WO2014073654A1 - Transmission system and reception device - Google Patents

Transmission system and reception device Download PDF

Info

Publication number
WO2014073654A1
WO2014073654A1 PCT/JP2013/080299 JP2013080299W WO2014073654A1 WO 2014073654 A1 WO2014073654 A1 WO 2014073654A1 JP 2013080299 W JP2013080299 W JP 2013080299W WO 2014073654 A1 WO2014073654 A1 WO 2014073654A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
polarization
signal
sequence data
encoding
Prior art date
Application number
PCT/JP2013/080299
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 蔀
研一 村山
慎悟 朝倉
澁谷 一彦
Original Assignee
日本放送協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本放送協会 filed Critical 日本放送協会
Publication of WO2014073654A1 publication Critical patent/WO2014073654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to a transmission system and a receiving device.
  • SDM Space Division Multiplexing
  • 2 ⁇ 2 MIMO Multiple Input Multiple Output
  • STC Space Time Coding
  • Alamouti space-time block coding STBC
  • Two systems of signals encoded with Alamouti STBC are combined by a receiving apparatus.
  • Alamouti STBC the same information is sent from two transmission antennas, so that the effect of transmission diversity is obtained and transmission characteristics are improved.
  • Patent Document 1 discloses a method of applying this Alamouti STBC to four transmissions. By using four transmissions, the transmission characteristics are further improved as compared with the case of two transmissions, but the transmission capacity does not increase. If the transmission rate of a SISO (Single Input Single Output) transmission system is 1 (1 symbol is transmitted in 1 unit time), the transmission rate of Patent Document 1 is also 1 (4 symbols are transmitted in 4 unit time).
  • SISO Single Input Single Output
  • Non-Patent Document 1 discloses a MIMO transmission system with four transmission antennas and two reception antennas. In the case of Non-Patent Document 1, the transmission rate is increased to 2 (4 symbols in 2 unit times) by application of SDM, and the transmission characteristics are improved by application of STBC.
  • SFN Single Frequency Network
  • D / U Desired
  • FIG. 27 is a comparison of reception spectrums depending on the presence or absence of SFN interference waves at the time of SFN construction.
  • antennas that receive radio waves are classified into omnidirectional antennas and directional antennas.
  • directional antennas are often used.
  • Directional antennas have excellent characteristics such as gain and cross polarization discrimination (XPD) for radio waves coming from the main lobe direction, but the characteristics in the side lobe direction are generally not guaranteed. It is.
  • the number of transmitting stations (also referred to as transmitting systems) is two, and the transmitting stations are called A station and B station.
  • Stations A and B are often installed at physically separated positions, but need not be separated.
  • the signal from station A is called the desired wave
  • the signal from station B is called the SFN interference wave.
  • a first feature is a transmission system including a first transmission device having two transmission antennas and a second transmission device having two transmission antennas, wherein the first transmission device is configured to divide sequence data to obtain a first transmission device.
  • a first serial-to-parallel converter that outputs one-sequence data and second-sequence data; and first sequence data A is generated by encoding the first-sequence data by space-time coding according to a first rule;
  • a first encoding unit that generates second sequence data A by encoding the two sequence data by space-time encoding of the second rule, and the second transmission device divides the sequence data by dividing the sequence data
  • a second serial-to-parallel converter that outputs the first series data and the second series data; and encoding the first series data by space-time coding according to the first rule.
  • a second encoding unit that generates sequence data B, and generates the second sequence data B by encoding the second sequence data by space-time encoding according to the second rule, and the first sequence data A is encoded by a different transformation matrix from the first sequence data B, and the second sequence data A is encoded by a different encoding method from the second sequence data B, or
  • the transmission signal corresponding to the first sequence data A is transmitted by a polarization different from that of the transmission signal corresponding to the first sequence data B, and the transmission signal corresponding to the second sequence data A is the second sequence data
  • the gist is that the signal is transmitted with a polarization different from that of the transmission signal corresponding to B.
  • the second feature is a method of performing space-time coding using a plurality of antennas provided in different transmission apparatuses and performing space division multiplexing using a plurality of antennas provided in each of the plurality of transmission apparatuses.
  • the first sequence data A is a reception device used in a transmission system including the first transmission device and the second transmission device, and obtained by encoding two series of sequence data obtained by dividing the sequence data.
  • first sequence data B and the second sequence obtained by receiving the transmission signal corresponding to the second sequence data A from the first transmission device and encoding two series of sequence data obtained by dividing the sequence data A reception processing unit that receives a transmission signal corresponding to data B from the second transmission device; and the first sequence data A is the first sequence data And the second sequence data A is encoded by a different encoding method than the second sequence data B, or a transmission signal corresponding to the first sequence data A Is transmitted with a polarization different from that of the transmission signal corresponding to the first sequence data B, and the transmission signal corresponding to the second sequence data A is different from the transmission signal corresponding to the second sequence data B.
  • the gist is that it is transmitted by waves.
  • FIG. 1 is a schematic block diagram showing the configuration of a transmission system common to the embodiments.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a transmission system common to the embodiments.
  • FIG. 3 is a diagram comparing the encoding methods among the transmission systems of the respective embodiments.
  • FIG. 4 is an equivalent conceptual diagram of the transmission system in the first embodiment.
  • FIG. 5 is an equivalent conceptual diagram of the transmission system in the second embodiment.
  • FIG. 6 is an equivalent conceptual diagram of the transmission system in the third embodiment.
  • FIG. 7 is an equivalent conceptual diagram of the transmission system in the fourth embodiment.
  • FIG. 8 shows the bit error rate characteristics when the radio wave of station B is received without rotating the polarization (rotation angle 0 °).
  • FIG. 9 shows the bit error rate characteristics when the radio wave of station B is received with 90 ° polarization rotation.
  • FIG. 10 is an equivalent conceptual diagram of the transmission system in the fifth embodiment.
  • FIG. 11 is an equivalent conceptual diagram of the transmission system in the sixth embodiment.
  • FIG. 12 is an equivalent conceptual diagram of the transmission system in the seventh embodiment.
  • FIG. 13 is an equivalent conceptual diagram of the transmission system in the eighth embodiment.
  • FIG. 14 is an equivalent conceptual diagram of the transmission system in the ninth embodiment.
  • FIG. 15 is an equivalent conceptual diagram of the transmission system in the tenth embodiment.
  • FIG. 16 is a schematic block diagram illustrating a configuration of a receiving apparatus common to the embodiments.
  • FIG. 17 is a 4 ⁇ 2 MIMO transmission model for explaining the transmission system.
  • FIG. 18 is a diagram for explaining a transmission path response matrix of an ideal transmission path and a transmission path response matrix of a transmission path having a 90 ° polarization rotation counterclockwise.
  • FIG. 19 is a table showing the result of determining whether the rank of the transmission line response matrix H has dropped or not by changing the transmission line response matrix H B of the B station when the transmission line response matrix H A of the A station is ideal. It is.
  • FIG. 20 is a system diagram of computer simulation.
  • FIG. 21 shows transmission parameters in the computer simulation.
  • FIG. 22 shows a simulation result of bit error rate characteristics in a high D / U environment.
  • FIG. 23 is a simulation result of the relationship between the delay time of the received signal of station B and the required C / N in a low D / U environment.
  • FIG. 24 is a simulation result of the relationship between the received power difference between polarized waves of the received signal of the station B and the required C / N in a low D / U environment.
  • FIG. 25 shows the result of a simulation of the relationship between the angle ⁇ formed by both polarizations of the received signal of station B and the required C / N in a low D / U environment.
  • FIG. 26 is a simulation result of the relationship between the rotation angle ⁇ of the polarization of the received signal of station B and the required C / N in a low D / U environment.
  • FIG. 27 is a comparison of received spectrums depending on the presence / absence of an SFN interference wave at the time of SFN construction.
  • FIG. 28 is a schematic block diagram illustrating a configuration of the transmission device disclosed in Non-Patent Document 1.
  • FIG. 1 is a schematic block diagram showing a configuration of a transmission system 5 common to the embodiments.
  • the transmission system 5 includes a transmission system 4 and a reception device 30.
  • the transmission system 4 includes a first transmission device 10 and a second transmission device 20.
  • the first transmission device 10 and the second transmission device 20 are placed at different positions.
  • the first transmission apparatus 10 and the second transmission apparatus 20 transmit different transmission signals obtained by encoding the same data with different encoding matrices, respectively, by space division multiplexing.
  • the receiving device 30 receives the transmission signals transmitted by the first transmitting device 10 and the second transmitting device 20, and decodes the received transmission signals.
  • FIG. 2 is a schematic block diagram showing the configuration of the transmission system 4 common to the embodiments.
  • the first transmission device 10 and the second transmission device 20 receive the same data.
  • the first transmission device 10 includes an error correction encoding unit 11, a mapping unit (hereinafter also referred to as a mapping unit) 12, a serial / parallel conversion unit (hereinafter also referred to as an S / P unit) 13, an encoding unit 14, and an OFDM frame Configuration units 151 and 152, an inverse Fourier transform unit 16, a transmission unit 17, a first transmission antenna 181, and a second transmission antenna 182 are provided.
  • the encoding unit 14 includes a first conversion unit 141 and a second conversion unit 142.
  • the transmission unit 17 includes GI addition units 171 and 172.
  • the inverse Fourier transform unit 16 includes IFFT units 161 and 162.
  • the error correction encoding unit 11 performs error correction encoding (for example, LDPC (Low-Density Parity-Check) encoding) on data input from the outside.
  • error correction encoding for example, LDPC (Low-Density Parity-Check) encoding
  • the error correction encoding unit 11 outputs the signal after error correction encoding to the mapping unit 12.
  • the mapping unit 12 maps the signal input from the error correction encoding unit 11 on the I / Q plane by QAM (Quadrature Amplitude Modulation) mapping.
  • the mapping unit 12 outputs the symbol series data obtained by mapping to the serial / parallel conversion unit 13.
  • mapping in the mapping unit 12 is not limited to QAM, and other mappings may be used.
  • the mapping unit 12 may map the data according to a predetermined rule.
  • the serial-to-parallel converter 13 converts the symbol series data input from the mapping section 12 into parallel series data in which symbols are parallel. Specifically, for example, the serial-to-parallel converter 13 alternately divides symbols included in the symbol sequence data input from the mapping unit 12 into first sequence data and second sequence data, Convert to parallel series data. The serial-to-parallel converter 13 converts one series of parallel series data obtained by the conversion to the first converter 141 of the encoder 14, and the other series data to the second converter of the encoder 14. 142 to output.
  • the encoding unit 14 uses an encoding process (for example, an encoding matrix) different from the encoding unit 24 of the second transmission device 20 for the parallel sequence data obtained by the conversion by the serial / parallel conversion unit 13. Process).
  • the first conversion unit 141 converts one series of parallel series data according to the first rule.
  • the second conversion unit 142 converts the other series data of the parallel series data according to the second rule. The details of the conversion differ for each embodiment described later, and will be described later for each embodiment.
  • First conversion section 141 outputs the converted signal to OFDM frame configuration section 151.
  • Second conversion section 142 outputs the converted signal to OFDM frame configuration section 152.
  • the OFDM frame configuration unit 151 generates an OFDM (Orthogonal Frequency-Division Multiplexing) symbol using the encoded signal input from the first conversion unit 141 and the pilot signal held by itself. To do.
  • the OFDM frame configuration unit 151 outputs the generated OFDM symbol to the IFFT unit 161.
  • the OFDM frame configuration unit 152 generates an OFDM symbol using the encoded signal input from the second conversion unit 142 and the pilot signal held by itself.
  • the OFDM frame configuration unit 152 outputs the generated OFDM symbol to the IFFT unit 162.
  • the IFFT unit 161 performs inverse Fourier transform on the OFDM symbol input from the OFDM frame configuration unit 151 and outputs a signal obtained by performing inverse Fourier transform to the GI adding unit 171.
  • IFFT section 162 performs inverse Fourier transform on the OFDM symbol input from OFDM frame configuration section 152 and outputs a signal obtained by performing inverse Fourier transform to GI adding section 172. In this manner, the inverse Fourier transform unit 16 performs inverse Fourier transform on each of the encoded symbol sequences obtained by the encoding unit 14.
  • GI adding section 171 adds a GI (Guard Interval: guard interval) to the signal input from IFFT section 161 and transmits the added transmission signal from first transmitting antenna 181.
  • GI adding section 172 adds a GI to the signal input from IFFT section 162 and transmits the added transmission signal from second transmission antenna 182. In this way, the transmission unit 17 transmits one of the transmission signals after the inverse Fourier transform by the inverse Fourier transform unit 16 from the first transmission antenna 181 and the other from the second transmission antenna 182.
  • the first transmission antenna 181 wirelessly transmits a transmission signal with the first polarization (in this embodiment, horizontal polarization as an example).
  • the second transmission antenna 182 wirelessly transmits a transmission signal with a second polarization different from the first polarization (in this embodiment, a vertical polarization as an example).
  • the second transmission apparatus 20 includes an error correction encoding unit 21, a mapping unit 22, a serial / parallel conversion unit 23, an encoding unit 24, OFDM frame configuration units 251, 252, an inverse Fourier transform unit 26, a transmission unit 27, 3 transmission antennas 281 and a fourth transmission antenna 282.
  • the encoding unit 24 includes a third conversion unit 241 and a fourth conversion unit 242.
  • the transmission unit 27 includes GI addition units 271 and 272.
  • the inverse Fourier transform unit 26 includes IFFT units 261 and 262.
  • the error correction encoding unit 21 performs the same processing as the error correction encoding unit 11.
  • the mapping unit 22 performs the same process as the mapping unit 12.
  • the serial / parallel converter 23 performs the same processing as the serial / parallel converter 13.
  • the encoding unit 24 uses an encoding process (for example, an encoding matrix) that is different from the encoding unit 14 of the first transmission device 10 for the parallel sequence data obtained by the conversion from the serial / parallel conversion unit 23. Process).
  • the third conversion unit 241 converts one series data of the parallel series data according to the third rule.
  • the fourth conversion unit 242 converts the other series data among the parallel series data according to the fourth rule. The details of the conversion differ for each embodiment described later, and will be described later for each embodiment.
  • the third conversion unit 241 outputs the converted signal to the OFDM frame configuration unit 251.
  • the fourth conversion unit 242 outputs the converted signal to the OFDM frame configuration unit 252.
  • the OFDM frame configuration units 251 and 252 perform the same processing as the OFDM frame configuration units 151 and 152, respectively.
  • the GI adding units 271 and 272 perform the same processing as the GI adding units 171 and 172, respectively.
  • the third transmission antenna 281 wirelessly transmits a transmission signal with the first polarization (in this embodiment, horizontal polarization as an example).
  • the fourth transmission antenna 282 wirelessly transmits a transmission signal with a second polarization different from the first polarization (in this embodiment, a vertical polarization as an example).
  • the first transmitter 10 is also referred to as A station, and the second transmitter 20 is also referred to as B station.
  • the first transmission antenna 181 is also referred to as antenna 0, the second transmission antenna 182 is also referred to as antenna 1, the third transmission antenna 281 is also referred to as antenna 2, and the fourth transmission antenna 282 is also referred to as antenna 3.
  • PDM Physical Division Multiplexing
  • station A antenna 0 transmits with horizontal polarization
  • antenna 1 transmits with vertical polarization
  • station B the antenna 2 transmits the signal with horizontal polarization
  • the antenna 3 transmits the signal with vertical polarization.
  • FIG. 3 is a diagram comparing the encoding methods among the transmission systems of the respective embodiments.
  • the “encoded pair” in the figure is a set of transmission signals after encoding the same data.
  • “Transmission with the same polarization” means that two transmission signals constituting the encoded pair are transmitted with the same polarization.
  • “Transmission with cross polarization” means that two transmission signals constituting an encoded pair are transmitted with polarizations orthogonal to each other.
  • each embodiment is divided into STBC (Space Time Block Coding) and SFBC (Space Frequency Block Code) as encoding rules used in the transmission system.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Code
  • Examples 1 to 4 are examples in which Alamouti STBC is applied at least partially.
  • Examples 5 to 8 are examples in which at least a part of Modified Alamouti STBC is applied. In the case of MISO transmission, this modified Alamouti is standardized in the European terrestrial digital broadcasting transmission system DVB-T2.
  • Alamouti STBC encoding is performed using matrix J in equation (1), so that complex conjugate processing occurs in the signal at time t + 1 of the A station and B station of the transmitting station.
  • the A station of the transmitting station No signal inversion is performed on the signal transmitted from No. 1, and sign inversion is applied only to the signal of station B.
  • the A station transmits a conventional signal, and the modulator provided in the B station newly constructed in the service area supports the encoding of Modified Alamouti. It is also possible to make it.
  • Examples 9 and 10 are cases of SFBC in which Alamouti STBC is applied in the frequency direction.
  • a method for applying the above-mentioned Modified Alamouti to SFBC is standardized by the communication standard LTE (Long Term Evolution).
  • LTE Long Term Evolution
  • the description of Example 11 in the figure is omitted, but the results of evaluating the transmission characteristics will be described with reference to FIGS. In the figure, the description of “omission” is omitted.
  • the observation equation described later does not overlap.
  • the transmission signal can be calculated from the reception signal.
  • FIG. 28 is a schematic block diagram illustrating a configuration of the transmission device disclosed in Non-Patent Document 1.
  • STBC0 and STBC1 encode symbol sequence data in accordance with, for example, the matrix J in equation (1).
  • the matrix J in Equation (1) is an Alamouti space-time block coding matrix.
  • a row of the matrix J corresponds to a transmission antenna number, and the matrix J is used when signals are transmitted by two transmission antennas.
  • the column of the matrix J corresponds to the transmission time.
  • STBC0 converts the symbol “S0, S2” to “S0” at time t and “ ⁇ S2 * ” at time t + 1.
  • the IFFT unit performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 0.
  • STBC0 converts the symbol “S0, S2” to “S2” at time t and “S0 * ” at time t + 1.
  • the IFFT unit performs inverse Fourier transform (IFFT) on the converted signal and transmits the signal after IFFT from the antenna 1.
  • the STBC 1 converts the symbol “S1, S3” to “S1” at time t and “ ⁇ S3 * ” at time t + 1.
  • the IFFT unit performs inverse Fourier transform (IFFT) on the converted signal and transmits the signal after IFFT from the antenna 2.
  • STBC1 converts the symbol “S1, S3” to “S3” at time t and “S1 * ” at time t + 1.
  • the IFFT unit performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
  • FIG. 4 is an equivalent conceptual diagram of the transmission system in the first embodiment.
  • the figure is a conceptual diagram for comparison that makes it easy to understand the difference from the transmission system of Non-Patent Document 1, and is different from the actual configuration of the transmission system.
  • STBC0 and STBC1 are virtual configurations, and such a member does not exist in the transmission system 4.
  • the mapping unit and the S / P unit are described so as to be common to the first transmission device 10 and the second transmission device 20, but the transmission system 4 is not common as an example.
  • the same points are different from the configuration of the transmission system 4 in the other embodiments.
  • Non-Patent Document 1 presents the transmission device of FIG. 28, but does not define the physical arrangement of antennas 0 to 3.
  • the antennas 0 to 3 are arranged as shown in FIG. 4 so that data encoded by STBC is transmitted from the A station and the B station.
  • H represents transmission with horizontal polarization
  • V represents transmission with vertical polarization.
  • FIG. 4 in STBC0 and STBC1, for example, symbol series data is encoded in accordance with matrix J in equation (1). Specifically, for example, the STBC0 and STBC1 convert the series data of the symbol “S0, S2” into two series data “S0, ⁇ S2 * ” and “S2, S0 * ”.
  • the first converter 141 converts, for example, the symbol “S0, S2” into series data in which “S0” is assigned at time t and “ ⁇ S2 * ” is assigned at time t + 1.
  • IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0.
  • the third conversion unit 241 converts, for example, the symbol “S0, S2” into series data in which “S2” is assigned to time t and “S0 * ” is assigned to time t + 1.
  • IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 2.
  • the second conversion unit 142 converts, for example, the symbols “S1, S3” into series data in which “S1” is assigned at time t and “ ⁇ S3 * ” is assigned at time t + 1.
  • IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1.
  • the fourth conversion unit 242 converts, for example, the symbols “S1, S3” into series data in which “S3” is assigned to time t and “S1 * ” is assigned to time t + 1.
  • the IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
  • the encoding unit 14 and the encoding unit 24 encode each of the parallel series data obtained by conversion by the serial / parallel conversion unit (13 or 23) for each block.
  • the encoding unit 14 and the encoding unit 24 are encoded signals obtained by encoding the same symbol by the other transmission apparatus used in the transmission system 4 that encodes the symbol sequence data.
  • the sequence data of the symbol is encoded so that encoded signals having different allocated times and complex conjugate relations can be obtained.
  • the transmission characteristics deteriorate due to the 90-degree polarization rotation in the propagation path of the B station. However, the transmission characteristics do not deteriorate without the 90-degree polarization rotation (see FIGS. 8 and 9 to be described later). ).
  • Non-Patent Document 1 assuming that the antenna 2 and the antenna 3 are installed in the B station, if the signal from the B station cannot be received at all, the receiving apparatus can receive S0 and S2, but S1 And S3 cannot be received, so that all data could not be restored.
  • the station A is assigned to all symbols (for example, S0, S1, S2, S3). Since the base signal can be transmitted, the receiving device 30 receiving the signal has an advantage that all data can be restored.
  • Example 1 ' The transmission system 4 in Embodiment 1 ′ performs the same processing as that in Embodiment 1, but differs from Embodiment 1 in the following points.
  • STBC0 and STBC1 encode symbol series data according to a matrix K different from that in Example 1.
  • the matrix K is expressed by the following equation (2).
  • the matrix K is different from the matrix J in that the sign of the element in the first row and the second column is plus and the sign of the element in the second row and the second column is minus. That is, the sign of the second column is inverted.
  • FIG. 5 is an equivalent conceptual diagram of the transmission system in the second embodiment.
  • the STBC 0 encodes the symbol series data in accordance with, for example, the matrix J in the equation (1).
  • the STBC 1 encodes the symbol series data according to, for example, the matrix K in Expression (2).
  • the first conversion unit 141 converts, for example, the symbol “S0, S2” into series data in which “S0” is assigned at time t and “ ⁇ S2 * ” is assigned at time t + 1.
  • the IFFT unit 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 0 in, for example, horizontal polarization.
  • the third conversion unit 241 converts, for example, the symbol “S0, S2” into series data in which “S2” is assigned to time t and “S0 * ” is assigned to time t + 1.
  • the IFFT unit 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2 in, for example, horizontal polarization.
  • the second conversion unit 142 converts, for example, the symbols “S1, S3” into series data in which “S1” is assigned at time t and “S3 * ” is assigned at time t + 1.
  • the IFFT unit 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 1 with, for example, vertical polarization.
  • the fourth conversion unit 242 converts, for example, the symbols “S1, S3” into series data in which “S3” is assigned at time t and “ ⁇ S1 * ” is assigned at time t + 1.
  • the IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3 by, for example, vertical polarization.
  • the sign of the second column of the matrix K is inverted from the sign of the second column of the matrix J.
  • the encoded symbol “ ⁇ S2 * ” for transmission through antenna 0 and the encoded symbol “S3 * ” for transmission through antenna 1 have different codes.
  • the encoded symbol “S0 * ” for transmission through the antenna 2 of the B station and the encoded symbol “ ⁇ S1 * ” for transmission through the antenna 3 of the B station have different codes.
  • the code of each component in the second column of the matrix K used for STBC encoding is different from the code of the corresponding component in the second column of the matrix J.
  • the encoding unit 14 and the encoding unit 24 perform encoding for each block, and at one time in the block (for example, time t + 1), the transmission apparatus has the same polarization.
  • the codes of the encoded symbols to be transmitted are different from each other, and at one time (for example, time t + 1), the encoded code of one of the parallel sequence data is the code of the other sequence data. Encoding is performed differently from the encoded code.
  • the encoding unit 14 and the encoding unit 24 are the encoded signals obtained by encoding the same symbol by the other transmitting apparatus used in the transmission system 4 as in the first embodiment.
  • Encoding is performed so that encoded signals having different allocation times and complex conjugate relations can be obtained.
  • the observation equation described later does not overlap, so that the receiving device 30 can calculate the transmission signal from the received signal.
  • the transmission characteristics do not deteriorate, which is an advantage over the first embodiment.
  • Example 2 The transmission system 4 in the second embodiment performs processing similar to that in the second embodiment, but differs from the second embodiment in the following points.
  • the STBC 0 encodes the symbol sequence data according to the matrix K.
  • the STBC 1 encodes the symbol sequence data according to the matrix J.
  • FIG. 6 is an equivalent conceptual diagram of the transmission system 4 in the third embodiment.
  • both STBC0 and STBC1 realize STBC by the matrix J of Expression (1).
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 through the antenna 0 of the A station and the antenna 3 of the B station, respectively.
  • the antenna 0 transmits a transmission signal with horizontal polarization
  • the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0, using different transmission apparatuses and different polarizations.
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 by the antenna 1 of the A station and the antenna 2 of the B station, respectively.
  • the antenna 1 transmits a transmission signal with vertical polarization
  • the antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with different polarizations.
  • the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization
  • the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization
  • the first conversion unit 141 converts, for example, the symbol “S0, S2” into series data in which “S0” is assigned at time t and “ ⁇ S2 * ” is assigned at time t + 1.
  • IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0.
  • the third conversion unit 241 converts, for example, the symbol “S0, S2” into series data in which “S2” is assigned to time t and “S0 * ” is assigned to time t + 1.
  • IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 3.
  • the second conversion unit 142 converts, for example, the symbols “S1, S3” into series data in which “S1” is assigned at time t and “ ⁇ S3 * ” is assigned at time t + 1.
  • IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1.
  • the fourth conversion unit 242 converts, for example, the symbols “S1, S3” into series data in which “S3” is assigned to time t and “S1 * ” is assigned to time t + 1.
  • the IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2.
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding the same information from different transmission apparatuses and with different polarizations.
  • the viewpoint when one transmission apparatus transmits a transmission signal derived from the same information as another transmission signal transmitted by the other transmission apparatus, the other transmission apparatus transmits the other transmission signal.
  • a transmission signal is transmitted with a polarization different from the polarization.
  • the encoding unit 14 and the encoding unit 24 perform encoding for each block, and at one time (for example, time t + 1), the code after encoding one of the parallel sequence data. Is encoded to be the same as the encoded code of the other sequence data.
  • the encoding unit 14 and the encoding unit 24 have the encoded code transmitted with the same polarization as that of the other transmitting apparatuses at the one time (for example, time t + 1). Encoding is performed differently from the symbol code. Thereby, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the observation equation described later does not overlap, so that the receiving device 30 can calculate the transmission signal from the received signal. As a result, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the transmission characteristics do not deteriorate, which is an advantage over the first embodiment.
  • Example 3 The transmission system 4 in the third embodiment performs processing similar to that in the third embodiment, but differs from the third embodiment in the following points.
  • STBC0 and STBC1 encode the symbol series data according to a matrix K different from that of the third embodiment.
  • FIG. 7 is an equivalent conceptual diagram of the transmission system 4 in the fourth embodiment.
  • STBC0 implements STBC using the matrix J of Equation (1)
  • STBC1 implements STBC using the matrix K of Equation (2).
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from the antenna 0 of the A station and the antenna 3 of the B station, respectively.
  • the antenna 0 transmits a transmission signal with horizontal polarization
  • the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from different transmission apparatuses and with different polarizations.
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from the antenna 1 of the A station and the antenna 2 of the B station, respectively.
  • the antenna 1 transmits a transmission signal with vertical polarization
  • the antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with different polarizations.
  • the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization
  • the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization
  • the first conversion unit 141 converts, for example, the symbol “S0, S2” into series data in which “S0” is assigned at time t and “ ⁇ S2 * ” is assigned at time t + 1.
  • IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0.
  • the third conversion unit 241 converts, for example, the symbol “S0, S2” into series data assigned to “S2” at time t and “S0 * ” at time t + 1.
  • IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 3.
  • the second conversion unit 142 converts, for example, the symbols “S1, S3” into series data in which “S1” is assigned at time t and “S3 * ” is assigned at time t + 1.
  • IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1.
  • the fourth conversion unit 242 converts, for example, the symbols “S1, S3” into series data in which “S3” is assigned at time t and “ ⁇ S1 * ” is assigned at time t + 1.
  • the IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2.
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding the same information from different transmission apparatuses and with different polarizations.
  • the code of each component in the second column of the matrix K used for STBC encoding is different from the code of each component in the second column of the matrix J.
  • the transmission unit of one transmission device transmits a transmission signal derived from the same information as the other transmission signal transmitted by the other transmission device
  • the transmission unit transmits the polarized wave transmitted by the other transmission device. Transmit with different polarizations. That is, the first transmission device transmits a transmission signal from a transmission antenna that transmits with a polarization different from the polarization transmitted by the other transmission device, out of the first transmission antenna 181 or the second transmission antenna 182.
  • the encoding unit 14 and the encoding unit 24 encode each block, and at one time (for example, time t + 1), after one of the parallel sequence data is encoded. Encoding is performed so that the code is different from the encoded code of the other sequence data. In addition, at that time, the encoding unit 14 and the encoding unit 24 have the encoded code transmitted with the same polarization as that of the other transmitting apparatuses at the one time (for example, time t + 1). Encode to be the same as the symbol code. At that time, as in the first embodiment, the encoding unit 14 and the encoding unit 24 are encoded signals obtained by encoding the same symbol by the other transmission device used in the transmission system. Encoding is performed so that encoded signals having different time allocations and complex conjugate relations can be obtained.
  • FIG. 8 shows the bit error rate characteristics when the radio wave of station B is received without rotating the polarization (rotation angle 0 °).
  • the vertical axis represents the bit error rate (BER), and the horizontal axis represents the average received C / N of each polarization.
  • both the first embodiment and the third embodiment show substantially the same bit error rate characteristics. In either case, the C / N at which the bit error rate is 1.0 ⁇ 10 ⁇ 7 is about 23 dB.
  • FIG. 9 shows the bit error rate characteristics when the radio wave of station B is received with 90 ° polarization rotation.
  • the vertical axis represents the bit error rate (BER), and the horizontal axis represents the average received C / N of each polarization.
  • the bit error rate characteristic of the third embodiment is almost the same as the bit error rate characteristic of the third embodiment in FIG.
  • the C / N at which the bit error rate is 1.0 ⁇ 10 ⁇ 7 is about 23 dB.
  • Example 1 the bit error rate remains high even when C / N is increased.
  • the transmission characteristic when the received signal of the B station has a 90 ° polarization rotation is deteriorated as compared with the case where the received signal of the B station has no polarization rotation.
  • the transmission characteristics when the received signal of the B station has a 90 ° polarization rotation are not deteriorated compared to the transmission characteristics when the received signal of the B station has no polarization rotation. Since Example 2 shows the same characteristics as Example 3, it is omitted.
  • the transmission system 5 does not deteriorate the transmission characteristics even if the received signal of the B station has a 90 ° polarization rotation.
  • Example 4 ' The transmission system 4 in the fourth embodiment performs processing similar to that of the fourth embodiment, but differs from the fourth embodiment in the following points.
  • the STBC 0 encodes the symbol sequence data according to the matrix K.
  • the STBC 1 encodes the symbol sequence data according to the matrix J.
  • FIG. 10 is an equivalent conceptual diagram of the transmission system 4 in the fifth embodiment.
  • the STBC0 and STBC1 encode the symbol series data, for example, according to the matrix L in Expression (3).
  • the matrix L in Expression (3) is a partially modified Alamouti space-time block coding matrix J (Modified Alamouti).
  • the row of the matrix L corresponds to the antenna number, and the column corresponds to the transmission time.
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 by the antenna 0 of the A station and the antenna 2 of the B station, respectively.
  • antenna 0 transmits a transmission signal with horizontal polarization
  • antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits each of two transmission signals obtained by STBC encoding with STBC0 from different transmission apparatuses with the same polarization (same polarization).
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from the antenna 1 of the A station and the antenna 3 of the B station, respectively.
  • the antenna 1 transmits a transmission signal with vertical polarization
  • the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses with the same polarization (same polarization).
  • the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization
  • the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization
  • the first conversion unit 141 outputs, for example, series data in which “S0” is assigned at time t and “S2” is assigned at time t + 1 without converting the symbols “S0, S2”.
  • IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0.
  • the third conversion unit 241 for example, the symbol "S0, S2 'to the time t" -S2 * "is converted to time t + 1" S0 * "in the allocated sequence data.
  • IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 2.
  • the second conversion unit 142 outputs series data in which “S1” is assigned to time t and “S3” is assigned to time t + 1 without converting “S1, S3”.
  • IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1.
  • the IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
  • the encoding unit 14 in the first transmission device (A station) 10 outputs the symbol sequence as it is without changing the input symbol sequence.
  • the encoding unit 24 in the second transmission device (B station) 20 changes the input symbol sequence.
  • Example 5 ' The transmission system 4 in the fifth embodiment performs the same processing as the fifth embodiment, but differs from the fifth embodiment in the following points.
  • STBC0 and STBC1 encode symbol series data according to a matrix M different from Example 5, respectively.
  • the matrix M is expressed by the following equation (4).
  • Example 6 is an example in the case where there is a code inversion of the modified Alamouti space-time block coding matrix in STBC1.
  • FIG. 11 is an equivalent conceptual diagram of the transmission system in the sixth embodiment.
  • the STBC 0 performs STBC on the symbol series data using the matrix L in the equation (3).
  • STBC 1 applies STBC to the symbol series data using matrix M shown in Equation (4).
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from the antenna 0 of the A station and the antenna 2 of the B station, respectively.
  • antenna 0 transmits a transmission signal with horizontal polarization
  • antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from different transmission apparatuses and with the same polarization (same polarization).
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from the antenna 1 of the A station and the antenna 3 of the B station, respectively.
  • the antenna 1 transmits a transmission signal with vertical polarization
  • the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with the same polarization (same polarization).
  • the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization
  • the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization
  • the first conversion unit 141 outputs, for example, sequence data in which “S0” is assigned at time t and “S2” is assigned at time t + 1 without converting the symbols “S0, S2”.
  • IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0.
  • IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 2.
  • the second conversion unit 142 outputs series data in which “S1” is assigned to time t and “S3” is assigned to time t + 1 without converting the symbols “S1, S3”.
  • IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1.
  • the IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
  • the encoding unit 24 encodes each of the parallel sequence data for each block, and at each time in the block, after encoding one of the parallel sequence data, Encoding is performed so that the code is different from the encoded code of the other sequence data. Also, at that time, the encoding unit 24 refers to an encoded signal obtained by encoding the same symbol by the first transmission device 10 which is the other transmission device used in the transmission system 4. Are encoded so that encoded signals having different complex conjugate relations can be obtained.
  • the antenna 2 in the B station transmits “ ⁇ S2 * , S0 * ”, and the antenna 3 transmits “S3 * , ⁇ S1 * ”.
  • the sign of the signal after encoding at the respective times differs between the antenna 2 and the antenna 3.
  • the antenna 3 since the antenna 3 transmits “ ⁇ S3 * , S1 * ”, the sign of the signal transmitted by the antenna 3 is reversed before and after the fifth embodiment.
  • the observation equation described later does not overlap, so that the receiving device 30 can calculate the transmission signal from the received signal.
  • the transmission characteristics do not deteriorate even if the polarization rotation of the B station is present, which is an advantage over the fifth embodiment.
  • Example 6 The transmission system 4 in the sixth embodiment performs processing similar to that of the sixth embodiment, but differs from the sixth embodiment in the following points.
  • the STBC 0 encodes the symbol sequence data according to the matrix M.
  • the STBC 1 encodes the symbol sequence data according to the matrix L.
  • FIG. 12 is an equivalent conceptual diagram of the transmission system 4 in the seventh embodiment.
  • both STBC0 and STBC1 perform STBC encoding using the matrix L of Equation (3).
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 through the antenna 0 of the A station and the antenna 3 of the B station, respectively.
  • the antenna 0 transmits a transmission signal with horizontal polarization
  • the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 using different transmission apparatuses and different polarizations (cross polarizations).
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 by the antenna 1 of the A station and the antenna 2 of the B station, respectively.
  • the antenna 1 transmits a transmission signal with vertical polarization
  • the antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with different polarizations (cross polarizations).
  • the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization
  • the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization
  • the transmission system 4 transmits each of two transmission signals obtained by STBC encoding from different transmission apparatuses and with different polarizations.
  • the transmission unit 17 of the first transmission device 10 transmits the transmission signal derived from the same information as the other transmission signals transmitted by the second transmission device 20 when the first transmission antenna is transmitted.
  • the transmission signal is transmitted from a transmission antenna that transmits a transmission signal with a polarization different from the polarization with which another transmission apparatus transmits another transmission signal.
  • Example 7 ' The transmission system 4 in the embodiment 7 ′ performs the same processing as that in the embodiment 7, but differs from the embodiment 7 in the following points.
  • STBC0 and STBC1 encode symbol series data according to a matrix M different from Example 7, respectively.
  • FIG. 13 is an equivalent conceptual diagram of the transmission system 4 in the eighth embodiment.
  • STBC0 implements STBC using the matrix L of Equation (3)
  • STBC1 implements STBC using the matrix M of Equation (4).
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from the antenna 0 of the A station and the antenna 3 of the B station, respectively.
  • the antenna 0 transmits a transmission signal with horizontal polarization
  • the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from different transmission apparatuses and with different polarizations (cross polarization).
  • the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from the antenna 1 of the A station and the antenna 2 of the B station, respectively.
  • the antenna 1 transmits a transmission signal with vertical polarization
  • the antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with different polarizations (cross polarizations).
  • the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization
  • the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization
  • the first conversion unit 141 outputs, for example, series data in which “S0” is assigned at time t and “S2” is assigned at time t + 1 without converting the symbols “S0, S2”.
  • IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0.
  • the third conversion unit 241 for example, the symbol "S0, S2 'to the time t" -S2 * "is converted to time t + 1" S0 * "in the allocated sequence data.
  • IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 3.
  • the second conversion unit 142 outputs, for example, the series “S1” at time t and “S3” at time t + 1 without converting the symbols “S1, S3”.
  • IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1.
  • the IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2.
  • the transmission system 4 transmits each of two transmission signals obtained by STBC encoding from different transmission apparatuses and with different polarizations.
  • STBC0 implements STBC using the matrix L of Equation (3)
  • STBC1 implements STBC using the matrix M of Equation (4).
  • Example 8 ' The transmission system 4 in the eighth embodiment performs the same processing as the eighth embodiment, but differs from the eighth embodiment in the following points.
  • STBC0 encodes the symbol sequence data according to the matrix M.
  • the STBC 1 encodes the symbol sequence data according to the matrix L.
  • FIG. 14 is an equivalent conceptual diagram of the transmission system in the ninth embodiment.
  • SFBC0 and SFBC1 implement SFBC encoding using the matrix J of Equation (1).
  • the rows of the matrix J correspond to antenna numbers, and the columns correspond to frequencies (or carrier numbers for multicarrier transmission in OFDM transmission).
  • the transmission system 4 transmits two transmission signals obtained by SFBC encoding with SFBC0 from the antenna 0 of the A station and the antenna 2 of the B station, respectively.
  • both antenna 0 and antenna 2 transmit transmission signals with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by performing SFBC encoding with SFBC0 from different transmission apparatuses and with the same polarization (same polarization).
  • the transmission system 4 transmits two transmission signals obtained by SFBC encoding with SFBC 1 from the antenna 1 of the A station and the antenna 3 of the B station, respectively.
  • both the antenna 1 and the antenna 3 transmit transmission signals with vertical polarization. That is, the transmission system 4 transmits each of two transmission signals obtained by performing SFBC encoding with SFBC1 from different transmission apparatuses and with the same polarization (same polarization).
  • the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization
  • the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization
  • the first conversion unit 141 converts, for example, “S0, S2” into sequence data in which “S0” is assigned to the frequency f and “ ⁇ S2 * ” is assigned to the frequency f + 1.
  • IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0.
  • the third conversion unit 241 converts, for example, “S0, S2” into sequence data in which “S2” is assigned to the frequency f and “S0 * ” is assigned to the frequency f + 1.
  • IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 2.
  • the second conversion unit 142 converts, for example, “S1, S3” into sequence data in which “S1” is assigned to the frequency f and “ ⁇ S3 * ” is assigned to the frequency f + 1.
  • IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1.
  • the fourth conversion unit 242 converts, for example, “S1, S3” into sequence data in which “S3” is assigned to the frequency f and “S1 * ” is assigned to the frequency f + 1.
  • the IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
  • the encoding unit 14 and the encoding unit 24 encode each of the parallel series data obtained by conversion by the serial / parallel conversion unit (13 or 23) for each block.
  • the encoding unit 14 and the encoding unit 24 are encoded signals obtained by encoding the same symbol by the other transmission apparatus used in the transmission system 4 that encodes the symbol sequence data.
  • the sequence data of the symbols are encoded so that the assigned frequencies are different and are in a complex conjugate relationship with each other.
  • the transmission system 4 transmits each of two transmission signals obtained by SFBC encoding from different transmission apparatuses with the same polarization (same polarization).
  • the receiving device can receive S0 and S2, but cannot receive S1 and S3, and therefore cannot restore all data. It was.
  • the A station has all symbols (for example, S0, S1, S2, S3). Since the base signal can be transmitted, the receiving device that receives the signal has the advantage that all data can be recovered.
  • Example 9 ' The transmission system 4 in the ninth embodiment performs the same processing as that of the ninth embodiment, but differs from the ninth embodiment in the following points.
  • SFBC0 and SFBC1 each encode the symbol series data according to a matrix K different from the ninth embodiment.
  • FIG. 15 is an equivalent conceptual diagram of the transmission system in the tenth embodiment.
  • SFBC0 encodes the symbol series data in accordance with, for example, the matrix J in equation (1).
  • SFBC1 encodes the symbol series data according to, for example, the matrix K shown in Expression (2).
  • the transmission system 4 transmits two transmission signals obtained by SFBC encoding with SFBC0 using the antenna 0 of the A station and the antenna 2 of the B station, respectively.
  • both antenna 0 and antenna 2 transmit transmission signals with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by performing SFBC coding with SFBC0, using different transmission apparatuses and the same polarization (same polarization).
  • the transmission system 4 transmits two transmission signals obtained by performing SFBC encoding with SFBC 1 through the antenna 1 of the A station and the antenna 3 of the B station, respectively.
  • the antenna 1 transmits a transmission signal with vertical polarization
  • the antenna 3 also transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by performing SFBC encoding with SFBC1 from different transmission apparatuses and using the same polarization (same polarization).
  • the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization
  • the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization
  • the first conversion unit 141 converts, for example, “S0, S2” into sequence data in which “S0” is assigned to the frequency f and “ ⁇ S2 * ” is assigned to the frequency f + 1.
  • the IFFT unit 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 0 in, for example, horizontal polarization.
  • the third conversion unit 241 converts, for example, “S0, S2” into sequence data in which “S2” is assigned to the frequency f and “S0 * ” is assigned to the frequency f + 1.
  • the IFFT unit 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2 in, for example, horizontal polarization.
  • the second conversion unit 142 converts “S1, S3” into sequence data in which “S1” is assigned to the frequency f and “S3 * ” is assigned to the frequency f + 1.
  • the IFFT unit 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 1 with, for example, vertical polarization.
  • the fourth conversion unit 242 converts, for example, “S1, S3” into sequence data in which “S3” is assigned to the frequency f and “ ⁇ S1 * ” is assigned to the frequency f + 1.
  • the IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3 by, for example, vertical polarization.
  • the code of each component in the second column of the matrix K used for SFBC encoding is different from the code of the corresponding component in the second column of the matrix J.
  • the encoding unit 14 and the encoding unit 24 perform encoding for each block, and the same polarization between the transmission apparatuses at one frequency (for example, frequency f + 1) in the block.
  • the code after encoding of one of the parallel sequence data is different from the code of the other sequence data. Encoding is performed differently from the encoded code.
  • the receiving device 30 can calculate the transmission signal from the received signal.
  • the transmission characteristics are not deteriorated, which is an advantage over the ninth embodiment.
  • Example 10 ' The transmission system 4 in the embodiment 10 ′ performs the same processing as that in the embodiment 10, but differs from the embodiment 10 in the following points.
  • SFBC0 encodes the symbol series data according to the matrix K.
  • the SFBC 1 encodes the symbol series data according to the matrix J.
  • FIG. 16 is a schematic block diagram illustrating the configuration of the receiving device 30 common to the embodiments.
  • the receiving device 30 includes a first receiving antenna 311, a second receiving antenna 312, GI removal units 321 and 322, a Fourier transform unit 33, a transmission path response estimation unit 34, a transmission signal detection unit 35, a parallel / serial conversion unit 36, A carrier demodulation unit 37 and an error correction code decoding unit 38 are provided.
  • the Fourier transform unit 33 includes an FFT unit 331 and an FFT unit 332.
  • the first receiving antenna 311 is an antenna that receives a horizontally polarized signal as an example.
  • the first receiving antenna 311 is also referred to as Rx0 (horizontal).
  • the first reception antenna 311 receives a horizontally polarized signal among the signals transmitted from the first transmission device 10 and the second transmission device 20, and outputs the received reception signal to the GI removal unit 321.
  • the second receiving antenna 312 is an antenna that receives a vertically polarized signal as an example.
  • the second receiving antenna 312 is also referred to as Rx1 (vertical).
  • the second reception antenna 312 receives a vertically polarized signal among the signals transmitted from the first transmission device 10 and the second transmission device 20, and outputs the received signal to the GI removal unit 322.
  • the first receiving antenna 311 may receive a vertically polarized signal
  • the second receiving antenna 312 may receive a horizontally polarized signal.
  • the GI removal unit 321 removes the GI from the reception signal input from the first reception antenna 311 and outputs the signal after removal to the FFT unit 331.
  • the GI removal unit 322 removes the GI from the reception signal input from the second reception antenna 312 and outputs the signal after removal to the FFT unit 332.
  • the FFT unit 331 performs Fourier transformation on the signal input from the GI removal unit 321 and outputs the signal after Fourier transformation to the transmission path response estimation unit 34.
  • the FFT unit 332 performs Fourier transformation on the signal input from the GI removal unit 322 and outputs the signal after Fourier transformation to the transmission path response estimation unit 34.
  • the transmission path response estimation unit 34 extracts a first signal derived from a known pilot signal from the signal input from the FFT unit 331. Similarly, the transmission path response estimation unit 34 extracts a second signal derived from a known pilot signal from the signal input from the FFT unit 332. The transmission path response estimation unit 34 estimates the transmission path response with reference to the extracted first signal and second signal. The transmission path response estimation unit 34 outputs the calculated transmission path response to the transmission signal detection unit 35.
  • the transmission signal detection unit 35 is obtained by performing the Fourier transform on the encoding rule in the first transmission device 10 and the second transmission device 20, the transmission channel response calculated by the transmission channel response estimation unit 34, and the Fourier transform unit 33.
  • the symbols transmitted by the first transmitter 10 and the second transmitter 20 are estimated with reference to the received signals (however, excluding signals derived from pilot signals). Detailed processing of the transmission signal detector 35 will be described later.
  • the transmission signal detection unit 35 uses the symbol obtained by the estimation as, for example, parallel series data, and outputs the parallel series data to the parallel-serial conversion unit 36.
  • the parallel / serial converter 36 converts the parallel series data input from the transmission signal detector 35 into serial series data, and outputs the converted series data to the carrier demodulator 37.
  • the carrier demodulation unit 37 performs a demodulation process on the series data input from the parallel / serial conversion unit 36. Specifically, for example, the carrier demodulation unit 37 calculates an LLR (log likelihood ratio) from the input sequence data. Then, the carrier demodulation unit 37 outputs the sequence data obtained as a result of the carrier demodulation to the error correction code decoding unit 38.
  • LLR log likelihood ratio
  • the error correction code decoding unit 38 performs decoding processing of, for example, LDPC (Low-Density Parity-Check) code using the sequence data input from the carrier demodulation unit 37, and corrects a bit error generated in the transmission path. .
  • LDPC Low-Density Parity-Check
  • FIG. 17 is a 4 ⁇ 2 MIMO transmission model for explaining the transmission system.
  • y 0 and y 1 are horizontal polarization and vertical polarization reception signals, respectively.
  • x 0 , x 1 , x 2 , x 3 are transmission symbols (signals to be obtained).
  • h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 are transmission path responses estimated using pilot signals.
  • h 00 is a channel response of the antenna 0 (horizontal) Rx0 to (horizontal).
  • h 10 is a transmission path response from the antenna 0 (horizontal) to Rx1 (vertical).
  • h 01 is a transmission path response from the antenna 1 (vertical) to Rx0 (horizontal).
  • h 11 is a transmission line response from the antenna 1 (vertical) to Rx1 (vertical).
  • h 02 is a channel response of the antenna 2 from (horizontal) Rx0 to (horizontal).
  • h 12 is a transmission path response from the antenna 2 (horizontal) to Rx1 (vertical).
  • h 03 is a transmission path response from the antenna 3 (vertical) to Rx0 (horizontal).
  • h 13 is a transmission line response from the antenna 3 (vertical) to Rx1 (vertical).
  • FIG. 18 is a diagram for explaining a transmission path response matrix of an ideal transmission path and a transmission path response matrix of a transmission path having a 90 ° polarization rotation counterclockwise.
  • a set of a schematic diagram C181 showing a transmission path response matrix H ideal of an ideal transmission path without polarization rotation and a polarization state of a signal after being transmitted through the ideal transmission path.
  • the horizontal polarization H represents a positive value on the X axis
  • the vertical polarization V represents a positive value on the Y axis.
  • each component of the transmission line response matrix H ideal is g ij (i is 0 or 1, j is 0 or 1).
  • g 00 and g 11 are 1, g 01 is 0, and g 10 is 0.
  • a set of schematic diagram C182 showing the state of the wave is shown.
  • each component of the transmission path response matrix H 90 is assumed to be g ′ ij (i is 0 or 1, j is 0 or 1).
  • the vertically polarized wave V is directed in the negative direction of the X axis, so g ′ 01 is ⁇ 1.
  • the horizontally polarized wave H is directed in the positive direction of the Y axis, so g ′ 10 is 1.
  • g ′ 00 is 0 and g ′ 11 is 0.
  • Example 1 Processing of the transmission path response estimation unit 34 and the transmission signal detection unit 35 in the first embodiment will be described.
  • STBC a received signal at time t and time t + 1 is paired for a certain frequency f.
  • the relational expression at time t is expressed by the following expression (5).
  • the encoded symbols transmitted by the first transmission device 10 are [x 0 , x 1 ] in Equation (5) and [ ⁇ x 2 * , ⁇ x 3 * ] in Equation (6). is there.
  • the encoded symbols transmitted by the second transmitter 20 are [x 2 , x 3 ] in Equation (5) and [x 0 * , x 1 * ] in Equation (6). is there.
  • the leftmost matrix on the right side is a transmission line response matrix H having each transmission line response as a component.
  • the transmission line response matrix H is estimated using a known pilot signal.
  • the transmission signal detection unit 35 for example, the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , h calculated by the transmission path response estimation unit 34 in Expression (7). 13 and symbols y 0 (t), y 1 (t), y 0 (t + 1), and y 1 (t + 1) obtained by receiving each transmission signal and receiving by the receiving device 30 are substituted. Thereby, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 .
  • the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • Expression (7) is expressed by the following Expression (7-2).
  • the row vector of the first row and the row vector of the fourth row of the transmission line response matrix H of the equation (7-2) are equal, and the row vectors of the second row and the third row are obtained by inverting the signs. Therefore, there is a rank drop in the transmission line response matrix H of Expression (7-2).
  • equation (7-2) there are two observation equations, but there are four unknown variables included in the observation equation. Therefore, the transmission path response estimation unit 34 cannot solve the observation equation.
  • the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is not possible to correctly calculate the 2, x 3.
  • the transmission line response is not limited to the condition that the received signal of the B station has a 90 ° polarization rotation counterclockwise, but also the condition that the received signal of the B station has a 270 ° polarization rotation counterclockwise.
  • the estimation unit 34 cannot solve the observation equation. For this reason, the transmission signal detection unit 35 cannot correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 .
  • the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 .
  • Expression (7) ′ is expressed by the following Expression (7-1) ′.
  • the transmission line response estimation unit 34 can solve the observation equation. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • the received signal at time t is expressed by the above-described equation (5).
  • the received signal at time t + 1 is expressed by the following equation (8).
  • Equation (9) Aligning Equation (5) and Equation (8) yields the following Equation (9) as the alignment result.
  • the transmission path response estimation unit 34 uses the known pilot signals in the same manner as in the first embodiment to transmit the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , h 13. Is estimated. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
  • the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
  • Expression (9) ′ is expressed by the following Expression (9-1) ′.
  • the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • the transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
  • equation (11) becomes the following equation (11-1).
  • the transmission signal detector 35 can calculate the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • Expression (11) is expressed by the following Expression (11-2).
  • the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
  • Expression (11) ′ is expressed by the following Expression (11-1) ′.
  • the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • the transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
  • the transmission signal detector 35 cannot correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
  • the transmission signal detector 35 cannot correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • a relational expression at time t is expressed by Expression (5).
  • the relational expression and alignment result at time t + 1 are expressed by the following expressions (14) and (15), respectively.
  • x 0 , x 1 , x 2 , and x 3 correspond to S 0, S 1, ⁇ S 2 * , and ⁇ S 3 * in FIG. 10, respectively.
  • equation (15) matches equation (7).
  • the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. It can be calculated correctly.
  • the transmission signal detection unit 35 transmits the transmission symbols x 0 , x 1 , x it is not possible to correctly calculate the 2, x 3.
  • the transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
  • the expression (15) ′ matches the expression (7) ′.
  • the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. Can be calculated correctly.
  • the transmission signal detection unit 35 transmits the transmission symbols x 0 , x 1 , x it is not possible to correctly calculate the 2, x 3.
  • the received signal at time t is expressed by equation (5).
  • the relational expression and the alignment result at time t + 1 are expressed by the following expressions (16) and (17), respectively.
  • x 0 , x 1 , x 2 , and x 3 correspond to S 0, S 1, ⁇ S 2 * , and S 3 * in FIG. 11, respectively.
  • equation (17) matches equation (9). For this reason, the result is the same as that of the second embodiment, and the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. It can be calculated correctly. Further, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x even under the condition that there is no polarization rotation in the transmission path of the A station but there is a 90 ° polarization rotation counterclockwise in the transmission path of the B station. it is possible to correctly calculate the 2, x 3.
  • the transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
  • Example 6 gives the same result as Example 2', the description thereof is omitted.
  • equation (19) coincides with equation (11).
  • the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. Can be calculated. Further, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x even under the condition that there is no polarization rotation in the transmission path of the A station but there is a 90 ° polarization rotation counterclockwise in the transmission path of the B station. it is possible to correctly calculate the 2, x 3.
  • the transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
  • Example 7 has the same result as Example 3', the description thereof is omitted.
  • equation (21) coincides with equation (13). For this reason, the result is the same as that of the fourth embodiment, and the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. It cannot be calculated correctly.
  • the transmission signal detection unit 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
  • the transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
  • Example 8 has the same result as Example 4', its description is omitted.
  • the reception device 30 makes a pair of reception signals of frequency f and frequency f + 1 at a certain time t.
  • the relational expression of the frequency f is expressed by the following expression (22).
  • the transmission line response estimation unit 34 estimates the transmission line response matrix H using a known pilot signal.
  • the transmission signal detection unit 35 for example, the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , h calculated by the transmission path response estimation unit 34 in Expression (24). 13 and symbols y 0 (f), y 1 (f), y 0 (f + 1), and y 1 (f + 1) obtained by transmitting each transmission signal and receiving by the receiving device 30 are substituted. Thereby, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 .
  • the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • Expression (24) is expressed by the following Expression (24-2).
  • the transmission path response is not limited to the condition in which the transmission path of the B station has a 90 ° polarization rotation counterclockwise, but also in the condition in which the B station transmission path has a 270 ° polarization rotation counterclockwise.
  • the estimation unit 34 cannot solve the observation equation. For this reason, the transmission signal detection unit 35 cannot correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 .
  • the transmission channel response estimation unit 34 can solve the observation equations. Therefore, the transmission signal detecting unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 .
  • Example 9 has the same result as Example 9, its description is omitted.
  • the transmission path response estimation unit 34 calculates transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the ninth embodiment. Then, the transmission signal detection unit 35 calculates transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the ninth embodiment.
  • the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
  • the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
  • Example 10 has the same result as Example 10, the description is abbreviate
  • FIG. 19 is a table showing the result of determining whether the rank of the transmission line response matrix H has dropped or not by changing the transmission line response matrix H B of the B station when the transmission line response matrix H A of the A station is ideal. It is. In the figure, when the transmission path of station B is in an ideal environment, it rotates 90 ° counterclockwise, rotates 180 ° counterclockwise, rotates 270 ° counterclockwise, The case where there is a rank drop is shown. In the case of the counterclockwise rotation of 180 ° and 270 °, only the result is shown in FIG.
  • the transmission signal detection unit 35 Can correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 .
  • FIG. 20 is a system diagram of computer simulation.
  • station A and station B functioning as a MIMO-OFDM modulator receive the PN code generated by the PN code generator.
  • Stations A and B each generate a transmission signal from the received PN code.
  • the A station transmits a horizontally polarized wave (H) transmission signal (hereinafter, “A station horizontally polarized signal”) and a vertically polarized wave (V) transmission signal (hereinafter, “A station vertically polarized signal”).
  • the B station transmits a horizontally polarized wave (H) transmission signal (hereinafter referred to as B station horizontally polarized signal) and a vertically polarized wave (V) transmission signal (hereinafter referred to as B station vertically polarized signal).
  • Addition of delay (Delay), change of received signal power (ATT), phase shift (Phase Shift), reception between polarized waves for B station horizontal polarization signal and B station vertical polarization signal transmitted by B station A series of processes of power change processing (ATT / Amp) and polarization rotation (Polarization Rotation) are performed.
  • the B-station horizontal polarization signal after this series of processing is added to the A-station horizontal polarization signal transmitted from the A station, and a reception horizontal polarization signal is generated.
  • the B-station vertical polarization signal after the series of processing is added to the A-station vertical polarization signal transmitted from the A station, and a reception vertical polarization signal is generated.
  • the receiving device 30 as a MIMO-OFDM demodulator demodulates the received horizontal polarization signal and the reception vertical polarization signal after the noise is added. Then, the bit error rate measuring unit measures the bit error rate for the data obtained by demodulation.
  • the ratio of the average received power between the polarizations of the A station and the B station is D / U [dB], and the received signals from the A station have the same horizontal and vertical polarization received power.
  • the delay time ⁇ [ ⁇ sec] in which the B station transmission signal is delayed with respect to the A station signal during reception, and the B station transmission signal shifts with respect to the A station signal during reception.
  • Phase shift amount ⁇ 90 [°]
  • received power difference ⁇ [dB] between polarizations, angle ⁇ [°] formed by both polarizations during reception, and rotation angle ⁇ at which both polarizations rotate from transmission to reception [°] was set as a parameter.
  • the reception C / N [dB] is defined as the noise power with respect to the reception power of the signal of the station A. Assuming an environment in which the signals of the B station are received by the side lobes of the first receiving antenna 311 and the second receiving antenna 312, the reception characteristics of the signals of the B station are changed, and the transmission characteristics are verified.
  • FIG. 21 shows transmission parameters in computer simulation.
  • the bandwidth, FFT size, GI ratio, and pilot signal ratio were compliant with ISDB-T, which is ISDB (Integrated Services Digital Broadcasting) for terrestrial digital broadcasting.
  • FIG. 22 shows a simulation result of bit error rate characteristics in a high D / U environment. This figure is a simulation result in an AWGN (Additive White Gaussian Noise) environment.
  • a C / N with a bit error rate of 1 ⁇ 10 ⁇ 7 or less is defined as a required C / N.
  • the required C / N is about 26 dB.
  • the transmission characteristics are almost equal regardless of the presence or absence of STC.
  • FIG. 23 is a simulation result of the relationship between the delay time of the received signal of station B and the required C / N in a low D / U environment.
  • the signals received from the A station and the B station are the same signal, and frequency selective fading occurs, so that the required C / N is larger than 26 dB.
  • the SFBC-SDM system STBC (same polarization) or STBC (cross polarization)
  • STBC short polarization
  • SFBC cross polarization
  • FIG. 24 is a simulation result of the relationship between the received power difference ⁇ between polarized waves of the received signal of station B and the required C / N in a low D / U environment.
  • delay time ⁇ 60
  • angle ⁇ 90 formed by both polarized waves at the time of reception
  • rotation angle ⁇ 0.
  • the figure shows the result when the received power of the vertically polarized wave is larger than the received power of the horizontally polarized wave by the received power difference ⁇ between the polarized waves.
  • the figure shows that the STC-SDM scheme requires lower C / N for all received power differences ⁇ between polarizations compared to the case where STC is not applied. Therefore, the same bit error rate can be achieved with a smaller C / N than in the case where the STC-SDM scheme does not apply STC.
  • the received power difference ⁇ between the polarizations becomes larger, the required C / N of the STBC (cross polarization) of the third embodiment increases than the STBC (same polarization) of the first embodiment. ing. This means that the condition of the MIMO transmission path is deteriorated and the transmission characteristics are deteriorated.
  • the received power difference ⁇ between the polarizations becomes larger, the required C / N is higher in SFBC (cross polarization) than in SFBC (same polarization) in the ninth embodiment. This means that the condition of the MIMO transmission path is deteriorated and the transmission characteristics are deteriorated. Therefore, the received power difference ⁇ between the polarizations becomes large, and the same polarization is more effective than the cross polarization, so the same polarization is desirable.
  • FIG. 24 shows the result when the received power of the vertically polarized wave is larger than the received power of the horizontally polarized wave by the received power difference ⁇ between the polarized waves. Similar results are obtained when the power is greater than the power.
  • FIG. 25 is a simulation result of a relationship between an angle ⁇ formed by both polarizations of the received signal of the station B and the required C / N in a low D / U environment.
  • orthogonal rotation is caused by applying polarization rotation only to vertical polarization.
  • the STC-SDM system has a lower required C / N at the angle ⁇ formed by both polarizations at the time of reception than in the case where STC is not applied. Therefore, the same bit error rate can be achieved with a smaller C / N than in the case where the STC-SDM scheme does not apply STC.
  • FIG. 25 shows a result in the case where the orthogonal rotation is generated by applying the polarization rotation only to the vertical polarization, but the same result can be obtained when the polarization rotation is applied only to the horizontal polarization.
  • FIG. 26 is a simulation result of the relationship between the rotation angle ⁇ of the polarization of the received signal of station B and the required C / N in a low D / U environment.
  • the required C / N increases as the polarization rotation angle increases as the polarization rotation angle increases from 0 degrees to 90 degrees. .
  • the required C / N does not change even when the polarization rotation angle ⁇ changes.
  • the required C / N is smaller than in the case of no application. That is, STBC (cross polarization) and SFBC (cross polarization) are robust to polarization rotation.
  • the polarization rotation angle ⁇ is an angle other than 0 degrees and 180 degrees, and STBC (cross polarization) and SFBC (cross polarization) are required more than STBC (same polarization) and SFBC (same polarization).
  • C / N is small.
  • the transmission characteristic is better when coded by any one of the STC-SDM systems than when STC is not applied. That is, in all the embodiments described above, if the polarization rotation angle ⁇ is, for example, in the range of 0 to about 60 or about 120 to 180 in an environment where radio waves arriving from the A station and the B station are received, the STC It is possible to reduce the deterioration of the transmission characteristics compared to the case where is not applied.
  • STBC short polarization
  • SFBC cross polarization
  • STBC has an advantage that transmission characteristics are less likely to deteriorate even in an environment where delay time ⁇ is longer than SFBC.
  • transmission using the same polarization has an advantage that transmission characteristics are less likely to deteriorate even in an environment where the received power difference between polarized waves is larger than transmission using cross polarization.
  • cross-polarization transmission has the advantage that the transmission characteristics are less likely to deteriorate even when the angle ⁇ formed by both polarizations during reception collapses from 90 degrees to other angles. Have.
  • Each transmission device includes two transmission antennas, but is not limited thereto, and may be three or more.
  • each transmission device includes a transmission antenna that wirelessly transmits a transmission signal with a first polarization, and a transmission antenna that wirelessly transmits a transmission signal with a second polarization different from the first polarization. It is sufficient to provide at least one each.
  • each transmission device is two transmission devices placed at different positions, and different transmission signals obtained by encoding symbols derived from the same data with different conversions are respectively used. It is used in a transmission system 4 including two transmission devices that perform space division multiplexing.
  • the encoding unit (14 or 24) is configured so that other transmission devices included in the transmission system 4 have the symbols included in the parallel sequence data obtained by dividing the symbol sequence data obtained by mapping the data into two. A conversion different from the conversion performed on the same symbol is performed, and the converted symbol obtained by performing the conversion is assigned to a different time or a different frequency from the converted symbol obtained by conversion by the other transmission device. .
  • the inverse Fourier transform unit (16 or 26) performs inverse Fourier transform on each of the encoded symbol sequences obtained by encoding by the encoding unit (14 or 24).
  • Each transmission device includes a first transmission antenna that wirelessly transmits one of two transmission signals obtained by the inverse Fourier transform of the inverse Fourier transform unit (16 or 26) using the first polarization, and the two transmission signals. At least one second transmission antenna that wirelessly transmits the other with a second polarization different from the first polarization is provided.
  • the other transmitter can transmit a signal based on all symbols, so that the signal is received.
  • the receiving device 30 has an advantageous effect that all data can be restored.
  • each transmission device can further prevent deterioration of transmission characteristics even when polarization rotation occurs in the transmission path from the other transmission device by taking one of the following four configurations. it can.
  • each transmission device has the following configuration.
  • the encoding unit (14 or 24) encodes each parallel series data obtained by conversion by the serial-to-parallel conversion unit (13 or 23) for each block. Complex symbols are taken for two different symbols to be assigned to different frequencies, and the two symbols have the same code, but have different codes from the encoded symbols after the other transmitters have encoded.
  • the transmission unit (17 or 27) transmits a transmission signal derived from the same information as another transmission signal transmitted by another transmission device, from the first transmission antenna or the second transmission antenna.
  • the transmitting apparatus transmits from a transmitting antenna that transmits with a polarization different from the polarization that transmits the other transmission signal.
  • the second transmission device 20 includes the following configuration.
  • the encoding unit 24 encodes each of the parallel series data obtained by the conversion by the serial / parallel conversion unit 23 for each block, and each of the symbols included in the series data of the parallel series data. The complex conjugate is taken, and both the two symbols assigned to one time (for example, time t in FIG. 12) or one frequency in the block are multiplied by minus.
  • the transmission unit 27 transmits a transmission signal derived from the same information as the other transmission signals transmitted by the first transmission device 10 out of the first transmission antenna or the second transmission antenna.
  • the apparatus 10 transmits from a transmission antenna that transmits with a polarization different from the polarization with which the other transmission signal is transmitted.
  • each transmission device has the following configuration.
  • the encoding unit (14 or 24) encodes each of the parallel series data obtained by conversion by the serial / parallel conversion unit (13 or 23) for each block, and one time (for example, In FIG. 5, time t + 1) or two different symbols assigned to one frequency are each complex conjugate, and one of the two symbols is multiplied by minus.
  • the transmission unit (17 or 27) transmits a transmission signal derived from the same information as another transmission signal transmitted by another transmission device, from the first transmission antenna or the second transmission antenna.
  • the transmission apparatus transmits the transmission signal from a transmission antenna that transmits the same polarization as that of the other transmission signal.
  • the second transmission device 20 when the encoded pair is transmitted with the same polarization, the code is inverted with one encoding matrix, and STBC or SFBC based on the modified Alamouti encoding matrix is used (for example, in the case of SFBC corresponding to Example 6 or Example 6 ′), the second transmission device 20 includes the following configuration.
  • the encoding unit 24 encodes each of the parallel series data obtained by the conversion by the serial / parallel conversion unit 23 for each block, and each of the symbols included in the series data of the parallel series data. A symbol that is complex conjugate and is assigned to the first time (for example, time t in FIG.
  • the transmission unit 27 transmits a transmission signal derived from the same information as another transmission signal transmitted by the first transmission device 10 out of the first transmission antenna or the second transmission antenna. 10 transmits from the transmitting antenna that transmits the same polarized wave as the other transmitting signal.
  • the transmission device 10 and the transmission device 20 perform space-time coding using a plurality of antennas provided in different transmission devices, and use a plurality of antennas provided in each of the plurality of transmission devices.
  • This is a transmission device used in a transmission system that employs a method of performing space division multiplexing.
  • the transmitting apparatus 10 divides the series data to output the first series data and the second series data, and outputs the first series data to the first rule.
  • First encoding for generating first sequence data A by encoding by space-time encoding and generating second sequence data A by encoding second sequence data by space-time encoding of the second rule (Encoding unit 14 described above).
  • the transmission device 20 divides the series data to output the first series data and the second series data, and outputs the first series data and the second series data.
  • the first sequence data A is encoded by a transform matrix different from that of the first sequence data B
  • the second sequence data A is encoded by an encoding method different from that of the second sequence data B.
  • the transmission signal corresponding to the first sequence data A is transmitted with a different polarization from the transmission signal corresponding to the first sequence data B
  • the transmission signal corresponding to the second sequence data A is It is transmitted with a polarization different from the transmission signal corresponding to the second series data B.
  • the transformation matrices applied to the first series data A and the first series data B are different, and the transformation matrices applied to the second series data A and the second series data B are different.
  • the transmission signals corresponding to the first sequence data A and the first sequence data B have the same polarization, and the transmission signals corresponding to the second sequence data A and the second sequence data B have the same polarization ( For example, Embodiments 2, 2 ′, 6, 6 ′, 10, 10 ′) shown in FIG. 3 can be considered.
  • the transformation matrix applied to the first series data A and the first series data B is the same, and the transformation matrix applied to the second series data A and the second series data B is the same.
  • the transmission signals corresponding to the first sequence data A and the first sequence data B have different polarizations, and the transmission signals corresponding to the second sequence data A and the second sequence data B have different polarizations.
  • Examples 3, 3 ′, 7, 7 ′, and 11 shown in FIG. 3 are conceivable.
  • the receiving device 30 is two transmitting devices placed at different positions, and space-division-multiplexes different transmission signals obtained by encoding the same data with different conversions.
  • the transmission signals transmitted by the first transmission device 10 and the second transmission device 20 that transmit are received.
  • the first receiving antenna 311 receives a first polarized signal.
  • the second receiving antenna 312 receives a signal having a second polarization different from the first polarization.
  • the Fourier transform unit 33 Fourier transforms the signal received by the first receiving antenna 311 and Fourier transforms the signal received by the second receiving antenna 312.
  • the transmission path response estimation unit 34 uses a known pilot signal transmitted from the first transmission device 10 and a known pilot signal transmitted from the transmission device 20 out of signals obtained by the Fourier transform performed by the Fourier transform unit 33. Estimate the channel response.
  • the transmission signal detection unit 35 refers to the transmission path response calculated by the transmission path response estimation unit 34 and the signal obtained by the Fourier transform of the Fourier transform unit, and the first transmission device and the second transmission unit 35 The signal transmitted by the transmitter is estimated.
  • the receiving device 30 receives, from the first transmitting device, transmission signals corresponding to the first sequence data A and the second sequence data A obtained by encoding the two series of sequence data obtained by dividing the sequence data.
  • a reception processing unit for example, receiving a transmission signal corresponding to the first sequence data B and the second sequence data B obtained by encoding two series of sequence data obtained by dividing the sequence data from the second transmission device (for example, , The transmission signal detection unit 35, the parallel-serial conversion unit 36, the carrier demodulation unit 37, and the like shown in FIG.
  • the first sequence data A is encoded by a different transformation matrix from the first sequence data B
  • the second sequence data A is encoded by a different encoding method from the second sequence data B.
  • the transmission signal corresponding to the first sequence data A is transmitted by a different polarization from the transmission signal corresponding to the first sequence data B
  • the transmission signal corresponding to the second sequence data A is the second It is transmitted by a polarization different from the transmission signal corresponding to the sequence data B.
  • a program for executing each process of each transmitting apparatus and each receiving apparatus of the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed.
  • the “computer system” referred to here may include an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
  • the “computer-readable recording medium” refers to a volatile memory (for example, DRAM (Dynamic) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc. that hold a program for a certain period of time.
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

A transmission system equipped with a first transmission device having two transmitting antennas and a second transmission device having two transmitting antennas, wherein the first transmission device transmits transmit signals which correspond to first series data A and second series data A obtained by encoding series data which has been divided in two, and the second transmission device transmits transmit signals which correspond to first series data B and second series data B obtained by encoding the series data which has been divided in two. The first series data A is encoded using a different conversion matrix from that used for the first series data B, and the second series data A is encoded using a different encoding method from that used for the second series data B. Alternatively, the transmit signal corresponding to the first series data A is transmitted using a different polarized wave from that used for the transmit signal corresponding to the first series data B, and the transmit signal corresponding to the second series data A is transmitted using a different polarized wave from that used for the transmit signal corresponding to the second series data B.

Description

伝送システム及び受信装置Transmission system and receiver
 本発明は、伝送システム及び受信装置に関する。 The present invention relates to a transmission system and a receiving device.
 無線伝送の分野において、大容量コンテンツのサービスを可能とするため、伝送容量の拡大に対する要望が高まっている。このような要望に応える技術として、同一周波数帯域の複数の変調波を使用し、異なる情報を空間的に多重して伝送するSDM(Space Division Multiplexing)という技術がある。二つの送信アンテナ、二つの受信アンテナから構成される2×2のMIMO(Multiple Input Multiple Output)伝送システムの場合、二つの送信アンテナから無相関な変調信号を送信することで、伝送容量が2倍となる。 In the field of wireless transmission, there is a growing demand for expansion of transmission capacity in order to enable large-volume content services. As a technology that meets such a demand, there is a technology called SDM (Space Division Multiplexing) that uses a plurality of modulated waves in the same frequency band and spatially multiplexes and transmits different information. In the case of a 2 × 2 MIMO (Multiple Input Multiple Output) transmission system composed of two transmit antennas and two receive antennas, the transmission capacity is doubled by transmitting uncorrelated modulated signals from the two transmit antennas. It becomes.
 一方、伝送特性を改善することを目的とした送信ダイバーシティ技術として、STC(Space Time Coding)が知られている。二つの送信アンテナを用いたSTCにおいて、Alamoutiの時空間ブロック符号化(STBC:Space Time Block Coding)が広く知られている。AlamoutiのSTBCで符号化された2系統の信号は、受信装置で合成される。AlamoutiのSTBCでは同じ情報が2系統の送信アンテナから送られるため、送信ダイバーシティの効果が得られ、伝送特性が改善される。 On the other hand, STC (Space Time Coding) is known as a transmission diversity technique for the purpose of improving transmission characteristics. In STC using two transmitting antennas, Alamouti space-time block coding (STBC) is widely known. Two systems of signals encoded with Alamouti STBC are combined by a receiving apparatus. In Alamouti STBC, the same information is sent from two transmission antennas, so that the effect of transmission diversity is obtained and transmission characteristics are improved.
 SDMを適用したMIMO伝送システムでは、伝送容量が増大する一方で、同一周波数帯の信号がお互いに干渉波となるため、伝送特性が劣化する。STCを適用したMIMO伝送システムでは、伝送特性が改善する一方で、伝送容量が拡大されない。 In a MIMO transmission system to which SDM is applied, the transmission capacity increases, but signals in the same frequency band become interference waves with each other, so that transmission characteristics deteriorate. In a MIMO transmission system to which STC is applied, transmission characteristics are improved, but transmission capacity is not expanded.
 AlamoutiのSTBCは2送信のシステムにのみ適用できるが、特許文献1では、このAlamoutiのSTBCを応用し、4送信とする方法について開示されている。4送信とすることで、2送信の場合と比べて伝送特性はさらに改善されるが、伝送容量は増加しない。SISO(Single Input Single Output)伝送システムの伝送レートを1(1単位時間に1シンボルを伝送する)とすると、特許文献1の伝送レートも1である(4単位時間に4シンボル伝送する)。 The Alamouti STBC can be applied only to a two-transmission system, but Patent Document 1 discloses a method of applying this Alamouti STBC to four transmissions. By using four transmissions, the transmission characteristics are further improved as compared with the case of two transmissions, but the transmission capacity does not increase. If the transmission rate of a SISO (Single Input Single Output) transmission system is 1 (1 symbol is transmitted in 1 unit time), the transmission rate of Patent Document 1 is also 1 (4 symbols are transmitted in 4 unit time).
 伝送容量を増大しつつ伝送特性を改善するという要求に対し、SDMとSTBCを組み合わせた空間多重伝送システムの文献がある(非特許文献1)。非特許文献1では、4本の送信アンテナ、2本の受信アンテナのMIMO伝送システムが開示されている。非特許文献1の場合、SDMの適用により伝送レートは2(2単位時間に4シンボル)に増加し、STBCの適用により伝送特性の改善が得られている。 In response to a request to improve transmission characteristics while increasing transmission capacity, there is a document on a spatial multiplexing transmission system that combines SDM and STBC (Non-Patent Document 1). Non-Patent Document 1 discloses a MIMO transmission system with four transmission antennas and two reception antennas. In the case of Non-Patent Document 1, the transmission rate is increased to 2 (4 symbols in 2 unit times) by application of SDM, and the transmission characteristics are improved by application of STBC.
 現行の地上デジタルテレビジョン放送において、周波数の有効利用の観点からSFN(Single Frequency Network)の構築が進められているが、SFN希望波とSFN干渉波の受信電力が等しい、すなわちD/U(Desired to Undesired signal ratio)が0dBに近くなるSFN干渉エリアでは、伝送特性が悪くなってしまう問題があった。図27はSFN構築時に、SFN妨害波の有無による受信スペクトラムの比較である。SFNを構築する場合、複数の送信装置から、同じ信号を同じ周波数で送信する。このため、SFN干渉波によって受信信号のスペクトラムが図27の向かって左側に示すように歪んでしまうため、伝送特性が劣化する。STCを適用してSFNを構築する場合、複数の送信装置から異なる信号を同じ周波数で送信するためD/Uが0dBに近くなるSFN干渉エリアにおいても図27の向かって左側に示すような歪みは発生せず、伝送特性の劣化が軽減できる。 In the current digital terrestrial television broadcasting, SFN (Single Frequency Network) is being constructed from the viewpoint of effective use of frequency, but the received power of the SFN desired wave and the SFN interference wave are equal, that is, D / U (Desired). In the SFN interference area where the “Undesired signal ratio” is close to 0 dB, there is a problem that transmission characteristics deteriorate. FIG. 27 is a comparison of reception spectrums depending on the presence or absence of SFN interference waves at the time of SFN construction. When constructing an SFN, the same signal is transmitted at the same frequency from a plurality of transmission apparatuses. For this reason, the spectrum of the received signal is distorted as shown on the left side in FIG. 27 due to the SFN interference wave, so that the transmission characteristics deteriorate. When constructing SFN by applying STC, distortions as shown on the left side in FIG. 27 are also observed in the SFN interference area where D / U is close to 0 dB because different signals are transmitted from a plurality of transmission apparatuses at the same frequency. It does not occur and the deterioration of transmission characteristics can be reduced.
 一般に電波を受信するアンテナは、無指向性アンテナまたは指向性アンテナに分けられる。地上デジタル放送などの電波を受信する場合、指向性アンテナが使用される場合が多い。指向性アンテナはメインローブ方向から到来する電波に対しては利得や交差偏波識別度(XPD:Cross Polarization Discrimination)などの特性に優れているが、サイドローブ方向の特性は保証されないのが一般的である。 Generally, antennas that receive radio waves are classified into omnidirectional antennas and directional antennas. When receiving radio waves such as terrestrial digital broadcasting, directional antennas are often used. Directional antennas have excellent characteristics such as gain and cross polarization discrimination (XPD) for radio waves coming from the main lobe direction, but the characteristics in the side lobe direction are generally not guaranteed. It is.
 ここで、例えば、送信所(送信システムともいう)の数を二つとし、それぞれの送信所をA局、B局と呼ぶことにする。A局、B局は物理的に離れた位置に設置される場合が多いが離れている必要はない。A局の信号を希望波、B局の信号をSFN干渉波と呼ぶ。A局の信号を受信するため、指向性アンテナのメインローブをA局の方向に向けている状態で、B局の信号がサイドローブ方向から到来する場合を考える。B局から到来した電波は、受信アンテナのサイドローブで受信されるため、伝送特性を劣化させる要因となっていた。 Here, for example, the number of transmitting stations (also referred to as transmitting systems) is two, and the transmitting stations are called A station and B station. Stations A and B are often installed at physically separated positions, but need not be separated. The signal from station A is called the desired wave, and the signal from station B is called the SFN interference wave. Consider the case where the signal from station B comes from the side lobe direction with the main lobe of the directional antenna directed toward station A in order to receive the signal from station A. Since the radio wave arriving from the B station is received by the side lobe of the receiving antenna, the transmission characteristic is deteriorated.
特表2010-519844号公報Special table 2010-519844
 第1の特徴は、2つの送信アンテナを有する第1送信装置及び2つの送信アンテナを有する第2送信装置を備える伝送システムであって、前記第1送信装置は、系列データを分割することによって第1系列データ及び第2系列データを出力する第1直列並列変換部と、前記第1系列データを第1規則の時空間符号化によって符号化することによって第1系列データAを生成し、前記第2系列データを第2規則の時空間符号化によって符号化することによって第2系列データAを生成する第1符号化部とを備え、前記第2送信装置は、前記系列データを分割することによって前記第1系列データ及び前記第2系列データを出力する第2直列並列変換部と、前記第1系列データを前記第1規則の時空間符号化によって符号化することによって第1系列データBを生成し、前記第2系列データを前記第2規則の時空間符号化によって符号化することによって第2系列データBを生成する第2符号化部とを備え、前記第1系列データAは、前記第1系列データBと異なる変換行列によって符号化されるとともに、前記第2系列データAは、前記第2系列データBと異なる符号化方法によって符号化されており、或いは、前記第1系列データAに対応する送信信号は、前記第1系列データBに対応する送信信号と異なる偏波によって送信されるとともに、前記第2系列データAに対応する送信信号は、前記第2系列データBに対応する送信信号と異なる偏波によって送信されることを要旨とする。 A first feature is a transmission system including a first transmission device having two transmission antennas and a second transmission device having two transmission antennas, wherein the first transmission device is configured to divide sequence data to obtain a first transmission device. A first serial-to-parallel converter that outputs one-sequence data and second-sequence data; and first sequence data A is generated by encoding the first-sequence data by space-time coding according to a first rule; A first encoding unit that generates second sequence data A by encoding the two sequence data by space-time encoding of the second rule, and the second transmission device divides the sequence data by dividing the sequence data A second serial-to-parallel converter that outputs the first series data and the second series data; and encoding the first series data by space-time coding according to the first rule. A second encoding unit that generates sequence data B, and generates the second sequence data B by encoding the second sequence data by space-time encoding according to the second rule, and the first sequence data A is encoded by a different transformation matrix from the first sequence data B, and the second sequence data A is encoded by a different encoding method from the second sequence data B, or The transmission signal corresponding to the first sequence data A is transmitted by a polarization different from that of the transmission signal corresponding to the first sequence data B, and the transmission signal corresponding to the second sequence data A is the second sequence data The gist is that the signal is transmitted with a polarization different from that of the transmission signal corresponding to B.
 第2の特徴は、互いに異なる送信装置に設けられる複数のアンテナを用いて時空間符号化を行うとともに、前記複数の送信装置のそれぞれに設けられる複数のアンテナを用いて空間分割多重を行う方式を採用しており、第1送信装置及び第2送信装置を備える伝送システムで用いられる受信装置であって、系列データの分割によって得られる2系統の系列データの符号化によって得られる第1系列データA及び第2系列データAに対応する送信信号を前記第1送信装置から受信するとともに、前記系列データの分割によって得られる2系統の系列データの符号化によって得られる第1系列データB及び第2系列データBに対応する送信信号を前記第2送信装置から受信する受信処理部を備え、前記第1系列データAは、前記第1系列データBと異なる変換行列によって符号化されるとともに、前記第2系列データAは、前記第2系列データBと異なる符号化方法によって符号化されており、或いは、前記第1系列データAに対応する送信信号は、前記第1系列データBに対応する送信信号と異なる偏波によって送信されるとともに、前記第2系列データAに対応する送信信号は、前記第2系列データBに対応する送信信号と異なる偏波によって送信されることを要旨とする。 The second feature is a method of performing space-time coding using a plurality of antennas provided in different transmission apparatuses and performing space division multiplexing using a plurality of antennas provided in each of the plurality of transmission apparatuses. The first sequence data A is a reception device used in a transmission system including the first transmission device and the second transmission device, and obtained by encoding two series of sequence data obtained by dividing the sequence data. And the first sequence data B and the second sequence obtained by receiving the transmission signal corresponding to the second sequence data A from the first transmission device and encoding two series of sequence data obtained by dividing the sequence data A reception processing unit that receives a transmission signal corresponding to data B from the second transmission device; and the first sequence data A is the first sequence data And the second sequence data A is encoded by a different encoding method than the second sequence data B, or a transmission signal corresponding to the first sequence data A Is transmitted with a polarization different from that of the transmission signal corresponding to the first sequence data B, and the transmission signal corresponding to the second sequence data A is different from the transmission signal corresponding to the second sequence data B. The gist is that it is transmitted by waves.
図1は、各実施例に共通する伝送システムの構成を示す概略ブロック図である。FIG. 1 is a schematic block diagram showing the configuration of a transmission system common to the embodiments. 図2は、各実施例に共通する送信システムの構成を示す概略ブロック図である。FIG. 2 is a schematic block diagram illustrating a configuration of a transmission system common to the embodiments. 図3は、各実施例の送信システム間で、符号化方式を比較した図である。FIG. 3 is a diagram comparing the encoding methods among the transmission systems of the respective embodiments. 図4は、実施例1における送信システムの等価概念図である。FIG. 4 is an equivalent conceptual diagram of the transmission system in the first embodiment. 図5は、実施例2における送信システムの等価概念図である。FIG. 5 is an equivalent conceptual diagram of the transmission system in the second embodiment. 図6は、実施例3における送信システムの等価概念図である。FIG. 6 is an equivalent conceptual diagram of the transmission system in the third embodiment. 図7は、実施例4における送信システムの等価概念図である。FIG. 7 is an equivalent conceptual diagram of the transmission system in the fourth embodiment. 図8は、B局の電波が偏波回転せず受信された場合(回転角0°)のビット誤り率特性である。FIG. 8 shows the bit error rate characteristics when the radio wave of station B is received without rotating the polarization (rotation angle 0 °). 図9は、B局の電波が90°偏波回転して受信された場合のビット誤り率特性である。FIG. 9 shows the bit error rate characteristics when the radio wave of station B is received with 90 ° polarization rotation. 図10は、実施例5における送信システムの等価概念図である。FIG. 10 is an equivalent conceptual diagram of the transmission system in the fifth embodiment. 図11は、実施例6における送信システムの等価概念図である。FIG. 11 is an equivalent conceptual diagram of the transmission system in the sixth embodiment. 図12は、実施例7における送信システムの等価概念図である。FIG. 12 is an equivalent conceptual diagram of the transmission system in the seventh embodiment. 図13は、実施例8における送信システムの等価概念図である。FIG. 13 is an equivalent conceptual diagram of the transmission system in the eighth embodiment. 図14は、実施例9における送信システムの等価概念図である。FIG. 14 is an equivalent conceptual diagram of the transmission system in the ninth embodiment. 図15は、実施例10における送信システムの等価概念図である。FIG. 15 is an equivalent conceptual diagram of the transmission system in the tenth embodiment. 図16は、各実施例に共通する受信装置の構成を示す概略ブロック図である。FIG. 16 is a schematic block diagram illustrating a configuration of a receiving apparatus common to the embodiments. 図17は、伝送システムを説明するための4×2MIMO伝送モデルである。FIG. 17 is a 4 × 2 MIMO transmission model for explaining the transmission system. 図18は、理想的な伝送路の伝送路応答行列と反時計周りに90°の偏波回転がある伝送路の伝送路応答行列を説明する図である。FIG. 18 is a diagram for explaining a transmission path response matrix of an ideal transmission path and a transmission path response matrix of a transmission path having a 90 ° polarization rotation counterclockwise. 図19は、A局の伝送路応答行列Hが理想のときに、B局の伝送路応答行列Hを変化させて、伝送路応答行列Hのランク落ちありなしを判定した結果を表す表である。FIG. 19 is a table showing the result of determining whether the rank of the transmission line response matrix H has dropped or not by changing the transmission line response matrix H B of the B station when the transmission line response matrix H A of the A station is ideal. It is. 図20は、計算機シミュレーションの系統図である。FIG. 20 is a system diagram of computer simulation. 図21は、計算機シミュレーションにおける伝送パラメータである。FIG. 21 shows transmission parameters in the computer simulation. 図22は、高D/U環境のビット誤り率特性のシミュレーション結果である。FIG. 22 shows a simulation result of bit error rate characteristics in a high D / U environment. 図23は、低D/U環境でB局の受信信号の遅延時間と所要C/Nの関係のシミュレーション結果である。FIG. 23 is a simulation result of the relationship between the delay time of the received signal of station B and the required C / N in a low D / U environment. 図24は、低D/U環境でB局の受信信号の偏波間受信電力差と所要C/Nの関係のシミュレーション結果である。FIG. 24 is a simulation result of the relationship between the received power difference between polarized waves of the received signal of the station B and the required C / N in a low D / U environment. 図25は、低D/U環境でB局の受信信号の両偏波の成す角度φと所要C/Nの関係のシミュレーションの結果である。FIG. 25 shows the result of a simulation of the relationship between the angle φ formed by both polarizations of the received signal of station B and the required C / N in a low D / U environment. 図26は、低D/U環境でB局の受信信号の偏波の回転角度χと所要C/Nとの関係のシミュレーション結果である。FIG. 26 is a simulation result of the relationship between the rotation angle χ of the polarization of the received signal of station B and the required C / N in a low D / U environment. 図27は、SFN構築時に、SFN妨害波の有無による受信スペクトラムの比較である。FIG. 27 is a comparison of received spectrums depending on the presence / absence of an SFN interference wave at the time of SFN construction. 図28は、非特許文献1に示された送信装置の構成を示す概略ブロック図である。FIG. 28 is a schematic block diagram illustrating a configuration of the transmission device disclosed in Non-Patent Document 1.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。図1は、各実施例に共通する伝送システム5の構成を示す概略ブロック図である。伝送システム5は、送信システム4と受信装置30とを備える。ここで、送信システム4は第1の送信装置10と第2の送信装置20とを備える。第1の送信装置10と第2の送信装置20とは異なる位置に置かれている。第1の送信装置10と第2の送信装置20とは、同一のデータを互いに異なる符号化行列で符号化して得られた異なる送信信号をそれぞれ空間分割多重して送信する。受信装置30は、第1の送信装置10と第2の送信装置20それぞれが送信した送信信号を受信し、受信した送信信号を復号する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic block diagram showing a configuration of a transmission system 5 common to the embodiments. The transmission system 5 includes a transmission system 4 and a reception device 30. Here, the transmission system 4 includes a first transmission device 10 and a second transmission device 20. The first transmission device 10 and the second transmission device 20 are placed at different positions. The first transmission apparatus 10 and the second transmission apparatus 20 transmit different transmission signals obtained by encoding the same data with different encoding matrices, respectively, by space division multiplexing. The receiving device 30 receives the transmission signals transmitted by the first transmitting device 10 and the second transmitting device 20, and decodes the received transmission signals.
 図2は、各実施例に共通する送信システム4の構成を示す概略ブロック図である。第1の送信装置10と第2の送信装置20は、同じデータを受け取る。第1の送信装置10は、誤り訂正符号化部11、マッピング部(以下、Mapping部ともいう)12、直列並列変換部(以下、S/P部ともいう)13、符号化部14、OFDMフレーム構成部151、152、逆フーリエ変換部16、送信部17と、第1の送信アンテナ181、及び第2の送信アンテナ182を備える。ここで、符号化部14は、第1の変換部141、及び第2の変換部142を備える。また、送信部17は、GI付加部171、172を備える。逆フーリエ変換部16は、IFFT部161、162を備える。 FIG. 2 is a schematic block diagram showing the configuration of the transmission system 4 common to the embodiments. The first transmission device 10 and the second transmission device 20 receive the same data. The first transmission device 10 includes an error correction encoding unit 11, a mapping unit (hereinafter also referred to as a mapping unit) 12, a serial / parallel conversion unit (hereinafter also referred to as an S / P unit) 13, an encoding unit 14, and an OFDM frame Configuration units 151 and 152, an inverse Fourier transform unit 16, a transmission unit 17, a first transmission antenna 181, and a second transmission antenna 182 are provided. Here, the encoding unit 14 includes a first conversion unit 141 and a second conversion unit 142. The transmission unit 17 includes GI addition units 171 and 172. The inverse Fourier transform unit 16 includes IFFT units 161 and 162.
 誤り訂正符号化部11は、外部から入力されたデータに対して、誤り訂正符号化(例えば、LDPC(Low-Density Parity-Check)符号化)を施す。誤り訂正符号化部11は、誤り訂正符号化を施した後の信号をマッピング部12に出力する。 The error correction encoding unit 11 performs error correction encoding (for example, LDPC (Low-Density Parity-Check) encoding) on data input from the outside. The error correction encoding unit 11 outputs the signal after error correction encoding to the mapping unit 12.
 マッピング部12は、例えば、誤り訂正符号化部11から入力された信号を、QAM(Quadrature Amplitude Modulation:直交振幅変調)マッピングでI/Q平面にマッピングする。マッピング部12は、マッピングして得たシンボルの系列データを直列並列変換部13へ出力する。 For example, the mapping unit 12 maps the signal input from the error correction encoding unit 11 on the I / Q plane by QAM (Quadrature Amplitude Modulation) mapping. The mapping unit 12 outputs the symbol series data obtained by mapping to the serial / parallel conversion unit 13.
 なお、マッピング部12におけるマッピングは、QAMに限らず、他のマッピングでもよい。マッピング部12は、予め決められた規則でデータをマッピングすればよい。 Note that the mapping in the mapping unit 12 is not limited to QAM, and other mappings may be used. The mapping unit 12 may map the data according to a predetermined rule.
 直列並列変換部13は、マッピング部12から入力されたシンボルの系列データを、シンボルが並列する並列系列データに変換する。具体的には、例えば、直列並列変換部13は、マッピング部12から入力されたシンボルの系列データに含まれるシンボルを交互に、第1の系列データと第2の系列データに分割することで、並列系列データに変換する。直列並列変換部13は、変換して得た並列系列データのうち一方の系列データを符号化部14の第1の変換部141へ、他方の系列データを符号化部14の第2の変換部142へ出力する。 The serial-to-parallel converter 13 converts the symbol series data input from the mapping section 12 into parallel series data in which symbols are parallel. Specifically, for example, the serial-to-parallel converter 13 alternately divides symbols included in the symbol sequence data input from the mapping unit 12 into first sequence data and second sequence data, Convert to parallel series data. The serial-to-parallel converter 13 converts one series of parallel series data obtained by the conversion to the first converter 141 of the encoder 14, and the other series data to the second converter of the encoder 14. 142 to output.
 符号化部14は、直列並列変換部13が変換して得た並列系列データに対して、第2の送信装置20の符号化部24とは異なる符号化処理(例えば、符号化行列を用いた処理)で符号化する。具体的には、例えば、第1の変換部141は並列系列データのうち一方の系列データに対して第1の規則で変換する。第2の変換部142が並列系列データのうち他方の系列データに対して第2の規則で変換する。変換の詳細は、後述する実施例毎に異なるので実施例毎に後述する。第1の変換部141は、変換後の信号をOFDMフレーム構成部151へ出力する。第2の変換部142は、変換後の信号をOFDMフレーム構成部152へ出力する。 The encoding unit 14 uses an encoding process (for example, an encoding matrix) different from the encoding unit 24 of the second transmission device 20 for the parallel sequence data obtained by the conversion by the serial / parallel conversion unit 13. Process). Specifically, for example, the first conversion unit 141 converts one series of parallel series data according to the first rule. The second conversion unit 142 converts the other series data of the parallel series data according to the second rule. The details of the conversion differ for each embodiment described later, and will be described later for each embodiment. First conversion section 141 outputs the converted signal to OFDM frame configuration section 151. Second conversion section 142 outputs the converted signal to OFDM frame configuration section 152.
 OFDMフレーム構成部151は、第1の変換部141から入力された符号化後の信号と自ら保持するパイロット信号とを用いて、OFDM(Orthogonal Frequency-Division Multiplexing:直交周波数分割多重方式)シンボルを生成する。OFDMフレーム構成部151は、生成したOFDMシンボルをIFFT部161へ出力する。 The OFDM frame configuration unit 151 generates an OFDM (Orthogonal Frequency-Division Multiplexing) symbol using the encoded signal input from the first conversion unit 141 and the pilot signal held by itself. To do. The OFDM frame configuration unit 151 outputs the generated OFDM symbol to the IFFT unit 161.
 OFDMフレーム構成部152は、第2の変換部142から入力された符号化後の信号と自ら保持するパイロット信号とを用いて、OFDMシンボルを生成する。OFDMフレーム構成部152は、生成したOFDMシンボルをIFFT部162へ出力する。 The OFDM frame configuration unit 152 generates an OFDM symbol using the encoded signal input from the second conversion unit 142 and the pilot signal held by itself. The OFDM frame configuration unit 152 outputs the generated OFDM symbol to the IFFT unit 162.
 IFFT部161は、OFDMフレーム構成部151から入力されたOFDMシンボルに逆フーリエ変換を施し、逆フーリエ変換を施して得た信号を、GI付加部171へ出力する。また、IFFT部162は、OFDMフレーム構成部152から入力されたOFDMシンボルに逆フーリエ変換を施し、逆フーリエ変換を施して得た信号を、GI付加部172へ出力する。このように、逆フーリエ変換部16は、符号化部14が符号化して得た符号化後のシンボル系列それぞれに対して、逆フーリエ変換を施す。 The IFFT unit 161 performs inverse Fourier transform on the OFDM symbol input from the OFDM frame configuration unit 151 and outputs a signal obtained by performing inverse Fourier transform to the GI adding unit 171. Moreover, IFFT section 162 performs inverse Fourier transform on the OFDM symbol input from OFDM frame configuration section 152 and outputs a signal obtained by performing inverse Fourier transform to GI adding section 172. In this manner, the inverse Fourier transform unit 16 performs inverse Fourier transform on each of the encoded symbol sequences obtained by the encoding unit 14.
 GI付加部171は、IFFT部161から入力された信号に対して、GI(Guard Interval:ガードインターバル)を付加して、付加した後の送信信号を、第1の送信アンテナ181から送信する。GI付加部172は、IFFT部162から入力された信号に対して、GIを付加して、付加した後の送信信号を、第2の送信アンテナ182から送信する。このようにして、送信部17は、逆フーリエ変換部16が逆フーリエ変換した後の送信信号の一方を第1の送信アンテナ181から、他方を第2の送信アンテナ182から送信する。 GI adding section 171 adds a GI (Guard Interval: guard interval) to the signal input from IFFT section 161 and transmits the added transmission signal from first transmitting antenna 181. GI adding section 172 adds a GI to the signal input from IFFT section 162 and transmits the added transmission signal from second transmission antenna 182. In this way, the transmission unit 17 transmits one of the transmission signals after the inverse Fourier transform by the inverse Fourier transform unit 16 from the first transmission antenna 181 and the other from the second transmission antenna 182.
 第1の送信アンテナ181は、第1の偏波(本実施形態では、一例として水平偏波)で送信信号を無線で送信する。第2の送信アンテナ182は、第1の偏波とは異なる第2の偏波(本実施形態では、一例として垂直偏波)で送信信号を無線で送信する。 The first transmission antenna 181 wirelessly transmits a transmission signal with the first polarization (in this embodiment, horizontal polarization as an example). The second transmission antenna 182 wirelessly transmits a transmission signal with a second polarization different from the first polarization (in this embodiment, a vertical polarization as an example).
 第2の送信装置20は、誤り訂正符号化部21、マッピング部22、直列並列変換部23、符号化部24、OFDMフレーム構成部251、252、逆フーリエ変換部26、送信部27と、第3の送信アンテナ281、及び第4の送信アンテナ282を備える。ここで、符号化部24は、第3の変換部241、及び第4の変換部242を備える。また、送信部27は、GI付加部271、272を備える。逆フーリエ変換部26は、IFFT部261、262を備える。 The second transmission apparatus 20 includes an error correction encoding unit 21, a mapping unit 22, a serial / parallel conversion unit 23, an encoding unit 24, OFDM frame configuration units 251, 252, an inverse Fourier transform unit 26, a transmission unit 27, 3 transmission antennas 281 and a fourth transmission antenna 282. Here, the encoding unit 24 includes a third conversion unit 241 and a fourth conversion unit 242. The transmission unit 27 includes GI addition units 271 and 272. The inverse Fourier transform unit 26 includes IFFT units 261 and 262.
 誤り訂正符号化部21は、誤り訂正符号化部11と同様の処理を行う。マッピング部22は、マッピング部12と同様の処理を行う。直列並列変換部23は、直列並列変換部13と同様の処理を行う。符号化部24は、直列並列変換部23が変換して得た並列系列データに対して、第1の送信装置10の符号化部14とは異なる符号化処理(例えば、符号化行列を用いた処理)で符号化する。 The error correction encoding unit 21 performs the same processing as the error correction encoding unit 11. The mapping unit 22 performs the same process as the mapping unit 12. The serial / parallel converter 23 performs the same processing as the serial / parallel converter 13. The encoding unit 24 uses an encoding process (for example, an encoding matrix) that is different from the encoding unit 14 of the first transmission device 10 for the parallel sequence data obtained by the conversion from the serial / parallel conversion unit 23. Process).
 具体的には、例えば、第3の変換部241は並列系列データのうち一方の系列データに対して第3の規則で変換する。第4の変換部242が並列系列データのうち他方の系列データに対して第4の規則で変換する。変換の詳細は、後述する実施例毎に異なるので実施例毎に後述する。第3の変換部241は、変換後の信号をOFDMフレーム構成部251へ出力する。第4の変換部242は、変換後の信号をOFDMフレーム構成部252へ出力する。 Specifically, for example, the third conversion unit 241 converts one series data of the parallel series data according to the third rule. The fourth conversion unit 242 converts the other series data among the parallel series data according to the fourth rule. The details of the conversion differ for each embodiment described later, and will be described later for each embodiment. The third conversion unit 241 outputs the converted signal to the OFDM frame configuration unit 251. The fourth conversion unit 242 outputs the converted signal to the OFDM frame configuration unit 252.
 OFDMフレーム構成部251、252は、それぞれOFDMフレーム構成部151、152と同様の処理を行う。GI付加部271、272は、それぞれGI付加部171、172と同様の処理を行う。 The OFDM frame configuration units 251 and 252 perform the same processing as the OFDM frame configuration units 151 and 152, respectively. The GI adding units 271 and 272 perform the same processing as the GI adding units 171 and 172, respectively.
 第3の送信アンテナ281は、第1の偏波(本実施形態では、一例として水平偏波)で送信信号を無線で送信する。第4の送信アンテナ282は、第1の偏波とは異なる第2の偏波(本実施形態では、一例として垂直偏波)で送信信号を無線で送信する。 The third transmission antenna 281 wirelessly transmits a transmission signal with the first polarization (in this embodiment, horizontal polarization as an example). The fourth transmission antenna 282 wirelessly transmits a transmission signal with a second polarization different from the first polarization (in this embodiment, a vertical polarization as an example).
 以降、第1の送信装置10をA局、第2の送信装置20をB局ともいう。また、第1の送信アンテナ181をアンテナ0、第2の送信アンテナ182をアンテナ1、第3の送信アンテナ281をアンテナ2、第4の送信アンテナ282をアンテナ3ともいう。 Hereinafter, the first transmitter 10 is also referred to as A station, and the second transmitter 20 is also referred to as B station. The first transmission antenna 181 is also referred to as antenna 0, the second transmission antenna 182 is also referred to as antenna 1, the third transmission antenna 281 is also referred to as antenna 2, and the fourth transmission antenna 282 is also referred to as antenna 3.
 また、以降では、一例として、直交する偏波を使ってデータの多重伝送を行うPDM(偏波分割多重)を想定する。直交する偏波としては、一例として水平偏波、垂直偏波を用いたPDMを想定する。A局ではアンテナ0で水平偏波で送信し、アンテナ1で垂直偏波で送信する。B局ではアンテナ2で水平偏波で送信し、アンテナ3で垂直偏波で送信する。 Also, hereinafter, as an example, PDM (Polarization Division Multiplexing) that performs multiplexed transmission of data using orthogonal polarizations is assumed. As an example of orthogonal polarization, a PDM using horizontal polarization and vertical polarization is assumed as an example. In station A, antenna 0 transmits with horizontal polarization, and antenna 1 transmits with vertical polarization. In the station B, the antenna 2 transmits the signal with horizontal polarization, and the antenna 3 transmits the signal with vertical polarization.
 図3は、各実施例の送信システム間で、符号化方式を比較した図である。同図における「符号化ペア」は、同一のデータに対して符号化を施した後の送信信号の組である。「同一偏波で送信」とは、符号化ペアを構成する二つの送信信号が同一の偏波で送信されることを意味する。「交差偏波で送信」とは、符号化ペアを構成する二つの送信信号が互いに直交する偏波で送信されることを意味する。また、後述する片方の符号化行列(例えば、STBC0またはSTBC1のいずれか)の時空間ブロック符号化行列で符号反転があるか否かが示されている。 FIG. 3 is a diagram comparing the encoding methods among the transmission systems of the respective embodiments. The “encoded pair” in the figure is a set of transmission signals after encoding the same data. “Transmission with the same polarization” means that two transmission signals constituting the encoded pair are transmitted with the same polarization. “Transmission with cross polarization” means that two transmission signals constituting an encoded pair are transmitted with polarizations orthogonal to each other. In addition, it is shown whether or not there is a code inversion in a space-time block coding matrix of one coding matrix (for example, either STBC0 or STBC1) described later.
 また、各実施例は、送信システムで用いられる符号化規則として、STBC(Space Time Block Coding)と、SFBC(Space Frequency Block Code)とに分けられている。各欄には、実施例の番号と、該実施例の番号の下に、その実施例で用いられるSTBC0の符号化行列と、その実施例で用いられるSTBC1の符号化行列との組が示されている。 Also, each embodiment is divided into STBC (Space Time Block Coding) and SFBC (Space Frequency Block Code) as encoding rules used in the transmission system. In each column, a pair of the number of the embodiment and the STBC0 encoding matrix used in the embodiment and the STBC1 encoding matrix used in the embodiment are shown below the embodiment number. ing.
 実施例1~4はAlamoutiのSTBCを少なくとも一部適用した例である。実施例5~8はModified AlamoutiのSTBCを少なくとも一部適用した例である。MISO伝送の場合について、欧州の地上デジタル放送の伝送方式DVB-T2で、このModified Alamoutiが規格化されている。 Examples 1 to 4 are examples in which Alamouti STBC is applied at least partially. Examples 5 to 8 are examples in which at least a part of Modified Alamouti STBC is applied. In the case of MISO transmission, this modified Alamouti is standardized in the European terrestrial digital broadcasting transmission system DVB-T2.
 AlamoutiのSTBCでは、式(1)の行列Jによって符号化を行うため、送信局のA局、B局の時刻t+1の信号に複素共役処理が発生するが、Modified Alamoutiでは、送信局のA局から送信する信号は符号反転などを一切行わず、B局の信号のみに符号反転を適用している。これにより、サービスをすでに開始しているA局がある場合に、A局は従来通りの信号を送信しつつ、サービスエリアに新たに建設するB局に備える変調器をModified Alamoutiの符号化に対応したものとすることも可能となる。 In Alamouti STBC, encoding is performed using matrix J in equation (1), so that complex conjugate processing occurs in the signal at time t + 1 of the A station and B station of the transmitting station. In Modified Alamouti, the A station of the transmitting station No signal inversion is performed on the signal transmitted from No. 1, and sign inversion is applied only to the signal of station B. As a result, when there is an A station that has already started the service, the A station transmits a conventional signal, and the modulator provided in the B station newly constructed in the service area supports the encoding of Modified Alamouti. It is also possible to make it.
 実施例9、10はAlamoutiのSTBCを、周波数方向に適用したSFBCの場合である。前述のModified Alamoutiを、SFBCに適用する方法が通信規格LTE(Long Term Evolution)で規格化されている。同図内の実施例11は説明を省略するが、図22~26で伝送特性を評価した結果について説明する。同図において、「省略」と記載されたケースについては、説明を省略する。 Examples 9 and 10 are cases of SFBC in which Alamouti STBC is applied in the frequency direction. A method for applying the above-mentioned Modified Alamouti to SFBC is standardized by the communication standard LTE (Long Term Evolution). The description of Example 11 in the figure is omitted, but the results of evaluating the transmission characteristics will be described with reference to FIGS. In the figure, the description of “omission” is omitted.
 また、ハッチングされた領域の実施例では、後述するように、一方の送信装置から受信装置30への伝搬路で偏波回転があっても、後述する観測方程式が重複しないので、受信装置30は、受信信号から送信信号を算出することができる。その結果、ハッチングされた領域の実施例では、当該一方の送信装置から受信装置30への伝搬路で偏波回転があっても伝送特性が劣化しないという利点がある。 Further, in the embodiment of the hatched region, as will be described later, even if there is a polarization rotation in the propagation path from one transmission device to the reception device 30, the observation equation described later does not overlap. The transmission signal can be calculated from the reception signal. As a result, in the embodiment of the hatched area, there is an advantage that the transmission characteristics are not deteriorated even if there is a polarization rotation in the propagation path from the one transmission apparatus to the reception apparatus 30.
 続いて、後述する実施例との比較のために、非特許文献1における送信システムの構成について説明する。図28は、非特許文献1に示された送信装置の構成を示す概略ブロック図である。同図の送信システムにおいて、STBC0及びSTBC1は、例えば式(1)の行列Jに従ってシンボルの系列データを符号化する。 Subsequently, the configuration of the transmission system in Non-Patent Document 1 will be described for comparison with examples described later. FIG. 28 is a schematic block diagram illustrating a configuration of the transmission device disclosed in Non-Patent Document 1. In the transmission system of the figure, STBC0 and STBC1 encode symbol sequence data in accordance with, for example, the matrix J in equation (1).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、式(1)の行列JはAlamoutiの時空間ブロック符号化行列である。行列Jの行が送信アンテナ番号に対応し、行列Jは2本の送信アンテナで信号を送信する際に用いられる。行列Jの列が送信時間に対応する。 Here, the matrix J in Equation (1) is an Alamouti space-time block coding matrix. A row of the matrix J corresponds to a transmission antenna number, and the matrix J is used when signals are transmitted by two transmission antennas. The column of the matrix J corresponds to the transmission time.
 図28の例において、STBC0は、シンボル「S0、S2」を時刻tで「S0」、時刻t+1で「-S2」に変換する。IFFT部は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から送信する。また、図28の例において、STBC0は、シンボル「S0、S2」を時刻tで「S2」、時刻t+1で「S0」に変換する。IFFT部は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から送信する。 In the example of FIG. 28, STBC0 converts the symbol “S0, S2” to “S0” at time t and “−S2 * ” at time t + 1. The IFFT unit performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 0. In the example of FIG. 28, STBC0 converts the symbol “S0, S2” to “S2” at time t and “S0 * ” at time t + 1. The IFFT unit performs inverse Fourier transform (IFFT) on the converted signal and transmits the signal after IFFT from the antenna 1.
 図28の例において、STBC1は、シンボル「S1、S3」を時刻tで「S1」、時刻t+1で「-S3」に変換する。IFFT部は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から送信する。また、図28の例において、STBC1は、シンボル「S1、S3」を時刻tで「S3」、時刻t+1で「S1」に変換する。IFFT部は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から送信する。 In the example of FIG. 28, the STBC 1 converts the symbol “S1, S3” to “S1” at time t and “−S3 * ” at time t + 1. The IFFT unit performs inverse Fourier transform (IFFT) on the converted signal and transmits the signal after IFFT from the antenna 2. In the example of FIG. 28, STBC1 converts the symbol “S1, S3” to “S3” at time t and “S1 * ” at time t + 1. The IFFT unit performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
 [実施例1]
 図4は、実施例1における送信システムの等価概念図である。同図は、非特許文献1の送信システムとの違いが分かり易くなるように記載した比較のための概念図であり、実際の送信システムの構成とは異なる。STBC0とSTBC1は、仮想の構成であり送信システム4にはこのような部材は存在しない。また、Mapping部とS/P部も第1の送信装置10と第2の送信装置20に共通するように記載しているが、送信システム4では一例として共通ではない。以下、他の実施例についても、同様の点が送信システム4の構成とは異なる。
[Example 1]
FIG. 4 is an equivalent conceptual diagram of the transmission system in the first embodiment. The figure is a conceptual diagram for comparison that makes it easy to understand the difference from the transmission system of Non-Patent Document 1, and is different from the actual configuration of the transmission system. STBC0 and STBC1 are virtual configurations, and such a member does not exist in the transmission system 4. Further, the mapping unit and the S / P unit are described so as to be common to the first transmission device 10 and the second transmission device 20, but the transmission system 4 is not common as an example. Hereinafter, the same points are different from the configuration of the transmission system 4 in the other embodiments.
 非特許文献1では、図28の送信装置を提示しているが、アンテナ0~3の物理的配置については規定していない。実施例1では、STBCによって符号化されたデータがA局、B局から送信されるようにするため、アンテナ0~3を図4のような配置としている。同図におけるHは水平偏波での送信を表し、Vは垂直偏波での送信を表す。以下の図でも同様とする。図4において、STBC0及びSTBC1では、例えば式(1)の行列Jに従ってシンボルの系列データを符号化する。具体的には、例えば、STBC0及びSTBC1は、「S0、S2」というシンボルの系列データを「S0、-S2」と「S2、S0」の二つの系列データに変換する。 Non-Patent Document 1 presents the transmission device of FIG. 28, but does not define the physical arrangement of antennas 0 to 3. In the first embodiment, the antennas 0 to 3 are arranged as shown in FIG. 4 so that data encoded by STBC is transmitted from the A station and the B station. In the figure, H represents transmission with horizontal polarization, and V represents transmission with vertical polarization. The same applies to the following figures. In FIG. 4, in STBC0 and STBC1, for example, symbol series data is encoded in accordance with matrix J in equation (1). Specifically, for example, the STBC0 and STBC1 convert the series data of the symbol “S0, S2” into two series data “S0, −S2 * ” and “S2, S0 * ”.
 実施例1の実際の構成では、第1の変換部141は、例えばシンボル「S0、S2」を時刻tに「S0」、時刻t+1に「-S2」を割り当てた系列データに変換する。IFFT部161は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から送信する。また、第3の変換部241は、例えばシンボル「S0、S2」を時刻tに「S2」、時刻t+1に「S0」を割り当てた系列データに変換する。IFFT部261は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から送信する。 In the actual configuration of the first embodiment, the first converter 141 converts, for example, the symbol “S0, S2” into series data in which “S0” is assigned at time t and “−S2 * ” is assigned at time t + 1. IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0. The third conversion unit 241 converts, for example, the symbol “S0, S2” into series data in which “S2” is assigned to time t and “S0 * ” is assigned to time t + 1. IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 2.
 第2の変換部142は、例えばシンボル「S1、S3」を時刻tに「S1」、時刻t+1に「-S3」を割り当てた系列データに変換する。IFFT部162は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から送信する。また、第4の変換部242は、例えばシンボル「S1、S3」を時刻tに「S3」、時刻t+1に「S1」を割り当てた系列データに変換する。IFFT部262は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から送信する。 The second conversion unit 142 converts, for example, the symbols “S1, S3” into series data in which “S1” is assigned at time t and “−S3 * ” is assigned at time t + 1. IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1. The fourth conversion unit 242 converts, for example, the symbols “S1, S3” into series data in which “S3” is assigned to time t and “S1 * ” is assigned to time t + 1. The IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
 このことから、符号化部14及び符号化部24は、直列並列変換部(13または23)が変換して得た並列系列データそれぞれをブロック毎に符号化する。その際、符号化部14及び符号化部24は、該シンボルの系列データを符号化する送信システム4で用いられる他方の送信装置が同一のシンボルに対して符号化して得られる符号化信号とは、割り当てられる時刻が異なり、かつ互いに複素共役の関係にある符号化信号が得られるように、該シンボルの系列データを符号化する。 Therefore, the encoding unit 14 and the encoding unit 24 encode each of the parallel series data obtained by conversion by the serial / parallel conversion unit (13 or 23) for each block. At that time, the encoding unit 14 and the encoding unit 24 are encoded signals obtained by encoding the same symbol by the other transmission apparatus used in the transmission system 4 that encodes the symbol sequence data. The sequence data of the symbol is encoded so that encoded signals having different allocated times and complex conjugate relations can be obtained.
 実施例1はB局の伝搬路における90度の偏波回転によって伝送特性が劣化するが、この90度の偏波回転がない場合は伝送特性の劣化は起こらない(後述する図8、9参照)。非特許文献1では、アンテナ2、アンテナ3がB局に設置されているものとすると、仮に、B局からの信号が全く受信できなくなった場合、受信装置は、S0、S2を受信できるがS1とS3を受信できないので、全データを復元することができなかった。 In the first embodiment, the transmission characteristics deteriorate due to the 90-degree polarization rotation in the propagation path of the B station. However, the transmission characteristics do not deteriorate without the 90-degree polarization rotation (see FIGS. 8 and 9 to be described later). ). In Non-Patent Document 1, assuming that the antenna 2 and the antenna 3 are installed in the B station, if the signal from the B station cannot be received at all, the receiving apparatus can receive S0 and S2, but S1 And S3 cannot be received, so that all data could not be restored.
 それに対し、実施例1では、B局からの信号が全く受信できなくなった場合(例えば、B局が壊れた場合)でも、A局が全てのシンボル(例えば、S0、S1、S2、S3)に基づく信号を送信できるので、その信号を受信した受信装置30は、全データを復元することができるという利点を有する。 On the other hand, in the first embodiment, even when the signal from the station B cannot be received at all (for example, when the station B is broken), the station A is assigned to all symbols (for example, S0, S1, S2, S3). Since the base signal can be transmitted, the receiving device 30 receiving the signal has an advantage that all data can be restored.
 [実施例1’]
 実施例1’における送信システム4は、実施例1と同様の処理を行うが、実施例1と以下の点で異なる。実施例1’では、STBC0及びSTBC1が、実施例1とは異なる行列Kに従って、それぞれシンボルの系列データを符号化する。行列Kは、次の式(2)で表される。
[Example 1 ']
The transmission system 4 in Embodiment 1 ′ performs the same processing as that in Embodiment 1, but differs from Embodiment 1 in the following points. In Example 1 ′, STBC0 and STBC1 encode symbol series data according to a matrix K different from that in Example 1. The matrix K is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで行列Kは、行列Jと比較すると、1行2列の要素の符号がプラスになり、2行2列の要素の符号がマイナスになっている点が異なる。すなわち、2列目の符号が反転している。 Here, the matrix K is different from the matrix J in that the sign of the element in the first row and the second column is plus and the sign of the element in the second row and the second column is minus. That is, the sign of the second column is inverted.
 [実施例2]
 図5は、実施例2における送信システムの等価概念図である。STBC0は、例えば式(1)の行列Jに従ってシンボルの系列データを符号化する。一方、STBC1は例えば式(2)の行列Kに従ってシンボルの系列データを符号化する。
[Example 2]
FIG. 5 is an equivalent conceptual diagram of the transmission system in the second embodiment. The STBC 0 encodes the symbol series data in accordance with, for example, the matrix J in the equation (1). On the other hand, the STBC 1 encodes the symbol series data according to, for example, the matrix K in Expression (2).
 実際の構成では、第1の変換部141は、例えばシンボル「S0、S2」を時刻tに「S0」、時刻t+1に「-S2」を割り当てた系列データに変換する。IFFT部161は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から例えば水平偏波で送信する。また、第3の変換部241は、例えばシンボル「S0、S2」を時刻tに「S2」、時刻t+1に「S0」を割り当てた系列データに変換する。IFFT部261は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から例えば水平偏波で送信する。 In an actual configuration, the first conversion unit 141 converts, for example, the symbol “S0, S2” into series data in which “S0” is assigned at time t and “−S2 * ” is assigned at time t + 1. The IFFT unit 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 0 in, for example, horizontal polarization. The third conversion unit 241 converts, for example, the symbol “S0, S2” into series data in which “S2” is assigned to time t and “S0 * ” is assigned to time t + 1. The IFFT unit 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2 in, for example, horizontal polarization.
 第2の変換部142は、例えばシンボル「S1、S3」を時刻tに「S1」、時刻t+1に「S3」を割り当てた系列データに変換する。IFFT部162は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から例えば垂直偏波で送信する。また、第4の変換部242は、例えばシンボル「S1、S3」を時刻tに「S3」、時刻t+1に「-S1」を割り当てた系列データに変換する。IFFT部262は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から例えば垂直偏波で送信する。 The second conversion unit 142 converts, for example, the symbols “S1, S3” into series data in which “S1” is assigned at time t and “S3 * ” is assigned at time t + 1. The IFFT unit 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 1 with, for example, vertical polarization. Further, the fourth conversion unit 242 converts, for example, the symbols “S1, S3” into series data in which “S3” is assigned at time t and “−S1 * ” is assigned at time t + 1. The IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3 by, for example, vertical polarization.
 STBC1で、行列Kの2列目の符号を、行列Jの2列目の符号と反転させることで、以下のようになっている。時刻t+1において、アンテナ0で送信するための符号化後シンボル「-S2」とアンテナ1で送信するための符号化後シンボル「S3」とで互いに符号が異なっている。また、B局のアンテナ2で送信するための符号化後シンボル「S0」とB局のアンテナ3で送信するための符号化後シンボル「-S1」で、互いに符号が異なっている。 In STBC1, the sign of the second column of the matrix K is inverted from the sign of the second column of the matrix J. At time t + 1, the encoded symbol “−S2 * ” for transmission through antenna 0 and the encoded symbol “S3 * ” for transmission through antenna 1 have different codes. Also, the encoded symbol “S0 * ” for transmission through the antenna 2 of the B station and the encoded symbol “−S1 * ” for transmission through the antenna 3 of the B station have different codes.
 以上、第2の実施形態において、STBC符号化に用いる行列Kの2列目の各成分の符号が行列Jの2列目の対応する成分の符号とは異なる。視点を変えると、符号化部14及び符号化部24は、ブロック毎に符号化するものであって、ブロック内の一の時刻(例えば、時刻t+1)において、送信装置間で同一の偏波で送信される上記符号化後のシンボルの符号が互いに異なり、上記一の時刻(例えば、時刻t+1)において、上記並列系列データのうち一方の系列データの符号化後の符号が他方の系列データの符号化後の符号と異なるように符号化する。また、その際、符号化部14及び符号化部24は、実施例1と同様に、送信システム4で用いられる他方の送信装置が同一のシンボルに対して符号化して得られる符号化信号とは、割り当てられる時刻が異なり、かつ互いに複素共役の関係にある符号化信号が得られるように符号化する。これにより、B局から受信装置30への伝搬路で偏波回転があっても、後述する観測方程式が重複しないので、受信装置30は、受信信号から送信信号を算出することができる。その結果、B局から受信装置30への伝搬路で偏波回転があっても伝送特性が劣化せず、実施例1に比べて利点がある。 As described above, in the second embodiment, the code of each component in the second column of the matrix K used for STBC encoding is different from the code of the corresponding component in the second column of the matrix J. If the viewpoint is changed, the encoding unit 14 and the encoding unit 24 perform encoding for each block, and at one time in the block (for example, time t + 1), the transmission apparatus has the same polarization. The codes of the encoded symbols to be transmitted are different from each other, and at one time (for example, time t + 1), the encoded code of one of the parallel sequence data is the code of the other sequence data. Encoding is performed differently from the encoded code. Further, at that time, the encoding unit 14 and the encoding unit 24 are the encoded signals obtained by encoding the same symbol by the other transmitting apparatus used in the transmission system 4 as in the first embodiment. , Encoding is performed so that encoded signals having different allocation times and complex conjugate relations can be obtained. Thereby, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the observation equation described later does not overlap, so that the receiving device 30 can calculate the transmission signal from the received signal. As a result, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the transmission characteristics do not deteriorate, which is an advantage over the first embodiment.
 [実施例2’]
 実施例2’における送信システム4は、実施例2と同様の処理を行うが、実施例2と以下の点で異なる。実施例2’では、実施例2とは逆に、STBC0が行列Kに従ってシンボルの系列データを符号化する。STBC1が行列Jに従ってシンボルの系列データを符号化する。
[Example 2 ']
The transmission system 4 in the second embodiment performs processing similar to that in the second embodiment, but differs from the second embodiment in the following points. In the second embodiment, contrary to the second embodiment, the STBC 0 encodes the symbol sequence data according to the matrix K. The STBC 1 encodes the symbol sequence data according to the matrix J.
 [実施例3]
 図6は、実施例3における送信システム4の等価概念図である。同図の送信システム4において、STBC0及びSTBC1は、ともに式(1)の行列JによってSTBCを実現する。送信システム4は、STBC0でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ0とB局のアンテナ3で伝送する。ここで、一例としてアンテナ0は水平偏波で送信信号を送信し、アンテナ3は垂直偏波で送信信号を送信する。すなわち、送信システム4は、STBC0でSTBC符号化して得た二つの送信信号それぞれを互いに異なる送信装置かつ異なる偏波で送信する。
[Example 3]
FIG. 6 is an equivalent conceptual diagram of the transmission system 4 in the third embodiment. In the transmission system 4 in the figure, both STBC0 and STBC1 realize STBC by the matrix J of Expression (1). The transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 through the antenna 0 of the A station and the antenna 3 of the B station, respectively. As an example, the antenna 0 transmits a transmission signal with horizontal polarization, and the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0, using different transmission apparatuses and different polarizations.
 また、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ1とB局のアンテナ2で伝送する。ここで、一例としてアンテナ1は垂直偏波で送信信号を送信し、アンテナ2は水平偏波で送信信号を送信する。すなわち、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ異なる偏波で送信する。 Further, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 by the antenna 1 of the A station and the antenna 2 of the B station, respectively. As an example, the antenna 1 transmits a transmission signal with vertical polarization, and the antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with different polarizations.
 なお、アンテナ0及びアンテナ2が垂直偏波で、アンテナ1及びアンテナ3が水平偏波で送信信号を送信してもよい。 Note that the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization, and the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization.
 実際の構成では、第1の変換部141は、例えばシンボル「S0、S2」を時刻tに「S0」、時刻t+1に「-S2」を割り当てた系列データに変換する。IFFT部161は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から送信する。また、第3の変換部241は、例えばシンボル「S0、S2」を時刻tに「S2」、時刻t+1に「S0」を割り当てた系列データに変換する。IFFT部261は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から送信する。 In an actual configuration, the first conversion unit 141 converts, for example, the symbol “S0, S2” into series data in which “S0” is assigned at time t and “−S2 * ” is assigned at time t + 1. IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0. The third conversion unit 241 converts, for example, the symbol “S0, S2” into series data in which “S2” is assigned to time t and “S0 * ” is assigned to time t + 1. IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 3.
 第2の変換部142は、例えばシンボル「S1、S3」を時刻tに「S1」、時刻t+1に「-S3」を割り当てた系列データに変換する。IFFT部162は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から送信する。また、第4の変換部242は、例えばシンボル「S1、S3」を時刻tに「S3」、時刻t+1に「S1」を割り当てた系列データに変換する。IFFT部262は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から送信する。 The second conversion unit 142 converts, for example, the symbols “S1, S3” into series data in which “S1” is assigned at time t and “−S3 * ” is assigned at time t + 1. IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1. The fourth conversion unit 242 converts, for example, the symbols “S1, S3” into series data in which “S3” is assigned to time t and “S1 * ” is assigned to time t + 1. The IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2.
 以上、第3の実施例において、送信システム4は、同一の情報をSTBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ異なる偏波で送信する。視点を変えると、一方の送信装置は、他方の送信装置が送信する他の送信信号と同一の情報に由来する送信信号を送信する際に、他の送信装置が当該他の送信信号を送信する偏波とは異なる偏波で送信信号を送信する。また符号化部14及び符号化部24は、ブロック毎に符号化するものであって、一の時刻(例えば、時刻t+1)において、上記並列系列データのうち一方の系列データの符号化後の符号が他方の系列データの符号化後の符号と同じとなるように符号化する。また、その際、符号化部14及び符号化部24は、上記一の時刻(例えば、時刻t+1)において、符号化後の符号が、他の送信装置と同じ偏波で送信する符号化後のシンボルの符号と異なるように符号化する。これにより、B局から受信装置30への伝搬路で偏波回転があっても、後述する観測方程式が重複しないので、受信装置30は、受信信号から送信信号を算出することができる。その結果、B局から受信装置30への伝搬路で偏波回転があっても伝送特性が劣化せず、実施例1に比べて利点がある。 As described above, in the third embodiment, the transmission system 4 transmits two transmission signals obtained by STBC encoding the same information from different transmission apparatuses and with different polarizations. When the viewpoint is changed, when one transmission apparatus transmits a transmission signal derived from the same information as another transmission signal transmitted by the other transmission apparatus, the other transmission apparatus transmits the other transmission signal. A transmission signal is transmitted with a polarization different from the polarization. In addition, the encoding unit 14 and the encoding unit 24 perform encoding for each block, and at one time (for example, time t + 1), the code after encoding one of the parallel sequence data. Is encoded to be the same as the encoded code of the other sequence data. In addition, at that time, the encoding unit 14 and the encoding unit 24 have the encoded code transmitted with the same polarization as that of the other transmitting apparatuses at the one time (for example, time t + 1). Encoding is performed differently from the symbol code. Thereby, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the observation equation described later does not overlap, so that the receiving device 30 can calculate the transmission signal from the received signal. As a result, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the transmission characteristics do not deteriorate, which is an advantage over the first embodiment.
 [実施例3’]
 実施例3’における送信システム4は、実施例3と同様の処理を行うが、実施例3と以下の点で異なる。実施例3’では、STBC0及びSTBC1が、実施例3とは異なる行列Kに従って、それぞれシンボルの系列データを符号化する。
[Example 3 ']
The transmission system 4 in the third embodiment performs processing similar to that in the third embodiment, but differs from the third embodiment in the following points. In the third embodiment, STBC0 and STBC1 encode the symbol series data according to a matrix K different from that of the third embodiment.
 [実施例4]
 図7は、実施例4における送信システム4の等価概念図である。同図の送信システム4において、STBC0は式(1)の行列Jを用いてSTBCを実現し、STBC1は式(2)の行列Kを用いてSTBCを実現する。送信システム4は、STBC0でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ0とB局のアンテナ3から送信する。ここで、アンテナ0は水平偏波で送信信号を送信し、アンテナ3は垂直偏波で送信信号を送信する。すなわち、送信システム4は、STBC0でSTBC符号化して得た二つの送信信号それぞれを互いに異なる送信装置からかつ異なる偏波で送信する。
[Example 4]
FIG. 7 is an equivalent conceptual diagram of the transmission system 4 in the fourth embodiment. In the transmission system 4 in the figure, STBC0 implements STBC using the matrix J of Equation (1), and STBC1 implements STBC using the matrix K of Equation (2). The transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from the antenna 0 of the A station and the antenna 3 of the B station, respectively. Here, the antenna 0 transmits a transmission signal with horizontal polarization, and the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from different transmission apparatuses and with different polarizations.
 また、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ1とB局のアンテナ2から送信する。ここで、アンテナ1は垂直偏波で送信信号を送信し、アンテナ2は水平偏波で送信信号を送信する。すなわち、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ異なる偏波で送信する。 Also, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from the antenna 1 of the A station and the antenna 2 of the B station, respectively. Here, the antenna 1 transmits a transmission signal with vertical polarization, and the antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with different polarizations.
 なお、アンテナ0及びアンテナ2が垂直偏波で、アンテナ1及びアンテナ3が水平偏波で送信信号を送信してもよい。 Note that the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization, and the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization.
 実際の構成では、第1の変換部141は、例えばシンボル「S0、S2」を時刻tに「S0」、時刻t+1に「-S2」を割り当てた系列データに変換する。IFFT部161は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から送信する。また、第3の変換部241は、例えばシンボル「S0、S2」を時刻tに「S2」、時刻t+1に「S0」に割り当てた系列データに変換する。IFFT部261は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から送信する。 In an actual configuration, the first conversion unit 141 converts, for example, the symbol “S0, S2” into series data in which “S0” is assigned at time t and “−S2 * ” is assigned at time t + 1. IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0. The third conversion unit 241 converts, for example, the symbol “S0, S2” into series data assigned to “S2” at time t and “S0 * ” at time t + 1. IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 3.
 第2の変換部142は、例えばシンボル「S1、S3」を時刻tに「S1」、時刻t+1に「S3」を割り当てた系列データに変換する。IFFT部162は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から送信する。また、第4の変換部242は、例えばシンボル「S1、S3」を時刻tに「S3」、時刻t+1に「-S1」を割り当てた系列データに変換する。IFFT部262は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から送信する。 The second conversion unit 142 converts, for example, the symbols “S1, S3” into series data in which “S1” is assigned at time t and “S3 * ” is assigned at time t + 1. IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1. Further, the fourth conversion unit 242 converts, for example, the symbols “S1, S3” into series data in which “S3” is assigned at time t and “−S1 * ” is assigned at time t + 1. The IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2.
 以上、第4の実施例において、送信システム4は、同一の情報をSTBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ異なる偏波で送信する。また、STBC符号化に用いる行列Kの2列目の各成分の符号が行列Jの2列目の各成分の符号とは異なる。視点を変えると、一方の送信装置の送信部は、他方の送信装置が送信する他の送信信号と同一の情報に由来する送信信号を送信する際に、他の送信装置が伝送する偏波とは異なる偏波で伝送する。すなわち第1の送信装置は、第1の送信アンテナ181または第2の送信アンテナ182のうち、他の送信装置が伝送する偏波とは異なる偏波で伝送する送信アンテナから送信信号を送信する。 As described above, in the fourth embodiment, the transmission system 4 transmits two transmission signals obtained by STBC encoding the same information from different transmission apparatuses and with different polarizations. Also, the code of each component in the second column of the matrix K used for STBC encoding is different from the code of each component in the second column of the matrix J. When changing the viewpoint, when the transmission unit of one transmission device transmits a transmission signal derived from the same information as the other transmission signal transmitted by the other transmission device, the transmission unit transmits the polarized wave transmitted by the other transmission device. Transmit with different polarizations. That is, the first transmission device transmits a transmission signal from a transmission antenna that transmits with a polarization different from the polarization transmitted by the other transmission device, out of the first transmission antenna 181 or the second transmission antenna 182.
 また符号化部14及び符号化部24は、ブロック毎に符号化するものであって、上記一の時刻(例えば、時刻t+1)において、上記並列系列データのうち一方の系列データの符号化後の符号が他方の系列データの符号化後の符号と異なるように符号化する。また、その際、符号化部14及び符号化部24は、上記一の時刻(例えば、時刻t+1)において、符号化後の符号が、他の送信装置と同じ偏波で送信する符号化後のシンボルの符号と同じになるように符号化する。また、その際、実施例1と同様に、符号化部14及び符号化部24は、送信システムで用いられる他方の送信装置が同一のシンボルに対して符号化して得られる符号化信号とは、割り当てられる時刻が異なり、かつ互いに複素共役の関係にある符号化信号が得られるように符号化する。 In addition, the encoding unit 14 and the encoding unit 24 encode each block, and at one time (for example, time t + 1), after one of the parallel sequence data is encoded. Encoding is performed so that the code is different from the encoded code of the other sequence data. In addition, at that time, the encoding unit 14 and the encoding unit 24 have the encoded code transmitted with the same polarization as that of the other transmitting apparatuses at the one time (for example, time t + 1). Encode to be the same as the symbol code. At that time, as in the first embodiment, the encoding unit 14 and the encoding unit 24 are encoded signals obtained by encoding the same symbol by the other transmission device used in the transmission system. Encoding is performed so that encoded signals having different time allocations and complex conjugate relations can be obtained.
 続いて、図8及び図9を用いて、A局の電波を受信アンテナのメインローブで受信し、B局の電波をサイドローブで受信するときの特性のシミュレーション結果について説明する。シミュレーション条件として、変調多値数は1024QAM、FFTサイズは8kとする。また、A局とB局の受信電力が同じ、すなわちD/Uが0dBの条件で、A局の受信電力に対する雑音電力の比でC/N(Carrier to Noise Ratio)を規定する。このシミュレーション結果は、その際のビット誤り率(BER)を測定した結果である。 Subsequently, simulation results of characteristics when the radio wave of the A station is received by the main lobe of the receiving antenna and the radio wave of the B station is received by the side lobe will be described with reference to FIGS. As simulation conditions, the modulation multi-level number is 1024QAM, and the FFT size is 8k. Further, C / N (Carrier to Noise Ratio) is defined by the ratio of the noise power to the received power of the A station under the condition that the received power of the A station and the B station is the same, that is, D / U is 0 dB. This simulation result is a result of measuring the bit error rate (BER) at that time.
 図8は、B局の電波が偏波回転せず受信された場合(回転角0°)のビット誤り率特性である。縦軸はビット誤り率(BER)で、横軸は各偏波の受信C/Nの平均である。同図において、実施例1も実施例3もほぼ同じビット誤り率特性を示している。いずれもビット誤り率が1.0×10-7となるC/Nは約23dBである。 FIG. 8 shows the bit error rate characteristics when the radio wave of station B is received without rotating the polarization (rotation angle 0 °). The vertical axis represents the bit error rate (BER), and the horizontal axis represents the average received C / N of each polarization. In the figure, both the first embodiment and the third embodiment show substantially the same bit error rate characteristics. In either case, the C / N at which the bit error rate is 1.0 × 10 −7 is about 23 dB.
 図9は、B局の電波が90°偏波回転して受信された場合のビット誤り率特性である。縦軸はビット誤り率(BER)で、横軸は各偏波の受信C/Nの平均である。同図において、実施例3のビット誤り率特性は、図8における実施例3のビット誤り率特性とほぼ同じである。ビット誤り率が1.0×10-7となるC/Nは約23dBである。一方、実施例1は、C/Nを大きくしてもビット誤り率が高いままである。 FIG. 9 shows the bit error rate characteristics when the radio wave of station B is received with 90 ° polarization rotation. The vertical axis represents the bit error rate (BER), and the horizontal axis represents the average received C / N of each polarization. In the figure, the bit error rate characteristic of the third embodiment is almost the same as the bit error rate characteristic of the third embodiment in FIG. The C / N at which the bit error rate is 1.0 × 10 −7 is about 23 dB. On the other hand, in Example 1, the bit error rate remains high even when C / N is increased.
 図8及び図9より、実施例1では、B局の受信信号に90°の偏波回転がある場合の伝送特性は、B局の受信信号に偏波回転がない場合に比べて劣化する。それに対し、実施例3では、B局の受信信号に90°の偏波回転がある場合の伝送特性は、B局の受信信号に偏波回転がない場合に比べて劣化していない。実施例2は、実施例3と同様の特性を示すため省略する。このように、実施例2、3では、伝送システム5は、B局の受信信号に90°の偏波回転があっても伝送特性を劣化させない。 8 and 9, in the first embodiment, the transmission characteristic when the received signal of the B station has a 90 ° polarization rotation is deteriorated as compared with the case where the received signal of the B station has no polarization rotation. On the other hand, in the third embodiment, the transmission characteristics when the received signal of the B station has a 90 ° polarization rotation are not deteriorated compared to the transmission characteristics when the received signal of the B station has no polarization rotation. Since Example 2 shows the same characteristics as Example 3, it is omitted. As described above, in the second and third embodiments, the transmission system 5 does not deteriorate the transmission characteristics even if the received signal of the B station has a 90 ° polarization rotation.
 [実施例4’]
 実施例4’における送信システム4は、実施例4と同様の処理を行うが、実施例4と以下の点で異なる。実施例4’では、実施例4とは逆に、STBC0が行列Kに従ってシンボルの系列データを符号化する。STBC1が行列Jに従ってシンボルの系列データを符号化する。
[Example 4 ']
The transmission system 4 in the fourth embodiment performs processing similar to that of the fourth embodiment, but differs from the fourth embodiment in the following points. In the fourth embodiment, contrary to the fourth embodiment, the STBC 0 encodes the symbol sequence data according to the matrix K. The STBC 1 encodes the symbol sequence data according to the matrix J.
 [実施例5]
 図10は、実施例5における送信システム4の等価概念図である。同図の送信システム4において、STBC0及びSTBC1は、例えば式(3)の行列Lに従ってそれぞれシンボルの系列データを符号化する。ここで、式(3)の行列Lは、Alamoutiの時空間ブロック符号化行列Jを一部変更したもの(Modified Alamouti)である。
[Example 5]
FIG. 10 is an equivalent conceptual diagram of the transmission system 4 in the fifth embodiment. In the transmission system 4 in the figure, the STBC0 and STBC1 encode the symbol series data, for example, according to the matrix L in Expression (3). Here, the matrix L in Expression (3) is a partially modified Alamouti space-time block coding matrix J (Modified Alamouti).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 行列Lの行はアンテナ番号に対応し、列は送信時間に対応する。送信システム4は、STBC0でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ0とB局のアンテナ2で伝送する。ここで、アンテナ0は水平偏波で送信信号を送信し、アンテナ2は水平偏波で送信信号を送信する。すなわち、送信システム4は、STBC0でSTBC符号化して得た二つの送信信号それぞれを互いに異なる送信装置から同じ偏波(同一偏波)で送信する。 The row of the matrix L corresponds to the antenna number, and the column corresponds to the transmission time. The transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 by the antenna 0 of the A station and the antenna 2 of the B station, respectively. Here, antenna 0 transmits a transmission signal with horizontal polarization, and antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits each of two transmission signals obtained by STBC encoding with STBC0 from different transmission apparatuses with the same polarization (same polarization).
 また、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ1とB局のアンテナ3から送信する。ここで、アンテナ1は垂直偏波で送信信号を送信し、アンテナ3は垂直偏波で送信信号を送信する。すなわち、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号それぞれを異なる送信装置からかつ同じ偏波(同一偏波)で送信する。 Also, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from the antenna 1 of the A station and the antenna 3 of the B station, respectively. Here, the antenna 1 transmits a transmission signal with vertical polarization, and the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses with the same polarization (same polarization).
 なお、アンテナ0及びアンテナ2が垂直偏波で、アンテナ1及びアンテナ3が水平偏波で送信信号を送信してもよい。 Note that the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization, and the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization.
 実際の構成では、第1の変換部141は、例えばシンボル「S0、S2」を変換せずに時刻tに「S0」、時刻t+1に「S2」を割り当てた系列データを出力する。IFFT部161は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から送信する。また、第3の変換部241は、例えばシンボル「S0、S2」を時刻tに「-S2」、時刻t+1に「S0」を割り当てた系列データに変換する。IFFT部261は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から送信する。 In an actual configuration, the first conversion unit 141 outputs, for example, series data in which “S0” is assigned at time t and “S2” is assigned at time t + 1 without converting the symbols “S0, S2”. IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0. The third conversion unit 241, for example, the symbol "S0, S2 'to the time t" -S2 * "is converted to time t + 1" S0 * "in the allocated sequence data. IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 2.
 第2の変換部142は、例えば「S1、S3」を変換せずに時刻tに「S1」、時刻t+1に「S3」を割り当てた系列データを出力する。IFFT部162は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から送信する。また、第4の変換部242は、例えば「S1、S3」を時刻tに「-S3」、時刻t+1に「S1」を割り当てた系列データに変換する。IFFT部262は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から送信する。 For example, the second conversion unit 142 outputs series data in which “S1” is assigned to time t and “S3” is assigned to time t + 1 without converting “S1, S3”. IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1. The fourth conversion unit 242, "-S3 *", for example, "S1, S3" time t, is converted to time t + 1 "S1 *" in the allocated sequence data. The IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
 以上、第5の実施例において、第1の送信装置(A局)10における符号化部14は、入力されたシンボル系列に対して変更を加えず、そのままシンボル系列を出力する。第2の送信装置(B局)20における符号化部24は、入力されたシンボル系列に対して変更を加える。これにより、サービスをすでに開始しているA局がある場合に、A局は従来通りの信号を送信しつつ、サービスエリアに新たに建設するB局に備える符号化部24がModified Alamoutiの符号化に対応したもので符号化すれば良いため、放送ネットワークの構築コストが抑えることができる。 As described above, in the fifth embodiment, the encoding unit 14 in the first transmission device (A station) 10 outputs the symbol sequence as it is without changing the input symbol sequence. The encoding unit 24 in the second transmission device (B station) 20 changes the input symbol sequence. As a result, when there is an A station that has already started the service, the encoding unit 24 provided in the B station to be newly constructed in the service area while the A station transmits a conventional signal, the encoding of Modified Alamouti Therefore, the construction cost of the broadcasting network can be reduced.
 [実施例5’]
 実施例5’における送信システム4は、実施例5と同様の処理を行うが、実施例5と以下の点で異なる。実施例5’では、STBC0及びSTBC1が、実施例5とは異なる行列Mに従って、それぞれシンボルの系列データを符号化する。行列Mは、次の式(4)で表される。
[Example 5 ']
The transmission system 4 in the fifth embodiment performs the same processing as the fifth embodiment, but differs from the fifth embodiment in the following points. In Example 5 ′, STBC0 and STBC1 encode symbol series data according to a matrix M different from Example 5, respectively. The matrix M is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 行列Mは、行列Lと比較すると、2行目の各成分の符号が反転している。 Compared with the matrix L, the sign of each component in the second row is inverted in the matrix M.
 [実施例6]
 実施例6は、STBC1において、Modified Alamoutiの時空間ブロック符号化行列の符号反転がある場合の例である。図11は、実施例6における送信システムの等価概念図である。STBC0は、式(3)の行列Lを用いてシンボルの系列データに対してSTBCを施す。一方、STBC1は式(4)に示す行列Mを用いてシンボルの系列データに対してSTBCを施す。
[Example 6]
Example 6 is an example in the case where there is a code inversion of the modified Alamouti space-time block coding matrix in STBC1. FIG. 11 is an equivalent conceptual diagram of the transmission system in the sixth embodiment. The STBC 0 performs STBC on the symbol series data using the matrix L in the equation (3). On the other hand, STBC 1 applies STBC to the symbol series data using matrix M shown in Equation (4).
 送信システム4は、STBC0でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ0とB局のアンテナ2から送信する。ここで、アンテナ0は水平偏波で送信信号を送信し、アンテナ2は水平偏波で送信信号を送信する。すなわち、送信システム4は、STBC0でSTBC符号化して得た二つの送信信号それぞれを互いに異なる送信装置からかつ同じ偏波(同一偏波)で送信する。 The transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from the antenna 0 of the A station and the antenna 2 of the B station, respectively. Here, antenna 0 transmits a transmission signal with horizontal polarization, and antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from different transmission apparatuses and with the same polarization (same polarization).
 また、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ1とB局のアンテナ3から送信する。ここで、アンテナ1は垂直偏波で送信信号を送信し、アンテナ3は垂直偏波で送信信号を送信する。すなわち、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ同じ偏波(同一偏波)で送信する。 Also, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from the antenna 1 of the A station and the antenna 3 of the B station, respectively. Here, the antenna 1 transmits a transmission signal with vertical polarization, and the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with the same polarization (same polarization).
 なお、アンテナ0及びアンテナ2が垂直偏波で、アンテナ1及びアンテナ3が水平偏波で送信信号を送信してもよい。 Note that the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization, and the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization.
 実際の構成では、第1の変換部141は、例えばシンボル「S0、S2」を変換せずに、時刻tに「S0」、時刻t+1に「S2」を割り当てた系列データを出力する。IFFT部161は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から送信する。また、第3の変換部241は、例えばシンボル「S0、S2」を時刻tに「-S2」、時刻t+1に「S0」を割り当てた系列データに変換する。IFFT部261は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から送信する。 In the actual configuration, the first conversion unit 141 outputs, for example, sequence data in which “S0” is assigned at time t and “S2” is assigned at time t + 1 without converting the symbols “S0, S2”. IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0. The third conversion unit 241, for example, the symbol "S0, S2 'to the time t" -S2 * "is converted to time t + 1" S0 * "in the allocated sequence data. IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 2.
 第2の変換部142は、例えばシンボル「S1、S3」を変換せずに、時刻tに「S1」、時刻t+1に「S3」を割り当てた系列データを出力する。IFFT部162は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から送信する。また、第4の変換部242は、例えばシンボル「S1、S3」を時刻tに「S3」、時刻t+1に「-S1」を割り当てた系列データに変換する。IFFT部262は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から送信する。 For example, the second conversion unit 142 outputs series data in which “S1” is assigned to time t and “S3” is assigned to time t + 1 without converting the symbols “S1, S3”. IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1. The fourth conversion unit 242, "S3 *" for example the symbol "S1, S3" time t, is converted to time t + 1 "-S1 *" in the allocated sequence data. The IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
 このことから、符号化部24は、並列系列データそれぞれをブロック毎に符号化するものであって、該ブロック内のそれぞれの時刻において、上記並列系列データのうち一方の系列データの符号化後の符号が他方の系列データの符号化後の符号と異なるように符号化する。また、その際、符号化部24は、送信システム4で用いられる他方の送信装置である第1の送信装置10が同一のシンボルに対して符号化して得られる符号化信号とは、割り当てられる時刻が異なり、かつ互いに複素共役の関係にある符号化信号が得られるように、符号化する。 From this, the encoding unit 24 encodes each of the parallel sequence data for each block, and at each time in the block, after encoding one of the parallel sequence data, Encoding is performed so that the code is different from the encoded code of the other sequence data. Also, at that time, the encoding unit 24 refers to an encoded signal obtained by encoding the same symbol by the first transmission device 10 which is the other transmission device used in the transmission system 4. Are encoded so that encoded signals having different complex conjugate relations can be obtained.
 以上、第6の実施例において、B局におけるアンテナ2は「-S2、S0」を、アンテナ3は「S3、-S1」を送信する。アンテナ2とアンテナ3とでは、それぞれの時刻における符号化後の信号の符号が異なっている。また実施例5では、アンテナ3は「-S3、S1」を送信しているので、実施例5と比べて、アンテナ3が送信する信号の符号が前後で逆になっている。これにより、B局から受信装置30への伝搬路で偏波回転があっても、後述する観測方程式が重複しないので、受信装置30は、受信信号から送信信号を算出することができる。その結果、B局の偏波回転があっても伝送特性が劣化せず、実施例5に比べて利点がある。 As described above, in the sixth embodiment, the antenna 2 in the B station transmits “−S2 * , S0 * ”, and the antenna 3 transmits “S3 * , −S1 * ”. The sign of the signal after encoding at the respective times differs between the antenna 2 and the antenna 3. In the fifth embodiment, since the antenna 3 transmits “−S3 * , S1 * ”, the sign of the signal transmitted by the antenna 3 is reversed before and after the fifth embodiment. Thereby, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the observation equation described later does not overlap, so that the receiving device 30 can calculate the transmission signal from the received signal. As a result, the transmission characteristics do not deteriorate even if the polarization rotation of the B station is present, which is an advantage over the fifth embodiment.
 [実施例6’]
 実施例6’における送信システム4は、実施例6と同様の処理を行うが、実施例6と以下の点で異なる。実施例6’では、実施例6とは逆に、STBC0が行列Mに従ってシンボルの系列データを符号化する。STBC1が行列Lに従ってシンボルの系列データを符号化する。
[Example 6 ']
The transmission system 4 in the sixth embodiment performs processing similar to that of the sixth embodiment, but differs from the sixth embodiment in the following points. In the sixth embodiment, contrary to the sixth embodiment, the STBC 0 encodes the symbol sequence data according to the matrix M. The STBC 1 encodes the symbol sequence data according to the matrix L.
 [実施例7]
 図12は、実施例7における送信システム4の等価概念図である。同図の送信システム4において、STBC0及びSTBC1は、ともに式(3)の行列Lを用いてSTBC符号化する。送信システム4は、STBC0でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ0とB局のアンテナ3で伝送する。ここで、アンテナ0は水平偏波で送信信号を送信し、アンテナ3は垂直偏波で送信信号を送信する。すなわち、送信システム4は、STBC0でSTBC符号化して得た二つの送信信号それぞれを互いに異なる送信装置かつ異なる偏波(交差偏波)で送信する。
[Example 7]
FIG. 12 is an equivalent conceptual diagram of the transmission system 4 in the seventh embodiment. In the transmission system 4 in the figure, both STBC0 and STBC1 perform STBC encoding using the matrix L of Equation (3). The transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 through the antenna 0 of the A station and the antenna 3 of the B station, respectively. Here, the antenna 0 transmits a transmission signal with horizontal polarization, and the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 using different transmission apparatuses and different polarizations (cross polarizations).
 また、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ1とB局のアンテナ2で伝送する。ここで、アンテナ1は垂直偏波で送信信号を送信し、アンテナ2は水平偏波で送信信号を送信する。すなわち、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ異なる偏波(交差偏波)で送信する。 Further, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 by the antenna 1 of the A station and the antenna 2 of the B station, respectively. Here, the antenna 1 transmits a transmission signal with vertical polarization, and the antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with different polarizations (cross polarizations).
 なお、アンテナ0及びアンテナ2が垂直偏波で、アンテナ1及びアンテナ3が水平偏波で送信信号を送信してもよい。 Note that the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization, and the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization.
 以上、第7の実施例において、送信システム4は、STBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ異なる偏波で送信する。視点を変えると、第1の送信装置10の送信部17は、第2の送信装置20が送信する他の送信信号と同一の情報に由来する送信信号を送信する際に、第1の送信アンテナ181または第2の送信アンテナ182のうち、他の送信装置が他の送信信号を送信する偏波とは異なる偏波で送信信号を送信する送信アンテナから送信信号を送信する。これにより、B局から受信装置30への伝搬路で偏波回転があっても、後述する観測方程式が重複しないので、受信装置30は、受信信号から送信信号を算出することができる。その結果、B局から受信装置30への伝搬路で偏波回転があっても伝送特性が劣化せず、実施例5に比べて利点がある。 As described above, in the seventh embodiment, the transmission system 4 transmits each of two transmission signals obtained by STBC encoding from different transmission apparatuses and with different polarizations. When the viewpoint is changed, the transmission unit 17 of the first transmission device 10 transmits the transmission signal derived from the same information as the other transmission signals transmitted by the second transmission device 20 when the first transmission antenna is transmitted. Among the transmission antennas 181 or 182, the transmission signal is transmitted from a transmission antenna that transmits a transmission signal with a polarization different from the polarization with which another transmission apparatus transmits another transmission signal. Thereby, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the observation equation described later does not overlap, so that the receiving device 30 can calculate the transmission signal from the received signal. As a result, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the transmission characteristics are not deteriorated, which is an advantage over the fifth embodiment.
 [実施例7’]
 実施例7’における送信システム4は、実施例7と同様の処理を行うが、実施例7と以下の点で異なる。実施例7’では、STBC0及びSTBC1が、実施例7とは異なる行列Mに従って、それぞれシンボルの系列データを符号化する。
[Example 7 ']
The transmission system 4 in the embodiment 7 ′ performs the same processing as that in the embodiment 7, but differs from the embodiment 7 in the following points. In Example 7 ′, STBC0 and STBC1 encode symbol series data according to a matrix M different from Example 7, respectively.
 [実施例8]
 図13は、実施例8における送信システム4の等価概念図である。同図の送信システム4において、STBC0は式(3)の行列Lを用いてSTBCを実現し、STBC1は式(4)の行列Mを用いてSTBCを実現する。送信システム4は、STBC0でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ0とB局のアンテナ3から送信する。ここで、アンテナ0は水平偏波で送信信号を送信し、アンテナ3は垂直偏波で送信信号を送信する。すなわち、送信システム4は、STBC0でSTBC符号化して得た二つの送信信号それぞれを互いに異なる送信装置からかつ異なる偏波(交差偏波)で送信する。
[Example 8]
FIG. 13 is an equivalent conceptual diagram of the transmission system 4 in the eighth embodiment. In the transmission system 4 shown in the figure, STBC0 implements STBC using the matrix L of Equation (3), and STBC1 implements STBC using the matrix M of Equation (4). The transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from the antenna 0 of the A station and the antenna 3 of the B station, respectively. Here, the antenna 0 transmits a transmission signal with horizontal polarization, and the antenna 3 transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with STBC0 from different transmission apparatuses and with different polarizations (cross polarization).
 また、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号をそれぞれA局のアンテナ1とB局のアンテナ2から送信する。ここで、アンテナ1は垂直偏波で送信信号を送信し、アンテナ2は水平偏波で送信信号を送信する。すなわち、送信システム4は、STBC1でSTBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ異なる偏波(交差偏波)で送信する。 Also, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from the antenna 1 of the A station and the antenna 2 of the B station, respectively. Here, the antenna 1 transmits a transmission signal with vertical polarization, and the antenna 2 transmits a transmission signal with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by STBC encoding with the STBC 1 from different transmission apparatuses and with different polarizations (cross polarizations).
 なお、アンテナ0及びアンテナ2が垂直偏波で、アンテナ1及びアンテナ3が水平偏波で送信信号を送信してもよい。 Note that the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization, and the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization.
 実際の構成では、第1の変換部141は、例えばシンボル「S0、S2」を変換せずに時刻tに「S0」、時刻t+1に「S2」を割り当てた系列データを出力する。IFFT部161は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から送信する。また、第3の変換部241は、例えばシンボル「S0、S2」を時刻tに「-S2」、時刻t+1に「S0」を割り当てた系列データに変換する。IFFT部261は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から送信する。 In an actual configuration, the first conversion unit 141 outputs, for example, series data in which “S0” is assigned at time t and “S2” is assigned at time t + 1 without converting the symbols “S0, S2”. IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0. The third conversion unit 241, for example, the symbol "S0, S2 'to the time t" -S2 * "is converted to time t + 1" S0 * "in the allocated sequence data. IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 3.
 第2の変換部142は、例えばシンボル「S1、S3」を変換せずに時刻tに「S1」、時刻t+1に「S3」を割り当てた系列データに出力する。IFFT部162は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から送信する。また、第4の変換部242は、例えばシンボル「S1、S3」を時刻tに「S3」、時刻t+1に「-S1」を割り当てた系列データに変換する。IFFT部262は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から送信する。 The second conversion unit 142 outputs, for example, the series “S1” at time t and “S3” at time t + 1 without converting the symbols “S1, S3”. IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1. The fourth conversion unit 242, "S3 *" for example the symbol "S1, S3" time t, is converted to time t + 1 "-S1 *" in the allocated sequence data. The IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2.
 以上、第8の実施例において、送信システム4は、STBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ異なる偏波で送信する。送信システム4において、STBC0は式(3)の行列Lを用いてSTBCを実現し、STBC1は式(4)の行列Mを用いてSTBCを実現する。 As described above, in the eighth embodiment, the transmission system 4 transmits each of two transmission signals obtained by STBC encoding from different transmission apparatuses and with different polarizations. In the transmission system 4, STBC0 implements STBC using the matrix L of Equation (3), and STBC1 implements STBC using the matrix M of Equation (4).
 [実施例8’]
 実施例8’における送信システム4は、実施例8と同様の処理を行うが、実施例8と以下の点で異なる。実施例8’では、実施例8とは逆に、STBC0が行列Mに従ってシンボルの系列データを符号化する。STBC1が行列Lに従ってシンボルの系列データを符号化する。
[Example 8 ']
The transmission system 4 in the eighth embodiment performs the same processing as the eighth embodiment, but differs from the eighth embodiment in the following points. In the eighth embodiment, contrary to the eighth embodiment, STBC0 encodes the symbol sequence data according to the matrix M. The STBC 1 encodes the symbol sequence data according to the matrix L.
 [実施例9]
 続いて、実施例9では、AlamoutiのSTBCを、周波数方向に適用したSFBCの場合を示す。図14は、実施例9における送信システムの等価概念図である。SFBC0及びSFBC1は式(1)の行列Jを用いてSFBC符号化を実現する。このとき、行列Jの行はアンテナ番号に対応し、列は周波数(あるいはOFDM伝送ではマルチキャリア伝送するためキャリア番号)に対応する。送信システム4は、SFBC0でSFBC符号化して得た二つの送信信号をそれぞれA局のアンテナ0とB局のアンテナ2から送信する。ここで、一例としてアンテナ0とアンテナ2は共に水平偏波で送信信号を送信する。すなわち、送信システム4は、SFBC0でSFBC符号化して得た二つの送信信号それぞれを互いに異なる送信装置からかつ同じ偏波(同一偏波)で送信する。
[Example 9]
Next, the ninth embodiment shows a case of SFBC in which Alamouti STBC is applied in the frequency direction. FIG. 14 is an equivalent conceptual diagram of the transmission system in the ninth embodiment. SFBC0 and SFBC1 implement SFBC encoding using the matrix J of Equation (1). At this time, the rows of the matrix J correspond to antenna numbers, and the columns correspond to frequencies (or carrier numbers for multicarrier transmission in OFDM transmission). The transmission system 4 transmits two transmission signals obtained by SFBC encoding with SFBC0 from the antenna 0 of the A station and the antenna 2 of the B station, respectively. Here, as an example, both antenna 0 and antenna 2 transmit transmission signals with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by performing SFBC encoding with SFBC0 from different transmission apparatuses and with the same polarization (same polarization).
 送信システム4は、SFBC1でSFBC符号化して得た二つの送信信号をそれぞれA局のアンテナ1とB局のアンテナ3から送信する。ここで、一例としてアンテナ1とアンテナ3は共に垂直偏波で送信信号を送信する。すなわち、送信システム4は、SFBC1でSFBC符号化して得た二つの送信信号それぞれを互いに異なる送信装置からかつ同じ偏波(同一偏波)で送信する。 The transmission system 4 transmits two transmission signals obtained by SFBC encoding with SFBC 1 from the antenna 1 of the A station and the antenna 3 of the B station, respectively. Here, as an example, both the antenna 1 and the antenna 3 transmit transmission signals with vertical polarization. That is, the transmission system 4 transmits each of two transmission signals obtained by performing SFBC encoding with SFBC1 from different transmission apparatuses and with the same polarization (same polarization).
 なお、アンテナ0及びアンテナ2が垂直偏波で、アンテナ1及びアンテナ3が水平偏波で送信信号を送信してもよい。 Note that the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization, and the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization.
 実際の構成では、第1の変換部141は、例えば「S0、S2」を周波数fに「S0」、周波数f+1に「-S2」を割り当てた系列データに変換する。IFFT部161は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から送信する。また、第3の変換部241は、例えば「S0、S2」を周波数fに「S2」、周波数f+1に「S0」を割り当てた系列データに変換する。IFFT部261は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から送信する。 In an actual configuration, the first conversion unit 141 converts, for example, “S0, S2” into sequence data in which “S0” is assigned to the frequency f and “−S2 * ” is assigned to the frequency f + 1. IFFT section 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 0. The third conversion unit 241 converts, for example, “S0, S2” into sequence data in which “S2” is assigned to the frequency f and “S0 * ” is assigned to the frequency f + 1. IFFT section 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 2.
 第2の変換部142は、例えば「S1、S3」を周波数fに「S1」、周波数f+1に「-S3」を割り当てた系列データに変換する。IFFT部162は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から送信する。また、第4の変換部242は、例えば「S1、S3」を周波数fに「S3」、周波数f+1に「S1」を割り当てた系列データに変換する。IFFT部262は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から送信する。 The second conversion unit 142 converts, for example, “S1, S3” into sequence data in which “S1” is assigned to the frequency f and “−S3 * ” is assigned to the frequency f + 1. IFFT section 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from antenna 1. Further, the fourth conversion unit 242 converts, for example, “S1, S3” into sequence data in which “S3” is assigned to the frequency f and “S1 * ” is assigned to the frequency f + 1. The IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3.
 このことから、符号化部14及び符号化部24は、直列並列変換部(13または23)が変換して得た並列系列データそれぞれをブロック毎に符号化する。その際、符号化部14及び符号化部24は、該シンボルの系列データを符号化する送信システム4で用いられる他方の送信装置が同一のシンボルに対して符号化して得られる符号化信号とは、割り当てられる周波数が異なり、かつ互いに複素共役の関係にあるように、該シンボルの系列データを符号化する。 Therefore, the encoding unit 14 and the encoding unit 24 encode each of the parallel series data obtained by conversion by the serial / parallel conversion unit (13 or 23) for each block. At that time, the encoding unit 14 and the encoding unit 24 are encoded signals obtained by encoding the same symbol by the other transmission apparatus used in the transmission system 4 that encodes the symbol sequence data. The sequence data of the symbols are encoded so that the assigned frequencies are different and are in a complex conjugate relationship with each other.
 以上、実施例9において、送信システム4は、SFBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ同じ偏波(同一偏波)で送信する。非特許文献1では、仮に、B局からの信号が全く受信できなくなった場合、受信装置は、S0、S2を受信できるが、S1とS3を受信できないので、全データを復元することができなかった。 As described above, in the ninth embodiment, the transmission system 4 transmits each of two transmission signals obtained by SFBC encoding from different transmission apparatuses with the same polarization (same polarization). In Non-Patent Document 1, if the signal from the B station cannot be received at all, the receiving device can receive S0 and S2, but cannot receive S1 and S3, and therefore cannot restore all data. It was.
 それに対し、実施例9では、B局からの信号が全く受信できなくなった場合(例えば、B局がクラッシュした場合)でも、A局が全てのシンボル(例えば、S0、S1、S2、S3)に基づく信号を送信できるので、その信号を受信した受信装置は、全データを復元することができるという利点を有する。 On the other hand, in the ninth embodiment, even when the signal from the B station cannot be received at all (for example, when the B station crashes), the A station has all symbols (for example, S0, S1, S2, S3). Since the base signal can be transmitted, the receiving device that receives the signal has the advantage that all data can be recovered.
 [実施例9’]
 実施例9’における送信システム4は、実施例9と同様の処理を行うが、実施例9と以下の点で異なる。実施例9’では、SFBC0及びSFBC1が、実施例9とは異なる行列Kに従って、それぞれシンボルの系列データを符号化する。
[Example 9 ']
The transmission system 4 in the ninth embodiment performs the same processing as that of the ninth embodiment, but differs from the ninth embodiment in the following points. In the ninth embodiment, SFBC0 and SFBC1 each encode the symbol series data according to a matrix K different from the ninth embodiment.
 [実施例10]
 図15は、実施例10における送信システムの等価概念図である。SFBC0は、例えば式(1)の行列Jに従ってシンボルの系列データを符号化する。一方、SFBC1は例えば式(2)に示す行列Kに従ってシンボルの系列データを符号化する。送信システム4は、SFBC0でSFBC符号化して得た二つの送信信号をそれぞれA局のアンテナ0とB局のアンテナ2で伝送する。ここで、一例としてアンテナ0とアンテナ2は共に水平偏波で送信信号を送信する。すなわち、送信システム4は、SFBC0でSFBC符号化して得た二つの送信信号それぞれを互いに異なる送信装置かつ同じ偏波(同一偏波)で送信する。
[Example 10]
FIG. 15 is an equivalent conceptual diagram of the transmission system in the tenth embodiment. SFBC0 encodes the symbol series data in accordance with, for example, the matrix J in equation (1). On the other hand, SFBC1 encodes the symbol series data according to, for example, the matrix K shown in Expression (2). The transmission system 4 transmits two transmission signals obtained by SFBC encoding with SFBC0 using the antenna 0 of the A station and the antenna 2 of the B station, respectively. Here, as an example, both antenna 0 and antenna 2 transmit transmission signals with horizontal polarization. That is, the transmission system 4 transmits two transmission signals obtained by performing SFBC coding with SFBC0, using different transmission apparatuses and the same polarization (same polarization).
 また、送信システム4は、SFBC1でSFBC符号化して得た二つの送信信号をそれぞれA局のアンテナ1とB局のアンテナ3で伝送する。ここで、一例としてアンテナ1は垂直偏波で送信信号を送信し、アンテナ3も垂直偏波で送信信号を送信する。すなわち、送信システム4は、SFBC1でSFBC符号化して得た二つの送信信号それぞれを異なる送信装置から、かつ同じ偏波(同一偏波)で送信する。 Also, the transmission system 4 transmits two transmission signals obtained by performing SFBC encoding with SFBC 1 through the antenna 1 of the A station and the antenna 3 of the B station, respectively. As an example, the antenna 1 transmits a transmission signal with vertical polarization, and the antenna 3 also transmits a transmission signal with vertical polarization. That is, the transmission system 4 transmits two transmission signals obtained by performing SFBC encoding with SFBC1 from different transmission apparatuses and using the same polarization (same polarization).
 なお、アンテナ0及びアンテナ2が垂直偏波で、アンテナ1及びアンテナ3が水平偏波で送信信号を送信してもよい。 Note that the antenna 0 and the antenna 2 may transmit a transmission signal with vertical polarization, and the antenna 1 and the antenna 3 may transmit a transmission signal with horizontal polarization.
 実際の構成では、第1の変換部141は、例えば「S0、S2」を周波数fに「S0」、周波数f+1に「-S2」を割り当てた系列データに変換する。IFFT部161は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ0から例えば水平偏波で送信する。また、第3の変換部241は、例えば「S0、S2」を周波数fに「S2」、周波数f+1に「S0」を割り当てた系列データに変換する。IFFT部261は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ2から例えば水平偏波で送信する。 In an actual configuration, the first conversion unit 141 converts, for example, “S0, S2” into sequence data in which “S0” is assigned to the frequency f and “−S2 * ” is assigned to the frequency f + 1. The IFFT unit 161 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 0 in, for example, horizontal polarization. The third conversion unit 241 converts, for example, “S0, S2” into sequence data in which “S2” is assigned to the frequency f and “S0 * ” is assigned to the frequency f + 1. The IFFT unit 261 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 2 in, for example, horizontal polarization.
 第2の変換部142は、例えば「S1、S3」を周波数fに「S1」、周波数f+1に「S3」を割り当てた系列データに変換する。IFFT部162は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ1から例えば垂直偏波で送信する。また、第4の変換部242は、例えば「S1、S3」を周波数fに「S3」、周波数f+1に「-S1」を割り当てた系列データに変換する。IFFT部262は、変換後の信号を逆フーリエ変換(IFFT)して、IFFT後の信号をアンテナ3から例えば垂直偏波で送信する。 For example, the second conversion unit 142 converts “S1, S3” into sequence data in which “S1” is assigned to the frequency f and “S3 * ” is assigned to the frequency f + 1. The IFFT unit 162 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 1 with, for example, vertical polarization. Further, the fourth conversion unit 242 converts, for example, “S1, S3” into sequence data in which “S3” is assigned to the frequency f and “−S1 * ” is assigned to the frequency f + 1. The IFFT unit 262 performs inverse Fourier transform (IFFT) on the converted signal, and transmits the signal after IFFT from the antenna 3 by, for example, vertical polarization.
 以上、第10の実施形態において、SFBC符号化に用いる行列Kの2列目の各成分の符号が行列Jの2列目の対応する成分の符号とは異なる。視点を変えると、符号化部14及び符号化部24は、ブロック毎に符号化するものであって、該ブロック内の一の周波数(例えば、周波数f+1)において、送信装置間で同一の偏波で送信される上記符号化後のシンボルの符号が互いに異なり、上記一の周波数(例えば、周波数f+1)において、上記並列系列データのうち一方の系列データの符号化後の符号が他方の系列データの符号化後の符号と異なるように符号化する。これにより、B局から受信装置30への伝搬路で偏波回転があっても、後述する観測方程式が重複しないので、受信装置30は、受信信号から送信信号を算出することができる。その結果、B局から受信装置30への伝搬路で偏波回転があっても伝送特性が劣化せず、実施例9に比べて利点がある。 As described above, in the tenth embodiment, the code of each component in the second column of the matrix K used for SFBC encoding is different from the code of the corresponding component in the second column of the matrix J. If the viewpoint is changed, the encoding unit 14 and the encoding unit 24 perform encoding for each block, and the same polarization between the transmission apparatuses at one frequency (for example, frequency f + 1) in the block. In the one frequency (for example, frequency f + 1), the code after encoding of one of the parallel sequence data is different from the code of the other sequence data. Encoding is performed differently from the encoded code. Thereby, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the observation equation described later does not overlap, so that the receiving device 30 can calculate the transmission signal from the received signal. As a result, even if there is a polarization rotation in the propagation path from the B station to the receiving device 30, the transmission characteristics are not deteriorated, which is an advantage over the ninth embodiment.
 [実施例10’]
 実施例10’における送信システム4は、実施例10と同様の処理を行うが、実施例10と以下の点で異なる。実施例2’では、実施例2とは逆に、SFBC0が行列Kに従ってシンボルの系列データを符号化する。SFBC1が行列Jに従ってシンボルの系列データを符号化する。
[Example 10 ']
The transmission system 4 in the embodiment 10 ′ performs the same processing as that in the embodiment 10, but differs from the embodiment 10 in the following points. In the second embodiment, contrary to the second embodiment, SFBC0 encodes the symbol series data according to the matrix K. The SFBC 1 encodes the symbol series data according to the matrix J.
 <受信装置>  <Receiving device>
 続いて、受信装置30について説明する。図16は、各実施例に共通する受信装置30の構成を示す概略ブロック図である。受信装置30は、第1の受信アンテナ311、第2の受信アンテナ312、GI除去部321、322、フーリエ変換部33、伝送路応答推定部34、送信信号検出部35、並列直列変換部36、キャリア復調部37及び誤り訂正符号復号部38を備える。フーリエ変換部33は、FFT部331及びFFT部332を備える。 Subsequently, the receiving device 30 will be described. FIG. 16 is a schematic block diagram illustrating the configuration of the receiving device 30 common to the embodiments. The receiving device 30 includes a first receiving antenna 311, a second receiving antenna 312, GI removal units 321 and 322, a Fourier transform unit 33, a transmission path response estimation unit 34, a transmission signal detection unit 35, a parallel / serial conversion unit 36, A carrier demodulation unit 37 and an error correction code decoding unit 38 are provided. The Fourier transform unit 33 includes an FFT unit 331 and an FFT unit 332.
 第1の受信アンテナ311は、一例として水平偏波の信号を受信するアンテナである。第1の受信アンテナ311はRx0(水平)ともいう。第1の受信アンテナ311は、第1の送信装置10及び第2の送信装置20から伝送された信号のうち水平偏波の信号を受信し、受信した受信信号をGI除去部321へ出力する。 The first receiving antenna 311 is an antenna that receives a horizontally polarized signal as an example. The first receiving antenna 311 is also referred to as Rx0 (horizontal). The first reception antenna 311 receives a horizontally polarized signal among the signals transmitted from the first transmission device 10 and the second transmission device 20, and outputs the received reception signal to the GI removal unit 321.
 第2の受信アンテナ312は、一例として垂直偏波の信号を受信するアンテナである。第2の受信アンテナ312はRx1(垂直)ともいう。第2の受信アンテナ312は、第1の送信装置10及び第2の送信装置20から伝送された信号のうち垂直偏波の信号を受信し、受信した受信信号をGI除去部322へ出力する。 The second receiving antenna 312 is an antenna that receives a vertically polarized signal as an example. The second receiving antenna 312 is also referred to as Rx1 (vertical). The second reception antenna 312 receives a vertically polarized signal among the signals transmitted from the first transmission device 10 and the second transmission device 20, and outputs the received signal to the GI removal unit 322.
 なお、第1の受信アンテナ311が垂直偏波の信号を受信し、第2の受信アンテナ312が水平偏波の信号を受信してもよい。また、第1の受信アンテナ311が受信する信号の偏波と、第2の受信アンテナ312が受信する信号の偏波とがなす角度は直交していることが望ましいが、直交していなくてもよい。 Note that the first receiving antenna 311 may receive a vertically polarized signal, and the second receiving antenna 312 may receive a horizontally polarized signal. In addition, it is desirable that the angle formed by the polarization of the signal received by the first receiving antenna 311 and the polarization of the signal received by the second receiving antenna 312 be orthogonal, but they may not be orthogonal. Good.
 GI除去部321は、第1の受信アンテナ311から入力された受信信号からGIを除去し、除去後の信号をFFT部331へ出力する。 The GI removal unit 321 removes the GI from the reception signal input from the first reception antenna 311 and outputs the signal after removal to the FFT unit 331.
 同様に、GI除去部322は、第2の受信アンテナ312から入力された受信信号からGIを除去し、除去後の信号をFFT部332へ出力する。 Similarly, the GI removal unit 322 removes the GI from the reception signal input from the second reception antenna 312 and outputs the signal after removal to the FFT unit 332.
 FFT部331は、GI除去部321から入力された信号に対して、フーリエ変換を施し、フーリエ変換後の信号を伝送路応答推定部34へ出力する。 The FFT unit 331 performs Fourier transformation on the signal input from the GI removal unit 321 and outputs the signal after Fourier transformation to the transmission path response estimation unit 34.
 FFT部332は、GI除去部322から入力された信号に対して、フーリエ変換を施し、フーリエ変換後の信号を伝送路応答推定部34へ出力する。 The FFT unit 332 performs Fourier transformation on the signal input from the GI removal unit 322 and outputs the signal after Fourier transformation to the transmission path response estimation unit 34.
 伝送路応答推定部34は、FFT部331から入力された信号から既知のパイロット信号に由来する第1の信号を抽出する。同様に、伝送路応答推定部34は、FFT部332から入力された信号から既知のパイロット信号に由来する第2の信号を抽出する。伝送路応答推定部34は、抽出した第1の信号と第2の信号を参照して伝送路応答を推定する。伝送路応答推定部34は、算出した伝送路応答を送信信号検出部35へ出力する。 The transmission path response estimation unit 34 extracts a first signal derived from a known pilot signal from the signal input from the FFT unit 331. Similarly, the transmission path response estimation unit 34 extracts a second signal derived from a known pilot signal from the signal input from the FFT unit 332. The transmission path response estimation unit 34 estimates the transmission path response with reference to the extracted first signal and second signal. The transmission path response estimation unit 34 outputs the calculated transmission path response to the transmission signal detection unit 35.
 送信信号検出部35は、第1の送信装置10と第2の送信装置20における符号化規則、伝送路応答推定部34が算出した伝送路応答、及びフーリエ変換部33がフーリエ変換することで得られた信号(但し、パイロット信号に由来する信号を除く)を参照して、第1の送信装置10と第2の送信装置20が送信したシンボルを推定する。送信信号検出部35の詳細な処理は後述する。送信信号検出部35は、推定で得られたシンボルを、例えば並列な系列データとし、その並列な系列データを並列直列変換部36へ出力する。 The transmission signal detection unit 35 is obtained by performing the Fourier transform on the encoding rule in the first transmission device 10 and the second transmission device 20, the transmission channel response calculated by the transmission channel response estimation unit 34, and the Fourier transform unit 33. The symbols transmitted by the first transmitter 10 and the second transmitter 20 are estimated with reference to the received signals (however, excluding signals derived from pilot signals). Detailed processing of the transmission signal detector 35 will be described later. The transmission signal detection unit 35 uses the symbol obtained by the estimation as, for example, parallel series data, and outputs the parallel series data to the parallel-serial conversion unit 36.
 並列直列変換部36は、送信信号検出部35から入力された並列な系列データを、直列の系列データに変換し、変換後の系列データをキャリア復調部37へ出力する。 The parallel / serial converter 36 converts the parallel series data input from the transmission signal detector 35 into serial series data, and outputs the converted series data to the carrier demodulator 37.
 キャリア復調部37は、並列直列変換部36から入力された系列データに対して、復調処理を行う。具体的には、例えば、キャリア復調部37は、入力された系列データからLLR(対数尤度比)を算出する。そして、キャリア復調部37は、キャリア復調の結果得られた系列データを誤り訂正符号復号部38に出力する。 The carrier demodulation unit 37 performs a demodulation process on the series data input from the parallel / serial conversion unit 36. Specifically, for example, the carrier demodulation unit 37 calculates an LLR (log likelihood ratio) from the input sequence data. Then, the carrier demodulation unit 37 outputs the sequence data obtained as a result of the carrier demodulation to the error correction code decoding unit 38.
 誤り訂正符号復号部38は、キャリア復調部37から入力された系列データを用いて、例えばLDPC(Low-Density Parity-Check)符号の復号処理を施し、伝送路で発生したビット誤りの訂正を行う。 The error correction code decoding unit 38 performs decoding processing of, for example, LDPC (Low-Density Parity-Check) code using the sequence data input from the carrier demodulation unit 37, and corrects a bit error generated in the transmission path. .
 図17は、伝送システムを説明するための4×2MIMO伝送モデルである。同図において、y,yはそれぞれ水平偏波、垂直偏波の受信信号である。x、x、x、xは送信シンボル(求めたい信号)である。h00、h10、h01、h11、h02、h12、h03、h13はパイロット信号を使って推定した伝送路応答である。h00は、アンテナ0(水平)からRx0(水平)への伝送路応答である。h10は、アンテナ0(水平)からRx1(垂直)への伝送路応答である。h01は、アンテナ1(垂直)からRx0(水平)への伝送路応答である。h11は、アンテナ1(垂直)からRx1(垂直)への伝送路応答である。h02は、アンテナ2(水平)からRx0(水平)への伝送路応答である。h12は、アンテナ2(水平)からRx1(垂直)への伝送路応答である。h03は、アンテナ3(垂直)からRx0(水平)への伝送路応答である。h13は、アンテナ3(垂直)からRx1(垂直)への伝送路応答である。 FIG. 17 is a 4 × 2 MIMO transmission model for explaining the transmission system. In the figure, y 0 and y 1 are horizontal polarization and vertical polarization reception signals, respectively. x 0 , x 1 , x 2 , x 3 are transmission symbols (signals to be obtained). h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 are transmission path responses estimated using pilot signals. h 00 is a channel response of the antenna 0 (horizontal) Rx0 to (horizontal). h 10 is a transmission path response from the antenna 0 (horizontal) to Rx1 (vertical). h 01 is a transmission path response from the antenna 1 (vertical) to Rx0 (horizontal). h 11 is a transmission line response from the antenna 1 (vertical) to Rx1 (vertical). h 02 is a channel response of the antenna 2 from (horizontal) Rx0 to (horizontal). h 12 is a transmission path response from the antenna 2 (horizontal) to Rx1 (vertical). h 03 is a transmission path response from the antenna 3 (vertical) to Rx0 (horizontal). h 13 is a transmission line response from the antenna 3 (vertical) to Rx1 (vertical).
 図18は、理想的な伝送路の伝送路応答行列と反時計周りに90°の偏波回転がある伝送路の伝送路応答行列を説明する図である。同図において、偏波回転のない理想的な伝送路の伝送路応答行列Hidealと、理想的な伝送路を伝送された後の信号の偏波の状態を示す模式図C181の組が示されている。水平偏波HはX軸の正方向、垂直偏波VはY軸の正方向が正の値を表すものとする。ここで、伝送路応答行列Hidealの各成分をgij(iは0または1、jは0または1)とする。理想的な伝送路で伝送される環境では、g00、g11が1であり、g01が0、g10が0である。 FIG. 18 is a diagram for explaining a transmission path response matrix of an ideal transmission path and a transmission path response matrix of a transmission path having a 90 ° polarization rotation counterclockwise. In the figure, there is shown a set of a schematic diagram C181 showing a transmission path response matrix H ideal of an ideal transmission path without polarization rotation and a polarization state of a signal after being transmitted through the ideal transmission path. ing. It is assumed that the horizontal polarization H represents a positive value on the X axis, and the vertical polarization V represents a positive value on the Y axis. Here, each component of the transmission line response matrix H ideal is g ij (i is 0 or 1, j is 0 or 1). In an environment where transmission is performed through an ideal transmission path, g 00 and g 11 are 1, g 01 is 0, and g 10 is 0.
 同図において、反時計周りに90°の偏波回転がある伝送路の伝送路応答行列H90と、反時計周りに90°の偏波回転がある伝送路を伝送された後の信号の偏波の状態を示す模式図C182の組が示されている。ここで、伝送路応答行列H90の各成分をg’ij(iは0または1、jは0または1)とする。同図において、偏波が反時計回りに90度回転することによって、垂直偏波VがX軸の負方向を向くので、g’01が-1となる。また、反時計周りに90度回転することによって、水平偏波HがY軸の正方向を向くので、g’10が1である。また、g’00が0、g’11が0である。 In the figure, the transmission line response matrix H 90 of a transmission line having a 90 ° polarization rotation counterclockwise and the signal bias after being transmitted through the transmission line having a 90 ° polarization rotation counterclockwise. A set of schematic diagram C182 showing the state of the wave is shown. Here, each component of the transmission path response matrix H 90 is assumed to be g ′ ij (i is 0 or 1, j is 0 or 1). In the figure, since the polarization is rotated 90 degrees counterclockwise, the vertically polarized wave V is directed in the negative direction of the X axis, so g ′ 01 is −1. Further, by rotating 90 degrees counterclockwise, the horizontally polarized wave H is directed in the positive direction of the Y axis, so g ′ 10 is 1. Also, g ′ 00 is 0 and g ′ 11 is 0.
 続いて、実施例1~10について、下記の条件1または条件2のもとで、受信装置30の処理(整列方式)を説明する。条件1は、A局の伝送路応答行列H=Hidealであり、B局の伝送路応答行列H=Hidealである。条件2は、A局の伝送路応答行列H=Hidealであり、B局の伝送路応答行列H=H90である。 Subsequently, with respect to Embodiments 1 to 10, the processing (alignment method) of the receiving device 30 will be described under the following Condition 1 or Condition 2. Condition 1 is a transmission path response matrix H A = H ideal for the A station and a transmission path response matrix H B = H ideal for the B station. Condition 2 is a transmission path response matrix H A = H ideal of the A station, and a transmission path response matrix H B = H 90 of the B station.
 [実施例1]
 実施例1における伝送路応答推定部34と送信信号検出部35の処理について説明する。STBCでは、ある周波数fについて、時刻t、時刻t+1の受信信号をペアとする。時刻tの関係式は次の式(5)で表される。
[Example 1]
Processing of the transmission path response estimation unit 34 and the transmission signal detection unit 35 in the first embodiment will be described. In STBC, a received signal at time t and time t + 1 is paired for a certain frequency f. The relational expression at time t is expressed by the following expression (5).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 時刻t+1の関係式は次の式(6)で表される。 The relational expression at time t + 1 is expressed by the following expression (6).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 この例では、第1の送信装置10が送信した符号化後のシンボルは、式(5)の[x、x]及び式(6)の[-x 、-x ]である。また、この例では、第2の送信装置20が送信した符号化後のシンボルは、式(5)の[x、x]及び式(6)の[x 、x ]である。 In this example, the encoded symbols transmitted by the first transmission device 10 are [x 0 , x 1 ] in Equation (5) and [−x 2 * , −x 3 * ] in Equation (6). is there. In this example, the encoded symbols transmitted by the second transmitter 20 are [x 2 , x 3 ] in Equation (5) and [x 0 * , x 1 * ] in Equation (6). is there.
 式(5)及び式(6)を整列すると、整列結果として次の式(7)が得られる。 When the expressions (5) and (6) are aligned, the following expression (7) is obtained as an alignment result.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、右辺の一番左側の行列が各伝送路応答を成分とする伝送路応答行列Hである。伝送路応答行列Hは、既知のパイロット信号を用いて推定するものとする。 Here, the leftmost matrix on the right side is a transmission line response matrix H having each transmission line response as a component. The transmission line response matrix H is estimated using a known pilot signal.
 続いて、送信信号検出部35は、例えば式(7)に伝送路応答推定部34が算出した伝送路応答h00、h10、h01、h11、h02、h12、h03、h13と、各送信信号が伝送されて受信装置30が受信することにより得られたシンボルy(t)、y(t)、y(t+1)、y(t+1)を代入する。これにより、送信信号検出部35は、送信シンボルx、x、x、xを算出する。 Subsequently, the transmission signal detection unit 35, for example, the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , h calculated by the transmission path response estimation unit 34 in Expression (7). 13 and symbols y 0 (t), y 1 (t), y 0 (t + 1), and y 1 (t + 1) obtained by receiving each transmission signal and receiving by the receiving device 30 are substituted. Thereby, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 .
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)に時間変動がないと仮定し、hij(t)=hij(t+1)とする。条件1では式(7)は次の式(7-1)で表される。 Here, it is assumed that there is no time variation in the transmission path response h ij (i is 0 or 1, j is an integer of 0 to 3), and h ij (t) = h ij (t + 1). In Condition 1, Expression (7) is expressed by the following Expression (7-1).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 式(7-1)の伝送路応答行列Hにランク落ちがないので、式(7-1)の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Equation (7-1), there is no overlap in the four observation equations of Equation (7-1), and the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(7)は次の式(7-2)で表される。 Next, in Condition 2, Expression (7) is expressed by the following Expression (7-2).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 式(7-2)の伝送路応答行列Hの第1行の行ベクトルと第4行の行ベクトルは等しく、第2行の行ベクトルと第3行の行ベクトルは符号が反転したものであるので、式(7-2)の伝送路応答行列Hにランク落ちがある。式(7-2)では、観測方程式が二つであるのに対し、観測方程式に含まれる未知変数が四つとなるため、伝送路応答推定部34は観測方程式を解くことができない。よって、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。 The row vector of the first row and the row vector of the fourth row of the transmission line response matrix H of the equation (7-2) are equal, and the row vectors of the second row and the third row are obtained by inverting the signs. Therefore, there is a rank drop in the transmission line response matrix H of Expression (7-2). In equation (7-2), there are two observation equations, but there are four unknown variables included in the observation equation. Therefore, the transmission path response estimation unit 34 cannot solve the observation equation. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is not possible to correctly calculate the 2, x 3.
 なお、B局の受信信号に反時計回りに90°の偏波回転がある条件だけに限らず、B局の受信信号に反時計回りに270°の偏波回転がある条件でも、伝送路応答推定部34は観測方程式を解くことができない。このため送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。一方、B局の受信信号に反時計回りに90°及び270°以外の偏波回転がある条件では、観測方程式が重複しないため、伝送路応答推定部34は観測方程式を解くことができる。よって送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 The transmission line response is not limited to the condition that the received signal of the B station has a 90 ° polarization rotation counterclockwise, but also the condition that the received signal of the B station has a 270 ° polarization rotation counterclockwise. The estimation unit 34 cannot solve the observation equation. For this reason, the transmission signal detection unit 35 cannot correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 . On the other hand, under the condition that the received signal of station B has a polarization rotation other than 90 ° and 270 ° counterclockwise, the observation equation does not overlap, so that the transmission line response estimation unit 34 can solve the observation equation. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 .
 [実施例1’]
 続いて、実施例1’で条件1及び条件2で、伝送路応答推定部34が観測方程式を解くことができるか否かについて説明する。時刻tの関係式、時刻t+1の関係式及び整列結果は、それぞれ次の式(5)’、式(6)’及び式(7)’で表される。
[Example 1 ']
Subsequently, whether or not the transmission line response estimation unit 34 can solve the observation equation under the condition 1 and the condition 2 in the embodiment 1 ′ will be described. The relational expression at time t, the relational expression at time t + 1, and the alignment result are expressed by the following expressions (5) ′, (6) ′, and (7) ′, respectively.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)に時間変動がないと仮定し、hij(t)=hij(t+1)とする。条件1では式(7)’は次の式(7-1)’で表される。 Here, it is assumed that there is no time variation in the transmission path response h ij (i is 0 or 1, j is an integer of 0 to 3), and h ij (t) = h ij (t + 1). In Condition 1, Expression (7) ′ is expressed by the following Expression (7-1) ′.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 式(7-1)’の伝送路応答行列Hにランク落ちがないので、伝送路応答推定部34は観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Expression (7-1) ′, the transmission line response estimation unit 34 can solve the observation equation. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(7)’は次の式(7-2)’で表される。 Next, under condition 2, the expression (7) ′ is expressed by the following expression (7-2) ′.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 式(7-2)’の伝送路応答行列Hにランク落ちがある。式(7-2)’では、観測方程式が二つであるのに対し、観測方程式に含まれる未知変数が四つとなるため、伝送路応答推定部34は観測方程式を解くことができない。よって、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。 There is a rank drop in the transmission line response matrix H of Expression (7-2) ′. In equation (7-2) ′, there are two observation equations, but there are four unknown variables included in the observation equation, so the transmission line response estimation unit 34 cannot solve the observation equation. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is not possible to correctly calculate the 2, x 3.
 [実施例2]
 続いて、実施例2における送信信号検出部35の処理について説明する。時刻tの受信信号は、上述した式(5)で表される。時刻t+1の受信信号は次の式(8)で表される。
[Example 2]
Subsequently, processing of the transmission signal detection unit 35 in the second embodiment will be described. The received signal at time t is expressed by the above-described equation (5). The received signal at time t + 1 is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 式(5)及び式(8)を整列することにより、整列結果として次の式(9)が得られる。 Aligning Equation (5) and Equation (8) yields the following Equation (9) as the alignment result.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 ここで、伝送路応答推定部34は、実施例1と同様に既知のパイロット信号を用いて伝送路応答h00、h10、h01、h11、h02、h12、h03、h13を推定する。そして、送信信号検出部35は、実施例1と同様の処理で、送信シンボルx、x、x、xを算出する。 Here, the transmission path response estimation unit 34 uses the known pilot signals in the same manner as in the first embodiment to transmit the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , h 13. Is estimated. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)に時間変動がないと仮定し、hij(t)=hij(t+1)とする。条件1では式(9)は次の式(9-1)で表される。 Here, it is assumed that there is no time variation in the transmission path response h ij (i is 0 or 1, j is an integer of 0 to 3), and h ij (t) = h ij (t + 1). In Condition 1, Expression (9) is expressed by the following Expression (9-1).
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 式(9-1)の伝送路応答行列Hにランク落ちがないので、式(9-1)の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Equation (9-1), there is no overlap in the four observation equations of Equation (9-1), and the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(9)は次の式(9-2)で表される。 Next, in Condition 2, Expression (9) is expressed by the following Expression (9-2).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 式(9-2)の伝送路応答行列Hにランク落ちがないので、式(9-2)の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Equation (9-2), there is no overlap in the four observation equations of Equation (9-2), and the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
 [実施例2’]
 続いて、実施例2’で条件1及び条件2で、伝送路応答推定部34が観測方程式を解くことができるか否かについて説明する。時刻tの関係式は式(5)とする。時刻t+1の関係式及び整列結果は、それぞれ次の式(8)’及び式(9)’で表される。
[Example 2 ']
Subsequently, whether or not the transmission line response estimation unit 34 can solve the observation equation under the condition 1 and the condition 2 in the embodiment 2 ′ will be described. The relational expression at time t is assumed to be expression (5). The relational expression and the alignment result at time t + 1 are expressed by the following expressions (8) ′ and (9) ′, respectively.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)に時間変動がないと仮定し、hij(t)=hij(t+1)とする。条件1では式(9)’は次の式(9-1)’で表される。 Here, it is assumed that there is no time variation in the transmission path response h ij (i is 0 or 1, j is an integer of 0 to 3), and h ij (t) = h ij (t + 1). In Condition 1, Expression (9) ′ is expressed by the following Expression (9-1) ′.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 式(9-1)’の伝送路応答行列Hにランク落ちがないので、式(9-1)’の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Expression (9-1) ′, there is no overlap in the four observation equations of Expression (9-1) ′, and the transmission line response estimation unit 34 solves the observation equation. be able to. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(9)’は次の式(9-2)’で表される。 Next, under condition 2, the expression (9) ′ is expressed by the following expression (9-2) ′.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 式(9-2)’の伝送路応答行列Hにランク落ちがないので、式(9-2)’の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Expression (9-2) ′, there is no overlap in the four observation equations of Expression (9-2) ′, and the transmission line response estimation unit 34 solves the observation equation. be able to. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
 [実施例3]
 続いて、実施例3における送信信号検出部35の処理について説明する。時刻tの受信信号が式(5)で表されるとすると、時刻t+1の受信信号は次の式(10)で表される。ここで、図17におけるxは図6のS2に対応し、xはS3に対応している。
[Example 3]
Subsequently, processing of the transmission signal detection unit 35 in the third embodiment will be described. If the received signal at time t is expressed by equation (5), the received signal at time t + 1 is expressed by equation (10) below. Here, x 3 in FIG. 17 corresponds to step S2 of FIG. 6, x 2 corresponds to S3.
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 式(5)及び式(10)を整列することにより、整列結果として次の式(11)が得られる。 Aligning Expression (5) and Expression (10) yields the following Expression (11) as an alignment result.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 ここで、伝送路応答推定部34は、実施例1と同様の処理で、伝送路応答h00、h10、h01、h11、h02、h12、h03、h13を算出する。そして、送信信号検出部35は、実施例1と同様の処理で、送信シンボルx、x、x、xを算出する。 Here, the transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)に時間変動がないと仮定し、hij(t)=hij(t+1)とする。条件1では、式(11)は次の式(11-1)となる。 Here, it is assumed that there is no time variation in the transmission path response h ij (i is 0 or 1, j is an integer of 0 to 3), and h ij (t) = h ij (t + 1). Under condition 1, equation (11) becomes the following equation (11-1).
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 式(11-1)の伝送路応答行列Hにランク落ちがないので、式(11-1)の各行の観測方程式に重複が発生せず、伝送路応答推定部34はこれら四つの観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを算出することができる。 Since there is no rank drop in the transmission line response matrix H of Equation (11-1), there is no duplication in the observation equations in each row of Equation (11-1), and the transmission line response estimation unit 34 determines these four observation equations. Can be solved. Therefore, the transmission signal detector 35 can calculate the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(11)は次の式(11-2)で表される。 Next, in Condition 2, Expression (11) is expressed by the following Expression (11-2).
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 式(11-2)の伝送路応答行列Hにランク落ちがないので、式(11-2)の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Expression (11-2), there is no overlap in the four observation equations of Expression (11-2), and the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
 [実施例3’]
 続いて、実施例3’で条件1及び条件2で、伝送路応答推定部34が観測方程式を解くことができるか否かについて説明する。時刻tの関係式は式(5)とする。時刻t+1の関係式及び整列結果は、それぞれ次の式(10)’及び式(11)’で表される。
[Example 3 ']
Subsequently, whether or not the transmission line response estimation unit 34 can solve the observation equation under the condition 1 and the condition 2 in the embodiment 3 ′ will be described. The relational expression at time t is assumed to be expression (5). The relational expression and the alignment result at time t + 1 are expressed by the following expressions (10) ′ and (11) ′, respectively.
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)に時間変動がないと仮定し、hij(t)=hij(t+1)とする。条件1では式(11)’は次の式(11-1)’で表される。 Here, it is assumed that there is no time variation in the transmission path response h ij (i is 0 or 1, j is an integer of 0 to 3), and h ij (t) = h ij (t + 1). In Condition 1, Expression (11) ′ is expressed by the following Expression (11-1) ′.
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
 式(11-1)’の伝送路応答行列Hにランク落ちがないので、式(11-1)’の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Expression (11-1) ′, there is no overlap in the four observation equations of Expression (11-1) ′, and the transmission line response estimation unit 34 solves the observation equation. be able to. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(11)’は次の式(11-2)’で表される。 Next, under condition 2, the expression (11) ′ is expressed by the following expression (11-2) ′.
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
 式(11-2)’の伝送路応答行列Hにランク落ちがないので、式(11-2)’の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Expression (11-2) ′, there is no overlap in the four observation equations of Expression (11-2) ′, and the transmission line response estimation unit 34 solves the observation equation. be able to. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 [実施例4]
 続いて、実施例4における送信信号検出部35の処理について説明する。時刻tの受信信号が式(5)であったとすると、時刻t+1の受信信号は次の式(12)で表される。
[Example 4]
Subsequently, processing of the transmission signal detection unit 35 in the fourth embodiment will be described. If the received signal at time t is Equation (5), the received signal at time t + 1 is represented by the following Equation (12).
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
 また、式(5)及び式(12)を整列することにより、整列結果として次の式(13)が得られる。 Further, by aligning the equations (5) and (12), the following equation (13) is obtained as an alignment result.
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 ここで、伝送路応答推定部34は、実施例1と同様の処理で、伝送路応答h00、h10、h01、h11、h02、h12、h03、h13を算出する。そして、送信信号検出部35は、実施例1と同様の処理で、送信シンボルx、x、x、xを算出する。 Here, the transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)に時間変動がないと仮定し、hij(t)=hij(t+1)とする。条件1では、式(13)は次の式(13-1)となる。 Here, it is assumed that there is no time variation in the transmission path response h ij (i is 0 or 1, j is an integer of 0 to 3), and h ij (t) = h ij (t + 1). Under condition 1, equation (13) becomes the following equation (13-1).
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 式(13-1)の伝送路応答行列Hにランク落ちがあるので、式(13-1)の四つの観測方程式に重複が発生し、伝送路応答推定部34は観測方程式を解くことができない。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。 Since there is a rank drop in the transmission line response matrix H of the equation (13-1), the four observation equations of the equation (13-1) overlap, and the transmission line response estimation unit 34 cannot solve the observation equation. . Therefore, the transmission signal detector 35 cannot correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(13)は次の式(13-2)で表される。 Next, in Condition 2, Expression (13) is expressed by the following Expression (13-2).
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
 式(13-2)の伝送路応答行列Hにランク落ちがないので、式(13-2)の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Expression (13-2), there is no overlap in the four observation equations of Expression (13-2), and the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
 [実施例4’]
 続いて、実施例4’で条件1及び条件2で、伝送路応答推定部34が観測方程式を解くことができるか否かについて説明する。時刻tの関係式は式(5)とする。時刻t+1の関係式及び整列結果は、それぞれ次の式(12)’及び式(13)’で表される。
[Example 4 ']
Subsequently, whether or not the transmission line response estimation unit 34 can solve the observation equation under the condition 1 and the condition 2 in the embodiment 4 ′ will be described. The relational expression at time t is assumed to be expression (5). The relational expression and alignment result at time t + 1 are expressed by the following expressions (12) ′ and (13) ′, respectively.
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)に時間変動がないと仮定し、hij(t)=hij(t+1)とする。条件1では式(13)’は次の式(13-1)’で表される。 Here, it is assumed that there is no time variation in the transmission path response h ij (i is 0 or 1, j is an integer of 0 to 3), and h ij (t) = h ij (t + 1). In Condition 1, Expression (13) ′ is expressed by the following Expression (13-1) ′.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
 式(13-1)’の伝送路応答行列Hにランク落ちがあるので、式(13-1)’の四つの観測方程式に重複が発生し、伝送路応答推定部34は観測方程式を解くことができない。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。 Since there is a rank drop in the transmission line response matrix H of the equation (13-1) ′, the four observation equations of the equation (13-1) ′ are overlapped, and the transmission line response estimation unit 34 solves the observation equation. I can't. Therefore, the transmission signal detector 35 cannot correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(13)’は次の式(13-2)’で表される。 Next, under condition 2, the expression (13) ′ is expressed by the following expression (13-2) ′.
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
 式(13-2)’の伝送路応答行列Hにランク落ちがないので、式(13-2)’の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Expression (13-2) ′, there is no overlap in the four observation equations of Expression (13-2) ′, and the transmission line response estimation unit 34 solves the observation equation. be able to. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 [実施例5]
 続いて、実施例5における送信信号検出部35の処理について説明する。時刻tの関係式が式(5)で表される。時刻t+1の関係式及び整列結果は、それぞれ次の式(14)及び式(15)で表される。ここで、x、x、x、xは、それぞれ図10のS0、S1、-S2、-S3に対応する。
[Example 5]
Subsequently, processing of the transmission signal detection unit 35 in the fifth embodiment will be described. A relational expression at time t is expressed by Expression (5). The relational expression and alignment result at time t + 1 are expressed by the following expressions (14) and (15), respectively. Here, x 0 , x 1 , x 2 , and x 3 correspond to S 0, S 1, −S 2 * , and −S 3 * in FIG. 10, respectively.
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 ここで、式(15)は式(7)と一致する。このため、実施例1と同様の結果となり、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。一方、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。 Here, equation (15) matches equation (7). For this reason, the result is the same as in the first embodiment, and the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. It can be calculated correctly. On the other hand, under the condition that there is no polarization rotation in the transmission path of the A station, but there is a 90 ° polarization rotation counterclockwise in the transmission path of the B station, the transmission signal detection unit 35 transmits the transmission symbols x 0 , x 1 , x it is not possible to correctly calculate the 2, x 3.
 なお、伝送路応答推定部34は、実施例1と同様の処理で、伝送路応答h00、h10、h01、h11、h02、h12、h03、h13を算出する。そして、送信信号検出部35は、実施例1と同様の処理で、送信シンボルx、x、x、xを算出する。 The transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
 [実施例5’]
 続いて、実施例5’で条件1及び条件2で、伝送路応答推定部34が観測方程式を解くことができるか否かについて説明する。時刻tの関係式は式(5)で表される。時刻t+1の関係式及び整列結果は、それぞれ次の式(14)’及び式(15)’で表される。
[Example 5 ']
Subsequently, whether or not the transmission line response estimation unit 34 can solve the observation equation under the conditions 1 and 2 in the embodiment 5 ′ will be described. The relational expression at time t is expressed by Expression (5). The relational expression and the alignment result at time t + 1 are expressed by the following expressions (14) ′ and (15) ′, respectively.
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
 ここで、式(15)’は式(7)’と一致する。このため、実施例1’と同様の結果となり、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。一方、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。 Here, the expression (15) ′ matches the expression (7) ′. For this reason, the result is the same as in the first embodiment, and the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. Can be calculated correctly. On the other hand, under the condition that there is no polarization rotation in the transmission path of the A station, but there is a 90 ° polarization rotation counterclockwise in the transmission path of the B station, the transmission signal detection unit 35 transmits the transmission symbols x 0 , x 1 , x it is not possible to correctly calculate the 2, x 3.
 [実施例6]
 続いて、実施例6における送信信号検出部35の処理について説明する。時刻tの受信信号が式(5)で表される。時刻t+1の関係式及び整列結果は、それぞれ次の式(16)及び式(17)で表される。ここで、x、x、x、xは、それぞれ図11のS0、S1、-S2、S3に対応する。
[Example 6]
Subsequently, processing of the transmission signal detection unit 35 in the sixth embodiment will be described. The received signal at time t is expressed by equation (5). The relational expression and the alignment result at time t + 1 are expressed by the following expressions (16) and (17), respectively. Here, x 0 , x 1 , x 2 , and x 3 correspond to S 0, S 1, −S 2 * , and S 3 * in FIG. 11, respectively.
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000052
 ここで式(17)は式(9)と一致する。このため、実施例2と同様の結果となり、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。また、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件でも、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Here, equation (17) matches equation (9). For this reason, the result is the same as that of the second embodiment, and the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. It can be calculated correctly. Further, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x even under the condition that there is no polarization rotation in the transmission path of the A station but there is a 90 ° polarization rotation counterclockwise in the transmission path of the B station. it is possible to correctly calculate the 2, x 3.
 なお、伝送路応答推定部34は、実施例1と同様の処理で、伝送路応答h00、h10、h01、h11、h02、h12、h03、h13を算出する。そして、送信信号検出部35は、実施例1と同様の処理で、送信シンボルx、x、x、xを算出する。 The transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
 また、実施例6’は実施例2’と同様の結果となるため、その説明を省略する。 Also, since Example 6 'gives the same result as Example 2', the description thereof is omitted.
 [実施例7]
 続いて、実施例7における送信信号検出部35の処理について説明する。時刻tの受信信号が式(5)で表される。時刻t+1の関係式及び整列結果は、それぞれ次の式(18)及び式(19)で表される。ここで、x、x、x、xは、それぞれ図12のS0、S1、-S3、-S2に対応する。
[Example 7]
Subsequently, processing of the transmission signal detection unit 35 in the seventh embodiment will be described. The received signal at time t is expressed by equation (5). The relational expression and the alignment result at time t + 1 are expressed by the following expressions (18) and (19), respectively. Here, x 0 , x 1 , x 2 , and x 3 correspond to S 0, S 1, −S 3 * , and −S 2 * in FIG. 12, respectively.
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000054
 ここで式(19)は式(11)と一致する。このため、実施例3と同様の結果となり、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを算出することができる。更に、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件でも、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Here, equation (19) coincides with equation (11). For this reason, the result is the same as in the third embodiment, and the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. Can be calculated. Further, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x even under the condition that there is no polarization rotation in the transmission path of the A station but there is a 90 ° polarization rotation counterclockwise in the transmission path of the B station. it is possible to correctly calculate the 2, x 3.
 なお、伝送路応答推定部34は、実施例1と同様の処理で、伝送路応答h00、h10、h01、h11、h02、h12、h03、h13を算出する。そして、送信信号検出部35は、実施例1と同様の処理で、送信シンボルx、x、x、xを算出する。 The transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
 また、実施例7’は実施例3’と同様の結果となるため、その説明を省略する。 Further, since Example 7 'has the same result as Example 3', the description thereof is omitted.
 [実施例8]
 続いて、実施例8における送信信号検出部35の処理について説明する。時刻tの受信信号が式(5)で表される。時刻t+1の関係式及び整列結果は、それぞれ次の式(20)及び式(21)で表される。ここで、x、x、x、xは、それぞれ図13のS0、S1、S3、-S2に対応する。
[Example 8]
Subsequently, processing of the transmission signal detection unit 35 in the eighth embodiment will be described. The received signal at time t is expressed by equation (5). The relational expression and the alignment result at time t + 1 are expressed by the following expressions (20) and (21), respectively. Here, x 0 , x 1 , x 2 , and x 3 correspond to S 0, S 1, S 3 * , and −S 2 * in FIG. 13, respectively.
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000056
 ここで式(21)は式(13)と一致する。このため、実施例4と同様の結果となり、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。一方、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Here, equation (21) coincides with equation (13). For this reason, the result is the same as that of the fourth embodiment, and the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x 2 , x 3 under the condition that there is no polarization rotation in the transmission paths of both the A station and the B station. It cannot be calculated correctly. On the other hand, under the condition that there is no polarization rotation in the transmission path of the A station, but there is a 90 ° polarization rotation counterclockwise in the transmission path of the B station, the transmission signal detection unit 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
 なお、伝送路応答推定部34は、実施例1と同様の処理で、伝送路応答h00、h10、h01、h11、h02、h12、h03、h13を算出する。そして、送信信号検出部35は、実施例1と同様の処理で、送信シンボルx、x、x、xを算出する。 The transmission path response estimation unit 34 calculates the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the first embodiment. Then, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the first embodiment.
 また、実施例8’は実施例4’と同様の結果となるため、その説明を省略する。 In addition, since Example 8 'has the same result as Example 4', its description is omitted.
 [実施例9]
 続いて、実施例9における伝送路応答推定部34と送信信号検出部35の処理について説明する。実施例9では、受信信号はSFBC符号化されているため、受信装置30はある時刻tにおいて、周波数f、周波数f+1の受信信号をペアとする。周波数fの関係式は次の式(22)で表される。
[Example 9]
Subsequently, processing of the transmission path response estimation unit 34 and the transmission signal detection unit 35 in the ninth embodiment will be described. In the ninth embodiment, since the reception signal is SFBC-encoded, the reception device 30 makes a pair of reception signals of frequency f and frequency f + 1 at a certain time t. The relational expression of the frequency f is expressed by the following expression (22).
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000057
 また、周波数f+1の関係式は次の式(23)で表される。 The relational expression of the frequency f + 1 is expressed by the following expression (23).
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000058
 式(22)及び式(23)を整列することにより、整列結果として次の式(24)が得られる。 Aligning Expression (22) and Expression (23) yields the following Expression (24) as an alignment result.
Figure JPOXMLDOC01-appb-M000059
Figure JPOXMLDOC01-appb-M000059
 ここで、伝送路応答推定部34は、既知のパイロット信号を用いて伝送路応答行列Hを推定するものとする。 Here, it is assumed that the transmission line response estimation unit 34 estimates the transmission line response matrix H using a known pilot signal.
 続いて、送信信号検出部35は、例えば式(24)に伝送路応答推定部34が算出した伝送路応答h00、h10、h01、h11、h02、h12、h03、h13と、各送信信号が伝送されて受信装置30が受信することにより得られたシンボルy(f)、y(f)、y(f+1)、y(f+1)を代入する。これにより、送信信号検出部35は、送信シンボルx、x、x、xを算出する。 Subsequently, the transmission signal detection unit 35, for example, the transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , h calculated by the transmission path response estimation unit 34 in Expression (24). 13 and symbols y 0 (f), y 1 (f), y 0 (f + 1), and y 1 (f + 1) obtained by transmitting each transmission signal and receiving by the receiving device 30 are substituted. Thereby, the transmission signal detection unit 35 calculates the transmission symbols x 0 , x 1 , x 2 , x 3 .
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)が周波数方向に変化がないと仮定し、hij(f)=hij(f+1)とする。条件1では式(24)は次の式(24-1)となる。 Here, it is assumed that the transmission line response h ij (i is 0 or 1, j is an integer of 0 to 3) does not change in the frequency direction, and h ij (f) = h ij (f + 1). Under condition 1, equation (24) becomes the following equation (24-1).
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000060
 式(24-1)の伝送路応答行列Hにランク落ちがないので、式(24-1)の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Equation (24-1), there is no overlap in the four observation equations of Equation (24-1), and the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(24)は次の式(24-2)で表される。 Next, in Condition 2, Expression (24) is expressed by the following Expression (24-2).
Figure JPOXMLDOC01-appb-M000061
Figure JPOXMLDOC01-appb-M000061
 式(24-2)の伝送路応答行列Hにランク落ちがあるので、式(24-2)の四つの観測方程式に重複が発生し、伝送路応答推定部34は観測方程式を解くことができない。よって、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。 Since there is a rank drop in the transmission line response matrix H of Expression (24-2), the four observation equations of Expression (24-2) are duplicated, and the transmission line response estimation unit 34 cannot solve the observation equation. . Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is not possible to correctly calculate the 2, x 3.
 なお、B局の伝送路に反時計回りに90°の偏波回転がある条件だけに限らず、B局の伝送路に反時計回りに270°の偏波回転がある条件でも、伝送路応答推定部34は観測方程式を解くことができない。このため、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができない。一方、B局の伝送路に90°及び270°以外の偏波回転がある条件では、観測方程式が重複しないため、伝送路応答推定部34は観測方程式を解くことができる。よって、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Note that the transmission path response is not limited to the condition in which the transmission path of the B station has a 90 ° polarization rotation counterclockwise, but also in the condition in which the B station transmission path has a 270 ° polarization rotation counterclockwise. The estimation unit 34 cannot solve the observation equation. For this reason, the transmission signal detection unit 35 cannot correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 . On the other hand, under the condition where the transmission path of the B station has polarization rotations other than 90 ° and 270 °, the observation equations do not overlap, so the transmission channel response estimation unit 34 can solve the observation equations. Therefore, the transmission signal detecting unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 .
 なお、実施例9’は実施例9と同じ結果となるので、その説明を省略する。 In addition, since Example 9 'has the same result as Example 9, its description is omitted.
 [実施例10]
 続いて、実施例10における送信信号検出部35の処理について説明する。周波数fの受信信号は上述した式(24)で表される。時刻f+1の関係式及び整列結果は、それぞれ次の式(25)及び式(26)で表される。
[Example 10]
Subsequently, processing of the transmission signal detection unit 35 in the tenth embodiment will be described. The received signal of frequency f is expressed by the above-described equation (24). The relational expression and the alignment result at time f + 1 are represented by the following expressions (25) and (26), respectively.
Figure JPOXMLDOC01-appb-M000062
Figure JPOXMLDOC01-appb-M000062
Figure JPOXMLDOC01-appb-M000063
Figure JPOXMLDOC01-appb-M000063
 伝送路応答推定部34は、実施例9と同様の処理で、伝送路応答h00、h10、h01、h11、h02、h12、h03、h13を算出する。そして、送信信号検出部35は、実施例9と同様の処理で、送信シンボルx、x、x、xを算出する。 The transmission path response estimation unit 34 calculates transmission path responses h 00 , h 10 , h 01 , h 11 , h 02 , h 12 , h 03 , and h 13 by the same processing as in the ninth embodiment. Then, the transmission signal detection unit 35 calculates transmission symbols x 0 , x 1 , x 2 , x 3 by the same processing as in the ninth embodiment.
 ここで、伝送路応答hij(iは0または1、jは0~3の整数)が周波数方向に変化がないと仮定し、hij(f)=hij(f+1)とする。条件1では式(26)は次の式(26-1)となる。 Here, it is assumed that the transmission line response h ij (i is 0 or 1, j is an integer of 0 to 3) does not change in the frequency direction, and h ij (f) = h ij (f + 1). Under condition 1, equation (26) becomes the following equation (26-1).
Figure JPOXMLDOC01-appb-M000064
Figure JPOXMLDOC01-appb-M000064
 式(26-1)の伝送路応答行列Hにランク落ちがないので、式(26-1)の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局およびB局双方の伝送路で偏波回転がない条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Equation (26-1), there is no overlap in the four observation equations of Equation (26-1), and the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, the transmission signal detection unit 35 can correctly calculate the transmission symbols x 0 , x 1 , x 2 , and x 3 on the condition that there is no polarization rotation in the transmission paths of both the A station and the B station.
 次に、条件2では式(26)は次の式(26-2)で表される。 Next, in Condition 2, Expression (26) is expressed by the following Expression (26-2).
Figure JPOXMLDOC01-appb-M000065
Figure JPOXMLDOC01-appb-M000065
 式(26-2)の伝送路応答行列Hにランク落ちがないので、式(26-2)の四つの観測方程式に重複が発生せず、伝送路応答推定部34は観測方程式を解くことができる。よって、A局の伝送路で偏波回転がないがB局の伝送路に反時計回りに90°の偏波回転がある条件では、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 Since there is no rank drop in the transmission line response matrix H of Equation (26-2), there is no overlap in the four observation equations of Equation (26-2), and the transmission line response estimation unit 34 can solve the observation equation. it can. Therefore, under the condition that there is no polarization rotation in the transmission path of the station A but there is a 90 ° polarization rotation in the counterclockwise direction in the transmission path of the station B, the transmission signal detector 35 transmits the transmission symbols x 0 , x 1 , x it is possible to correctly calculate the 2, x 3.
 なお、実施例10’は実施例10と同じ結果となるので、その説明を省略する。 In addition, since Example 10 'has the same result as Example 10, the description is abbreviate | omitted.
 図19を用いて、上述の説明をまとめる。図19は、A局の伝送路応答行列Hが理想のときに、B局の伝送路応答行列Hを変化させて、伝送路応答行列Hのランク落ちありなしを判定した結果を表す表である。同図において、B局の伝送路が理想環境の場合、反時計周りに90°回転する場合、反時計周りに180°回転する場合、反時計周りに270°回転する場合で、各実施例でランク落ちがある場合を示している。なお、反時計180°回転、270°回転の場合は、結果だけ図19に示されている。 The above description will be summarized with reference to FIG. FIG. 19 is a table showing the result of determining whether the rank of the transmission line response matrix H has dropped or not by changing the transmission line response matrix H B of the B station when the transmission line response matrix H A of the A station is ideal. It is. In the figure, when the transmission path of station B is in an ideal environment, it rotates 90 ° counterclockwise, rotates 180 ° counterclockwise, rotates 270 ° counterclockwise, The case where there is a rank drop is shown. In the case of the counterclockwise rotation of 180 ° and 270 °, only the result is shown in FIG.
 同図に示すように、実施例2、2’、3、3’、6、6’、7、7’、10、10’の場合、B局の伝送路の偏波回転角度を変化させても、伝送路応答行列Hのランク落ちがない。よって、実施例2、2’、3、3’、6、6’、7、7’、10、10’の場合、B局の伝送路に偏波回転があっても、送信信号検出部35は送信シンボルx、x、x、xを正しく算出することができる。 As shown in the figure, in the case of Examples 2, 2 ′, 3, 3 ′, 6, 6 ′, 7, 7 ′, 10, 10 ′, the polarization rotation angle of the transmission path of station B is changed. However, the rank of the transmission line response matrix H does not drop. Therefore, in the case of Embodiments 2, 2 ′, 3, 3 ′, 6, 6 ′, 7, 7 ′, 10, 10 ′, even if there is polarization rotation in the transmission path of the B station, the transmission signal detection unit 35 Can correctly calculate the transmission symbols x 0 , x 1 , x 2 , x 3 .
 続いて、各実施例の伝送特性を評価した結果について説明する。実施例1のSTBC(同一偏波)、実施例3のSTBC(交差偏波)、実施例9のSFBC(同一偏波)、詳細の説明を省略した実施例11(図3参照)のSFBC(交差偏波)を適用したSTC-SDM方式の伝送特性について、図20に示す系統で評価を行った。比較のため,STCを適用しない場合についても同様に評価した。 Next, the results of evaluating the transmission characteristics of each example will be described. STBC (same polarization) of Example 1, STBC (cross polarization) of Example 3, SFBC (same polarization) of Example 9, and SFBC of Example 11 (see FIG. 3) with detailed description omitted ( The transmission characteristics of the STC-SDM system to which (cross polarization) is applied were evaluated using the system shown in FIG. For comparison, the case where STC was not applied was similarly evaluated.
 図20は、計算機シミュレーションの系統図である。同図において、MIMO-OFDM変調器として機能するA局及びB局は、PN符号発生部が発生させたPN符号を受け取る。A局及びB局は、受け取ったPN符号からそれぞれ送信信号を生成する。A局は、水平偏波(H)の送信信号(以下、A局水平偏波信号)及び垂直偏波(V)の送信信号(以下、A局垂直偏波信号)を送信する。B局は、水平偏波(H)の送信信号(以下、B局水平偏波信号)及び垂直偏波(V)の送信信号(以下、B局垂直偏波信号)を送信する。B局が送信したB局水平偏波信号及びB局垂直偏波信号に対して、遅延の付加(Delay)、受信信号の電力の変更(ATT)、位相シフト(Phase Shift)、偏波間の受信電力の変更処理(ATT/Amp)及び偏波の回転付加(Polarization Rotation)という一連の処理が行われる。この一連の処理後のB局水平偏波信号がA局から送信されたA局水平偏波信号に加算され、受信水平偏波信号が生成される。同様に、その一連の処理後のB局垂直偏波信号がA局から送信されたA局垂直偏波信号に加算され、受信垂直偏波信号が生成される。その後、受信水平偏波信号及び受信垂直偏波信号にノイズが加えられる。そして、MIMO-OFDM復調器としての受信装置30は、ノイズが加えられた後の受信水平偏波信号及び受信垂直偏波信号を復調する。そして、ビット誤り率測定部が、復調で得られたデータに対してビット誤り率を測定する。 FIG. 20 is a system diagram of computer simulation. In the figure, station A and station B functioning as a MIMO-OFDM modulator receive the PN code generated by the PN code generator. Stations A and B each generate a transmission signal from the received PN code. The A station transmits a horizontally polarized wave (H) transmission signal (hereinafter, “A station horizontally polarized signal”) and a vertically polarized wave (V) transmission signal (hereinafter, “A station vertically polarized signal”). The B station transmits a horizontally polarized wave (H) transmission signal (hereinafter referred to as B station horizontally polarized signal) and a vertically polarized wave (V) transmission signal (hereinafter referred to as B station vertically polarized signal). Addition of delay (Delay), change of received signal power (ATT), phase shift (Phase Shift), reception between polarized waves for B station horizontal polarization signal and B station vertical polarization signal transmitted by B station A series of processes of power change processing (ATT / Amp) and polarization rotation (Polarization Rotation) are performed. The B-station horizontal polarization signal after this series of processing is added to the A-station horizontal polarization signal transmitted from the A station, and a reception horizontal polarization signal is generated. Similarly, the B-station vertical polarization signal after the series of processing is added to the A-station vertical polarization signal transmitted from the A station, and a reception vertical polarization signal is generated. Thereafter, noise is added to the received horizontal polarization signal and the received vertical polarization signal. Then, the receiving device 30 as a MIMO-OFDM demodulator demodulates the received horizontal polarization signal and the reception vertical polarization signal after the noise is added. Then, the bit error rate measuring unit measures the bit error rate for the data obtained by demodulation.
 ここで、A局、B局の偏波間平均受信電力の比をD/U[dB]とし、A局からの受信信号は、水平・垂直偏波の受信電力が等しいと仮定した。B局の信号については,受信時にA局の信号に対してB局の送信信号が遅延している遅延時間τ[μsec]、受信時にA局の信号に対してB局の送信信号がシフトしている位相シフト量θ=90[°]、偏波間受信電力差δ[dB]、受信時の両偏波の成す角度φ[°]、送信から受信までに両偏波が回転する回転角度χ[°]をパラメータとして設定した。受信C/N[dB]は、A局の信号の受信電力に対する雑音電力として規定した。B局の信号を第1の受信アンテナ311及び第2の受信アンテナ312のサイドローブで受信する環境を想定し、B局の信号の受信特性に変化を与え、伝送特性の検証を行った。 Here, it is assumed that the ratio of the average received power between the polarizations of the A station and the B station is D / U [dB], and the received signals from the A station have the same horizontal and vertical polarization received power. For the B station signal, the delay time τ [μsec] in which the B station transmission signal is delayed with respect to the A station signal during reception, and the B station transmission signal shifts with respect to the A station signal during reception. Phase shift amount θ = 90 [°], received power difference δ [dB] between polarizations, angle φ [°] formed by both polarizations during reception, and rotation angle χ at which both polarizations rotate from transmission to reception [°] was set as a parameter. The reception C / N [dB] is defined as the noise power with respect to the reception power of the signal of the station A. Assuming an environment in which the signals of the B station are received by the side lobes of the first receiving antenna 311 and the second receiving antenna 312, the reception characteristics of the signals of the B station are changed, and the transmission characteristics are verified.
 図21は、計算機シミュレーションにおける伝送パラメータである。帯域幅、FFTサイズ、GI比、パイロット信号比率は、地上デジタル放送用のISDB(Integarated Services Digital Broadcasting)であるISDB-T準拠とした。 FIG. 21 shows transmission parameters in computer simulation. The bandwidth, FFT size, GI ratio, and pilot signal ratio were compliant with ISDB-T, which is ISDB (Integrated Services Digital Broadcasting) for terrestrial digital broadcasting.
 (1)高D/U環境のビット誤り率特性 (1) Bit error rate characteristics in high D / U environment
 高D/UのSFN環境として、A局からの信号のみを受信できる環境(D/U=∞)で、受信C/Nに対するビット誤り率(BER:Bit Error Rate)を評価した。図22は、高D/U環境のビット誤り率特性のシミュレーション結果である。同図は、AWGN(Additive White Gaussian Noise:加法性ホワイトガウスノイズ)環境におけるシミュレーション結果である。ここで,ビット誤り率が1×10-7以下となるC/Nを所要C/Nと規定する。STCあり、なしに関わらず、所要C/Nは約26dBとなっており、高D/UのSFN環境においては、STCの有無によらず伝送特性はほぼ等しくなる。 As a high D / U SFN environment, the bit error rate (BER: Bit Error Rate) with respect to the received C / N was evaluated in an environment (D / U = ∞) in which only the signal from the A station can be received. FIG. 22 shows a simulation result of bit error rate characteristics in a high D / U environment. This figure is a simulation result in an AWGN (Additive White Gaussian Noise) environment. Here, a C / N with a bit error rate of 1 × 10 −7 or less is defined as a required C / N. With or without STC, the required C / N is about 26 dB. In a high D / U SFN environment, the transmission characteristics are almost equal regardless of the presence or absence of STC.
 (2)低D/U環境の遅延時間特性 (2) Delay time characteristics of low D / U environment
 低D/UのSFN環境として、A局とB局の受信電力が等しい環境(D/U=0)で、B局の遅延時間τに対する所要C/Nを評価した。図23は、低D/U環境でB局の受信信号の遅延時間と所要C/Nの関係のシミュレーション結果である。ここでシミュレーション条件として偏波間受信電力差δ=0、受信時の両偏波の成す角度φ=90、回転角度χ=0である。遅延時間τ=0のとき、STC-SDM方式では所要C/Nが約23dBとなっており,上述した(1)のD/U=∞の場合と比べて3dB改善されている。一方、STCを適用しない場合、A局とB局から受信される信号が同一の信号であり、周波数選択性フェージングが生じるため、所要C/Nは26dBより大きい。遅延時間τが大きくなってくると、隣接するキャリアの伝送路応答の差が大きくなるため、隣接するキャリアでペアを組むSFBC-SDM方式(STBC(同一偏波)またはSTBC(交差偏波))の特性がSTBC-SDM方式(SFBC(同一偏波)またはSFBC(交差偏波))よりもわずかに劣化している。 As a low D / U SFN environment, the required C / N for the delay time τ of the B station was evaluated in an environment where the received power of the A station and the B station were equal (D / U = 0). FIG. 23 is a simulation result of the relationship between the delay time of the received signal of station B and the required C / N in a low D / U environment. Here, as simulation conditions, the received power difference between polarized waves δ = 0, the angle φ = 90 formed by both polarized waves during reception, and the rotation angle χ = 0. When the delay time τ = 0, the required C / N is about 23 dB in the STC-SDM system, which is an improvement of 3 dB compared to the case of D / U = ∞ in (1) described above. On the other hand, when STC is not applied, the signals received from the A station and the B station are the same signal, and frequency selective fading occurs, so that the required C / N is larger than 26 dB. As the delay time τ increases, the difference in the transmission channel response between adjacent carriers increases, so the SFBC-SDM system (STBC (same polarization) or STBC (cross polarization)) that pairs with adjacent carriers. These characteristics are slightly deteriorated compared with the STBC-SDM system (SFBC (same polarization) or SFBC (cross polarization)).
 (3)低D/U環境の偏波間受信電力差特性 (3) Received power difference characteristics between polarized waves in low D / U environment
 D/U=0において、B局の偏波間受信電力差δに対する所要C/Nを評価した。図24は、低D/U環境でB局の受信信号の偏波間受信電力差δと所要C/Nの関係のシミュレーション結果である。ここで遅延時間τ=60、受信時の両偏波の成す角度φ=90、回転角度χ=0とした。同図は垂直偏波の受信電力が偏波間受信電力差δだけ水平偏波の受信電力より大きい場合の結果である。同図にはSTCを適用しない場合に比べてSTC-SDM方式の方が全ての偏波間受信電力差δで所要C/Nが低いことが示されている。このことから、STC-SDM方式がSTCを適用しない場合よりも、より小さいC/Nで同じビット誤り率を達成することができる。 In D / U = 0, the required C / N with respect to the received power difference δ between the polarizations of the B station was evaluated. FIG. 24 is a simulation result of the relationship between the received power difference δ between polarized waves of the received signal of station B and the required C / N in a low D / U environment. Here, delay time τ = 60, angle φ = 90 formed by both polarized waves at the time of reception, and rotation angle χ = 0. The figure shows the result when the received power of the vertically polarized wave is larger than the received power of the horizontally polarized wave by the received power difference δ between the polarized waves. The figure shows that the STC-SDM scheme requires lower C / N for all received power differences δ between polarizations compared to the case where STC is not applied. Therefore, the same bit error rate can be achieved with a smaller C / N than in the case where the STC-SDM scheme does not apply STC.
 また、偏波間受信電力差δが大きくなってくると、第3の実施例のSTBC(交差偏波)は、第1の実施例のSTBC(同一偏波)よりも所要C/Nが上昇している。これはMIMO伝送路のコンディションが悪くなり伝送特性が劣化していることを意味する。同様に、偏波間受信電力差δが大きくなってくると、SFBC(交差偏波)では第9の実施例のSFBC(同一偏波)よりも所要C/Nが上昇している。これはMIMO伝送路のコンディションが悪くなり伝送特性が劣化していることを意味する。よって、偏波間受信電力差δが大きくなって、交差偏波よりも同一偏波の方が有効であるので、同一偏波が望ましい。 In addition, when the received power difference δ between the polarizations becomes larger, the required C / N of the STBC (cross polarization) of the third embodiment increases than the STBC (same polarization) of the first embodiment. ing. This means that the condition of the MIMO transmission path is deteriorated and the transmission characteristics are deteriorated. Similarly, when the received power difference δ between the polarizations becomes larger, the required C / N is higher in SFBC (cross polarization) than in SFBC (same polarization) in the ninth embodiment. This means that the condition of the MIMO transmission path is deteriorated and the transmission characteristics are deteriorated. Therefore, the received power difference δ between the polarizations becomes large, and the same polarization is more effective than the cross polarization, so the same polarization is desirable.
 なお、図24には垂直偏波の受信電力が偏波間受信電力差δだけ水平偏波の受信電力より大きい場合の結果を示したが、反対に水平偏波の受信電力が垂直偏波の受信電力より大きくなる場合についても同様の結果が得られる。 FIG. 24 shows the result when the received power of the vertically polarized wave is larger than the received power of the horizontally polarized wave by the received power difference δ between the polarized waves. Similar results are obtained when the power is greater than the power.
 (4)低D/U環境の偏波の直交崩れ特性 (4) Polarization collapse characteristics of polarization in low D / U environment
 D/U=0において、B局の偏波の成す角度φに対する所要C/Nを評価した。図25は、低D/U環境でB局の受信信号の両偏波の成す角度φと所要C/Nの関係のシミュレーション結果である。ここでシミュレーションの条件として、遅延時間τ=60、偏波間受信電力差δ=0、回転角度χ=0である。また、垂直偏波のみに偏波回転を与えて直交崩れを生じさせている。同図において、STCを適用しない場合に比べてSTC-SDM方式の方が全ての受信時の両偏波の成す角度φで所要C/Nが低いことが示されている。このことから、STC-SDM方式がSTCを適用しない場合よりも、より小さいC/Nで同じビット誤り率を達成することができる。 In D / U = 0, the required C / N with respect to the angle φ formed by the polarization of the B station was evaluated. FIG. 25 is a simulation result of a relationship between an angle φ formed by both polarizations of the received signal of the station B and the required C / N in a low D / U environment. Here, the simulation conditions are delay time τ = 60, received power difference δ between polarized waves δ = 0, and rotation angle χ = 0. In addition, orthogonal rotation is caused by applying polarization rotation only to vertical polarization. The figure shows that the STC-SDM system has a lower required C / N at the angle φ formed by both polarizations at the time of reception than in the case where STC is not applied. Therefore, the same bit error rate can be achieved with a smaller C / N than in the case where the STC-SDM scheme does not apply STC.
 また、両偏波の直交が崩れると、両偏波の成す角度φが小さくなるほど所要C/Nが上昇している。これはMIMO伝送路のコンディションが悪くなり伝送特性が劣化していることを意味する。受信時の両偏波の成す角度φが0度と90度以外では、STBC(交差偏波)の方がSTBC(同一偏波)よりも、より小さいC/Nで同じビット誤り率を達成することができる。同様に、受信時の両偏波の成す角度φが0度と90度以外では、SFBC(交差偏波)の方がSFBC(同一偏波)よりも、より小さいC/Nで同じビット誤り率を達成することができる。よって、受信時の両偏波の成す角度φが0度と90度以外では、同一偏波よりも交差偏波の方が伝送特性が良いので、同一偏波よりも交差偏波の方がより望ましい。 Also, if the orthogonality of both polarizations collapses, the required C / N increases as the angle φ formed by both polarizations decreases. This means that the condition of the MIMO transmission path is deteriorated and the transmission characteristics are deteriorated. When the angle φ formed by both polarizations during reception is other than 0 ° and 90 °, STBC (cross polarization) achieves the same bit error rate with smaller C / N than STBC (same polarization). be able to. Similarly, SFBC (cross polarization) has the same bit error rate with smaller C / N than SFBC (same polarization) when the angle φ between the two polarizations at the time of reception is other than 0 degrees and 90 degrees. Can be achieved. Therefore, when the angle φ between the two polarized waves at the time of reception is other than 0 degrees and 90 degrees, the cross polarized waves have better transmission characteristics than the same polarized waves. desirable.
 なお、図25は垂直偏波のみに偏波回転を与えて直交崩れを生じさせた場合の結果だが、水平偏波のみに偏波回転を与えた場合も同様の結果が得られる。 Note that FIG. 25 shows a result in the case where the orthogonal rotation is generated by applying the polarization rotation only to the vertical polarization, but the same result can be obtained when the polarization rotation is applied only to the horizontal polarization.
 (5)低D/U環境の偏波回転特性 (5) Polarization rotation characteristics in low D / U environment
 D/U=0において、B局の偏波の成す角度φ=90とし、偏波の回転角度χに対する所要C/Nを評価した。図26は、低D/U環境でB局の受信信号の偏波の回転角度χと所要C/Nとの関係のシミュレーション結果である。ここでシミュレーション条件として、遅延時間τ=60、偏波間受信電力差δ=0である。同図において、STBC(同一偏波)及びSFBC(同一偏波)では、偏波の回転角度が0度から90度にかけて、偏波の回転角度が増加するほど所要C/Nが増加している。また、STBC(同一偏波)及びSFBC(同一偏波)では、偏波の回転角度が180度から90度にかけて、偏波の回転角度が減少するほど所要C/Nが増加している。そして、偏波の回転角度χ=90においてSTBC(同一偏波)及びSFBC(同一偏波)の所要C/Nが最大値をとり、STCの適用なしの場合よりも所要C/Nが大きくなっている。これは、偏波の回転角度χ=90で、STBC(同一偏波)及びSFBC(同一偏波)のMIMO伝送路の伝送路応答行列Hにランク落ちが発生し、送信シンボルが正しく算出できないことをコンディションが悪く、伝送特性が大きく劣化していることを意味する。 In D / U = 0, the angle C formed by the polarization of the B station was set to 90, and the required C / N with respect to the polarization rotation angle χ was evaluated. FIG. 26 is a simulation result of the relationship between the rotation angle χ of the polarization of the received signal of station B and the required C / N in a low D / U environment. Here, the simulation conditions are delay time τ = 60 and received power difference δ = 0 between polarizations. In the figure, in STBC (same polarization) and SFBC (same polarization), the required C / N increases as the polarization rotation angle increases as the polarization rotation angle increases from 0 degrees to 90 degrees. . Further, in STBC (same polarization) and SFBC (same polarization), the required C / N increases as the rotation angle of the polarization decreases from 180 degrees to 90 degrees. Then, the required C / N of STBC (same polarization) and SFBC (same polarization) takes the maximum value at the rotation angle χ = 90 of the polarization, and the required C / N becomes larger than the case where STC is not applied. ing. This is because the polarization rotation angle χ = 90, rank drop occurs in the transmission line response matrix H of the STBC (same polarization) and SFBC (same polarization) MIMO transmission lines, and transmission symbols cannot be calculated correctly. This means that the condition is bad and the transmission characteristics are greatly deteriorated.
 それに対し、STBC(交差偏波)及びSFBC(交差偏波)は、偏波の回転角度χが変化しても所要C/Nが変化せず、全ての偏波の回転角度χで、STCの適用なしの場合よりも所要C/Nが小さい。すなわち、STBC(交差偏波)及びSFBC(交差偏波)は、偏波の回転に対してロバストである。また、偏波の回転角度χが0度と180度以外の角度で、STBC(交差偏波)及びSFBC(交差偏波)は、STBC(同一偏波)及びSFBC(同一偏波)よりも所要C/Nが小さい。よって、伝搬路で偏波の回転が生じる環境(但し、偏波の回転角度が180度の場合を除く)においては、同一偏波よりも交差偏波の方がより望ましい。なお、STBC(同一偏波)及びSFBC(同一偏波)は、偏波の回転角度χが0~約60または約120~180の範囲では、STC適用なしの場合よりも所要C/Nが小さく、伝送特性が良い。 On the other hand, in STBC (cross polarization) and SFBC (cross polarization), the required C / N does not change even when the polarization rotation angle χ changes. The required C / N is smaller than in the case of no application. That is, STBC (cross polarization) and SFBC (cross polarization) are robust to polarization rotation. In addition, the polarization rotation angle χ is an angle other than 0 degrees and 180 degrees, and STBC (cross polarization) and SFBC (cross polarization) are required more than STBC (same polarization) and SFBC (same polarization). C / N is small. Therefore, in an environment in which polarization rotation occurs in the propagation path (except when the polarization rotation angle is 180 degrees), cross polarization is more preferable than the same polarization. In STBC (same polarization) and SFBC (same polarization), the required C / N is smaller when the rotation angle χ of the polarization is in the range of 0 to about 60 or about 120 to 180 than when STC is not applied. Good transmission characteristics.
 以上、偏波の回転角度χが所定の範囲において、STCを適用しない場合よりも、いずれか一つのSTC-SDM方式で符号化した方が伝送特性がよい。すなわち、上述した全ての実施例において、A局及びB局から到来する電波を受信する環境において、偏波の回転角度χが例えば、0~約60または約120~180の範囲であれば、STCを適用しない場合よりも、伝送特性の劣化を低減することができる。 As described above, when the polarization rotation angle χ is in a predetermined range, the transmission characteristic is better when coded by any one of the STC-SDM systems than when STC is not applied. That is, in all the embodiments described above, if the polarization rotation angle χ is, for example, in the range of 0 to about 60 or about 120 to 180 in an environment where radio waves arriving from the A station and the B station are received, the STC It is possible to reduce the deterioration of the transmission characteristics compared to the case where is not applied.
 また、STBC(同一偏波)及びSTBC(同一偏波)に比べて、STBC(交差偏波)及びSFBC(交差偏波)は、伝搬路で偏波の回転が生じても伝送特性が劣化しないという利点を有する。また、STBCは、SFBCに比べて、遅延時間τが大きくなる環境でも伝送特性が劣化しにくいという利点を有する。また、同一偏波による送信は、交差偏波による送信に比べて偏波間受信電力差が大きくなる環境でも伝送特性が劣化しにくいという利点を有する。また、交差偏波による送信は、同一偏波による送信に比べて、受信時の両偏波の成す角度φが90度から崩れて他の角度となっても伝送特性が劣化しにくいという利点を有する。 In addition, compared to STBC (same polarization) and STBC (same polarization), STBC (cross polarization) and SFBC (cross polarization) do not deteriorate transmission characteristics even if polarization rotation occurs in the propagation path. Has the advantage. In addition, STBC has an advantage that transmission characteristics are less likely to deteriorate even in an environment where delay time τ is longer than SFBC. In addition, transmission using the same polarization has an advantage that transmission characteristics are less likely to deteriorate even in an environment where the received power difference between polarized waves is larger than transmission using cross polarization. Moreover, compared to transmission using the same polarization, cross-polarization transmission has the advantage that the transmission characteristics are less likely to deteriorate even when the angle φ formed by both polarizations during reception collapses from 90 degrees to other angles. Have.
 なお、各送信装置は、二つの送信アンテナを備えたがこれに限らず、三つ以上でもよい。例えば、各送信装置は、第1の偏波で送信信号を無線で送信する送信アンテナと、第1の偏波とは異なる第2の偏波で送信信号を無線で送信する送信アンテナとをそれぞれ少なくとも一つずつ備えればよい。 Each transmission device includes two transmission antennas, but is not limited thereto, and may be three or more. For example, each transmission device includes a transmission antenna that wirelessly transmits a transmission signal with a first polarization, and a transmission antenna that wirelessly transmits a transmission signal with a second polarization different from the first polarization. It is sufficient to provide at least one each.
 以上、本実施形態において、各送信装置は、互いに異なる位置に置かれた二つの送信装置であって、同一のデータに由来するシンボルを互いに異なる変換で符号化して得られた異なる送信信号をそれぞれ空間分割多重して送信する二つの送信装置を備える送信システム4で用いられる。 As described above, in the present embodiment, each transmission device is two transmission devices placed at different positions, and different transmission signals obtained by encoding symbols derived from the same data with different conversions are respectively used. It is used in a transmission system 4 including two transmission devices that perform space division multiplexing.
 また、各送信装置において、以下の処理を行う。符号化部(14または24)は、データがマッピングされて得られたシンボルの系列データが二つに分割された並列系列データに含まれるそれぞれのシンボルについて、送信システム4が備える他の送信装置が同一のシンボルに対して行う変換とは異なる変換を施し、該変換を施すことで得た変換後シンボルを上記他の送信装置が変換して得た変換後シンボルとは異なる時刻または異なる周波数に割り当てる。逆フーリエ変換部(16または26)は、符号化部(14または24)が符号化して得た符号化後シンボル系列それぞれに対して、逆フーリエ変換を施す。各送信装置は、逆フーリエ変換部(16または26)が逆フーリエ変換して得た二つの送信信号の一方を第1の偏波で無線送信する第1の送信アンテナ及び上記二つの送信信号の他方を上記第1の偏波とは異なる第2の偏波で無線送信する第2の送信アンテナをそれぞれ少なくとも一つずつ備える。 Also, the following processing is performed in each transmitting device. The encoding unit (14 or 24) is configured so that other transmission devices included in the transmission system 4 have the symbols included in the parallel sequence data obtained by dividing the symbol sequence data obtained by mapping the data into two. A conversion different from the conversion performed on the same symbol is performed, and the converted symbol obtained by performing the conversion is assigned to a different time or a different frequency from the converted symbol obtained by conversion by the other transmission device. . The inverse Fourier transform unit (16 or 26) performs inverse Fourier transform on each of the encoded symbol sequences obtained by encoding by the encoding unit (14 or 24). Each transmission device includes a first transmission antenna that wirelessly transmits one of two transmission signals obtained by the inverse Fourier transform of the inverse Fourier transform unit (16 or 26) using the first polarization, and the two transmission signals. At least one second transmission antenna that wirelessly transmits the other with a second polarization different from the first polarization is provided.
 これにより、非特許文献1の技術に対して、一方の送信装置からの信号が全く受信できなくなった場合でも、他方の送信装置が全てのシンボルに基づく信号を送信できるので、その信号を受信した受信装置30は、全データを復元することができるという有利な効果を奏する。 As a result, even when a signal from one transmitter cannot be received at all with respect to the technique of Non-Patent Document 1, the other transmitter can transmit a signal based on all symbols, so that the signal is received. The receiving device 30 has an advantageous effect that all data can be restored.
 例えば、実施例1の構成では、他方の送信装置からの伝送路で偏波回転が起こった場合に、伝送特性が劣化するという新たな課題が発見した。そこで、各送信装置は、更に以下に示す四つの構成のいずれかを取ることにより、他方の送信装置からの伝送路で偏波回転が起こった場合でも、伝送特性が劣化するのを防ぐことができる。 For example, in the configuration of the first embodiment, a new problem has been discovered in which transmission characteristics deteriorate when polarization rotation occurs in the transmission path from the other transmission apparatus. Therefore, each transmission device can further prevent deterioration of transmission characteristics even when polarization rotation occurs in the transmission path from the other transmission device by taking one of the following four configurations. it can.
 一つ目の構成として、図3において、符号化ペアを交差偏波で送信し、片方の符号化行列で符号反転せず、Alamoutiの符号化行列をベースにしたSTBCまたはSFBCを用いた場合(例えば、実施例3または実施例3’とそれぞれに対応するSFBCの場合)には、各送信装置は、以下の構成を備える。符号化部(14または24)は、直列並列変換部(13または23)が変換して得た並列系列データそれぞれをブロック毎に符号化するものであって、前記ブロック内の一の時刻または一の周波数に割り当てる異なる二つのシンボルに対してそれぞれ複素共役をとり、かつ上記二つのシンボルは同じ符号であって上記他の送信装置が符号化した後の符号化後シンボルとは異なる符号をとるように変換する。送信部(17または27)は、他の送信装置が送信する他の送信信号と同一の情報に由来する送信信号を、上記第1の送信アンテナまたは上記第2の送信アンテナのうち、上記他の送信装置が上記他の送信信号を送信する偏波とは異なる偏波で送信する送信アンテナから送信する。 As a first configuration, in FIG. 3, when an encoding pair is transmitted with cross polarization, the code is not inverted with one encoding matrix, and STBC or SFBC based on the Alamouti encoding matrix is used ( For example, in the case of SFBC corresponding to Example 3 or Example 3 ′), each transmission device has the following configuration. The encoding unit (14 or 24) encodes each parallel series data obtained by conversion by the serial-to-parallel conversion unit (13 or 23) for each block. Complex symbols are taken for two different symbols to be assigned to different frequencies, and the two symbols have the same code, but have different codes from the encoded symbols after the other transmitters have encoded. Convert to The transmission unit (17 or 27) transmits a transmission signal derived from the same information as another transmission signal transmitted by another transmission device, from the first transmission antenna or the second transmission antenna. The transmitting apparatus transmits from a transmitting antenna that transmits with a polarization different from the polarization that transmits the other transmission signal.
 二つ目の構成として、図3において、符号化ペアを交差偏波で送信し、片方の符号化行列で符号反転せず、Modified Alamoutiの符号化行列をベースにしたSTBCまたはSFBCを用いた場合(例えば、実施例7または実施例7’とそれぞれに対応するSFBCの場合)には、第2の送信装置20は、以下の構成を備える。符号化部24は、直列並列変換部23が変換して得た並列系列データそれぞれをブロック毎に符号化するものであって、上記並列系列データのそれぞれの系列データに含まれるシンボルに対してそれぞれ複素共役をとり、かつ上記ブロック内の一の時刻(例えば、図12における時刻t)または一の周波数に割り当てる二つのシンボル双方に対してマイナスを乗じる。送信部27は、第1の送信装置10が送信する他の送信信号と同一の情報に由来する送信信号を、上記第1の送信アンテナまたは上記第2の送信アンテナのうち、上記第1の送信装置10が上記他の送信信号を送信する偏波とは異なる偏波で送信する送信アンテナから送信する。 As a second configuration, in FIG. 3, when the encoding pair is transmitted with cross polarization, the code is not inverted with one encoding matrix, and STBC or SFBC based on the Modified Alamouti encoding matrix is used. For example (in the case of SFBC corresponding to Example 7 or Example 7 ′), the second transmission device 20 includes the following configuration. The encoding unit 24 encodes each of the parallel series data obtained by the conversion by the serial / parallel conversion unit 23 for each block, and each of the symbols included in the series data of the parallel series data. The complex conjugate is taken, and both the two symbols assigned to one time (for example, time t in FIG. 12) or one frequency in the block are multiplied by minus. The transmission unit 27 transmits a transmission signal derived from the same information as the other transmission signals transmitted by the first transmission device 10 out of the first transmission antenna or the second transmission antenna. The apparatus 10 transmits from a transmission antenna that transmits with a polarization different from the polarization with which the other transmission signal is transmitted.
 三つ目の構成として、図3において、符号化ペアを同一偏波で送信し、片方の符号化行列で符号反転し、Alamoutiの符号化行列をベースにしたSTBCまたはSFBCを用いた場合(例えば、実施例2、実施例2’、実施例10または実施例10’)には、各送信装置は、以下の構成を備える。符号化部(14または24)は、直列並列変換部(13または23)が変換して得た並列系列データそれぞれをブロック毎に符号化するものであって、前記ブロック内の一の時刻(例えば、図5の時刻t+1)または一の周波数に割り当てる異なる二つのシンボルに対してそれぞれ複素共役をとり、かつ上記二つのシンボルのうちいずれかにマイナスを乗じる。送信部(17または27)は、他の送信装置が送信する他の送信信号と同一の情報に由来する送信信号を、上記第1の送信アンテナまたは上記第2の送信アンテナのうち、上記他の送信装置が上記他の送信信号を送信する偏波と同じ偏波で送信する送信アンテナから送信する。 As a third configuration, in FIG. 3, when the encoded pair is transmitted with the same polarization, the code is inverted with one encoding matrix, and STBC or SFBC based on the Alamouti encoding matrix is used (for example, In Example 2, Example 2 ′, Example 10 or Example 10 ′), each transmission device has the following configuration. The encoding unit (14 or 24) encodes each of the parallel series data obtained by conversion by the serial / parallel conversion unit (13 or 23) for each block, and one time (for example, In FIG. 5, time t + 1) or two different symbols assigned to one frequency are each complex conjugate, and one of the two symbols is multiplied by minus. The transmission unit (17 or 27) transmits a transmission signal derived from the same information as another transmission signal transmitted by another transmission device, from the first transmission antenna or the second transmission antenna. The transmission apparatus transmits the transmission signal from a transmission antenna that transmits the same polarization as that of the other transmission signal.
 四つ目の構成として、図3において、符号化ペアを同一偏波で送信し、片方の符号化行列で符号反転し、Modified Alamoutiの符号化行列をベースにしたSTBCまたはSFBCを用いた場合(例えば、実施例6または実施例6’とそれぞれに対応するSFBCの場合)には、第2の送信装置20は、以下の構成を備える。符号化部24は、直列並列変換部23が変換して得た並列系列データそれぞれをブロック毎に符号化するものであって、上記並列系列データのそれぞれの系列データに含まれるシンボルに対してそれぞれ複素共役をとり、かつ一方の系列データに含まれる第1の時刻(例えば、図11の時刻t)または第1の周波数に割り当てるシンボルに対してマイナスを乗じ、他方の系列データに含まれる第2の時刻(例えば、図11の時刻t+1)または第2の周波数に割り当てるシンボルに対してマイナスを乗じる。送信部27は、第1の送信装置10が送信する他の送信信号と同一の情報に由来する送信信号を、上記第1の送信アンテナまたは上記第2の送信アンテナのうち、第1の送信装置10が上記他の送信信号を送信する偏波と同じ偏波で送信する送信アンテナから送信する。 As a fourth configuration, in FIG. 3, when the encoded pair is transmitted with the same polarization, the code is inverted with one encoding matrix, and STBC or SFBC based on the modified Alamouti encoding matrix is used ( For example, in the case of SFBC corresponding to Example 6 or Example 6 ′), the second transmission device 20 includes the following configuration. The encoding unit 24 encodes each of the parallel series data obtained by the conversion by the serial / parallel conversion unit 23 for each block, and each of the symbols included in the series data of the parallel series data. A symbol that is complex conjugate and is assigned to the first time (for example, time t in FIG. 11) or the first frequency included in one of the series data is multiplied by minus, and the second time included in the other series data. (For example, time t + 1 in FIG. 11) or a symbol assigned to the second frequency is multiplied by minus. The transmission unit 27 transmits a transmission signal derived from the same information as another transmission signal transmitted by the first transmission device 10 out of the first transmission antenna or the second transmission antenna. 10 transmits from the transmitting antenna that transmits the same polarized wave as the other transmitting signal.
 上述したように、送信装置10及び送信装置20は、互いに異なる送信装置に設けられる複数のアンテナを用いて時空間符号化を行うとともに、前記複数の送信装置のそれぞれに設けられる複数のアンテナを用いて空間分割多重を行う方式を採用する伝送システムで用いられる送信装置である。 As described above, the transmission device 10 and the transmission device 20 perform space-time coding using a plurality of antennas provided in different transmission devices, and use a plurality of antennas provided in each of the plurality of transmission devices. This is a transmission device used in a transmission system that employs a method of performing space division multiplexing.
 送信装置10は、系列データを分割することによって第1系列データ及び第2系列データを出力する第1直列並列変換部(上述した直列並列変換部13)と、第1系列データを第1規則の時空間符号化によって符号化することによって第1系列データAを生成し、第2系列データを第2規則の時空間符号化によって符号化することによって第2系列データAを生成する第1符号化部(上述した符号化部14)とを備える。送信装置20は、系列データを分割することによって第1系列データ及び第2系列データを出力する第2直列並列変換部(上述した直列並列変換部23)と、第1系列データを第1規則の時空間符号化によって符号化することによって第1系列データBを生成し、第2系列データを第2規則の時空間符号化によって符号化することによって第2系列データBを生成する第2符号化部(上述した符号化部14)とを備える。 The transmitting apparatus 10 divides the series data to output the first series data and the second series data, and outputs the first series data to the first rule. First encoding for generating first sequence data A by encoding by space-time encoding and generating second sequence data A by encoding second sequence data by space-time encoding of the second rule (Encoding unit 14 described above). The transmission device 20 divides the series data to output the first series data and the second series data, and outputs the first series data and the second series data. Second encoding for generating first sequence data B by encoding by space-time encoding and generating second sequence data B by encoding second sequence data by space-time encoding of the second rule (Encoding unit 14 described above).
 このような前提下において、第1系列データAは、第1系列データBと異なる変換行列によって符号化されるとともに、第2系列データAは、第2系列データBと異なる符号化方法によって符号化されており、或いは、第1系列データAに対応する送信信号は、第1系列データBに対応する送信信号と異なる偏波によって送信されるとともに、第2系列データAに対応する送信信号は、第2系列データBに対応する送信信号と異なる偏波によって送信される。 Under such a premise, the first sequence data A is encoded by a transform matrix different from that of the first sequence data B, and the second sequence data A is encoded by an encoding method different from that of the second sequence data B. Alternatively, the transmission signal corresponding to the first sequence data A is transmitted with a different polarization from the transmission signal corresponding to the first sequence data B, and the transmission signal corresponding to the second sequence data A is It is transmitted with a polarization different from the transmission signal corresponding to the second series data B.
 具体的には、上述したケースとしては、第1系列データA及び第1系列データBに適用される変換行列が異なり、第2系列データA及び第2系列データBに適用される変換行列が異なり、第1系列データA及び第1系列データBに対応する送信信号の偏波が同じであり、第2系列データA及び第2系列データBに対応する送信信号の偏波が同じであるケース(例えば、図3に示す実施例2,2’、6、6’、10、10’)が考えられる。 Specifically, in the case described above, the transformation matrices applied to the first series data A and the first series data B are different, and the transformation matrices applied to the second series data A and the second series data B are different. The transmission signals corresponding to the first sequence data A and the first sequence data B have the same polarization, and the transmission signals corresponding to the second sequence data A and the second sequence data B have the same polarization ( For example, Embodiments 2, 2 ′, 6, 6 ′, 10, 10 ′) shown in FIG. 3 can be considered.
 或いは、上述したケースとしては、第1系列データA及び第1系列データBに適用される変換行列が同じであり、第2系列データA及び第2系列データBに適用される変換行列が同じであり、第1系列データA及び第1系列データBに対応する送信信号の偏波が異なっており、第2系列データA及び第2系列データBに対応する送信信号の偏波が異なっているケース(例えば、図3に示す実施例3,3’、7、7’、11)が考えられる。 Alternatively, in the case described above, the transformation matrix applied to the first series data A and the first series data B is the same, and the transformation matrix applied to the second series data A and the second series data B is the same. Yes, the transmission signals corresponding to the first sequence data A and the first sequence data B have different polarizations, and the transmission signals corresponding to the second sequence data A and the second sequence data B have different polarizations. (For example, Examples 3, 3 ′, 7, 7 ′, and 11 shown in FIG. 3) are conceivable.
 また、本実施形態において、受信装置30は、異なる位置に置かれた二つの送信装置であって、同一のデータを互いに異なる変換で符号化して得られた異なる送信信号をそれぞれ空間分割多重して送信する第1の送信装置10と第2の送信装置20が送信する送信信号を受信する。受信装置において、第1の受信アンテナ311は、第1の偏波の信号を受信する。第2の受信アンテナ312は、上記第1の偏波とは異なる第2の偏波の信号を受信する。フーリエ変換部33は、第1の受信アンテナ311が受信した信号をフーリエ変換し、第2の受信アンテナ312が受信した信号をフーリエ変換する。伝送路応答推定部34は、フーリエ変換部33がフーリエ変換することで得られた信号のうち、第1の送信装置10が送信した既知のパイロット信号と送信装置20が送信した既知のパイロット信号から伝送路応答を推定する。送信信号検出部35は、伝送路応答推定部34が算出した伝送路応答、及び前記フーリエ変換部がフーリエ変換することで得られた信号を参照して、前記第1の送信装置と前記第2の送信装置が送信した信号を推定する。 In the present embodiment, the receiving device 30 is two transmitting devices placed at different positions, and space-division-multiplexes different transmission signals obtained by encoding the same data with different conversions. The transmission signals transmitted by the first transmission device 10 and the second transmission device 20 that transmit are received. In the receiving device, the first receiving antenna 311 receives a first polarized signal. The second receiving antenna 312 receives a signal having a second polarization different from the first polarization. The Fourier transform unit 33 Fourier transforms the signal received by the first receiving antenna 311 and Fourier transforms the signal received by the second receiving antenna 312. The transmission path response estimation unit 34 uses a known pilot signal transmitted from the first transmission device 10 and a known pilot signal transmitted from the transmission device 20 out of signals obtained by the Fourier transform performed by the Fourier transform unit 33. Estimate the channel response. The transmission signal detection unit 35 refers to the transmission path response calculated by the transmission path response estimation unit 34 and the signal obtained by the Fourier transform of the Fourier transform unit, and the first transmission device and the second transmission unit 35 The signal transmitted by the transmitter is estimated.
 このように、受信装置30は、系列データの分割によって得られる2系統の系列データの符号化によって得られる第1系列データA及び第2系列データAに対応する送信信号を第1送信装置から受信するとともに、系列データの分割によって得られる2系統の系列データの符号化によって得られる第1系列データB及び第2系列データBに対応する送信信号を第2送信装置から受信する受信処理部(例えば、図16に示す送信信号検出部35、並列直列変換部36、キャリア復調部37など)を備える。上述したように、第1系列データAは、第1系列データBと異なる変換行列によって符号化されるとともに、第2系列データAは、第2系列データBと異なる符号化方法によって符号化されており、或いは、第1系列データAに対応する送信信号は、第1系列データBに対応する送信信号と異なる偏波によって送信されるとともに、第2系列データAに対応する送信信号は、第2系列データBに対応する送信信号と異なる偏波によって送信される。 As described above, the receiving device 30 receives, from the first transmitting device, transmission signals corresponding to the first sequence data A and the second sequence data A obtained by encoding the two series of sequence data obtained by dividing the sequence data. In addition, a reception processing unit (for example, receiving a transmission signal corresponding to the first sequence data B and the second sequence data B obtained by encoding two series of sequence data obtained by dividing the sequence data from the second transmission device (for example, , The transmission signal detection unit 35, the parallel-serial conversion unit 36, the carrier demodulation unit 37, and the like shown in FIG. As described above, the first sequence data A is encoded by a different transformation matrix from the first sequence data B, and the second sequence data A is encoded by a different encoding method from the second sequence data B. Alternatively, the transmission signal corresponding to the first sequence data A is transmitted by a different polarization from the transmission signal corresponding to the first sequence data B, and the transmission signal corresponding to the second sequence data A is the second It is transmitted by a polarization different from the transmission signal corresponding to the sequence data B.
 また、本実施形態の各送信装置及び各受信装置の各処理を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、各送信装置及び各受信装置に係る上述した種々の処理を行ってもよい。 Also, a program for executing each process of each transmitting apparatus and each receiving apparatus of the present embodiment is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. By doing so, the above-described various processes relating to each transmission device and each reception device may be performed.
 なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。 Note that the “computer system” referred to here may include an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used. The “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。 Further, the “computer-readable recording medium” refers to a volatile memory (for example, DRAM (Dynamic) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc. that hold a program for a certain period of time. The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではない。各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, a concrete structure is not restricted to this embodiment. Each configuration in each embodiment, a combination thereof, and the like are examples, and the addition, omission, replacement, and other changes of the configuration can be made without departing from the spirit of the present invention. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.
 なお、日本国特許出願第2012-248786号(2012年11月12日出願)の全内容が、参照により、本願明細書に組み込まれている。 Note that the entire content of Japanese Patent Application No. 2012-248786 (filed on November 12, 2012) is incorporated herein by reference.
 本発明の一態様によれば、二つの局から到来する電波を受信する環境において、一方の局から到来する電波の受信特性が悪くなっても、伝送特性の劣化を低減することができる。 According to one aspect of the present invention, in an environment in which radio waves arriving from two stations are received, even if reception characteristics of radio waves arriving from one station are deteriorated, deterioration of transmission characteristics can be reduced.

Claims (7)

  1.  2つの送信アンテナを有する第1送信装置及び2つの送信アンテナを有する第2送信装置を備える伝送システムであって、
     前記第1送信装置は、
     系列データを分割することによって第1系列データ及び第2系列データを出力する第1直列並列変換部と、
     前記第1系列データを第1規則の時空間符号化によって符号化することによって第1系列データAを生成し、前記第2系列データを第2規則の時空間符号化によって符号化することによって第2系列データAを生成する第1符号化部とを備え、
     前記第2送信装置は、
     前記系列データを分割することによって前記第1系列データ及び前記第2系列データを出力する第2直列並列変換部と、
     前記第1系列データを前記第1規則の時空間符号化によって符号化することによって第1系列データBを生成し、前記第2系列データを前記第2規則の時空間符号化によって符号化することによって第2系列データBを生成する第2符号化部とを備え、
     前記第1系列データAは、前記第1系列データBと異なる変換行列によって符号化されるとともに、前記第2系列データAは、前記第2系列データBと異なる符号化方法によって符号化されており、或いは、前記第1系列データAに対応する送信信号は、前記第1系列データBに対応する送信信号と異なる偏波によって送信されるとともに、前記第2系列データAに対応する送信信号は、前記第2系列データBに対応する送信信号と異なる偏波によって送信されることを特徴とする伝送システム。
    A transmission system comprising a first transmission device having two transmission antennas and a second transmission device having two transmission antennas,
    The first transmitter is
    A first serial / parallel converter that outputs the first series data and the second series data by dividing the series data;
    First sequence data A is generated by encoding the first sequence data by a first rule space-time encoding, and the second sequence data is encoded by a second rule space-time encoding. A first encoding unit for generating two-sequence data A,
    The second transmitter is
    A second serial-to-parallel converter that outputs the first series data and the second series data by dividing the series data;
    Encoding the first sequence data by space-time encoding of the first rule to generate first sequence data B, and encoding the second sequence data by space-time encoding of the second rule And a second encoding unit for generating the second series data B by
    The first sequence data A is encoded by a transformation matrix different from that of the first sequence data B, and the second sequence data A is encoded by an encoding method different from that of the second sequence data B. Alternatively, the transmission signal corresponding to the first sequence data A is transmitted with a different polarization from the transmission signal corresponding to the first sequence data B, and the transmission signal corresponding to the second sequence data A is The transmission system, wherein the transmission signal is transmitted with a polarization different from that of the transmission signal corresponding to the second sequence data B.
  2.  前記第1シンボル系列Aに対応する送信信号及び前記第2シンボル系列Aに対応する送信信号のうち、一方の送信信号は、第1偏波によって送信され、他方の送信信号は、第2偏波によって送信され、
     前記第1シンボル系列Bに対応する送信信号及び前記第2シンボル系列Bに対応する送信信号のうち、一方の送信信号は、第1偏波によって送信され、他方の送信信号は、第2偏波によって送信されることを特徴とする請求項1に記載の伝送システム。
    Of the transmission signal corresponding to the first symbol sequence A and the transmission signal corresponding to the second symbol sequence A, one transmission signal is transmitted by the first polarization, and the other transmission signal is the second polarization. Sent by
    Of the transmission signal corresponding to the first symbol sequence B and the transmission signal corresponding to the second symbol sequence B, one transmission signal is transmitted by the first polarization, and the other transmission signal is the second polarization. The transmission system according to claim 1, wherein the transmission system is transmitted by:
  3.  前記第1規則の時空間符号化及び前記第2規則の時空間符号化は、第1シンボル及び第2シンボルによって構成されるブロック毎に、前記第1シンボル及び前記第2シンボルを符号化する時空間符号化であり、
     前記第1規則の時空間符号化で用いる変換行列は、前記第2規則の時空間符号化で用いる変換行列と異なっており、
     前記第1シンボル系列Aに対応する送信信号の偏波は、前記第1シンボル系列Bに対応する送信信号の偏波と同じであり、
     前記第2シンボル系列Aに対応する送信信号の偏波は、前記第2シンボル系列Bに対応する送信信号の偏波と同じであることを特徴とする請求項1に記載の伝送システム。
    In the first rule space-time coding and the second rule space-time coding, the first symbol and the second symbol are coded for each block constituted by the first symbol and the second symbol. Spatial coding,
    The transformation matrix used in the first rule space-time coding is different from the transformation matrix used in the second rule space-time coding;
    The polarization of the transmission signal corresponding to the first symbol sequence A is the same as the polarization of the transmission signal corresponding to the first symbol sequence B;
    The transmission system according to claim 1, wherein the transmission signal corresponding to the second symbol sequence A has the same polarization as the transmission signal corresponding to the second symbol sequence B.
  4.  前記第1規則の時空間符号化及び前記第2規則の時空間符号化は、第1シンボル及び第2シンボルによって構成されるブロック毎に、前記第1シンボル及び前記第2シンボルを符号化する時空間符号化であり、
     前記第1規則の時空間符号化で用いる変換行列は、前記第2規則の時空間符号化で用いる変換行列と同じであり、
     前記第1シンボル系列Aに対応する送信信号の偏波は、前記第1シンボル系列Bに対応する送信信号の偏波と異なっており、
     前記第2シンボル系列Aに対応する送信信号の偏波は、前記第2シンボル系列Bに対応する送信信号の偏波と異なっていることを特徴とする請求項1に記載の伝送システム。
    In the first rule space-time coding and the second rule space-time coding, the first symbol and the second symbol are coded for each block constituted by the first symbol and the second symbol. Spatial coding,
    The transformation matrix used in the first rule space-time coding is the same as the transformation matrix used in the second rule space-time coding;
    The polarization of the transmission signal corresponding to the first symbol sequence A is different from the polarization of the transmission signal corresponding to the first symbol sequence B;
    2. The transmission system according to claim 1, wherein a polarization of a transmission signal corresponding to the second symbol sequence A is different from a polarization of a transmission signal corresponding to the second symbol sequence B. 3.
  5.  前記第1規則の時空間符号化及び前記第2規則の時空間符号化は、第1シンボルP及び第2シンボルPによって構成されるブロック毎に、前記第1シンボルP及び前記第2シンボルPを符号化する時空間符号化であり、
     前記第1規則の時空間符号化及び前記第2規則の時空間符号化で用いる変換行列は、変換行列J及び変換行列Kの中から選択された変換行列、或いは、変換行列L及び変換行列Mの中から選択された変換行列であり、
     前記変換行列J~前記変換行列Mは、
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    であることを特徴とする請求項3に記載の伝送システム。
    The first rule space-time coding and the second rule space-time coding are performed for each block constituted by the first symbol P 0 and the second symbol P 1 for each of the first symbol P 0 and the second rule. is a space-time coding to encode the symbols P 1,
    The transformation matrix used in the space-time coding of the first rule and the space-time coding of the second rule is a transformation matrix selected from the transformation matrix J and the transformation matrix K, or the transformation matrix L and the transformation matrix M. A transformation matrix selected from
    The transformation matrix J to the transformation matrix M are:
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    The transmission system according to claim 3, wherein:
  6.  前記第1規則の時空間符号化及び前記第2規則の時空間符号化は、第1シンボルP及び第2シンボルPによって構成されるブロック毎に、前記第1シンボルP及び前記第2シンボルPを符号化する時空間符号化であり、
     前記第1規則の時空間符号化及び前記第2規則の時空間符号化で用いる変換行列は、変換行列J及び変換行列Kの中から選択された変換行列、或いは、変換行列L及び変換行列Mの中から選択された変換行列であり、
     前記変換行列J~前記変換行列Mは、
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
    であることを特徴とする請求項4に記載の伝送システム。
    The first rule space-time coding and the second rule space-time coding are performed for each block constituted by the first symbol P 0 and the second symbol P 1 for each of the first symbol P 0 and the second rule. is a space-time coding to encode the symbols P 1,
    The transformation matrix used in the space-time coding of the first rule and the space-time coding of the second rule is a transformation matrix selected from the transformation matrix J and the transformation matrix K, or the transformation matrix L and the transformation matrix M. A transformation matrix selected from
    The transformation matrix J to the transformation matrix M are:
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
    The transmission system according to claim 4, wherein:
  7.  互いに異なる送信装置に設けられる複数のアンテナを用いて時空間符号化を行うとともに、前記複数の送信装置のそれぞれに設けられる複数のアンテナを用いて空間分割多重を行う方式を採用しており、第1送信装置及び第2送信装置を備える伝送システムで用いられる受信装置であって、
     系列データの分割によって得られる2系統の系列データの符号化によって得られる第1系列データA及び第2系列データAに対応する送信信号を前記第1送信装置から受信するとともに、前記系列データの分割によって得られる2系統の系列データの符号化によって得られる第1系列データB及び第2系列データBに対応する送信信号を前記第2送信装置から受信する受信処理部を備え、
     前記第1系列データAは、前記第1系列データBと異なる変換行列によって符号化されるとともに、前記第2系列データAは、前記第2系列データBと異なる符号化方法によって符号化されており、或いは、前記第1系列データAに対応する送信信号は、前記第1系列データBに対応する送信信号と異なる偏波によって送信されるとともに、前記第2系列データAに対応する送信信号は、前記第2系列データBに対応する送信信号と異なる偏波によって送信されることを特徴とする受信装置。
    A method of performing space-time coding using a plurality of antennas provided in different transmission apparatuses and performing space division multiplexing using a plurality of antennas provided in each of the plurality of transmission apparatuses is employed. A reception device used in a transmission system including one transmission device and a second transmission device,
    The transmission signal corresponding to the first sequence data A and the second sequence data A obtained by encoding the two series of sequence data obtained by dividing the sequence data is received from the first transmission device, and the sequence data is divided A reception processing unit that receives transmission signals corresponding to the first sequence data B and the second sequence data B obtained by encoding the two series of sequence data obtained by the second transmission device,
    The first sequence data A is encoded by a transformation matrix different from that of the first sequence data B, and the second sequence data A is encoded by an encoding method different from that of the second sequence data B. Alternatively, the transmission signal corresponding to the first sequence data A is transmitted with a different polarization from the transmission signal corresponding to the first sequence data B, and the transmission signal corresponding to the second sequence data A is The receiving apparatus, wherein the transmitting signal is transmitted by a polarization different from that of the transmission signal corresponding to the second series data B.
PCT/JP2013/080299 2012-11-12 2013-11-08 Transmission system and reception device WO2014073654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012248786 2012-11-12
JP2012-248786 2012-11-12

Publications (1)

Publication Number Publication Date
WO2014073654A1 true WO2014073654A1 (en) 2014-05-15

Family

ID=50684745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080299 WO2014073654A1 (en) 2012-11-12 2013-11-08 Transmission system and reception device

Country Status (2)

Country Link
JP (1) JP6184012B2 (en)
WO (1) WO2014073654A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103969B2 (en) * 2019-02-19 2022-07-20 株式会社日立国際電気 Wireless device
JP7132310B2 (en) 2020-11-24 2022-09-06 Necプラットフォームズ株式会社 Data transmission device, message generation device, data transmission system, method and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524972A (en) * 1998-09-04 2002-08-06 エイ・ティ・アンド・ティ・コーポレーション Combination of channel coding and spatial block coding in multiple antenna structures
JP2003023381A (en) * 2001-07-10 2003-01-24 Keio Gijuku Transmitting site diversity system
JP2005503045A (en) * 2001-03-28 2005-01-27 ノキア コーポレイション Non-zero complex weighted space-time code for multi-antenna transmission
WO2005069509A1 (en) * 2004-01-14 2005-07-28 National Institute Of Information And Communications Technology Communication system, transmitter, receiver, transmitting method, receiving method, and program
WO2006106619A1 (en) * 2005-04-01 2006-10-12 Ntt Docomo, Inc. Transmitting apparatus, transmitting method, receiving apparatus and receiving method
JP2007534184A (en) * 2004-04-21 2007-11-22 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド Method and system for transmitting an input stream of symbols in a multiple input / multiple output wireless communication system
JP2010519844A (en) * 2007-04-26 2010-06-03 サムスン エレクトロニクス カンパニー リミテッド Transmit diversity in wireless communication systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973238B1 (en) * 2007-03-21 2011-03-02 Alcatel Lucent Method for determining MIMO transmission techniques, base station and mobile terminal
WO2009144868A1 (en) * 2008-05-26 2009-12-03 パナソニック株式会社 Radio communication device, radio communication system, and radio communication method
DE102008029353A1 (en) * 2008-06-20 2009-12-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for assigning and estimating transmission symbols
JP2010124325A (en) * 2008-11-20 2010-06-03 Ntt Docomo Inc Base station antenna system and mobile communication method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524972A (en) * 1998-09-04 2002-08-06 エイ・ティ・アンド・ティ・コーポレーション Combination of channel coding and spatial block coding in multiple antenna structures
JP2005503045A (en) * 2001-03-28 2005-01-27 ノキア コーポレイション Non-zero complex weighted space-time code for multi-antenna transmission
JP2003023381A (en) * 2001-07-10 2003-01-24 Keio Gijuku Transmitting site diversity system
WO2005069509A1 (en) * 2004-01-14 2005-07-28 National Institute Of Information And Communications Technology Communication system, transmitter, receiver, transmitting method, receiving method, and program
JP2007534184A (en) * 2004-04-21 2007-11-22 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド Method and system for transmitting an input stream of symbols in a multiple input / multiple output wireless communication system
WO2006106619A1 (en) * 2005-04-01 2006-10-12 Ntt Docomo, Inc. Transmitting apparatus, transmitting method, receiving apparatus and receiving method
JP2010519844A (en) * 2007-04-26 2010-06-03 サムスン エレクトロニクス カンパニー リミテッド Transmit diversity in wireless communication systems

Also Published As

Publication number Publication date
JP2014112832A (en) 2014-06-19
JP6184012B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
WO2015162886A1 (en) Transmitting apparatus
US20140321575A1 (en) Transmission device, reception device, transmission method, and reception method
US11831330B2 (en) Transmitting apparatus and mapping method thereof
US20210152300A1 (en) Transmitting method, receiving method, transmitting apparatus, and receiving apparatus
US20130195158A1 (en) Multiple input multiple output transmission method in a digital video broadcasting system and device for supporting same
WO2017061113A1 (en) Transmission method, transmission device, reception method and reception device
US10251029B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US11711122B2 (en) Integrated circuit
US10790886B2 (en) Transmission apparatus and transmission method
US10411944B2 (en) Transmission method, transmission device, reception method, and reception device
US20240204938A1 (en) Transmitting method, receiving method, transmitting apparatus, and receiving apparatus
US20190312769A1 (en) Transmission method, transmission device, reception method, and reception device
JP6184012B2 (en) Transmission device, reception device, transmission system, and transmission system
US11133972B2 (en) Transmitting apparatus and mapping method thereof
JP4459960B2 (en) Multi-antenna system and method using high-throughput space-frequency block codes
US11973706B2 (en) Transmitting method, receiving method, transmitting apparatus, and receiving apparatus
EP3553960A1 (en) Transmission apparatus and transmission method
US20240235754A1 (en) Transmitting method, receiving method, transmitting apparatus, and receiving apparatus
JP6384989B2 (en) Transmitter and receiver
Shitomi et al. Performance evaluation of MIMO channel estimation for ATSC 3.0

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853923

Country of ref document: EP

Kind code of ref document: A1