WO2014075605A1 - 低功耗太阳能无线门铃 - Google Patents

低功耗太阳能无线门铃 Download PDF

Info

Publication number
WO2014075605A1
WO2014075605A1 PCT/CN2013/086989 CN2013086989W WO2014075605A1 WO 2014075605 A1 WO2014075605 A1 WO 2014075605A1 CN 2013086989 W CN2013086989 W CN 2013086989W WO 2014075605 A1 WO2014075605 A1 WO 2014075605A1
Authority
WO
WIPO (PCT)
Prior art keywords
ringer
receiver
time
signal
timer
Prior art date
Application number
PCT/CN2013/086989
Other languages
English (en)
French (fr)
Inventor
杜若平
肖琦伟
Original Assignee
Du Ruoping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Ruoping filed Critical Du Ruoping
Priority to CN201380023238.XA priority Critical patent/CN104285246A/zh
Publication of WO2014075605A1 publication Critical patent/WO2014075605A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/10Power supply of remote control devices
    • G08C2201/11Energy harvesting
    • G08C2201/114Solar power

Definitions

  • the present invention relates to doorbells and, further, to a low power solar wireless doorbell.
  • solar energy in this paper refers to the energy of light in all daily life.
  • the doorbell includes a button placed outside the door and a ringer placed inside the door.
  • the button of the radio-connected doorbell includes: an encoder, a button, a transmitter, and a battery.
  • the ringer includes: a decoder, an audio, a receiver, and a battery.
  • Buttons and ringers basically use traditional batteries as an energy source. After a period of use, the battery capacity will drop below the operating voltage, causing the button to not work properly when it is pressed. At this time, it is necessary to replace the new battery, which is not only troublesome, but also the replaced battery pollutes the environment.
  • the output power of the most advanced solar cell is 0.02w/CM 2
  • the energy output by the solar cell is proportional to the intensity of the light received, and is proportional to the irradiation area.
  • the nominal output power of a certain area of solar cells refers to the output power of 38000 lux, which is close to the intensity of direct sunlight at 12 noon.
  • the power output of the solar cell will drop below 1/3000 of the nominal output power, and after the evening, it will fall below 1/1000000 of the nominal output power.
  • Solar cells have a relatively large output current time of up to 6 hours during the day.
  • the current in a non-direct sunlight is 2uA/cm 2
  • the current obtained per day is 12uA ⁇ h/cm 2 .
  • the average current obtained is 9uA. ⁇ h / cm 2 .
  • the ringer of the doorbell has a radio receiver. In order to be able to respond to the button at any time, the receiver must be in a working state and consume current.
  • the difference between what is needed and what is tolerated is, under the area that the user tolerates,
  • the energy produced by a solar cell is much less than the energy consumed by a ringer.
  • the energy consumed by the prompting sound that the ringer receives the signal is not counted. If it is calculated, a larger solar cell area is needed.
  • a solar cell with practical value that meets the user's aesthetics is not enough to provide all the energy needed for the ringer. Then the ringer still has to change the battery from time to time, or must have a charging socket to charge the ringer. Then, there are the same drawbacks as using traditional batteries.
  • buttons presses There are similar situations for button presses. However, the ringer is always working during day and night, waiting for the button signal, and the button is only sent when the button is triggered, and the number of times the job is triggered every day is few and the rest is in the rest of the time. Sleep state. Therefore, the button consumes much less energy than the ringer. In this way, it is only necessary to consider the condition of the ringer. Similarly, because the ringer emits a small number of sounds per day, the energy consumed is the same as that consumed by the ringer while waiting for the button signal to be received. The energy is also very small, so basically it can only consider the case where the ringer is always waiting for the energy consumed by the button state of the button signal.
  • the above enumerated data shows that the energy generated by the solar cell is small, and the power consumption of the doorbell is large.
  • the solar doorbell constructed by the traditional idea cannot use the solar battery as the sole power source and thus cannot completely avoid the drawbacks of using the conventional battery.
  • the present invention completely solves this problem by The energy consumed by the ringer is greatly reduced, resulting in a low power doorbell. With the foundation of this low-power doorbell, solar cells are naturally enough to serve as the full source of energy for the doorbell. The doorbell no longer needs to be replaced and no external power supply is required.
  • the present invention constructs a doorbell ringer receiver that consumes much less power than the receiver of the existing doorbell ringer. This creates a low-power doorbell and builds a solar doorbell. Even if you don't use a solar cell, you can replace the battery as it was, because the doorbell power consumption is reduced, and the frequency of battery replacement is much lower.
  • a low power doorbell a button device for transmitting a signal
  • a ringer for receiving a signal
  • the ringer includes a timer (202), an audio circuit, a receiver, and the ringer is controlled by the timer (202) to operate in a continuous 'on/ Turning off the mode: when the timer's on-time expires, the ringer is turned on, waiting to receive the signal sent by the button, and the ringer's on-time is greater than or equal to the ringer's power-on delay.
  • the ringer When an open time has elapsed, the ringer is turned off, the receiving function is stopped, and the timer (202) starts counting until an 'on/off' cycle is resumed after a closing time has elapsed.
  • the audio circuit initiates a sound or remains off depending on whether the ringer receives a signal sent by the button.
  • the buttoner includes a timer (102), and the button is used by the timer (102) Control, the time to send a signal is greater than the closing time of the ringer.
  • the button device sends, firstly, a continuous signal of constant amplitude;
  • the ringer When the ringer is turned on by the timer (202), it first detects whether there is a signal on the channel: if not, immediately enters a closed state, waiting for the next start of the timer (202); if so, continues to maintain Open, The duration of the detection signal, if the time exceeds a certain threshold, continues to remain on to receive the complete data sent by the button, otherwise it immediately enters the off state, waiting for the next time the timer (202) is turned on. .
  • the receiver is a receiver that cuts the power-on delay time to below 500 us.
  • the receiver is a receiver without frequency conversion, a receiver without a mid-band pass filter, and a receiver without a low frequency low pass filter.
  • the receiver of the ringer is a super regenerative receiver without a low pass filter.
  • the super regenerative receiver includes an oscillator, a timer, an envelope detector, a counter, a comparator, a memory, and an average value circuit, the timer, an envelope detector, a counter, a comparator, a memory, and an average value circuit, It is embedded in the microprocessor MCU.
  • the oscillator has a high Q value of the frequency stabilizing element, and the oscillating circuit operates at a position deviating from the center frequency of the frequency stabilizing element.
  • the button device has a personal computer interface, and when the user presses the button, a display or an audible indication is issued.
  • the present invention also provides a solar doorbell.
  • the solar doorbell completely covers the above low-power doorbell, and has all the technical features thereof. And additionally have solar cells and rechargeable batteries,
  • the solar battery is used as a source of energy. When the ambient light is sufficient, the solar battery supplies the working current to the doorbell and charges the rechargeable battery. When the ambient light is insufficient or not, the rechargeable battery supplies the working current to the doorbell.
  • Its ringer has a personal computer interface that displays the intensity of the light it receives.
  • the term 'closed' means in the present invention that the power is turned off or put into a sleep state
  • the term 'on' means that it is powered or activated from sleep to enter a working state
  • the energy consumed by the ringer is greatly reduced compared to the energy consumed by existing ringers.
  • the solar cell can get the doorbell to get all the energy it needs, so the doorbell never needs to be replaced; even if you don't use the solar cell, continue to use the traditional battery.
  • the frequency of replacing the battery has also been greatly reduced, and the effect of reducing trouble and environmental protection has been achieved. .
  • Figure 1 is a structural view of a button.
  • Figure 2 is a block diagram of the ringer
  • Figure 3 is a diagram showing the relationship between the button and ringer signals.
  • Figure 4 is a format diagram of the signal emitted by the button
  • Figure 5 is a structure diagram of a tuned amplifying receiver
  • Figure 6 is a structure diagram of a super regenerative receiver
  • Figure 7 is a super regenerative receiver signal diagram
  • Figure 8 is a structural diagram of an improved super regenerative receiver
  • Figure 9 is a flow chart of improved super regenerative receiver reception
  • Figure 10 is a human-machine interface diagram of the ringer
  • Figure 11 is a schematic diagram of the power-on delay time
  • the button 100 for a solar doorbell using a radio connection includes an encoder 101, a timer 102, a button 103, a solar battery 104, a charging control circuit 105, a rechargeable battery 107, a transmitter 106, and a human interface. 109.
  • the ringer 200 includes a decoder 208, a timer 202, an audio circuit 205, a solar battery 203, a charging control circuit 207, a rechargeable battery 206, a receiver 201, a human machine interface 209, and a microprocessor. MCU204.
  • the solar cell When there is light, the solar cell generates current for use by other parts and charges the rechargeable battery. When the light is weak or not, the rechargeable battery flows current for use by other parts.
  • the ringer 200 waits for the signal of the button 100 to be received, so the ringer must be always working, and the receiver 201 of the ringer consumes most of the energy of the ringer.
  • the receiver 201 of the ringer consumes most of the energy of the ringer.
  • This embodiment will greatly reduce the energy consumption of the ringer receiver.
  • the control receiver 201 and the ringer 200 are always operated in a continuous 'on/off' mode, and the timer 202 turns off all other parts of the ringer for a period of time to Asymmetric transfer of energy reduces the average energy consumption of the ringer.
  • the high level output by the timer 202 turns on the power of the receiver 201 and the ringer 200, and the low level output by the timer 202 turns off the receiver 201 and the ringer 200, except for the timer.
  • the button 103 of the button 100 If the button 103 of the button 100 is pressed, its transmitter 106 will turn on and transmit a signal as shown in Figure 3(b).
  • Launch time TT_ON.
  • TT_ON is small, and if the button 100 is sent just during the off time of the ringer 200, the ringer 200 will not be received, as shown in Fig. 3(b). Show. Therefore, the button 100 must extend the transmission time TT_ON until
  • the button 103 of the button 100 is pressed, and the transmitter 106 repeatedly transmits the content to be transmitted without interruption until the transmission time is longer than the off time TR_OFF of the ringer 200. As shown in Figure 3 (c).
  • the ringer 200 is turned off for a long time, but the button 100 is required to increase the transmission time when it is sent, the power consumption is transferred from the ringer 200 to the button 100, and the button 100 emits a current that the ringer 200 receives. More than 10 times, it seems that the energy saved in the ringer 200 is more consumed on the button 100. In the doorbell system, the energy transfer seems to be worth the loss.
  • the extension of the ringer 200 is turned off, causing the energy consumption to be transferred from the ringer to the button 100, and the energy transfer is asymmetric, the button 100 increases the power consumption, and the ringer 200 saves a huge amount. energy of. Therefore, the present embodiment extends the off time TR_OFF of the ringer 200 as much as possible. , to achieve the effect of reducing power consumption.
  • the ringer 200 is always operating in a continuous 'on/off' mode which is not effective in actual use because turning off the ringer for a period of time TR_OFF causes the ringer 200 to take longer to react.
  • TR_OFF causes the ringer 200 to take longer to react.
  • the method of 'feeling transfer' of the human body is adopted.
  • the only interface for obtaining the information that the doorbell works normally after the user presses the button is the sound of the ringer.
  • another interface for the user to obtain the information of the normal operation of the doorbell is added. After the user presses the button, the interface immediately reacts, and the user generates a feeling that the doorbell has been working normally, even if the ringer sounds a little behind, for example, 1500ms. Even at night, the time of this sound is further delayed to more than 2500ms, and the user has not produced the bad impression that the doorbell is not sensitive.
  • the newly added human-machine interface can be the illumination of the LED indicator light, or the sound of the 'drip drop' and the like that can be felt by the human sensory organs.
  • TR_OFF 1500ms (4).
  • the ringer In order to prevent the presence of more than two doorbells produced by the same manufacturer in the vicinity, the ringer receives a button signal from the neighbor and responds by mistake.
  • the content sent by the button device contains at least the coding information of the doorbell.
  • Each pair of doorbells has a different code, and each pair of doorbell buttons and ringers have the same code. Encode at least a few bits of content so that each pair of doorbells in the vicinity is encoded differently.
  • the ringer only responds with the same encoding information as itself, controls the sound, and emits music.
  • 'Y' signal which is a data packet
  • TTY which has a transmission time of at least several bits
  • the baud rate of the signal transmission is 1/T
  • the 'on/off' mode of operation of the present invention is based on the 'feeling transfer'. Simple 'on/off' The way is not to achieve a significant reduction in power consumption. Since that would be subject to human perception, the 'on/off' approach of the present invention lies in breaking the limits of human perception. Using the 'feel transfer' method, 'on/off' Can be effectively implemented on the doorbell.
  • the strategy of sending and receiving is improved, and TR_ON is reduced to further reduce the average energy consumption of the ringer: A two-pronged approach is used.
  • the conventional transmission method is a repeated transmission of the 'Y' signal as shown in FIG. 4(a), which causes the receiver to turn on the time TR_ON.
  • the most-less can't be less than the time of the 'Y' signal.
  • the transmitted signal is no longer the repeated transmitted 'Y' signal as shown in Fig. 4(a), but an 'X' signal and at least one 'Y' signal as shown in Fig. 4(b).
  • the 'X' signal is a continuous signal that carries at least the carrier and has a constant carrier amplitude during the transmission time. It can be understood as a continuous logic 1 high level, without alternating 0 and 1.
  • the duration of the 'X' signal is greater than or equal to the off time of the receiver.
  • One complete transmission of the button, in order to guarantee reception, several such 'X+Y' can be sent.
  • the first retest the amplitude threshold. For ringer 200, now every time it is turned on, it is no longer receiving search 'Y' The signal is first received to search for a signal on the channel once, that is, logic 1 high. In other words, at this time, only the signal amplitude is ignored, and the phase and frequency offset of the signal are ignored, and the encoding format is ignored.
  • the receiver is only tentatively turned on for a moment, and its turn-on time TR_ON is much smaller than the above-mentioned traditional 'Y' signal time. It can detect whether there is a signal on the channel for a maximum of 1 bit. At this time The receiver behaves like an AM receiver.
  • the duration of the 'X' signal sent It is greater than or equal to the off time of the receiver. Therefore, in the complete transmission of the button, the moment when the receiver is turned on, there must be a time corresponding to the transmission of the 'X' signal. At this time, if the amplitude of the received signal exceeds the threshold, it is determined that there is a signal. That is, the logic 1 is high level. This threshold is called the amplitude threshold here. As a result, the following two situations will occur:
  • the present invention solves this problem by using the second heuristic: As mentioned before, because as long as the data is sent, it will definitely receive the 'X' signal.
  • One characteristic of the 'X' signal is that the duration is not less than the off time of the receiver, that is, the presence of the 'X' signal. Will cause the receiver to receive a long duration
  • the logic 1 signal is much larger than the duration caused by noise.
  • the channel has a signal
  • the reception is turned on, and the probe signal continues for a period of time.
  • a time threshold When the duration is greater than the time threshold, the judgment is indeed a signal instead of noise.
  • the ringer receiver remains on; when it is less than the time threshold, it is judged to be noise, and the ringer receiver is immediately turned off.
  • the ringer 200 selects a receiver 201 of a suitable configuration. With the method of the present invention, the average power consumption of the ringer receiver can be further reduced.
  • Fig. 11(b) point A and point B, the receiver 201 of the ringer is controlled by the timer 202, and the power is turned on to receive the signal on the search channel.
  • Fig. 11(a) shows that at the point A, the buttoner does not transmit a signal
  • Fig. 11(c) shows that the receiver 201 does not receive the signal on the channel.
  • Figure 11(a) shows that the transmitter 106 is transmitting a signal
  • the receiver 201 of Figure 11(c) has received a signal on the channel at point C.
  • point C has some delay relative to point B.
  • the difference between point C and point B is called the ringing delay time T_DELAY of the ringer or receiver.
  • the current general-purpose receivers are superheterodyne receivers or direct conversion receivers, all of which have a frequency conversion structure.
  • the frequency conversion is to mix the input signal with a local oscillator signal of extremely high purity, and to shift the frequency of the input signal to a low frequency band, and then perform amplification and filtering.
  • the local oscillator circuit has at least one high-frequency selection circuit, for example, using a crystal with a quality factor greater than 10,000.
  • the local oscillator circuit from power-on to oscillation, is subjected to a start-up time.
  • the start-up time is proportional to the quality factor Q. The larger the Q, the longer the start-up time.
  • the local oscillator circuit may also need to be divided, phase locked, calibrated, etc., which will cause the local oscillator circuit to take longer to stabilize.
  • the mixer because of the mixing, multiple frequencies are generated, and the mixer must have a narrowband bandpass filter or a low frequency lowpass filter. Then, after power-on waiting for the local oscillator signal to stabilize, the signal entering from the antenna can be detected at the output of the ringer receiver. At this time, the input signal passes through at least one high-pass filter, low-pass filter, or narrow-band mid-band pass filter. When these circuits complete their functions, they will have delays on the signal, especially A high-Q narrow-band mid-band pass filter has a long delay time on the signal.
  • the ringer with the current universal frequency conversion receiver has a relatively large power-on delay time T_DELAY, which is approximately 2 ms or more.
  • the invention provides that there is no frequency conversion and no local oscillator (
  • the local oscillator refers to an oscillating signal generated by a receiver that differs from the carrier signal frequency by an intermediate frequency, and a receiver that does not have a narrowband bandpass filter and has no lowpass filter. In order to minimize the power-on delay time T_DELAY.
  • a preferred embodiment of the present invention employs an improved super regenerative receiver circuit having a very short power up delay time T_DELAY.
  • the memory 805 stores the output of the counter 804, and the output of the previous N counts (for example, 8 times) is stored in the memory 805, and the average value circuit 806 calculates the average value of the N count values, which is taken below the average value.
  • a value is placed as a threshold for comparator 807 at an input 809 of comparator 807.
  • the start-up time of the oscillator 802 depends on whether the antenna 801 has an external co-frequency carrier signal, and if so, the start-up time becomes faster.
  • the circuit of FIG. 8 directly measures the start-up time of the oscillator 802 to determine whether or not there is currently a carrier signal having the same oscillation frequency as the input from the antenna 801.
  • the timer 810 outputs a high level as the signal of the extinction control circuit 803 to start the oscillator 802, and also starts the counter 804 to start counting.
  • the amplitude of the oscillation is sufficiently large, the trigger counter 804 is stopped. Count and trigger to turn off oscillator 802.
  • the value of the counter 804 corresponds to the start-up time of the oscillator 802. It also corresponds to the power-on delay time T_DELAY.
  • the value of counter 804 is sent to the other end 808 of comparator 807 for comparison with threshold 809.
  • the current count value 808 is less than the threshold 809, it is determined that the channel has a carrier signal input, and the current input data is logic 1, otherwise it is determined that the channel has no carrier frequency signal, and the current input data is logic 0.
  • the current value of counter 804 is then sent to memory 805 and cleared.
  • the circuit's upper extension time T_DELAY start-up time 901 + Signal processing time 902.
  • the start-up time 901 of the oscillator 802 is short; there is no medium-band pass or low-frequency low-pass filter, and the signal processing 902 is extremely short.
  • the power-on delay time T_DELAY of this circuit is small, and can be approximately 10us or less.
  • the counter 804 has no time to react.
  • An envelope detector circuit composed of a diode and a resistor capacitor can be added after the oscillator 802, and the counter 804 and the oscillator 802 can be triggered by the envelope of the amplitude. Obviously, as long as the capacitance in the envelope detector is small enough that the resistance is large enough, it will hardly affect the upper extension time T_DELAY.
  • the super regenerative receiver of the present embodiment can be used as a receiver of a ringer, and the timer signal for controlling the ringer on/off when detecting whether there is a signal on the channel is also used as the extinction control circuit of the super regenerative receiver.
  • the timer for controlling the ringer on/off, the counter that can be triggered, and the average function circuit of the N count values can be embedded in the MCU811 of the microprocessor, and the software and hardware of the MCU. Implement their functions. Under the control of the timer in the MCU, during the period when the ringer is off, the MCU is in a sleep state, and only the timer is working. When the ringer is on, the MCU is woken up by the timer and enters the working state.
  • the button when the button is transmitted, the signal is continuously transmitted within the time TT_ON, and the ringer 200 is controlled by the timer 202 to operate in the 'on/off' mode.
  • the ringer 200 When it is turned on, it first detects whether there is a signal on the channel during the ON time TR_ON. According to the channel detection result, the signal continues to be turned on for TT_ON time, as shown in Figure 4(c), to receive a complete packet of data; The bell is shown in Figure 4(d).
  • the closing time is TT_OFF, repeating and repeating. In most cases, the situation is shown in Figure 4(d), where there is no signal on the channel.
  • the minimum turn-on time of the ringer should be equal to the power-on delay time, ie:
  • the preferred embodiment of the above receiver and the following two common implementation examples greatly reduce T_DELAY compared to the conventional general-purpose receiver. At least it is reduced to less than 500us, so the opening time TR_ON can be greatly reduced. According to equation (1), TR_ON is greatly reduced, which will greatly reduce the average energy consumption. It can be said that the number of times T_DELAY is reduced, and the energy consumption of the ringer can be reduced by several times.
  • the traditional stable frequency idea is to use a very high Q in the oscillating circuit.
  • the value of the component, such as quartz crystal, surface acoustic wave and other frequency stabilization components, the Q value is LC
  • the circuit is hundreds of times, and the oscillator is tuned so that the oscillation frequency resonates at the center frequency of the frequency stabilizing element.
  • the frequency stability of the oscillating circuit is very high, and the frequency drift becomes very small.
  • the Q of the frequency stabilization component The value is very high, the start-up time will become longer, and the power-on delay time will be reduced.
  • T_DELAY Very unfavorable, which will greatly reduce the effect of saving power, which is a contradiction.
  • the oscillator in the embodiment will be solved in such a way that the oscillator does not resonate at the center frequency of the frequency stabilizing element as in the conventional resonant circuit, but is tuned in its vicinity, for example, slightly higher than the center frequency. 10 ⁇ 100k, it will also have a better effect of stable oscillation frequency, and the time of starting the vibration will become shorter, achieving the effect of both stable frequency and less power-on delay time.
  • T_DELAY is greatly reduced, resulting in a significant reduction in the average current consumption of the ringer.
  • the ringer also has a human-machine interface that measures and displays the light intensity of the current environment. Prevent users from installing the ringer in an environment that is too dark, such as corners or behind doors.
  • the voltage value of the solar cell 1001 is read by the A/D converter 1002. According to the magnitude of this voltage value, the blinking frequency of the LED is controlled, for example, when the light is strong, the flashing is faster.
  • Figure 5 shows an embodiment of a receiver provided by the present invention, which is a tuned amplifying receiver .
  • the signal coming from the antenna 501 passes through the high frequency low noise amplification 502, the high frequency band pass filter 503, and then passes through the nonlinear envelope detector 504, and the low frequency amplification 505 reaches the output 506.
  • antenna 501 receives the carrier signal, the output produces a higher voltage 506; when the antenna does not receive the carrier signal, the output will be a lower voltage 506. According to the level of 506 voltage, it can be judged whether there is carrier or not, corresponding to logic 1, 0.
  • the nonlinear envelope detector 504 will cause the frequency and phase information of the signal to be lost. Thus, in this embodiment, only the amplitude information of the input signal is received. In this embodiment, the input signal is not frequency transformed, thus
  • Power-on delay time T_ of this embodiment DELAY is much smaller than the general-purpose frequency conversion receiver, which is roughly 10us or less.
  • This circuit can be used as the receiver 201 of the ringer 200, which is turned on/off by the timer 202 of the ringer 200.
  • FIG. It is a conventional super regenerative circuit, and a super regenerative receiver is a receiver without frequency conversion.
  • Its oscillator 602 is a simple LC oscillator.
  • the Q value of the LC loop is not very high, so its start-up time is quite fast.
  • the basic principle of super-regeneration reception when the frequency of the LC loop coincides with the frequency of the signal received by the antenna 601, the time required for the start-up is more accelerated.
  • the basic principle of super regenerative reception when LC When the frequency of the loop matches the frequency of the signal received by the antenna 601, the time required for the start-up is faster.
  • the quench control circuit 603 generates a switching signal to keep the oscillator 602 in a state of being turned off and oscillating continuously, and the envelope detecting 604 removes the high frequency RF signal to generate a frequency equal to extinction as shown in FIG. 7(d).
  • the pulse width modulation (pwm) signal of the control signal frequency is detected by the low frequency low pass filter 605, as shown in Fig. 7(e).
  • the power-on delay time T_DELAY of the circuit is small, so the circuit can be used as the receiver 201 of the ringer 200, and the output signal of the timer 202 of the ringer 200 is used as the extinction control signal. Turn on/off the oscillator 602.
  • the power-on delay time T_DELAY is smaller than that of the general receiver, but there is a low-frequency low-pass filter 605 link, so that the power-on delay time T_DELAY of the circuit does not reach a minimum.

Abstract

一种低功耗、太阳能无线门铃,其响铃器(200)工作在连续的开启/关闭模式,按钮器(100)发送的信号持续时间大于响铃器(200)的关闭时间,响铃器(200)的开启时间大于等于响铃器(200)的上电延时时间,响铃器(200)开启时首先检测信道上是否有信号以及信号的宽度,接收机(201)没有频率交换装置、中频带通滤波器、低频带通滤波器,接收机(201)的上电延时时间很短,响铃器(200)含有人机接口,用于显示响铃器(200)接收到的光强,按钮器(100)含有人机接口,在被按钮时做出反应。

Description

低功耗太阳能无线门铃 技术领域
本发明涉及到门铃,更进一步, 涉及到一种低功耗太阳能无线门铃 。
背景技术
基于习惯,人们所说的太阳能,实际上是包含了日常所有光线发出的能量,而并非仅是指直射太阳光的能量。因此,本文中所说太阳能,泛指一切日常生活中的光线能量。
门铃包括放在门外的按钮器,和放在室内的响铃器。
目前,公知的门铃,按钮器和响铃器采用线连接,或者采用无线电连接。显然无线门铃更加方便。基于方便和安全,现在绝大部分的门铃,按钮器和响铃器都采用无线电连接。
采用无线电连接的门铃的按钮器包括有:编码器、按键、发射机、电池。响铃器包括有:解码器、音响、接收机、电池。
按钮和响铃器基本上都采用传统的电池作为能源。使用一段时间后,电池容量会降到工作电压以下,导致按钮被按下时,不能正常工作。 这时得更换新电池,这不仅麻烦,而且换下来的电池污染环境。
现在太阳能转换技术不断发展,太阳能电池能够将光线转换为电能,作为提供给设备工作的能源。
技术问题
目前,最先进的太阳能电池的输出功率是0.02w/CM2,太阳能电池输出的能量与收到照射的光强度成正比,与照射面积成正比例。一定面积的太阳能电池的标称输出功率,是指 38000lux 的光强下的输出功率,这个光强,与正午12点时直射阳光下的光强接近。一般白天,室内随意放置,非阳光直射条件下的光强下,太阳能电池的功率输出将下降到标称输出功率的1/3000以下,傍晚以后,下降到标称输出功率的1/1000000以下,直至为0。太阳能电池白天具有相对较大的输出电流时间最多只有6小时。在输出电压为3.5v下,室内非阳光直射条件下的电流是2uA/cm2,每天获得的电流12uA·h/cm2,假定每4天有一天是阴天,那么获得的平均电流是9uA·h /cm2
门铃的响铃器,是具有1个无线电接收机的,这个接收机,为了能够任何时候都能及时响应按钮器,它必须一直都处于工作状态,消耗电流。
目前,即使目前最省电的无线电接收机,在3.5v电压下,工作电流都在300uA以上,每天耗费的总电流是300*24=7200uA · h 。 为获得这些能源, 如果全部由太阳能电池提供, 需要的太阳能电池面积为 7200/9 =800 cm2 , 差不多比现有门铃的面积大了10倍以上!
基于美观的原因,用户容忍的门铃上的太阳能电池的面积不会太大,例如不会超过 5cm*8cm=40cm2
所需要的和所容忍的产生了巨大的差异, 在用户容忍的面积下, 太阳能电池产生的能量远远小于响铃器消耗的能量。这里为了简略,还没有算上响铃器收到信号要发出的提示声音所消耗的能量,如果算上,还需要更大的太阳能电池面积。 符合用户审美的有实用价值的太阳能电池,不足以提供全部所需的能量给响铃器 , 那么响铃器要么还是得时不时换新电池,要么还必须备有一个充电插座,用以向响铃器充电。那么,出现了与采用传统电池一样的弊端。
对于按钮器,也有类似的情况。但是,响铃器无论白天黑夜始终处于工作状态,等待按钮器的信号,而按钮器,仅是按键被触发时,短时间发送,并且,每天被触发工作的次数屈指可数,其余时间都处于休眠状态。所以,按钮器消耗的能量比响铃器少得多。这样,就只需要考虑响铃器的情况,同样,因为响铃器每天发出声音的次数也很少,因此而消耗的能量,与响铃器一直处于等待接收按钮器信号的工作状态所消耗的能量相比,也是很少,所以基本上可以只是考虑响铃器一直处于等待接收按钮器信号的工作状态所消耗的能量的情况。
以上列举这么多的数据表明, 太阳能电池产生的能量小,门铃的功耗大, 传统思路构造的太阳能门铃,无法使用太阳能电池作为唯一的电源因而无法全部避免使用传统电池的弊端 。 本发明彻底解决了这个问题, 通过 大幅度降低了响铃器消耗的能量 ,从而得到了低功耗的门铃。有了此低功耗门铃的基础,太阳能电池自然就足以作为门铃的全部能量来源, 令门铃不再需更换电池,也不需要外接任何电源。
技术解决方案
为了克服现有门铃需要更换电池的麻烦和废旧电池对环境的污染等多方面不足,本发明构建一种比现有门铃响铃器的接收机功耗低得多的门铃响铃器接收机,由此构建出低功耗门铃,再由此构建出太阳能门铃。 即使不使用太阳能电池,而如同原来那样更换电池,因为门铃功耗降低,电池更换的频率也比原来低得多。
为解决上述技术问题, 根据本发明,提供一种低功耗门铃,具有发送信号的按钮器和接收信号的响铃器, 所述响铃器含有定时器( 202 ), 音响电路,接收机, 所述响铃器被所述定时器( 202 )控制,工作在连续的'开启 / 关闭'模式:当定时器的开启定时时间到达时,所述响铃器被开启,等待接收所述按钮器发送的信号,所述响铃器的开启时间大于等于响铃器的上电延时时间; 当经历一段开启时间后,所述响铃器被关闭,接收功能被停止,定时器( 202 )开始计时,直到经历一个关闭时间后,又 重新 开始一个'开启 / 关闭'周期。 所述音响电路依据所述响铃器是否收到所述按钮器发送的信号,而启动发出声音或者保持关闭。
所述按钮器含有定时器( 102 ),所述按钮器被所述定时器( 102 )控制,发送信号的时间大于所述响铃器的关闭时间。
所述按钮器发送的,首先是 幅度不变的持续不断的信号; 所述响铃器被所述定时器(202)控制开启时首先检测信道上是否有信号:如果没有,立刻进入关闭状态,等待所述定时器(202)的下一次开启; 如果有,继续保持开启, 检测信号的持续时间,如果该时间超过一定的阈值,则继续保持开启以接收按钮器发送的完整数据,否则立刻进入关闭状态,等待所述定时器(202)的下一次开启。。
所述接收机是裁减上电延时时间至500us以下 的接收机。
所述接收机是没有频率变换的接收机,是没有中频带通滤波器的接收机,是没有低频低通滤波器的接收机。
所述响铃器的接收机是没有低通滤波器的超再生接收机。
所述超再生接收机含有振荡器、定时器、包络检波器、计数器、比较器、存储器、平均值电路,所述定时器、包络检波器、计数器、比较器、存储器、平均值电路,被嵌入到微处理器MCU中。
所述振荡器,具有高Q值的稳频元件,振荡电路工作在偏离稳频元件中心频率的位置。
所述的按钮器有一个人机接口, 当用户按键时,发出显示或者声音指示。
上述构建出一种低功耗的门铃。在此基础上,本发明还提供一种太阳能门铃。所述太阳能门铃,完全涵盖了上述低功耗门铃, 具有其全部技术特征 ,并且另外具有太阳能电池和可充电电池, 使用太阳能电池为能量来源,当环境光线充足时,太阳能电池给门铃提供工作电流并向可充电电池充电,当环境光线不足甚至没有时,可充电电池向门铃提供工作电流, 其响铃器有一个人机接口, 显示其接收到的光强 。
为清楚简单地表达,'关闭'一词,在本发明中意味着切断其电源或使其进入休眠状态,'开启'一词意味着对其供电或激活其从休眠进入工作状态。
有益效果
本发明的这些方面,使得响铃器消耗的能量比现有响铃器消耗的能量极大地降低, 从而得到低功耗门铃。藉此低功耗门铃 , 太阳能电池就能让门铃获得所需要的全部的能量,因此可以让门铃永远不需要再更换电池;即使不使用太阳能电池而继续使用传统电池 ,更换电池的频率藉此也大幅度降,都达到了减少麻烦、环保的效果。 。
附图说明
图1是按钮器的结构图。
图2是响铃器的结构图
图3是按钮器和响铃器信号之间的关系图
a 控制响铃器的信号
b 按钮器发射的信号
c 改进的按钮器发射的信号
图4是按钮器发射的信号的格式图
a 发送信号的内容
b 改进的发送信号的内容
c 接收机收到信号
d 接收机收不到信号
图5是调谐放大接收机结构图
图6是超再生接收机结构图
图7是超再生接收机信号图
a RF 输入601的信号波形
b 熄灭控制信号603输出的信号波形
c 振荡器602输出的信号波形
d 包络检波器604输出的信号波形
e 低通滤波器608输出的信号波形
图8是改进的超再生接收机结构图
图9是改进的超再生接收机接收流程图
图10是响铃器的人机接口图
图11 是上电延时时间示意图
a 按钮器发射的信号
b 定时器输出到响铃器的控制信号
c 响铃器接收机的输出
本发明的最佳实施方式
如图1示,采用无线电连接的太阳能门铃的按钮器100包括有:编码器101、定时器102、按键103、太阳能电池104、充电控制电路105、可充电电池107、发射机106、人机接口109。
如图2示,响铃器200包括有:解码器208、定时器202、音响电路205、太阳能电池203、充电控制电路207、可充电电池206、接收机201、人机接口209、微处理器MCU204。
有光线的时候,太阳能电池产生电流,供其他部分使用,并对可充电电池充电。光线很弱或没有的时候,充电电池流出电流,供其他部分使用。
响铃器200一直等待接收按钮器100的信号,因此响铃器必须一直工作,响铃器的接收机201耗费了绝大部分响铃器的能量。为了降低响铃器能量消耗,首先会考虑降低接收机201本身工作的电流。所有的种类的接收机几乎都有高频放大这个环节,而为了对高频信号具有一定的低噪声放大能力,例如具有12db以上的增益,高频放大器本身必须具有一定的偏置电流,目前无论何种半导体工艺构成的放大器本身的偏置电流,已经很难再进一步下降,
本实施例将极大幅度降低响铃器接收机的能耗。
第一个方面,通过定时器202,控制接收机201以及响铃器200一直工作在连续的'开启/关闭'模式下,定时器202在一段时间内,关闭响铃器的其他所有部分,以非对称转移能耗,降低响铃器的平均能耗。
定时器202输出的高电平开启接收机201以及响铃器200的电源,定时器202输出的低电平关闭接收机201以及响铃器200中,除定时器之外的其他部分。
响铃器200被开启时间=TR_ON,被关闭时间=TR_OFF。如图3(a)所示。关闭时,除定时器202之外,切断其他所有部分的能量供应。因此,关闭时,响铃器200只消耗极微少能量,开启时消耗了绝大部分能量。
'开启/关闭'模式下,响铃器的平均消耗降低为一直开启模式方式的:
TR_ON/(TR_ON+TR_OFF) ≈TR_ON/TR_OFF。(1)
TR_ON 越小,TR_OFF越大,都能够减少响铃器的平均能耗。
按钮器100的按键103如果被按下后,它的发射机106将开启,发射信号,如图3(b)所示。发射时间=TT_ON。通常,因为按钮器100所发送的内容很少,故TT_ON很小,如果按钮器100恰好在响铃器200的关闭时间内发送,响铃器200将无法收到,如图3(b)所示。所以按钮器100必须将发射时间TT_ON延长,直到
TT_ON ≥ TR_OFF, (2)
才能保证能够被响铃器200收到。所以按钮器100的按键103被按后,发射机106将所需要发射的内容不间断重复发射,直到发射时间大于响铃器200的关闭时间TR_OFF。如图3(c)示。
那么,将响铃器200关闭时间延长,却需要按钮器100发送时增加发射时间,能耗从响铃器200被转移到了按钮器100,并且按钮器100发射电流是响铃器200接收电流的10倍以上,似乎在响铃器200节省的能耗,更多地在按钮器100上需要消耗,在门铃这个系统内部,能耗转移似乎得不偿失。
因为要随时检测到响铃器的信号,响铃器200是持续一直工作的,而按钮器100仅是被按键这个事件所触发开启而发射一次,按键触发这个事件每天出现的次数一般情况下不会大于10次,而响铃器200如果假定一个开启/关闭周期为200ms, 每天需要开启/关闭的次数=60*60*24*1000/200=432000次 (3)
就是说延长响铃器200关闭时间,导致能耗从响铃器向按钮器100转移,而这种能耗转移是非对称的,按钮器100增加了一点点能耗,响铃器200节省了巨大的能量。因此,本实施例尽量延长响铃器200的关闭时间TR_OFF ,达到降低功耗的效果。
但是,实际上, 响铃器200一直工作在连续的'开启/关闭'的模式在实际使用中效果欠佳,因为关闭响铃器一段时间TR_OFF,会导致接响铃器200反应时间变长。如图3(c)示,用户在A点按键后,最不利的情况下,图3(a)的响铃器会在延时差不多TR_OFF后,才能在图3(a)的B点收到而响铃,所以按键后的最大反应延时时间 = TR_OFF。为了节省功耗,需要尽量延长TR_OFF,但当TR_OFF延长到300ms以上时,即按键后的声音反应延时时间超过300ms时,这个反应的滞后能够被人体的感官感受到,假定这个时间称为T_FEEL。当T_FEEL>300ms后,用户会感觉到按键后的反应时间变长,会产生诸如'按钮器的按键的手感不好、灵敏度不够、有点失灵'的不良印象。即响铃器'开启/关闭'这种工作模式,会受到人的主观感觉的限制,运用本发明,可以超过原有的这种限制。所采用的是人体'感觉转移'的方法。对于普通的现有的门铃,用户按键后,获得门铃正常工作的信息的唯一界面是响铃器发出的声音。这里增加另一个供用户获得门铃正常工作的信息的界面,用户按键后,这个界面立刻产生反应,用户就产生了门铃已经正常工作的感觉,即使响铃器的声音滞后一点传来,例如1500ms,甚至在晚上,进一步将这个声音的时间滞后到2500ms以上,用户都已经不会产生上述门铃不灵敏的不良印象。即用户的感觉,从响铃器的声音被转移到按钮器的新的人机界面上来,因此响铃器的声音不再是用户唯一的感觉界面,于是T_FEEL将被大大延长,声音的发出时间可以大大滞后,这意味TR_OFF可以大幅增加,例如从250ms增加到1500ms,相应地,根据方程(1),现在消耗的平均能量降低为没有采用'感觉转移'的250/1500 = 1/6,使得响铃器的'开启/关闭'工作模式,有实际的使用价值。这个新增加的人机界面可以是LED指示灯的发光,也可以是发出'滴滴'的声音等等其他能为人的感觉器官感受的动作。
为了用具体的数据说明上述技术方案的降低功率效果,假定将响铃器的关闭时间确定为:
TR_OFF= 1500ms (4).
显然这个数据只是为了便于举例说明,而并非一个本发明的技术上的定量特征。根据方程(2)、(4)按钮器100的持续重复发射时间:
TT_ON >1500ms (5)
一般的门铃,为了防止附近有2个以上相同厂家生产的门铃存在,响铃器收到邻居的按钮信号而误响应,按钮器发送的内容至少含有门铃的编码信息。每一对门铃,具有不同的编码,每一对门铃的按钮器和响铃器,具有相同的编码。编码至少有几个bit的内容,以使附近每一对门铃的编码都不相同,响铃器只有收到和自己相同的编码信息,才作反应,控制音响,发出音乐。至少含有编码信息的全部发送信号命名为'Y'信号,这是一个数据包,发送所需时间 = TTY,至少具有几个bit的发送时间,那么按照普通的方法,采用上述'开启/关闭'方法,按钮器100被按键发射时,就必须在TT_ON的时间内,连续地反复地发送'Y'信号,如图4(a)。响铃器200的开启时间, TR_ON,必须大于两次'Y'信号的发送时间TTY,才能保证到响铃器接收到完整的一个'Y'信号。即:
TR_ON ≥ 2*TTY (6)
因为最不利的情况,是按钮器100刚开始发送'Y'信号,响铃器200才开启,所以响铃器200必须等这个'Y'信号发完,才能接收到下一个完整'Y'信号,因此TR_ON≧ 2*TTY,而不是TR_ON≧ TTY。
如果假定'Y'信号含有N个bit的信息,信号发送的波特率=1/T,则发送'Y'信号所需时间TTY=N*T,根据方程(6)
响铃器每次开启时间 TR_ON ≥2* N * T (7)
作为一个合理的假设,假定TR_ON=30ms,根据(1)和(4),能耗降低为30/1500=1/50
就是说, 根据上面的措施,响铃器的消耗的能量,已经大大下降。
必须指出,本发明的'开启/关闭'工作模式,是建立在'感觉转移'的基础上的。 单纯的 '开启/关闭' 方式是不能达到大幅度降低功耗的目的。 因为那将受人的感觉制约,本发明的 '开启/关闭' 方式在于突破人的感觉的限制。使用了'感觉转移'的方式, '开启/关闭' 才能在门铃上有效的实施。
第二个方面,改进发送和接收的策略,减少TR_ON ,以进一步降低响铃器的平均能耗 : 采用两重试探的方法。
传统的发送方法,是如图4(a)所示的反复发送的'Y'信号 ,这导致接收机开启的时间TR_ON 最-少不能少于'Y'信号 的时间。 本发明 发送的信号,不再是如图4(a)所示的反复发送的'Y'信号,而是如图4(b)所示的'X'信号和至少一个'Y'信号。'X'信号是一个至少携带了载波的,并且在发送时间内载波幅度不变的持续不断的信号,可以理解为一个连续的逻辑1的高电平,没有交替的0和1。'X'信号的持续时间,大于或等于接收机的关闭时间。按钮器的1次完整发送,为了保证接收,可以发送若干个这样的'X+Y'。
第一重试探: 幅度阈值。对于响铃器 200 ,现在每次开启,不再是接收搜索 'Y' 信号,而是首先接收搜索一次信道上是否有信号 ,即逻辑 1 高电平 。也就是说,这时只关心信号幅度,忽略信号的相位、频偏等特性,更不会理会编码格式, 接收机只是试探性的一瞬间开启 ,其开启时间TR_ON 远远小于上述的传统的'Y'信号 时间,最长不会超过1个bit的时间即可检测到信道上是否有信号 。这时 接收机的行为如同一个 AM 接收机。 因为发送 'X'信号的持续时间, 大于或等于接收机的关闭时间,因此在按钮器的1次完整发送中,接收机开启的瞬间,必然有对应发送'X'信号的时刻。 此时若接收的信号幅度超过阈值,就判断为有信号,这 即逻辑1高电平,这个阈值在此称为幅度阈值, 结果将会出现以下两种情况:
( i ) 如图4(c)B点所示,收到信号。
( ii ) 如图4(d)所示, 没有发射信号,没有收到信号。那么立刻直接关闭响铃器200除定时器202之外的所有部分,重新开始下一个 '开启/关闭' 周期。
( i ) 的情况,是按钮器100被按键才出现的。每天,按键103被按下,发出信号的机会极少,几乎所有的都是(ii)的情况,根据方程(3),(ii)出现的次数极大。首先忽略(i)情况下的能量消耗,只考虑(ii)的情况。那么响铃器200的开启时间TR_ON就是搜索接收一次信道上是否有信号的时间,根据前面提到的接收机在检测信道上是否有信号时的行为,接收机开启接收信号的时间可以少于1个bit的时间。现在方程(7)演变为TR_ON≦ T。TR_ON降低2N倍,根据方程(1) 响铃器接收机平均功耗降低了2N倍。
再考虑( i )的情形:开始第二重试探:时间阈值。 在上述第一重试探性的开启,响铃器接收机判断信道存在信号后,传统的思路是接收机保持开启状态一段时间,开始接收一包完整的数据,这个时间至少是一包数据的时间('Y'信号的时间)。 本发明在此开始第二重试探。因为信道上存在噪声,响铃器接收机的上述幅度阈值如果设置得太低,则经常被噪声触发,误判为信道上有信号而去读取数据产生了 额外的功耗;幅度阈值如果设置得太高,则很多真正的信号也触发不了,灵敏度将大幅下降。 这是一个很难取舍的难题,总之,为了达到一定的灵敏度,不可避免地会产生很多误触发导致接收机转入读取数据的环节从而产生很多额外的功耗。本发明采用第二重试探解决了这个难题: 如前所述,因为只要发送了数据,则必定会收到'X'信号,'X'信号的一个特点是持续时间长达不少于接收机的关闭时间,即'X'信号的存在,将导致接收机会收到一个持续时间很长的 逻辑1 信号,远远大于噪声引起的持续时间。在上述( i )的情形下,判断为信道有信号后,保持接收开启,试探信号持续的时间。定义一个时间的阈值,当持续时间大于此时间阈值,则判断确实是信号而非噪声,响铃器接收机继续保持开启;当小于时间阈值,则判断为噪声,立刻关闭响铃器接收机。 这个试探、判决,在不损失灵敏度的前提下,彻底去除了噪声的影响,不会因为噪声的触发而导致接收机进入接收数据而产生功耗。
第三个方面,响铃器200选择合适结构的接收机201。采用本发明的方法,可以再将响铃器接收机平均能耗,再大幅度地降低。
如图11(b)所示的A点,B点两个时刻,响铃器的接收机201都受到定时器202控制,电源被开启,接收搜索信道上的信号。图11(a)显示,A点时刻,按钮器没有发射信号,图11(c)示,接收机201没有收到信道上的信号。B点时刻,图11(a)显示发射机106正在发射信号,图11(c)的接收机201在C点收到了信道上的信号。显然C点相对于B点,会有一些延时,C点与B点的差,称为响铃器或接收机的上电延时时间T_DELAY。
目前通用的接收机,是超外差接收机,或是直接变频接收机,都具有频率变换结构。频率变换,是将输入信号与一个纯度极高的本振信号混频,将输入信号的频率搬移到低频段,再进行放大、滤波的处理。因为高纯度的要求,本振电路至少有一个很高Q值的选频电路,例如,使用晶体,品质因数大于10000。本振振荡电路,从上电,到振荡稳定下来,要经历一个启动时间,启动时间与品质因数Q成比例,Q越大,启动时间越长。本振电路还可能需要分频、锁相、被校准等环节,这会导致本振电路需要更长时间才能稳定下来。
另外,因为混频,会产生多个频率,混频器后面必须有窄带带通滤波器,或者低频低通滤波器。那么,上电等待本振信号稳定后,从天线进入的信号,都可以在响铃器接收机输出端被测知。这时输入信号至少经过一个高通滤波器,低通滤波器,或者还有窄带的中频带通滤波器,这些电路在完成其本身的功能时,都会对信号产生延时的副作用,尤其是具有很高Q值的窄带中频带通滤波器,对信号具有较长的延时时间。
因为上述两个原因,使用目前通用的具有频率变换接收机的响铃器,具有一个比较大的上电延时时间T_DELAY,大致在2ms以上。
本发明提供的是:没有频率变换,没有本振 ( 本振是指,与载波信号频率相差一个中频频率的接收机产生的振荡信号 ) ,以及没有窄带带通滤波器、没有低通滤波器的接收机, 以使上电延时时间T_DELAY达到最小。
如图8所示,本发明的一个优选实施例是采用改进的超再生接收机电路,它具有极小的上电延时时间T_DELAY。
电路工作流程如图9示。
存储器805将计数器804的输出储存,之前N次计数(例如8次)的输出,都被储存在存储器805,平均值电路806,算出此N个计数值的平均值,取其平均值之下的某个值作为比较器807的阈值,放置在比较器807的一个输入端809。
根据超再生接收机的原理,振荡器802的起振时间取决于天线801是否有外来的同频率载波信号,如果有,则起振时间变快。图8的电路,就是直接测量振荡器802的起振时间,以此判断当前是否有与振荡频率相同的载波信号从天线801输入。
现在,定时器810输出高电平作为熄灭控制电路803的信号启动振荡器802,同时也启动计数器804开始计数,当振荡器802的振荡建立后,振荡的幅度足够大时,将触发计数器804停止计数,并触发关闭振荡器802。
此时计数器804的值,就对应本次振荡器802的起振时间。也对应上电延时时间T_DELAY。
将计数器804的值,送到比较器807的另外一端808,与阈值809比较。
当前计数值808小于阈值809时,就判决为信道有载波信号输入,以及当前输入数据为逻辑1,否则判决为信道没有载频信号,以及当前输入数据为逻辑0。
接着计数器804当前值送入存储器805,并被清零。
如图9示,本电路的上电延时间T_DELAY=起振时间901 + 信号处理时间902。显然,因为没有频率变换所需要的高纯度本振需要建立,振荡器802的起振时间901很短;也没有中频带通或低频低通滤波器,信号处理902的时间也极短
所以本电路的上电延时时间T_DELAY较小,大致可在10us以下。
如果振荡器802的频率太高, 例如30M以上, 计数器804来不及反应,可以在振荡器802后面加上二极管和电阻电容构成的包络检波器环节,用振幅的包络来触发计数器804和关闭振荡器802。显然,只要包络检波器中的电容足够小电阻足够大,几乎不会对上电延时间T_DELAY造成影响。
可以将本实施例的超再生接收机用作响铃器的接收机,在检测信道上是否有信号时控制响铃器开启/关闭的定时器信号同时也用作超再生接收机的熄灭控制电路。如图8示,控制响铃器开启/关闭的定时器,能被触发的计数器,以及N次计数值的平均值功能电路等,都可以嵌入到微处理器MCU811中,由MCU的软件、硬件实现它们的功能。在MCU内的定时器控制下,在响铃器处于关闭状态的时期,MCU处于休眠状态,只有定时器在工作。当响铃器处于开启的时期,MCU被定时器唤醒,进入工作状态。
如前面所述,当按钮器发送时,持续重复在时间TT_ON内发送信号,响铃器200受定时器202控制,工作在'开启/关闭'模式。开启时在开启时间TR_ON内首先检测信道上是否有信号,依据信道检测结果,有信号就继续保持开启TT_ON时间,如图4(c),以接收完整的一包数据;没有信号就立刻关闭响铃器,如图4(d)示。关闭时间为TT_OFF,周而复始,不断重复。每天中,绝大部分的情况是图4(d)示,信道上没有信号的情况。
响铃器的开启时间最小应等于上电延时时间,即:
TR_ON ≥ T_DELAY. (8)
上述接收机的最佳实施例与下面两个普通实施例子, 比起现有通用接收机,都大幅度裁减了 T_DELAY, 至少裁减到500us以下, 因而也就可以大幅度地减少开启时间 TR_ON。根据方程(1),TR_ON大幅减少,将使平均能耗大幅减少。 可以这么说,T_DELAY减少了多少倍,响铃器的能耗也能够随之减少多少倍。
图 8 和图 10 中的振荡器。如果采用普通的 LC 振荡电路,则因为 Q 值不高, LC 振荡电路的起振时间很短,对缩减上电延时时间 T_DELAY 非常有利,但是它的稳定性差,振荡频率会产生较大的漂移,这样最终导致选择性、灵敏度变得较差而不可用。传统的稳定频率思路是在振荡电路中,采用很高 Q 值的元件,例如采用石英晶体,声表面波等稳频元件,其 Q 值是 LC 电路的几百倍,同时振荡器被调谐,使得振荡频率谐振在稳频元件的中心频率上,如此,振荡电路的频率的稳定度非常高,频率的漂移变得非常小。但是,因为稳频元件的 Q 值很高,起振时间会变得较长,对缩减上电延时时间 T_DELAY 很不利,这会大大降低节省功耗的效果,这是一个矛盾。实施例中的振荡器,将采用这样的办法解决的:振荡器并不如同传统的谐振电路那样谐振在稳频元件的中心频率上,而是调谐在其附近,例如,比中心频率略高 10~100k ,则同样会有较好的稳定振荡频率的效果,同时起振的时间也会变得比较短,达到了既稳定频率,又不太增加上电延时时间的效果。
如此,T_DELAY被大大裁减,导致响铃器的平均电流能耗被大大缩小。
响铃器还有一个人机接口, 能够测量并显示当前环境的光强, 防止用户将响铃器安装于过于黑暗的环境,例如墙角、门背后。如图10示,当用户将响铃器的电源按钮推向'开启'位置时,通过A/D变换器1002读入太阳能电池1001的电压值, 根据此电压值大小,控制LED的闪烁频率,例如光线较强时闪烁得更快。
本发明的实施方式
如图5示是本发明提供的接收机的一个实施例,这是一个调谐放大接收机 。天线501进来的信号,经过高频低噪声放大502,高频带通滤波503后,再经过非线性的包络检波器504,低频放大505,就到达输出506。当天线501接收到载波信号时,输出产生较高的电压506;当天线没有收到载波信号时,输出将会是较低的电压506。根据506电压的高低,即可判断载波有无,对应逻辑1、0.
非线性的包络检波器504,将会使得信号的频率、相位信息丢失。因而本实施例,接收的仅仅是输入信号的振幅信息。这个实施例中输入信号没有进行频率变换,因而
( i ) 没有本振,就没有了前述本振电路上电后振荡达到稳定所需要的时间,
( ii ) 也没有了中频带通滤波器或低频低通滤波器,就没有了因为它们而产生的延时。
仅有的高频带通滤波器503,因为其频率远远高于低频滤波器,所产生的延时远低于低频滤波器。此实施例的上电延时时间T_ DELAY,远远小于通用的频率变换接收机,大致在10us以下。本电路可以作为响铃器200的接收机201,被响铃器200的定时器202开启/关闭。
如图6所示是接收机的另外一个实施例。它是传统的超再生电路,超再生接收机是没有频率变换的接收机。它的振荡器602是一个简单的LC振荡器, LC回路的Q值不会很高,因而它的起振时间相当快。 根据超再生接收的基本原理,当LC回路的频率,与天线601接收到的信号的频率一致的时候,起振所需要的时间更加快。 根据超再生接收的基本原理, 当 LC 回路的频率,与天线 601 接收到的信号的频率一致的时候,起振所需要的时间更加快。 因为没有外来的同频率信号时,振荡器是靠热噪声激发起振,如图7(c)的A点;有外来同频率信号时,则是受这个外来信号激发起振,因而起振的时间更短,如图7(c)的B点。熄灭(quench)控制电路603产生一个开关信号,使振荡器602不断处于关闭、起振的状态中,包络检波604将高频RF信号去除之后就产生了如图7(d)的频率等于熄灭控制信号频率的脉宽调制(pwm)信号,经过低频低通滤波605的环节,将低频信号检出,如图7(e)示。因为没有频率变换的环节,使得电路的上电延时时间T_DELAY较小,因而本电路可以作为响铃器200的接收机201,响铃器200的定时器202的输出信号,用作熄灭控制信号,开启/关闭振荡器602。
上述电路因为没有频率变换的环节,上电延时时间T_DELAY比一般的接收机要小,但有一个低频低通滤波605的环节,使得该电路的上电延时时间T_DELAY没有达到极小。
工业实用性
序列表自由内容

Claims (20)

1、 一种太阳能无线门铃,具有发送信号的按钮器和接收信号的响铃器,其特征在于:
所述门铃使用太阳能电池为能量来源,当环境光线充足时,太阳能电池给门铃提供工作电流并向可充电电池充电,当环境光线不足甚至没有时,可充电电池向门铃提供工作电流;
所述响铃器含有定时器( 202 ),音响电路,接收机,所述响铃器被所述定时器( 202 )控制,工作在连续的'开启 / 关闭'模式:当定时器的开启定时时间到达时,所述响铃器被开启,等待接收所述按钮器发送的信号,所述响铃器的开启时间大于等于响铃器的上电延时时间; 当经历开启时间后,所述响铃器被关闭,接收功能停止,定时器( 202 )开始计时,直到经历一个关闭时间后,又重新开始一个'开启 / 关闭'周期;
所述音响电路依据所述响铃器在开启时间内是否收到所述按钮器发送的信号,而启动发出声音或者保持关闭。
2 、根据权利要求1所述的太阳能无线门铃,其特征在于:所述按钮器 含有定时器(102),所述按钮器被所述定时器(102)控制,发送信号的时间大于所述响铃器的关闭时间。
3 、根据权利要求1所述的太阳能无线门铃,其特征在于:所述响铃器被所述定时器(202)控制开启时首先检测信道上是否有信号;
如果没有,立刻进入关闭状态,等待所述定时器(202)的下一次开启;
如果有,继续保持开启,检测信号的持续时间,如果该时间超过一定的阀值,则继续保持开启以接收按钮器发送的完整数据,否则立刻进入关闭状态,等待所述定时器(202)的下一次开启。
4 、根据权利要求1所述的太阳能无线门铃,其特征在于:所述接收机是裁减上电延时时间至 500 us 以下的接收机。
5 、根据权利要求1所述的太阳能无线门铃,其特征在于:所述接收机是没有频率变换的接收机,是没有中频带通滤波器的接收机,是没有低频低通滤波器的接收机。
6 、根据权利要求1所述的太阳能无线门铃,其特征在于:所述响铃器的接收机是没有低通滤波器的 超再生接收机。
7 、根据权利要求6所述的太阳能无线门铃,其特征在于:所述超再生接收机含有振荡器 、定时器、包络检波器、计数器、比较器、存储器、平均值电路;所述定时器、包络检波器、计数器、比较器、存储器、平均值电路,被嵌入到微处理器MCU中。
8 、根据权利要求7所述的太阳能无线门铃 ,其特征在于,所述振荡器,具有高Q值的稳频元件,振荡电路工作在偏离稳频元件中心频率的位置。
9 、根据权利要求1所述的太阳能无线门铃,其特征在于: 所述的响铃器有一个人机接口,显示其接收到的光强。
10 、根据权利要求1所述的太阳能无线门铃,其特征在于: 所述的按钮器有一个人机接口,当用户按键时,发出显示或者声音。
11、一种低功耗无线门铃,具有发送信号的按钮器和接收信号的响铃器,其特征在于:
所述响铃器含有定时器,音响电路,接收机,所述响铃器被所述定时器控制,工作在连续的'开启 / 关闭'模式:当定时器的开启定时时间到达时,所述响铃器被开启,等待接收所述按钮器发送的信号,所述响铃器的开启时间大于等于响铃器的上电延时时间; 当经历开启时间后,所述响铃器被关闭,接收功能停止,定时器开始计时,直到经历一个关闭时间后,又重新开始一个'开启 / 关闭'周期;
所述音响电路依据所述响铃器在开启时间内是否收到所述按钮器发送的信号,而启动发出声音或者保持关闭。
12、根据权利要求11所述的低功耗无线门铃,其特征在于:所述按钮器含有有定时器,所述按钮器被所述定时器控制,发送信号的时间大于所述响铃器的关闭时间。
13、根据权利要求11所述的低功耗无线门铃, 所述响铃器被所述定时器控制开启时首先检测信道上是否有信号 ;
如果没有,立刻进入关闭状态,等待所述定时器的下一次开启;
如果有,继续保持开启,检测信号的持续时间,如果该时间超过一定的阀值,则继续保持开启以接收按钮器发送的完整数据,否则立刻进入关闭状态,等待所述定时器的下一次开启。
14、根据权利要求11所述的低功耗无线门铃,其特征在于: 所述 接收机是裁减上电延时时间至 500 us 以下的接收机 。
15、根据权利要求11所述的低功耗无线门铃,其特征在于: 所述接收机是没有频率变换的接收机,是没有中频带通滤波器的接收机,是没有低频低通滤波器的接收机。
16、根据权利要求11所述的低功耗无线门铃,其特征在于: 所述响铃器的接收机是没有低通滤波器的超再生接收机。
17、根据权利要求16所述的低功耗无线门铃,其特征在于: 所述超再生接收机含有振荡器 、定时器、包络检波器、计数器、比较器、存储器、平均值电路;所述定时器、包络检波器、计数器、比较器、存储器、平均值电路,被嵌入到微处理器MCU中。
18、根据权利要求17所述的低功耗无线门铃,其特征在于: 所述的振荡器,具有高Q值的稳频元件。
19、根据权利要求17所述的低功耗无线门铃,其特征在于:所述的振荡器电路工作在偏离稳频元件中心频率的位置。
20、根据权利要求11所述的低功耗无线门铃,其特征在于:所述的按钮器有一个人机接口,当用户按键时,发出显示或者声音。
PCT/CN2013/086989 2012-11-14 2013-11-12 低功耗太阳能无线门铃 WO2014075605A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380023238.XA CN104285246A (zh) 2012-11-14 2013-11-12 低功耗太阳能无线门铃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210458793.2 2012-11-14
CN201210458793.2A CN103810799B (zh) 2012-11-14 2012-11-14 太阳能无线门铃

Publications (1)

Publication Number Publication Date
WO2014075605A1 true WO2014075605A1 (zh) 2014-05-22

Family

ID=50707509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086989 WO2014075605A1 (zh) 2012-11-14 2013-11-12 低功耗太阳能无线门铃

Country Status (2)

Country Link
CN (2) CN103810799B (zh)
WO (1) WO2014075605A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374747A (zh) * 2022-01-11 2022-04-19 高拓讯达(北京)科技有限公司 一种定时器的启动方法、装置、电子设备及可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108734906A (zh) * 2018-08-24 2018-11-02 深圳市无电通科技有限公司 自发电门铃装置和控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201289670Y (zh) * 2008-09-23 2009-08-12 王建宇 光能门铃装置
CN201315083Y (zh) * 2008-11-17 2009-09-23 广州钒浦新能源发展有限公司 一种门铃装置
CN201562325U (zh) * 2009-11-30 2010-08-25 吴晓燕 弱光能门铃
GB2470435A (en) * 2009-05-21 2010-11-24 Adrian Edward George Wicks Solar powered doorbell having transmitting and receiving units
CN201927130U (zh) * 2010-12-14 2011-08-10 华中师范大学 太阳能多功能无线门铃
CN203149741U (zh) * 2012-11-14 2013-08-21 杜若平 太阳能无线门铃

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58717B2 (ja) * 1977-08-22 1983-01-07 株式会社日立国際電気 選択呼出回路
CN2650259Y (zh) * 2003-07-03 2004-10-20 广东伟雄集团有限公司 无线门铃装置
US7126455B2 (en) * 2003-07-14 2006-10-24 Ari Epstein Method for controlling abusive use of doorbells
CN2674779Y (zh) * 2003-09-29 2005-01-26 林周明 节电两线对讲门铃
CN2867474Y (zh) * 2005-09-24 2007-02-07 陈文良 一种新型感应门铃
CN102074083B (zh) * 2009-11-20 2013-02-27 无锡爱睿芯电子有限公司 无线门铃
CN202306726U (zh) * 2011-04-18 2012-07-04 深圳市龙侨华实业有限公司 低压指示数字信号无线门铃
CN202120376U (zh) * 2011-07-12 2012-01-18 杨焕峥 太阳能门铃
CN202189417U (zh) * 2011-07-19 2012-04-11 慈溪市一栋电子有限公司 多功能无线门铃

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201289670Y (zh) * 2008-09-23 2009-08-12 王建宇 光能门铃装置
CN201315083Y (zh) * 2008-11-17 2009-09-23 广州钒浦新能源发展有限公司 一种门铃装置
GB2470435A (en) * 2009-05-21 2010-11-24 Adrian Edward George Wicks Solar powered doorbell having transmitting and receiving units
CN201562325U (zh) * 2009-11-30 2010-08-25 吴晓燕 弱光能门铃
CN201927130U (zh) * 2010-12-14 2011-08-10 华中师范大学 太阳能多功能无线门铃
CN203149741U (zh) * 2012-11-14 2013-08-21 杜若平 太阳能无线门铃

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374747A (zh) * 2022-01-11 2022-04-19 高拓讯达(北京)科技有限公司 一种定时器的启动方法、装置、电子设备及可读存储介质
CN114374747B (zh) * 2022-01-11 2023-09-15 高拓讯达(北京)微电子股份有限公司 一种定时器的启动方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN103810799B (zh) 2016-06-29
CN103810799A (zh) 2014-05-21
CN104285246A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2018192164A1 (zh) 用于降低Type-C接口功耗的方法及装置和系统
WO2014075605A1 (zh) 低功耗太阳能无线门铃
CA1181819A (en) Radio communication receiver having an oscillator circuit of lower power-consumption
WO2014075613A1 (zh) 无须更换电池的无线监控系统及控制无线设备运行的方法
WO2019228052A1 (zh) 一种低功耗电路和电子装置
JP3578043B2 (ja) 電源電圧検出回路
WO2019114091A1 (zh) 一种自发电遥控方法及系统
KR101096662B1 (ko) 소비 전류 감소 기능이 구비된 무선 센서 네트워크 시스템 및 그 운용방법
AU735496B2 (en) Portable radio communication apparatus
CN214204980U (zh) 一种通讯激活电路
US10747361B2 (en) Control device and control method
CN205490916U (zh) 省电摄像装置、智能猫眼及网络摄像头
JP4599774B2 (ja) 電子機器
DE59914526D1 (de) Datenfunkübertragungsvorrichtung
KR100367300B1 (ko) 디지털 도어록용 절전장치
TWI667882B (zh) 控制裝置及方法
CN111273539B (zh) 一次性闹钟的控制装置及控制方法
CN206878806U (zh) 一种双按键led收音机时钟
CN101887627A (zh) 一种遥控器设备
JP3113534U (ja) 無線通話機を具えたテレビドアホン
SE9600126L (sv) Mobiltelefonvarnare med låg strömförbrukning
JP2003156577A (ja) 目覚まし時計およびそのアラーム解除方法
JPH0669854A (ja) コードレス電話装置
CN2335329Y (zh) 手机防失报警器
KR20010073370A (ko) 이동 통신 단말기의 전원 절약 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855160

Country of ref document: EP

Kind code of ref document: A1