WO2014073446A1 - Photoelectric conversion element, solid-state imaging device and electronic device - Google Patents

Photoelectric conversion element, solid-state imaging device and electronic device Download PDF

Info

Publication number
WO2014073446A1
WO2014073446A1 PCT/JP2013/079528 JP2013079528W WO2014073446A1 WO 2014073446 A1 WO2014073446 A1 WO 2014073446A1 JP 2013079528 W JP2013079528 W JP 2013079528W WO 2014073446 A1 WO2014073446 A1 WO 2014073446A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
organic semiconductor
organic
conversion element
layer
Prior art date
Application number
PCT/JP2013/079528
Other languages
French (fr)
Japanese (ja)
Inventor
融 宇高
昌樹 村田
修 榎
雅義 青沼
さえ 宮地
琢哉 伊藤
美貴 須藤
類 森本
佐々木 裕人
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2014545670A priority Critical patent/JP6252485B2/en
Priority to KR1020207023166A priority patent/KR102224334B1/en
Priority to US14/439,416 priority patent/US9680104B2/en
Priority to KR1020157011119A priority patent/KR102146142B1/en
Priority to EP13853391.4A priority patent/EP2919277B1/en
Priority to EP20189329.4A priority patent/EP3767697A1/en
Publication of WO2014073446A1 publication Critical patent/WO2014073446A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to a photoelectric conversion element using an organic photoelectric conversion material, and a solid-state imaging device and an electronic device including such a photoelectric conversion element as a pixel.
  • Patent Document 1 in order to prevent performance deterioration due to high-temperature heat treatment (200 ° C. or more), an intermediate layer made of an organic compound having a glass transition temperature of 200 ° C. or more is provided between the photoelectric conversion layer and the electrode. .
  • the interposition of such an intermediate layer causes a decrease in quantum efficiency, and also reduces the degree of freedom in material selection of the organic semiconductor. Therefore, it is desirable to realize a method for suppressing the performance deterioration of the photoelectric conversion layer due to the heat treatment without providing such an intermediate layer.
  • a photoelectric conversion element includes a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and one of the first and second organic semiconductors.
  • a solid-state imaging device includes a plurality of pixels each including the photoelectric conversion element according to the embodiment of the present disclosure.
  • An electronic device includes the solid-state imaging device according to the embodiment of the present disclosure.
  • the photoelectric conversion layer includes a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type. Or the derivative or the isomer of either one of them is added. Thereby, the aggregation of the first or second organic semiconductor is suppressed in the high temperature heat treatment of the manufacturing process.
  • the photoelectric conversion layer includes the first organic semiconductor of the first conductivity type and the second organic semiconductor of the second conductivity type. Furthermore, one of the derivatives or isomers thereof is added. Thereby, in the high-temperature heat treatment of the manufacturing process, the aggregation of the first or second organic semiconductor can be suppressed, and unevenness in film quality in the photoelectric conversion layer can be reduced. Therefore, the performance deterioration of the photoelectric conversion layer due to the heat treatment can be suppressed.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration example of a photoelectric conversion element (pixel) according to an embodiment of the present disclosure. It is a schematic diagram showing an example of the ternary system mixing ratio of the organic semiconductor contained in the photoelectric converting layer shown in FIG.
  • FIG. 6 is a perspective view illustrating a configuration example of a photoelectric conversion element according to Comparative Example 1. It is an image which shows the film state after heat processing of the photoelectric converting layer shown in FIG.
  • FIG. 6 is a perspective view illustrating a configuration example of a photoelectric conversion element according to Comparative Example 2. It is an image which shows the film state after heat processing of one photoelectric converting layer (intermediate layer: BCP) shown in FIG.
  • intermediate layer: BCP intermediate layer
  • FIG. 1 It is an image which shows the film state after heat processing of the other photoelectric converting layer (intermediate layer: PTCDI) shown in FIG.
  • Embodiment an example of a photoelectric conversion element in which a derivative of an n-type organic semiconductor is added to a photoelectric conversion layer containing a p-type organic semiconductor and an n-type organic semiconductor
  • Modification example when other derivative is added
  • Overall configuration example of solid-state imaging device Application example (example of electronic device (camera))
  • FIG. 1 illustrates a schematic cross-sectional configuration of a pixel (photoelectric conversion element 10) in a solid-state imaging device according to an embodiment of the present disclosure.
  • the solid-state imaging device which will be described in detail later, is, for example, a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) image sensor.
  • the photoelectric conversion element 10 is provided, for example, on a substrate 11 having a pixel transistor and a wiring, and is covered with a sealing film and a planarization film (not shown).
  • a planarization film for example, an on-chip lens (not shown) is disposed on the planarizing film.
  • the photoelectric conversion element 10 is an organic photoelectric conversion element that generates an electron-hole pair by absorbing light of a selective wavelength (for example, color light of any of R, G, and B) using an organic semiconductor. .
  • the photoelectric conversion elements 10 (pixels) of the respective colors of R, G, and B are two-dimensionally arranged in parallel.
  • a plurality of photoelectric conversion layers made of an organic semiconductor are vertically stacked in one pixel, or a photoelectric conversion layer made of an organic semiconductor and a photoelectric conversion layer made of an inorganic semiconductor are vertically stacked.
  • the configuration may be adopted. In this embodiment, the main part configuration of such a photoelectric conversion element will be described with reference to FIG.
  • the photoelectric conversion element 10 includes, on a substrate 11, an organic layer 13 as a photoelectric conversion layer, and a pair of electrodes (lower electrode 12 and upper electrode 14) for extracting signal charges from the organic layer 13.
  • the lower electrode 12, the organic layer 13 and the upper electrode 14 are covered with an insulating layer 15 having an opening (light receiving opening) H1.
  • the lower electrode 12 (first electrode) is electrically connected to the lower contact electrode 16A
  • the upper electrode 14 (second electrode) is electrically connected to the upper contact electrode 16B.
  • signal charge for example, electrons
  • the lower electrode 12 is electrically connected to, for example, a storage layer embedded in the substrate 11 via the lower contact electrode 16A. Be done.
  • the lower contact electrode 16A is electrically connected to the lower electrode 12 through an opening (contact hole) H2 provided in the insulating film 15. Electric charges (for example, holes) are discharged from the upper electrode 14 through the upper contact electrode 16B.
  • the substrate 11 is made of, for example, silicon (Si).
  • a conductive plug or a storage layer (not shown) serving as a transmission path for charges (electrons or holes) extracted from the organic layer 13 is embedded.
  • the organic photoelectric conversion layer and the inorganic photoelectric conversion layer are stacked in one pixel as described above, the inorganic photoelectric conversion layer is embedded in the substrate 11.
  • the lower electrode 12 is made of, for example, a metal element such as aluminum (Al), chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), tungsten (W) or silver (Ag). It is composed of a single element or an alloy.
  • the lower electrode 12 may be made of, for example, a transparent conductive film such as ITO (indium tin oxide).
  • ITO indium tin oxide
  • a tin oxide (TO), a tin oxide (SnO 2 ) based material added with a dopant, or a zinc oxide based material obtained by adding a dopant to zinc oxide (ZnO) is used.
  • the zinc oxide based material for example, aluminum zinc oxide (AZO) to which aluminum (Al) is added as a dopant, gallium zinc oxide (GZO) to which gallium (Ga) is added, and indium zinc oxide to which indium (In) is added (IZO).
  • AZO aluminum zinc oxide
  • GZO gallium zinc oxide
  • IZO indium zinc oxide to which indium (In) is added
  • CuI, InSbO 4 , ZnMgO, CuInO 2 , MgIN 2 O 4 , CO, ZnSnO 3 or the like may be used.
  • the insulating film 15 is formed of, for example, a single layer film made of one of silicon oxide, silicon nitride and silicon oxynitride (SiON) or a laminated film made of two or more of these. These insulating films 15 have a function of electrically separating the lower electrodes 12 of the respective pixels when the photoelectric conversion element 10 is used as a pixel of a solid-state imaging device.
  • the organic layer 13 is configured to include p-type (first conductivity type) and n-type (second conductivity type) organic semiconductors that absorb light in a selective wavelength range and perform photoelectric conversion.
  • p-type organic semiconductors and n-type organic semiconductors include various organic pigments.
  • quinacridone derivatives quinacridone such as quinacridone, dimethyl quinacridone, diethyl quinacridone, dibutyl quinacridone, etc.
  • dihalogen quinacridone such as dichloro quinacridone
  • phthalocyanines Derivatives phthalocyanine, SubPC, CuPC, ZnPC, H2PC, PbPC
  • oxadiazole derivatives NDO, PBD
  • stilbene derivatives TPB
  • perylene derivatives PTCDA, PTCDI, PTCBI, Bipyrene
  • TCNQ, F4-TCNQ tetracyanoquinodimethane derivatives
  • Bphen Anthracene, Rubrene, Bianthrone
  • naphthalene derivatives, pyrene derivatives and fluoranthene derivatives may be used.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene and derivatives thereof may be used.
  • metal complex dyes rhodamine dyes, cyanine dyes, merocyanine dyes, phenylxanthene dyes, triphenylmethane dyes, rhodacyanine dyes, xanthene dyes, macrocyclic azaannulene dyes, azulene dyes, naphthoquinones , Anthraquinone dyes, chain compounds in which fused polycyclic aromatic and aromatic rings or heterocyclic compounds such as anthracene and pyrene are condensed, or quinoline, benzothiazole, benzoxazole having squarylium group and croconicut methine group as a bonding chain And the like, or dyes similar to cyanine-based dyes linked by squarylium groups and crocoxicmetin groups, and the like can be preferably used.
  • the metal complex dye is preferably an aluminum complex (Alq3, Balq), a dithiol metal complex dye, a metal phthalocyanine dye, a metal porphyrin dye, or a ruthenium complex dye, but is not limited thereto.
  • Alq3, Balq aluminum complex
  • dithiol metal complex dye dithiol metal complex dye
  • metal phthalocyanine dye a metal phthalocyanine dye
  • metal porphyrin dye e.g., ruthenium complex dye
  • ruthenium complex dye ruthenium complex dye
  • other organic materials such as fullerene (C60) and BCP (Bathocuproine) may be laminated on the organic layer 13 as an electrode structure adjusting layer.
  • the organic layer 13 contains two of the above materials as a p-type organic semiconductor and an n-type organic semiconductor (hereinafter referred to as organic semiconductors A and B), and one of their analogues (derivatives or An isomer (hereinafter, referred to as an organic semiconductor C1) is formed by adding a predetermined amount.
  • the organic layer 13 is, for example, a co-evaporated film (formed by a co-evaporation method described later) including the organic semiconductors A, B, and C1.
  • the organic layer 13 may be a coated film (formed by a coating method described later) or a printed film (formed by a printing method described later) containing the organic semiconductors A, B, and C1.
  • the organic semiconductors A, B, and C1 can be alternately stacked in film thicknesses of about 10 nm or less.
  • the organic semiconductor C1 is a more cohesive (relatively aggregation prone) one of the organic semiconductors A and B.
  • cohesive indicates the ease of aggregation at a temperature of, for example, about 150 ° C. to 600 ° C. by the action of an intermolecular force or the like.
  • FIG. 2 shows one example of the ternary mixture ratio of these organic semiconductors A, B and C1.
  • a quartz substrate substrate temperature 60 ° C.
  • the organic layer 13 as described above can be formed on the lower electrode 12 as follows, for example. That is, the organic semiconductor C1 is further added to the lower electrode 12 in which two types (organic semiconductors A and B) of the p-type and n-type organic semiconductor materials are dissolved in a predetermined solvent.
  • a mixed solution containing organic semiconductors A, B and C1 is prepared.
  • the mixing ratio of the organic semiconductors A, B and C1 in this mixed solution can be, for example, the mixing ratio as shown in r2, r4 and r5 shown in FIG.
  • By co-evaporating the mixed solution thus prepared for example, it is possible to form the organic layer 13 containing the organic semiconductors A, B, and C1 at a predetermined mixing ratio.
  • a film of the mixed solution by various coating methods such as spin coating, slit coating, and dip coating.
  • various printing methods such as reverse offset printing and letterpress printing.
  • multistage vapor deposition in which solutions containing the organic semiconductors A, B and C1 are sequentially formed by vapor deposition It can be formed.
  • a solution in which the organic semiconductors A and C1 are mixed and a solution containing the organic semiconductor B may be sequentially deposited.
  • the upper electrode 14 is formed of the transparent conductive film mentioned in the lower electrode 12. When the signal charge is extracted from the lower electrode 12 side as in the present embodiment, the upper electrode 14 is provided in common to each pixel.
  • the photoelectric conversion element 10 of the present embodiment for example, as a pixel of a solid-state imaging device, signal charges are acquired as follows. That is, when light is incident on the photoelectric conversion element 10 through an on-chip lens (not shown), the incident light is photoelectrically converted in the organic layer 13. Specifically, first, predetermined color light (red light, green light or blue light) is selectively detected (absorbed) in the organic layer 13 to generate electron-hole pairs. Among the generated electron-hole pairs, for example, electrons are extracted from the lower electrode 12 side and accumulated in the substrate 11, while holes are discharged from the upper electrode 14 side via a wiring layer (not shown). By reading out the light reception signals of the respective colors accumulated in this manner to the vertical signal line Lsig described later, it is possible to obtain imaging data of the respective colors of red, green and blue.
  • predetermined color light red light, green light or blue light
  • FIG. 3 is a perspective view showing the configuration of a sample (sample 100a) of a photoelectric conversion element according to a comparative example (comparative example 1) of the present embodiment.
  • an organic layer 102 composed of a binary co-deposited film of quinacridone and SubPC is deposited on a substrate 101 composed of quartz, and then an electrode 103 composed of ITO is deposited and subjected to high temperature annealing (250 ° C.
  • Sample 100a was produced by applying the degree, for several minutes.
  • a cross section of the organic layer 102 of the sample 100a is photographed using an optical microscope, and a bright field image is shown in FIG. 4 (A) and a dark field image is shown in FIG. 4 (B).
  • FIG. 5 is a perspective view showing a configuration of a sample (sample 100b) of a photoelectric conversion element according to a comparative example (comparative example 2-1) of the present embodiment.
  • Comparative Example 2-1 after the organic layer 102 (codeposited film of quinacridone and SubPC) is deposited on the substrate 101 via the intermediate layer 104 made of BCP (low glass transition temperature), the electrode 103 is formed. The film was subjected to high temperature annealing (about 250 ° C., for several minutes) to prepare a sample 100 b. A cross section of the organic layer 102 of the sample 100b is photographed using an optical microscope, and a bright field image is shown in FIG. 6 (A) and a dark field image is shown in FIG. 6 (B). As described above, even in Comparative Example 2-1 in which the intermediate layer 104 made of BCP is provided between the organic layer 102 and the substrate 101, it is understood that spots occur and unevenness in the film quality occurs.
  • the organic layer 102 composed of a co-deposited film containing a p-type organic semiconductor and an n-type organic semiconductor, spots or the like are generated due to the manufacturing process (high temperature heat treatment), and unevenness in the film quality occurs. . It is considered that this is because one of the p-type organic semiconductor and the n-type organic semiconductor (here, quinacridone as the p-type organic semiconductor) preferentially aggregates to cause phase separation in the organic layer 102. .
  • the organic layer 13 including the p-type organic semiconductor A (for example, quinacridone) and the n-type organic semiconductor B (for example, SubPC) Semiconductor C1 (dimethyl quinacridone) is added.
  • the organic layer 13 further includes the analogue (organic semiconductor C1) of the more cohesive one (organic semiconductor A) among them.
  • the regular arrangement of the molecules of the organic semiconductor A (QD molecules 130a) is broken (disrupted) by the molecules of the organic semiconductor C1 (dimethyl QD molecules 130b). It is for. Specifically, quinacridone molecules tend to aggregate due to intermolecular force, but for example, by using a derivative in which a methyl group is disposed at the 2, 9 position with respect to quinacridone, spots do not significantly change electrical characteristics. Occurrence is suppressed.
  • FIG. 9 shows a band diagram of the device structure of this embodiment.
  • a ternary co-deposited film of an organic semiconductor A, B, C1 is provided between an electrode made of ITO (work function 4.8 eV) and an electrode made of aluminum (work function 4.3 eV).
  • the energy level of the highest occupied molecular orbital (HOMO) of quinacridone is about 5.3 eV
  • the energy level of the lowest unoccupied molecular orbital (LUMO) is about 3.2 eV. is there.
  • the energy level of the highest occupied atomic orbital of SubPC is about 5.4 eV
  • the energy level of the lowest unoccupied orbital is about 3.3 eV.
  • the organic semiconductor C1 which is a derivative of the organic semiconductor A, is added to the organic layer 13 containing the p-type organic semiconductor A and the n-type organic semiconductor B.
  • the aggregation of the organic semiconductor A is suppressed, and the unevenness of the film quality in the organic layer 13 can be reduced. Therefore, performance degradation of the organic layer 13 (photoelectric conversion layer) resulting from the heat treatment can be suppressed.
  • FIG. 11 shows one example of a ternary mixture ratio of the organic semiconductors (organic semiconductors A, B, C2) contained in the organic layer 13 according to the modification.
  • the organic layer 13 includes the organic semiconductor A (quinacridone) and the organic semiconductor B (subphthalocyanine) similar to those in the above-described embodiment, and an organic semiconductor different from the organic semiconductor C1 as a derivative of the organic semiconductor A C2 (dichloroquinacridone) is added.
  • the organic semiconductor A quinacridone
  • the organic semiconductor B subphthalocyanine
  • a quartz substrate substrate temperature 60 ° C.
  • the derivative of the organic semiconductor A is not limited to the organic semiconductor C1 (dimethyl quinacridone) of the above embodiment, but the organic semiconductor C2 (dichloroquinacridone) may be used.
  • it can be used as an aggregation inhibitor of organic semiconductor A as long as it is a derivative or an analogue of organic semiconductor A, it is not limited to the above-mentioned substances, and various other substances can be used as a ternary system. It can be used as an additive in Further, the organic semiconductors A and B are not limited to the combinations of quinacridone and subphthalocyanine exemplified in FIGS. 2 and 11, and various combinations are selected from the various p-type and n-type organic semiconductors described above. be able to.
  • FIG. 12 is a functional block diagram of a solid-state imaging device (solid-state imaging device 1) using the photoelectric conversion element described in the above embodiment for each pixel.
  • the solid-state imaging device 1 is a CMOS image sensor, has a pixel portion 1a as an imaging area, and includes, for example, a circuit portion 130 including a row scanning portion 131, a horizontal selection portion 133, a column scanning portion 134, and a system control portion 132.
  • the circuit portion 130 may be provided in the peripheral region of the pixel portion 1a, or may be provided in the peripheral region of the pixel portion 1a, or may be laminated with the pixel portion 1a (opposed to the pixel portion 1a. It may be provided in the area).
  • the pixel unit 1a includes, for example, a plurality of unit pixels P (corresponding to the photoelectric conversion elements 10) arranged two-dimensionally in a matrix.
  • this unit pixel P for example, pixel drive lines Lread (specifically, row selection lines and reset control lines) are wired for each pixel row, and vertical signal lines Lsig are wired for each pixel column.
  • the pixel drive line Lread transmits a drive signal for reading out a signal from the pixel.
  • One end of the pixel drive line Lread is connected to an output end corresponding to each row of the row scanning unit 131.
  • the row scanning unit 131 is a pixel driving unit that is configured of a shift register, an address decoder, and the like, and drives each pixel P of the pixel unit 1 a in, for example, a row unit.
  • a signal output from each pixel P of the pixel row selectively scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig.
  • the horizontal selection unit 133 is configured of an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
  • the column scanning unit 134 is configured of a shift register, an address decoder, and the like, and drives the horizontal selection switches of the horizontal selection unit 133 in order while scanning them.
  • the signal of each pixel transmitted through each vertical signal line Lsig is sequentially transmitted to the horizontal signal line 135 by the selective scanning by the column scanning unit 134, and is output to the outside through the horizontal signal line 135.
  • the system control unit 132 receives an externally supplied clock, data instructing an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1.
  • the system control unit 132 further includes a timing generator that generates various timing signals, and the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like based on the various timing signals generated by the timing generator. Drive control is performed.
  • FIG. 13 shows a schematic configuration of the electronic device 2 (camera) as an example.
  • the electronic device 2 is, for example, a video camera capable of capturing still images or moving images, and drives the solid-state imaging device 1, an optical system (optical lens) 310, a shutter device 311, the solid-state imaging device 1 and the shutter device 311 And a signal processing unit 312.
  • the optical system 310 guides image light (incident light) from a subject to the pixel unit 1 a of the solid-state imaging device 1.
  • the optical system 310 may be composed of a plurality of optical lenses.
  • the shutter device 311 controls a light irradiation period and a light shielding period to the solid-state imaging device 1.
  • the drive unit 313 controls the transfer operation of the solid-state imaging device 1 and the shutter operation of the shutter device 311.
  • the signal processing unit 312 performs various signal processing on the signal output from the solid-state imaging device 1.
  • the video signal Dout after signal processing is stored in a storage medium such as a memory or output to a monitor or the like.
  • the present disclosure content is not limited to the above-mentioned embodiment etc., and various modification is possible.
  • the (ternary) organic layer 13 containing three types of organic semiconductors is exemplified in the above embodiment and the like, the organic layer of the present disclosure contains at least the three types of organic semiconductors as described above. And any other organic semiconductor may be included.
  • the present disclosure may have the following configurations.
  • a third organic semiconductor comprising a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and a derivative or isomer of one of the first and second organic semiconductors And a photoelectric conversion layer to which A photoelectric conversion element comprising: first and second electrodes provided to sandwich the photoelectric conversion layer.
  • a photoelectric conversion element comprising: first and second electrodes provided to sandwich the photoelectric conversion layer.
  • the photoelectric conversion element is A third organic semiconductor comprising a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and a derivative or isomer of one of the first and second organic semiconductors And a photoelectric conversion layer to which An electronic apparatus comprising a solid-state imaging device comprising: first and second electrodes provided with the photoelectric conversion layer interposed therebetween.

Abstract

This solid-state imaging device has a plurality of pixels, each of which comprises a photoelectric conversion element (1). The photoelectric conversion element (1) is provided with: a photoelectric conversion layer (13) that contains a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, while having a third organic semiconductor which is added thereto and is formed of a derivative or isomer of the first or second organic semiconductor; and first and second electrodes (12, 14) which are arranged so as to sandwich the photoelectric conversion layer.

Description

光電変換素子および固体撮像装置ならびに電子機器PHOTOELECTRIC CONVERSION ELEMENT, SOLID-STATE IMAGING DEVICE, AND ELECTRONIC APPARATUS
 本開示は、有機光電変換材料を用いた光電変換素子、およびそのような光電変換素子を画素として含む固体撮像装置ならびに電子機器に関する。 The present disclosure relates to a photoelectric conversion element using an organic photoelectric conversion material, and a solid-state imaging device and an electronic device including such a photoelectric conversion element as a pixel.
 CCD(Charge Coupled Device)イメージセンサ、あるいはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像装置では、各画素に、有機半導体からなる光電変換層を用いたものが提案されている(例えば、特許文献1)。 In solid-state imaging devices such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a device using a photoelectric conversion layer made of an organic semiconductor for each pixel has been proposed (for example, Patent Literature 1).
特開2011-187918号公報JP, 2011-187918, A
 ここで、有機半導体は耐熱性に乏しいため、製造プロセス中の高温熱処理によって光電変換層の性能が劣化し易い。そこで、上記特許文献1では、高温熱処理(200℃以上)による性能劣化を防ぐために、光電変換層と電極との間に、ガラス転移温度が200℃以上の有機化合物よりなる中間層を設けている。ところが、このような中間層の介在は量子効率の低下を招き、また有機半導体の材料選択の自由度も低下する。従って、そのような中間層を設けることなく、熱処理による光電変換層の性能劣化を抑制する手法の実現が望まれている。 Here, since the organic semiconductor has poor heat resistance, the performance of the photoelectric conversion layer is likely to be deteriorated by high-temperature heat treatment in the manufacturing process. Therefore, in Patent Document 1 described above, in order to prevent performance deterioration due to high-temperature heat treatment (200 ° C. or more), an intermediate layer made of an organic compound having a glass transition temperature of 200 ° C. or more is provided between the photoelectric conversion layer and the electrode. . However, the interposition of such an intermediate layer causes a decrease in quantum efficiency, and also reduces the degree of freedom in material selection of the organic semiconductor. Therefore, it is desirable to realize a method for suppressing the performance deterioration of the photoelectric conversion layer due to the heat treatment without providing such an intermediate layer.
 したがって、熱処理に起因する光電変換層の性能劣化を抑制することが可能な光電変換素子および固体撮像装置ならびに電子機器を提供することが望ましい。 Therefore, it is desirable to provide a photoelectric conversion element, a solid-state imaging device, and an electronic device capable of suppressing the performance deterioration of the photoelectric conversion layer due to the heat treatment.
 本開示の一実施の形態の光電変換素子は、第1導電型の第1の有機半導体および第2導電型の第2の有機半導体を含むと共に、第1および第2の有機半導体のうちの一方の誘導体または異性体よりなる第3の有機半導体が添加されてなる光電変換層と、光電変換層を挟んで設けられた第1および第2の電極とを備えたものである。 A photoelectric conversion element according to an embodiment of the present disclosure includes a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and one of the first and second organic semiconductors. A photoelectric conversion layer to which a third organic semiconductor consisting of a derivative or an isomer of the above is added, and first and second electrodes provided sandwiching the photoelectric conversion layer.
 本開示の一実施の形態の固体撮像装置は、各々が上記本開示の一実施の形態の光電変換素子を含む複数の画素を有するものである。 A solid-state imaging device according to an embodiment of the present disclosure includes a plurality of pixels each including the photoelectric conversion element according to the embodiment of the present disclosure.
 本開示の一実施の形態の電子機器は、上記本開示の一実施の形態の固体撮像装置を有するものである。 An electronic device according to an embodiment of the present disclosure includes the solid-state imaging device according to the embodiment of the present disclosure.
 本開示の一実施の形態の光電変換素子および固体撮像装置ならびに電子機器では、光電変換層が、第1導電型の第1の有機半導体および第2導電型の第2の有機半導体を含み、更に、それらのうちのどちらか一方の誘導体または異性体が添加されてなる。これにより、製造プロセスの高温熱処理において、第1または第2の有機半導体の凝集が抑制される。 In a photoelectric conversion element, a solid-state imaging device, and an electronic device according to an embodiment of the present disclosure, the photoelectric conversion layer includes a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type. Or the derivative or the isomer of either one of them is added. Thereby, the aggregation of the first or second organic semiconductor is suppressed in the high temperature heat treatment of the manufacturing process.
 本開示の一実施の形態の光電変換素子および固体撮像装置ならびに電子機器によれば、光電変換層が、第1導電型の第1の有機半導体および第2導電型の第2の有機半導体を含み、更に、それらのうちのどちらか一方の誘導体または異性体が添加されてなる。これにより、製造プロセスの高温熱処理において、第1または第2の有機半導体の凝集が抑制され、光電変換層における膜質のむらを低減することができる。よって、熱処理に起因する光電変換層の性能劣化を抑制可能となる。 According to the photoelectric conversion element, the solid-state imaging device, and the electronic device of the embodiment of the present disclosure, the photoelectric conversion layer includes the first organic semiconductor of the first conductivity type and the second organic semiconductor of the second conductivity type. Furthermore, one of the derivatives or isomers thereof is added. Thereby, in the high-temperature heat treatment of the manufacturing process, the aggregation of the first or second organic semiconductor can be suppressed, and unevenness in film quality in the photoelectric conversion layer can be reduced. Therefore, the performance deterioration of the photoelectric conversion layer due to the heat treatment can be suppressed.
本開示の一実施の形態に係る光電変換素子(画素)の概略構成例を表す断面図である。FIG. 1 is a cross-sectional view illustrating a schematic configuration example of a photoelectric conversion element (pixel) according to an embodiment of the present disclosure. 図1に示した光電変換層に含まれる有機半導体の3元系混合比の一例を表す模式図である。It is a schematic diagram showing an example of the ternary system mixing ratio of the organic semiconductor contained in the photoelectric converting layer shown in FIG. 比較例1に係る光電変換素子の構成例を表す斜視図である。FIG. 6 is a perspective view illustrating a configuration example of a photoelectric conversion element according to Comparative Example 1. 図3に示した光電変換層の熱処理後の膜状態を示す画像である。It is an image which shows the film state after heat processing of the photoelectric converting layer shown in FIG. 比較例2に係る光電変換素子の構成例を表す斜視図である。FIG. 6 is a perspective view illustrating a configuration example of a photoelectric conversion element according to Comparative Example 2. 図5に示した一の光電変換層(中間層:BCP)の熱処理後の膜状態を示す画像である。It is an image which shows the film state after heat processing of one photoelectric converting layer (intermediate layer: BCP) shown in FIG. 図5に示した他の光電変換層(中間層:PTCDI)の熱処理後の膜状態を示す画像である。It is an image which shows the film state after heat processing of the other photoelectric converting layer (intermediate layer: PTCDI) shown in FIG. 凝集抑制の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of aggregation suppression. 量子効率向上の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of quantum efficiency improvement. 量子効率向上の結果を示す特性図である。It is a characteristic view showing the result of quantum efficiency improvement. 変形例に係る光電変換素子の光電変換層に含まれる有機半導体の3元系混合比の一例を表す模式図である。It is a schematic diagram showing an example of the ternary system mixing ratio of the organic semiconductor contained in the photoelectric conversion layer of the photoelectric conversion element concerning a modification. 固体撮像装置の機能ブロック図である。It is a functional block diagram of a solid-state imaging device. 適用例に係る電子機器の機能ブロック図である。It is a functional block diagram of the electronic device which concerns on an application example.
 以下、本開示における実施形態について、図面を参照して詳細に説明する。尚、説明する順序は、下記の通りである。
1.実施の形態(p型有機半導体およびn型有機半導体を含む光電変換層に、n型有機半導体の誘導体が添加されてなる光電変換素子の例)
2.変形例(他の誘導体が添加される場合の例)
3.固体撮像装置の全体構成例
4.適用例(電子機器(カメラ)の例)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The order to be described is as follows.
1. Embodiment (an example of a photoelectric conversion element in which a derivative of an n-type organic semiconductor is added to a photoelectric conversion layer containing a p-type organic semiconductor and an n-type organic semiconductor)
2. Modification (example when other derivative is added)
3. Overall configuration example of solid-state imaging device Application example (example of electronic device (camera))
<実施の形態>
[構成]
 図1は、本開示の一実施の形態の固体撮像装置における画素(光電変換素子10)の概略断面構成を表すものである。固体撮像装置は、詳細は後述するが、例えばCCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどである。光電変換素子10は、例えば画素トランジスタや配線を有する基板11上に設けられ、図示しない封止膜および平坦化膜によって被覆されている。この平坦化膜上には例えば図示しないオンチップレンズが配設される。
Embodiment
[Constitution]
FIG. 1 illustrates a schematic cross-sectional configuration of a pixel (photoelectric conversion element 10) in a solid-state imaging device according to an embodiment of the present disclosure. The solid-state imaging device, which will be described in detail later, is, for example, a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) image sensor. The photoelectric conversion element 10 is provided, for example, on a substrate 11 having a pixel transistor and a wiring, and is covered with a sealing film and a planarization film (not shown). For example, an on-chip lens (not shown) is disposed on the planarizing film.
 光電変換素子10は、有機半導体を用いて、選択的な波長の光(例えば、R,G,Bのいずれかの色光)を吸収して、電子・ホール対を発生させる有機光電変換素子である。後述の固体撮像装置では、それらのR,G,Bの各色の光電変換素子10(画素)が、2次元的に並列配置されている。あるいは、1つの画素内に、有機半導体よりなる複数の光電変換層が縦方向に積層されている、もしくは、有機半導体よりなる光電変換層と無機半導体よりなる光電変換層とが縦方向に積層された構成であってもよい。本実施の形態では、そのような光電変換素子の要部構成として、図1を参照して説明を行う。 The photoelectric conversion element 10 is an organic photoelectric conversion element that generates an electron-hole pair by absorbing light of a selective wavelength (for example, color light of any of R, G, and B) using an organic semiconductor. . In the solid-state imaging device described later, the photoelectric conversion elements 10 (pixels) of the respective colors of R, G, and B are two-dimensionally arranged in parallel. Alternatively, a plurality of photoelectric conversion layers made of an organic semiconductor are vertically stacked in one pixel, or a photoelectric conversion layer made of an organic semiconductor and a photoelectric conversion layer made of an inorganic semiconductor are vertically stacked. The configuration may be adopted. In this embodiment, the main part configuration of such a photoelectric conversion element will be described with reference to FIG.
 この光電変換素子10は、基板11上に、光電変換層としての有機層13と、この有機層13から信号電荷を取り出すための一対の電極(下部電極12,上部電極14)とを有している。これらの下部電極12、有機層13および上部電極14は、開口(受光開口)H1を有する絶縁層15によって覆われている。下部電極12(第1電極)は下部コンタクト電極16Aに電気的に接続され、上部電極14(第2電極)は、上部コンタクト電極16Bに電気的に接続されている。例えば下部電極12の側から信号電荷(例えば電子)の取り出しが行われる場合には、下部電極12は、下部コンタクト電極16Aを介して、例えば基板11内に埋設された蓄電層に電気的に接続される。下部コンタクト電極16Aは、絶縁膜15に設けられた開口(コンタクトホール)H2を介して下部電極12と電気的に接続されている。上部電極14からは、上部コンタクト電極16Bを介して、電荷(例えばホール)が排出される。 The photoelectric conversion element 10 includes, on a substrate 11, an organic layer 13 as a photoelectric conversion layer, and a pair of electrodes (lower electrode 12 and upper electrode 14) for extracting signal charges from the organic layer 13. There is. The lower electrode 12, the organic layer 13 and the upper electrode 14 are covered with an insulating layer 15 having an opening (light receiving opening) H1. The lower electrode 12 (first electrode) is electrically connected to the lower contact electrode 16A, and the upper electrode 14 (second electrode) is electrically connected to the upper contact electrode 16B. For example, when signal charge (for example, electrons) is extracted from the lower electrode 12 side, the lower electrode 12 is electrically connected to, for example, a storage layer embedded in the substrate 11 via the lower contact electrode 16A. Be done. The lower contact electrode 16A is electrically connected to the lower electrode 12 through an opening (contact hole) H2 provided in the insulating film 15. Electric charges (for example, holes) are discharged from the upper electrode 14 through the upper contact electrode 16B.
 基板11は、例えばシリコン(Si)よりなる。この基板11には、有機層13から取り出された電荷(電子または正孔(ホール))の伝送路となる導電性プラグや蓄電層等(図示せず)が埋設されている。尚、上記のように1画素内に有機光電変換層と無機光電変換層とが積層される場合には、この基板11内に無機光電変換層が埋め込み形成される。 The substrate 11 is made of, for example, silicon (Si). In the substrate 11, a conductive plug or a storage layer (not shown) serving as a transmission path for charges (electrons or holes) extracted from the organic layer 13 is embedded. When the organic photoelectric conversion layer and the inorganic photoelectric conversion layer are stacked in one pixel as described above, the inorganic photoelectric conversion layer is embedded in the substrate 11.
 下部電極12は、例えばアルミニウム(Al)、クロム(Cr),金(Au),白金(Pt),ニッケル(Ni),銅(Cu),タングステン(W)あるいは銀(Ag)などの金属元素の単体または合金により構成されている。あるいは、下部電極12は、例えばITO(インジウム錫酸化物)等の透明導電膜から構成されていてもよい。透明導電膜としては、この他にも、酸化錫(TO)、ドーパントを添加した酸化スズ(SnO2)系材料、あるいは酸化亜鉛(ZnO)にドーパントを添加してなる酸化亜鉛系材料が用いられてもよい。酸化亜鉛系材料としては、例えば、ドーパントとしてアルミニウム(Al)を添加したアルミニウム亜鉛酸化物(AZO)、ガリウム(Ga)添加のガリウム亜鉛酸化物(GZO)、インジウム(In)添加のインジウム亜鉛酸化物(IZO)が挙げられる。また、この他にも、CuI、InSbO4、ZnMgO、CuInO2、MgIN24、CO、ZnSnO3等が用いられてもよい。尚、上述したように、下部電極12から信号電荷(電子)の取り出しがなされる場合、光電変換素子10を画素として用いた後述の固体撮像装置では、下部電極12が画素毎に分離されて配設される。 The lower electrode 12 is made of, for example, a metal element such as aluminum (Al), chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), tungsten (W) or silver (Ag). It is composed of a single element or an alloy. Alternatively, the lower electrode 12 may be made of, for example, a transparent conductive film such as ITO (indium tin oxide). As the transparent conductive film, in addition to this, a tin oxide (TO), a tin oxide (SnO 2 ) based material added with a dopant, or a zinc oxide based material obtained by adding a dopant to zinc oxide (ZnO) is used. May be As the zinc oxide based material, for example, aluminum zinc oxide (AZO) to which aluminum (Al) is added as a dopant, gallium zinc oxide (GZO) to which gallium (Ga) is added, and indium zinc oxide to which indium (In) is added (IZO). Besides these, CuI, InSbO 4 , ZnMgO, CuInO 2 , MgIN 2 O 4 , CO, ZnSnO 3 or the like may be used. As described above, when signal charges (electrons) are extracted from the lower electrode 12, in the solid-state imaging device described later using the photoelectric conversion element 10 as a pixel, the lower electrode 12 is separated for each pixel and arranged It will be set up.
 絶縁膜15は、例えば酸化シリコン、窒化シリコンおよび酸窒化シリコン(SiON)等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。これらの絶縁膜15は、光電変換素子10が、固体撮像装置の画素として用いられる場合に、各画素の下部電極12間を電気的に分離する機能を有している。 The insulating film 15 is formed of, for example, a single layer film made of one of silicon oxide, silicon nitride and silicon oxynitride (SiON) or a laminated film made of two or more of these. These insulating films 15 have a function of electrically separating the lower electrodes 12 of the respective pixels when the photoelectric conversion element 10 is used as a pixel of a solid-state imaging device.
(有機層13)
 有機層13は、選択的な波長域の光を吸収して光電変換するp型(第1導電型)およびn型(第2導電型)の有機半導体を含んで構成されている。p型有機半導体およびn型有機半導体としては、様々な有機顔料が挙げられるが、例えばキナクリドン誘導体(キナクリドン,ジメチルキナクリドン,ジエチルキナクリドン,ジブチルキナクリドン等のキナクリドン類、あるいはジクロロキナクリドン等のジハロゲンキナクリドン)、フタロシアニン誘導体(フタロシアニン,SubPC,CuPC,ZnPC,H2PC,PbPC)が挙げられる。また、この他にも、オキサジアゾール誘導体(NDO,PBD)、スチルベン誘導体(TPB)、ペリレン誘導体(PTCDA,PTCDI,PTCBI,Bipyrene)、テトラシアノキノジメタン誘導体(TCNQ,F4-TCNQ)、およびフェナントロリン誘導体(Bphen,Anthracene,Rubrene,Bianthrone)が挙げられる。但し、この他にも、例えばナフタレン誘導体、ピレン誘導体、およびフルオランテン誘導体が用いられていてもよい。あるいは、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体やその誘導体が用いられていてもよい。加えて、金属錯体色素、ローダーミン系色素、シアニン系色素、メロシアニン系色素、フェニルキサンテン系色素、トリフェニルメタン系色素、ロダシアニン系色素、キサンテン系色素、大環状アザアヌレン系色素、アズレン系色素、ナフトキノン、アントラキノン系色素、アントラセンおよびピレン等の縮合多環芳香族および芳香環ないし複素環化合物が縮合した鎖状化合物、または、スクアリリウム基およびクロコニツクメチン基を結合鎖として持つキノリン、ベンゾチアゾール、ベンゾオキサゾール等の二つの含窒素複素環、または、スクアリリウム基およびクロコニツクメチン基により結合したシアニン系類似の色素等を好ましく用いることができる。尚、上記金属錯体色素としては、アルミニウム錯体(Alq3,Balq)、ジチオール金属錯体系色素、金属フタロシアニン色素、金属ポルフィリン色素、またはルテニウム錯体色素が好ましいが、これに限定されるものではない。また、有機層13には、上記のような顔料以外にも、フラーレン(C60)や、BCP(Bathocuproine)等の他の有機材料が、電極構造調整層として積層されていてもよい。
(Organic layer 13)
The organic layer 13 is configured to include p-type (first conductivity type) and n-type (second conductivity type) organic semiconductors that absorb light in a selective wavelength range and perform photoelectric conversion. Examples of p-type organic semiconductors and n-type organic semiconductors include various organic pigments. For example, quinacridone derivatives (quinacridone such as quinacridone, dimethyl quinacridone, diethyl quinacridone, dibutyl quinacridone, etc., dihalogen quinacridone such as dichloro quinacridone), phthalocyanines Derivatives (phthalocyanine, SubPC, CuPC, ZnPC, H2PC, PbPC) can be mentioned. In addition to these, oxadiazole derivatives (NDO, PBD), stilbene derivatives (TPB), perylene derivatives (PTCDA, PTCDI, PTCBI, Bipyrene), tetracyanoquinodimethane derivatives (TCNQ, F4-TCNQ), and The phenanthroline derivative (Bphen, Anthracene, Rubrene, Bianthrone) is mentioned. However, in addition to this, for example, naphthalene derivatives, pyrene derivatives and fluoranthene derivatives may be used. Alternatively, polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene and derivatives thereof may be used. In addition, metal complex dyes, rhodamine dyes, cyanine dyes, merocyanine dyes, phenylxanthene dyes, triphenylmethane dyes, rhodacyanine dyes, xanthene dyes, macrocyclic azaannulene dyes, azulene dyes, naphthoquinones , Anthraquinone dyes, chain compounds in which fused polycyclic aromatic and aromatic rings or heterocyclic compounds such as anthracene and pyrene are condensed, or quinoline, benzothiazole, benzoxazole having squarylium group and croconicut methine group as a bonding chain And the like, or dyes similar to cyanine-based dyes linked by squarylium groups and crocoxicmetin groups, and the like can be preferably used. The metal complex dye is preferably an aluminum complex (Alq3, Balq), a dithiol metal complex dye, a metal phthalocyanine dye, a metal porphyrin dye, or a ruthenium complex dye, but is not limited thereto. In addition to the above-described pigments, other organic materials such as fullerene (C60) and BCP (Bathocuproine) may be laminated on the organic layer 13 as an electrode structure adjusting layer.
 この有機層13は、p型有機半導体およびn型有機半導体(以下、有機半導体A,Bとする)として、上記材料のうちの2種を含むと共に、それらのうちの一方の類縁物(誘導体または異性体)(以下、有機半導体C1とする)が所定量添加されて形成されたものである。有機層13は、例えばこれらの有機半導体A,B,C1を含む共蒸着膜(後述の共蒸着法により成膜されたもの)である。但し、有機層13は、有機半導体A,B,C1を含む塗布膜(後述の塗布法により成膜されたもの)または印刷膜(後述の印刷法により成膜されたもの)であってもよいし、それぞれが積層されてなる積層膜であってもよい。例えば、有機半導体A,B,C1がそれぞれ10nm程度以下の膜厚で交互に積層された構造とすることができる。有機半導体C1は、具体的には、有機半導体A,Bのうちのより凝集性の高い(相対的に凝集し易い)方の類縁物である。ここで「凝集性」とは、分子間力等の作用により、例えば150℃~600℃程度の温度下における凝集し易さ、を示す。 The organic layer 13 contains two of the above materials as a p-type organic semiconductor and an n-type organic semiconductor (hereinafter referred to as organic semiconductors A and B), and one of their analogues (derivatives or An isomer (hereinafter, referred to as an organic semiconductor C1) is formed by adding a predetermined amount. The organic layer 13 is, for example, a co-evaporated film (formed by a co-evaporation method described later) including the organic semiconductors A, B, and C1. However, the organic layer 13 may be a coated film (formed by a coating method described later) or a printed film (formed by a printing method described later) containing the organic semiconductors A, B, and C1. Alternatively, it may be a laminated film formed by laminating each of them. For example, the organic semiconductors A, B, and C1 can be alternately stacked in film thicknesses of about 10 nm or less. Specifically, the organic semiconductor C1 is a more cohesive (relatively aggregation prone) one of the organic semiconductors A and B. Here, “cohesive” indicates the ease of aggregation at a temperature of, for example, about 150 ° C. to 600 ° C. by the action of an intermolecular force or the like.
 本実施の形態では、そのような有機半導体A,Bの一例として、キナクリドン(quinacridone:QD)およびサブフタロシアニン(SubPC)を用いた場合について説明する。この場合、有機半導体A,Bのうち有機半導体A(キナクリドン)が相対的に凝集し易いことから、有機半導体C1としては、キナクリドンの誘導体または異性体(ここでは、誘導体であるジメチルキナクリドン)が用いられる。また、イオン化ポテンシャルの関係から、有機半導体A(キナクリドン)がp型として、有機半導体B(サブフタロシアニン)がn型の有機半導体としてそれぞれ機能する。 In this embodiment, as an example of such organic semiconductors A and B, the case of using quinacridone (QD) and subphthalocyanine (SubPC) will be described. In this case, since the organic semiconductor A (quinacridone) among the organic semiconductors A and B is relatively easy to aggregate, a derivative or isomer of quinacridone (herein, dimethylquinacridone as a derivative) is used as the organic semiconductor C1. Be Further, in view of the ionization potential, the organic semiconductor A (quinacridone) functions as a p-type, and the organic semiconductor B (subphthalocyanine) functions as an n-type organic semiconductor.
 図2は、これらの有機半導体A,B,C1の3元系混合比の一例について表したものである。図2では、有機半導体A,B,C1の3元系混合比(A:B:C1)=r1(50:50:0),r2(25:50:25),r3(0:50:50),r4(50:25:25),およびr5(25:25:50)と、これらの各場合における有機層13の斑点(斑状組織)の有無が示されている。尚、これは、有機半導体A,B,C1を上記混合比r1~r5により混合したものを、石英基板(基板温度60℃および0℃)上に共蒸着させた後、高温アニール(250℃程度,数分間)して形成した有機層13の断面を観察し、斑点発生の有無を評価した結果に基づくものである。r1~r5の各点において、斑点発生が見られなかったものには「○」のマーク、斑点発生が見られたものには「△」のマークをそれぞれ付している。また、これらのマークは、基板温度60℃の場合を実線、0℃の場合を破線により示している。 FIG. 2 shows one example of the ternary mixture ratio of these organic semiconductors A, B and C1. In FIG. 2, the ternary mixture ratio of the organic semiconductors A, B, C1 (A: B: C1) = r1 (50: 50: 0), r2 (25:50:25), r3 (0:50:50) , R4 (50:25:25), and r5 (25:25:50), and the presence or absence of spots (plaque tissue) of the organic layer 13 in each of these cases are shown. Here, after co-depositing a mixture of organic semiconductors A, B and C 1 at the above mixing ratio r 1 to r 5 on a quartz substrate (substrate temperature 60 ° C. and 0 ° C.), high temperature annealing (about 250 ° C.) , And the cross section of the organic layer 13 formed in several minutes) is observed, and it is based on the result of having evaluated the presence or absence of spot generation | occurrence | production. At each point of r1 to r5, a mark of “o” is given to those in which no spotting was observed, and a mark of “Δ” is given to those in which spotting was observed. In addition, these marks are shown by a solid line at a substrate temperature of 60 ° C. and a broken line at 0 ° C.
 このように、有機半導体A,B,C1のうちの2種のみを混合させた2元系の場合(r1,r3)には、基板温度60℃,0℃のいずれの場合にも、斑点発生が見られるものの、有機半導体A,B,C1の3つの半導体材料を混合した3元系の場合(r2,r4,r5)には、2元系の場合に比べ、斑点発生が抑制される。また、SubPCの濃度が薄くなる程、斑点抑制の効果が得られることが分かっている。 Thus, in the case of a binary system in which only two of the organic semiconductors A, B and C 1 are mixed (r1, r3), spotting occurs in any of the substrate temperatures of 60 ° C. and 0 ° C. However, in the case of a ternary system (r2, r4, r5) in which three semiconductor materials of organic semiconductors A, B and C1 are mixed, the occurrence of spots is suppressed as compared with the case of a binary system. In addition, it is known that the effect of suppressing spots can be obtained as the concentration of SubPC decreases.
 上記のような有機層13は、例えば次のようにして下部電極12上に形成することができる。即ち、下部電極12上に、上記p型およびn型の有機半導体材料のうちの2種(有機半導体A,B)を所定の溶媒に溶かしたものに、更に有機半導体C1を添加することにより、有機半導体A,B,C1を含む混合液を調整する。この混合液における有機半導体A,B,C1の混合比は、例えば図2に示したr2,r4,r5に示したような混合比とすることができる。このようにして調整した混合液を、例えば共蒸着させることにより、有機半導体A,B,C1を所定の混合比で含む有機層13を形成可能である。但し、蒸着法の他にも、上記混合液を、例えばスピンコート法、スリットコート法およびディップコート法等の各種塗布法により成膜することも可能である。また、例えば、反転オフセット印刷および凸版印刷等の各種印刷法により成膜することも可能である。あるいは、有機層13を、有機半導体A,B,C1の積層膜により形成する場合には、例えば、有機半導体A,B,C1をそれぞれ含む溶液を順次、蒸着法により成膜する多段階蒸着により形成することができる。あるいは、例えば、有機半導体A,C1を混合した溶液と、有機半導体Bを含む溶液とを、順次蒸着してもよい。 The organic layer 13 as described above can be formed on the lower electrode 12 as follows, for example. That is, the organic semiconductor C1 is further added to the lower electrode 12 in which two types (organic semiconductors A and B) of the p-type and n-type organic semiconductor materials are dissolved in a predetermined solvent. A mixed solution containing organic semiconductors A, B and C1 is prepared. The mixing ratio of the organic semiconductors A, B and C1 in this mixed solution can be, for example, the mixing ratio as shown in r2, r4 and r5 shown in FIG. By co-evaporating the mixed solution thus prepared, for example, it is possible to form the organic layer 13 containing the organic semiconductors A, B, and C1 at a predetermined mixing ratio. However, in addition to the vapor deposition method, it is also possible to form a film of the mixed solution by various coating methods such as spin coating, slit coating, and dip coating. In addition, for example, it is possible to form a film by various printing methods such as reverse offset printing and letterpress printing. Alternatively, in the case where the organic layer 13 is formed of a laminated film of organic semiconductors A, B and C1, for example, multistage vapor deposition in which solutions containing the organic semiconductors A, B and C1 are sequentially formed by vapor deposition It can be formed. Alternatively, for example, a solution in which the organic semiconductors A and C1 are mixed and a solution containing the organic semiconductor B may be sequentially deposited.
 上部電極14は、下部電極12において挙げた透明導電膜により構成されている。尚、本実施の形態のように、下部電極12側から信号電荷の取り出しを行う場合には、この上部電極14は、各画素に共通して設けられている。 The upper electrode 14 is formed of the transparent conductive film mentioned in the lower electrode 12. When the signal charge is extracted from the lower electrode 12 side as in the present embodiment, the upper electrode 14 is provided in common to each pixel.
[作用、効果]
 本実施の形態の光電変換素子10では、例えば固体撮像装置の画素として、次のようにして信号電荷が取得される。即ち、光電変換素子10に、図示しないオンチップレンズを介して光が入射すると、この入射光は、有機層13において光電変換される。具体的には、まず、所定の色光(赤色光,緑色光または青色光)が、有機層13に選択的に検出(吸収)されることにより、電子・ホール対を発生する。発生した電子・ホール対のうち、例えば電子が下部電極12側から取り出され、基板11内へ蓄積される一方、ホールは、上部電極14側から、図示しない配線層を介して排出される。このようにして蓄積された各色の受光信号がそれぞれ、後述の垂直信号線Lsigに読み出されることにより、赤、緑、青の各色の撮像データを得ることができる。
[Action, effect]
In the photoelectric conversion element 10 of the present embodiment, for example, as a pixel of a solid-state imaging device, signal charges are acquired as follows. That is, when light is incident on the photoelectric conversion element 10 through an on-chip lens (not shown), the incident light is photoelectrically converted in the organic layer 13. Specifically, first, predetermined color light (red light, green light or blue light) is selectively detected (absorbed) in the organic layer 13 to generate electron-hole pairs. Among the generated electron-hole pairs, for example, electrons are extracted from the lower electrode 12 side and accumulated in the substrate 11, while holes are discharged from the upper electrode 14 side via a wiring layer (not shown). By reading out the light reception signals of the respective colors accumulated in this manner to the vertical signal line Lsig described later, it is possible to obtain imaging data of the respective colors of red, green and blue.
(比較例)
 図3は、本実施の形態の比較例(比較例1)に係る光電変換素子のサンプル(サンプル100a)の構成を表す斜視図である。比較例1として、石英からなる基板101上に、キナクリドンとSubPCとの2元系共蒸着膜からなる有機層102を蒸着した後、ITOからなる電極103を成膜して、高温アニール(250℃程度、数分間)を施すことにより、サンプル100aを作製した。このサンプル100aの有機層102の断面を光学顕微鏡を用いて撮影し、明視野像を図4(A)に、暗視野像を図4(B)にそれぞれ示す。このように、キナクリドンとSubPCとの2元系共蒸着膜からなる有機層102を用いた比較例1では、材料のマイグレーションにより構造体が形成され、膜質にむらが生じていることがわかる。また、キナクリドンが優先的に凝集して相分離が生じている。
(Comparative example)
FIG. 3 is a perspective view showing the configuration of a sample (sample 100a) of a photoelectric conversion element according to a comparative example (comparative example 1) of the present embodiment. As Comparative Example 1, an organic layer 102 composed of a binary co-deposited film of quinacridone and SubPC is deposited on a substrate 101 composed of quartz, and then an electrode 103 composed of ITO is deposited and subjected to high temperature annealing (250 ° C. Sample 100a was produced by applying the degree, for several minutes. A cross section of the organic layer 102 of the sample 100a is photographed using an optical microscope, and a bright field image is shown in FIG. 4 (A) and a dark field image is shown in FIG. 4 (B). As described above, in Comparative Example 1 using the organic layer 102 made of a binary codeposited film of quinacridone and SubPC, it can be seen that a structure is formed due to the migration of the material, and unevenness occurs in the film quality. In addition, quinacridone preferentially aggregates to cause phase separation.
 図5は、本実施の形態の比較例(比較例2-1)に係る光電変換素子のサンプル(サンプル100b)の構成を表す斜視図である。比較例2-1として、基板101上に、BCP(低ガラス転移温度)からなる中間層104を介して、有機層102(キナクリドンとSubPCとの共蒸着膜)を蒸着した後、電極103を成膜して、高温アニール(250℃程度、数分間)を施すことにより、サンプル100bを作製した。このサンプル100bの有機層102の断面を、光学顕微鏡を用いて撮影し、明視野像を図6(A)に、暗視野像を図6(B)にそれぞれ示す。このように、有機層102と基板101との間に、BCPよりなる中間層104を設けた比較例2-1においても、斑点が発生し、膜質にむらが生じていることがわかる。 FIG. 5 is a perspective view showing a configuration of a sample (sample 100b) of a photoelectric conversion element according to a comparative example (comparative example 2-1) of the present embodiment. As Comparative Example 2-1, after the organic layer 102 (codeposited film of quinacridone and SubPC) is deposited on the substrate 101 via the intermediate layer 104 made of BCP (low glass transition temperature), the electrode 103 is formed. The film was subjected to high temperature annealing (about 250 ° C., for several minutes) to prepare a sample 100 b. A cross section of the organic layer 102 of the sample 100b is photographed using an optical microscope, and a bright field image is shown in FIG. 6 (A) and a dark field image is shown in FIG. 6 (B). As described above, even in Comparative Example 2-1 in which the intermediate layer 104 made of BCP is provided between the organic layer 102 and the substrate 101, it is understood that spots occur and unevenness in the film quality occurs.
 また、比較例(比較例2-2)として、上記サンプル100bにおいて、BCPに代えて、高ガラス転移温度を有するPTCDIを中間層104に用いた場合の有機層102の断面を、光学顕微鏡を用いて撮影した。その明視野像を、図7(A)に、暗視野像を図7(B)にそれぞれ示す。このように、有機層102と基板101との間に、PTCDIよりなる中間層104を設けた比較例2-2においても、斑点発生が見られ、膜質にむらが生じていることがわかる。 Further, as a comparative example (comparative example 2-2), in the above sample 100b, a cross section of the organic layer 102 when PTCDI having a high glass transition temperature is used for the intermediate layer 104 instead of BCP is used as an optical microscope. I shot it. The bright field image is shown in FIG. 7 (A), and the dark field image is shown in FIG. 7 (B). As described above, even in Comparative Example 2-2 in which the intermediate layer 104 made of PTCDI is provided between the organic layer 102 and the substrate 101, generation of spots is observed, and it can be seen that unevenness occurs in the film quality.
 上記のように、p型有機半導体とn型有機半導体とを含む共蒸着膜からなる有機層102では、製造プロセス(高温熱処理)に起因して斑点等が発生し、膜質にむらが出てしまう。これは、p型有機半導体およびn型有機半導体のうちの一方(ここでは、p型有機半導体としてのキナクリドン)が優先的に凝集し、有機層102内において相分離が生じているためと考えられる。 As described above, in the organic layer 102 composed of a co-deposited film containing a p-type organic semiconductor and an n-type organic semiconductor, spots or the like are generated due to the manufacturing process (high temperature heat treatment), and unevenness in the film quality occurs. . It is considered that this is because one of the p-type organic semiconductor and the n-type organic semiconductor (here, quinacridone as the p-type organic semiconductor) preferentially aggregates to cause phase separation in the organic layer 102. .
 これに対し、本実施の形態では、p型の有機半導体A(例えばキナクリドン)と、n型の有機半導体B(例えば、SubPC)とを含む有機層13に、更に有機半導体Aの誘導体である有機半導体C1(ジメチルキナクリドン)が添加されている。このように、有機層13が、p型およびn型の有機半導体A,Bに加え、それらのうちのより凝集性の高い方(有機半導体A)の類縁物(有機半導体C1)を更に含むことにより、有機半導体Aの凝集が抑制され、斑点の発生が低減される。これは、図8(A)に示したように、有機半導体Aの分子(QD分子130a)の規則的な配列が、有機半導体C1の分子(ジメチルQD分子130b)によって崩される(乱される)ためである。詳細には、キナクリドン分子同士は分子間力により凝集し易いが、例えばキナクリドンに対して2,9位置にメチル基を配してなる誘導体を用いることにより、電気特性を大きく変化させることなく、斑点発生が抑制される。 On the other hand, in the present embodiment, the organic layer 13 including the p-type organic semiconductor A (for example, quinacridone) and the n-type organic semiconductor B (for example, SubPC) Semiconductor C1 (dimethyl quinacridone) is added. Thus, in addition to the p-type and n-type organic semiconductors A and B, the organic layer 13 further includes the analogue (organic semiconductor C1) of the more cohesive one (organic semiconductor A) among them. Thus, the aggregation of the organic semiconductor A is suppressed, and the occurrence of spots is reduced. This is because, as shown in FIG. 8A, the regular arrangement of the molecules of the organic semiconductor A (QD molecules 130a) is broken (disrupted) by the molecules of the organic semiconductor C1 (dimethyl QD molecules 130b). It is for. Specifically, quinacridone molecules tend to aggregate due to intermolecular force, but for example, by using a derivative in which a methyl group is disposed at the 2, 9 position with respect to quinacridone, spots do not significantly change electrical characteristics. Occurrence is suppressed.
 また、図9には、本実施の形態の素子構造のバンドダイヤグラムを示す。ITO(仕事関数4.8eV)よりなる電極と、アルミニウム(仕事関数4.3eV)よりなる電極との間に、有機半導体A,B,C1の3元系共蒸着膜を設けた例である。尚、キナクリドンの最高被占軌道(HOMO:Highest Occupied Molecular Orbital)のエネルギー準位は約5.3eVであり、最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)のエネルギー準位は、約3.2eVである。また、SubPCの最高被占軌道のエネルギー準位は約5.4eVであり、最低空軌道のエネルギー準位は、約3.3eVである。 Further, FIG. 9 shows a band diagram of the device structure of this embodiment. In this example, a ternary co-deposited film of an organic semiconductor A, B, C1 is provided between an electrode made of ITO (work function 4.8 eV) and an electrode made of aluminum (work function 4.3 eV). The energy level of the highest occupied molecular orbital (HOMO) of quinacridone is about 5.3 eV, and the energy level of the lowest unoccupied molecular orbital (LUMO) is about 3.2 eV. is there. In addition, the energy level of the highest occupied atomic orbital of SubPC is about 5.4 eV, and the energy level of the lowest unoccupied orbital is about 3.3 eV.
 以上説明したように本実施の形態では、p型の有機半導体Aおよびn型の有機半導体Bを含む有機層13に、有機半導体Aの誘導体である有機半導体C1が添加されている。これにより、製造プロセスの高温熱処理において、有機半導体Aの凝集が抑制され、有機層13における膜質のむらを低減することができる。よって、熱処理に起因する有機層13(光電変換層)の性能劣化を抑制可能となる。 As described above, in the present embodiment, the organic semiconductor C1, which is a derivative of the organic semiconductor A, is added to the organic layer 13 containing the p-type organic semiconductor A and the n-type organic semiconductor B. Thereby, in the high temperature heat treatment of the manufacturing process, the aggregation of the organic semiconductor A is suppressed, and the unevenness of the film quality in the organic layer 13 can be reduced. Therefore, performance degradation of the organic layer 13 (photoelectric conversion layer) resulting from the heat treatment can be suppressed.
 次に、上記実施の形態に係る光電変換素子(画素)の変形例について説明する。尚、以下では、上記実施の形態と同様の構成要素については同様の符号を付し、適宜その説明を省略する。 Next, modified examples of the photoelectric conversion element (pixel) according to the above-described embodiment will be described. In the following, the same components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
<変形例>
 図11は、変形例に係る有機層13に含まれる有機半導体(有機半導体A,B,C2)の3元系混合比の一例について表したものである。本変形例では、有機層13が、上記実施の形態と同様の有機半導体A(キナクリドン)および有機半導体B(サブフタロシアニン)を含むと共に、有機半導体Aの誘導体として、有機半導体C1とは異なる有機半導体C2(ジクロロキナクリドン)が添加されている。図11では、有機半導体A,B,C2の3元系混合比(A:B:C2)=s1(50:50:0),s2(25:50:25),s3(0:50:50),s4(50:25:25),s5(25:25:50)およびs6(50:0:50)と、これらの各場合における有機層13の斑点発生の有無が示されている。尚、これは、上記実施の形態と同様、有機半導体A,B,C2を上記混合比s1~s6により混合したものを、石英基板(基板温度60℃および0℃)上に共蒸着させた後、高温アニール(250℃程度,数分間)して形成した有機層13の断面を観察し、斑点の有無を評価した結果に基づくものである。s1~s6の各点において、斑点発生が見られなかったものには「○」のマーク、斑点発生が見られたものには「△」のマークをそれぞれ付している。また、これらのマークは、基板温度60℃の場合を実線、0℃の場合を破線により示している。
<Modification>
FIG. 11 shows one example of a ternary mixture ratio of the organic semiconductors (organic semiconductors A, B, C2) contained in the organic layer 13 according to the modification. In this modification, the organic layer 13 includes the organic semiconductor A (quinacridone) and the organic semiconductor B (subphthalocyanine) similar to those in the above-described embodiment, and an organic semiconductor different from the organic semiconductor C1 as a derivative of the organic semiconductor A C2 (dichloroquinacridone) is added. In FIG. 11, the ternary mixture ratio of the organic semiconductors A, B and C2 (A: B: C2) = s1 (50: 50: 0), s2 (25:50:25), s3 (0:50:50) , S4 (50: 25: 25), s 5 (25: 25: 50) and s 6 (50: 0: 50), and the presence or absence of the occurrence of mottle of the organic layer 13 in each of these cases is shown. As in the above embodiment, after co-depositing a mixture of organic semiconductors A, B and C 2 at the above mixing ratios s 1 to s 6 on a quartz substrate (substrate temperature 60 ° C. and 0 ° C.) The cross section of the organic layer 13 formed by high temperature annealing (about 250 ° C. for several minutes) is observed to evaluate the presence or absence of spots. In each of the points s1 to s6, a mark “o” is given to those in which no spotting was observed, and a mark “Δ” is given to those in which spotting was observed. In addition, these marks are shown by a solid line at a substrate temperature of 60 ° C. and a broken line at 0 ° C.
 このように、有機半導体A(キナクリドン)の誘導体としては、上記実施の形態の有機半導体C1(ジメチルキナクリドン)に限られず、有機半導体C2(ジクロロキナクリドン)が用いられてもよい。また、有機半導体Aの誘導体または異性体のような類縁物であれば、有機半導体Aの凝集阻止剤として用いることができるため、上述した物質に限定されず、他の様々なものを3元系における添加材として用いることができる。また、有機半導体A,Bについても、図2および図11において例示したキナクリドンおよびサブフタロシアニンの組み合わせに限定されず、上述した様々なp型およびn型の有機半導体の中から様々な組み合わせを選択することができる。 Thus, the derivative of the organic semiconductor A (quinacridone) is not limited to the organic semiconductor C1 (dimethyl quinacridone) of the above embodiment, but the organic semiconductor C2 (dichloroquinacridone) may be used. Moreover, since it can be used as an aggregation inhibitor of organic semiconductor A as long as it is a derivative or an analogue of organic semiconductor A, it is not limited to the above-mentioned substances, and various other substances can be used as a ternary system. It can be used as an additive in Further, the organic semiconductors A and B are not limited to the combinations of quinacridone and subphthalocyanine exemplified in FIGS. 2 and 11, and various combinations are selected from the various p-type and n-type organic semiconductors described above. be able to.
<固体撮像装置の全体構成>
 図12は、上記実施の形態において説明した光電変換素子を各画素に用いた固体撮像装置(固体撮像装置1)の機能ブロック図である。この固体撮像装置1は、CMOSイメージセンサであり、撮像エリアとしての画素部1aを有すると共に、例えば行走査部131、水平選択部133、列走査部134およびシステム制御部132からなる回路部130を有している。この画素部1aの周辺領域あるいは画素部1aと積層されて、回路部130は、画素部1aの周辺領域に設けられていてもよいし、画素部1aと積層されて(画素部1aに対向する領域に)設けられていてもよい。
<Overall Configuration of Solid-State Imaging Device>
FIG. 12 is a functional block diagram of a solid-state imaging device (solid-state imaging device 1) using the photoelectric conversion element described in the above embodiment for each pixel. The solid-state imaging device 1 is a CMOS image sensor, has a pixel portion 1a as an imaging area, and includes, for example, a circuit portion 130 including a row scanning portion 131, a horizontal selection portion 133, a column scanning portion 134, and a system control portion 132. Have. The circuit portion 130 may be provided in the peripheral region of the pixel portion 1a, or may be provided in the peripheral region of the pixel portion 1a, or may be laminated with the pixel portion 1a (opposed to the pixel portion 1a. It may be provided in the area).
 画素部1aは、例えば行列状に2次元配置された複数の単位画素P(光電変換素子10に相当)を有している。この単位画素Pには、例えば画素行ごとに画素駆動線Lread(具体的には行選択線およびリセット制御線)が配線され、画素列ごとに垂直信号線Lsigが配線されている。画素駆動線Lreadは、画素からの信号読み出しのための駆動信号を伝送するものである。画素駆動線Lreadの一端は、行走査部131の各行に対応した出力端に接続されている。 The pixel unit 1a includes, for example, a plurality of unit pixels P (corresponding to the photoelectric conversion elements 10) arranged two-dimensionally in a matrix. In this unit pixel P, for example, pixel drive lines Lread (specifically, row selection lines and reset control lines) are wired for each pixel row, and vertical signal lines Lsig are wired for each pixel column. The pixel drive line Lread transmits a drive signal for reading out a signal from the pixel. One end of the pixel drive line Lread is connected to an output end corresponding to each row of the row scanning unit 131.
 行走査部131は、シフトレジスタやアドレスデコーダ等によって構成され、画素部1aの各画素Pを、例えば行単位で駆動する画素駆動部である。行走査部131によって選択走査された画素行の各画素Pから出力される信号は、垂直信号線Lsigの各々を通して水平選択部133に供給される。水平選択部133は、垂直信号線Lsigごとに設けられたアンプや水平選択スイッチ等によって構成されている。 The row scanning unit 131 is a pixel driving unit that is configured of a shift register, an address decoder, and the like, and drives each pixel P of the pixel unit 1 a in, for example, a row unit. A signal output from each pixel P of the pixel row selectively scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig. The horizontal selection unit 133 is configured of an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
 列走査部134は、シフトレジスタやアドレスデコーダ等によって構成され、水平選択部133の各水平選択スイッチを走査しつつ順番に駆動するものである。この列走査部134による選択走査により、垂直信号線Lsigの各々を通して伝送される各画素の信号が順番に水平信号線135に伝送され、当該水平信号線135を通して外部へ出力される。 The column scanning unit 134 is configured of a shift register, an address decoder, and the like, and drives the horizontal selection switches of the horizontal selection unit 133 in order while scanning them. The signal of each pixel transmitted through each vertical signal line Lsig is sequentially transmitted to the horizontal signal line 135 by the selective scanning by the column scanning unit 134, and is output to the outside through the horizontal signal line 135.
 システム制御部132は、外部から与えられるクロックや、動作モードを指令するデータなどを受け取り、また、固体撮像装置1の内部情報などのデータを出力するものである。システム制御部132はさらに、各種のタイミング信号を生成するタイミングジェネレータを有し、当該タイミングジェネレータで生成された各種のタイミング信号を基に行走査部131、水平選択部133および列走査部134などの駆動制御を行う。 The system control unit 132 receives an externally supplied clock, data instructing an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1. The system control unit 132 further includes a timing generator that generates various timing signals, and the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like based on the various timing signals generated by the timing generator. Drive control is performed.
<適用例>
 上述の固体撮像装置1は、例えばデジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話など、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図13に、その一例として、電子機器2(カメラ)の概略構成を示す。この電子機器2は、例えば静止画または動画を撮影可能なビデオカメラであり、固体撮像装置1と、光学系(光学レンズ)310と、シャッタ装置311と、固体撮像装置1およびシャッタ装置311を駆動する駆動部313と、信号処理部312とを有する。
<Example of application>
The above-described solid-state imaging device 1 can be applied to any type of electronic apparatus having an imaging function, such as a camera system such as a digital still camera or a video camera, and a mobile phone having an imaging function. FIG. 13 shows a schematic configuration of the electronic device 2 (camera) as an example. The electronic device 2 is, for example, a video camera capable of capturing still images or moving images, and drives the solid-state imaging device 1, an optical system (optical lens) 310, a shutter device 311, the solid-state imaging device 1 and the shutter device 311 And a signal processing unit 312.
 光学系310は、被写体からの像光(入射光)を固体撮像装置1の画素部1aへ導くものである。この光学系310は、複数の光学レンズから構成されていてもよい。シャッタ装置311は、固体撮像装置1への光照射期間および遮光期間を制御するものである。駆動部313は、固体撮像装置1の転送動作およびシャッタ装置311のシャッタ動作を制御するものである。信号処理部312は、固体撮像装置1から出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Doutは、メモリなどの記憶媒体に記憶されるか、あるいは、モニタ等に出力される。 The optical system 310 guides image light (incident light) from a subject to the pixel unit 1 a of the solid-state imaging device 1. The optical system 310 may be composed of a plurality of optical lenses. The shutter device 311 controls a light irradiation period and a light shielding period to the solid-state imaging device 1. The drive unit 313 controls the transfer operation of the solid-state imaging device 1 and the shutter operation of the shutter device 311. The signal processing unit 312 performs various signal processing on the signal output from the solid-state imaging device 1. The video signal Dout after signal processing is stored in a storage medium such as a memory or output to a monitor or the like.
 以上、実施の形態、変形例および適用例を挙げて説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態等では、3種の有機半導体を含む(3元系の)有機層13を例示したが、本開示の有機層は、少なくとも上記のような3種の有機半導体を含んでいればよく、更に他の有機半導体を含んでいてもよい。 As mentioned above, although an embodiment, a modification, and an application example were mentioned and explained, the present disclosure content is not limited to the above-mentioned embodiment etc., and various modification is possible. For example, although the (ternary) organic layer 13 containing three types of organic semiconductors is exemplified in the above embodiment and the like, the organic layer of the present disclosure contains at least the three types of organic semiconductors as described above. And any other organic semiconductor may be included.
 また、本開示の光電変換素子では、上記実施の形態等で説明した各構成要素を全て備えている必要はなく、また逆に他の層を備えていてもよい。 Further, in the photoelectric conversion element of the present disclosure, it is not necessary to include all the components described in the above-described embodiment and the like, and conversely, other layers may be provided.
 尚、本開示は、以下のような構成であってもよい。
(1)
 第1導電型の第1の有機半導体および第2導電型の第2の有機半導体を含むと共に、前記第1および第2の有機半導体のうちの一方の誘導体または異性体よりなる第3の有機半導体が添加されてなる光電変換層と、
 前記光電変換層を挟んで設けられた第1および第2の電極と
 を備えた光電変換素子。
(2)
 前記第3の有機半導体は、前記第1および第2の有機半導体のうちのより凝集性の高い方の誘導体または異性体である
 上記(1)に記載の光電変換素子。
(3)
 前記光電変換層は、前記第1ないし第3の有機半導体を含む共蒸着膜である
 上記(1)または(2)に記載の光電変換素子。
(4)
 前記光電変換層は、前記第1ないし第3の有機半導体を含む塗布膜または印刷膜である
 上記(1)または(2)に記載の光電変換素子。
(5)
 前記光電変換層は、前記第1ないし第3の有機半導体を含む積層膜である
 上記(1)または(2)に記載の光電変換素子。
(6)
 各々が光電変換素子を含む複数の画素を有し、
 前記光電変換素子は、
 第1導電型の第1の有機半導体および第2導電型の第2の有機半導体を含むと共に、前記第1および第2の有機半導体のうちの一方の誘導体または異性体よりなる第3の有機半導体が添加されてなる光電変換層と、
 前記光電変換層を挟んで設けられた第1および第2の電極と
 を備えた固体撮像装置。
(7)
 各々が光電変換素子を含む複数の画素を有し、
 前記光電変換素子は、
 第1導電型の第1の有機半導体および第2導電型の第2の有機半導体を含むと共に、前記第1および第2の有機半導体のうちの一方の誘導体または異性体よりなる第3の有機半導体が添加されてなる光電変換層と、
 前記光電変換層を挟んで設けられた第1および第2の電極と
 を備えた固体撮像装置を有する電子機器。
The present disclosure may have the following configurations.
(1)
A third organic semiconductor comprising a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and a derivative or isomer of one of the first and second organic semiconductors And a photoelectric conversion layer to which
A photoelectric conversion element comprising: first and second electrodes provided to sandwich the photoelectric conversion layer.
(2)
The photoelectric conversion element according to (1), wherein the third organic semiconductor is a derivative or an isomer of the more cohesive one of the first and second organic semiconductors.
(3)
The photoelectric conversion element according to (1) or (2) above, wherein the photoelectric conversion layer is a co-evaporated film containing the first to third organic semiconductors.
(4)
The photoelectric conversion element according to (1) or (2), wherein the photoelectric conversion layer is a coated film or a printed film containing the first to third organic semiconductors.
(5)
The photoelectric conversion element according to (1) or (2), wherein the photoelectric conversion layer is a laminated film including the first to third organic semiconductors.
(6)
Each having a plurality of pixels including photoelectric conversion elements,
The photoelectric conversion element is
A third organic semiconductor comprising a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and a derivative or isomer of one of the first and second organic semiconductors And a photoelectric conversion layer to which
A solid-state imaging device comprising: first and second electrodes provided to sandwich the photoelectric conversion layer.
(7)
Each having a plurality of pixels including photoelectric conversion elements,
The photoelectric conversion element is
A third organic semiconductor comprising a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and a derivative or isomer of one of the first and second organic semiconductors And a photoelectric conversion layer to which
An electronic apparatus comprising a solid-state imaging device comprising: first and second electrodes provided with the photoelectric conversion layer interposed therebetween.
 本出願は、日本国特許庁において2012年11月9日に出願された日本特許出願番号第2012-247207号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2012-247207 filed on Nov. 9, 2012 in the Japan Patent Office, and the entire contents of this application are hereby incorporated by reference. Incorporated in the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Various modifications, combinations, subcombinations, and modifications will occur to those skilled in the art depending on the design requirements and other factors, but they fall within the scope of the appended claims and their equivalents. Are understood to be

Claims (7)

  1.  第1導電型の第1の有機半導体および第2導電型の第2の有機半導体を含むと共に、前記第1および第2の有機半導体のうちの一方の誘導体または異性体よりなる第3の有機半導体が添加されてなる光電変換層と、
     前記光電変換層を挟んで設けられた第1および第2の電極と
     を備えた光電変換素子。
    A third organic semiconductor comprising a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and a derivative or isomer of one of the first and second organic semiconductors And a photoelectric conversion layer to which
    A photoelectric conversion element comprising: first and second electrodes provided to sandwich the photoelectric conversion layer.
  2.  前記第3の有機半導体は、前記第1および第2の有機半導体のうちのより凝集性の高い方の誘導体または異性体である
     請求項1に記載の光電変換素子。
    The photoelectric conversion element according to claim 1, wherein the third organic semiconductor is a derivative or an isomer of the more cohesive one of the first and second organic semiconductors.
  3.  前記光電変換層は、前記第1ないし第3の有機半導体を含む共蒸着膜である
     請求項1に記載の光電変換素子。
    The photoelectric conversion element according to claim 1, wherein the photoelectric conversion layer is a co-evaporated film containing the first to third organic semiconductors.
  4.  前記光電変換層は、前記第1ないし第3の有機半導体を含む塗布膜または印刷膜である
     請求項1に記載の光電変換素子。
    The photoelectric conversion element according to claim 1, wherein the photoelectric conversion layer is a coating film or a printing film containing the first to third organic semiconductors.
  5.  前記光電変換層は、前記第1ないし第3の有機半導体を含む積層膜である
     請求項1に記載の光電変換素子。
    The photoelectric conversion element according to claim 1, wherein the photoelectric conversion layer is a laminated film including the first to third organic semiconductors.
  6.  各々が光電変換素子を含む複数の画素を有し、
     前記光電変換素子は、
     第1導電型の第1の有機半導体および第2導電型の第2の有機半導体を含むと共に、前記第1および第2の有機半導体のうちの一方の誘導体または異性体よりなる第3の有機半導体が添加されてなる光電変換層と、
     前記光電変換層を挟んで設けられた第1および第2の電極と
     を備えた固体撮像装置。
    Each having a plurality of pixels including photoelectric conversion elements,
    The photoelectric conversion element is
    A third organic semiconductor comprising a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and a derivative or isomer of one of the first and second organic semiconductors And a photoelectric conversion layer to which
    A solid-state imaging device comprising: first and second electrodes provided to sandwich the photoelectric conversion layer.
  7.  各々が光電変換素子を含む複数の画素を有し、
     前記光電変換素子は、
     第1導電型の第1の有機半導体および第2導電型の第2の有機半導体を含むと共に、前記第1および第2の有機半導体のうちの一方の誘導体または異性体よりなる第3の有機半導体が添加されてなる光電変換層と、
     前記光電変換層を挟んで設けられた第1および第2の電極と
     を備えた固体撮像装置を有する電子機器。
    Each having a plurality of pixels including photoelectric conversion elements,
    The photoelectric conversion element is
    A third organic semiconductor comprising a first organic semiconductor of a first conductivity type and a second organic semiconductor of a second conductivity type, and a derivative or isomer of one of the first and second organic semiconductors And a photoelectric conversion layer to which
    An electronic apparatus comprising a solid-state imaging device comprising: first and second electrodes provided with the photoelectric conversion layer interposed therebetween.
PCT/JP2013/079528 2012-11-09 2013-10-31 Photoelectric conversion element, solid-state imaging device and electronic device WO2014073446A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014545670A JP6252485B2 (en) 2012-11-09 2013-10-31 PHOTOELECTRIC CONVERSION ELEMENT, SOLID-STATE IMAGING DEVICE, AND ELECTRONIC DEVICE
KR1020207023166A KR102224334B1 (en) 2012-11-09 2013-10-31 Photoelectric conversion element, solid-state imaging device and electronic device
US14/439,416 US9680104B2 (en) 2012-11-09 2013-10-31 Photoelectric conversion device, solid-state image pickup unit, and electronic apparatus including ternary system of organic semiconductors
KR1020157011119A KR102146142B1 (en) 2012-11-09 2013-10-31 Photoelectric conversion element, solid-state imaging device and electronic device
EP13853391.4A EP2919277B1 (en) 2012-11-09 2013-10-31 Photoelectric conversion element, solid-state imaging device and electronic device
EP20189329.4A EP3767697A1 (en) 2012-11-09 2013-10-31 Photoelectric conversion device, solid-state image pickup unit, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-247207 2012-11-09
JP2012247207 2012-11-09

Publications (1)

Publication Number Publication Date
WO2014073446A1 true WO2014073446A1 (en) 2014-05-15

Family

ID=50684554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079528 WO2014073446A1 (en) 2012-11-09 2013-10-31 Photoelectric conversion element, solid-state imaging device and electronic device

Country Status (7)

Country Link
US (1) US9680104B2 (en)
EP (2) EP2919277B1 (en)
JP (1) JP6252485B2 (en)
KR (2) KR102224334B1 (en)
CN (2) CN204720453U (en)
TW (1) TWI613833B (en)
WO (1) WO2014073446A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233117A (en) * 2014-05-13 2015-12-24 ソニー株式会社 Photoelectric conversion film, solid-state imaging element, and electronic device
JP2016025345A (en) * 2014-07-21 2016-02-08 三星電子株式会社Samsung Electronics Co.,Ltd. Organic photoelectric element and image sensor using the same and compound
WO2017038256A1 (en) * 2015-08-28 2017-03-09 ソニーセミコンダクタソリューションズ株式会社 Imaging element, multilayer imaging element and solid-state imaging device
WO2017047266A1 (en) * 2015-09-16 2017-03-23 ソニーセミコンダクタソリューションズ株式会社 Solid-state image pickup element and method for manufacturing solid-state image pickup element
JP2017073426A (en) * 2015-10-05 2017-04-13 日本放送協会 Imaging element
JPWO2016129298A1 (en) * 2015-02-12 2017-11-24 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion film, solid-state imaging device, and electronic device
KR20180013864A (en) * 2015-05-29 2018-02-07 소니 세미컨덕터 솔루션즈 가부시키가이샤 Photoelectric conversion element and solid-state imaging device
WO2018092523A1 (en) * 2016-11-16 2018-05-24 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element, solid-state imaging element and electronic device
JP2018093191A (en) * 2016-11-30 2018-06-14 ソニー株式会社 Photoelectric converter and solid state image sensor
US10122017B2 (en) 2016-02-26 2018-11-06 Toyota Jidosha Kabushiki Kaisha Composite active material, solid battery and producing method for composite active material
CN111316459A (en) * 2017-11-08 2020-06-19 索尼公司 Photoelectric conversion element and imaging device
US10738315B2 (en) 2015-02-04 2020-08-11 Aurealis Oy Recombinant probiotic bacteria
JP2020184638A (en) * 2015-05-19 2020-11-12 ソニー株式会社 Image pickup element, laminate type image pickup element, and image pickup device
US10916705B2 (en) 2015-01-30 2021-02-09 Merck Patent Gmbh Formulations with a low particle content
JP2021044558A (en) * 2015-07-17 2021-03-18 ソニー株式会社 Imaging element, multilayer imaging element, and solid-state imaging device
JP2022044685A (en) * 2016-11-30 2022-03-17 ソニーグループ株式会社 Photoelectric conversion element and solid-state image sensor
US11495696B2 (en) * 2015-11-02 2022-11-08 Sony Semiconductor Solutions Corporation Photoelectric conversion element and solid-state imaging device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10164059B2 (en) 2015-09-04 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET device and fabricating method thereof
DE102015225797B3 (en) * 2015-12-17 2017-05-04 Robert Bosch Gmbh Optical detector
US10727262B2 (en) * 2016-01-13 2020-07-28 Sony Corporation Photoelectric conversion element, imaging device, and electronic apparatus comprising a photoelectric conversion layer having at least a subphthalocyanine or a subphthalocyanine derivative and a carrier dopant
JP6700825B2 (en) * 2016-02-09 2020-05-27 キヤノン株式会社 Organic photoelectric conversion element, optical area sensor, imaging element, and imaging device
JP2017175102A (en) * 2016-03-16 2017-09-28 ソニー株式会社 Photoelectric conversion element, manufacturing method thereof, and imaging apparatus
US20170309684A1 (en) * 2016-04-25 2017-10-26 Canon Kabushiki Kaisha Photoelectric conversion device and imaging system
US10615345B2 (en) * 2016-06-03 2020-04-07 The Trustees Of Princeton University Method and device for using an organic underlayer to enable crystallization of disordered organic thin films
CN116528604A (en) * 2016-12-16 2023-08-01 索尼公司 Imaging element, laminated imaging element, imaging device, and method for manufacturing imaging element
EP3582275B1 (en) * 2017-02-07 2023-09-06 Canon Kabushiki Kaisha Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device
TWI821341B (en) * 2018-07-26 2023-11-11 日商索尼股份有限公司 Photoelectric conversion element
JP7274989B2 (en) 2019-09-05 2023-05-17 株式会社ディスコ Optical axis adjustment jig and optical axis confirmation method for laser processing equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177410A (en) * 1992-12-07 1994-06-24 Ricoh Co Ltd Manufacture of photovoltaic element and its manufacture
JP2005255880A (en) * 2004-03-12 2005-09-22 Dainippon Ink & Chem Inc Quinacridone pigment composition for coloring resin, its manufacturing method, and resin coloring composition containing the pigment composition
JP2008038061A (en) * 2006-08-09 2008-02-21 Toyo Ink Mfg Co Ltd Fuchsine-colored composition for color filter, and color filter to be set on color image pickup tube device using the composition
JP2011077361A (en) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd Solar battery system and method for manufacturing the same
JP2011187918A (en) 2010-02-10 2011-09-22 Fujifilm Corp Photoelectric conversion element and solid-state imaging device
JP2011198856A (en) * 2010-03-17 2011-10-06 Fujifilm Corp Method of manufacturing organic photoelectric conversion element, organic photoelectric conversion element, imaging element, and imaging apparatus
JP2012247207A (en) 2011-05-25 2012-12-13 Ihi Corp Electron beam irradiation system and conveyance system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849157B2 (en) * 1989-09-12 1999-01-20 株式会社リコー Photovoltaic element
JPH05308146A (en) * 1992-05-01 1993-11-19 Ricoh Co Ltd Organic photovoltaic element
JP5568300B2 (en) 2006-07-06 2014-08-06 ソレンネ ベーヴェー Mixtures of fullerene derivatives and their use in electronic devices
US7897429B2 (en) * 2006-11-20 2011-03-01 The Trustees Of Princeton University Organic hybrid planar-nanocrystalline bulk heterojunctions
KR20100065363A (en) * 2007-09-12 2010-06-16 후지필름 가부시키가이샤 Process for production of desubstituted compounds, organic semiconductor film and process for production of the film
US20110256422A1 (en) * 2008-10-31 2011-10-20 Basf Se Merocyanines for producing photoactive layers for organic solar cells and organic photodetectors
JP5362017B2 (en) * 2009-09-09 2013-12-11 株式会社東芝 Organic thin film solar cell
JP5464088B2 (en) * 2010-07-26 2014-04-09 コニカミノルタ株式会社 Organic photoelectric conversion element, solar cell, and optical sensor array
US20130277669A1 (en) * 2010-09-27 2013-10-24 The Technical University Of Denmark Electron transport layer
JP5790077B2 (en) * 2011-03-30 2015-10-07 ソニー株式会社 Method for producing polarizing organic photoelectric conversion element
US9755150B2 (en) * 2012-10-17 2017-09-05 Massachussets Institute Of Technology Functionalized nanostructures and related devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177410A (en) * 1992-12-07 1994-06-24 Ricoh Co Ltd Manufacture of photovoltaic element and its manufacture
JP2005255880A (en) * 2004-03-12 2005-09-22 Dainippon Ink & Chem Inc Quinacridone pigment composition for coloring resin, its manufacturing method, and resin coloring composition containing the pigment composition
JP2008038061A (en) * 2006-08-09 2008-02-21 Toyo Ink Mfg Co Ltd Fuchsine-colored composition for color filter, and color filter to be set on color image pickup tube device using the composition
JP2011077361A (en) * 2009-09-30 2011-04-14 Dainippon Printing Co Ltd Solar battery system and method for manufacturing the same
JP2011187918A (en) 2010-02-10 2011-09-22 Fujifilm Corp Photoelectric conversion element and solid-state imaging device
JP2011198856A (en) * 2010-03-17 2011-10-06 Fujifilm Corp Method of manufacturing organic photoelectric conversion element, organic photoelectric conversion element, imaging element, and imaging apparatus
JP2012247207A (en) 2011-05-25 2012-12-13 Ihi Corp Electron beam irradiation system and conveyance system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2919277A4

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233117A (en) * 2014-05-13 2015-12-24 ソニー株式会社 Photoelectric conversion film, solid-state imaging element, and electronic device
US10672994B2 (en) 2014-05-13 2020-06-02 Sony Semiconductor Solutions Corporation Photoelectric conversion film, photoelectric conversion element and electronic device
US11716896B2 (en) 2014-05-13 2023-08-01 Sony Semiconductor Solutions Corporation Photoelectric conversion film, photoelectric conversion element and electronic device
US10312457B2 (en) 2014-05-13 2019-06-04 Sony Semiconductors Solutions Corporation Photoelectric conversion film, photoelectric conversion element and electronic device
JP2016025345A (en) * 2014-07-21 2016-02-08 三星電子株式会社Samsung Electronics Co.,Ltd. Organic photoelectric element and image sensor using the same and compound
US10916705B2 (en) 2015-01-30 2021-02-09 Merck Patent Gmbh Formulations with a low particle content
US11309493B2 (en) 2015-01-30 2022-04-19 Merck Patent Gmbh Formulations with a low particle content
US10738315B2 (en) 2015-02-04 2020-08-11 Aurealis Oy Recombinant probiotic bacteria
JPWO2016129298A1 (en) * 2015-02-12 2017-11-24 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion film, solid-state imaging device, and electronic device
JP2022009055A (en) * 2015-05-19 2022-01-14 ソニーグループ株式会社 Laminated imaging element and imaging device
JP7302639B2 (en) 2015-05-19 2023-07-04 ソニーグループ株式会社 Laminated imaging device and imaging device
JP2020184638A (en) * 2015-05-19 2020-11-12 ソニー株式会社 Image pickup element, laminate type image pickup element, and image pickup device
KR102564073B1 (en) 2015-05-29 2023-08-07 소니 세미컨덕터 솔루션즈 가부시키가이샤 Photoelectric conversion element and solid-state imaging device
KR20180013864A (en) * 2015-05-29 2018-02-07 소니 세미컨덕터 솔루션즈 가부시키가이샤 Photoelectric conversion element and solid-state imaging device
US11700733B2 (en) 2015-05-29 2023-07-11 Sony Semiconductor Solutions Corporation Photoelectric conversion element and solid-state imaging device
JP2021073689A (en) * 2015-05-29 2021-05-13 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid state image pickup device
JP7343463B2 (en) 2015-07-17 2023-09-12 ソニーグループ株式会社 Image sensor, stacked image sensor, and solid-state image sensor
JP2021044558A (en) * 2015-07-17 2021-03-18 ソニー株式会社 Imaging element, multilayer imaging element, and solid-state imaging device
US11411051B2 (en) 2015-07-17 2022-08-09 Sony Corporation Photoelectric conversion element, image pickup element, laminated image pickup element, and solid-state image pickup device
WO2017038256A1 (en) * 2015-08-28 2017-03-09 ソニーセミコンダクタソリューションズ株式会社 Imaging element, multilayer imaging element and solid-state imaging device
US10608050B2 (en) 2015-09-16 2020-03-31 Sony Semiconductor Solutions Corporation Solid-state imaging device to improve photoelectric efficiency
US11211409B2 (en) 2015-09-16 2021-12-28 Sony Semiconductor Solutions Corporation Solid-state imaging device to improve photoelectric efficiency
WO2017047266A1 (en) * 2015-09-16 2017-03-23 ソニーセミコンダクタソリューションズ株式会社 Solid-state image pickup element and method for manufacturing solid-state image pickup element
JP2017073426A (en) * 2015-10-05 2017-04-13 日本放送協会 Imaging element
US11495696B2 (en) * 2015-11-02 2022-11-08 Sony Semiconductor Solutions Corporation Photoelectric conversion element and solid-state imaging device
US10122017B2 (en) 2016-02-26 2018-11-06 Toyota Jidosha Kabushiki Kaisha Composite active material, solid battery and producing method for composite active material
US10700354B2 (en) 2016-02-26 2020-06-30 Toyota Jidosha Kabushiki Kaisha Method for composite active material
US10892301B2 (en) 2016-11-16 2021-01-12 Sony Semiconductor Solutions Corporation Photo-electric conversion element, solid-state imaging element, and electronic apparatus
WO2018092523A1 (en) * 2016-11-16 2018-05-24 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element, solid-state imaging element and electronic device
JP2022044685A (en) * 2016-11-30 2022-03-17 ソニーグループ株式会社 Photoelectric conversion element and solid-state image sensor
JP7013805B2 (en) 2016-11-30 2022-02-01 ソニーグループ株式会社 Photoelectric conversion element and solid-state image sensor
US20190371863A1 (en) * 2016-11-30 2019-12-05 Sony Corporation Photoelectric conversion element and solid-state imaging device
JP2018093191A (en) * 2016-11-30 2018-06-14 ソニー株式会社 Photoelectric converter and solid state image sensor
US20230262998A1 (en) * 2016-11-30 2023-08-17 Sony Group Corporation Photoelectric conversion element and solid-state imaging device
JP7363935B2 (en) 2016-11-30 2023-10-18 ソニーグループ株式会社 Photoelectric conversion elements and solid-state imaging devices
CN111316459A (en) * 2017-11-08 2020-06-19 索尼公司 Photoelectric conversion element and imaging device

Also Published As

Publication number Publication date
TW201421718A (en) 2014-06-01
JPWO2014073446A1 (en) 2016-09-08
EP3767697A1 (en) 2021-01-20
CN204720453U (en) 2015-10-21
EP2919277A4 (en) 2016-07-20
KR20150082246A (en) 2015-07-15
KR20200098722A (en) 2020-08-20
KR102146142B1 (en) 2020-08-19
CN103811518B (en) 2017-07-14
TWI613833B (en) 2018-02-01
EP2919277A1 (en) 2015-09-16
US20150311445A1 (en) 2015-10-29
EP2919277B1 (en) 2020-09-23
US9680104B2 (en) 2017-06-13
KR102224334B1 (en) 2021-03-08
JP6252485B2 (en) 2017-12-27
CN103811518A (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP6252485B2 (en) PHOTOELECTRIC CONVERSION ELEMENT, SOLID-STATE IMAGING DEVICE, AND ELECTRONIC DEVICE
JP6252484B2 (en) PHOTOELECTRIC CONVERSION ELEMENT, SOLID-STATE IMAGING DEVICE, AND ELECTRONIC DEVICE
WO2014007132A1 (en) Solid-state imaging device, method for manufacturing same, and electronic device
CN112002806A (en) Photoelectric conversion element and solid-state imaging device
US11211409B2 (en) Solid-state imaging device to improve photoelectric efficiency
EP3087591B1 (en) Semiconductor nanoparticle dispersion, photoelectric conversion element, and image pickup device
WO2016203925A1 (en) Photoelectric conversion element
JP6659597B2 (en) Photoelectric conversion film, solid-state imaging device, and electronic device
WO2017061176A1 (en) Solid-state imaging element and method for producing solid-state imaging element
JP6891415B2 (en) Solid-state image sensor and solid-state image sensor
KR102338189B1 (en) Image sensor and electronic device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545670

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157011119

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013853391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14439416

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE