WO2014075225A1 - 复合阻燃剂、制备方法及其应用 - Google Patents

复合阻燃剂、制备方法及其应用 Download PDF

Info

Publication number
WO2014075225A1
WO2014075225A1 PCT/CN2012/084539 CN2012084539W WO2014075225A1 WO 2014075225 A1 WO2014075225 A1 WO 2014075225A1 CN 2012084539 W CN2012084539 W CN 2012084539W WO 2014075225 A1 WO2014075225 A1 WO 2014075225A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
phosphorus
composite
bromine
phosphate
Prior art date
Application number
PCT/CN2012/084539
Other languages
English (en)
French (fr)
Inventor
汪炉林
王林
程庆
叶晓光
蔡彤旻
宁凯军
刘学亮
郭少华
Original Assignee
金发科技股份有限公司
上海金发科技发展有限公司
绵阳东方特种工程塑料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 上海金发科技发展有限公司, 绵阳东方特种工程塑料有限公司 filed Critical 金发科技股份有限公司
Priority to PCT/CN2012/084539 priority Critical patent/WO2014075225A1/zh
Publication of WO2014075225A1 publication Critical patent/WO2014075225A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the invention relates to the technical field of plastic flame retardant, in particular to a composite flame retardant, a preparation method and application thereof. Background technique
  • the gas reacts strongly with oxygen, producing highly reactive free radicals HO ⁇ and H ⁇ . These free radicals react immediately with other molecules to form new free radicals.
  • HO ⁇ and H ⁇ Such a chain reaction is the combustion process.
  • the heat released by the combustion further decomposes the decomposing polymer material to produce more flammable gas. Under sufficient air supply, the combustion continues to be maintained and propagated, and the fire spreads into a fire in a short period of time. .
  • the flame retardant of polymer materials is mainly achieved by adding a flame retardant.
  • the role of the flame retardant is to prevent the material from igniting or inhibiting flame propagation.
  • the heat resistance and flame resistance of the polymer material are poor, and the flame retardant can improve the safety performance of the product formed by the polymer material, and thus becomes one of the important additives for the modification processing of the polymer material.
  • countries around the world have paid more and more attention to disaster prevention and mitigation, and legislation in the field of safety and environmental protection has become more and more perfect, which has greatly promoted the research and development and production of flame retardants.
  • the development and production of flame retardants organic flame retardants
  • a flame retardant needs to go through a long period of time from development to production, and it also has to be multifaceted on newly developed flame retardants.
  • the newly developed flame retardant generally has a relatively simple function and generates a large amount of toxic and harmful fumes during the combustion process.
  • the compatibility with the matrix material is poor, and the processing and physical and chemical properties of the matrix material are greatly affected.
  • the compounding technology and synergistic effect of the existing flame retardants are studied, and the synergistic effect and versatility of the flame retardant are exerted, which not only enhances the flame retardant, suppresses the smoke, improves the melting index, improves the physical and chemical properties and expands the application. Scope, but also reduce the amount, reduce costs and environmental hazards.
  • a new environmentally friendly (3 ⁇ 4 -phosphorus composite flame retardant comprising the following components according to their weight percentages:
  • Optional anti-drip agent 0%-0.5%
  • Optional processing aid 0%-2%;
  • the flame retardant synergist comprises an inorganic powder, a polysiloxane pit and a bismuth compound, the polysiloxane having a weight percentage of the flame retardant synergist of 1% to 15%, the bismuth compound
  • the weight of the flame retardant synergist is 0-25%, and the weight of the inorganic powder accounts for 60-99% of the flame retardant synergist.
  • the flame retardant synergist may also be a formulation comprising inorganic powder, polysiloxane and hydrazine compound, the polysiloxane having a weight percentage of the flame retardant synergist of 1% to 15%
  • the weight of the ruthenium compound is 0-19% of the flame retardant synergist, and the weight of the inorganic powder accounts for 66-99% of the flame retardant synergist.
  • the above-mentioned new environmentally friendly halogen-phosphorus composite flame retardant may also be formulated according to the weight percentage of the following components: bromine-based flame retardant 50%-60%;
  • Optional anti-drip agent 0% - 0.5%
  • Optional processing aid 0%-2%;
  • the flame retardant synergist comprises an inorganic powder, a polysiloxane and a bismuth compound, and the polysiloxane may account for 1%, 2%, 3%, 4% by weight of the flame retardant synergist.
  • the weight of the bismuth compound accounts for the flame retardant synergist 2%, 3%, 4%, 5%, 8%, 10%, 15%, 19%
  • the inorganic powder accounts for 60%, 65%, 70%, 73% of the flame retardant synergist %, 78%, 80%, 84%, 85%, 86%, 88%, 90%, 91%, 92%, 93%, 96%, 97%
  • the range of values for the ruthenium compound is in the range of any two point values listed above.
  • a composite flame retardant consists of the following components in percentage by weight:
  • Optional anti-drip agent 0%-0.5%
  • the flame retardant synergist comprises an inorganic powder, a polysiloxane and a bismuth compound, the polysiloxane having a weight percentage of the flame retardant synergist of 1% to 15%, the bismuth compound
  • the weight of the flame retardant synergist is 0-25%, and the weight of the inorganic powder accounts for 60-99% of the flame retardant synergist.
  • the flame retardant synergist may also be a formulation consisting of a compound of inorganic powder, polysiloxane and hydrazine, the weight of the polysiloxane accounting for the flame retardant association
  • the percentage of the agent is 1%-15%
  • the weight of the compound of the bismuth is 0-19% of the flame retardant synergist
  • the weight of the inorganic powder accounts for 66-99% of the flame retardant synergist .
  • the polysiloxane is dimethylpolysiloxane, phenylpolysiloxane, vinylpolysiloxane, amidopolysiloxane, epoxypolysiloxane, isobutylpolysiloxane a mixture of one or more of an alkane, a styryl polysiloxane, and a cyclic structural polysiloxane.
  • the polysiloxane has a molecular weight of 30,000 or more, and has a viscosity of 500 mPa's or more at a temperature of 25 °C.
  • the inorganic powder is one or more of a cerium compound, talc, titanium dioxide, lithopone, magnesium carbonate, barium sulfate, marble powder, mica powder, natural silica, wollastonite powder, kaolin clay and feldspar powder. mixture;
  • the bismuth compound is selected from the group consisting of antimony trioxide, colloidal antimony pentoxide, sodium phthalate, antimony trichloride, antimony pentachloride, antimony phosphite, antimony polyphosphonium and complex antimony. .
  • the flame retardant synergist is prepared by mixing an inorganic powder, a polysiloxane and a hydrazine compound in a high-mixer to obtain the bromine-based flame retardant selected from the group consisting of octabromoether and tetrabromobisphenol A.
  • the bromine-based flame retardant selected from the group consisting of octabromoether and tetrabromobisphenol A.
  • the flammant may also include a polymeric flame retardant polymeric flame retardant (FR-Emerald 1000).
  • the phosphorus-based flame retardant is meta-phenylidene tetraphenyl bisphosphate, bisphenol A bis(diphenyl phosphate), m-phenylene tetrakis(diphenyl)diphosphate, and messy Tetrakis(dimethylphenyl)bisalate oligomer, triphenyl phosphate, diphenyl phosphate, diphenyl phosphate, diphenyl isopropyl phosphate, phosphoric acid Stupid octyl ester, diisodecyl phosphate, tris(toluene) phosphate, tris(xylylene) phosphate, phenyl tert-butyl phenyl phosphate, alkylphenyl double ester ester, naphthenic Bisphosphate, biphenyl bis(diphenyl) phosphate, triethyl phosphate, tributyl phosphate, triisoocty
  • the high molecular weight polysiloxane is a mercapto polysiloxane, a silly polysiloxane, a vinyl polysiloxane, an amido polysiloxane, an epoxy polysiloxane, an isobutyl poly A mixture of one or more of a siloxane, a styryl polysiloxane, and a cyclic structure polysiloxane.
  • the conventional wisdom is that when a halogen-containing or phosphorus-containing flame retardant is used in combination with cerium oxide, there is often no synergistic or even additive effect between the halogen-phosphorus and the halogen-phosphorus-antimony, which may be antagonistic.
  • the -fluorene flame retardant system is a typical gas phase free radical flame retardant mechanism, and the phosphorus flame retardant is mostly a condensed phase flame retardant mechanism, the addition of phosphorus hinders the gasification of the rhodium and inhibits the synergy of
  • a condensed phase flame retardant that is, a phosphorus-based flame retardant is introduced into the bromine-fluorene synergistic gas phase flame retardant mechanism, and the bromine-ruthenium synergistic effect is suppressed in order to prevent the phosphorus-based flame retardant from hindering the gasification of hydrazine.
  • the ultrahigh molecular weight polysiloxane and the inorganic powder are introduced into the bromine-phosphorus compound flame retardant system.
  • the compound flame retardant thus prepared is added to the flame-retardant material, so that the high-temperature generated by the flame-retardant material during the combustion process is transferred to the interior of the flame-retardant material due to the flame retardancy of the phosphorus-based condensed phase, and at the same time
  • the condensed phase flame retardant forms a protective carbon layer on the surface of the material, which can further reduce the supply of fuel to the interior of the material, thereby lowering the flame temperature, thereby effectively utilizing the mechanism of the bromine-based vapor phase free radical trapping inside the protective layer.
  • the synergistic mechanism of condensed phase and gas phase flame retardant can be realized, and the amount of bromine-based flame retardant can be greatly reduced under the premise of achieving the required flame retardant grade.
  • the anti-drip agent is polytetrafluoroethylene.
  • the dispersing agent is selected from one or more of an amide-based lubricant, a silicone-based lubricant, a stearic acid-based lubricant, a montan ester-based lubricant, and a polyol-based lubricant.
  • the processing aid is one or two of silicone oil and white mineral oil.
  • the preferred weight ratio of the phosphorus-based flame retardant to the composite flame retardant is 2% to 8%, particularly preferably 2% to 5%.
  • the composite flame retardant is used in PP, HIPS resin or an alloy thereof, and the preferred weight ratio of the phosphorus-based flame retardant in the composite flame retardant is 2% to 5%.
  • the composite flame retardant is used in an ABS resin, and a preferred weight ratio of the phosphorus-based flame retardant to the composite flame retardant is 2% to 8%, particularly preferably 2%.
  • the preparation method of the composite flame retardant according to the present invention comprises the following steps:
  • a processing aid is added to the high-speed mixer in proportion and mixed thoroughly at a rotation speed of 200-800r/min for 2-10 minutes;
  • the phosphorus-based flame retardant is added to the above mixture while stirring, and thoroughly mixed again at a rotation speed of 500 to 1500 r/min.
  • the composite flame retardant is applied to a thermoplastic resin and an alloy thereof, and the composite flame retardant is melt blended with a thermoplastic resin and/or a thermoplastic resin alloy.
  • the thermoplastic resin includes polyolefin, polystyrene, ABS copolymer, polyester, nylon, etc., which require flame retardant modification.
  • the thermoplastic resin alloy includes ABS/PET, ABS/PBT, ABS/PMMA, ABS/SMA, ABS. /PA, PC / ABS, PC / PBT, PC / PET and other flame retardant modification.
  • the beneficial effects of the invention are as follows:
  • the composite flame retardant of the invention not only greatly reduces the cost of the flame retardant material, but also improves the mechanical properties, the flame retardant effect and the flame retardant stability of the flame retardant material.
  • the developed flame retardant has both multi-functionality of flame retardant, smoke suppression, electrical conduction, shielding and radiation protection. detailed description
  • the materials used in the present invention are:
  • Brominated flame retardant, octabromoether selected HP-800 from American Yabao Company
  • tetrabromobisphenol A used FR-1524 from Israel Dead Sea Bromine Company
  • brominated epoxy selected from CXB-714C and CXB-2000 of Korea Yujin.
  • Decabromodiphenylethane was selected from 4010 American Yabao Company
  • brominated polystyrene was selected from PBS-64HW of American Chemtura Company
  • bromotriazine was selected from FR-245 of Israel Dead Sea Bromine Company
  • brominated imide was selected from American Yabao.
  • the company's BT-93, brominated polycarbonate is selected from Japan's Teijin Chemical Company's FG-8500, and the polymerized flame retardant is selected from the FR-Emerald 1000 of Dahu Chemical.
  • the phosphorus-based flame retardants Fyrol 51, Phosflex TPP and Fyrolflex sol-DP from American Asa, and TBP from Bayer, Germany were selected.
  • the anti-drip agent is selected from SN80-SA7 of Guangzhou Entropic Energy Co., Ltd.
  • the dispersing agent is selected from S-74 of Riken Company and EBS of Dow Chemical Company of the United States.
  • the antimony compound is selected from S-05N of Yunnan Mully Industry Co., Ltd., antioxidant.
  • PP resin was selected from PP AZ564 of Sumitomo Chemical Co., Ltd.
  • HIPS resin was selected from PS MA5210 of Taiwan Stallone Co., Ltd.
  • ABS resin was selected from ABS 745N of Korea Kumho Company
  • PET resin was selected by DuPont of the United States.
  • PET FC-01-68 PBT resin is selected from PBT 1200-211M of Changchun Petrochemical Co., Ltd.; PC resin is selected from PC 1300-03NP of LG Chemical Co., Ltd.; Toughener is selected from POE DF610 of Mitsui Chemical Co., Ltd., DuPont, USA PTW, South Korea's Kumho's HR181, South Korea's LG Chemical's SBS LG501S; Glass fiber used Sichuan Weibo New Materials Group Co., Ltd. ECS 303W.
  • the instruments and equipment used in the preparation of the flame retardant of the invention are:
  • the high-speed mixer used for the preparation of the flame retardant is SHR-100A produced by Zhangdagang City Keda Machinery Co., Ltd.
  • the twin-screw extruder used for flame retardant modification of thermoplastics is SHJ-30 produced by Nanjing Ruiya Polymer Equipment Co., Ltd.
  • the injection molding machine used for the flame-retardant thermoplastic test strip is the B-920 model produced by Zhejiang Haitian Injection Molding Machine Co., Ltd.
  • the instrument used to test the melt flow rate was the ZR21452 melt flow rate meter manufactured by Meister Industrial Systems (China) Co., Ltd.
  • the impact test machine for testing the impact strength is the T92 type produced by Tinius Olsenis, USA.
  • the universal testing machine for testing tensile strength is H10K-S manufactured by Hounsfield.
  • the UL-94 vertical burner used in the UL94 test is ATLAS HVUL-2.
  • Elongation at break expressed by the abbreviation EL, in %, using the national standard ISO 527;
  • Cantilever beam notched impact strength expressed by the abbreviation NIS, the unit is kJ / m 2 , using the national standard ISO 180, the gap type is A-type gap;
  • Flexural modulus expressed by the abbreviation FM, in MPa, using the national standard ISO 178;
  • Combustion expressed by the abbreviation UL94, the unit is class, using the national standard UL94;
  • the heat distortion temperature expressed by the abbreviation H.D.T., is in units. C, using the national standard ISO 75.
  • the configuration in the examples is, for example, unless otherwise specified, based on the parts by weight of the substance.
  • talc powder 99g of talc powder, 1g of dimethylpolysiloxane, and mixed in a high-mixer for 20 minutes, a flame retardant synergist XX-1 can be prepared, and the molecular weight of the dimethylpolysiloxane is 30000, its viscosity is 500Pa*S.
  • talc powder 85 grams of talc powder, 15 grams of wrong polysiloxane, mixed in a high mixer for 20 minutes, can prepare a flame retardant synergist XX-3, the molecular weight of the wrong polysiloxane is 40,000, Its viscosity is 600 Pa*S.
  • the polysiloxane has a molecular weight of 30,000 and a viscosity of 500 Pa*S.
  • the polysiloxane has a molecular weight of 30,000 and a viscosity of 500 Pa's.
  • the polysiloxane has a molecular weight of 30,000 and a viscosity of 500 Pa*S.
  • the polysiloxane has a molecular weight of 30,000 and a viscosity of 500 Pa's.
  • talc 12 g of dimethylpolysiloxane, 2 g of antimony trioxide, and mixed in a high-mixer for 20 minutes to prepare a flame retardant synergist XX-10, the dimethyl group
  • the polysiloxane has a molecular weight of 30,000 and a viscosity of 500 Pa*S.
  • talc 13 g of dimethylpolysiloxane, 3 g of antimony trioxide, and mixed in a high-mixer for 20 minutes to prepare a flame retardant synergist XX-11, the dimethyl group
  • the polysiloxane has a molecular weight of 30,000 and a viscosity of 500 Pa*S.
  • talc 15 g of dimethylpolysiloxane, 5 g of antimony trioxide, and mixed in a high-mixer for 20 minutes to prepare a flame retardant synergist XX-12, the dimethyl group
  • the polysiloxane has a molecular weight of 30,000 and a viscosity of 500 Pa's.
  • 78 grams of talc, 14 grams of dimethylpolysiloxane, 8 grams of antimony trioxide, and mixed in a high mixer for 20 minutes, can prepare a flame retardant synergist XX-13, the dimethyl group
  • the polysiloxane has a molecular weight of 30,000 and a viscosity of 500 Pa's.
  • the polysiloxane has a molecular weight of 30,000 and a viscosity of 500 Pa's.
  • 96 g of talc and 4 g of dimercaptopolysiloxane were mixed in a high-mixer for 20 minutes to prepare a flame retardant synergist XX-15.
  • the molecular weight of the dimercaptopolysiloxane was 30000, its viscosity is 500Pa'S.
  • the phosphorus-based flame retardant is added to the above mixture while stirring, and thoroughly mixed again at a rotation speed of 500-1500 r/min to obtain a composite flame retardant FRPPH1.
  • the preparation method of flame retardant PP is as follows:
  • the components were added to a high-speed mixer for mixing for 15 minutes according to the ratio of Table 1-2, and then added to a twin-screw extruder for extrusion granulation according to a flame-retardant PP preparation process to prepare flame-retardant PP particles, and
  • the prepared particles were injection molded into a desired sample by an injection molding machine.
  • the molding conditions are: barrel temperature 200 ° C, mold temperature 20-50 ° C, injection pressure 8 MPa.
  • the same system, the same amount of the main flame retardant and the whitening compound flame retardant system were used to prepare the flame retardant PP for comparative performance test, and the measured data are shown in Table 1-2.
  • the composite flame retardants FRPPH2, FRPPH3, FRPPH4, FRPPH5, FRPPH6, FRPPH7, FRPPH8, FRPPH9 were prepared according to the ratios shown in Table 1-1, and the corresponding flame retardant PP was prepared and tested.
  • the physical properties, the test results are shown in Table 1-2.
  • Dispersing agent S-74 0. 3 0 0. 3 0 0. 3 0. 3 0. 1 0. 1 0. 1 0. 1 0. 1 Dispersing agent: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 Processing Aid: White No. 70
  • Flame-retardant system for preparing flame-retardant PP products has the advantages of low addition amount, extremely low effective content of antimony trioxide, relatively low dosage of bromine-based flame retardant bromine-based flame retardant, and so on.
  • the composite flame retardant FRPPM1 was prepared according to the ratio shown in Table 2-1, and the corresponding flame retardant PP was prepared and tested for physical properties. The test results are shown in Table 2-2. .
  • the composite flame retardants FRPPM2, FRPPM3, FRPPM4, FRPPM5, FRPPM6, FRPPM7, FRPPM8, FRPPM9 were prepared according to the ratios shown in Table 2-1, and the corresponding flame retardant PP was prepared and tested. Its physical properties, the test results are shown in Table 2-2.
  • the main flame retardant used in this experiment is decabromodiphenylethane flame retardant.
  • Decabromodiphenylethane flame retardant has excellent light stability and UV resistance, which makes it have excellent color stability.
  • it because it has a very high melting point and is substantially insoluble in the resin, it is added to the resin. High heat distortion temperature and not suitable for blooming, and can be recycled and recycled, which is conducive to energy saving and environmental protection. Therefore, a highly heat-resistant flame-retardant polypropylene product can be prepared by this method.
  • a composite flame retardant FRPSB1 was prepared in accordance with the ratio shown in Table 3-1.
  • the components were added to a high-speed mixer for 15 minutes according to the ratio shown in Table 3-2, and then added to a twin-screw extruder for extrusion granulation according to the flame-retardant HIPS preparation process to prepare a flame-retardant HIPS plastic.
  • the particles are prepared, and the prepared particles are injection molded into a desired sample by an injection molding machine.
  • the molding conditions are as follows: barrel temperature 230 ° C, mold temperature 30-60 ° C, injection pressure 8 MPa, and testing its physical properties, the test results are shown in Table 3-2.
  • the composite flame retardants FRPSB2, FRPSB3, FRPSB4, FRPSB5, FRPSB6, FRPSB7, FRPSB8, FRPSB9 were prepared according to the ratios shown in Table 3-1, and the corresponding flame retardant HIPS was prepared, and Test its physical properties, and the test results are shown in Table 3-2.
  • Example 13 the composite flame retardant FRPSM1 was prepared according to the ratio shown in Table 4-1, and the corresponding flame retardant HIPS was prepared and tested for physical properties. The test results are shown in Table 4-2. .
  • the composite flame retardants FRPSM2, FRPSM3, FRPSM4, FRPSM5, FRPSM6, FRPSM7, FRPSM8, FRPSM9 were prepared according to the ratios shown in Table 4-1, and the corresponding flame retardant HIPS was prepared and tested.
  • the physical properties, the test results are shown in Table 4-2.
  • Dispersing agent S-74 0. 3 0 0. 3 0 0. 3 0. 3 0. 1 0. 1 0. 1 0. 1 0. 1 Dispersing agent: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 Processing aid: 70# white
  • the HIPS product has a low addition amount, the effective content of antimony trioxide is extremely low, and the amount of the bromine-based flame retardant is also relatively reduced, so the mechanical properties thereof are kept excellent, and the flame retardant effect is better;
  • the addition of phosphorus-based flame retardant requires a flame retardant equivalent to the traditional bromine-helium flame retardant system to achieve the specified flame retardant effect; when no flame retardant synergist (Comparative Example 11), bromine - When the phosphorus flame retardant system is added up to 30%, the specified flame retardant grade is not achieved, and the mechanical properties of the system deteriorate seriously.
  • the fluidity of the system is greatly improved with the increase of phosphorus flame retardant content, but lower than that of bromide (BT-93) and Low molecular weight brominated epoxy resin (CXB-714) compound system.
  • BT-93 bromide
  • CXB-714 Low molecular weight brominated epoxy resin
  • the system flame retardant effect in phosphorus content It is about 2% best.
  • Example 25 Referring to the method of Example 1, a composite flame retardant FRPSF1 was prepared in accordance with the ratio shown in Table 3-1. The components were added to a high-speed mixer for 15 minutes according to the ratio shown in Table 5-2, and then added to a twin-screw extruder for extrusion granulation according to the flame-retardant HIPS preparation process to prepare a flame-retardant HIPS plastic. The particles are prepared, and the prepared particles are injection molded into a desired sample by an injection molding machine. The molding conditions are: barrel temperature 240 ° C, mold temperature 30-8 CTC, injection pressure 8 MPa. At the same time, the same system, the same amount of the main flame retardant and the whitening compound flame retardant system were used to prepare the flame retardant HIPS for comparative performance test, and the measured data are listed in Table 5-2.
  • composite flame retardants FRPSF2 and FRPSF3 were prepared according to the ratios shown in Table 5-1.
  • FRPSF4, FRPSF5, FRPSF6, FRPSF7, FRPSF8, FRPSF9, and the corresponding flame retardant HIPS were prepared and tested for physical properties. The test results are shown in Table 5-2.
  • the fluidity of the system is greatly improved with the increase of the content of the lanthanide flame retardant, but lower than the first two flame retardant systems.
  • the flame retardant effect of the system is optimal at a phosphorus content of about 2%.
  • a composite flame retardant FRABSF1 was prepared in accordance with the ratio shown in Table 3-1.
  • the components were added to a high-speed mixer for mixing for 15 minutes according to the ratio of Table 6-2, and then added to a twin-screw extruder for extrusion granulation according to a flame-retardant ABS preparation process to prepare flame-retardant ABS plastic particles.
  • the prepared particles were injection molded into a desired sample by an injection molding machine.
  • the injection molding conditions are: barrel temperature 210 ° C, mold temperature 30-60 ° C, injection pressure 6 MPa.
  • the same system, the same amount of main flame retardant and whitening compound flame retardant system were prepared to make flame retardant ABS for comparative performance test.
  • the measured data are listed in Table 6-2.
  • composite flame retardants FRABSF2, FRABSF3, FRABSF4, FRABSF5, FRABSF6, FRABSF7, FRABSF8, FRABSF9 were prepared according to the ratios shown in Table 6-1, and corresponding flame retardant ABS was prepared, and Test its physical properties, and the test results are shown in Table 6-2.
  • Dispersing agent S-74 0. 3 0 0. 3 0 0. 3 0. 3 0. 1 0. 1 0. 1 0. 1 0. 1 Dispersing agent: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 Processing Aid: 70
  • NIS 18. 0 17. 6 18. 2 18. 2 20. 8 18. 3 18. 9 13. 5 17. 2
  • the ABS product has a low addition amount, the effective content of antimony trioxide is extremely low, and the amount of the bromine-based flame retardant of the tetrabromobisphenol A flame retardant is also relatively reduced, so that the mechanical properties thereof are kept excellent, and The flame retardant effect is better; in addition, when the phosphorus-free flame retardant is added (Comparative Example 16), the amount of flame retardant equivalent to the traditional bromine-helium flame retardant system is required to achieve the specified flame retardant effect; The synergist (Comparative Example 17), when the bromine-phosphorus flame retardant system was added up to 30%, did not reach the specified flame retardant grade, and the mechanical properties of the system deteriorated severely.
  • the fluidity of the system is greatly improved with the increase of the content of the phosphorus-based flame retardant, and the flame retardant effect of the system is about 2%. good.
  • a composite flame retardant FRABS2F1 was prepared in accordance with the ratio shown in Table 7-1.
  • the components were added to a high-speed mixer for mixing for 15 minutes according to Table 7-2, and then added to a twin-screw extruder for extrusion granulation according to a flame-retardant ABS preparation process to prepare flame-retardant ABS plastic particles.
  • the prepared particles were injection molded into a desired sample by an injection molding machine.
  • the injection molding conditions are: barrel temperature 220 ° C, mold temperature 30-60 ° C, injection pressure 6 MPa.
  • the same system, the same amount of the main flame retardant and the whitening compound flame retardant system were used to prepare the flame retardant ABS for comparative performance test, and the measured data are listed in Table 7-2.
  • FRABS2F4, FRABS2F5, FRABS2F6, FRABS2F7, FRABS2F8, FRABS2F9 were prepared according to the ratios shown in Table 7-1, and corresponding flame retardant ABS was prepared and tested. Its physical properties, the test results are shown in Table 7-2.
  • Dispersing agent EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 Processing aid:
  • the effect of burning is better; in addition, when the addition of non-phosphorus flame retardant (Comparative Example 19), the amount of flame retardant equivalent to the traditional bromine-helium flame retardant system is required to achieve the specified flame retardant effect;
  • the effectiveness of the agent (Comparative Example 20) when the bromine-phosphorus flame retardant system was added up to 30%, did not reach the specified flame retardant grade, and the mechanical properties of the system deteriorated severely.
  • the fluidity of the system is greatly improved with the increase of phosphorus flame retardant content, but it is lower than that of tetrabromobisphenol A flame retardant system.
  • the flame retardant effect of the system is optimal at a phosphorus content of about 2%.
  • a composite flame retardant FRABSC1 was prepared in accordance with the ratio shown in Table 8-1.
  • the components were added to a high-speed mixer for 15 minutes according to the ratio of Table 8-2, and then added to a twin-screw extruder to prepare by flame retardant ABS.
  • the process extrusion granulation, the flame retardant ABS plastic particles are prepared, and the prepared particles are injection molded into a desired sample by an injection molding machine.
  • the injection molding conditions are: barrel temperature 220 ° C, mold temperature 30-60 ° C, injection pressure 6 MPa.
  • the same system, the same amount of the main flame retardant and the whitening compound flame retardant system were used to prepare the flame retardant ABS for comparative performance test, and the measured data are listed in Table 8-2.
  • composite flame retardants FRABSC2, FRABSC3, FRABSC4, FRABSC5, FRABSC6, FRABSC7, FRABSC8, FRABSC9 were prepared according to the ratios shown in Table 8-1, and corresponding flame retardant ABS was prepared, and Test its physical properties, and the test results are shown in Table 8-2.
  • Dispersing agent S-74 0. 3 0 0. 3 0 0. 3 0. 3 0. 1 0. 1 0. 1 0. 1 0. 1 Dispersing agent: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 Processing Aid: No. 70
  • the amount of flame retardant can reach the specified flame retardant effect; when there is no flame retardant synergist (Comparative Example 23), the bromine-phosphorus flame retardant system can not reach the specified flame retardant level when it is added up to 30%, and the system The various mechanical properties deteriorated severely.
  • the fluidity of the system is greatly improved with the increase of the content of the phosphorus flame retardant, but higher than that of the brominated triazine flame retardant system. Tetrabromobisphenol A flame retardant system.
  • the flame retardant effect of the system is optimal at a phosphorus content of about 2%.
  • Example 49 Referring to the method of Example 1, a composite flame retardant FRABSFM1 was prepared in accordance with the ratio shown in Table 9-1. The components were added to a high-speed mixer for mixing for 15 minutes according to Table 9-2, and then added to a twin-screw extruder for extrusion granulation according to a flame-retardant ABS preparation process to prepare flame-retardant ABS plastic particles. The prepared particles were injection molded into a desired sample by an injection molding machine. The molding conditions are: barrel temperature 210 ° C, mold temperature 30-60 ° C, injection pressure 6 MPa. At the same time, the same system, the same amount of the main flame retardant and the whitening compound flame retardant system were used to prepare the flame retardant ABS for comparative performance test, and the measured data are listed in Table 9-2.
  • FRABSFM4, FRABSFM5, FRABSFM6 were prepared according to the ratios shown in Table 9-1, and corresponding flame retardant ABS was prepared and tested for physical properties. The test results are shown in Table 9-2. Table 9-1
  • Dispersing agent S-74 0. 3 0 0. 3 0 0. 3 0. 3 0. 1 0. 1 0. 1 0. 1 0. 1 Dispersing agent: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 Processing Aid: 70
  • a composite flame retardant FRABSFC1 was prepared in accordance with the ratio shown in Table 10-1.
  • the components were added to a high-speed mixer for 15 minutes according to the ratio shown in Table 10-2, and then added to a twin-screw extruder for extrusion granulation according to the flame-retardant ABS preparation process to prepare a flame-retardant ABS plastic.
  • the particles are prepared, and the prepared particles are injection molded into a desired sample by an injection molding machine.
  • the injection molding conditions are: barrel temperature 210 °C, mold temperature 30-60 ° C, injection pressure 6 MPa.
  • the same system, the same amount of the main flame retardant and the whitening compound flame retardant system were used to prepare the flame retardant ABS for comparative performance test, and the measured data are listed in Table 10-2.
  • composite flame retardants FRABSFC2, FRABSFC3, FRABSFC4, FRABSFC5, FRABSFC6, FRABSFC7, FRABSFC8, FRABSFC9 were prepared according to the ratios shown in Table 10-1, and corresponding flame retardant ABS was prepared, and Test its physical properties, and the test results are shown in Table 9-2.
  • Agent Fyrol 8. 5 10 8 8. 5 2 5 20
  • the fluidity of the system is greatly improved with the increase of the content of the phosphorus-based flame retardant.
  • the flame retardant effect of the system is 2 ⁇ . The best around.
  • Example 61 Referring to the method of Example 1, a composite flame retardant FRABSFF 1 was prepared in accordance with the ratio shown in Table 11-1. The components were added to a high-speed mixer for mixing for 15 minutes according to the ratio of Table 11-2, and then added to a twin-screw extruder for extrusion granulation according to a flame-retardant ABS preparation process to prepare flame-retardant ABS plastic particles. The prepared particles were injection molded into a desired sample by an injection molding machine. The injection molding conditions are: barrel temperature 210 ° C, mold temperature 30-60 ° C, injection pressure 6 MPa. At the same time, the same system, the same amount of the main flame retardant and the whitening compound flame retardant system were used to prepare the flame retardant ABS for comparative performance test, and the measured data are listed in Table 11-2.
  • composite flame retardants FRABSFF 2, FRABSFF 3, FRABSFF 4, FRABSFF 5, FRABSFF 6, FRABSFF7. FRABSFF8. FRABSFF9 were prepared according to the ratios shown in Table 11-1, and correspondingly prepared. Flame retardant ABS, and test its physical properties, the test results are shown in Table 11-2.
  • Burning agent 15 20 25 30 22 22 25 35 30
  • Burning agent 8.5 10 8 8.5 2 5 20
  • the amount of fuel can reach the specified flame retardant effect; when there is no flame retardant synergist (Comparative Example 32), the bromine-phosphorus flame retardant system can not reach the specified flame retardant level when it is added up to 30%, and the system The mechanical properties of the item deteriorated severely.
  • the fluidity of the system is greatly improved with the increase of the content of the phosphorus-based flame retardant.
  • the flame retardant effect of the system is optimal at a phosphorus content of about 2%.
  • the composite flame retardant FRPETPXL was prepared according to the ratio shown in Table 12-1.
  • the components were added to a high-speed mixer for mixing for 15 minutes according to the ratio of Table 12-2, and then added to the double.
  • extrusion granulation is carried out according to the flame-retardant reinforced PET preparation process, and flame-retardant reinforced PET plastic particles are prepared, and the prepared particles are injection-molded into a desired sample by an injection molding machine.
  • the injection molding conditions are: barrel temperature 250 °C, mold temperature 80-120 °C, injection pressure 6MPa.
  • the same system, the same amount of the main flame retardant and the whitening compound flame retardant system were prepared to prepare the flame-retardant PET for comparative performance test, and the measured data are listed in Table 12-2.
  • composite flame retardants FRPPETX2, FRPETPX 3, FRPETPX 4, FRPETPX 5, FRPETPX 6, FRPETPX7, FRPETPX8, FRPETPX9 were prepared according to the ratios shown in Table 12-1, and corresponding resistances were prepared. Burn the PET and test its physical properties. The test results are shown in Table 12-2.
  • Dispersing agent S-74 0. 3 0 0. 3 0 0. 3 0. 3 0. 1 0. 1 0. 1 0. 1 0. 1 Dispersing agent: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 Processing Aid: 70
  • NIS 10 10. 5 10. 5 10. 5 10. 0 10. 5 9. 8 6. 5 9. 2
  • the heat resistance of the system is reduced to some extent as the content of the phosphorus flame retardant increases.
  • the flame retardant effect of the system did not change significantly with the change of brick content.
  • Example 73 Referring to the method of Example 1, a composite flame retardant FRPXPAH1 was prepared in accordance with the ratio shown in Table 13-1. The components were added to a high-speed mixer for mixing for 15 minutes according to the ratio of Table 13-2, and then added to a twin-screw extruder for extrusion granulation according to the flame-retardant reinforced PBT preparation process to prepare a flame-retardant reinforced PBT plastic. The particles are prepared, and the prepared particles are injection molded into a desired sample by an injection molding machine. The injection molding conditions are: barrel temperature 240 ° C, mold temperature 50-70 ° C, injection pressure 6 MPa. Take the same system at the same time, The same amount of main flame retardant and whitening compound flame retardant system were used to prepare flame retardant PBT for comparative performance test. The measured data are listed in the table.
  • composite flame retardants FRPXPAH2, FRPXPAH3, FRPXPAH4, FRPXPAH5, FRPXPAH6, FRPXPAH7, FRPXPAH8, FRPXPAH9 were prepared according to the ratios shown in Table 13-1, and corresponding flame retardant PBTs were prepared, and Test its physical properties, and the test results are shown in Table 13-2.
  • NIS 10. 5 10. 3 10. 1 9. 7 9. 3 9. 5 10. 2 6. 8 9. 9
  • the heat resistance of the system is reduced to some extent as the content of the phosphorus flame retardant increases.
  • the flame retardant effect of the system did not change significantly with the change of phosphorus content.
  • a composite flame retardant FRPXPAC1 was prepared in accordance with the ratio shown in Table 14-1.
  • the components were added to a high-speed mixer for 15 minutes according to the ratio shown in Table 14-2, and then added to a twin-screw extruder for extrusion granulation according to the flame-retardant reinforced PBT preparation process to prepare a flame retardant reinforcement.
  • PBT plastic particles, and the prepared particles are injection molded into a desired sample by an injection molding machine.
  • the injection molding conditions are: barrel temperature 24 CTC, mold temperature 50-70 ° C, injection pressure 6 MPa.
  • the same amount of the main flame retardant and the whitening compound flame retardant system were used to prepare the flame retardant PBT for comparative performance test.
  • the measured data are listed in Table 14-2.
  • composite flame retardants FRPXPAC2, FRPXPAC3, FRPXPAC4, FRPXPAC5, FRPXPAC6, FRPXPAC7, FRPXPAC8, FRPXPAC9 were prepared according to the ratios shown in Table 14-1, and corresponding flame retardant PBT was prepared, and Test its physical properties, and the test results are shown in Table 14-2.
  • Table 14-1
  • Example 85 Referring to the method of Example 1, a composite flame retardant FRPCG1 was prepared in accordance with the ratio shown in Table 15-1. The components were added to a high-speed mixer for 15 minutes according to the ratio shown in Table 15-2, and then added to a twin-screw extruder for extrusion granulation according to the flame-retardant PC preparation process to prepare a flame-retardant PC plastic. The particles are prepared, and the prepared particles are injection molded into a desired sample by an injection molding machine. The injection molding conditions are: barrel temperature 270 ° C, mold temperature 60-80 ° C, injection pressure 6 MPa. At the same time, the same system, the same amount of the main flame retardant and the whitening compound flame retardant system were used to prepare the flame retardant PC for comparative performance test, and the measured data are listed in Table 15-2.
  • a composite flame retardant FRPCG2 FRPCG3 FRPCG4 FRPCG5 FRPCG6 FRPCG7 FRPCG8 FRPCG9 was prepared according to the ratios shown in Table 15-1, and the corresponding flame retardant PC was prepared and tested for physical properties. The results are shown in Table 15-2. Table 15-1
  • Agent 40 50 60 70 52 52 60 80 75
  • the burning PC product has a low addition amount, the effective content of antimony trioxide is extremely low, and the amount of the bromine-based flame retardant (brominated polycarbonate flame retardant) is also relatively reduced, so the mechanical properties thereof They are all better, and their flame retardant effect is better, and the heat resistance is better; in addition, when no phosphorus-based flame retardant is added (Comparative Example 43), the amount of flame retardant required to be equivalent to the traditional bromine-helium flame retardant system is required to achieve the specified flame retardant effect; when no flame retardant synergist (Comparative Example 44), the bromine-phosphorus flame retardant system is added Up to 15% does not reach the specified flame retardant rating.
  • bromine-based flame retardant bromine-based flame retardant
  • the heat resistance of the system is reduced to some extent with the increase of the phosphorus flame retardant content.
  • the flame retardant effect of the system did not change significantly with the change of phosphorus content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种复合阻燃剂,包含以下各组份,其重量百分比分别为:溴系阻燃剂40%-70%,磷系阻燃剂2%-10%,阻燃协效剂20%-50%,任选的抗滴落剂0%-0.5%,任选的分散剂0%-2%,任选的加工助剂0%-2%。复合阻燃剂的制备方法包括如下步骤:a、将物质按比例加入高速混合机中在200-800r/min的转速下充分混合2-10分钟,b、再将磷系阻燃剂边搅拌边加入上述混合物中,在500-1500r/min的转速下再次进行充分混合。所述复合阻燃剂应用于热塑性树脂及其合金,将所述复合阻燃剂与热塑性树脂和/或热塑性树脂合金熔融共混。

Description

复合阻燃剂、 制备方法及其应用
技术领域
本发明涉及塑料阻燃技术领域, 具体涉及一种复合阻燃剂、 制备方法及其应用。 背景技术
大部分高分子材料本身是易燃的, 其原因是由于高分子材料的分子结构主要由破、 氢、 氧等元素通过共价键相连, 这些共价键的能量均不高, 一旦外界供给足够的能量, 高分子材 料就会分解、 燃烧。 燃烧的本质是物质强烈的氧化反应, 它必须具备可燃物、 氧和温度三个 基本条件。 高分子材料的燃烧是个复杂的物理化学过程。 整个燃烧过程可分为加热、 分解、 燃烧和蔓延等几个阶段。 在氧气存在条件下, 当高分子材料过热时, 表面首先熔化并发生热 分解, 放出可燃性气体。 气体与氧发生强烈反应, 产生活性非常大的自由基 HO■和 H ·。 这 些自由基能立即与其他分子反应生成新的自由基。 如此连锁反应就是燃烧过程。 燃烧所放出 的热量使正在分解的高分子材料进一步分解, 产生更多的可燃性气体, 在有充足的空气供给 下, 使燃烧继续维持并传播, 火势在很短的时间内就会蔓延成大火。
目前高分子材料的阻燃主要是通过添加阻燃剂来实现。 阻燃剂的作用是阻止材料引燃或 抑制火焰传播。 高分子材料的耐热和耐燃性能较差, 阻燃剂可提高高分子材料形成的制品的 使用安全性能, 因此成为高分子材料改性加工的重要添加剂之一。 近年来, 世界各国对防灾 减灾日益重视, 安全环保领域的立法也日趋完善, 极大的促进了阻燃剂的研究开发和生产使 用。 但阻燃剂 (有机阻燃剂) 的开发和生产一直属于精细化工领域, 一种阻燃剂从开发到生 产需要经历一个漫长的时间周期, 并且还要对新开发的阻燃剂进行多方面环保评估。 因此, 一种新阻燃剂从开发、 评估到推广的整个费用占产品成本的三分之一以上。 同时, 这种新开 发的阻燃剂的功能一般比较单一, 且在燃烧过程中会产生大量的有毒有害烟雾。 另外, 由于 添加量大, 导致与基体材料相容性差, 对基体材料的加工和理化性能影响大。
综合以上分析, 研究现有阻燃剂的复配技术和协同效应, 发挥阻燃剂的协同作用及其多 功能性, 不但可以增强阻燃、 抑制烟雾、 改善熔指、 提高理化性能及扩大应用范围, 而且还 可以减少用量, 降低成本及对环境的危害。
因此, 目前市场上更需要研究现有阻燃剂的复配技术和协同效应, 公开更多的符合环保 要求的多功能复合阻燃体系。 发明内容
综上所述, 本发明有必要提供一种复合阻燃剂, 使用本发明所述阻燃剂添加量较少的情 况下, 达到指定的阻燃效果。
进一步地, 还有必要提供一种上述复合阻燃剂的制备方法。
进一步地, 还有必要提供一种上述复合阻燃剂的应用。
本发明的技术方案是: 一种新型环保 (¾ -磷复合阻燃剂, 包含以下各组份按其重量百分比 为:
溴系阻燃剂 。1^
磷系阻燃剂 2%-10%;
阻燃协效剂 20%-50%;
任选的抗滴落剂 0%-0.5%;
任选的分散剂 0%-2%;
任选的加工助剂 0%-2%;
其中所述阻燃协效剂包括无机粉体、 聚硅氧坑和锑的化合物, 所述聚硅氧烷重量占所述 阻燃协效剂百分比为 1%-15%, 所述锑的化合物的重量占所述阻燃协效剂 0-25% , 所述无机 粉体的重量占所述阻燃协效剂的 60-99%。
其中所述阻燃协效剂也可以是如下配方, 包括无机粉体、 聚硅氧烷和锑的化合物, 所述 聚硅氧烷重量占所述阻燃协效剂百分比为 1%-15% , 所述锑的化合物的重量占所述阻燃协效 剂 0-19% , 所述无机粉体的重量占所述阻燃协效剂的 66-99%。
上述新型环保卤-磷复合阻燃剂的配方还可以是, 包含以下各组份按其重量百分比为: 溴系阻燃剂 50%-60%;
磷系阻燃剂 5%-8%;
阻燃协效剂 30%-40%;
任选的抗滴落剂 0%- 0.5%;
任选的分散剂 0%-2%;
任选的加工助剂 0%-2%;
其中所述阻燃协效剂包括无机粉体、 聚硅氧烷和锑的化合物, 所述聚硅氧烷重量占所述 阻燃协效剂百分比可以为 1%、 2%, 3%, 4%, 5%、 6%、 7%、 8%, 9%, 10%, 11%, 12%, 13%、 14%、 15% , 所述锑的化合物的重量占所述阻燃协效剂 2%、 3%、 4%、 5%、 8%、 10%、 15% , 19% , 所述无机粉体的重量占所述阻燃协效剂的 60%、 65%、 70%、 73%、 78%、 80%、 84%、 85%、 86%、 88%、 90%、 91%、 92%, 93%, 96%, 97% , 所述无机粉体、 聚硅氧烷和 锑的化合物的取值范围取以上列举的任意两个点值所行成的范围。
一种复合阻燃剂 由以下各组份按其重量百分比组成:
溴系阻燃剂 40%-70 ;
磷系阻燃剂 2%-10%;
阻燃协效剂 20%-50%;
任选的抗滴落剂 0%-0.5%;
任选的分散剂 0%-2%;
任选的力 p工助剂 0%-2%;
其中所述阻燃协效剂包括无机粉体、 聚硅氧烷和锑的化合物, 所述聚硅氧烷重量占所述 阻燃协效剂百分比为 1 %- 15%, 所述锑的化合物的重量占所述阻燃协效剂 0-25% , 所述无机 粉体的重量占所述阻燃协效剂的 60-99%。
其中所述阻燃协效剂也可以是如下配方, 所述阻燃协效剂是由无机粉体、 聚硅氧烷和锑 的化合物组成, 所述聚硅氧烷重量占所述阻燃协效剂百分比为 1%-15% , 所述锑的化合物的 重量占所述阻燃协效剂 0- 19% , 所述无机粉体的重量占所述阻燃协效剂的 66-99%。
所述聚硅氧烷为二甲基聚硅氧烷、 苯基聚硅氧烷、 乙烯基聚硅氧烷、 酰胺基聚硅氧烷、 环氧基聚硅氧烷、 异丁基聚硅氧烷、 苯乙烯基聚硅氧烷和环状结构聚硅氧烷中的一种或多种 的混合物。
所述聚硅氧烷的分子量在 3万以上, 在温度为 25 °C时, 其粘度在 500mPa' S以上。
所述无机粉体是由锑化合物、 滑石粉、 钛白粉、 立德粉、 碳酸镁、 硫酸钡、 云石粉、 云 母粉、 天然硅石、 硅灰石粉、 高岭土和长石粉中的一种或多种的混合物;
所述锑化合物选自三氧化二锑、 胶体五氧化二锑、 锑酸納、 三氯化锑、 五氯化锑、 亚磷 酸锑、 多聚磷酸锑和络合锑中的一种或多种。
所述的阻燃协效剂的制备方法是将无机粉体、 聚硅氧烷和锑的化合物在高混机中混合得 所述溴系阻燃剂选自八溴醚、 四溴双酚 A、 溴化环氧、 溴代三嗪、 十溴二苯乙烷、 溴化 聚苯乙烯、 溴化亚胺和溴化聚碳酸酯中的一种或多种复配物, 所述溴系阻燃剂还可以包括聚 合型阻燃剂聚合型阻燃剂 ( FR-Emerald 1000 )。
所述磷系阻燃剂为间亚笨基四苯基双磷酸酯、双酚 A双(二笨基磷酸酯;)、间亚苯基四(二 甲笨基)双磷酸酯、 间亚笨基四 (二甲苯基)双磚酸酯齐聚物、 磷酸三苯酯、 磷酸二苯(二 甲笨)酯、 磷酸二苯(二曱笨)酯、 磷酸二苯异丙笨酯、 磷酸二笨异辛酯、 磷酸二笨异癸酯、 磷酸三(甲苯) 酯、 磷酸三(二甲苯) 酯、 磷酸苯基叔丁苯基酯、 烷苯基双祷酸酯、 含环烷 基的双磷酸酸酯、 联苯双(二苯基)磷酸酯、 磷酸三乙酯、 磷酸三丁酯、 磷酸三异辛酯、 磷 酸三(2-丁氧乙基)酯、 1-氧代 -4-羟甲基 -2, 6, 7-三氧杂 -1-磷杂双环(2, 2, 2 )辛烷、 三 (1- 氧代 -2, 6, 7-三氧杂 -1-磷杂双环 [2.2.2] 辛烷-亚甲基 -4)磷酸酯和 2, 2-二甲基 -1 , 3-丙二醇- 二(新戊二醇)双辨酸酯中的一种或多种。
所述高分子量的聚硅氧烷为曱基聚硅氧烷、 笨基聚硅氧烷、 乙烯基聚硅氧烷、 酰胺基聚 硅氧烷、 环氧基聚硅氧烷、 异丁基聚硅氧烷、 苯乙烯基聚硅氧烷和环状结构聚硅氧烷中的一 种或多种的混合物。 传统的观点认为, 当含卤、 磷的阻燃剂与氧化锑并用时, 卤-磷间及卤- 磷 -锑间往往没有协同甚至加和作用, 而可能呈现对抗作用。 由于 -锑阻燃体系是典型的气 相自由基阻燃机理, 而磷系阻燃剂大都是凝聚相阻燃机理, 这时磷的加入会阻碍锑的气化而 抑制了 |¾ -锑协同作用, 同时三氧化二锑被转化为不挥发的磷酸锑。 而本发明则是在溴 -锑协 同气相阻燃机理中引入凝聚相阻燃剂即磷系阻燃剂, 为了防止磷系阻燃剂阻碍锑的气化而抑 制了溴 -锑协同作用。 引入的阻燃协效剂非传统的锑化合物如三氧化二锑, 而是在少量的甚至 没有三氧化二锑的基础上, 通过无机粉体和聚硅氧烷特别是超高分子量的聚硅氧烷形成的复 配物。 具体的就是在溴-磷复配阻燃体系中引入超高分子量聚硅氧烷和无机粉体。 如此制备的 复配阻燃剂加入到被阻燃材料中, 使得被阻燃材料在燃烧过程中产生的高温向被阻燃材料内 部传递的速度由于磷系凝聚相阻燃而延緩, 同时由于磷系凝聚相阻燃剂在材料表面形成一层 保护炭层, 可进一步减少向材料内部的燃料供应, 使得火焰温度降低, 从而使得保护层内部 溴系气相自由基朴捉机理得以有效的发挥, 于是凝聚相和气相阻燃协效机理得以实现, 在达 到所需的阻燃等级的前提下, 能大幅度降低溴系阻燃剂用量。
所述抗滴落剂为聚四氟乙烯。
所述分散剂选自酰胺类润滑剂、 硅酮类润滑剂、 硬脂酸类润滑剂、 蒙旦酯类润滑剂和多 元醇类润滑剂中的一种或多种。
所述加工助剂为硅油、 白矿油中的一种或两种。
所述复合阻燃剂中, 磷系阻燃剂在所述复合阻燃剂中的优选重量比是 2%-8%, 特别优选 是 2%-5%。
所述复合阻燃剂中应用于 PP、 HIPS树脂或其合金中,磷系阻燃剂在所述复合阻燃剂中的 优选重量比是 2%- 5%。
所述复合阻燃剂中应用于 ABS树脂中, 磷系阻燃剂在所述复合阻燃剂中的优选重量比是 2%-8%, 特别优选是 2%。
本发明所述的复合阻燃剂的制备方法, 包括如下步骤:
a、 将溴系阻燃剂、 磷系阻燃剂、 阻燃协效剂、 任选的抗滴落剂、 任选的分散剂、 任选的 加工助剂按比例加入高速混合机中在 200-800r/min的转速下充分混合 2-10分钟;
b、 再将磷系阻燃剂边搅拌边加入上述混合物, 在 500-1500r/min的转速下再次进行充分 混合。
本发明所述的复合阻燃剂的应用, 将所述的复合阻燃剂应用于热塑性树脂及其合金, 将 所述复合阻燃剂与热塑性树脂和 /或热塑性树脂合金熔融共混。 其中热塑性树脂包括聚烯烃、 聚笨乙烯、 ABS 共聚物、 聚酯、 尼龙等需要阻燃改性的热塑性树脂, 热塑性树脂合金包括 ABS/PET、 ABS/PBT、 ABS/PMMA、 ABS/SMA、 ABS/PA、 PC/ABS、 PC/PBT、 PC/PET等阻 燃改性。
本发明的有益效果是: 本发明所述的复合阻燃剂不仅大幅度降低了阻燃材料的成本, 而 且提高了阻燃材料的力学性能和阻燃效果及其阻燃稳定性。 另外, 通过不同阻燃剂之间的复 配技术和协同效应, 使开发的阻燃剂同时具有阻燃、 抑烟、 导电、 屏蔽和防辐射等多功能化。 具体实施方式
下面结合一些具体实施方式对本发明做进一步描述。 具体实施例为进一步详细说明本发 明, 非限定本发明的保护范围。
本发明所用到的物质有:
溴系阻燃剂,八溴醚选用美国雅保公司的 HP-800, 四溴双酚 A选用以色列死海溴公司的 FR-1524, 溴化环氧选用韩国宇进的 CXB-714C和 CXB-2000 , 十溴二苯乙烷选用美国雅保公 司的 4010, 溴化聚苯乙烯选用美国科聚亚公司的 PBS-64HW, 溴代三嗪选用以色列死海溴公 司的 FR-245, 溴化亚胺选用美国雅保公司的 BT-93 , 溴化聚碳酸酯选用日本帝人化成公司的 FG-8500, 聚合型阻燃剂选用大湖化工的 FR-Emerald 1000。 关于磷系阻燃剂分别选用美国旭 瑞达公司 Fyrol 51 , Phosflex TPP和 Fyrolflex sol-DP, 德国拜耳公司的 TBP。 抗滴落剂选用广 州熵能公司的 SN80-SA7 , 分散剂选用理研公司的 S-74和美国陶氏化学公司的 EBS , 锑化合 物选用云南木利锑业有限公司的 S-05N,抗氧剂选用气巴精化的季戊四醇酯 1010和亚磷酸酯 168 , 加工助剂选用辽宁奥克化学股份有限公司的白矿油 70号白油, 德国科菜恩公司的成核 剂 NavlOl , 硬脂酸钙 BS-3818在市面上可以购买得到。
以下实施例及对比例中, PP树脂选用日本住友化学公司的 PP AZ564; HIPS树脂选用台 湾斯泰隆股份有限公司的 PS MA5210; ABS树脂选用韩国锦湖公司的 ABS 745N; PET树脂 选用美国杜邦公司的 PET FC-01-68 ; PBT 树脂选用长春石油化学股份有限公司的 PBT 1200-211M; PC树脂选用韩国 LG化学公司的 PC 1300-03NP; 增韧剂选用新加坡三井化学公 司的 POE DF610, 美国杜邦公司的 PTW, 韩国锦湖公司的 HR181 , 韩国 LG化学公司的 SBS LG501S; 玻纤选用四川威玻新材料集团有限公司 ECS 303W。
本发明制备阻燃剂所用到的仪器设备有:
制备阻燃剂所用的高速混合机是江苏张家港市科达机械有限公司生产的 SHR-100A。 热塑性塑料阻燃改性所用的双螺杆挤出机是由南京瑞亚高聚物装备有限公司生产的 SHJ-30。
阻燃热塑性塑料测试样条采用的注塑机是由浙江海天注塑机有限公司生产的 B-920型。 测试熔体流动速率用的仪器是美斯特工业系统 (中国)有限公司生产的 ZR21452熔体流动 速率仪。
测试冲击强度用的冲击实验机是美国 Tinius Olsenis公司生产的 T92型。
测试拉伸强度用的万能试验机是 Hounsfield公司生产的 H10K-S。
测试 UL94使用的 UL-94垂直燃烧仪是美国 ATLAS HVUL-2.
本发明复合阻燃剂物质性能测试的标准及縮写:
拉伸强度, 用縮写 TS表示, 单位是 MPa, 采用国家标准 ISO 527;
断裂伸长率, 用缩写 EL表示, 单位是%, 采用国家标准 ISO 527;
悬臂梁缺口冲击强度, 用縮写 NIS表示, 单位是 kJ/m2, 采用国家标准 ISO 180, 缺口类 型为 A型缺口;
弯曲强度, 用缩写 FS表示, 单位是 MPa, 采用国家标准 ISO 178;
弯曲模量, 用缩写 FM表示, 单位是 MPa, 釆用国家标准 ISO 178;
熔融指数, 用缩写 Ml表示, 单位是 lOg/min, 釆用国家标准 ISO 1133;
比重, 用缩写 SG表示, 单位是 g/cm3, 采用国家标准 ISO 1183;
收縮率, 用縮写 MS表示, 单位是% , 采用国家标准 ISO 294;
洛氏硬度, 用缩写 RH表示, 单位是 R-scale , 采用国家标准 ISO 2039;
燃烧, 用缩写 UL94表示, 单位是 class , 采用国家标准 UL94;
热变形温度, 用缩写 H.D.T.表示, 单位是。 C , 釆用国家标准 ISO 75。
实施例中的配比如无特别说明, 则按物质的重量份计。
阻燃协效剂的制备
XX- 1的制备
将滑石粉 99克, 二甲基聚硅氧烷 1 克, 在高混机中混和 20分钟, 即可制备出阻燃协效 剂 XX-1 , 所述二甲基聚硅氧烷的分子量为 30000, 其粘度为 500Pa*S。
XX-2的制备
将滑石粉 66克, 二甲基聚硅氧烷 15 克, 三氧化二锑 19克, 在高混机中混和 20分钟, 即可制备出阻燃协效剂 XX-2, 所述二甲基聚硅氧烷的分子量为 35000, 其粘度为 500Pa*S。 XX-3的制备
将滑石粉 85克, 笨基聚硅氧烷 15克, 在高混机中混和 20分钟, 即可制备出阻燃协效 剂 XX-3, 所述笨基聚硅氧烷的分子量为 40000, 其粘度为 600Pa*S。
XX-4的制备
将立德粉 88克, 环氧基聚硅氧烷 10克, 三氯化锑 2克, 在高混机中混和 20分钟, 即 可制备出阻燃协效剂 XX-4, 所述环氧基聚硅氧烷的分子量为 45000, 其粘度为 600Pa*S。
XX-5的制备
将滑石粉 70克, 二甲基聚硅氧烷 15 克, 三氧化二锑 15克, 在高混机中混和 20分钟, 即可制备出阻燃协效剂 XX-5, 所述二甲基聚硅氧烷的分子量为 30000, 其粘度为 500Pa*S。
XX-6的制备
将滑石粉 60克, 二甲基聚硅氧烷 15 克, 三氧化二锑 25克, 在高混机中混和 20分钟, 即可制备出阻燃协效剂 XX-6, 所述二甲基聚硅氧烷的分子量为 30000, 其粘度为 500Pa*S。
XX-7的制备
将滑石粉 90克, 二甲基聚硅氧烷 8克, 三氧化二锑 2克, 在高混机中混和 20分钟, 即 可制备出阻燃协效剂 XX- 7, 所述二甲基聚硅氧烷的分子量为 30000, 其粘度为 500Pa'S。
XX- 8的制备
将滑石粉 92克, 二甲基聚硅氧烷 6克, 三氧化二锑 2克, 在高混机中混和 20分钟, 即 可制备出阻燃协效剂 XX-8, 所述二曱基聚硅氧烷的分子量为 30000, 其粘度为 500Pa*S。
XX-9的制备
将滑石粉 91克, 二曱基聚硅氧烷 8克, 三氧化二锑 1克, 在高混机中混和 20分钟, 即 可制备出阻燃协效剂 XX-9, 所述二曱基聚硅氧烷的分子量为 30000, 其粘度为 500Pa'S。
XX- 10的制备
将滑石粉 86克, 二甲基聚硅氧烷 12克, 三氧化二锑 2克, 在高混机中混和 20分钟, 即 可制备出阻燃协效剂 XX-10, 所述二甲基聚硅氧烷的分子量为 30000, 其粘度为 500Pa*S。
XX- 11的制备
将滑石粉 84克, 二甲基聚硅氧烷 13克, 三氧化二锑 3克, 在高混机中混和 20分钟, 即 可制备出阻燃协效剂 XX-11, 所述二甲基聚硅氧烷的分子量为 30000, 其粘度为 500Pa*S。
XX- 12的制备
将滑石粉 80克, 二甲基聚硅氧烷 15克, 三氧化二锑 5克, 在高混机中混和 20分钟, 即可制备出阻燃协效剂 XX-12, 所述二甲基聚硅氧烷的分子量为 30000, 其粘度为 500Pa'S。 XX- 13的制备
将滑石粉 78克, 二甲基聚硅氧烷 14克, 三氧化二锑 8克, 在高混机中混和 20分钟, 即可制备出阻燃协效剂 XX-13 , 所述二甲基聚硅氧烷的分子量为 30000, 其粘度为 500Pa'S。
XX- 14的制备
将滑石粉 85克, 二曱基聚硅氧烷 11克, 三氧化二锑 4克, 在高混机中混和 20分钟, 即 可制备出阻燃协效剂 XX-14, 所述二曱基聚硅氧烷的分子量为 30000, 其粘度为 500Pa'S。
XX- 15的制备
将滑石粉 96克, 二曱基聚硅氧烷 4克, 在高混机中混和 20分钟, 即可制备出阻燃协效 剂 XX-15, 所述二曱基聚硅氧烷的分子量为 30000, 其粘度为 500Pa'S。
实施例 1
制备复合阻燃剂
a、 将 HP-800、 XX-1、 SN80-SA7、 S-74和 70号白油按表格 1-1所示配比加入到高速混 合机中, 在 200-800r/min的转速下充分混合 2-10min;
b、 再将磷系阻燃剂边搅拌边加入上述混合物, 在 500-1500 r/min的转速下再次进行充分 混合, 得到复合阻燃剂 FRPPH1。
阻燃 PP制备方法如下:
将各组份按表 1-2配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃 PP制备工艺挤出造粒, 制备出阻燃 PP粒子, 并将制备的粒子用注塑机注塑成所需试样。 注 塑条件为: 料筒温度 200°C, 模具温度 20-50°C , 注塑压力 8MPa。 同时取相同体系, 相同量 的主阻燃剂和锑白复配阻燃体系制备阻燃 PP做对比性能测试, 测得数据如下表 1-2所示。
实施例 2-6和对比例 1-3
参照实施例 1的方法, 按照表 1-1所示的配比制备得到复合阻燃剂 FRPPH2、 FRPPH3、 FRPPH4、 FRPPH5、 FRPPH6、 FRPPH7、 FRPPH8、 FRPPH9, 并制备相对应的阻燃 PP, 并 测试其物理性能, 将测试结果如表 1-2所示。
表 1-1
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 1 2 3 4 5 6 1 2 3
FRPPH1 FRPPH2 FRPPH3 FRPPH4 FRPPH5 FRPPH6 FRPPH7 FRPPH8 FRPPH9 溴系阻燃剂:
40 50 60 70 52 52 60 80 75
HP- 800
磷系阻燃剂:
8. 5 10 8 8. 5 2 5 20
Fyrol 51
阻燃协效剂: xx-i 50 40 30 20 47 44 40
阻燃协效剂: S-05N 25 抗滴落剂:
0. 2 0 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2
SN80-SA7
分散剂: S-74 0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1 分散剂: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 加工助剂: 70号白
0. 5 0 1 1 0 0. 2 0. 2 0. 2 0. 2 油 表 1-2
Figure imgf000010_0001
由上表实施例 1-6及三个对比例 1-3分析,和传统的八溴醚 -锑阻燃体系(对比例 3 )相比, 通过新型环保八溴醚 -磷-协效剂复合阻燃体系制备阻燃 PP产品具有添加量低, 三氧化二锑的 有效含量极低, 溴系阻燃剂溴系阻燃剂的用量也相对减少等优点等优点, 因此其力学性能均 保持较优, 而其阻燃效果更佳; 另外, 当无磷系阻燃剂的加入(对比例 1 ) , 需要和传统八 溴醚-锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无阻燃协效剂(对比例 2 ) , 溴-磷阻燃体系加到高达 30%时也达不到指定的阻燃等级, 同时体系的各项力学性能恶化严 重。 对于所制备的新型环保八溴醚 -磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增加, 体系的流动性大幅度提高, 但阻燃效果在磷含量为 5%左右最好。
实施例 7
参照实施例 1的方法, 按照表 2-1所示的配比制备得到复合阻燃剂 FRPPM1 , 并制备相对 应的阻燃 PP, 并测试其物理性能, 将测试结果如表 2-2所示。
实施例 8-12和对比例 4-6
参照实施例 1的方法, 按照表 2-1所示的配比制备得到复合阻燃剂 FRPPM2、 FRPPM3, FRPPM4、 FRPPM5、 FRPPM6、 FRPPM7、 FRPPM8、 FRPPM9 , 并制备相对应的阻燃 PP, 并测试其物理性能, 将测试结果如表 2-2所示。
表 2-1
Figure imgf000011_0001
表 2-2
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 配方
7 8 9 10 11 12 4 5 6
PP AZ564 70 70 70 70 70 70 65 60 65
POE 10 10 10 10 10 10 10 10 10
FRPPM1 20
FRPPM2 20
FRPPM3 20
FRPPM4 20
FRPPM5 20
F PPM6 20
FRPPM7 25
FRPPM8 30
FRPPM9 25
1010 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
168 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 BS-3818 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
EBS 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
TS 34 33 31 29 27 25 28 24 29
EL 28 31 33 28 29 31 35 20 30
NIS 5.6 5.5 5.6 5.1 4.9 4.6 4.9 3.0 4.5
FS 47 45 43 40 41 37 39 33 40
FM 2715 2638 2509 2328 2252 2089 2600 1890 2455
SG 1.136 1.135 1.135 1.135 1.135 1.133 1.140 1.171 1.151
MI 18 17 15 13 15 16 16 22 15
UL94組. Omm V-l V-l V-l V-l V-l V-0 1 / 1
UL94組. 5mm V-0 V-0 V-0 V-0 V-l V-0 1 1 1
UL94@2. Omm V-0 V-0 V-0 V-0 V-l V-0 1 1 1
UL94@2. 5mm V-0 V-0 V-0 V-0 V-0 V-0 1 1 1
UL94@3. Omm V-0 V-0 V-0 V-0 V-0 V-0 V-0 1 V-0
H. D. T 125 118 120 117 129 121 116 102 116 由上表中实施例 7-12及对比例 4-6分析, 和传统的溴 -锑阻燃体系 (对比例 6 )相比, 通 过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 PP产品具有添加量低, 三氧化二锑的有效含 量极低, 溴系阻燃剂的用量也相对减少等优点, 因此其力学性能均保持较优, 而其阻燃效果 更佳; 另外, 当无磷系阻燃剂的加入(对比例 4 ) , 需要和传统溴 -锑阻燃体系相当的阻燃剂 用量才能达到指定的阻燃效果; 当无阻燃协效剂 (对比例 5 ) , 溴-磷阻燃体系加到高达 30% 时也达不到指定的阻燃等级, 同时体系的各项力学性能恶化严重。 对于所制备的新型环保溴- 磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增力 π , 体系的流动性大幅度提高, 但阻燃效 果在磷含量为 5%左右最好。
本实验采用的主阻燃剂是十溴二苯乙烷阻燃剂。 十溴二苯乙烷阻燃剂具有优异的光稳定 性及抗紫外线能力, 使它具有优异的颜色稳定性, 同时由于其熔点极高, 且在树脂中基本不 溶, 所以添加到树脂中具有较高的热变形温度且不宜起霜, 并可以回收循环使用有利于节能 环保。 因此, 通过该方法可制备高耐热阻燃聚丙烯产品。
实施例 13
参照实施例 1的方法, 按照表 3-1所示的配比制备得到复合阻燃剂 FRPSB1。 将各组份按 表 3-2所示配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃 HIPS制备 工艺挤出造粒, 制备出阻燃 HIPS 塑胶粒子, 并将制备的粒子用注塑机注塑成所需试样。 注 塑条件为: 料筒温度 230°C, 模具温度 30-60 °C , 注塑压力 8MPa, 并测试其物理性能, 将测 试结果如表 3-2所示。
实施例 14-18和对比例 7-9
参照实施例 13的方法, 按照表 3-1所示的配比制备得到复合阻燃剂 FRPSB2、 FRPSB3、 FRPSB4、 FRPSB5、 FRPSB6、 FRPSB7、 FRPSB8、 FRPSB9 , 并制备相对应的阻燃 HIPS , 并 测试其物理性能, 将测试结果如表 3-2所示。
表 3-1
Figure imgf000013_0001
表 3-2
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 13 14 15 16 17 18 7 8 9
PS MA5210 82 82 82 82 82 82 76 66 76
SBS LG501S 4 4 4 4 4 4 4 4 4
FRPSB 1 14
FRPSB2 14
FRPSB3 14
FRPSB4 14
FRPSB5 14
FRPSB6 14
FRPSB7 20
FRPSB8 30
FRPSB9 20
1010 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
168 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BS-3818 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
EBS 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
TS 29 28 28 29 32 28 27 22 28
EL 23 20 24 21 25 20 20 14 17
NIS 9. 6 9. 5 9. 6 9. 5 9. 8 9. 1 9. 0 5. 9 7. 8
FS 46 46 45 46 50 47 48 39 43
FM 2431 2437 2489 2449 2759 2578 2549 2041 2365 SG 1. 161 1. 160 1. 161 1. 160 1. 162 1. 170 1. 166 1. 178
MI 16 18 15 16 10 13 19 25 16
UL9復 Omm v-i v-i v-i v-i v-o V-l 1 1 1
UL94@1. 5mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@2. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@2. 5mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@3. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-o
H. D. T 76 75 76 75 80 77 75 71 75 由上表中实施例 13- 18及对比例 7-9分析, 和传统的溴 -锑阻燃体系 (对比例 9 )相比, 通 过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 HIPS产品具有添加量低, 三氧化二锑的有效 含量极低, 溴系阻燃剂的用量也相对减少等优点, 因此其力学性能均保持较优, 而其阻燃效 果更佳; 另外, 当无磷系阻燃剂的加入(对比例 7 ) , 需要和传统溴-锑阻燃体系相当的阻燃 剂用量才能达到指定的阻燃效果; 当无阻燃协效剂(对比例 8 ), 溴-磷阻燃体系加到高达 30% 时也达不到指定的阻燃等级, 同时体系的各项力学性能恶化严重。 对于所制备的新型环保溴- 磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增加, 体系的流动性大幅度提高, 但阻燃效 果在磷含量为 2%左右最佳。
实施例 19
参照实施例 13的方法, 按照表 4-1所示的配比制备得到复合阻燃剂 FRPSM1 , 并制备相 对应的阻燃 HIPS , 并测试其物理性能, 将测试结果如表 4-2所示。
实施例 20-24和对比例 10-12
参照实施例 13的方法, 按照表 4-1所示的配比制备得到复合阻燃剂 FRPSM2、 FRPSM3、 FRPSM4、 FRPSM5、 FRPSM6、 FRPSM7、 FRPSM8、 FRPSM9, 并制备相对应的阻燃 HIPS, 并测试其物理性能, 将测试结果如表 4-2所示。
表 4-1
实施 实施 实施 实施 实施 实施 对比 对比 对比 例 19 例 20 例 21 例 22 例 23 例 24 例 10 例 11 例 12
FRPSM FRPSM FRPSM FRPSM FRPSM FRPSM FRPSM FRPSM FRPSM
1 2 3 4 5 6 7 8 9 溴系阻燃剂: 4010 10 15 20 25 14 14 25 20 20 溴系阻燃剂:
30 35 40 45 38 38 35 60 55
CXB-714C
磷系阻燃剂: Fyrol
8. 5 10 8 8. 5 2 5 20
51
阻燃协效剂: XX-4 50 40 30 20 47 44 40
阻燃协效剂: S-05N 25 抗滴落剂:
0. 2 0 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2
SN80-SA7
分散剂: S-74 0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1 分散剂: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 加工助剂: 70号白
0. 5 0 1 1 0 0. 2 0. 2 0. 2 0. 2 油 表 4-2
Figure imgf000015_0001
由上表中实施例 19- 24及对比例 10- 12分析, 和传统的溴-锑阻燃体系 (对比例 12 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 HIPS产品具有添加量低, 三氧化二锑的有 效含量极低, 溴系阻燃剂的用量也相对减少, 因此其力学性能均保持较优, 而其阻燃效果更 佳; 另外, 当无磷系阻燃剂的加入(对比例 10 ) , 需要和传统溴-锑阻燃体系相当的阻燃剂用 量才能达到指定的阻燃效果; 当无阻燃协效剂 (对比例 11 ) , 溴-磷阻燃体系加到高达 30% 时也达不到指定的阻燃等级, 同时体系的各项力学性能恶化严重。 对于所制备的新型环保溴- 磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增加, 体系的流动性大幅度提高, 但低于溴 化亚胺 (BT-93 ) 和低分子量溴化环氧树脂 (CXB-714)复配体系。 同时体系阻燃效果在磷含量 为 2%左右最佳。
实施例 25 参照实施例 1的方法,按照表 3-1所示的配比制备得到复合阻燃剂 FRPSF1。将各组份按 表 5-2所示配比加入到高速混合机中摻混 15分钟, 再加到双螺杆挤出机中按阻燃 HIPS制备 工艺挤出造粒, 制备出阻燃 HIPS 塑胶粒子, 并将制备的粒子用注塑机注塑成所需试样。 注 塑条件为: 料筒温度 240°C, 模具温度 30-8CTC , 注塑压力 8MPa。 同时取相同体系, 相同量 的主阻燃剂和锑白复配阻燃体系制备阻燃 HIPS做对比性能测试, 测得数据列于表 5-2中。
实施例 26-30和对比例 13-15
参照实施例 25的方法,按照表 5-1所示的配比分别制备得到复合阻燃剂 FRPSF2、FRPSF3、
FRPSF4、 FRPSF5、 FRPSF6、 FRPSF7、 FRPSF8、 FRPSF9, 并制备相对应的阻燃 HIPS , 并 测试其物理性能, 将测试结果如表 5-2所示。
表 5-1
Figure imgf000016_0001
表 5-2
实施 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 配方
例 25 26 27 28 29 30 13 14 15
PS MA5210 84 84 84 84 84 84 76 66 76
SBS LG501S 4 4 4 4 4 4 4 4 4
FRPSF1 12
FRPSF2 12
FRPSF3 12
FRPSF4 12
FRPSF5 12
FRPSF6 12
FRPSF7 20
FRPSF8 30 FRPSF9 20
1010 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
168 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BS-3818 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
EBS 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
TS 28 27 27 27 28 27 26 22 28
EL 19 18 19 16 17 18 17 14 14
NIS 8. 2 8. 0 8. 1 8. 1 7. 7 8. 0 7. 8 5. 6 7. 0
FS 47 44 45 45 46 44 43 39 45
FM 2890 2932 2897 2848 3005 2882 2708 2156 2488
SG 1. 158 1. 159 1. 158 1. 158 1. 159 1. 172 1. 165 1. 181
MI 12 13 12 12 7 10 12 16 10
UL94@1. Omm v-i v-i V-l v-i v-o V-l 1 1 1
UL94@1. 5mm v-o v-o v-o v-o v-o v-o v-i 1 v-i
UL94S2. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-i
UL9權. 5mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94S3. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-o
H. D. T 86 85 86 85 90 87 76 72 76 由上表中实施例 25-30及对比例 13-15分析, 和传统的溴 -锑阻燃体系 (对比例 15 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 HIPS产品具有添加量低, 三氧化二锑的有 效含量极低, 溴系阻燃剂溴系阻燃剂的用量也相对减少等优点, 因此其力学性能均保持较优, 而其阻燃效果更佳; 另外, 当无磷系阻燃剂的加入(对比例 13 ) , 需要和传统溴 -锑阻燃体系 相当的阻燃剂用量才能达到指定的阻燃效果; 当无阻燃协效剂 (对比例 14 ) , 溴 -磷阻燃体系 加到高达 30%时也达不到指定的阻燃等级, 同时体系的各项力学性能恶化严重。 对于所制备 的新型环保溴 -磷-协效剂复合阻燃体系, 随着嶙系阻燃剂含量的增加, 体系的流动性大幅度 提高, 但低于前两个阻燃体系。 同时体系阻燃效果在磷含量为 2%左右最佳。
实施例 31
参照实施例 1的方法, 按照表 3-1所示的配比制备得到复合阻燃剂 FRABSF1。 将各组份 按表 6-2配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃 ABS制备工 艺挤出造粒, 制备出阻燃 ABS塑胶粒子, 并将制备的粒子用注塑机注塑成所需试样。 注塑条 件为: 料筒温度 210°C, 模具温度 30-60°C , 注塑压力 6MPa。 同时取相同体系, 相同量的主 阻燃剂和锑白复配阻燃体系制备阻燃 ABS做对比性能测试, 测得数据列如表 6-2。
实施例 32-36和对比例 16-18
参照实施例 31 的方法, 按照表 6-1 所示的配比分别制备得到复合阻燃剂 FRABSF2、 FRABSF3、 FRABSF4, FRABSF5, FRABSF6, FRABSF7, FRABSF8、 FRABSF9, 并制备相 对应的阻燃 ABS, 并测试其物理性能, 将测试结果如表 6-2所示。
表 6-1 实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 31 32 33 34 35 36 16 17 18
FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF
1 2 3 4 5 6 6 6 6 溴系阻燃剂:
40 50 60 70 52 52 60 80 75
FR-1524
磷系阻燃剂:
8. 5 10 8 8. 5 2 5 20
Fyrol 51
阻燃协效剂:
50 40 30 20 47 44 40
XX- 6
阻燃协效剂:
25
S-05N
抗滴落剂:
0. 2 0 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2
SN80-SA7
分散剂: S-74 0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1 分散剂: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 加工助剂: 70
0. 5 0 1 1 0 0. 2 0. 2 0. 2 0. 2 号白油
表 6-2
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 配方
31 32 33 34 35 36 16 17 18
ABS 745N 83 83 83 83 83 83 75 65 75
HR181 5 5 5 5 5 5 5 5 5
FRABSF1 12
FRABSF2 12
FRABSF3 12
FRABSF4 12
FRABSF5 12
FRABSF6 12
FRABSF7 20
FRABSF8 30
FRABSF9 20
1010 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
168 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BS-3818 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
EBS 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
TS 38 37 38 38 41 40 38 33 40
EL 18 14 16 15 15 14 18 13 16
NIS 18. 0 17. 6 18. 2 18. 2 20. 8 18. 3 18. 9 13. 5 17. 2
FS 67 66 65 65 69 66 64 55 64
FM 2558 2575 2550 2560 2780 2588 2565 2033 2401
SG 1. 169 1. 167 1. 168 1. 168 1. 173 1. 169 1. 180 1. 150 1. 188
Ml 72 79 72 73 55 68 52 88 45
UL9概. 0 v-i v-i v-i V-l v-o v-i v-i 1 1
UL9概. 5mm V-0 v-o v-o v-o V-0 v-o v-o 1 v-i
UL94@2. 0mm V-0 v-o v-o v-o v-o v-o v-o 1 v-o
UL94@2. 5mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL9概 0mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
H. D. T 76 75 76 75 79 77 75 69 75 由上表中实施例 31-36及对比例 16-18分析, 和传统的溴 -锑阻燃体系 (对比例 18 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 ABS产品具有添加量低, 三氧化二锑的有 效含量极低, 四溴双酚 A阻燃剂溴系阻燃剂的用量也相对减少等优点, 因此其力学性能均保 持较优, 而其阻燃效果更佳; 另外, 当无磷系阻燃剂的加入(对比例 16 ) , 需要和传统溴- 锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无阻燃协效剂 (对比例 17 ) , 溴 -磷阻燃体系加到高达 30%时也达不到指定的阻燃等级, 同时体系的各项力学性能恶化严重。 对于所制备的新型环保溴 -磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增加, 体系的流 动性大幅度提高, 同时体系阻燃效果在磷含量为 2%左右最佳。
实施例 37
参照实施例 1的方法, 按照表 7-1所示的配比制备得到复合阻燃剂 FRABS2F1。 将各组份 按表格 7-2配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃 ABS制备 工艺挤出造粒, 制备出阻燃 ABS塑胶粒子, 并将制备的粒子用注塑机注塑成所需试样。 注塑 条件为: 料筒温度 220°C , 模具温度 30-60°C, 注塑压力 6MPa。 同时取相同体系, 相同量的 主阻燃剂和锑白复配阻燃体系制备阻燃 ABS做对比性能测试, 测得数据列于表 7-2。
实施例 38-42和对比例 19-21
参照实施例 37 的方法, 按照表 7-1 所示的配比制备得到复合阻燃剂 FRABS2F2、 FRABS2F3. FRABS2F4、 FRABS2F5 , FRABS2F6, FRABS2F7, FRABS2F8, FRABS2F9, 并制备相对应的阻燃 ABS, 并测试其物理性能, 将测试结果如表 7-2所示。
表 7-1
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 37 38 39 40 41 42 19 20 21
FRABS2 FRABS2 FRABS2 FRABS2 FRABS2 FRABS2 FRABS2 FRABS2 FRABS2 F1 F2 F3 F4 F5 F6 F7 F8 F9 溴系阻燃
40 50 60 70 52 52 60 80 75 齐 Ij: FR-245
磷系阻燃
8. 5 10 8 8. 5 2 5 20 剂 r Fyrol 51
阻燃协效
50 40 30 20 47 44 40
剂: XX- 7
阻燃协效
25 剂: S-05N
抗滴落剂:
0. 2 0 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2
SN80-SA7
分散剂:
0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1
S-74
分散剂: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 加工助剂:
0. 5 0 1 1 0 0. 2 0. 2 0. 2 0. 2 70号白油 表 7-2
Figure imgf000020_0001
由上表中实施例 37-42及对比例 19-21分析, 和传统的溴 -锑阻燃体系 (对比例 21 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 ABS产品具有添加量低, 三氧化二锑的有 效含量极低, 溴代三嗪阻燃剂溴系阻燃剂的用量也相对减少等优点, 因此其力学性能均保持 较优, 而其阻燃效果更佳; 另外, 当无磷系阻燃剂的加入(对比例 19 ) , 需要和传统溴 -锑阻 燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无阻燃协效剂 (对比例 20 ) , 溴 -磷阻 燃体系加到高达 30%时也达不到指定的阻燃等级, 同时体系的各项力学性能恶化严重。 对于 所制备的新型环保溴 -磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增加, 体系的流动性 大幅度提高, 但低于四溴双酚 A阻燃体系。 同时体系阻燃效果在磷含量为 2%左右最佳。
实施例 43
参照实施例 1的方法, 按照表 8-1所示的配比制备得到复合阻燃剂 FRABSC1。 将各组份 按表格 8-2配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃 ABS制备 工艺挤出造粒, 制备出阻燃 ABS塑胶粒子, 并将制备的粒子用注塑机注塑成所需试样。 注塑 条件为: 料筒温度 220°C , 模具温度 30-60°C , 注塑压力 6MPa。 同时取相同体系, 相同量的 主阻燃剂和锑白复配阻燃体系制备阻燃 ABS做对比性能测试, 测得数据列于表 8-2。
实施例 44-48和对比例 22-24
参照实施例 37 的方法, 按照表 8-1 所示的配比分别制备得到复合阻燃剂 FRABSC2、 FRABSC3、 FRABSC4、 FRABSC5、 FRABSC6、 FRABSC7、 FRABSC8、 FRABSC9, 并制备 相对应的阻燃 ABS , 并测试其物理性能, 将测试结果如表 8-2所示。
表 8-1
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 43 44 45 46 47 48 22 23 24
FRABSC FRABSC FRABSC FRABSC FRABSC FRABSC FRABSC FRABSC FRABSC
1 2 3 4 5 6 7 8 9 溴系阻燃剂:
40 50 60 70 52 52 60 80 75
CXB-714C
磷系阻燃剂:
8. 5 10 8 8. 5 2 5 20
Fyrol 51
阻燃协效剂:
50 40 30 20 47 44 40
XX- 8
阻燃协效
25 剂: S-05N
抗滴落剂:
0. 2 0 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2
SN80-SA7
分散剂: S-74 0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1 分散剂: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 加工助剂: 70号
0. 5 0 1 1 0 0. 2 0. 2 0. 2 0. 2 白油
表 8-2
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 配方
43 44 45 46 47 48 22 23 24
ABS 745N 81 81 81 81 81 81 75 65 75
HR181 5 5 5 5 5 5 5 5 5
FRABSC1 14
FRABSC2 14
FRABSC3 14
FRABSC4 14
FRABSC5 14
FRABSC6 14
FRABSC7 20
FRABSC8 30
FRABSC9 20
1010 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
168 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BS-3818 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
EBS 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 TS 37 36 37 37 40 38 36 32 39
EL 18 14 16 15 18 19 16 13 17
NIS 15. 6 15. 5 15. 8 16. 2 17. 9 16. 7 16. 1 11. 4 14. 9
FS 60 60 61 60 64 61 61 53 62
FM 2501 2521 2509 2133 2009 2108 2495 2019 2281
SG 1. 160 1. 159 1. 165 1. 167 1. 165 1. 180 1. 147 1. 188
MI 51 56 52 53 42 48 47 83 39
UL9概. 0 v-i V-l v-i v-i v-o v-i v-i 1 1
UL94 . 5 V- 0 v-o v-o v-o v-o v-o v-o 1 v-i
UL94@2. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@2. 5mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@3. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-o
H. D. T 77 77 78 78 81 79 76 67 76 由上表中实施例 43-48及对比例 22-24分析, 和传统的溴 -锑阻燃体系 (对比例 24 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 ABS产品具有添加量低, 三氧化二锑的有 效含量极低, 溴系阻燃剂 (溴化环氧阻燃剂) 溴系阻燃剂的用量也相对减少等优点, 因此其 力学性能均保持较优, 而其阻燃效果更佳; 另外, 当无磷系阻燃剂的加入(对比例 22 ) , 需 要和传统溴-锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无阻燃协效剂 (对比 例 23 ) , 溴-磷阻燃体系加到高达 30%时也达不到指定的阻燃等级, 同时体系的各项力学性 能恶化严重。 对于所制备的新型环保溴 -磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增 加, 体系的流动性大幅度提高, 但高于溴代三嗪阻燃体系而低于四溴双酚 A阻燃体系。 同时 体系阻燃效果在磷含量为 2%左右最佳。
实施例 49 参照实施例 1的方法, 按照表 9-1所示的配比制备得到复合阻燃剂 FRABSFM1。 将各组 份按表格 9-2配比加入到高速混合机中摻混 15分钟, 再加到双螺杆挤出机中按阻燃 ABS制 备工艺挤出造粒, 制备出阻燃 ABS塑胶粒子, 并将制备的粒子用注塑机注塑成所需试样。 注 塑条件为: 料筒温度 210°C, 模具温度 30-60°C , 注塑压力 6MPa。 同时取相同体系, 相同量 的主阻燃剂和锑白复配阻燃体系制备阻燃 ABS做对比性能测试, 测得数据列于表 9-2。
实施例 50-54和对比例 25-27
参照实施例 49的方法, 按照表 9-1 所示的配比分别制备得到复合阻燃剂 FRABSFM2、 FRABSFM3. FRABSFM4, FRABSFM5, FRABSFM6, 并制备相对应的阻燃 ABS, 并测试其 物理性能, 将测试结果如表 9-2所示。 表 9-1
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例
49 50 51 52 53 54 25 26 27
FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF
Ml M2 M3 M4 M5 M6 M7 M8 M9 溴系阻燃剂:
30 35 40 45 37 37 35 45 45
FR-1524
溴系阻燃剂:
10 15 20 25 15 15 25 35 30 4010
磷系阻燃剂:
8. 5 10 8 8. 5 2 5 20
Fyrol 51
阻燃协效剂:
50 40 30 20 47 44 40 25
XX-9
阻燃协效
剂: S-05N
抗滴落剂:
0. 2 0 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2
SN80-SA7
分散剂: S-74 0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1 分散剂: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 加工助剂: 70
0. 5 0 1 1 0 0. 2 0. 2 0. 2 0. 2 号白油
表 9-2
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 配方
49 50 51 52 53 54 25 26 27
ABS 745N 83 83 83 83 83 83 75 65 75
HR181 5 5 5 5 5 5 5 5 5
FRABSFM1 12
FRABSFM2 12
FRABSFM3 12
FRABSFM4 12
FRABSFM5 12
FRABSFM6 12
FRABSFM7 20
FRABSFM8 30
FRABSFM9 20
1010 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
168 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BS-3818 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
EBS 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
TS 40 40 39 40 41 41 38 32 40
EL 13 15 13 14 17 15 15 12 15
NIS 20. 1 20. 4 19. 3 22. 0 24. 9 21. 5 18. 5 11. 9 16. 8
FS 61 61 60 60 64 62 61 50 62
FM 2457 2496 2456 2434 2456 2539 2433 2100 2258
SG 1. 160 1. 160 1. 159 1. 165 1. 167 1. 175 1. 180 1. 145 1. 188
Ml 50 56 52 50 45 57 45 79 41
UL9概. 0 V-1 V-1 V-1 V-1 V- 0 V-1 V-1 1 1
UL9概. 5 V-0 V-0 V-0 V-0 V-0 V-0 V-0 1 V-1 UL94@2. 0mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@2. 5mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@3. 0mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
H. D. T 76 76 75 76 79 77 76 67 76 由上表中实施例 49-54及对比例 25-27分析, 和传统的溴 -锑阻燃体系 (对比例 27 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 ABS产品具有添加量低, 三氧化二锑的有 效含量极低, 溴系阻燃剂 (四溴双酚 A和十溴二苯乙烷复配阻燃剂) 溴系阻燃剂的用量也相 对减少等优点, 因此其力学性能均保持较优, 而其阻燃效果更佳; 另外, 当无磷系阻燃剂的 加入(对比例 25 ) , 需要和传统溴-锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无阻燃协效剂 (对比例 26 ) , 溴-磷阻燃体系加到高达 30%时也达不到指定的阻燃等级, 同时体系的各项力学性能恶化严重。 对于所制备的新型环保溴 -磷-协效剂复合阻燃体系, 随 着磷系阻燃剂含量的增加,体系的流动性大幅度提高。 同时体系阻燃效果在磷含量为 2%左右 最佳。
实施例 55
参照实施例 1的方法, 按照表 10-1所示的配比制备得到复合阻燃剂 FRABSFC1。 将各组 份按表 10-2所示配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃 ABS 制备工艺挤出造粒, 制备出阻燃 ABS塑胶粒子, 并将制备的粒子用注塑机注塑成所需试样。 注塑条件为: 料筒温度 210 °C , 模具温度 30-60°C , 注塑压力 6MPa。 同时取相同体系, 相同 量的主阻燃剂和锑白复配阻燃体系制备阻燃 ABS做对比性能测试, 测得数据列于表 10-2。
实施例 56-61和对比例 28-30
参照实施例 49的方法, 按照表 10-1所示的配比分别制备得到复合阻燃剂 FRABSFC2、 FRABSFC3、 FRABSFC4、 FRABSFC5、 FRABSFC6、 FRABSFC7、 FRABSFC8、 FRABSFC9 , 并制备相对应的阻燃 ABS , 并测试其物理性能, 将测试结果如表 9-2所示。
表 10-1
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例
55 56 57 58 59 60 28 29 30
FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF FRABSF
C1 C2 C3 C4 C5 C6 C7 C8 C9 溴系阻燃
剂: FR-15 25 30 35 40 30 30 35 45 45
24
溴系阻燃
剂: 15 20 25 30 22 22 25 35 30
CXB-714C
磷系阻燃
剂 = Fyrol 8. 5 10 8 8. 5 2 5 20
51 阻燃协效
剂: 50 40 30 20 47 44 40
XX- 10
阻燃协效
25 剂: S-05N
抗滴落
剂: 0. 2 0 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2
SN80-SA7
分散剂:
分散剂 0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1 (S-74)
分散剂:
0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5
EBS
加工助
剂: 70号 0. 5 0 1 1 0 0. 2 0. 2 0. 2 0. 2 白油
表 10-2
Figure imgf000025_0001
由上表实施例 55-60及对比例 28-30分析, 和传统的溴 -锑阻燃体系 (对比例 30 )相比 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 ABS产品具有添加量低, 三氧化二锑的有 效含量极低, 溴系阻燃剂 (四溴双酚 A和溴化环氧复配阻燃剂) 溴系阻燃剂的用量也相对减 少等优点, 因此其力学性能均保持较优, 而其阻燃效果更佳; 另外, 当无磷系阻燃剂的加入 (对比例 28 ), 需要和传统溴-锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无 阻燃协效剂 (对比例 29 ) , 溴-磷阻燃体系加到高达 30%时也达不到指定的阻燃等级, 同时 体系的各项力学性能恶化严重。 对于所制备的新型环保溴 -磷-协效剂复合阻燃体系, 随着磷 系阻燃剂含量的增加,体系的流动性大幅度提高。同时体系阻燃效果在磷含量为 2Ψ。左右最佳。
实施例 61 参照实施例 1的方法,按照表 11-1所示的配比制备得到复合阻燃剂 FRABSFF 1。将各组 份按表 11-2配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃 ABS制备 工艺挤出造粒, 制备出阻燃 ABS塑胶粒子, 并将制备的粒子用注塑机注塑成所需试样。 注塑 条件为: 料筒温度 210°C , 模具温度 30-60°C, 注塑压力 6MPa。 同时取相同体系, 相同量的 主阻燃剂和锑白复配阻燃体系制备阻燃 ABS做对比性能测试, 测得数据列于表 11-2。
实施例 62-66和对比例 31-33
参照实施例 61的方法, 按照表 11-1所示的配比分别制备得到复合阻燃剂 FRABSFF 2、 FRABSFF 3、 FRABSFF 4、 FRABSFF 5、 FRABSFF 6、 FRABSFF7. FRABSFF8. FRABSFF9, 并制备相对应的阻燃 ABS, 并测试其物理性能, 将测试结果如表 11-2所示。
表 11-1
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 61 62 63 64 65 66 31 32 33
FRABS FRABS FRABS FRABS FRABS FRABS FRABS FRABS FRABS FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8 FF9 溴系阻
燃 : 25 30 35 40 30 30 35 45 45
FR-152
4
溴系阻
燃剂: 15 20 25 30 22 22 25 35 30
FR-245
磷系阻
燃剂: 8.5 10 8 8.5 2 5 20
Fyrol
51
阻燃协
效剂: 50 40 30 20 47 44 40
XX- 11
阻燃协
效剂: 25
S-05N 抗滴落
剂 : 0.2 0 0.2 0.5 0.2 0.2 0.2 0.2 0.2
SN80-S
A7
分散
剂: 0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1
S-74
分散
剂: 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5
EBS
加工助
剂: 70 0.5 0 1 1 0 0.2 0.2 0.2 0.2 号白油
表 11-2
Figure imgf000027_0001
由上表中实施例 61-66及对比例 31-33分析, 和传统的溴 -锑阻燃体系 (对比例 33 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃 ABS产品具有添加量低, 三氧化二锑的有 效含量极低, 溴系阻燃剂 (四溴双酚 A和溴代三嗪复配阻燃剂) 溴系阻燃剂的用量也相对减 少等优点, 因此其力学性能均保持较优, 而其阻燃效果更佳; 另外, 当无磷系阻燃剂的加入 (对比例 31 ) , 需要和传统溴-锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无 阻燃协效剂 (对比例 32 ) , 溴-磷阻燃体系加到高达 30%时也达不到指定的阻燃等级, 同时 体系的各项力学性能恶化严重。 对于所制备的新型环保溴 -磷-协效剂复合阻燃体系, 随着磷 系阻燃剂含量的增加,体系的流动性大幅度提高。同时体系阻燃效果在磷含量为 2%左右最佳。
实施例 67
参照实施例 1的方法, 按照表 12-1所示的配比制备得到复合阻燃剂 FRPETPXL 将各组 份按表 12-2配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃增强 PET 制备工艺挤出造粒, 制备出阻燃增强 PET塑胶粒子, 并将制备的粒子用注塑机注塑成所需试 样。 注塑条件为: 料筒温度 250 °C , 模具温度 80-120 °C, 注塑压力 6MPa。 同时取相同体系, 相同量的主阻燃剂和锑白复配阻燃体系制备阻燃增强 PET做对比性能测试, 测得数据列于表 12-2。
实施例 68-72和对比例 34-36
参照实施例 67的方法, 按照表 12-1所示的配比分别制备得到复合阻燃剂 FRPETPX2、 FRPETPX 3、 FRPETPX 4、 FRPETPX 5、 FRPETPX 6、 FRPETPX7、 FRPETPX8、 FRPETPX9, 并制备相对应的阻燃 PET, 并测试其物理性能, 将测试结果如表 12-2所示。
表 12-1
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 67 68 69 70 71 72 34 35 36
FRPXPA FRPXPA FRPXPA FRPXPA FRPXPA FRPXPA FRPXPA FRPXPA FRPXPA
P1 P2 P3 P4 P5 P6 P7 P8 P9 溴系阻燃剂:
40 50 60 70 52 52 60 80 75
PBS-64HW
磷系阻燃剂:
8. 5 10 8 8. 5 2 5 20
Fyrol 51
阻燃协效剂:
50 40 30 20 47 44 40
XX- 12
阻燃协效剂:
25
S-05N
抗滴落剂:
0. 2 0 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2
SN80-SA7
分散剂: S-74 0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1 分散剂: EBS 0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5 加工助剂: 70
0. 5 0 1 1 0 0. 2 0. 2 0. 2 0. 2 号白油
表 12-2
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 配方
67 68 69 70 71 72 34 35 36
PET 85 85 85 85 85 85 80 80 80 PTW 5 5 5 5 5 5 5 5 5
ECS 303W 30 30 30 30 30 30 30 30 30
FRPETPX1 10
FRPETPX2 10
FRPETPX3 10
FRPETPX4 10
FRPETPX5 10
FRPETPX6 10
FRPETPX7 15
FRPETPX8 15
FRPETPX9 15 丽 101 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4
1010 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
168 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BS-3818 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
EBS 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
TS 120 122 120 121 120 124 115 108 119
EL 4 4 3 3 3 3 3 2 4
NIS 10 10. 5 10. 5 10. 5 10. 0 10. 5 9. 8 6. 5 9. 2
FS 230 225 225 224 221 224 220 201 222
FM 13050 13000 13200 13000 13050 13200 13050 10050 12010
SG 1. 68 1. 69 1. 65 1. 69 1. 68 1. 66 1. 75 1. 55 1. 77
UL9概. 0 v-o v-o v-o v-o v-o v-o v-i 1 v-i
UL9概. 5 v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@2. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@2. 5mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@3. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-o
H. D. T 225 225 230 233 235 240 225 208 224 由上表中实施例 67-72及对比例 34-36分析, 和传统的溴 -锑阻燃体系 (对比例 36 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃增强 PET产品具有添加量低, 三氧化二锑 的有效含量极低, 溴系阻燃剂 (溴化聚苯乙烯阻燃剂)溴系阻燃剂的用量也相对减少等优点, 因此其力学性能均保持较优,而其阻燃效果更佳; 另外, 当无磷系阻燃剂的加入(对比例 34 ) , 需要和传统溴-锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无阻燃协效剂 (对 比例 35 ) , 溴-磷阻燃体系加到高达 15%时也达不到指定的阻燃等级。 对于所制备的新型环 保溴 -磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增加, 体系的耐热性有一定程度的降 低。 同时体系阻燃效果随磚含量的变化并无明显变化。
实施例 73 参照实施例 1的方法,按照表 13-1所示的配比制备得到复合阻燃剂 FRPXPAH1。将各组 份按表 13-2配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃增强 PBT 制备工艺挤出造粒, 制备出阻燃增强 PBT塑胶粒子, 并将制备的粒子用注塑机注塑成所需试 样。 注塑条件为: 料筒温度 240°C , 模具温度 50-70°C, 注塑压力 6MPa。 同时取相同体系, 相同量的主阻燃剂和锑白复配阻燃体系制备阻燃增强 PBT做对比性能测试, 测得数据列于表
13-2中。
实施例 74-78和对比例 37-39
参照实施例 73的方法, 按照表 13-1所示的配比分别制备得到复合阻燃剂 FRPXPAH2、 FRPXPAH3、 FRPXPAH4、 FRPXPAH5, FRPXPAH6、 FRPXPAH7、 FRPXPAH8, FRPXPAH9, 并制备相对应的阻燃 PBT, 并测试其物理性能, 将测试结果如表 13- 2所示。
表 13-1
Figure imgf000030_0001
表 13-2
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例
73 74 75 76 77 78 37 38 39
PBT 87 87 87 87 87 87 80 80 80
PTW 5 5 5 5 5 5 5 5 5
ECS 303W 30 30 30 30 30 30 30 30 30
FRPBTPH1 8
FRPBTPH2 8
FRPBTPH3 8
FRPBTPH4 8
FRPBTPH5 8
FRPBTPH6 8
FRPBTPH7 15
FRPBTPH8 15
FRPBTPH9 15
NAV101 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4
1010 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 168 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BS-3818 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
EBS 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
TS 120 122 120 121 120 109 118 109 120
EL 4 4 3 3 3 3 3 3 3
NIS 10. 5 10. 3 10. 1 9. 7 9. 3 9. 5 10. 2 6. 8 9. 9
FS 181 179 181 178 180 180 178 165 180
FM 9500 9000 8900 9200 9000 9100 9000 8500 9100
SG 1. 60 1. 60 1. 61 1. 60 1. 60 1. 62 1. 75 1. 54 1. 77
UL9概. Omm V- 0 v-o v-o v-o v-o v-o V-l 1 V-l
UL94§1. 5mm V- 0 v-o v-o v-o v-o v-o v-o 1 v-o
UL94§2. Omm V- 0 v-o v-o v-o v-o v-o v-o 1 v-o
UL94§2. 5mm V- 0 v-o v-o v-o v-o v-o v-o 1 v-o
UL94§3. Omm V- 0 v-o v-o v-o v-o v-o v-o 1 v-o
H. D. T 226 225 224 225 225 220 225 208 225 由上表中实施例 73-78及对比例 37-39分析, 和传统的溴 -锑阻燃体系 (对比例 39 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃增强 PBT产品具有添加量低, 三氧化二锑 的有效含量极低, 溴系阻燃剂 (十溴二苯乙烷阻燃剂)溴系阻燃剂的用量也相对减少等优点, 因此其力学性能均保持较优,而其阻燃效果更佳; 另外, 当无磷系阻燃剂的加入(对比例 37 ), 需要和传统溴-锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无阻燃协效剂 (对 比例 38 ) , 溴-磷阻燃体系加到高达 15%时也达不到指定的阻燃等级。 对于所制备的新型环 保溴 -磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增加, 体系的耐热性有一定程度的降 低。 同时体系阻燃效果随磷含量的变化并无明显变化。
实施例 79
参照实施例 1的方法, 按照表 14-1所示的配比制备得到复合阻燃剂 FRPXPAC1。 将各组 份按表 14-2所示配比加入到高速混合机中掺混 15分钟, 再加到双螺杆挤出机中按阻燃增强 PBT制备工艺挤出造粒, 制备出阻燃增强 PBT塑胶粒子, 并将制备的粒子用注塑机注塑成所 需试样。 注塑条件为: 料筒温度 24CTC , 模具温度 50-70°C, 注塑压力 6MPa。 同时取相同体 系, 相同量的主阻燃剂和锑白复配阻燃体系制备阻燃增强 PBT做对比性能测试, 测得数据列 于表 14-2。
实施例 80-84和对比例 40-42
参照实施例 79的方法, 按照表 14-1所示的配比分别制备得到复合阻燃剂 FRPXPAC2、 FRPXPAC3 、 FRPXPAC4, FRPXPAC5、 FRPXPAC6, FRPXPAC7 , FRPXPAC8、 FRPXPAC9, 并制备相对应的阻燃 PBT, 并测试其物理性能, 将测试结果如表 14-2所示。 表 14-1
Figure imgf000032_0001
表 14-2
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例 配方
79 80 81 82 83 84 40 41 42
PBT 85 85 85 85 85 85 80 80 80
PTW 5 5 5 5 5 5 5 5 5
ECS 303W 30 30 30 30 30 30 30 30 30
FRPBTPCl 10
FRPBTPC2 10
FRPBTPC3 10
FRPBTPC4 10
FRPBTPC5 10
FRPBTPC6 10
FRPBTPC7 15
FRPBTPC8 15
FRPBTPC9 15
NAV101 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4 0. 4
1010 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
168 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
BS-3818 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
EBS 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5 0. 5
TS 96 98 97 95 95 92 95 88 97
EL 5 4 4 4 4 3 3 3 3
NIS 11. 8 11. 3 10. 5 9. 9 9. 8 9. 9 10. 3 7. 8 10. 1 FS 171 171 168 169 170 170 165 154 167
FM 8200 8000 7900 8200 8000 8100 8100 7400 8100
SG 1. 56 1. 57 1. 56 1. 56 1. 57 1. 56 1. 65 1. 50 1. 69
UL9獵. Omm V-O v-o v-o v-o v-o v-o V-l 1 v-i
UL94@1. 5mm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@2. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@2. 5 v-o v-o v-o v-o v-o v-o v-o 1 v-o
UL94@3. Omm v-o v-o v-o v-o v-o v-o v-o 1 v-o
H. D. T 226 225 224 225 225 220 220 200 220 由上表中实施例 79-84及对比例 40-42分析, 和传统的溴 -锑阻燃体系 (对比例 42 )相比, 通过新型环保溴 -磷-协效剂复合阻燃体系制备阻燃增强 PBT产品具有添加量低, 三氧化二锑 的有效含量极低, 溴系阻燃剂 (溴化环氧阻燃剂) 溴系阻燃剂的用量也相对减少等优点, 因 此其力学性能均保持较优, 而其阻燃效果更佳, 耐热性更优异; 另外, 当无磷系阻燃剂的加 入(对比例 40 ) , 需要和传统溴-锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当 无阻燃协效剂 (对比例 41 ) , 溴-磷阻燃体系加到高达 15%时也达不到指定的阻燃等级。 对 于所制备的新型环保溴-嶙-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增加, 体系的耐热 性有一定程度的降低。 同时体系阻燃效果随磷含量的变化并无明显变化。
实施例 85 参照实施例 1的方法, 按照表 15-1所示的配比制备得到复合阻燃剂 FRPCG1。 将各组份 按表 15-2所示配比加入到高速混合机中摻混 15分钟,再加到双螺杆挤出机中按阻燃 PC制备 工艺挤出造粒, 制备出阻燃 PC 塑胶粒子, 并将制备的粒子用注塑机注塑成所需试样。 注塑 条件为: 料筒温度 270°C , 模具温度 60-80°C, 注塑压力 6MPa。 同时取相同体系, 相同量的 主阻燃剂和锑白复配阻燃体系制备阻燃 PC做对比性能测试, 测得数据列于表 15-2中。
实施例 86-90和对比例 43-45
参照实施例 79 的方法, 按照表 15-1 所示的配比分别制备得到复合阻燃剂 FRPCG2 FRPCG3 FRPCG4 FRPCG5 FRPCG6 FRPCG7 FRPCG8 FRPCG9 , 并制备相对应的 阻燃 PC, 并测试其物理性能, 将测试结果如表 15-2所示。 表 15-1
实施例 实施例 实施例 实施例 实施例 实施例 对比例 对比例 对比例
85 86 87 88 89 90 43 44 45
FRPCG1 FRPCG2 FRPCG3 FRPCG4 FRPCG5 FRPCG6 FRPCG7 FRPCG8 FRPCG9 溴系阻燃
剂: 40 50 60 70 52 52 60 80 75
FG-8500
磷系阻燃
8. 5 10 8 8. 5 2 5 20
51 阻燃协效
50 40 30 20 47 44 40
剂: XX- 15
阻燃协效
25 剂 S-05N
抗滴落剂:
0. 2 0 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2
SN80-SA7
分散剂:
0. 3 0 0. 3 0 0. 3 0. 1 0. 1 0. 1 0. 1
S-74
分散剂:
0. 5 0 0. 5 0 0. 5 0. 5 0. 5 0. 5 0. 5
EBS
加工助剂:
0. 5 0 1 1 0 0. 2 0. 2 0. 2 0. 2 70号白油
表 15-2
Figure imgf000034_0001
由上表中实施例 85-90及对比例 43-45分析, 和传统的溴 -锑阻燃体系 (对比例 45 )相比, 通过新型环保溴-磷-协效剂复合阻燃体系制备阻燃 PC产品具有添加量低,三氧化二锑的有效 含量极低, 溴系阻燃剂 (溴化聚碳酸酯阻燃剂) 溴系阻燃剂的用量也相对减少等优点, 因此 其力学性能均保持较优, 而其阻燃效果更佳, 耐热性更优异; 另外, 当无磷系阻燃剂的加入 (对比例 43 ) , 需要和传统溴-锑阻燃体系相当的阻燃剂用量才能达到指定的阻燃效果; 当无 阻燃协效剂 (对比例 44 ) , 溴-磷阻燃体系加到高达 15%时也达不到指定的阻燃等级。 对于 所制备的新型环保溴 -磷-协效剂复合阻燃体系, 随着磷系阻燃剂含量的增加, 体系的耐热性 有一定程度的降低。 同时体系阻燃效果随磷含量的变化并无明显变化。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明 书内容所作的等效结构或等效流程变换, 或直接或间接运用在其他相关的技术领域, 均同理 包括在本发明的专利保护范围内。

Claims

权 利 要 求 书
1.一种复合阻燃剂 包含以下各组份按其重量百分比为:
溴系阻燃剂 40%-70 ;
磷系阻燃剂 2%-10 ;
阻燃协效剂 20%-50%;
任选的抗滴落剂 0%-0.5%;
任选的分散剂 0%-2%;
任选的力口工助剂 0%-2%;
其中所述阻燃协效剂包括无机粉体、 聚硅氧烷和锑的化合物, 所述聚硅氧烷重量占所述 阻燃协效剂百分比为 1%-15%, 所述锑的化合物的重量占所述阻燃协效剂 0-25% , 所述无机 粉体的重量占所述阻燃协效剂的 60-99%。
2.—种复合阻燃剂, 由以下各组份按其重量百分比组成:
溴系阻燃剂 40%-70%;
磷系阻燃剂 2%-10%;
阻燃协效剂 20%-50 ;
任选的抗滴落剂 0%-0.5%;
任选的分散剂 0 -2%;
任选的力 π工助剂 0%-2%;
其中所述阻燃协效剂包括无机粉体、 聚硅氧烷和锑的化合物, 所述聚硅氧烷重量占所述 阻燃协效剂百分比为 1%-15%, 所述锑的化合物的重量占所述阻燃协效剂 0-25% , 所述无机 粉体的重量占所述阻燃协效剂的 60-99%。
3.根据权利要求 1或 2所述的复合阻燃剂, 其特征在于:
所述聚硅氧烷为二甲基聚硅氧烷、 苯基聚硅氧烷、 乙烯基聚硅氧烷、 酰胺基聚硅氧烷、 环氧基聚硅氧烷、 异丁基聚硅氧烷、 苯乙烯基聚硅氧烷和环状结构聚硅氧烷中的一种或多种 的混合物。
4.根据权利要求 1或 2所述的复合阻燃剂, 其特征在于:
所述聚硅氧烷的分子量在 3万以上, 在温度为 25 °C时, 其粘度在 500mPa'S以上。
5.根据权利要求 1或 2所述的复合阻燃剂, 其特征在于:
所述无机粉体是由锑化合物、 滑石粉、 钛白粉、 立德粉、 碳酸镁、 硫酸钡、 云石粉、 云 母粉、 天然硅石、 硅灰石粉、 高岭土和长石粉中的一种或多种的混合物; 所述锑化合物选自三氧化二锑、 胶体五氧化二锑、 锑酸納、 三氯化锑、 五氯化锑、 亚磷 酸锑、 多聚磷酸锑和络合锑中的一种或多种。
6.根据权利要求 1或 2所述的复合阻燃剂, 其特征在于:
所述溴系阻燃剂选自八溴醚、 四溴双酚 A、 溴化环氧、 溴代三嗪、 十溴二笨乙烷、 溴化 聚笨乙婦、 溴化亚胺和溴化聚碳酸酯中的一种或多种复配物。
7.根据权利要求 1或 2所述的复合阻燃剂, 其特征在于:
所述磷系阻燃剂选自间亚苯基四苯基双磷酸酯、 双酚 A双(二苯基磷酸酯 )、 间亚苯基四 (二甲苯基)双磷酸酯、 间亚苯基四(二甲苯基)双磷酸酯齐聚物、 磷酸三苯酯、 磷酸二苯 (二甲苯)酯、 磷酸二苯异丙苯酯、 磷酸二苯异辛酯、 磷酸二苯异癸酯、 磷酸三(甲苯)酯、 磷酸三(二甲苯) S旨、 磷酸苯基叔丁苯基酯、 烷苯基双磷酸酯、 含环烷基的双磷酸酸酯、 联 苯双(二苯基)磷酸酯、 磷酸三乙酯、 磷酸三丁酯、 磷酸三异辛酯、 磷酸三(2-丁氧乙基) 酯、 1-氧代 -4-羟甲基 -2, 6, 7-三氧杂小磷杂双环(2, 2, 2 )辛烷、 三 (1-氧代 -2, 6, 7-三氧 杂 -1-磷杂双环 [2.2.2] 辛烷-亚曱基 -4)磷酸酯和 2, 2-二甲基 -1, 3-丙二醇-二(新戊二醇)双磷 酸酯中的一种或多种。
8.根据权利要求 1或 2所述的复合阻燃剂, 其特征在于:
所述分散剂选自酰胺类润滑剂、 硅酮类润滑剂、 硬脂酸类润滑剂、 蒙旦酯类润滑剂和多 元醇类润滑剂中的一种或几种; 所述加工助剂选自硅油、 白矿油中的一种或两种。
9.一种权利要求 1~8任一项权利要求所述的复合阻燃剂的制备方法, 包括如下步驟: a、 将溴系阻燃剂、 磷系阻燃剂、 阻燃协效剂、 任选的抗滴落剂、 任选的分散剂、 任选的 加工助剂按比例加入高速混合机中在 200-800r/min的转速下充分混合 2-10分钟;
b、 再将磷系阻燃剂边搅拌边加入上述混合物, 在 500-1500r/min的转速下再次进行充分 混合。
10.—种的复合阻燃剂的应用:
将权利要求 1-8任一项权利要求所述的复合阻燃剂应用于热塑性树脂及其合金,将所述复 合阻燃剂与热塑性树脂和 /或热塑性树脂合金熔融共混。
PCT/CN2012/084539 2012-11-13 2012-11-13 复合阻燃剂、制备方法及其应用 WO2014075225A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/084539 WO2014075225A1 (zh) 2012-11-13 2012-11-13 复合阻燃剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/084539 WO2014075225A1 (zh) 2012-11-13 2012-11-13 复合阻燃剂、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2014075225A1 true WO2014075225A1 (zh) 2014-05-22

Family

ID=50730459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084539 WO2014075225A1 (zh) 2012-11-13 2012-11-13 复合阻燃剂、制备方法及其应用

Country Status (1)

Country Link
WO (1) WO2014075225A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914260A (zh) * 2010-09-01 2010-12-15 宁波镇洋新材料股份有限公司 一种阻燃acs树脂及其制造方法
US20120172502A1 (en) * 2010-12-29 2012-07-05 Cheil Industries Inc. Flame Retardant Thermoplastic Resin Composition
CN102558674A (zh) * 2011-12-19 2012-07-11 金发科技股份有限公司 一种具有高灼热丝引燃温度的阻燃聚丙烯组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914260A (zh) * 2010-09-01 2010-12-15 宁波镇洋新材料股份有限公司 一种阻燃acs树脂及其制造方法
US20120172502A1 (en) * 2010-12-29 2012-07-05 Cheil Industries Inc. Flame Retardant Thermoplastic Resin Composition
CN102558674A (zh) * 2011-12-19 2012-07-11 金发科技股份有限公司 一种具有高灼热丝引燃温度的阻燃聚丙烯组合物

Similar Documents

Publication Publication Date Title
JP5350391B2 (ja) 難燃性熱可塑性樹脂組成物及びその製造方法
CN103059346B (zh) 复合阻燃剂、制备方法及其应用
Pawlowski et al. Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene blends
CN101353458B (zh) 一种无卤膨胀型阻燃聚丙烯组合物及其制备方法
CN101717560B (zh) 无卤阻燃聚酯模塑料组合物及其制备方法
CN101469113A (zh) 一种无卤阻燃增韧聚碳酸酯组合物
Jiang et al. Polycarbonate composites flame‐retarded by polyphenylsilsesquioxane of ladder structure
CN103289290B (zh) 一种磷系协效阻燃abs复合材料及其制备方法
CN107286563A (zh) 一种用于abs电器开关外罩的膨胀型阻燃剂及其制备与应用
WO2009104866A2 (en) Polycarbonate resin composition with excellent flame retardancy
CN103923395B (zh) 汽车内饰件用无卤阻燃耐热pp塑料及其制备方法
CN104854192A (zh) 卤素类阻燃剂玻璃纤维强化聚酰胺树脂组合物及其制备方法
JP2010077333A (ja) 難燃性樹脂組成物
CN103360739B (zh) 一种磷系协效阻燃pc/abs合金材料及其制备方法
CN115322488B (zh) 一种阻燃聚丙烯复合材料及其制备方法和应用
CN104725823A (zh) 耐低温阻燃pc复合材料及其制备方法
CN102391581A (zh) 一种无卤阻燃聚丙烯纳米复合材料及其制备方法
WO2014075225A1 (zh) 复合阻燃剂、制备方法及其应用
CN104371257A (zh) 一种多性能的abs复合材料
Zhang et al. Flame‐retardant olefin block copolymer composites with novel halogen‐free intumescent flame retardants based on the composition of melamine phosphate and pentaerythritol
CN105885214A (zh) 一种无卤阻燃聚丙烯材料
CN105001642A (zh) 一种abs用环保复合阻燃剂及由其制备的环保阻燃abs材料
KR100443269B1 (ko) 난연성 폴리올레핀계 수지 조성물
JP6092978B2 (ja) 熱可塑性樹脂組成物及びそれから製造された成形品
JP2014040571A (ja) 熱伝導性ポリカーボネート樹脂組成物およびそれからなる成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888316

Country of ref document: EP

Kind code of ref document: A1