the resolution is converted to the resolution of the high-resolution image (3200 × 2400 pixels) (step S111), and then the image composition process is performed. (Step S113).
 なお、上記ステップS113では、画像合成処理に替えて、1枚または複数の入力画像からガウシアンフィルタなどで、ぼけが生成されてもよい。 In step S113, blur may be generated from one or a plurality of input images using a Gaussian filter or the like instead of the image composition processing.
 そして、上記ステップS109で超解像処理された部分領域と、ステップS111で高解像度に変換された後にステップS113で画像合成処理がなされた(またはぼけが生成された)部分領域とが、3200×2400画素の高解像度画像として出力される(ステップS115)。 Then, the partial region that has been super-resolution processed in step S109 and the partial region that has been subjected to image composition processing in step S113 after conversion to high resolution in step S111 (or in which blur is generated) are 3200 ×. A high-resolution image of 2400 pixels is output (step S115).
 図20は、上記ステップS105での前処理の流れを表わすフローチャートである。
 図20を参照して、まず、16枚の入力画像うち判定用の所定枚数(たとえば、入力画像A,C,I,Kの4枚、など)が選択される(ステップS201)。ここで入力画像のうちから判定用の所定枚数が選択されることで、判定処理自体を高速化することができる。一方で、16枚の入力画像すべてを用いて以降の判定処理を行なうようにしてもよい。これにより、判定精度を向上させることができる。
FIG. 20 is a flowchart showing the flow of preprocessing in step S105.
Referring to FIG. 20, first, among the 16 input images, a predetermined number for determination (for example, four input images A, C, I, K, etc.) is selected (step S201). Here, by selecting a predetermined number for determination from the input image, the determination process itself can be speeded up. On the other hand, the subsequent determination processing may be performed using all the 16 input images. Thereby, the determination accuracy can be improved.
 好ましくは、それら判定用の画像が、たとえば縦横とも1/2画素(400×300画素)など、さらに低解像度に解像度変換される(ステップS203)。ここでの解像度変換は、バイリニア法などの補間処理が採用されてもよいし、高速に行なうために間引き処理に当たるニアレストネイバー法が採用されてもよい。 Preferably, the image for determination is subjected to resolution conversion to a lower resolution such as 1/2 pixel (400 × 300 pixels) both vertically and horizontally (step S203). For the resolution conversion here, an interpolation process such as a bilinear method may be employed, or a nearest neighbor method corresponding to a thinning process may be employed in order to perform at high speed.
 次に、解像度変換後のそれぞれの画像が、たとえば10×10画素などの、予め規定されたサイズの部分領域に分割され(ステップS205)、部分領域ごとに、類似度が算出される(ステップS207)。そして、類似度に基づいて、部分領域ごとに超解像処理の有無が判定される(ステップS209)。 Next, each image after resolution conversion is divided into partial areas of a predetermined size, such as 10 × 10 pixels (step S205), and the similarity is calculated for each partial area (step S207). ). Based on the similarity, the presence / absence of super-resolution processing is determined for each partial region (step S209).
 ある部分領域について、判定用の画像群それぞれについて類似しておらず、明らかに異なっている場合、その部分領域は超解像処理を行なってもリフォーカス処理後にピントの合っていない、ぼける領域である。そのため、その部分領域に対する超解像処理は不要となる。従って、本実施の形態にかかる画像処理装置1では、算出された類似度が予め設定したしきい値以下で、判定用の画像の当該領域が明らかに異なっていれば(類似していなければ)、当該部分領域について超解像処理が不要と判定する。なお、本明細書では、比較対象が類似しているほど類似度が高いことを意味している。類似度算出には、たとえば、各部分領域の色値(平均色)、濃度、鮮鋭度、またはこれらのうちの少なくとも2つの組み合わせ、などが用いられ得る。 When a partial area is not similar to each of the judgment image groups and is clearly different, the partial area is a blurred area that is out of focus after refocusing even if super-resolution processing is performed. is there. Therefore, super-resolution processing for the partial area is not necessary. Therefore, in the image processing apparatus 1 according to the present embodiment, if the calculated similarity is equal to or less than a preset threshold value and the region of the determination image is clearly different (if not similar). Then, it is determined that the super-resolution processing is unnecessary for the partial area. In the present specification, the similarity is higher as the comparison target is similar. For example, the color value (average color), density, sharpness, or a combination of at least two of these can be used for calculating the similarity.
 鮮鋭度を用いて類似度を判定する方法の一例としては、ソーベルなどの1次微分、ラプラシアンなどの2次微分などを用いてエッジ成分を抽出し、比較する画像間の部分領域内で、各画素の差分を加算した結果に基づく類似度がしきい値以下か否かで判定する方法が挙げられる。また、他の方法として、SAD(Sum of Absolute Difference)やNCC(Normalized Cross Correlation)などのテンプレートマッチングを行なってもよい。 As an example of a method for determining similarity using sharpness, edge components are extracted using a first derivative such as Sobel, a second derivative such as Laplacian, and the like, There is a method of determining whether the similarity based on the result of adding the pixel differences is equal to or less than a threshold value. As another method, template matching such as SAD (Sum of Absolute Difference) or NCC (Normalized Cross Correlation) may be performed.
 また、類似度の判定は、2画素ごとなど特定画素ごとに行なわれてもよい。このようにすることで、判定処理をさらに高速化することができる。 Moreover, the similarity determination may be performed for each specific pixel such as every two pixels. In this way, the determination process can be further speeded up.
 また、画像がカラー画像の場合には、たとえばRGBそれぞれのチャンネルごとに個別に超解像処理が行なわれる場合、類似度の判定は、いずれか1チャンネル(たとえばG)で行なわれてもよい。または、たとえば、輝度のようにRGBのチャンネルに重み付けを行なって変換した1チャンネルのみを用いて行なわれてもよい。このようにすることで、判定処理をさらに高速化することができる。 Further, when the image is a color image, for example, when the super-resolution processing is individually performed for each of the RGB channels, the similarity determination may be performed on any one channel (for example, G). Alternatively, for example, it may be performed using only one channel converted by weighting RGB channels such as luminance. In this way, the determination process can be further speeded up.
 また、入力画像が動画の場合には、類似度の判定は、フレームの連続順に従って所定間隔のフレーム(たとえば3フレームごと)に行なわれてもよい。この場合、類似度の判定に用いられていない入力画像であるフレームに対しては、判定に用いられた直近のフレームの結果が用いられてもよい。このようにすることで、判定処理をさらに高速化することができる。 In addition, when the input image is a moving image, the similarity determination may be performed for frames at a predetermined interval (for example, every three frames) according to the sequence of frames. In this case, the result of the most recent frame used for the determination may be used for a frame that is an input image that is not used for the similarity determination. In this way, the determination process can be further speeded up.
 図21は、上記ステップS209での判定結果を表わした図である。図21において、グレー領域は算出された類似度が予め設定したしきい値未満(または以下)であって判定用の画像の当該領域が類似しておらず、白領域は類似度がしきい値以上(またはしきい値を超える)で判定用の画像の当該領域が類似していると判定されたことを表わしている。 FIG. 21 is a diagram showing the determination result in step S209. In FIG. 21, the gray area has a calculated similarity less than (or less than) a preset threshold value, the area of the determination image is not similar, and the white area has a similarity value of the threshold value. This indicates that it is determined that the region of the determination image is similar as described above (or exceeds the threshold value).
 このように判定されると、画像処理装置1では、図21の白領域に対してのみ超解像処理が行なわれる。図21のグレー領域に対しては、たとえば、バイキュービック法などが採用されて16枚分すべての入力画像が高解像度画像の解像度に解像度変換が行なわれ、変換後の画像が合成される。すなわち、画素ごとに画素値が加算され、その平均値が出力される。 If determined in this way, the image processing apparatus 1 performs super-resolution processing only on the white area in FIG. For the gray region in FIG. 21, for example, the bicubic method is adopted, and all the input images for 16 images are converted to the resolution of the high resolution image, and the converted images are synthesized. That is, pixel values are added for each pixel, and the average value is output.
 <実施の形態の効果>
 画像処理装置1では、超解像前処理として上述の判定を行なうことで、リフォーカス処理などの超解像処理を含む高解像度画像を生成する処理において、画質を落とすことなく処理を高速化することができる。
<Effect of Embodiment>
In the image processing apparatus 1, by performing the above-described determination as the super-resolution pre-processing, in the processing for generating a high-resolution image including super-resolution processing such as refocus processing, the processing speed is increased without degrading the image quality. be able to.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 画像処理装置、2 撮像部、3 画像処理部、4 画像出力部、22 カメラ、22a レンズ、22b 撮像素子、24 変換部、32 リフォーカス処理部、34 前処理部、36 超解像処理部、38 画像合成部、100 デジタルカメラ、104 デジタル処理回路、106 画像処理回路、108 画像表示部、112 記憶部、114 カメラ部、200 パーソナルコンピューター、202 パーソナルコンピューター本体、204 画像処理プログラム、206 モニター、208 マウス、210 キーボード、212 外部記憶装置、341 判定部。 1 image processing device, 2 imaging unit, 3 image processing unit, 4 image output unit, 22 camera, 22a lens, 22b imaging device, 24 conversion unit, 32 refocus processing unit, 34 preprocessing unit, 36 super-resolution processing unit , 38 Image composition unit, 100 Digital camera, 104 Digital processing circuit, 106 Image processing circuit, 108 Image display unit, 112 Storage unit, 114 Camera unit, 200 Personal computer, 202 Personal computer main body, 204 Image processing program, 206 Monitor, 208 mouse, 210 keyboard, 212 external storage device, 341 determination unit.

Claims (13)

  1.  多視点の入力画像群から、前記入力画像よりも多い周波数情報を持つ高解像度画像を出力画像として出力する処理を実行する画像処理装置であって、
     前記入力画像を分割して部分領域を設定し、複数の前記入力画像について対応する部分領域の間の類似度を算出して、前記類似度に基づいて前記部分領域ごとに超解像処理の要否を判定するための判定手段と、
     前記入力画像の、前記判定手段において超解像処理を行なうと判定された部分領域について超解像処理を実行するための第1の処理手段と、
     前記入力画像の、前記判定手段において超解像処理を行なわないと判定された部分領域の解像度を、前記出力画像の解像度に変換する処理を実行するための第2の処理手段とを備える、画像処理装置。
    An image processing apparatus that executes processing for outputting, as an output image, a high-resolution image having more frequency information than the input image from a multi-viewpoint input image group,
    The input image is divided to set partial areas, the similarity between the corresponding partial areas for a plurality of the input images is calculated, and the super-resolution processing is required for each partial area based on the similarity. A determination means for determining whether or not,
    First processing means for performing super-resolution processing on a partial area of the input image that is determined to be subjected to super-resolution processing by the determination means;
    A second processing means for executing a process of converting the resolution of the partial area of the input image that is determined not to be subjected to super-resolution processing by the determination means to the resolution of the output image. Processing equipment.
  2.  前記判定手段は、前記類似度の算出に、前記部分領域の濃度、色値、鮮鋭度のうちの少なくとも1つを用いる、請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the determination unit uses at least one of the density, the color value, and the sharpness of the partial region for calculating the similarity.
  3.  前記判定手段は、テンプレートマッチングを行なって前記類似度を算出する、請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the determination unit performs template matching to calculate the similarity.
  4.  前記第2の処理手段は、複数の前記入力画像の、超解像処理を行なわないと判定された部分領域を合成する、請求項1~3のいずれか1項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 3, wherein the second processing unit synthesizes partial areas determined not to be subjected to super-resolution processing of the plurality of input images.
  5.  前記第2の処理手段は、超解像処理を行なわないと判定された部分領域に、前記入力画像群のうちの1つの入力画像の当該部分領域を用いる、請求項1~3のいずれか1項に記載の画像処理装置。 4. The method according to claim 1, wherein the second processing unit uses the partial area of one input image of the input image group as a partial area determined not to perform super-resolution processing. The image processing apparatus according to item.
  6.  前記判定手段は、前記部分領域の特定画素ごとに前記部分領域についての超解像処理の要否を判定する、請求項1~5のいずれか1項に記載の画像処理装置。 6. The image processing apparatus according to claim 1, wherein the determination unit determines whether or not super-resolution processing is required for the partial area for each specific pixel of the partial area.
  7.  前記入力画像は、複数の色チャンネルから構成されるカラー画像であり、
     前記判定手段は、前記複数の色チャンネルのうちの1チャンネルについて超解像処理の要否を判定する、請求項1~5のいずれか1項に記載の画像処理装置。
    The input image is a color image composed of a plurality of color channels,
    6. The image processing apparatus according to claim 1, wherein the determination unit determines whether or not super-resolution processing is necessary for one of the plurality of color channels.
  8.  前記入力画像は、複数の色チャンネルから構成されるカラー画像であり、
     前記判定手段は、前記複数の色チャンネルから1チャンネルに変換した画像について、超解像処理の要否を判定する、請求項1~5のいずれか1項に記載の画像処理装置。
    The input image is a color image composed of a plurality of color channels,
    6. The image processing apparatus according to claim 1, wherein the determination unit determines whether or not super-resolution processing is necessary for an image converted from the plurality of color channels to one channel.
  9.  前記判定手段は、前記入力画像を縮小した画像を用いて超解像処理の要否を判定する、請求項1~8のいずれか1項に記載の画像処理装置。 9. The image processing apparatus according to claim 1, wherein the determination unit determines whether or not super-resolution processing is necessary using an image obtained by reducing the input image.
  10.  前記判定手段は、前記入力画像群のうちから規定枚数を選択し、選択した入力画像のそれぞれを分割して前記部分領域を設定する、請求項1~9のいずれか1項に記載の画像処理装置。 The image processing according to any one of claims 1 to 9, wherein the determination unit selects a prescribed number from the input image group, divides each of the selected input images, and sets the partial region. apparatus.
  11.  前記入力画像群は時間的に連続するものであり、前記判定手段は、前記連続の順に従って特定画像ごとに前記入力画像を選択する、請求項10に記載の画像処理装置。 The image processing apparatus according to claim 10, wherein the input image group is temporally continuous, and the determination unit selects the input image for each specific image in the order of the continuous.
  12.  多視点の入力画像群から、前記入力画像よりも多い周波数情報を持つ高解像度画像を出力画像として生成する方法であって、
     前記入力画像を分割して部分領域を設定するステップと、
     複数の前記入力画像について対応する部分領域の間の類似度を算出するステップと、
     前記類似度に基づいて前記部分領域ごとに超解像処理の要否を判定するステップと、
     前記入力画像の、超解像処理を行なうと判定された部分領域について超解像処理を実行するステップと、
     前記入力画像の、超解像処理を行なわないと判定された部分領域の解像度を、前記出力画像の解像度に変換する処理を実行するステップとを備える、画像処理方法。
    A method for generating, as an output image, a high-resolution image having more frequency information than the input image from a multi-viewpoint input image group,
    Dividing the input image and setting a partial region;
    Calculating a similarity between corresponding partial regions for a plurality of the input images;
    Determining the necessity of super-resolution processing for each of the partial areas based on the similarity;
    Performing super-resolution processing on a partial area of the input image that is determined to be super-resolution processing;
    An image processing method comprising: executing a process of converting the resolution of a partial area of the input image that is determined not to be subjected to super-resolution processing into the resolution of the output image.
  13.  コンピューターに、多視点の入力画像群から前記入力画像よりも多い周波数情報を持つ高解像度画像を出力画像として生成する処理を実行させるプログラムであって、
     前記入力画像を分割して部分領域を設定するステップと、
     複数の前記入力画像について対応する部分領域の間の類似度を算出するステップと、
     前記類似度に基づいて前記部分領域ごとに超解像処理の要否を判定するステップと、
     前記入力画像の、超解像処理を行なうと判定された部分領域について超解像処理を実行するステップと、
     前記入力画像の、超解像処理を行なわないと判定された部分領域の解像度を、前記出力画像の解像度に変換する処理を実行するステップとを前記コンピューターに実行させる、画像処理プログラム。
    A program for causing a computer to execute a process of generating, as an output image, a high-resolution image having more frequency information than the input image from a multi-viewpoint input image group,
    Dividing the input image and setting a partial region;
    Calculating a similarity between corresponding partial regions for a plurality of the input images;
    Determining the necessity of super-resolution processing for each of the partial areas based on the similarity;
    Performing super-resolution processing on a partial area of the input image that is determined to be super-resolution processing;
    An image processing program causing the computer to execute a process of converting a resolution of a partial area of the input image that is determined not to be subjected to super-resolution processing to a resolution of the output image.
PCT/JP2013/074972 2012-11-19 2013-09-17 Image processing device, image processing method and image processing program WO2014077024A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014546897A JPWO2014077024A1 (en) 2012-11-19 2013-09-17 Image processing apparatus, image processing method, and image processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012253042 2012-11-19
JP2012-253042 2012-11-19

Publications (1)

Publication Number Publication Date
WO2014077024A1 true WO2014077024A1 (en) 2014-05-22

Family

ID=50730947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074972 WO2014077024A1 (en) 2012-11-19 2013-09-17 Image processing device, image processing method and image processing program

Country Status (2)

Country Link
JP (1) JPWO2014077024A1 (en)
WO (1) WO2014077024A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005163A1 (en) * 2013-07-12 2015-01-15 三菱電機株式会社 High-resolution image generation device, high-resolution image generation method, and high-resolution image generation program
US9747665B2 (en) 2015-02-04 2017-08-29 Synaptics Japan Gk Device and method for divisional image scaling
US10944960B2 (en) 2017-02-10 2021-03-09 Panasonic Intellectual Property Corporation Of America Free-viewpoint video generating method and free-viewpoint video generating system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10222669A (en) * 1997-02-05 1998-08-21 Sharp Corp Aligning device
JP2003058886A (en) * 2001-08-21 2003-02-28 Noritsu Koki Co Ltd Device, method and program for deciding similarity of image, recording medium with the program recorded thereon, and image processor
JP2006119843A (en) * 2004-10-20 2006-05-11 Olympus Corp Image forming method, and apparatus thereof
JP2007000205A (en) * 2005-06-21 2007-01-11 Sanyo Electric Co Ltd Image processing apparatus, image processing method, and image processing program
JP2009087329A (en) * 2007-09-14 2009-04-23 Ricoh Co Ltd Image input device and personal authentication device
JP2010049379A (en) * 2008-08-20 2010-03-04 Fujitsu Ltd Fingerprint image acquiring device, fingerprint authenticating apparatus, fingerprint image acquiring method, and fingerprint authenticating method
JP2012003503A (en) * 2010-06-16 2012-01-05 Canon Inc Image processing device, method for controlling the same, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10222669A (en) * 1997-02-05 1998-08-21 Sharp Corp Aligning device
JP2003058886A (en) * 2001-08-21 2003-02-28 Noritsu Koki Co Ltd Device, method and program for deciding similarity of image, recording medium with the program recorded thereon, and image processor
JP2006119843A (en) * 2004-10-20 2006-05-11 Olympus Corp Image forming method, and apparatus thereof
JP2007000205A (en) * 2005-06-21 2007-01-11 Sanyo Electric Co Ltd Image processing apparatus, image processing method, and image processing program
JP2009087329A (en) * 2007-09-14 2009-04-23 Ricoh Co Ltd Image input device and personal authentication device
JP2010049379A (en) * 2008-08-20 2010-03-04 Fujitsu Ltd Fingerprint image acquiring device, fingerprint authenticating apparatus, fingerprint image acquiring method, and fingerprint authenticating method
JP2012003503A (en) * 2010-06-16 2012-01-05 Canon Inc Image processing device, method for controlling the same, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005163A1 (en) * 2013-07-12 2015-01-15 三菱電機株式会社 High-resolution image generation device, high-resolution image generation method, and high-resolution image generation program
JP5987114B2 (en) * 2013-07-12 2016-09-07 三菱電機株式会社 High resolution image generation apparatus, high resolution image generation method, and high resolution image generation program
US9563937B2 (en) 2013-07-12 2017-02-07 Mitsubishi Electric Corporation High-resolution image generation apparatus, high-resolution image generation method, and high-resolution image generation program
US9747665B2 (en) 2015-02-04 2017-08-29 Synaptics Japan Gk Device and method for divisional image scaling
US10944960B2 (en) 2017-02-10 2021-03-09 Panasonic Intellectual Property Corporation Of America Free-viewpoint video generating method and free-viewpoint video generating system

Also Published As

Publication number Publication date
JPWO2014077024A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
CN110827200B (en) Image super-resolution reconstruction method, image super-resolution reconstruction device and mobile terminal
JP6347675B2 (en) Image processing apparatus, imaging apparatus, image processing method, imaging method, and program
Bätz et al. Hybrid super-resolution combining example-based single-image and interpolation-based multi-image reconstruction approaches
EP3048787B1 (en) Image processing apparatus, image pickup apparatus, image processing method, program, and storage medium
TWI387935B (en) Image generation method, program therefor, and storage medium for storing the program
JP2012249070A (en) Imaging apparatus and imaging method
CN113994366A (en) Multi-stage multi-reference bootstrapping for video super-resolution
CN111402139B (en) Image processing method, apparatus, electronic device, and computer-readable storage medium
TW201044856A (en) Image restoration method and apparatus
JP6711396B2 (en) Image processing device, imaging device, image processing method, and program
CN113508416A (en) Image fusion processing module
JP2009206654A (en) Imaging apparatus
JP2018174502A (en) Imaging apparatus, image processing apparatus, control method of imaging apparatus, and program
WO2014132754A1 (en) Image-processing device and image-processing method
JP6270413B2 (en) Image processing apparatus, imaging apparatus, and image processing method
WO2014077024A1 (en) Image processing device, image processing method and image processing program
JP2014164574A (en) Image processor, image processing method and image processing program
JP6557499B2 (en) FOCUS DETECTION DEVICE, ITS CONTROL METHOD, IMAGING DEVICE, PROGRAM, AND STORAGE MEDIUM
JP2015115733A (en) Image processing method, image processor, imaging device, and image processing program
US10122939B2 (en) Image processing device for processing image data and map data with regard to depth distribution of a subject, image processing system, imaging apparatus, image processing method, and recording medium
JP2009237650A (en) Image processor and imaging device
JP6648916B2 (en) Imaging device
JP2015213261A (en) Imaging device, image processing system, and control method therefor
JP2013069012A (en) Multi-lens imaging apparatus
JP7003342B2 (en) Video separator, program and video separation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855970

Country of ref document: EP

Kind code of ref document: A1