WO2014073379A1 - Optical multilayer film, infrared shielding film, and infrared shielding body - Google Patents

Optical multilayer film, infrared shielding film, and infrared shielding body Download PDF

Info

Publication number
WO2014073379A1
WO2014073379A1 PCT/JP2013/078732 JP2013078732W WO2014073379A1 WO 2014073379 A1 WO2014073379 A1 WO 2014073379A1 JP 2013078732 W JP2013078732 W JP 2013078732W WO 2014073379 A1 WO2014073379 A1 WO 2014073379A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index layer
polyvinyl alcohol
layer
degree
Prior art date
Application number
PCT/JP2013/078732
Other languages
French (fr)
Japanese (ja)
Inventor
友香子 高
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014545640A priority Critical patent/JP6225916B2/en
Publication of WO2014073379A1 publication Critical patent/WO2014073379A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical laminated film, an infrared shielding film, and an infrared shielding body.
  • an infrared shielding film it has been proposed to produce a laminated film in which a high refractive index layer and a low refractive index layer are alternately laminated by a dry film forming method such as vapor deposition or sputtering. It is also known that the optical film thickness of the laminated film laminated alternately can be adjusted so as to reflect visible light instead of infrared light.
  • the dry film forming method has problems such as a large vacuum apparatus used for forming, high manufacturing cost, difficulty in increasing the area, and further, the base material is limited to a heat-resistant material.
  • Patent Document 1 has a problem that interlayer adhesion is not sufficient.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an optical laminated film having good interlayer adhesion, an infrared shielding film, and an infrared shielding body provided with the infrared shielding film.
  • the present inventor has intensively studied in view of the above problems. As a result, it has been found that the interlayer adhesion of each refractive index layer is improved by changing the polymerization degree of the polyvinyl alcohol resin contained in the adjacent refractive index layer, and the present invention has been completed.
  • an optical laminated film reflecting one aspect of the present invention is an optical laminated film having a base material and at least a reflective layer that reflects light,
  • the reflective layer has a plurality of laminated refractive index layers, at least one of the refractive index layers has a refractive index different from at least one of the adjacent refractive index layers, and the refractive index layer is polyvinyl alcohol.
  • the average polymerization degree of the polyvinyl alcohol resin contained in one refractive index layer is different from the average polymerization degree of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer,
  • the degree of polymerization of the maximum amount of the polyvinyl alcohol-based resin contained in one refractive index layer is the maximum amount of the polymer contained in at least one of the refractive index layers adjacent to the refractive index layer. Different from the degree of polymerization of the vinyl alcohol-based resin.
  • the above object of the present invention is also an infrared shielding film having a base material and a reflective layer that reflects at least infrared light, the reflective layer having a plurality of laminated refractive index layers, At least one of the refractive index layers has a refractive index different from that of at least one of the adjacent refractive index layers, and the refractive index layer contains a polyvinyl alcohol-based resin, and is included in one refractive index layer.
  • the average degree of polymerization of the resin is different from the average degree of polymerization of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer, or the maximum amount of polyvinyl alcohol resin contained in one of the refractive index layers. Is achieved by an infrared shielding film having a degree of polymerization different from that of the maximum amount of polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer.
  • the present invention is an optical laminated film having a base material and at least a reflective layer that reflects light, wherein the reflective layer has a plurality of laminated refractive index layers, and at least one of the refractive index layers.
  • the refractive index layer contains a polyvinyl alcohol resin
  • the average degree of polymerization of the polyvinyl alcohol resin contained in one refractive index layer is The average degree of polymerization of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer, or the degree of polymerization of the maximum amount of polyvinyl alcohol resin contained in one refractive index layer is the refractive index.
  • an optical laminated film having a polymerization degree different from that of the maximum amount of the polyvinyl alcohol-based resin contained in at least one of the refractive index layers adjacent to the layer.
  • the present invention is characterized in that the average polymerization degree of the polyvinyl alcohol resin contained in the two adjacent refractive index layers or the polymerization degree of the maximum amount of polyvinyl alcohol resin is different.
  • the optical laminated film having such a configuration is excellent in interlayer adhesion.
  • the mechanism for exerting the above-described effects by the configuration of the present invention is presumed as follows.
  • the present invention is not limited to the following. That is, in the refractive index layer containing the metal oxide fine particles and the polyvinyl alcohol-based resin, the hydroxyl groups of the polyvinyl alcohol-based resin and the hydroxyl groups of the metal oxide fine particles (for example, —OH included in the silicon dioxide particles) are loosened by hydrogen bonding. Form a network.
  • the reactivity of the metal oxide particles (for example, —OH reactivity of the silicon dioxide particles) is suppressed, and the interaction between the metal oxide particles and the metal oxide particles contained in the adjacent refractive index layer. Is inhibited.
  • the metal oxide particles contained in the adjacent refractive index layers it becomes difficult for the metal oxide particles contained in the adjacent refractive index layers to be mixed (mixing between refractive index layers (interlayer mixing) is suppressed), and light reflectance, particularly infrared reflectance (infrared shielding ratio). ) Can be improved.
  • light reflectivity especially infrared shielding
  • it is preferable that the polymerization degree of the polyvinyl alcohol-type resin in a refractive index layer is large.
  • a refractive index layer containing a polyvinyl alcohol-based resin having a high degree of polymerization forms a strong network and thus becomes hard. Therefore, when a refractive index layer containing a polyvinyl alcohol resin having the same degree of polymerization is laminated, a hard film having the same strength is laminated, resulting in poor interlayer adhesion. Therefore, by interposing a film having a lower polymerization degree between films having a higher degree of polymerization, interlayer mixing can be suppressed (light reflectivity, particularly infrared shielding properties can be ensured) and interlayer adhesion can be improved. . Therefore, according to the present invention, an optical laminated film having excellent interlayer adhesion, an infrared shielding film, and an infrared shielding body provided with the infrared shielding film can be provided.
  • the above effect can be further improved by setting the average polymerization degree difference or the polymerization degree difference of polyvinyl alcohol resins in adjacent refractive index layers to 300 or more.
  • light reflectivity, especially infrared shielding property can be improved more by providing the said polymerization degree difference.
  • a layer containing a polyvinyl alcohol resin having a high degree of polymerization hereinafter also referred to as “first polyvinyl alcohol resin”
  • first polyvinyl alcohol resin layer has a higher degree of polymerization.
  • second polyvinyl alcohol resin a polyvinyl alcohol resin having a low degree of polymerization
  • second polyvinyl alcohol resin hereinafter also referred to as “low polymerization degree resin layer”
  • the high polymerization degree resin layer A becomes difficult to mix with other adjacent layers (hereinafter referred to as “adjacent layers”).
  • adjacent layers adjacent layers
  • the high polymerization degree resin layer B in which the adjacent layer also forms a strong network structure at the interface between the high polymerization degree resin layer A and the high polymerization degree resin layer B (adjacent layer of the high polymerization degree resin layer A).
  • the degree of polymerization of the second polyvinyl alcohol-based resin contained in the adjacent layer of the layer containing the first polyvinyl alcohol-based resin has a polymerization degree difference of 300 or more from the degree of polymerization of the first polyvinyl alcohol-based resin.
  • the above effects can be exhibited more.
  • the adhesion with the base material can be further improved, and better coating properties can be achieved.
  • the refractive index layer contains a modified polyvinyl alcohol, it is possible to more effectively suppress fluctuations in haze during storage under high humidity conditions.
  • the refractive index layer includes a high refractive index layer containing titanium oxide as metal oxide particles, and a low refractive index layer, and the high refractive index layer does not contain gelatin and thickening polysaccharides. Haze fluctuations during storage under high humidity conditions can be more effectively suppressed.
  • the optical laminated film of the present invention has excellent interlayer adhesion, high visible light transmittance, and excellent infrared shielding properties. Furthermore, the infrared shielding film of the present invention can be manufactured using a water-based coating solution for refractive index, and can be manufactured in a large area at a low cost.
  • X to Y indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the optical laminated film of this embodiment includes a base material and a reflective layer that reflects at least infrared light.
  • the reflective layer has a plurality of stacked refractive index layers, and at least one of the refractive index layers has a refractive index different from at least one of the adjacent refractive index layers, preferably adjacent refractive index layers. Refractive index different from both.
  • the refractive index layer includes at least one laminate (unit) composed of a low refractive index layer and a high refractive index layer, and the low refractive index layer and the high refractive index layer are alternately laminated. It is preferable to have the form of an alternating laminate.
  • a refractive index layer having a higher refractive index than the other is referred to as a high refractive index layer
  • a refractive index layer having a lower refractive index than the other is referred to as a low refractive index layer.
  • the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer.
  • the optical laminated film has a reflective layer that reflects light including ultraviolet light and infrared light, and is preferably an infrared shielding film having a reflective layer that mainly reflects at least infrared light.
  • the infrared shielding film has a base material and at least a reflective layer that reflects light, and the reflective layer has a plurality of laminated refractive index layers, At least one of the refractive index layers has a refractive index different from that of at least one of the adjacent refractive index layers, and the refractive index layer contains a polyvinyl alcohol-based resin, and is included in one refractive index layer.
  • the average degree of polymerization of the resin is different from the average degree of polymerization of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer, or the maximum amount of polyvinyl alcohol resin contained in one of the refractive index layers.
  • the optical laminated film includes at least one unit composed of two layers having different refractive indexes, that is, a high refractive index layer and a low refractive index layer.
  • the rate layer is considered as follows.
  • metal oxide particles contained in the low refractive index layer hereinafter, also referred to as “first metal oxide particles”
  • Metal oxide particles hereinafter also referred to as “second metal oxide particles” contained in the high refractive index layer are mixed at the interface between the two layers, and the first metal oxide particles and the second metal are mixed.
  • a layer containing oxide particles may be formed.
  • the low refractive index layer means that the first metal oxide particles are 50 to 100% by mass with respect to the total mass of the first metal oxide particles and the second metal oxide particles. Means the layers involved.
  • the high refractive index layer means that the second metal oxide particles are more than 50% by mass and less than 100% by mass with respect to the total mass of the first metal oxide particles and the second metal oxide particles. Means the layers involved.
  • the type and amount of metal oxide particles contained in the refractive index layer can be analyzed by energy dispersive X-ray spectroscopy (EDX).
  • the metal oxide concentration profile in the film thickness direction of the laminated film can be measured, and can be regarded as a high refractive index layer or a low refractive index layer depending on the composition.
  • the metal oxide concentration profile of the laminated film is sputtered from the surface in the depth direction using a sputtering method, and is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio.
  • an organic binder concentration profile is used, for example, a film.
  • each layer etched by sputtering is either a high refractive index layer or a low refractive index layer. Can be considered a layer.
  • the XPS surface analyzer is not particularly limited, and any model can be used. However, in this specification, ESCALAB-200R manufactured by VG Scientific Fix Co. was used. Mg is used for the X-ray anode, and measurement is performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
  • the difference in refractive index between the adjacent low refractive index layer and high refractive index layer is 0.1 or more.
  • it is 0.3 or more, more preferably 0.35 or more, and particularly preferably 0.4 or more.
  • the refractive index difference between the high refractive index layer and the low refractive index layer in all the laminates (units) is It is preferable that it exists in the said suitable range.
  • the outermost layer and the lowermost layer a configuration outside the above preferred range may be used.
  • the preferred refractive index of the low refractive index layer is 1.10 to 1.60, more preferably 1.30 to 1.50.
  • the preferable refractive index of the high refractive index layer is 1.80 to 2.50, more preferably 1.90 to 2.20.
  • the reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers.
  • the refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance of 90% or more, if the difference in refractive index is less than 0.1, it is necessary to laminate 200 layers or more, which not only decreases productivity but also scattering at the interface of the layers. Becomes larger, the transparency is lowered, and it becomes very difficult to manufacture without failure. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but practically about 1.4 is the limit.
  • the transmittance in the visible light region shown in JIS R3106-1998 is 50% or more, preferably 75% or more, more preferably. Is preferably 85% or more, and it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
  • the infrared shielding film of the present embodiment may have any structure including at least one laminate (unit) composed of a high refractive index layer and a low refractive index layer on a base material.
  • the range of the total number of layers is 100 layers or less, that is, 50 units or less, more preferably 40 layers (20 units) or less. More preferably, it is 30 layers (15 units) or less.
  • the infrared shielding film of the present invention may have a configuration in which at least one of the above units is laminated, for example, a laminated film in which both the outermost layer and the lowermost layer of the laminated film are a high refractive index layer or a low refractive index layer.
  • a laminated film in which both the outermost layer and the lowermost layer of the laminated film are a high refractive index layer or a low refractive index layer it may be a film, it is preferable that the low refractive index layer is located closest to the substrate side of the reflective layer from the viewpoint of adhesion to the substrate.
  • a layer structure in which the lowermost layer located on the most substrate side (preferably adjacent to the substrate) is a low refractive index layer and the outermost layer is also a low refractive index layer is more preferable. .
  • the total thickness of the infrared shielding film of this embodiment is preferably 12 ⁇ m to 315 ⁇ m, more preferably 15 ⁇ m to 200 ⁇ m, and still more preferably 20 ⁇ m to 100 ⁇ m.
  • the thickness per one layer of the low refractive index layers other than the layer located closest to the substrate is preferably 20 to 800 nm, and more preferably 50 to 350 nm.
  • the thickness per layer of the high refractive index layer other than the layer located closest to the substrate is preferably 20 to 800 nm, and more preferably 50 nm to 350 nm.
  • At least one of the plurality of high refractive index layers is different in thickness from the other layers (all the high refractive index layers are not the same thickness) or a plurality of low refractive indexes. It is preferable that at least one of the refractive index layers has a different thickness (not all low refractive index layers have the same thickness).
  • the refractive index layer located closest to the base material side of the reflective layer is a refractive index other than the lowermost layer.
  • the film thickness is preferably 5 times or more thicker than the layer (other refractive index layers), more preferably 9 times or more thicker.
  • production of a coating stripe etc. can be suppressed, while a lowermost layer has fixed intensity
  • the “other refractive index layer” means all refractive index layers other than the lowest layer located on the side where the refractive index layer (lowermost layer) located closest to the substrate is provided. Therefore, when the refractive index layer is formed on the side opposite to the side on which the lowermost layer is provided (when the refractive index layer is formed on both surfaces of the base material), the opposite refractive index layer is “other refractive index. It is not included in the “layer”.
  • the thickness (film thickness) of the lowermost layer is compared with the average thickness (average film thickness) of other refractive index layers constituting the reflective layer, some of the other refractive index layers are thicker than the lowermost layer. May contain layers. Further, the lowermost layer is located on the most substrate side of the reflective layer. For this reason, for example, when a functional layer as described in detail below is provided as an intermediate layer between the base material and the lowermost layer, the lowermost layer is in contact with the functional layer, not the base material, The adhesion between the lowermost layer and the functional layer can be improved.
  • the lowermost layer contains an emulsion resin because the above effect can be achieved more effectively.
  • the emulsion resin is usually a resin formed by fusing a polymer dispersed in an aqueous solvent at the time of forming the lowermost layer in the manufacturing process of the infrared shielding film.
  • An emulsion as a raw material for the emulsion resin is obtained by emulsion polymerization of an oil-soluble monomer using a polymer dispersant or the like.
  • Oil-soluble monomers that can be used are not particularly limited, but ethylene, propylene, butadiene, vinyl acetate and its partial hydrolyzate, vinyl ether, acrylic acid and its esters, methacrylic acid and its esters, acrylamide and its derivatives, Examples thereof include methacrylamide and derivatives thereof, styrene, divinylbenzene, vinyl chloride, vinylidene chloride, maleic acid, vinyl pyrrolidone and the like. Of these, acrylic acid, its esters, and vinyl acetate are preferably used from the viewpoint of transparency and particle size.
  • acrylic acid and / or its esters and vinyl acetate emulsion commercially available ones may be used.
  • commercially available ones may be used.
  • the dispersant that can be used is not particularly limited, but in addition to a low-molecular dispersant such as alkyl sulfonate, alkyl benzene sulfonate, diethylamine, ethylenediamine, quaternary ammonium salt, polyoxyethylene nonylphenyl ether.
  • a low-molecular dispersant such as alkyl sulfonate, alkyl benzene sulfonate, diethylamine, ethylenediamine, quaternary ammonium salt, polyoxyethylene nonylphenyl ether.
  • Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone.
  • the emulsion described above preferably has a glass transition temperature (Tg) of 20 ° C. or lower, more preferably ⁇ 30 to 10 ° C., from the viewpoint of enhancing flexibility.
  • the content of the emulsion resin in the lowermost layer is preferably 0.5 to 20% by mass, and more preferably 1 to 10% by mass with respect to the total mass of the lowermost layer. Further, regarding the relationship with the water-soluble resin contained in the lowermost layer, the water-soluble resin is preferably contained in a mass 1 to 10 times that of the emulsion. When the film forming step is obtained and dried, the structure of the water-soluble resin is maintained. Therefore, it is preferable that the water-soluble resin is contained in an amount equal to or greater than that of the emulsion resin because the film-forming property during production is excellent.
  • the infrared shielding film is a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesion layer) for the purpose of adding further functions under the base material or on the outermost surface layer opposite to the base material.
  • One or more functional layers such as an intermediate film layer may be included.
  • the low refractive index layer and the high refractive index layer of the present invention preferably contain a polyvinyl alcohol resin and further contain metal oxide particles.
  • the polyvinyl alcohol-based resin acts as a binder resin in the low refractive index layer and the high refractive index layer.
  • the low refractive index layer and the high refractive index layer more preferably include metal oxide particles and a polyvinyl alcohol resin.
  • the average degree of polymerization of polyvinyl alcohol resin contained in adjacent refractive index layers (low refractive index layer and high refractive index layer) having different refractive indexes (hereinafter simply referred to as “average degree of polymerization of polyvinyl alcohol resin”).
  • the degree of polymerization of the maximum amount of polyvinyl alcohol resin is different.
  • the average degree of polymerization of the polyvinyl alcohol resin or the degree of polymerization of the maximum amount of the polyvinyl alcohol resin may be different between any adjacent refractive index layers (low refractive index layer and high refractive index layer).
  • the present invention is characterized in that the refractive index layer contains a polyvinyl alcohol resin, and the degree of polymerization of the polyvinyl alcohol resin is different from that of at least one adjacent refractive index layer having a different refractive index.
  • the polymerization degree of polyvinyl alcohol resin differs between both adjacent refractive index layers containing alcohol resin and having different refractive indexes.
  • the “average degree of polymerization” of a polyvinyl alcohol resin when the same refractive index layer contains two or more types of polyvinyl alcohol resins is an average value of the degree of polymerization of each polyvinyl alcohol resin. Specifically, it means the sum of contents obtained by multiplying the polymerization degree of each polyvinyl alcohol-based resin when the total amount of polyvinyl alcohol-based resin contained in one refractive index layer is 100% by mass.
  • the “maximum amount of polyvinyl alcohol-based resin contained in the refractive index layer” when the same refractive index layer contains two or more types of polyvinyl alcohol-based resins refers to the polyvinyl alcohol-based resin having the highest content in the same refractive index layer. It means resin. Specifically, in the above case, since the maximum amount of polyvinyl alcohol-based resin contained in the refractive index layer is PVA245, the degree of polymerization of the refractive index layer is 4500.
  • the average polymerization degree of the polyvinyl alcohol resin contained in the adjacent refractive index layers (low refractive index layer and high refractive index layer) or the polymerization degree of the maximum amount of polyvinyl alcohol resin is different.
  • the difference in the degree of polymerization is not particularly limited, but is preferably 300 or more. That is, the average degree of polymerization or the difference in degree of polymerization between one refractive index layer and at least one of the adjacent refractive index layers is preferably 300 or more. More preferably, the average degree of polymerization or the difference in degree of polymerization between one refractive index layer and at least one of the adjacent refractive index layers is more preferably 400 or more, and even more preferably 1000 or more.
  • the upper limit of the average polymerization degree or the difference in polymerization degree between one refractive index layer and at least one of the adjacent refractive index layers is not particularly limited, but is preferably 4000 or less and preferably 3100 or less. Is more preferable. If there is such a difference, interlayer adhesion can be further improved. In addition, by providing such a polymerization degree difference between adjacent layers, interface disturbance (unevenness) can be suppressed, and the infrared reflectance (infrared shielding rate) can be further increased. Further, the bending resistance of the coating film and the stabilization of the coating solution (coating property) can be improved.
  • the adjacent refractive index is not particularly limited.
  • the degree of polymerization of the polyvinyl alcohol resin contained in the low refractive index layer is higher than the degree of polymerization of the polyvinyl alcohol resin contained in the high refractive index layer.
  • corrugation) of an interface is suppressed and an infrared reflectance (infrared shielding factor) can be made higher.
  • the flexibility and bending resistance of the coating film and the stabilization (coating property) of the coating solution can be improved.
  • the polymerization degree of the polyvinyl alcohol-based resin contained in the low refractive index layer and the high refractive index layer is not particularly limited, and the same polymerization degree as that of the binder resin usually used for the refractive index layer can be adopted.
  • the polymerization degree of the polyvinyl alcohol-based resin contained in the low refractive index layer and / or the high refractive index layer is 6000 or less, more preferably 5000 or less. That is, the polymerization degree of the polymerization degree of the polyvinyl alcohol resin (unmodified polyvinyl alcohol) contained in one refractive index layer is 6000 or less, more preferably 5000 or less.
  • the degree of polymerization of the polyvinyl alcohol resin (unmodified polyvinyl alcohol) contained in the low refractive index layer and / or the high refractive index layer is more preferably 4500 or less.
  • the lower limit of the degree of polymerization of the polyvinyl alcohol resin contained in the low refractive index layer and / or the high refractive index layer is not particularly limited, but is preferably 500 or more, more preferably 1000 or more, and 1500. More preferably, it is more preferably 2000 or more.
  • the degree of polymerization is 500 or more, the crack resistance of the coating film is improved and the haze is improved. On the other hand, when it is 6000 or less, the coating solution is stable and the coating property is improved.
  • the degree of polymerization of the polyvinyl alcohol-based resin contained in at least one of the low refractive index layer and the high refractive index layer is preferably included in the above range, but the polyvinyl alcohol contained in both the low refractive index layer and the high refractive index layer. It is preferable that the polymerization degree of the resin is included in the above range.
  • the degree of polymerization refers to the viscosity average degree of polymerization, and is measured according to JIS-K6726 (1994). After the PVA is completely re-saponified and purified, the intrinsic viscosity [ ⁇ ] measured in water at 30 ° C. It can be obtained from (dl / g) by the following equation.
  • the modified polyvinyl alcohol resin is included in the calculation of the degree of polymerization.
  • the saponification degree of the polyvinyl alcohol-based resin used for the high refractive index layer and the low refractive index layer may be substantially the same or different.
  • the refractive index layer and the low refractive index layer preferably contain polyvinyl alcohol resins having different saponification degrees.
  • Either the high refractive index layer or the low refractive index layer may have a higher saponification degree, but the polyvinyl alcohol contained in the high refractive index layer has a higher saponification degree than the polyvinyl alcohol contained in the low refractive index layer. Is more preferable. This is because the metal oxide particles contained in the high refractive index layer can be protected by polyvinyl alcohol having a high degree of saponification.
  • the difference in absolute value of the saponification degree between the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the high refractive index layer is preferably 3 mol% or more. More preferably, it is 5 mol% or more. If it is such a range, the interlayer mixed state of a high refractive index layer and a low refractive index layer can be made into a favorable state.
  • the upper limit of the difference in the degree of saponification between the polyvinyl alcohol-based resin contained in the low refractive index layer and the polyvinyl alcohol-based resin contained in the high refractive index layer is not particularly limited, but the farther away is the better.
  • the difference in the saponification degree between the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the high refractive index layer is 20 mol. % Or less is preferable.
  • the degree of saponification is the ratio of hydroxyl groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxyl groups in the polyvinyl alcohol resin.
  • the polyvinyl alcohol resin for which the difference in the saponification degree in each refractive index layer is compared When each refractive index layer contains a plurality of polyvinyl alcohol resins (different saponification degrees), the content is the highest in the refractive index layer. It is a high polyvinyl alcohol resin.
  • polyvinyl alcohol resin having the highest content in the refractive index layer it is assumed that polyvinyl alcohol resins having a difference in saponification degree of less than 3 mol% are the same polyvinyl alcohol resin. Is calculated.
  • a low polymerization degree polyvinyl alcohol resin having a polymerization degree of 1000 or less is a different polyvinyl alcohol resin (if the difference in saponification degree is less than 3 mol%, the same polyvinyl alcohol resin is different. do not do).
  • polyvinyl alcohol resins having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% are respectively contained in the same layer by 10 mass%, 40 mass%, and 50 mass%.
  • These three polyvinyl alcohol resins are the same polyvinyl alcohol resin, and these three mixtures are polyvinyl alcohol resins contained in the low refractive index layer or the high refractive index layer.
  • polyvinyl alcohol resin having a difference in saponification degree of less than 3 mol% is sufficient if it is less than 3 mol% when attention is paid to any polyvinyl alcohol resin, for example, 90, 91, 92, 94 mol. % Vinyl alcohol-based resin, when paying attention to 91 mol% vinyl alcohol-based resin, since all the polyvinyl alcohol-based resins are less than 3 mol%, the same polyvinyl alcohol-based resin is obtained.
  • PVA203 5% by mass
  • PVA117 25% by mass
  • PVA217 10% by mass
  • PVA220 10% by mass
  • PVA224 10% by mass
  • PVA235 20% by mass
  • PVA245 20% by mass
  • the saponification degree is 88 mol%. Further, the modified polyvinyl alcohol resin is included in the calculation of the saponification degree.
  • the saponification degree of the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the high refractive index layer is preferably 75 mol% or more from the viewpoint of solubility in water, and is preferably 75 to 99. It is more preferably 5 mol%, and further preferably 80 to 99 mol%. Further, when the saponification degree of the polyvinyl alcohol resin contained in the low refractive index layer and the high refractive index layer is different, the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the low refractive index layer.
  • the intermixed state of the high refractive index layer and the low refractive index layer can be made good. It is more preferable that one of the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the high refractive index layer has a saponification degree of 95 mol% or more and the other is 90 mol% or less.
  • the saponification degree of the polyvinyl alcohol resin contained in the low refractive index layer is more preferably 90 mol% or less, and the saponification degree of the polyvinyl alcohol resin contained in the high refractive index layer is more preferably 95 mol% or more.
  • the upper limit of the saponification degree of the polyvinyl alcohol-based resin is not particularly limited, but is usually less than 100 mol% and about 99.9 mol% or less.
  • the polyvinyl alcohol resin is preferably a water-soluble polyvinyl alcohol resin (water-soluble binder resin). This is because a stable coating solution can be produced by using a water-soluble polyvinyl alcohol resin.
  • “water-soluble” of the polyvinyl alcohol-based resin is a compound that dissolves 1% by mass or more in an aqueous medium, and preferably 3% by mass or more.
  • the polyvinyl alcohol resins used in each refractive index layer may be the same or different.
  • the polyvinyl alcohol resins contained in the low refractive index layer and the high refractive index layer may be the same or different.
  • the form of the polyvinyl alcohol resin is not particularly limited, and a normal polyvinyl alcohol resin obtained by hydrolyzing polyvinyl acetate (unmodified polyvinyl alcohol), a cation-modified polyvinyl alcohol (cation-modified polyvinyl alcohol), an anion And modified polyvinyl alcohol resins such as anion-modified polyvinyl alcohol having a functional group, nonionic modified polyvinyl alcohol having a nonionic group, and modified polyvinyl alcohol modified with acrylic.
  • a normal polyvinyl alcohol resin obtained by hydrolyzing polyvinyl acetate unmodified polyvinyl alcohol
  • cation-modified polyvinyl alcohol cation-modified polyvinyl alcohol
  • anion And modified polyvinyl alcohol resins such as anion-modified polyvinyl alcohol having a functional group, nonionic modified polyvinyl alcohol having a nonionic group, and modified polyvinyl alcohol modified with acrylic.
  • vinyl acetate resins for example, “Exeval” manufactured by Kuraray
  • polyvinyl acetal resins obtained by reacting polyvinyl alcohol with an aldehyde for example, “ESREC” manufactured by Sekisui Chemical
  • silanol-modified polyvinyl alcohol having a silanol group for example, Kuraray "R-1130”
  • modified polyvinyl alcohol resin having an acetoacetyl group in the molecule for example, "Gosefimer (registered trademark) Z / WR series” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • polyvinyl alcohol resins can be used alone or in combination of two or more kinds such as the degree of polymerization and the kind of modification. From the viewpoint of moisture resistance, it is preferable to contain a modified polyvinyl alcohol resin. That is, it is preferable that at least one of the refractive index layers contains modified polyvinyl alcohol.
  • the polyvinyl alcohol resin (unmodified polyvinyl alcohol) may be synthesized or a commercially available product may be used. In the latter case, Kuraray Poval PVA series (manufactured by Kuraray Co., Ltd.), J-Poval J series (manufactured by Nippon Vinegar Poval Co., Ltd.) and the like can be used.
  • Examples of the cation-modified polyvinyl alcohol have primary to tertiary amino groups or quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-110483.
  • Polyvinyl alcohol which is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979.
  • examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795. And a block copolymer of a vinyl compound having a hydrophobic group and vinyl alcohol.
  • modified polyvinyl alcohol vinyl alcohol polymer
  • Exeval trade name: manufactured by Kuraray Co., Ltd.
  • Nichigo G polymer trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • Goseifamer registered trademark
  • Z / WR series trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • Silanol-modified polyvinyl alcohol is not particularly limited, and may be synthesized by a known method or may be a commercially available product.
  • the modification rate of the silanol-modified polyvinyl alcohol is usually 0.01 to 5 mol%, preferably 0.1 to 1 mol%. If the modification rate is less than 0.01 mol%, the water resistance may deteriorate, and if it exceeds 5 mol%, the solubility in water may deteriorate.
  • the silanol-modified polyvinyl alcohol preferably has a saponification degree of 95 mol% or more, more preferably 95.0 to 99.5 mol%, from the viewpoint of scratch resistance and gloss marks.
  • the degree of polymerization of the silanol-modified polyvinyl alcohol is not particularly limited, but the average degree of polymerization is usually 300 to 2,500, preferably 500 to 1,700.
  • the degree of polymerization is 300 or more, the strength of the coating layer is high, and when the degree of polymerization is 2,500 or less, the viscosity of the coating solution does not become excessively high and is suitable for process.
  • the content of the polyvinyl alcohol resin is not particularly limited.
  • the content of the polyvinyl alcohol resin is preferably 5 to 50% by mass, more preferably 10 to 40% by mass with respect to 100% by mass of the total mass (solid content) of each refractive index layer. %, More preferably 14 to 35% by mass.
  • the content of the polyvinyl alcohol-based resin is preferably 3 to 70% by mass, more preferably 5 to 60% by mass with respect to 100% by mass of the total solid content of the high refractive index layer.
  • the amount is preferably 10 to 50% by mass, particularly preferably 15 to 45% by mass.
  • the film surface means the surface of the coating film and may also be referred to as “surface”.
  • the “total polyvinyl alcohol resin” means the total amount of polyvinyl alcohol resin contained in each refractive index layer. For example, a low polymerization degree polyvinyl alcohol resin having a polymerization degree of less than 1000 is also included in the content of the total polyvinyl alcohol resin.
  • each refractive index layer may contain other resin binder as a resin binder in addition to the polyvinyl alcohol resin.
  • the content of the resin binder other than the polyvinyl alcohol resin is not particularly limited, but is preferably 5 to 70% by mass, more preferably 5%, based on the total mass (solid content) of each refractive index layer. ⁇ 50% by weight.
  • the binder resin is preferably composed of a water-soluble binder resin. This is because the use of the water-soluble binder resin makes it possible to form a refractive index layer without using an organic solvent, which is environmentally preferable.
  • a water-soluble polymer other than the polyvinyl alcohol resin may be used as the binder resin.
  • the water-soluble polymer other than the polyvinyl alcohol-based resin means a G2 glass filter (maximum pore size) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble polymer is most dissolved.
  • 40 to 50 ⁇ m means that the mass of the insoluble matter separated by filtration is within 50 mass% of the added water-soluble polymer.
  • water-soluble polymers gelatin, celluloses, thickening polysaccharides, and polymers having reactive functional groups are particularly preferable. These water-soluble polymers may be used alone or in combination of two or more.
  • the water-soluble polymer may be a synthetic product or a commercial product. In the present invention, it is preferable that the high refractive index layer does not contain gelatin or thickening polysaccharide.
  • the thickening polysaccharide referred to in the present invention is a polymer of saccharides and has many hydrogen bonding groups in the molecule, and the viscosity at low temperature and the viscosity at high temperature due to the difference in hydrogen bonding force between molecules depending on the temperature. It is a polysaccharide with a large difference in characteristics, and when metal oxide fine particles are added, it causes an increase in viscosity that is thought to be due to hydrogen bonding with the metal oxide fine particles at low temperatures.
  • galactan eg, agarose, agaropectin, etc.
  • galactomannoglycan eg, locust bean gum, guaran, etc.
  • xyloglucan eg, tamarind gum, etc.
  • glucomannoglycan eg, salmon mannan, Wood-derived glucomannan, xanthan gum, etc.
  • galactoglucomannoglycan eg, softwood-derived glycan
  • arabinogalactoglycan glucolanoglycan (eg, gellan gum)
  • glycosaminoglycan eg, hyaluronic acid, keratan
  • alginic acid and alginates agar, ⁇ -carrageenan, ⁇ -carrageenan, ⁇ -carrageenan, natural macromolecular polysaccharides derived from red algae such as farseleran, L-arabitose, D-rib
  • the low refractive index layer of the present invention preferably contains metal oxide particles (first metal oxide particles).
  • first metal oxide particles include zinc oxide, silicon dioxide such as synthetic amorphous silica and colloidal silica, alumina, and colloidal alumina.
  • the first metal oxide may be used alone or in combination of two or more.
  • silicon dioxide is preferably used as the first metal oxide particles, and colloidal silica is particularly preferably used.
  • the average particle diameter (number average; diameter) of the first metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer of the present invention is preferably 3 to 100 nm, and preferably 3 to 50 nm. It is more preferable.
  • the average particle diameter (number average; diameter) of the metal oxide fine particles is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope, and 1,000 arbitrary The particle diameter of each particle is measured and obtained as a simple average value (number average).
  • the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
  • the colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer.
  • colloidal silica may be a synthetic product or a commercially available product.
  • examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
  • the surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
  • the content of the first metal oxide particles in the low refractive index layer is preferably 20 to 75% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the total solid content of the low refractive index layer. More preferably, the content is 35 to 69% by mass, still more preferably 40 to 68% by mass. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 75% by mass or less, the coatability is good, which is preferable.
  • the first metal oxide particles may be contained in at least one of the plurality of low refractive index layers.
  • the high refractive index layer of the present invention preferably contains metal oxide particles (second metal oxide particles). Moreover, it is preferable that the 2nd metal oxide particle which can be contained in a high refractive index layer is a metal oxide particle different from a low refractive index layer.
  • the metal oxide particles used in the high refractive index layer according to the present invention include titanium oxide, zirconia, zinc oxide, alumina, colloidal alumina, niobium oxide, europium oxide, and zircon.
  • the second metal oxide in order to adjust the refractive index, may be used alone or in combination of two or more.
  • the high refractive index layer is formed of metal oxide particles having a high refractive index such as titanium oxide and zirconia, that is, titanium oxide particles and zirconia. It is preferable to contain particles. Moreover, it is more preferable to contain rutile (tetragonal) titanium oxide particles having a volume average particle size of 100 nm or less. A plurality of types of titanium oxide particles may be mixed.
  • the first metal oxide particles contained in the low refractive index layer and the second metal oxide particles contained in the high refractive index layer are in a state of having ionicity (that is, the electric charges have the same sign). It is preferable. For example, in the case of simultaneous multilayer coating, if the ionicity is different, it reacts at the interface to form aggregates and haze deteriorates.
  • silicon dioxide anion
  • titanium oxide cation
  • titanium oxide can be anionized by treatment with a silicon-containing hydrated oxide.
  • the average particle diameter (number average) of the second metal oxide particles contained in the high refractive index layer of the present invention is preferably 3 to 100 nm, and more preferably 3 to 50 nm.
  • the second metal oxide particles contained in the high refractive index layer preferably have a volume average particle size of 50 nm or less, more preferably 1 to 45 nm, and even more preferably 5 to 40 nm. .
  • a volume average particle size of 50 nm or less is preferable from the viewpoint of low visible light transmittance and low haze.
  • the volume average particle diameter is a volume average particle diameter of primary particles or secondary particles dispersed in a medium, and can be measured by a laser diffraction / scattering method, a dynamic light scattering method, or the like.
  • the particles themselves or the particles appearing on the cross section or surface of the refractive index layer are observed with an electron microscope, and the particle diameters of 1,000 arbitrary particles are measured, and d1, d2,. ...
  • Nk particles each having a particle size of dk the volume average particle size when the volume per particle is vi
  • the metal oxide particles used in the present invention are preferably monodispersed.
  • the monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
  • the content of the metal oxide particles in the high refractive index layer is preferably 15 to 90% by mass, and preferably 20 to 85% by mass with respect to 100% by mass of the total solid content of the high refractive index layer. More preferably, it is 30 to 80% by mass. By setting it as the said range, it can be set as the favorable infrared shielding property.
  • the titanium oxide particles preferably used as the second metal oxide particles of the present invention are preferably water-based using a titanium oxide sol whose surface is modified so as to be dispersible in water or an organic solvent.
  • Examples of the preparation method of the aqueous titanium oxide sol include, for example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, JP-A-63-3. Reference can be made to the matters described in Japanese Patent No. 17221.
  • titanium oxide particles are used as the second metal oxide particles, for example, “Titanium oxide—physical properties and applied technology” Manabu Seino, p. 255-258 (2000) Gihodo Publishing Co., Ltd.
  • the method of step (2) described in paragraph numbers “0011” to “0023” of WO2007 / 039953 can be referred to.
  • titanium dioxide hydrate is treated with at least one basic compound selected from the group consisting of alkali metal hydroxides or alkaline earth metal hydroxides.
  • the titanium dioxide dispersion obtained comprises a step (2) of treating with a carboxylic acid group-containing compound and an inorganic acid.
  • the second metal oxide particles of the present invention are preferably in the form of core-shell particles in which titanium oxide particles are coated with a silicon-containing hydrated oxide.
  • the volume average particle diameter of the titanium oxide particles as the core part is preferably more than 1 nm and 50 nm or less, more preferably 4 nm or more and 40 nm or less, and the surface of the titanium oxide particles is the titanium oxide that becomes the core.
  • This is a structure in which a shell made of silicon-containing hydrated oxide is coated such that the coating amount of silicon-containing hydrated oxide is 3 to 30% by mass as SiO 2 with respect to 100% by mass.
  • the high refractive index layer and the low refractive index layer are obtained by the interaction between the silicon-containing hydrated oxide of the shell layer and the polyvinyl alcohol resin. There is an effect that inter-layer mixing is suppressed.
  • the silicon-containing hydrated oxide may be either a hydrate of an inorganic silicon compound, a hydrolyzate of an organic silicon compound, and / or a condensate. More preferably. Therefore, in the present invention, the second metal oxide particles are preferably silica-modified (silanol-modified) titanium oxide particles in which the titanium oxide particles are silica-modified.
  • the coating amount of the silicon-containing hydrated compound of titanium oxide is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass with respect to 100% by mass of titanium oxide. This is because when the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% by mass or more, particles can be stably formed.
  • the second metal oxide particles of the present invention core-shell particles produced by a known method can be used.
  • core-shell particles produced by a known method can be used.
  • the following (i) to (iv); (i) an aqueous solution containing titanium oxide particles is heated and hydrolyzed, or an aqueous solution containing titanium oxide particles is neutralized by adding an alkali to obtain an average particle size.
  • the titanium oxide particles and the mineral acid were mixed so that the molar ratio of titanium oxide particles / mineral acid was in the range of 1 / 0.5 to 1/2.
  • the slurry is heat-treated at a temperature not lower than the boiling point of the slurry and not higher than the boiling point of the slurry, and then a silicon compound (for example, an aqueous sodium silicate solution) is added to the obtained slurry containing the titanium oxide particles.
  • a silicon compound for example, an aqueous sodium silicate solution
  • a method of neutralizing by mixing a titanium oxide sol stabilized at a pH in an acidic range obtained by peptizing a monobasic acid or a salt thereof with an alkyl silicate as a dispersion stabilizer by a conventional method (Iii) Hydrogen peroxide and tin metal are maintained at a H 2 O 2 / Sn molar ratio of 2 to 3 at the same time or alternately, such as a titanium salt (eg, titanium tetrachloride). The mixture is added to the aqueous solution to form a basic salt aqueous solution containing titanium, and the basic salt aqueous solution is kept at a temperature of 50 to 100 ° C.
  • a stable aqueous sol of composite colloidal particles containing silicon dioxide is produced by preparing an aqueous solution containing silicate (eg, sodium silicate aqueous solution) and removing cations present in the aqueous solution. Is done.
  • silicate eg, sodium silicate aqueous solution
  • the obtained composite aqueous sol containing titanium oxide is converted to 100 parts by mass in terms of metal oxide TiO 2
  • the obtained composite aqueous sol containing silicon dioxide is converted to 2 to 100 in terms of metal oxide SiO 2.
  • hydrous titanium oxide hydrosol titanium oxide obtained by peptization, organoalkoxysilane (R 1 nSiX 4-n) or hydrogen peroxide and an aliphatic or compounds selected from aromatic hydroxycarboxylic acid as a stabilizer
  • core-shell particles produced by the desalting treatment after adjusting the pH of the solution to 3 to less than 9 and aging (Japanese Patent No. 4550753).
  • the core-shell particle according to the present invention may be one in which the entire surface of the titanium oxide particle as the core is coated with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particle as the core is covered with a silicon-containing water. What coated with the sum oxide may be used.
  • the low refractive index layer and / or the high refractive index layer of the present invention may contain a curing agent. This is because the curing agent can react with the polyvinyl alcohol-based resin to form a hydrogen bond network. In addition, when a polyvinyl alcohol resin or silanol-modified polyvinyl alcohol is used as the binder resin, the effect can be exhibited particularly.
  • the curing agent that can be used together with the polyvinyl alcohol-based resin is not particularly limited as long as it causes a curing reaction with the polyvinyl alcohol-based resin, but boric acid, boric acid It is preferably selected from the group consisting of salt and borax.
  • boric acid, borate, and borax known materials can be used, and in general, a compound having a group capable of reacting with a polyvinyl alcohol resin or a reaction between different groups of a polyvinyl alcohol resin is promoted. And are appropriately selected and used.
  • the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
  • epoxy curing agents diglycidyl ethyl
  • Boric acid or borate refers to oxyacids and salts thereof having a boron atom as a central atom, and specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, and octaborate. Boric acid and their salts.
  • Borax is a mineral represented by Na 2 B 4 O 5 (OH) 4 .8H 2 O (decahydrate of sodium tetraborate Na 2 B 4 O 7 ).
  • Boric acid having a boron atom, borate, and borax as a curing agent may be used alone or as a mixture of two or more.
  • An aqueous solution of boric acid or a mixed aqueous solution of boric acid and borax is preferred.
  • the aqueous solutions of boric acid and borax can be added only in relatively dilute aqueous solutions, respectively, but by mixing them both can be made into a concentrated aqueous solution and the coating solution can be concentrated. Further, there is an advantage that the pH of the aqueous solution to be added can be controlled relatively freely.
  • boric acid and a salt thereof and / or borax it is preferable to use boric acid and a salt thereof and / or borax in order to obtain the effects of the present invention.
  • boric acid and its salt and / or borax are used, the metal oxide particles and the OH group of the polyvinyl alcohol resin form a hydrogen bond network, and as a result, the high refractive index layer and the low refractive index layer It is considered that the interlayer mixing is suppressed and preferable infrared shielding properties are achieved.
  • the film surface temperature of the coating film is once cooled to about 15 ° C., and then the set surface coating process is used to dry the film surface. Can express an effect more preferably.
  • the total amount of the curing agent used is 1 to 1 per 1 g of binder resin (the total amount of polyvinyl alcohol resin and silanol modified polyvinyl alcohol when a polyvinyl alcohol resin or silanol modified polyvinyl alcohol is also used). 600 mg is preferable, and 100 to 600 mg is more preferable.
  • the base material used for the infrared shielding film of the present invention is not particularly limited as long as it is formed of a transparent organic material.
  • Examples of such a substrate include methacrylic acid ester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polystyrene (PS), aromatic polyamide, polyether ether ketone, polysulfone. , A film made of a resin such as polyethersulfone, polyimide, or polyetherimide, and a resin film obtained by laminating two or more layers of the resin. From the viewpoint of cost and availability, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) and the like are preferably used.
  • the thickness of the substrate is preferably about 5 to 200 ⁇ m, more preferably 15 to 150 ⁇ m.
  • Two or more substrates may be stacked, and in this case, the types of the substrates may be the same or different.
  • the substrate preferably has a visible light region transmittance of 85% or more as shown in JIS R3106 (1998), particularly preferably 90% or more (upper limit: 100%).
  • the transmittance of the visible light region indicated by JIS R3106 (1998) is 50% or more (upper limit: 100%) when the base material is above the above transmittance. It is preferable.
  • the base material using the resin or the like may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • the base material can be manufactured by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • the base material may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability.
  • the relaxation treatment is performed in the process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C.
  • the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%.
  • the relaxed base material is subjected to the following off-line heat treatment to improve heat resistance and to improve dimensional stability.
  • the substrate is coated with the undercoat layer coating solution inline on one side or both sides during the film forming process.
  • undercoating during the film forming process is referred to as in-line undercoating.
  • resins used in the undercoat layer coating solution useful in the present invention include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polyethyleneimine resins, and polyvinyl alcohol resins. , Modified polyvinyl alcohol resin, gelatin and the like, and any of them can be preferably used.
  • a conventionally well-known additive can also be added to these undercoat layers.
  • the undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating.
  • the coating amount of the undercoat layer is preferably about 0.01 to 2 g / m 2 (dry state).
  • a laminate composed of a high refractive index layer and a low refractive index layer is laminated on a substrate, for example, a coating for a high refractive index layer.
  • the laminate and the coating solution for the low refractive index layer are alternately applied and dried to form a laminate. That is, a coating solution for a low refractive index layer containing desired components (for example, metal oxide particles, polyvinyl alcohol-based resin and solvent), and desired components (for example, metal oxide particles, polyvinyl alcohol-based resin and solvent) ) Containing a coating solution for a high refractive index layer, and a step of drying the substrate coated with the coating solution.
  • desired components for example, metal oxide particles, polyvinyl alcohol-based resin and solvent
  • desired components for example, metal oxide particles, polyvinyl alcohol-based resin and solvent
  • a high refractive index layer and a low refractive index layer are alternately applied and dried to form a laminate.
  • Specific examples include: (1) A high refractive index layer coating solution is applied on a substrate and dried to form a high refractive index layer, and then a low refractive index layer coating solution is applied.
  • the method (4) which is a simpler manufacturing process, is preferable.
  • interfacial mixing is more likely to occur, and therefore the present invention is more effective when manufactured by simultaneous multilayer coating.
  • the method for preparing the coating liquid for the high refractive index layer and the coating liquid for the low refractive index layer is not particularly limited, and for example, metal oxide particles, polyvinyl alcohol resin, other binder resins, and are added as necessary. A method of adding other additives and stirring and mixing them may be mentioned. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
  • the second metal oxide particles contained in the coating solution for the refractive index layer should be prepared separately in a dispersion state before preparing the coating solution.
  • a high refractive index layer is formed using an aqueous high refractive index layer coating solution prepared by adding and dispersing titanium oxide particles coated with a silicon-containing hydrated oxide by the method described above. More preferably, it is formed.
  • the dispersion liquid may be appropriately added so as to have an arbitrary concentration in each layer.
  • the solvent for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable.
  • an aqueous solvent can be used because a polyvinyl alcohol resin is mainly used as the resin binder. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
  • the organic solvent examples include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably an aqueous solvent, more preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and water is particularly preferable.
  • esters such as e
  • the coating liquid for the low refractive index layer and the coating liquid for the high refractive index layer include a water-soluble resin such as polyvinyl alcohol, water or the It is preferable to use an aqueous coating solution mainly composed of an aqueous solvent containing a water-soluble organic solvent.
  • the concentration of the binder resin (for example, polyvinyl alcohol resin) in the coating solution for the high refractive index layer is preferably 0.5 to 10% by mass.
  • the concentration of the metal oxide particles in the coating solution for the high refractive index layer is preferably 1 to 50% by mass.
  • the concentration of the binder resin (for example, polyvinyl alcohol resin) in the coating solution for the low refractive index layer is preferably 0.5 to 10% by mass.
  • the concentration of the metal oxide particles in the coating solution for the low refractive index layer is preferably 1 to 50% by mass.
  • the viscosity of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer at the time of simultaneous multilayer coating is in the range of 5 to 100 mPa ⁇ s when the slide bead coating method is used. Is more preferable, and the range of 10 to 50 mPa ⁇ s is more preferable.
  • the viscosity at 45 ° C. is preferably in the range of 5 to 1200 mPa ⁇ s, more preferably in the range of 25 to 500 mPa ⁇ s.
  • the viscosity of the coating solution at 15 ° C. is preferably 100 mPa ⁇ s or more, more preferably 100 to 30,000 mPa ⁇ s, still more preferably 3,000 to 30,000 mPa ⁇ s, and most preferably 10 , 30,000 to 30,000 mPa ⁇ s.
  • the coating solution for high refractive index layer and the coating solution for low refractive index layer are heated to 30 ° C. or more, and after coating, the temperature of the formed coating film is set to 1 to 15 ° C. It is preferably cooled once and dried at 10 ° C. or higher, and more preferably, the drying conditions are wet bulb temperature 5 to 50 ° C. and film surface temperature 10 to 50 ° C. Moreover, as a cooling method immediately after application
  • the coating method for example, roll coating method, rod bar coating method, air knife coating method, spray coating method, curtain coating method, US Pat. No. 2,761,419, US Pat. No. 2,761,791
  • the slide bead coating method using the hopper described in 1), the extrusion coating method and the like are preferably used.
  • the conditions for the coating and drying method are not particularly limited.
  • the sequential coating method first, one of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer heated to 30 to 60 ° C. One is coated on a substrate and dried to form a layer, and then the other coating liquid is coated on this layer and dried to form a laminated film precursor (unit).
  • the number of units necessary for expressing the desired infrared shielding performance is sequentially applied and dried by the above method to obtain a laminated film precursor.
  • drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 30 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry.
  • a drying method warm air drying, infrared drying, and microwave drying are used.
  • drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section ⁇ the temperature of the decremental drying section.
  • the temperature range of the constant rate drying section is preferably 30 to 60 ° C.
  • the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
  • the conditions of the coating and drying method when performing simultaneous multilayer coating are as follows.
  • the coating solution for the high refractive index layer and the coating solution for the low refractive index layer are heated to 30 to 60 ° C., and the high refractive index is applied onto the substrate.
  • the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C., and then dried at 10 ° C. or higher.
  • More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds.
  • coating it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
  • the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, the fluidity of the substances in each layer and in each layer is reduced, or the gel It means the process of converting.
  • a state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
  • the time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. With such a set time, the components in the layer can be sufficiently mixed, the interlayer diffusion of the metal oxide fine particles can be suppressed, and the difference in refractive index between the high refractive index layer and the low refractive index layer can be sufficiently taken. If the intermediate layer between the high-refractive index layer and the low-refractive index layer is highly elastic, the setting step may not be provided.
  • the set time can be adjusted by adjusting the concentration of polyvinyl alcohol resin (binder resin) and metal oxide particles, various known gelling agents such as gelatin, pectin, agar, carrageenan, gellan gum, etc. It can adjust by adding the component of.
  • binder resin polyvinyl alcohol resin
  • metal oxide particles various known gelling agents such as gelatin, pectin, agar, carrageenan, gellan gum, etc. It can adjust by adding the component of.
  • the temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C.
  • the time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
  • the infrared shielding film provided by the present invention can be applied to a wide range of fields. For example, pasting to facilities exposed to sunlight for a long time, such as outdoor windows of buildings and automobile windows, films for window pasting such as infrared shielding films that give an infrared shielding effect, films for agricultural greenhouses, etc. As, it is mainly used for the purpose of improving the weather resistance.
  • the infrared shielding film according to the present invention is bonded to a substrate such as glass or a glass substitute resin directly or via an adhesive.
  • an infrared shielding body in which the infrared shielding film according to the present invention is provided on at least one surface of a substrate.
  • the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, Examples thereof include phenol resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, vinyl chloride resin, metal plate, ceramic and the like.
  • the type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination.
  • the substrate that can be used in the present invention can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like.
  • the thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
  • the adhesive layer or adhesive layer that bonds the infrared shielding film and the substrate is preferably provided with the infrared shielding film on the sunlight (heat ray) incident surface side.
  • an adhesive mainly composed of a photocurable or thermosetting resin can be used.
  • the adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, a solvent system is preferable in the acrylic pressure-sensitive adhesive because the peel strength can be easily controlled. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
  • a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used.
  • plastic polyvinyl butyral manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Co., Ltd.
  • ethylene-vinyl acetate copolymer manufactured by DuPont, Takeda Pharmaceutical Company Limited, duramin
  • modified ethylene-vinyl acetate copolymer (Mersen G, manufactured by Tosoh Corporation).
  • the heat insulation performance and solar heat shielding performance of infrared shielding films or infrared shields are generally JIS R 3209-1998 (multi-layer glass), JIS R 3106-1998 (transmittance / reflectance / emissivity of sheet glass). ⁇ Test method for solar heat acquisition rate), JIS R 3107-1998 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
  • Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 ⁇ m. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) For calculating the solar transmittance, solar reflectance, solar absorption rate, and modified emissivity, the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity are calculated according to JIS R 3106-1998.
  • the corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107-1998.
  • the heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multi-layer glass according to JIS R 3209-1998 using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is obtained according to JIS R 3107-1998. (2) The heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance. (3) The solar heat shielding property is calculated by obtaining the solar heat acquisition rate according to JIS R 3106-1998 and subtracting it from 1.
  • Example 1 Preparation of coating liquid L1 for low refractive index layer
  • the following materials were added in the following composition while being heated to 40 ° C. with stirring in order to prepare a coating solution L1 for a low refractive index layer.
  • the base-treated titanium compound was suspended in pure water so that the TiO 2 concentration was 20 g / L, and 0.4 mol% of citric acid was added to the amount of TiO 2 with stirring, and the temperature was raised. When the liquid temperature reached 95 ° C., concentrated hydrochloric acid was added to a hydrochloric acid concentration of 30 g / L, and the mixture was stirred for 3 hours while maintaining the liquid temperature.
  • the pH and zeta potential of the obtained titanium oxide sol aqueous dispersion were measured, the pH was 1.4 and the zeta potential was +40 mV. Furthermore, when the particle size was measured by Zetasizer Nano manufactured by Malvern, the volume average particle size was 35 nm, and the monodispersity was 16%.
  • silica-modified titanium oxide particles 2 kg of pure water was added to 0.5 kg of the 10.0 mass% titanium oxide sol aqueous dispersion described above, and then heated to 90 ° C. Thereafter, 1.3 kg of a 2.0 mass% aqueous silicic acid solution was gradually added, and then the obtained dispersion was subjected to heat treatment at 175 ° C. for 18 hours in an autoclave, and further concentrated, so that the core was a rutile type.
  • a sol water dispersion (silica-modified titanium oxide particle aqueous dispersion) of 20 mass% silica-modified titanium oxide particles having a structure of titanium oxide and a coating layer of SiO 2 was obtained.
  • Example 2 In Example 1, polyvinyl alcohol (PVA224, degree of polymerization: 2400, degree of saponification: 88 mol%, manufactured by Kuraray Co., Ltd.) was used instead of polyvinyl alcohol (JP-33, manufactured by Nippon Vinegar Poval Co., Ltd.). Sample 2 was prepared in the same manner as in Example 1 except that the coating liquid H2 for the high refractive index layer was prepared.
  • PVA224 degree of polymerization: 2400, degree of saponification: 88 mol%, manufactured by Kuraray Co., Ltd.
  • JP-33 manufactured by Nippon Vinegar Poval Co., Ltd.
  • Example 3 In Example 2, instead of polyvinyl alcohol (PVA235, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (JP-20, degree of polymerization: 2000, degree of saponification: 88 mol%, manufactured by Nihon Vineyard Poval Co., Ltd.) was used. Then, Sample 3 was produced in the same manner as in Example 2 except that the coating liquid L2 for low refractive index layer was produced.
  • PVA235 polyvinyl alcohol
  • JP-20 degree of polymerization: 2000, degree of saponification: 88 mol%, manufactured by Nihon Vineyard Poval Co., Ltd.
  • Example 4 In Example 1, instead of polyvinyl alcohol (JP-33, manufactured by Nippon Vinegar Pover Co., Ltd.), polyvinyl alcohol (JP-20, degree of polymerization: 2000, degree of saponification: 88 mol%, Nippon Vinegar Pover ( Sample 4 was produced in the same manner as in Example 1 except that the coating liquid H3 for the high refractive index layer was produced.
  • JP-33 manufactured by Nippon Vinegar Pover Co., Ltd.
  • JP-20 degree of polymerization: 2000, degree of saponification: 88 mol%
  • Nippon Vinegar Pover Sample 4 was produced in the same manner as in Example 1 except that the coating liquid H3 for the high refractive index layer was produced.
  • Example 5 In Example 2, polyvinyl alcohol (JP-45, degree of polymerization: 4500, degree of saponification: 88 mol%, made by Nippon Vineyard Poval Co., Ltd.) was used instead of polyvinyl alcohol (PVA235, manufactured by Kuraray Co., Ltd.). Sample 5 was prepared in the same manner as in Example 2 except that the coating liquid L3 for the low refractive index layer was prepared.
  • Example 6 In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (JP-15, degree of polymerization: 1500, degree of saponification: 88 mol%, manufactured by Nihon Vineyard Poval Co., Ltd.) was used. Sample 6 was prepared in the same manner as in Example 5 except that the coating liquid H4 for the high refractive index layer was prepared.
  • PVA224 polyvinyl alcohol
  • JP-15 degree of polymerization: 1500, degree of saponification: 88 mol%, manufactured by Nihon Vineyard Poval Co., Ltd.
  • Example 7 In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (PVA205, degree of polymerization: 500, degree of saponification: 88 mol%, manufactured by Kuraray Co., Ltd.) was used. Sample 7 was prepared in the same manner as in Example 5 except that the layer coating solution H5 was prepared.
  • Example 8 In Example 5, except that the simultaneous multilayer coating was performed so that the thickness of the lowermost layer when dried was 150 nm (that is, the thickness of all refractive index layers when dried was 150 nm). Sample 8 was produced in the same manner as in Example 5.
  • Example 9 In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (Gosephemer Z-410, polymerization degree: 2300, saponification degree: 98 mol%, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) Sample 9 was prepared in the same manner as in Example 5 except that the coating liquid H6 for the high refractive index layer was prepared using
  • Example 10 In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (PVA124, polymerization degree: 2400, saponification degree: 98.5 mol%, manufactured by Kuraray Co., Ltd.) was used. A sample 10 was produced in the same manner as in Example 5 except that the refractive index layer coating solution H7 was produced.
  • PVA224 polyvinyl alcohol
  • PVA124 polymerization degree: 2400, saponification degree: 98.5 mol%, manufactured by Kuraray Co., Ltd.
  • Example 11 Preparation of coating liquid L4 for low refractive index layer
  • Example 1 low refractive index layer coating liquid L1
  • polyvinyl alcohol PVA235, manufactured by Kuraray Co., Ltd.
  • JP-60 polyvinyl alcohol
  • a low-refractive-index layer coating solution L4 was produced in the same manner as in Example 1, except that Bi Poval Co., Ltd. was used.
  • Example 1 (Preparation of coating liquid H8 for high refractive index layer)
  • polyvinyl alcohol PVA235, polymerization degree: 3500, saponification degree: 88 mol
  • JP-33 polyvinyl alcohol
  • % Manufactured by Kuraray Co., Ltd.
  • a high refractive index layer coating solution H8 was prepared in the same manner as in Example 1.
  • Example 1 (Preparation of sample 11) In Example 1, the low refractive index layer coating liquid L4 instead of the low refractive index layer coating liquid L1, and the high refractive index layer coating liquid H8 instead of the high refractive index layer coating liquid H1. Sample 11 was produced in the same manner as in Example 1 except that each was used.
  • Example 12 Preparation of coating liquid L5 for low refractive index layer
  • a coating solution L5 for a low refractive index layer After adding 10 parts by weight of a 3% by weight boric acid aqueous solution to 45 parts by weight of the following 10% by weight fluorine-containing polymer 1 aqueous solution, the mixture is heated to 45 ° C. and stirred with polyvinyl alcohol (JC-25 (degree of polymerization 2500, saponification). Degree 99.5 mol%, manufactured by Nihon Vinegar & Poval Co., Ltd.) 40 mass parts of 5 mass% aqueous solution, 1 mass part of 1 mass% aqueous solution of surfactant (Lapisol A30, manufactured by NOF Corporation) was added, and 2 mass of pure water. Part was added to prepare a coating solution L5 for a low refractive index layer.
  • JC-25 degree of polymerization 2500, saponification.
  • degree 99.5 mol% manufactured by Nihon Vinegar & Poval Co., Ltd
  • Example 1 (Preparation of sample 12) In Example 1, the low refractive index layer coating liquid L5 is used instead of the low refractive index layer coating liquid L1, and the high refractive index layer coating liquid H9 is used instead of the high refractive index layer coating liquid H1. Sample 12 was produced in the same manner as in Example 1 except that each was used.
  • Example 13 Preparation of coating liquid L6 for low refractive index layer
  • JC-25 degree of polymerization 2500, saponification
  • Example 1 (Preparation of Sample 13)
  • the low refractive index layer coating liquid L6 is used instead of the low refractive index layer coating liquid L1
  • the high refractive index layer coating liquid H9 is used instead of the high refractive index layer coating liquid H1.
  • Sample 13 was prepared in the same manner as in Example 1 except that each was used.
  • Example 14 (Preparation of coating liquid H10 for high refractive index layer) Instead of a 5% by weight aqueous solution of polyvinyl alcohol (JP-33) in the coating liquid H1 for the high refractive index layer, polyvinyl alcohol (JC-25 (polymerization degree 2500, saponification degree 99.5 mol%, manufactured by Nihon Vineyard-Povar) ), JM-17, polymerization degree 1700, saponification degree 96.4 mol%, manufactured by Nihon Acetate Bi-Poval) and JP-15 (polymerization degree 1500, saponification degree 89.8 mol%, manufactured by Nihon Acetate Bi-Poval) ), JP-33 (polymerization degree 3300, saponification degree 86.7 mol%, manufactured by Nihon Acetate Bipoval), and JE-18E (polymerization degree 1800, saponification degree 83.5 mol%, manufactured by Nihon Acetate Bipoval) ) And JL-25E (polymerization degree 1800,
  • sample 14 was produced in the same manner as in Example 1, except that the high refractive index layer coating solution H10 was used instead of the high refractive index layer coating solution H1.
  • Example 15 (Preparation of sample 15) In Example 3, Sample 15 was prepared in the same manner as in Example 3 except that the lowermost layer was coated so that the film thickness when dried was 2250 nm.
  • Example 16 (Preparation of Sample 16) In Example 3, Sample 16 was prepared in the same manner as in Example 3, except that coating was performed so that the thickness of the lowermost layer when dried was 3000 nm.
  • Example 17 (Preparation of Sample 17) In Example 3, Sample 17 was prepared in the same manner as in Example 3 except that the lowermost layer was coated so that the film thickness when dried was 750 nm.
  • Example 18 Preparation of coating solution L7 for low refractive index layer
  • polyvinyl alcohol Z-410 degree of polymerization 2300, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • polyvinyl alcohol R-1130 Polyvinyl alcohol (R-1130)
  • PVA235 polymerization degree 3500, manufactured by Kuraray Co., Ltd.
  • the coating liquid L7 for low refractive index layers was prepared in the same manner as the coating liquid L1 for low refractive index layers except that was used.
  • Example 1 (Preparation of sample 18) In Example 1, the high refractive index layer coating liquid H11 was used instead of the high refractive index layer coating liquid H1, and the low refractive index layer coating liquid L7 was used instead of the low refractive index layer coating liquid L1. Sample 18 was made in the same manner as Example 1 except for the above.
  • Example 19 Preparation of coating liquid L8 for low refractive index layer
  • polyvinyl alcohol (PVA235) instead of the 5 mass% aqueous solution of polyvinyl alcohol (PVA235) in the coating liquid L1 for the low refractive index layer, polyvinyl alcohol (PVA235, polymerization degree 3500, manufactured by Kuraray Co., Ltd.) and polyvinyl alcohol (PVA205 (polymerization degree 500, manufactured by Kuraray Co., Ltd.)
  • a low refractive index layer coating liquid L8 was prepared in the same manner as the low refractive index layer coating liquid L1 except that a 5% by weight aqueous solution of 25:75 (solid content mass ratio) was used.
  • Example 4 (Preparation of Sample 19) In Example 4, Sample 19 was produced in the same manner as in Example 4 except that the low refractive index layer coating liquid L8 was used instead of the low refractive index layer coating liquid L1.
  • Example 5 In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (JP-45, degree of polymerization: 4500, degree of saponification: 88 mol%, manufactured by Nippon Vineyard Poval Co., Ltd.) was used. A sample 20 was prepared in the same manner as in Example 5 except that the high refractive index layer coating solution H12 was prepared.
  • PVA224 polyvinyl alcohol
  • JP-45 degree of polymerization: 4500, degree of saponification: 88 mol%, manufactured by Nippon Vineyard Poval Co., Ltd.
  • compositions of the samples of Examples 1 to 19 and Comparative Example 1 are summarized in Tables 1 and 2 below.
  • Samples are prepared by coating the target layers (high refractive index layer and low refractive index layer) whose refractive index is measured on the base material as single layers, and according to the following method, each of the high refractive index layer and the low refractive index layer The refractive index of was determined.
  • the back surface on the measurement side of each sample is roughened, and then light absorption is performed with a black spray to reflect light on the back surface.
  • the refractive index was obtained from the measurement result of the reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees.
  • the infrared shielding film sample produced above was observed visually, and the presence or absence of streaks and unevenness was evaluated according to the following criteria.
  • the film was cut into 210 mm ⁇ 297 mm and evaluated.
  • Each infrared shielding film sample produced above is held in an environment of 60 ° C. and 90% humidity for 3 days, and then immediately held in an environment of ⁇ 20 ° C. and 10% humidity) for 12 hours in the environment as one cycle. After 5 cycles, the change in haze before and after charging was measured for 12 hours in a room temperature (25 ° C.) environment, and the haze difference before and after charging was evaluated.
  • Example 20 [Production of Infrared Shields 101 to 119] As shown below, a hard coat layer was provided on the infrared shielding films of Samples 1 to 19 produced in Examples 1 to 19, and an acrylic adhesive layer was provided on the side opposite to the hard coat layer. Infrared shields 101 to 119 were prepared by bonding them onto glass plates having a thickness of 5 mm and 20 cm ⁇ 20 cm, respectively.
  • Hard coat layer coating solution 73 parts pentaerythritol tri / tetraacrylate (NK ester A-TMM-3, Shin-Nakamura Chemical Co., Ltd.), 5 parts Irgacure 184 (Ciba Japan Co., Ltd.), 1 Part of a silicone surfactant (KF-351A, manufactured by Shin-Etsu Chemical Co., Ltd.), 10 parts of propylene glycol monomethyl ether, 70 parts of methyl acetate, and 70 parts of methyl ethyl ketone were obtained.
  • the mixed solution was filtered through a polypropylene filter having a pore size of 0.4 ⁇ m to prepare a hard coat layer coating solution.
  • the said coating liquid for hard-coat layers was apply
  • UV irradiation While purging with nitrogen, the coating film obtained using an ultraviolet lamp was cured.
  • the curing conditions were oxygen concentration: 1.0% by volume or less, illuminance: 100 mW / cm 2 , and irradiation amount: 0.2 J / cm 2 .

Abstract

The purpose of the present invention is to provide: an optical multilayer film which has excellent interlayer adhesion; an infrared shielding film; and an infrared shielding body which is provided with the infrared shielding film. An optical multilayer film of the present invention comprises a base and a reflective layer that reflects at least light. The reflective layer has a plurality of laminated refractive index layers, and at least one refractive index layer has a refractive index that is different from that of at least one of the refractive index layers adjacent to the one refractive index layer. The refractive index layers contain a polyvinyl alcohol resin. The average polymerization degree of the polyvinyl alcohol resin contained in one refractive index layer is different from the average polymerization degree of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer; or alternatively, the polymerization degree of the maximum amount of the polyvinyl alcohol resin contained in one refractive index layer is different from the polymerization degree of the maximum amount of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer.

Description

光学積層フィルム、赤外遮蔽フィルムおよび赤外遮蔽体Optical laminated film, infrared shielding film and infrared shielding body
 本発明は、光学積層フィルム、赤外遮蔽フィルムおよび赤外遮蔽体に関する。 The present invention relates to an optical laminated film, an infrared shielding film, and an infrared shielding body.
 近年、省エネルギーへの関心の高まりから、冷房設備にかかる負荷を減らすために、建物や車両の窓ガラスに装着させて、太陽光の熱線の透過を遮断する赤外遮蔽フィルムの要望が高まってきている。 In recent years, due to increased interest in energy conservation, there has been an increasing demand for infrared shielding films that can be attached to window glass of buildings and vehicles to block the transmission of solar heat rays in order to reduce the load on cooling equipment. Yes.
 従来、赤外遮蔽フィルムとして、高屈折率層と低屈折率層とを交互に積層させた積層膜を蒸着法、スパッタ、などのドライ製膜法で作製する提案がされている。また、交互に積層させた積層膜の光学膜厚を調整することで、赤外光に代えて可視光を反射するように設計できることも知られている。 Conventionally, as an infrared shielding film, it has been proposed to produce a laminated film in which a high refractive index layer and a low refractive index layer are alternately laminated by a dry film forming method such as vapor deposition or sputtering. It is also known that the optical film thickness of the laminated film laminated alternately can be adjusted so as to reflect visible light instead of infrared light.
 しかし、ドライ製膜法は、形成に用いる真空装置等が大型になり、製造コストが高く、大面積化が困難であり、さらに、基材が耐熱性素材に限定される等の課題がある。 However, the dry film forming method has problems such as a large vacuum apparatus used for forming, high manufacturing cost, difficulty in increasing the area, and further, the base material is limited to a heat-resistant material.
 近年、上記のような課題を有しているドライ製膜法に代えて、湿式塗布法を用いて近赤外反射フィルムを形成する方法が報告された(例えば、特許文献1参照)。 Recently, a method for forming a near-infrared reflective film using a wet coating method instead of the dry film forming method having the above-described problems has been reported (for example, see Patent Document 1).
国際公開第2012/014607号(US 2013/0107355 A1に相当)International Publication No. 2012/014607 (equivalent to US 2013/0107355 A1)
 しかしながら、特許文献1に開示されている近赤外反射フィルムは、層間密着性が十分でないという問題があった。 However, the near-infrared reflective film disclosed in Patent Document 1 has a problem that interlayer adhesion is not sufficient.
 したがって、本発明は、上記課題に鑑みなされたものであり、層間密着性が良好である光学積層フィルム、赤外遮蔽フィルムおよびその赤外遮蔽フィルムを設けた赤外遮蔽体を提供することを目的とする。 Accordingly, the present invention has been made in view of the above problems, and an object thereof is to provide an optical laminated film having good interlayer adhesion, an infrared shielding film, and an infrared shielding body provided with the infrared shielding film. And
 本発明者は、上記課題に鑑み鋭意検討を行った。その結果、隣接する屈折率層に含まれるポリビニルアルコール系樹脂の重合度を変えることによって、各屈折率層の層間密着性が良くなることを見出し、本発明を完成するに至った。 The present inventor has intensively studied in view of the above problems. As a result, it has been found that the interlayer adhesion of each refractive index layer is improved by changing the polymerization degree of the polyvinyl alcohol resin contained in the adjacent refractive index layer, and the present invention has been completed.
 すなわち、上記目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学積層フィルムは、基材と、少なくとも光を反射する反射層とを有する、光学積層フィルムであって、前記反射層は、積層された複数の屈折率層を有し、前記屈折率層の少なくとも1つは隣接する屈折率層の少なくとも一方と異なる屈折率を有し、前記屈折率層は、ポリビニルアルコール系樹脂を含有し、一の屈折率層に含まれるポリビニルアルコール系樹脂の平均重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれるポリビニルアルコール系樹脂の平均重合度と異なる、または一の前記屈折率層に含まれる最大量のポリビニルアルコール系樹脂の重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれる最大量のポリビニルアルコール系樹脂の重合度と異なる。 That is, in order to realize at least one of the above objects, an optical laminated film reflecting one aspect of the present invention is an optical laminated film having a base material and at least a reflective layer that reflects light, The reflective layer has a plurality of laminated refractive index layers, at least one of the refractive index layers has a refractive index different from at least one of the adjacent refractive index layers, and the refractive index layer is polyvinyl alcohol. The average polymerization degree of the polyvinyl alcohol resin contained in one refractive index layer is different from the average polymerization degree of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer, Alternatively, the degree of polymerization of the maximum amount of the polyvinyl alcohol-based resin contained in one refractive index layer is the maximum amount of the polymer contained in at least one of the refractive index layers adjacent to the refractive index layer. Different from the degree of polymerization of the vinyl alcohol-based resin.
 本発明の上記目的はまた、基材と、少なくとも赤外光を反射する反射層とを有する、赤外遮蔽フィルムであって、前記反射層は、積層された複数の屈折率層を有し、前記屈折率層の少なくとも1つは隣接する屈折率層の少なくとも一方と異なる屈折率を有し、前記屈折率層は、ポリビニルアルコール系樹脂を含有し、一の屈折率層に含まれるポリビニルアルコール系樹脂の平均重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれるポリビニルアルコール系樹脂の平均重合度と異なる、または一の前記屈折率層に含まれる最大量のポリビニルアルコール系樹脂の重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれる最大量のポリビニルアルコール系樹脂の重合度と異なる、赤外遮蔽フィルムにより達成される。 The above object of the present invention is also an infrared shielding film having a base material and a reflective layer that reflects at least infrared light, the reflective layer having a plurality of laminated refractive index layers, At least one of the refractive index layers has a refractive index different from that of at least one of the adjacent refractive index layers, and the refractive index layer contains a polyvinyl alcohol-based resin, and is included in one refractive index layer. The average degree of polymerization of the resin is different from the average degree of polymerization of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer, or the maximum amount of polyvinyl alcohol resin contained in one of the refractive index layers. Is achieved by an infrared shielding film having a degree of polymerization different from that of the maximum amount of polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer. .
 本発明は、基材と、少なくとも光を反射する反射層とを有する、光学積層フィルムであって、前記反射層は、積層された複数の屈折率層を有し、前記屈折率層の少なくとも1つは隣接する屈折率層の少なくとも一方と異なる屈折率を有し、前記屈折率層は、ポリビニルアルコール系樹脂を含有し、一の屈折率層に含まれるポリビニルアルコール系樹脂の平均重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれるポリビニルアルコール系樹脂の平均重合度と異なる、または一の前記屈折率層に含まれる最大量のポリビニルアルコール系樹脂の重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれる最大量のポリビニルアルコール系樹脂の重合度と異なる、光学積層フィルムを提供する。 The present invention is an optical laminated film having a base material and at least a reflective layer that reflects light, wherein the reflective layer has a plurality of laminated refractive index layers, and at least one of the refractive index layers. One has a refractive index different from at least one of the adjacent refractive index layers, the refractive index layer contains a polyvinyl alcohol resin, and the average degree of polymerization of the polyvinyl alcohol resin contained in one refractive index layer is The average degree of polymerization of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer, or the degree of polymerization of the maximum amount of polyvinyl alcohol resin contained in one refractive index layer is the refractive index. Provided is an optical laminated film having a polymerization degree different from that of the maximum amount of the polyvinyl alcohol-based resin contained in at least one of the refractive index layers adjacent to the layer.
 本発明は、隣接する2つの屈折率層中に含まれるポリビニルアルコール系樹脂の平均重合度または最大量のポリビニルアルコール系樹脂の重合度を異なるものとすることを特徴とする。このような構成を有する光学積層フィルムは、層間密着性に優れる。ここで、本発明の構成による上記作用効果の発揮のメカニズムは以下のように推測される。なお、本発明は下記に限定されるものではない。すなわち、金属酸化物微粒子およびポリビニルアルコール系樹脂を含有する屈折率層では、ポリビニルアルコール系樹脂の水酸基と金属酸化物微粒子の水酸基(例えば、二酸化ケイ素粒子の有する-OH)とが、水素結合によりゆるいネットワークを形成する。このため、金属酸化物粒子の反応性(例えば、二酸化ケイ素粒子の有する-OHの反応性)が抑えられ、当該金属酸化物粒子と隣接する屈折率層に含まれる金属酸化物粒子との相互作用が阻害される。その結果、隣接する屈折率層にそれぞれ含まれる金属酸化物粒子が混合しにくくなり(屈折率層間の混合(層間混合)が抑制され)、光反射率、特に赤外反射率(赤外遮蔽率)を向上できる。このため、光反射性(特に赤外遮蔽性)を考慮すると、屈折率層中のポリビニルアルコール系樹脂の重合度は大きいことが好ましい。一方、重合度が大きいポリビニルアルコール系樹脂を含む屈折率層は、強固なネットワークを形成するため、固くなる。そのため、重合度が同じポリビニルアルコール系樹脂を含む屈折率層を積層すると、同じ強さの固い膜が積層されることになり、層間密着性が悪くなってしまう。そこで、重合度の大きい膜の間にその層よりも重合度の小さい膜を挟むことにより、層間混合は抑制し(光反射性、特に赤外遮蔽性を確保し)つつ層間密着性を改善できる。ゆえに、本発明によれば、層間密着性に優れた光学積層フィルム、ならびに赤外遮蔽フィルムおよびその赤外遮蔽フィルムを設けた赤外遮蔽体が提供されうる。 The present invention is characterized in that the average polymerization degree of the polyvinyl alcohol resin contained in the two adjacent refractive index layers or the polymerization degree of the maximum amount of polyvinyl alcohol resin is different. The optical laminated film having such a configuration is excellent in interlayer adhesion. Here, the mechanism for exerting the above-described effects by the configuration of the present invention is presumed as follows. The present invention is not limited to the following. That is, in the refractive index layer containing the metal oxide fine particles and the polyvinyl alcohol-based resin, the hydroxyl groups of the polyvinyl alcohol-based resin and the hydroxyl groups of the metal oxide fine particles (for example, —OH included in the silicon dioxide particles) are loosened by hydrogen bonding. Form a network. Therefore, the reactivity of the metal oxide particles (for example, —OH reactivity of the silicon dioxide particles) is suppressed, and the interaction between the metal oxide particles and the metal oxide particles contained in the adjacent refractive index layer. Is inhibited. As a result, it becomes difficult for the metal oxide particles contained in the adjacent refractive index layers to be mixed (mixing between refractive index layers (interlayer mixing) is suppressed), and light reflectance, particularly infrared reflectance (infrared shielding ratio). ) Can be improved. For this reason, when light reflectivity (especially infrared shielding) is considered, it is preferable that the polymerization degree of the polyvinyl alcohol-type resin in a refractive index layer is large. On the other hand, a refractive index layer containing a polyvinyl alcohol-based resin having a high degree of polymerization forms a strong network and thus becomes hard. Therefore, when a refractive index layer containing a polyvinyl alcohol resin having the same degree of polymerization is laminated, a hard film having the same strength is laminated, resulting in poor interlayer adhesion. Therefore, by interposing a film having a lower polymerization degree between films having a higher degree of polymerization, interlayer mixing can be suppressed (light reflectivity, particularly infrared shielding properties can be ensured) and interlayer adhesion can be improved. . Therefore, according to the present invention, an optical laminated film having excellent interlayer adhesion, an infrared shielding film, and an infrared shielding body provided with the infrared shielding film can be provided.
 特に隣接する屈折率層中のポリビニルアルコール系樹脂の平均重合度差または重合度差を300以上とすることにより、上記効果(層間密着性)をより向上できる。また、上記重合度差を設けることにより、光反射性、特に赤外遮蔽性をより向上できる。具体的には、重合度の高いポリビニルアルコール系樹脂(以下、「第1のポリビニルアルコール系樹脂」とも称する)を含む層(以下、「高重合度樹脂層」とも称する)は、その重合度よりも重合度が低いポリビニルアルコール系樹脂(以下、「第2のポリビニルアルコール系樹脂」とも称する)を含む層(以下、「低重合度樹脂層」とも称する)に比べて、より複雑な(強固な)網目状構造を形成する。そのため、高重合度樹脂層Aは、隣接する他の層(以下、「隣接層」と称する)と混合しにくくなる。一方、その隣接層も強固な網目構造を形成する高重合度樹脂層Bとすると、高重合度樹脂層Aと高重合度樹脂層B(高重合度樹脂層Aの隣接層)との界面に乱れ(凹凸)が生じ、その結果、赤外反射率が低くなる可能性がある。しかし、第1のポリビニルアルコール系樹脂を含む層の隣接層に含まれる第2のポリビニルアルコール系樹脂の重合度が、第1のポリビニルアルコール系樹脂の重合度との重合度差を300以上とすることで、界面の乱れ(凹凸)が抑制され、光反射率、特に赤外反射率(赤外遮蔽率)をより高くすることができる。特に低屈折率層に含まれるポリビニルアルコール系樹脂の重合度を高屈折率層に含まれるポリビニルアルコール系樹脂の重合度より300以上高くすることで、上記効果(層間密着性、光反射率、特に赤外遮蔽性)がより発揮できる。 In particular, the above effect (interlayer adhesion) can be further improved by setting the average polymerization degree difference or the polymerization degree difference of polyvinyl alcohol resins in adjacent refractive index layers to 300 or more. Moreover, light reflectivity, especially infrared shielding property can be improved more by providing the said polymerization degree difference. Specifically, a layer containing a polyvinyl alcohol resin having a high degree of polymerization (hereinafter also referred to as “first polyvinyl alcohol resin”) (hereinafter also referred to as “high degree of polymerization resin layer”) has a higher degree of polymerization. Compared with a layer containing a polyvinyl alcohol resin having a low degree of polymerization (hereinafter also referred to as “second polyvinyl alcohol resin”) (hereinafter also referred to as “low polymerization degree resin layer”), ) Form a network structure. Therefore, the high polymerization degree resin layer A becomes difficult to mix with other adjacent layers (hereinafter referred to as “adjacent layers”). On the other hand, when the high polymerization degree resin layer B in which the adjacent layer also forms a strong network structure, at the interface between the high polymerization degree resin layer A and the high polymerization degree resin layer B (adjacent layer of the high polymerization degree resin layer A). Disturbance (unevenness) may occur, and as a result, the infrared reflectance may be lowered. However, the degree of polymerization of the second polyvinyl alcohol-based resin contained in the adjacent layer of the layer containing the first polyvinyl alcohol-based resin has a polymerization degree difference of 300 or more from the degree of polymerization of the first polyvinyl alcohol-based resin. Thereby, disorder (unevenness | corrugation) of an interface is suppressed and a light reflectance, especially infrared reflectance (infrared shielding factor) can be made higher. In particular, by making the polymerization degree of the polyvinyl alcohol resin contained in the low refractive index layer 300 or more higher than the polymerization degree of the polyvinyl alcohol resin contained in the high refractive index layer, the above effects (interlayer adhesion, light reflectance, particularly (Infrared shielding) can be exhibited more.
 また、特に反射層の最も基材側に位置する屈折率層(最下層)を厚くすることにより、基材との密着性をより向上でき、より良好な塗布性を達成できる。 In particular, by increasing the thickness of the refractive index layer (lowermost layer) located closest to the base material of the reflective layer, the adhesion with the base material can be further improved, and better coating properties can be achieved.
 加えて、特に屈折率層が変性ポリビニルアルコールを含む場合には、高湿条件下での保存においてのヘイズ変動をより有効に抑制できる。 In addition, particularly when the refractive index layer contains a modified polyvinyl alcohol, it is possible to more effectively suppress fluctuations in haze during storage under high humidity conditions.
 さらに、屈折率層が金属酸化物粒子として酸化チタンを含む高屈折率層と、低屈折率層とを含み、前記高屈折率層をゼラチン及び増粘多糖類を含まないこととすることにより、高湿条件下での保存においてのヘイズ変動をより有効に抑制できる。 Furthermore, the refractive index layer includes a high refractive index layer containing titanium oxide as metal oxide particles, and a low refractive index layer, and the high refractive index layer does not contain gelatin and thickening polysaccharides. Haze fluctuations during storage under high humidity conditions can be more effectively suppressed.
 上述したように、本発明の光学積層フィルムは、層間密着性に優れ、かつ高い可視光透過率及び優れた赤外遮蔽性を発揮する。さらに、本発明の赤外遮蔽フィルムは、水系の屈折率用塗布液を用いて製造でき、大面積で、低コストで製造方法製造できる。 As described above, the optical laminated film of the present invention has excellent interlayer adhesion, high visible light transmittance, and excellent infrared shielding properties. Furthermore, the infrared shielding film of the present invention can be manufactured using a water-based coating solution for refractive index, and can be manufactured in a large area at a low cost.
 以下、本発明の光学積層フィルムの構成要素、および本発明を実施するための形態等について詳細な説明をする。 Hereinafter, the components of the optical laminated film of the present invention, the form for carrying out the present invention, and the like will be described in detail.
 なお、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」及び「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In the present specification, “X to Y” indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 [光学積層フィルム]
 本形態の光学積層フィルムは、基材と、少なくとも赤外光を反射する反射層とを含む。ここで、反射層は、積層された複数の屈折率層を有し、この屈折率層の少なくとも1つは隣接する屈折率層の少なくとも一方と異なる屈折率を有する、好ましくは隣接する屈折率層双方と異なる屈折率を有する。一般的には、屈折率層は、低屈折率層と高屈折率層とから構成される積層体(ユニット)を少なくとも1つ含み、低屈折率層と高屈折率層とが交互に積層された交互積層体の形態を有することが好ましい。なお、本明細書中、他方に対して屈折率の高い屈折率層を高屈折率層と、他方に対して屈折率の低い屈折率層を低屈折率層と称する。本明細書において、「高屈折率層」および「低屈折率層」なる用語は、隣接した2層の屈折率差を比較した場合に、屈折率が高い方の屈折率層を高屈折率層とし、低い方の屈折率層を低屈折率層とすることを意味する。したがって、「高屈折率層」および「低屈折率層」なる用語は、光学積層フィルムを構成する各屈折率層において、隣接する2つの屈折率層に着目した場合に、各屈折率層が同じ屈折率を有する形態以外のあらゆる形態を含むものである。光学積層フィルムは紫外光、赤外光などを含む光を反射する反射層を有するが、好ましくは少なくとも赤外光を主として反射する反射層を有する赤外遮蔽フィルムであることが好ましい。すなわち、本発明の好ましい態様によると、基材と、少なくとも光を反射する反射層とを有する、赤外遮蔽フィルムであって、前記反射層は、積層された複数の屈折率層を有し、前記屈折率層の少なくとも1つは隣接する屈折率層の少なくとも一方と異なる屈折率を有し、前記屈折率層は、ポリビニルアルコール系樹脂を含有し、一の屈折率層に含まれるポリビニルアルコール系樹脂の平均重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれるポリビニルアルコール系樹脂の平均重合度と異なる、または一の前記屈折率層に含まれる最大量のポリビニルアルコール系樹脂の重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれる最大量のポリビニルアルコール系樹脂の重合度と異なる、赤外遮蔽フィルムが提供される。このため、以下では、これらを「光学積層フィルム」または「赤外遮蔽フィルム」と称することもある。
[Optical laminated film]
The optical laminated film of this embodiment includes a base material and a reflective layer that reflects at least infrared light. Here, the reflective layer has a plurality of stacked refractive index layers, and at least one of the refractive index layers has a refractive index different from at least one of the adjacent refractive index layers, preferably adjacent refractive index layers. Refractive index different from both. In general, the refractive index layer includes at least one laminate (unit) composed of a low refractive index layer and a high refractive index layer, and the low refractive index layer and the high refractive index layer are alternately laminated. It is preferable to have the form of an alternating laminate. In the present specification, a refractive index layer having a higher refractive index than the other is referred to as a high refractive index layer, and a refractive index layer having a lower refractive index than the other is referred to as a low refractive index layer. In this specification, the terms “high refractive index layer” and “low refractive index layer” refer to a refractive index layer having a higher refractive index when comparing the refractive index difference between two adjacent layers. It means that the lower refractive index layer is a low refractive index layer. Therefore, the terms “high refractive index layer” and “low refractive index layer” are the same when each refractive index layer constituting the optical laminated film is focused on two adjacent refractive index layers. All forms other than those having a refractive index are included. The optical laminated film has a reflective layer that reflects light including ultraviolet light and infrared light, and is preferably an infrared shielding film having a reflective layer that mainly reflects at least infrared light. That is, according to a preferred embodiment of the present invention, the infrared shielding film has a base material and at least a reflective layer that reflects light, and the reflective layer has a plurality of laminated refractive index layers, At least one of the refractive index layers has a refractive index different from that of at least one of the adjacent refractive index layers, and the refractive index layer contains a polyvinyl alcohol-based resin, and is included in one refractive index layer. The average degree of polymerization of the resin is different from the average degree of polymerization of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer, or the maximum amount of polyvinyl alcohol resin contained in one of the refractive index layers. An infrared shielding film having a polymerization degree different from that of the maximum amount of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer. It is. For this reason, below, these may be called an "optical laminated | multilayer film" or an "infrared shielding film."
 本発明において、光学積層フィルムは、屈折率の異なる2つの層、すなわち、高屈折率層と、低屈折率層と、から構成されるユニットを少なくとも1つ含むが、高屈折率層と低屈折率層とは、以下のように考える。例えば、高屈折率層と低屈折率層とがそれぞれ金属酸化物粒子を含む場合、低屈折率層に含まれる金属酸化物粒子(以下、「第1の金属酸化物粒子」とも称する)と、高屈折率層に含まれる金属酸化物粒子(以下、「第2の金属酸化物粒子」とも称する)と、が2つの層の界面で混合され、第1の金属酸化物粒子と第2の金属酸化物粒子とを含む層が形成される場合がある。その場合、第1の金属酸化物粒子と第2の金属酸化物粒子との存在比により低屈折率層または高屈折率層とみなす。具体的には、低屈折率層とは、第1の金属酸化物粒子と第2の金属酸化物粒子との合計質量に対して、第1の金属酸化物粒子が、50~100質量%で含まれる層を意味する。高屈折率層とは、第1の金属酸化物粒子と第2の金属酸化物粒子との合計質量に対して、第2の金属酸化物粒子が、50質量%を超えて100質量%以下で含まれる層を意味する。なお、屈折率層に含まれる金属酸化物粒子の種類および量は、エネルギー分散型X線分光法(EDX)により分析できる。または、積層膜における膜厚方向での金属酸化物濃度プロファイルを測定し、その組成によって、高屈折率層または低屈折率層とみなすことができる。積層膜の金属酸化物濃度プロファイルは、スパッタ法を用いて表面から深さ方向へエッチングを行い、XPS表面分析装置を用いて、最表面を0nmとして、0.5nm/minの速度でスパッタし、原子組成比を測定することで観測することが出来る。また、低屈折率成分または高屈折率成分に金属酸化物粒子が含有されておらず、有機バインダーのみから形成されている積層体においても、同様にして、有機バインダー濃度プロファイルにて、例えば、膜厚方向での炭素濃度を測定することにより混合領域が存在していることを確認し、さらにその組成をEDXにより測定することで、スパッタでエッチングされた各層が、高屈折率層または低屈折率層とみなすことができる。XPS表面分析装置としては、特に限定なく、いかなる機種も使用することができるが、本明細書中では、VGサイエンティフィックス社製ESCALAB-200Rを用いた。X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定する。 In the present invention, the optical laminated film includes at least one unit composed of two layers having different refractive indexes, that is, a high refractive index layer and a low refractive index layer. The rate layer is considered as follows. For example, when each of the high refractive index layer and the low refractive index layer contains metal oxide particles, metal oxide particles contained in the low refractive index layer (hereinafter, also referred to as “first metal oxide particles”), Metal oxide particles (hereinafter also referred to as “second metal oxide particles”) contained in the high refractive index layer are mixed at the interface between the two layers, and the first metal oxide particles and the second metal are mixed. A layer containing oxide particles may be formed. In that case, it is regarded as a low refractive index layer or a high refractive index layer depending on the abundance ratio of the first metal oxide particles and the second metal oxide particles. Specifically, the low refractive index layer means that the first metal oxide particles are 50 to 100% by mass with respect to the total mass of the first metal oxide particles and the second metal oxide particles. Means the layers involved. The high refractive index layer means that the second metal oxide particles are more than 50% by mass and less than 100% by mass with respect to the total mass of the first metal oxide particles and the second metal oxide particles. Means the layers involved. The type and amount of metal oxide particles contained in the refractive index layer can be analyzed by energy dispersive X-ray spectroscopy (EDX). Alternatively, the metal oxide concentration profile in the film thickness direction of the laminated film can be measured, and can be regarded as a high refractive index layer or a low refractive index layer depending on the composition. The metal oxide concentration profile of the laminated film is sputtered from the surface in the depth direction using a sputtering method, and is sputtered at a rate of 0.5 nm / min using the XPS surface analyzer with the outermost surface being 0 nm. It can be observed by measuring the atomic composition ratio. Similarly, in a laminate in which metal oxide particles are not contained in a low refractive index component or a high refractive index component and formed only from an organic binder, an organic binder concentration profile is used, for example, a film. By measuring the carbon concentration in the thickness direction, it is confirmed that the mixed region exists, and further, the composition is measured by EDX, so that each layer etched by sputtering is either a high refractive index layer or a low refractive index layer. Can be considered a layer. The XPS surface analyzer is not particularly limited, and any model can be used. However, in this specification, ESCALAB-200R manufactured by VG Scientific Fix Co. was used. Mg is used for the X-ray anode, and measurement is performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA).
 一般に、赤外遮蔽フィルムにおいては、低屈折率層と高屈折率層との屈折率の差を大きく設計することが、少ない層数で赤外反射率を高くすることができるという観点から好ましい。本形態では、低屈折率層および高屈折率層から構成される積層体(ユニット)の少なくとも1つにおいて、隣接する低屈折率層と高屈折率層との屈折率差が0.1以上であることが好ましく、より好ましくは0.3以上であり、さらに好ましくは0.35以上であり、特に好ましくは0.4以上である。赤外遮蔽フィルムが高屈折率層および低屈折率層の積層体(ユニット)を複数有する場合には、全ての積層体(ユニット)における高屈折率層と低屈折率層との屈折率差が上記好適な範囲内にあることが好ましい。ただし、最表層や最下層に関しては、上記好適な範囲外の構成であってもよい。また、本形態の赤外遮蔽フィルムにおいては、低屈折率層の好ましい屈折率は、1.10~1.60であり、より好ましくは1.30~1.50である。また、高屈折率層の好ましい屈折率は1.80~2.50であり、より好ましくは1.90~2.20である。 Generally, in an infrared shielding film, it is preferable to design a large difference in refractive index between a low refractive index layer and a high refractive index layer from the viewpoint that the infrared reflectance can be increased with a small number of layers. In this embodiment, in at least one of the laminates (units) composed of the low refractive index layer and the high refractive index layer, the difference in refractive index between the adjacent low refractive index layer and high refractive index layer is 0.1 or more. Preferably, it is 0.3 or more, more preferably 0.35 or more, and particularly preferably 0.4 or more. When the infrared shielding film has a plurality of laminates (units) of a high refractive index layer and a low refractive index layer, the refractive index difference between the high refractive index layer and the low refractive index layer in all the laminates (units) is It is preferable that it exists in the said suitable range. However, regarding the outermost layer and the lowermost layer, a configuration outside the above preferred range may be used. In the infrared shielding film of this embodiment, the preferred refractive index of the low refractive index layer is 1.10 to 1.60, more preferably 1.30 to 1.50. The preferable refractive index of the high refractive index layer is 1.80 to 2.50, more preferably 1.90 to 2.20.
 特定波長領域の反射率は、隣接する2層の屈折率差と積層数で決まり、屈折率の差が大きいほど、少ない層数で同じ反射率を得られる。この屈折率差と必要な層数については、市販の光学設計ソフトを用いて計算することができる。例えば、赤外反射率90%以上を得るためには、屈折率差が0.1より小さいと、200層以上の積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下し、また故障なく製造することも非常に困難になる。反射率の向上と層数を少なくするという観点からは、屈折率差に上限はないが、実質的には1.4程度が限界である。 The reflectance in a specific wavelength region is determined by the difference in refractive index between two adjacent layers and the number of layers, and the larger the difference in refractive index, the same reflectance can be obtained with a smaller number of layers. The refractive index difference and the required number of layers can be calculated using commercially available optical design software. For example, in order to obtain an infrared reflectance of 90% or more, if the difference in refractive index is less than 0.1, it is necessary to laminate 200 layers or more, which not only decreases productivity but also scattering at the interface of the layers. Becomes larger, the transparency is lowered, and it becomes very difficult to manufacture without failure. From the standpoint of improving reflectivity and reducing the number of layers, there is no upper limit to the difference in refractive index, but practically about 1.4 is the limit.
 さらには、本形態の光学積層フィルム(赤外遮蔽フィルム;以下、同様)の光学特性として、JIS R3106-1998で示される可視光領域の透過率が50%以上、好ましくは75%以上、より好ましくは85%以上であることが好ましく、また、波長900nm~1400nmの領域に反射率50%を超える領域を有することが好ましい。 Furthermore, as an optical characteristic of the optical laminated film of this embodiment (infrared shielding film; hereinafter the same), the transmittance in the visible light region shown in JIS R3106-1998 is 50% or more, preferably 75% or more, more preferably. Is preferably 85% or more, and it is preferable that the region having a wavelength of 900 nm to 1400 nm has a region with a reflectance exceeding 50%.
 本形態の赤外遮蔽フィルムは、基材上に、高屈折率層と低屈折率層とから構成される積層体(ユニット)を少なくとも1つ含む構成を有するものであればよい。好ましい高屈折率層および低屈折率層の層数としては、上記の観点から、総層数の範囲としては、100層以下、すなわち50ユニット以下であり、より好ましくは40層(20ユニット)以下であり、さらに好ましくは30層(15ユニット)以下である。また、本発明の赤外遮蔽フィルムは、上記ユニットを少なくとも1つ積層した構成であればよく、例えば、積層膜の最表層や最下層のどちらも高屈折率層または低屈折率層となる積層膜であってもよいが、基材との接着性の観点から、低屈折率層が反射層の最も基材側に位置することが好ましい。本発明の赤外遮蔽フィルムとしては、最も基材側に位置する(好ましくは、基材に隣接する)最下層が低屈折率層で、最表層も低屈折率層である層構成がより好ましい。 The infrared shielding film of the present embodiment may have any structure including at least one laminate (unit) composed of a high refractive index layer and a low refractive index layer on a base material. As the number of layers of the high refractive index layer and the low refractive index layer, from the above viewpoint, the range of the total number of layers is 100 layers or less, that is, 50 units or less, more preferably 40 layers (20 units) or less. More preferably, it is 30 layers (15 units) or less. In addition, the infrared shielding film of the present invention may have a configuration in which at least one of the above units is laminated, for example, a laminated film in which both the outermost layer and the lowermost layer of the laminated film are a high refractive index layer or a low refractive index layer. Although it may be a film, it is preferable that the low refractive index layer is located closest to the substrate side of the reflective layer from the viewpoint of adhesion to the substrate. As the infrared shielding film of the present invention, a layer structure in which the lowermost layer located on the most substrate side (preferably adjacent to the substrate) is a low refractive index layer and the outermost layer is also a low refractive index layer is more preferable. .
 本形態の赤外遮蔽フィルムの全体の厚さは、好ましくは12μm~315μm、より好ましくは15μm~200μm、さらに好ましくは20μm~100μmである。また、最も基材側に位置する層以外の低屈折率層の1層あたりの厚さは、20~800nmであることが好ましく、50~350nmであることがより好ましい。一方、最も基材側に位置する層以外の高屈折率層の1層あたりの厚さは、20~800nmであることが好ましく、50nm~350nmであることがより好ましい。 The total thickness of the infrared shielding film of this embodiment is preferably 12 μm to 315 μm, more preferably 15 μm to 200 μm, and still more preferably 20 μm to 100 μm. Further, the thickness per one layer of the low refractive index layers other than the layer located closest to the substrate is preferably 20 to 800 nm, and more preferably 50 to 350 nm. On the other hand, the thickness per layer of the high refractive index layer other than the layer located closest to the substrate is preferably 20 to 800 nm, and more preferably 50 nm to 350 nm.
 本形態の赤外遮蔽フィルムにおいては、複数の高屈折率層のうち少なくとも1層が他層との厚みが異なっているか(全ての高屈折率層が同じ厚みではない)、または複数の低屈折率層のうち少なくとも1層は厚みが異なっていること(全ての低屈折率層が同じ厚みではない)が好ましい。該構成により、基材との密着性及び塗布性をより向上できる他、反射する波長域を広げたり狭めたりしやすくなる。 In the infrared shielding film of this embodiment, at least one of the plurality of high refractive index layers is different in thickness from the other layers (all the high refractive index layers are not the same thickness) or a plurality of low refractive indexes. It is preferable that at least one of the refractive index layers has a different thickness (not all low refractive index layers have the same thickness). With this configuration, it is possible to further improve the adhesion and coating properties with the substrate, and to easily widen or narrow the reflected wavelength range.
 ここで、反射層を構成する屈折率層のうち、反射層の最も基材側に位置する屈折率層(本明細書中では、単に「最下層」とも称する)が当該最下層以外の屈折率層(他の屈折率層)より膜厚が5倍以上厚いことが好ましく、9倍以上厚いことがより好ましい。このように最下層を厚くすることにより、基材との密着性を向上でき、良好な塗布性を達成できる。ここで、他の屈折率層の厚さ(平均厚さ:総厚/層数)に対する最下層の厚さの割合[=(最下層の厚さ(nm))/(他の屈折率層の厚さ(nm))]は、5倍以上であることが好ましく、9倍以上であることがより好ましく、10~20倍であることがさらにより好ましく、10~13倍であることが特に好ましい。当該構成により、基材との密着性及び塗布性をより向上できる。また、最下層が一定の強度を有しながら塗布筋等の発生を抑制することができる。その結果、赤外遮蔽フィルムの基体への貼り合わせの問題やクラックの発生を防ぐことができ、赤外遮蔽フィルムの可視光透過性および赤外遮蔽性の低下を抑制することもできる。なお、「他の屈折率層」とは、最も基材側に位置する屈折率層(最下層)を設けた側に位置する最下層以外のすべての屈折率層を意味する。したがって、最下層を設けた側と反対の側に屈折率層を形成した場合(基材の両面に屈折率層を形成した場合)には、当該反対側の屈折率層は「他の屈折率層」には含まれないものとする。最下層の厚さ(膜厚)は、反射層を構成する他の屈折率層の平均厚さ(平均膜厚)と比較することから、他の屈折率層の中には最下層よりも厚い層が含まれる場合がある。また、最下層は、反射層の最も基材側に位置する。このため、例えば、基材と最下層との間に中間層として以下に詳述するような機能層が設けられる場合には、最下層は、基材ではなく、機能層と接し、この際、当該最下層と機能層の密着性を向上できる。 Here, among the refractive index layers constituting the reflective layer, the refractive index layer located closest to the base material side of the reflective layer (in this specification, simply referred to as “lowermost layer”) is a refractive index other than the lowermost layer. The film thickness is preferably 5 times or more thicker than the layer (other refractive index layers), more preferably 9 times or more thicker. Thus, by making the lowest layer thick, adhesiveness with a base material can be improved and favorable applicability | paintability can be achieved. Here, the ratio of the thickness of the lowermost layer to the thickness (average thickness: total thickness / number of layers) of the other refractive index layers [= (thickness of the lowermost layer (nm)) / (of other refractive index layers (Thickness (nm))] is preferably 5 times or more, more preferably 9 times or more, still more preferably 10 to 20 times, and particularly preferably 10 to 13 times. . With this configuration, it is possible to further improve the adhesion to the substrate and the applicability. Moreover, generation | occurrence | production of a coating stripe etc. can be suppressed, while a lowermost layer has fixed intensity | strength. As a result, the problem of sticking the infrared shielding film to the substrate and the generation of cracks can be prevented, and the visible light transmittance and infrared shielding property of the infrared shielding film can be suppressed from decreasing. The “other refractive index layer” means all refractive index layers other than the lowest layer located on the side where the refractive index layer (lowermost layer) located closest to the substrate is provided. Therefore, when the refractive index layer is formed on the side opposite to the side on which the lowermost layer is provided (when the refractive index layer is formed on both surfaces of the base material), the opposite refractive index layer is “other refractive index. It is not included in the “layer”. Since the thickness (film thickness) of the lowermost layer is compared with the average thickness (average film thickness) of other refractive index layers constituting the reflective layer, some of the other refractive index layers are thicker than the lowermost layer. May contain layers. Further, the lowermost layer is located on the most substrate side of the reflective layer. For this reason, for example, when a functional layer as described in detail below is provided as an intermediate layer between the base material and the lowermost layer, the lowermost layer is in contact with the functional layer, not the base material, The adhesion between the lowermost layer and the functional layer can be improved.
 本形態において、最下層がエマルジョン樹脂を含む場合には、上記効果をより有効に達成できるため、好ましい。ここで、エマルジョン樹脂は、通常、水系溶媒に分散されたポリマーが、赤外遮蔽フィルムの製造工程における最下層の製膜時に融着して形成される樹脂である。エマルジョン樹脂の原料となるエマルジョンは、油溶性のモノマーを、高分子分散剤等を用いてエマルジョン重合して得られる。 In this embodiment, it is preferable that the lowermost layer contains an emulsion resin because the above effect can be achieved more effectively. Here, the emulsion resin is usually a resin formed by fusing a polymer dispersed in an aqueous solvent at the time of forming the lowermost layer in the manufacturing process of the infrared shielding film. An emulsion as a raw material for the emulsion resin is obtained by emulsion polymerization of an oil-soluble monomer using a polymer dispersant or the like.
 用いられうる油溶性のモノマーは、特に制限されないが、エチレン、プロピレン、ブタジエン、酢酸ビニルおよびその部分加水分解物、ビニルエーテル、アクリル酸およびそのエステル類、メタクリル酸およびそのエステル類、アクリルアミドおよびその誘導体、メタクリルアミドおよびその誘導体、スチレン、ジビニルベンゼン、塩化ビニル、塩化ビニリデン、マレイン酸、ビニルピロリドンなどが挙げられる。これらのうち、透明性と粒径の観点から、アクリル酸およびそのエステル類、酢酸ビニル系を用いることが好ましい。 Oil-soluble monomers that can be used are not particularly limited, but ethylene, propylene, butadiene, vinyl acetate and its partial hydrolyzate, vinyl ether, acrylic acid and its esters, methacrylic acid and its esters, acrylamide and its derivatives, Examples thereof include methacrylamide and derivatives thereof, styrene, divinylbenzene, vinyl chloride, vinylidene chloride, maleic acid, vinyl pyrrolidone and the like. Of these, acrylic acid, its esters, and vinyl acetate are preferably used from the viewpoint of transparency and particle size.
 アクリル酸および/またはそのエステル類、酢酸ビニル系エマルジョンとしては、市販されているものを用いてもよく、例えば、アクリットUW-309、UW-319SX、UW-520(大成ファインケミカル株式会社製)、およびモビニール(日本合成化学工業株式会社製)等が挙げられる。 As acrylic acid and / or its esters and vinyl acetate emulsion, commercially available ones may be used. For example, Acryt UW-309, UW-319SX, UW-520 (manufactured by Taisei Fine Chemical Co., Ltd.), and Mobile vinyl (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and the like.
 また、用いられうる分散剤は、特に制限されないが、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、ジエチルアミン、エチレンジアミン、4級アンモニウム塩のような低分子の分散剤の他に、ポリオキシエチレンノニルフェニルエーテル、ポリエキシエチレンラウリル酸エーテル、ヒドロキシエチルセルロース、ポリビニルピロリドンのような高分子分散剤が挙げられる。上述したエマルジョンは、柔軟性を高める観点から、ガラス転移温度(Tg)が20℃以下であることが好ましく、-30~10℃であることがより好ましい。 Further, the dispersant that can be used is not particularly limited, but in addition to a low-molecular dispersant such as alkyl sulfonate, alkyl benzene sulfonate, diethylamine, ethylenediamine, quaternary ammonium salt, polyoxyethylene nonylphenyl ether. , Polymer dispersing agents such as polyoxyethylene lauryl ether, hydroxyethyl cellulose, and polyvinylpyrrolidone. The emulsion described above preferably has a glass transition temperature (Tg) of 20 ° C. or lower, more preferably −30 to 10 ° C., from the viewpoint of enhancing flexibility.
 最下層中のエマルジョン樹脂の含有量は、最下層の全質量に対して、0.5~20質量%であることが好ましく、1~10質量%であることがより好ましい。また、最下層中に含まれる水溶性樹脂との関係については、前記水溶性樹脂が、エマルジョンの1~10倍の質量で含有されることが好ましい。製膜工程を得て乾燥させると、水溶性樹脂の構造は維持されるため、水溶性樹脂がエマルジョン樹脂以上の量で含有されていると、製造時の造膜性に優れることから好ましい。 The content of the emulsion resin in the lowermost layer is preferably 0.5 to 20% by mass, and more preferably 1 to 10% by mass with respect to the total mass of the lowermost layer. Further, regarding the relationship with the water-soluble resin contained in the lowermost layer, the water-soluble resin is preferably contained in a mass 1 to 10 times that of the emulsion. When the film forming step is obtained and dried, the structure of the water-soluble resin is maintained. Therefore, it is preferable that the water-soluble resin is contained in an amount equal to or greater than that of the emulsion resin because the film-forming property during production is excellent.
 赤外遮蔽フィルムは、基材の下または基材と反対側の最表面層の上に、さらなる機能の付加を目的として、導電性層、帯電防止層、ガスバリア層、易接着層(接着層)、防汚層、消臭層、流滴層、易滑層、ハードコート層、耐摩耗性層、反射防止層、電磁波シールド層、紫外線吸収層、赤外線吸収層、印刷層、蛍光発光層、ホログラム層、剥離層、粘着層、接着層、本発明の高屈折率層および低屈折率層以外の赤外線カット層(金属層、液晶層)、着色層(可視光線吸収層)、合わせガラスに利用される中間膜層などの機能層の1つ以上を有していてもよい。 The infrared shielding film is a conductive layer, an antistatic layer, a gas barrier layer, an easy adhesion layer (adhesion layer) for the purpose of adding further functions under the base material or on the outermost surface layer opposite to the base material. , Antifouling layer, deodorant layer, droplet layer, slippery layer, hard coat layer, wear resistant layer, antireflection layer, electromagnetic wave shielding layer, ultraviolet absorbing layer, infrared absorbing layer, printed layer, fluorescent light emitting layer, hologram Layer, release layer, adhesive layer, adhesive layer, infrared cut layer (metal layer, liquid crystal layer), colored layer (visible light absorbing layer), laminated glass other than the high refractive index layer and low refractive index layer of the present invention One or more functional layers such as an intermediate film layer may be included.
 次いで、本発明の赤外遮蔽フィルムにおける低屈折率層および高屈折率層の基本的な構成概要について説明する。 Next, the basic configuration outline of the low refractive index layer and the high refractive index layer in the infrared shielding film of the present invention will be described.
 〔低屈折率層と高屈折率層〕
 本発明の低屈折率層および高屈折率層は、ポリビニルアルコール系樹脂を含み、金属酸化物粒子をさらに含むことが好ましい。ここで、ポリビニルアルコール系樹脂は、低屈折率層および高屈折率層においてバインダー樹脂として作用する。低屈折率層および高屈折率層は、金属酸化物粒子及びポリビニルアルコール系樹脂を含むことがより好ましい。
[Low refractive index layer and high refractive index layer]
The low refractive index layer and the high refractive index layer of the present invention preferably contain a polyvinyl alcohol resin and further contain metal oxide particles. Here, the polyvinyl alcohol-based resin acts as a binder resin in the low refractive index layer and the high refractive index layer. The low refractive index layer and the high refractive index layer more preferably include metal oxide particles and a polyvinyl alcohol resin.
 〔ポリビニルアルコール系樹脂〕
 本発明では、異なる屈折率を有する隣接する屈折率層(低屈折率層および高屈折率層)に含まれるポリビニルアルコール系樹脂の平均重合度(以下、単に「ポリビニルアルコール系樹脂の平均重合度」または「平均重合度」とも称する)または最大量のポリビニルアルコール系樹脂の重合度が異なる。ここで、ポリビニルアルコール系樹脂の平均重合度または最大量のポリビニルアルコール系樹脂の重合度は、いずれかの隣接する屈折率層(低屈折率層および高屈折率層)間で異なればよい。このため、一つの屈折率層Aに対して、2層の屈折率層B,Cが隣接する場合には、屈折率層Aと、少なくともいずれか一方の屈折率層BまたはCと、の間で、上記関係を満たせばよい。好ましくは、屈折率層Aと、当該屈折率層Aと隣接する屈折率層BおよびC双方と、の間で、上記関係を満たす。すなわち、本発明は、屈折率層にポリビニルアルコール系樹脂を含み、異なる屈折率を有する隣接する少なくとも一方の屈折率層とポリビニルアルコール系樹脂の重合度が異なることを特徴とし、屈折率層にポリビニルアルコール系樹脂を含み、異なる屈折率を有する隣接する双方の屈折率層とポリビニルアルコール系樹脂の重合度が異なることが好ましい。本明細書中、同一屈折率層が2種以上のポリビニルアルコール系樹脂を含む場合のポリビニルアルコール系樹脂の「平均重合度」とは、各ポリビニルアルコール系樹脂の重合度の平均値である。具体的には、1つの屈折率層中に含まれるポリビニルアルコール系樹脂の合計量を100質量%とした場合の、各ポリビニルアルコール系樹脂の重合度に含有量をかけたものの合計を意味する。例えば、屈折率層がPVA220(重合度=2200):25質量%、PVA235(重合度=3500):20質量%およびPVA245(重合度=4500):55質量%から構成される場合のポリビニルアルコール系樹脂混合物の平均重合度は、3675(=2200×0.25+3500×0.2+4500×0.55)となる。また、同一屈折率層が2種以上のポリビニルアルコール系樹脂を含む場合の「屈折率層に含まれる最大量のポリビニルアルコール系樹脂」とは、同一屈折率層で最も含有量の高いポリビニルアルコール系樹脂を意味する。具体的には、上記の場合には、屈折率層に含まれる最大量のポリビニルアルコール系樹脂はPVA245であるので、当該屈折率層の重合度は、4500となる。
[Polyvinyl alcohol resin]
In the present invention, the average degree of polymerization of polyvinyl alcohol resin contained in adjacent refractive index layers (low refractive index layer and high refractive index layer) having different refractive indexes (hereinafter simply referred to as “average degree of polymerization of polyvinyl alcohol resin”). Alternatively, the degree of polymerization of the maximum amount of polyvinyl alcohol resin is different. Here, the average degree of polymerization of the polyvinyl alcohol resin or the degree of polymerization of the maximum amount of the polyvinyl alcohol resin may be different between any adjacent refractive index layers (low refractive index layer and high refractive index layer). Therefore, when two refractive index layers B and C are adjacent to one refractive index layer A, the refractive index layer A and at least one of the refractive index layers B or C are between. Therefore, the above relationship may be satisfied. Preferably, the above relationship is satisfied between the refractive index layer A and the refractive index layers B and C adjacent to the refractive index layer A. That is, the present invention is characterized in that the refractive index layer contains a polyvinyl alcohol resin, and the degree of polymerization of the polyvinyl alcohol resin is different from that of at least one adjacent refractive index layer having a different refractive index. It is preferable that the polymerization degree of polyvinyl alcohol resin differs between both adjacent refractive index layers containing alcohol resin and having different refractive indexes. In the present specification, the “average degree of polymerization” of a polyvinyl alcohol resin when the same refractive index layer contains two or more types of polyvinyl alcohol resins is an average value of the degree of polymerization of each polyvinyl alcohol resin. Specifically, it means the sum of contents obtained by multiplying the polymerization degree of each polyvinyl alcohol-based resin when the total amount of polyvinyl alcohol-based resin contained in one refractive index layer is 100% by mass. For example, when the refractive index layer is composed of PVA220 (degree of polymerization = 2200): 25% by mass, PVA235 (degree of polymerization = 3500): 20% by mass and PVA245 (degree of polymerization = 4500): 55% by mass The average degree of polymerization of the resin mixture is 3675 (= 2200 × 0.25 + 3500 × 0.2 + 4500 × 0.55). The “maximum amount of polyvinyl alcohol-based resin contained in the refractive index layer” when the same refractive index layer contains two or more types of polyvinyl alcohol-based resins refers to the polyvinyl alcohol-based resin having the highest content in the same refractive index layer. It means resin. Specifically, in the above case, since the maximum amount of polyvinyl alcohol-based resin contained in the refractive index layer is PVA245, the degree of polymerization of the refractive index layer is 4500.
 本発明では、隣接する屈折率層(低屈折率層および高屈折率層)に含まれるポリビニルアルコール系樹脂の平均重合度または最大量のポリビニルアルコール系樹脂の重合度が異なることを特徴とするため、これらの重合度の差は、特に制限されないが、300以上であることが好ましい。すなわち、一の屈折率層と隣接する屈折率層の少なくとも一方との間の平均重合度または重合度の差が、300以上であることが好ましい。より好ましくは、一の屈折率層と隣接する屈折率層の少なくとも一方との間の平均重合度または重合度の差は、400以上であることがより好ましく、1000以上であることがさらにより好ましく、2000以上であることが特に好ましい。なお、一の屈折率層と隣接する屈折率層の少なくとも一方との間の平均重合度または重合度の差の上限は、特に制限されないが、4000以下であることが好ましく、3100以下であることがより好ましい。このような差があれば、層間密着性をより向上できる。また、このような重合度差を隣接する層間で設けることにより、界面の乱れ(凹凸)が抑制され、赤外反射率(赤外遮蔽率)をより高くすることができる。さらに、塗布膜の折り曲げ耐性や塗布液が安定化(塗布性)を向上できる。 In the present invention, the average polymerization degree of the polyvinyl alcohol resin contained in the adjacent refractive index layers (low refractive index layer and high refractive index layer) or the polymerization degree of the maximum amount of polyvinyl alcohol resin is different. The difference in the degree of polymerization is not particularly limited, but is preferably 300 or more. That is, the average degree of polymerization or the difference in degree of polymerization between one refractive index layer and at least one of the adjacent refractive index layers is preferably 300 or more. More preferably, the average degree of polymerization or the difference in degree of polymerization between one refractive index layer and at least one of the adjacent refractive index layers is more preferably 400 or more, and even more preferably 1000 or more. , 2000 or more is particularly preferable. The upper limit of the average polymerization degree or the difference in polymerization degree between one refractive index layer and at least one of the adjacent refractive index layers is not particularly limited, but is preferably 4000 or less and preferably 3100 or less. Is more preferable. If there is such a difference, interlayer adhesion can be further improved. In addition, by providing such a polymerization degree difference between adjacent layers, interface disturbance (unevenness) can be suppressed, and the infrared reflectance (infrared shielding rate) can be further increased. Further, the bending resistance of the coating film and the stabilization of the coating solution (coating property) can be improved.
 本発明では、隣接する屈折率層(低屈折率層および高屈折率層)に含まれるポリビニルアルコール系樹脂の平均重合度または最大量のポリビニルアルコール系樹脂の重合度が異なれば、隣接する屈折率層の平均重合度または重合度の大小は特に制限されない。好ましくは、低屈折率層に含まれるポリビニルアルコール系樹脂の重合度が高屈折率層に含まれるポリビニルアルコール系樹脂の重合度より高い。これにより、層間密着性をより有効に発揮できる。また、界面の乱れ(凹凸)が抑制され、赤外反射率(赤外遮蔽率)をより高くすることができる。さらに、塗布膜の柔軟性や折り曲げ耐性ならびに塗布液の安定化(塗布性)を向上できる。 In the present invention, if the average degree of polymerization of the polyvinyl alcohol resin contained in the adjacent refractive index layers (low refractive index layer and high refractive index layer) or the degree of polymerization of the maximum amount of polyvinyl alcohol resin is different, the adjacent refractive index The average degree of polymerization or the degree of polymerization of the layer is not particularly limited. Preferably, the degree of polymerization of the polyvinyl alcohol resin contained in the low refractive index layer is higher than the degree of polymerization of the polyvinyl alcohol resin contained in the high refractive index layer. Thereby, interlayer adhesion can be exhibited more effectively. Moreover, the disorder (unevenness | corrugation) of an interface is suppressed and an infrared reflectance (infrared shielding factor) can be made higher. Furthermore, the flexibility and bending resistance of the coating film and the stabilization (coating property) of the coating solution can be improved.
 また、低屈折率層および高屈折率層に含まれるポリビニルアルコール系樹脂の重合度は、特に制限されず、通常屈折率層に使用されるバインダー樹脂と同様の重合度が採用できる。好ましくは、低屈折率層および/または高屈折率層に含まれるポリビニルアルコール系樹脂の重合度は、6000以下であり、より好ましくは5000以下である。すなわち、一の屈折率層に含まれるポリビニルアルコール系樹脂(未変性ポリビニルアルコール)の重合度の重合度は、6000以下であり、より好ましくは5000以下である。低屈折率層および/または高屈折率層に含まれるポリビニルアルコール系樹脂(未変性ポリビニルアルコール)の重合度は、4500以下であることがより好ましい。なお、低屈折率層および/または高屈折率層に含まれるポリビニルアルコール系樹脂の重合度の下限は、特に制限されないが、500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることがさらにより好ましく、2000以上であることが特に好ましい。重合度が500以上であると、塗布膜のひび割れ耐性が良くなり、ヘイズが良好になる。一方、6000以下であると、塗布液が安定し塗布性が良くなる。なお、低屈折率層および高屈折率層の少なくとも一方に含まれるポリビニルアルコール系樹脂の重合度が上記範囲に含まれることが好ましいが、低屈折率層および高屈折率層双方に含まれるポリビニルアルコール系樹脂の重合度が上記範囲に含まれることが好ましい。 The polymerization degree of the polyvinyl alcohol-based resin contained in the low refractive index layer and the high refractive index layer is not particularly limited, and the same polymerization degree as that of the binder resin usually used for the refractive index layer can be adopted. Preferably, the polymerization degree of the polyvinyl alcohol-based resin contained in the low refractive index layer and / or the high refractive index layer is 6000 or less, more preferably 5000 or less. That is, the polymerization degree of the polymerization degree of the polyvinyl alcohol resin (unmodified polyvinyl alcohol) contained in one refractive index layer is 6000 or less, more preferably 5000 or less. The degree of polymerization of the polyvinyl alcohol resin (unmodified polyvinyl alcohol) contained in the low refractive index layer and / or the high refractive index layer is more preferably 4500 or less. The lower limit of the degree of polymerization of the polyvinyl alcohol resin contained in the low refractive index layer and / or the high refractive index layer is not particularly limited, but is preferably 500 or more, more preferably 1000 or more, and 1500. More preferably, it is more preferably 2000 or more. When the degree of polymerization is 500 or more, the crack resistance of the coating film is improved and the haze is improved. On the other hand, when it is 6000 or less, the coating solution is stable and the coating property is improved. The degree of polymerization of the polyvinyl alcohol-based resin contained in at least one of the low refractive index layer and the high refractive index layer is preferably included in the above range, but the polyvinyl alcohol contained in both the low refractive index layer and the high refractive index layer. It is preferable that the polymerization degree of the resin is included in the above range.
 ここで、重合度とは粘度平均重合度を指し、JIS-K6726(1994)に準じて測定され、PVAを完全に再鹸化し、精製した後、30℃の水中で測定した極限粘度[η](dl/g)から次式により求められるものである。 Here, the degree of polymerization refers to the viscosity average degree of polymerization, and is measured according to JIS-K6726 (1994). After the PVA is completely re-saponified and purified, the intrinsic viscosity [η] measured in water at 30 ° C. It can be obtained from (dl / g) by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 各屈折率層中で重合度の相違を比較する方法としては、各屈折率層が重合度の異なる複数のポリビニルアルコール系樹脂を含む場合には、屈折率層中に含まれるポリビニルアルコール系樹脂の重合度を平均した値を、「重合度」として採用する。例えば、屈折率層に、重合度6000のポリビニルアルコール系樹脂85質量%および重合度3500のポリビニルアルコール系樹脂15質量%が含有されている場合、当該屈折率層に含まれるポリビニルアルコール系樹脂の重合度としては、「(6000×0.85)+(3500×0.15)=5625」となる。また、変性ポリビニルアルコール系樹脂は、当該重合度の計算に含まれる。 As a method for comparing the difference in the degree of polymerization in each refractive index layer, when each refractive index layer includes a plurality of polyvinyl alcohol resins having different polymerization degrees, the polyvinyl alcohol resin contained in the refractive index layer A value obtained by averaging the degree of polymerization is adopted as the “degree of polymerization”. For example, when the refractive index layer contains 85% by weight of a polyvinyl alcohol resin having a polymerization degree of 6000 and 15% by weight of a polyvinyl alcohol resin having a polymerization degree of 3500, the polymerization of the polyvinyl alcohol resin contained in the refractive index layer. The degree is “(6000 × 0.85) + (3500 × 0.15) = 5625”. The modified polyvinyl alcohol resin is included in the calculation of the degree of polymerization.
 本発明の赤外遮蔽フィルムでは、高屈折率層及び低屈折率層に使用されるポリビニルアルコール系樹脂の鹸化度は、実質的に同じであってもあるいは異なるものであってもよいが、高屈折率層と低屈折率層とに鹸化度の異なるポリビニルアルコール系樹脂を含有することが好ましい。高屈折率層と低屈折率層とに鹸化度の異なるポリビニルアルコール系樹脂をそれぞれ含有することにより、界面の混合が抑制され、赤外反射率(赤外遮蔽率)がより良好となり、ヘイズが低くなるため好ましい。また、高屈折率層と低屈折率層とのどちらの鹸化度が高くてもよいが、高屈折率層に含まれるポリビニルアルコールが、低屈折率層に含まれるポリビニルアルコールよりも鹸化度が高いのがより好ましい。高屈折率層に含まれる金属酸化物粒子を、鹸化度の高いポリビニルアルコールが保護することができるためである。 In the infrared shielding film of the present invention, the saponification degree of the polyvinyl alcohol-based resin used for the high refractive index layer and the low refractive index layer may be substantially the same or different. The refractive index layer and the low refractive index layer preferably contain polyvinyl alcohol resins having different saponification degrees. By containing polyvinyl alcohol resins having different saponification degrees in the high refractive index layer and the low refractive index layer, mixing at the interface is suppressed, the infrared reflectance (infrared shielding ratio) is improved, and the haze is increased. Since it becomes low, it is preferable. Either the high refractive index layer or the low refractive index layer may have a higher saponification degree, but the polyvinyl alcohol contained in the high refractive index layer has a higher saponification degree than the polyvinyl alcohol contained in the low refractive index layer. Is more preferable. This is because the metal oxide particles contained in the high refractive index layer can be protected by polyvinyl alcohol having a high degree of saponification.
 さらに、低屈折率層に含まれるポリビニルアルコール系樹脂と高屈折率層に含まれるポリビニルアルコール系樹脂との鹸化度の絶対値の差は、3mol%以上であることが好ましい。より好ましくは5mol%以上である。かような範囲であれば、高屈折率層と低屈折率層との層間混合状態を良好な状態にすることができる。低屈折率層に含まれるポリビニルアルコール系樹脂と高屈折率層に含まれるポリビニルアルコール系樹脂との鹸化度の差の上限は、特に制限されないが、離れていれば離れているほど好ましい。具体的には、ポリビニルアルコールの水への溶解性の点からは、低屈折率層に含まれるポリビニルアルコール系樹脂と高屈折率層に含まれるポリビニルアルコール系樹脂との鹸化度の差は、20mol%以下であることが好ましい。 Further, the difference in absolute value of the saponification degree between the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the high refractive index layer is preferably 3 mol% or more. More preferably, it is 5 mol% or more. If it is such a range, the interlayer mixed state of a high refractive index layer and a low refractive index layer can be made into a favorable state. The upper limit of the difference in the degree of saponification between the polyvinyl alcohol-based resin contained in the low refractive index layer and the polyvinyl alcohol-based resin contained in the high refractive index layer is not particularly limited, but the farther away is the better. Specifically, from the viewpoint of the solubility of polyvinyl alcohol in water, the difference in the saponification degree between the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the high refractive index layer is 20 mol. % Or less is preferable.
 ここで、鹸化度とは、ポリビニルアルコール系樹脂中のアセチルオキシ基(原料の酢酸ビニル由来のもの)と水酸基の合計数に対する水酸基の割合のことである。 Here, the degree of saponification is the ratio of hydroxyl groups to the total number of acetyloxy groups (derived from the starting vinyl acetate) and hydroxyl groups in the polyvinyl alcohol resin.
 各屈折率層中で鹸化度の相違を比較するポリビニルアルコール系樹脂は、各屈折率層が(鹸化度が異なる)複数のポリビニルアルコール系樹脂を含む場合には、屈折率層中で最も含有量の高いポリビニルアルコール系樹脂である。ここで、「屈折率層中で最も含有量が高いポリビニルアルコール系樹脂」という際には、鹸化度の差が3mol%未満のポリビニルアルコール系樹脂は同一のポリビニルアルコール系樹脂であるとし、鹸化度を算出する。ただし、重合度1000以下の低重合度ポリビニルアルコール系樹脂は異なるポリビニルアルコール系樹脂とする(仮に鹸化度の差が3mol%未満のポリビニルアルコール系樹脂があったとしても同一のポリビニルアルコール系樹脂とはしない)。具体的には、鹸化度が90mol%、鹸化度が91mol%、鹸化度が93mol%のポリビニルアルコール系樹脂が同一層内にそれぞれ10質量%、40質量%、50質量%含まれる場合には、これら3つのポリビニルアルコール系樹脂は同一のポリビニルアルコール系樹脂とし、これら3つの混合物を、低屈折率層または高屈折率層に含まれるポリビニルアルコール系樹脂とする。また、上記「鹸化度の差が3mol%未満のポリビニルアルコール系樹脂」とは、いずれかのポリビニルアルコール系樹脂に着目した場合に3mol%未満であれば足り、例えば、90、91、92、94mol%のビニルアルコール系樹脂を含む場合には、91mol%のビニルアルコール系樹脂に着目した場合にいずれのポリビニルアルコール系樹脂も3mol%未満なので、同一のポリビニルアルコール系樹脂となる。 The polyvinyl alcohol resin for which the difference in the saponification degree in each refractive index layer is compared. When each refractive index layer contains a plurality of polyvinyl alcohol resins (different saponification degrees), the content is the highest in the refractive index layer. It is a high polyvinyl alcohol resin. Here, when the term “polyvinyl alcohol resin having the highest content in the refractive index layer” is used, it is assumed that polyvinyl alcohol resins having a difference in saponification degree of less than 3 mol% are the same polyvinyl alcohol resin. Is calculated. However, a low polymerization degree polyvinyl alcohol resin having a polymerization degree of 1000 or less is a different polyvinyl alcohol resin (if the difference in saponification degree is less than 3 mol%, the same polyvinyl alcohol resin is different. do not do). Specifically, when polyvinyl alcohol resins having a saponification degree of 90 mol%, a saponification degree of 91 mol%, and a saponification degree of 93 mol% are respectively contained in the same layer by 10 mass%, 40 mass%, and 50 mass%, These three polyvinyl alcohol resins are the same polyvinyl alcohol resin, and these three mixtures are polyvinyl alcohol resins contained in the low refractive index layer or the high refractive index layer. In addition, the above-mentioned “polyvinyl alcohol resin having a difference in saponification degree of less than 3 mol%” is sufficient if it is less than 3 mol% when attention is paid to any polyvinyl alcohol resin, for example, 90, 91, 92, 94 mol. % Vinyl alcohol-based resin, when paying attention to 91 mol% vinyl alcohol-based resin, since all the polyvinyl alcohol-based resins are less than 3 mol%, the same polyvinyl alcohol-based resin is obtained.
 同一層内に鹸化度が3mol%以上異なるポリビニルアルコール系樹脂が含まれる場合、異なるポリビニルアルコール系樹脂の混合物とみなし、それぞれに鹸化度を算出する。 When a polyvinyl alcohol resin having a saponification degree different by 3 mol% or more is contained in the same layer, it is regarded as a mixture of different polyvinyl alcohol resins, and the saponification degree is calculated for each.
 例えば、PVA203:5質量%、PVA117:25質量%、PVA217:10質量%、PVA220:10質量%、PVA224:10質量%、PVA235:20質量%、PVA245:20質量%が含まれる場合、最も含有量の多いPVAはPVA217~245の混合物であり(PVA217~245の鹸化度の差は3mol%未満なので同一のポリビニルアルコール系樹脂である)、この混合物が低屈折率層または高屈折率層に含まれるポリビニルアルコール系樹脂となる。そして、PVA217~245の混合物(低屈折率層または高屈折率層に含まれるポリビニルアルコール系樹脂)においては、鹸化度は、88mol%となる。また、変性ポリビニルアルコール系樹脂は、当該鹸化度の計算に含まれる。 For example, PVA203: 5% by mass, PVA117: 25% by mass, PVA217: 10% by mass, PVA220: 10% by mass, PVA224: 10% by mass, PVA235: 20% by mass, PVA245: 20% by mass, most contained A large amount of PVA is a mixture of PVA 217 to 245 (the difference in the degree of saponification of PVA 217 to 245 is less than 3 mol%, which is the same polyvinyl alcohol resin), and this mixture is contained in the low refractive index layer or the high refractive index layer. The resulting polyvinyl alcohol resin. In the mixture of PVA 217 to 245 (polyvinyl alcohol resin contained in the low refractive index layer or the high refractive index layer), the saponification degree is 88 mol%. Further, the modified polyvinyl alcohol resin is included in the calculation of the saponification degree.
 低屈折率層に含まれるポリビニルアルコール系樹脂および高屈折率層に含まれるポリビニルアルコール系樹脂の鹸化度は、水への溶解性の点で、75mol%以上であることが好ましく、75~99.5mol%であることがより好ましく、80~99mol%であることがさらに好ましい。さらに、低屈折率層及び高屈折率層に含まれるポリビニルアルコール系樹脂の鹸化度が異なる場合には、低屈折率層に含まれるポリビニルアルコール系樹脂および低屈折率層に含まれるポリビニルアルコール系樹脂のうち一方が鹸化度90mol%以上であり、他方が90mol%以下であることが高屈折率層と低屈折率層との層間混合状態を良好な状態にすることができる。低屈折率層に含まれるポリビニルアルコール系樹脂および高屈折率層に含まれるポリビニルアルコール系樹脂のうち一方が鹸化度95mol%以上であり、他方が90mol%以下であることがより好ましい。また、低屈折率層に含まれるポリビニルアルコール系樹脂の鹸化度が90mol%以下であり、高屈折率層に含まれるポリビニルアルコール系樹脂の鹸化度が95mol%以上であることがさらに好ましい。なお、ポリビニルアルコール系樹脂の鹸化度の上限は特に限定されるものではないが、通常100mol%未満であり、99.9mol%以下程度である。 The saponification degree of the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the high refractive index layer is preferably 75 mol% or more from the viewpoint of solubility in water, and is preferably 75 to 99. It is more preferably 5 mol%, and further preferably 80 to 99 mol%. Further, when the saponification degree of the polyvinyl alcohol resin contained in the low refractive index layer and the high refractive index layer is different, the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the low refractive index layer. When one of them has a saponification degree of 90 mol% or more and the other is 90 mol% or less, the intermixed state of the high refractive index layer and the low refractive index layer can be made good. It is more preferable that one of the polyvinyl alcohol resin contained in the low refractive index layer and the polyvinyl alcohol resin contained in the high refractive index layer has a saponification degree of 95 mol% or more and the other is 90 mol% or less. The saponification degree of the polyvinyl alcohol resin contained in the low refractive index layer is more preferably 90 mol% or less, and the saponification degree of the polyvinyl alcohol resin contained in the high refractive index layer is more preferably 95 mol% or more. The upper limit of the saponification degree of the polyvinyl alcohol-based resin is not particularly limited, but is usually less than 100 mol% and about 99.9 mol% or less.
 ポリビニルアルコール系樹脂は、水溶性ポリビニルアルコール系樹脂(水溶性バインダー樹脂)であることが好ましい。水溶性ポリビニルアルコール系樹脂を使用することで安定した塗布液が作製できるからである。本発明では、ポリビニルアルコール系樹脂を使用することで、屈折率層用塗布液の液安定性が優れるものとなり、その結果、塗布性が優れたものとなるため好ましい。なお、本明細書において、ポリビニルアルコール系樹脂の「水溶性」とは、水媒体に対し1質量%以上溶解する化合物であり、好ましくは3質量%以上であることをいう。屈折率層(低屈折率層または高屈折率層)が複数存在する場合には、各屈折率層中で使用されるポリビニルアルコール系樹脂は、同一であってもあるいは異なるものであってもよい。また、低屈折率層および高屈折率層に含まれるポリビニルアルコール系樹脂は、同一であってもあるいは異なるものであってもよい。 The polyvinyl alcohol resin is preferably a water-soluble polyvinyl alcohol resin (water-soluble binder resin). This is because a stable coating solution can be produced by using a water-soluble polyvinyl alcohol resin. In the present invention, it is preferable to use a polyvinyl alcohol-based resin because the liquid stability of the coating solution for the refractive index layer is excellent, and as a result, the coating property is excellent. In the present specification, “water-soluble” of the polyvinyl alcohol-based resin is a compound that dissolves 1% by mass or more in an aqueous medium, and preferably 3% by mass or more. When there are a plurality of refractive index layers (low refractive index layer or high refractive index layer), the polyvinyl alcohol resins used in each refractive index layer may be the same or different. . Further, the polyvinyl alcohol resins contained in the low refractive index layer and the high refractive index layer may be the same or different.
 ポリビニルアルコール系樹脂の形態は特に制限されず、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコール系樹脂(未変性ポリビニルアルコール)、末端をカチオン変性したポリビニルアルコール(カチオン変性ポリビニルアルコール)、アニオン性基を有するアニオン変性ポリビニルアルコール、ノニオン性基を有するノニオン変性ポリビニルアルコール、アクリル等で変性した変性ポリビニルアルコール等の変性ポリビニルアルコール系樹脂を包含する。また、酢酸ビニル系樹脂(例えば、クラレ製「エクセバール」)、ポリビニルアルコールにアルデヒドを反応させて得られるポリビニルアセタール樹脂(例えば、積水化学製「エスレック」)、シラノール基を有するシラノール変性ポリビニルアルコール(例えば、クラレ製「R-1130」)、分子内にアセトアセチル基を有する変性ポリビニルアルコール系樹脂(例えば、日本合成化学工業(株)製「ゴーセファイマー(登録商標)Z/WRシリーズ」)等も本発明に係るポリビニルアルコール系樹脂に含まれる。 The form of the polyvinyl alcohol resin is not particularly limited, and a normal polyvinyl alcohol resin obtained by hydrolyzing polyvinyl acetate (unmodified polyvinyl alcohol), a cation-modified polyvinyl alcohol (cation-modified polyvinyl alcohol), an anion And modified polyvinyl alcohol resins such as anion-modified polyvinyl alcohol having a functional group, nonionic modified polyvinyl alcohol having a nonionic group, and modified polyvinyl alcohol modified with acrylic. Further, vinyl acetate resins (for example, “Exeval” manufactured by Kuraray), polyvinyl acetal resins obtained by reacting polyvinyl alcohol with an aldehyde (for example, “ESREC” manufactured by Sekisui Chemical), silanol-modified polyvinyl alcohol having a silanol group (for example, Kuraray "R-1130"), modified polyvinyl alcohol resin having an acetoacetyl group in the molecule (for example, "Gosefimer (registered trademark) Z / WR series" manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), etc. It is included in the polyvinyl alcohol resin according to the present invention.
 これらのポリビニルアルコール系樹脂は、単独で使用されてもあるいは重合度や変性の種類違いなど2種類以上を併用することもできる。耐湿性の観点から、変性ポリビニルアルコール系樹脂を含有することが好ましい。すなわち、屈折率層の少なくとも1つは、変性ポリビニルアルコールを含むことが好ましい。 These polyvinyl alcohol resins can be used alone or in combination of two or more kinds such as the degree of polymerization and the kind of modification. From the viewpoint of moisture resistance, it is preferable to contain a modified polyvinyl alcohol resin. That is, it is preferable that at least one of the refractive index layers contains modified polyvinyl alcohol.
 ポリビニルアルコール系樹脂(未変性ポリビニルアルコール)は、合成してもあるいは市販品を使用してもよい。後者の場合には、クラレポバール PVAシリーズ((株)クラレ製)、J-ポバール Jシリーズ(日本酢ビ・ポバール(株)製)などが使用できる。 The polyvinyl alcohol resin (unmodified polyvinyl alcohol) may be synthesized or a commercially available product may be used. In the latter case, Kuraray Poval PVA series (manufactured by Kuraray Co., Ltd.), J-Poval J series (manufactured by Nippon Vinegar Poval Co., Ltd.) and the like can be used.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されるような、第一~三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol have primary to tertiary amino groups or quaternary ammonium groups in the main chain or side chain of the polyvinyl alcohol as described in JP-A-61-110483. Polyvinyl alcohol, which is obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10mol%、好ましくは0.2~5mol%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxylethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールは、例えば、特開平1-206088号公報に記載されるようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報および特開昭63-307979号公報に記載されるような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体および特開平7-285265号公報に記載されるような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Anion-modified polyvinyl alcohol is described in, for example, polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include a copolymer of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されるようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体等が挙げられる。 Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and described in JP-A-8-25795. And a block copolymer of a vinyl compound having a hydrophobic group and vinyl alcohol.
 また、変性ポリビニルアルコール(ビニルアルコール系ポリマー)として、エクセバール(商品名:(株)クラレ製)やニチゴーGポリマー(商品名:日本合成化学工業(株)製)、ゴーセファイマー(登録商標)Z/WRシリーズ(商品名:日本合成化学工業(株)製)などが挙げられる。 In addition, as modified polyvinyl alcohol (vinyl alcohol polymer), Exeval (trade name: manufactured by Kuraray Co., Ltd.), Nichigo G polymer (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), Goseifamer (registered trademark) Z / WR series (trade name: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
 シラノール変性ポリビニルアルコールとしては、特に制限はなく、公知の方法で合成したものであってもよく、市販品であってもよい。シラノール変性ポリビニルアルコールの変性率としては、通常0.01~5mol%であり、好ましくは0.1~1mol%である。変性率が0.01mol%未満であると、耐水性が劣化することがあり、5mol%を越えると、水との溶解性が悪くなることがある。また、シラノール変性ポリビニルアルコールは、耐傷性、光沢跡の観点から、鹸化度が95mol%以上であるのが好ましく、95.0~99.5mol%であるのがより好ましい。また、シラノール変性ポリビニルアルコールの重合度は、特に制限されないが、平均重合度が、通常300~2,500であり、好ましくは500~1,700である。重合度が300以上であると塗工層の強度が高く、2,500以下であると塗布液の粘度が高くなりすぎず工程適性があるため好ましい。 Silanol-modified polyvinyl alcohol is not particularly limited, and may be synthesized by a known method or may be a commercially available product. The modification rate of the silanol-modified polyvinyl alcohol is usually 0.01 to 5 mol%, preferably 0.1 to 1 mol%. If the modification rate is less than 0.01 mol%, the water resistance may deteriorate, and if it exceeds 5 mol%, the solubility in water may deteriorate. The silanol-modified polyvinyl alcohol preferably has a saponification degree of 95 mol% or more, more preferably 95.0 to 99.5 mol%, from the viewpoint of scratch resistance and gloss marks. The degree of polymerization of the silanol-modified polyvinyl alcohol is not particularly limited, but the average degree of polymerization is usually 300 to 2,500, preferably 500 to 1,700. When the degree of polymerization is 300 or more, the strength of the coating layer is high, and when the degree of polymerization is 2,500 or less, the viscosity of the coating solution does not become excessively high and is suitable for process.
 本発明においては、ポリビニルアルコール系樹脂(全ポリビニルアルコール系樹脂)の含有量は、特に制限されない。例えば、低屈折率層では、ポリビニルアルコール系樹脂の含有量は、各屈折率層の全質量(固形分)100質量%に対して、好ましくは5~50質量%、より好ましくは10~40質量%、さらに好ましくは14~35質量%である。また、高屈折率層では、ポリビニルアルコール系樹脂の含有量は、高屈折率層の全固形分100質量%に対して、好ましくは3~70質量%、より好ましくは5~60質量%、さらに好ましくは10~50質量%、特に好ましくは15~45質量%である。このような量であれば、屈折率層を塗工した後の乾燥時に膜面の乱れなく(膜面が均一になり)、得られた赤外遮蔽フィルムは優れた透明性を発揮する。また、屈折率層中の金属酸化物の相対的な含有量が適切となるため、高屈折率層と低屈折率層との屈折率差を大きくすることが容易になる。なお、本明細書中、「膜面」とは塗膜の表面を意味し、「表面」とも称する場合がある。なお、「全ポリビニルアルコール系樹脂」とは、各屈折率層に含まれるポリビニルアルコール系樹脂の合計量を意味する。例えば、重合度が1000未満の低重合度ポリビニルアルコール系樹脂等も、全ポリビニルアルコール系樹脂の含量に含まれる。 In the present invention, the content of the polyvinyl alcohol resin (total polyvinyl alcohol resin) is not particularly limited. For example, in the low refractive index layer, the content of the polyvinyl alcohol resin is preferably 5 to 50% by mass, more preferably 10 to 40% by mass with respect to 100% by mass of the total mass (solid content) of each refractive index layer. %, More preferably 14 to 35% by mass. In the high refractive index layer, the content of the polyvinyl alcohol-based resin is preferably 3 to 70% by mass, more preferably 5 to 60% by mass with respect to 100% by mass of the total solid content of the high refractive index layer. The amount is preferably 10 to 50% by mass, particularly preferably 15 to 45% by mass. With such an amount, the film surface is not disturbed during drying after coating the refractive index layer (the film surface becomes uniform), and the obtained infrared shielding film exhibits excellent transparency. Moreover, since the relative content of the metal oxide in the refractive index layer is appropriate, it is easy to increase the refractive index difference between the high refractive index layer and the low refractive index layer. In the present specification, the “film surface” means the surface of the coating film and may also be referred to as “surface”. The “total polyvinyl alcohol resin” means the total amount of polyvinyl alcohol resin contained in each refractive index layer. For example, a low polymerization degree polyvinyl alcohol resin having a polymerization degree of less than 1000 is also included in the content of the total polyvinyl alcohol resin.
 〔樹脂バインダー(その他の水溶性高分子)〕
 本発明においては、各屈折率層は樹脂バインダーとしてポリビニルアルコール系樹脂以外に、その他の樹脂バインダーを含んでいてもよい。
[Resin binder (other water-soluble polymers)]
In the present invention, each refractive index layer may contain other resin binder as a resin binder in addition to the polyvinyl alcohol resin.
 ポリビニルアルコール系樹脂以外の樹脂バインダーの含有量は、特に限定されるものではないが、各屈折率層の全質量(固形分)に対し、好ましくは5~70質量%であり、より好ましくは5~50質量%である。 The content of the resin binder other than the polyvinyl alcohol resin is not particularly limited, but is preferably 5 to 70% by mass, more preferably 5%, based on the total mass (solid content) of each refractive index layer. ~ 50% by weight.
 本発明においては、バインダー樹脂は水溶性バインダー樹脂から構成されることが好ましい。水溶性バインダー樹脂を用いることで、有機溶媒を用いることなく、屈折率層を形成することができ、環境上好ましいためである。本発明では、上記ポリビニルアルコール系樹脂に加えて、ポリビニルアルコール系樹脂以外の水溶性高分子をバインダー樹脂として用いてもよい。ここで、ポリビニルアルコール系樹脂以外の水溶性高分子とは、該水溶性高分子が最も溶解する温度で、0.5質量%の濃度に水に溶解させた際、G2グラスフィルタ(最大細孔40~50μm)で濾過した場合に濾別される不溶物の質量が、加えた該水溶性高分子の50質量%以内であるものをいう。そのような水溶性高分子の中でも特にゼラチン、セルロース類、増粘多糖類、反応性官能基を有するポリマーが好ましい。これらの水溶性高分子は単独で用いても構わないし、2種類以上を混合して用いても構わない。また、水溶性高分子は合成品を用いてもよいし、市販品を用いてもよい。 本発明では高屈折率層にゼラチン及び増粘多糖類を含まないことが好ましい。本発明でいう増粘多糖類とは、糖類の重合体であり分子内に水素結合基を多数有するもので、温度により分子間の水素結合力の違いにより、低温時の粘度と高温時の粘度差が大きな特性を備えた多糖類であり、金属酸化物微粒子を添加すると、低温時にその金属酸化物微粒子との水素結合によると思われる粘度上昇を起こすものである。 In the present invention, the binder resin is preferably composed of a water-soluble binder resin. This is because the use of the water-soluble binder resin makes it possible to form a refractive index layer without using an organic solvent, which is environmentally preferable. In the present invention, in addition to the polyvinyl alcohol resin, a water-soluble polymer other than the polyvinyl alcohol resin may be used as the binder resin. Here, the water-soluble polymer other than the polyvinyl alcohol-based resin means a G2 glass filter (maximum pore size) when dissolved in water at a concentration of 0.5% by mass at the temperature at which the water-soluble polymer is most dissolved. 40 to 50 μm) means that the mass of the insoluble matter separated by filtration is within 50 mass% of the added water-soluble polymer. Among such water-soluble polymers, gelatin, celluloses, thickening polysaccharides, and polymers having reactive functional groups are particularly preferable. These water-soluble polymers may be used alone or in combination of two or more. The water-soluble polymer may be a synthetic product or a commercial product. In the present invention, it is preferable that the high refractive index layer does not contain gelatin or thickening polysaccharide. The thickening polysaccharide referred to in the present invention is a polymer of saccharides and has many hydrogen bonding groups in the molecule, and the viscosity at low temperature and the viscosity at high temperature due to the difference in hydrogen bonding force between molecules depending on the temperature. It is a polysaccharide with a large difference in characteristics, and when metal oxide fine particles are added, it causes an increase in viscosity that is thought to be due to hydrogen bonding with the metal oxide fine particles at low temperatures.
 具体的には、ガラクタン(例えば、アガロース、アガロペクチン等)、ガラクトマンノグリカン(例えば、ローカストビーンガム、グアラン等)、キシログルカン(例えば、タマリンドガム等)、グルコマンノグリカン(例えば、蒟蒻マンナン、木材由来グルコマンナン、キサンタンガム等)、ガラクトグルコマンノグリカン(例えば、針葉樹材由来グリカン)、アラビノガラクトグリカン、グルコラムノグリカン(例えば、ジェランガム等)、グリコサミノグリカン(例えば、ヒアルロン酸、ケラタン硫酸等)、アルギン酸およびアルギン酸塩、寒天、κ-カラギーナン、λ-カラギーナン、ι-カラギーナン、ファーセレラン等の紅藻類に由来する天然高分子多糖類、L-アラビトース、D-リボース、2-デオキシリボース、D-キシロースなどのペントース、D-グルコース、D-フルクトース、D-マンノース、D-ガラクトース、タマリンドシードガム、グアーガム、カチオン化グアーガム、ヒドロキシプロピルグアーガム、ローカストビーンガム、タラガム、アラビノガラクタン、ゲランガムが挙げられる。 Specifically, galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.), xyloglucan (eg, tamarind gum, etc.), glucomannoglycan (eg, salmon mannan, Wood-derived glucomannan, xanthan gum, etc.), galactoglucomannoglycan (eg, softwood-derived glycan), arabinogalactoglycan, glucolanoglycan (eg, gellan gum), glycosaminoglycan (eg, hyaluronic acid, keratan) Sulfuric acid, etc.), alginic acid and alginates, agar, κ-carrageenan, λ-carrageenan, ι-carrageenan, natural macromolecular polysaccharides derived from red algae such as farseleran, L-arabitose, D-ribose, 2-deoxyribose, D-xy Pentoses such as glucose, D-glucose, D-fructose, D-mannose, D-galactose, tamarind seed gum, guar gum, cationized guar gum, hydroxypropyl guar gum, locust bean gum, tara gum, arabinogalactan, gellan gum .
 〔低屈折率層中の金属酸化物粒子(第1の金属酸化物粒子)〕
 本発明の低屈折率層は、金属酸化物粒子(第1の金属酸化物粒子)を含むことが好ましい。本発明の低屈折率層に用いられる第1の金属酸化物粒子としては、例えば、酸化亜鉛、合成非晶質シリカやコロイダルシリカなどの二酸化ケイ素、アルミナ、コロイダルアルミナを挙げることができる。本発明において、屈折率を調整するために、第1の金属酸化物は1種であっても2種以上を併用してもよい。
[Metal oxide particles in the low refractive index layer (first metal oxide particles)]
The low refractive index layer of the present invention preferably contains metal oxide particles (first metal oxide particles). Examples of the first metal oxide particles used in the low refractive index layer of the present invention include zinc oxide, silicon dioxide such as synthetic amorphous silica and colloidal silica, alumina, and colloidal alumina. In the present invention, in order to adjust the refractive index, the first metal oxide may be used alone or in combination of two or more.
 本発明に係る低屈折率層においては、第1の金属酸化物粒子として二酸化ケイ素を用いることが好ましく、コロイダルシリカを用いることが特に好ましい。 In the low refractive index layer according to the present invention, silicon dioxide is preferably used as the first metal oxide particles, and colloidal silica is particularly preferably used.
 本発明の低屈折率層に含まれる第1の金属酸化物粒子(好ましくは二酸化ケイ素)は、その平均粒径(個数平均;直径)が3~100nmであることが好ましく、3~50nmであることがより好ましい。 The average particle diameter (number average; diameter) of the first metal oxide particles (preferably silicon dioxide) contained in the low refractive index layer of the present invention is preferably 3 to 100 nm, and preferably 3 to 50 nm. It is more preferable.
 なお、本明細書中、金属酸化物微粒子の平均粒径(個数平均;直径)は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。 In the present specification, the average particle diameter (number average; diameter) of the metal oxide fine particles is determined by observing the particles themselves or the particles appearing on the cross section or surface of the refractive index layer with an electron microscope, and 1,000 arbitrary The particle diameter of each particle is measured and obtained as a simple average value (number average). Here, the particle diameter of each particle is represented by a diameter assuming a circle equal to the projected area.
 本発明で用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、例えば、特開昭57-14091号公報、特開昭60-219083号公報、特開昭60-219084号公報、特開昭61-20792号公報、特開昭61-188183号公報、特開昭63-17807号公報、特開平4-93284号公報、特開平5-278324号公報、特開平6-92011号公報、特開平6-183134号公報、特開平6-297830号公報、特開平7-81214号公報、特開平7-101142号公報、特開平7-179029号公報、特開平7-137431号公報、および国際公開第94/26530号パンフレットなどに記載されているものである。 The colloidal silica used in the present invention is obtained by heating and aging a silica sol obtained by metathesis with an acid of sodium silicate or the like and passing through an ion exchange resin layer. For example, JP-A-57-14091, JP-A-60-219083, JP-A-60-218904, JP-A-61-20792, JP-A-61-188183, JP-A-63-17807, JP-A-4-93284 JP-A-5-278324, JP-A-6-92011, JP-A-6-183134, JP-A-6-297830, JP-A-7-81214, JP-A-7-101142 , JP-A-7-179029, JP-A-7-137431, and WO94 / 26530 pamphlet. Those which are.
 このようなコロイダルシリカは合成品を用いてもよいし、市販品を用いてもよい。市販品としては、日産化学工業(株)から販売されているスノーテックスシリーズ(スノーテックスOS、OXS、S、OS、20、30、40、O、N、C等)が挙げられる。 Such colloidal silica may be a synthetic product or a commercially available product. Examples of commercially available products include the Snowtex series (Snowtex OS, OXS, S, OS, 20, 30, 40, O, N, C, etc.) sold by Nissan Chemical Industries.
 コロイダルシリカは、その表面をカチオン変性されたものであってもよく、また、Al、Ca、MgまたはBa等で処理された物であってもよい。 The surface of the colloidal silica may be cation-modified, or may be treated with Al, Ca, Mg, Ba or the like.
 低屈折率層における第1の金属酸化物粒子の含有量は、低屈折率層の全固形分100質量%に対して、20~75質量%であることが好ましく、30~70質量%であることがより好ましく、35~69質量%であることがさらに好ましく、40~68質量%であることが特に好ましい。20質量%以上であると、所望の屈折率が得られ75質量%以下であると塗布性が良好となり好ましい。 The content of the first metal oxide particles in the low refractive index layer is preferably 20 to 75% by mass, and preferably 30 to 70% by mass with respect to 100% by mass of the total solid content of the low refractive index layer. More preferably, the content is 35 to 69% by mass, still more preferably 40 to 68% by mass. When it is 20% by mass or more, a desired refractive index is obtained, and when it is 75% by mass or less, the coatability is good, which is preferable.
 本発明の低屈折率層においては、第1の金属酸化物粒子は、複数存在する低屈折率層の少なくとも1層に含まれていればよい。 In the low refractive index layer of the present invention, the first metal oxide particles may be contained in at least one of the plurality of low refractive index layers.
 〔高屈折率層中の金属酸化物粒子(第2の金属酸化物粒子)〕
 本発明の高屈折率層は、金属酸化物粒子(第2の金属酸化物粒子)を含むことが好ましい。また、高屈折率層に含まれうる第2の金属酸化物粒子は、低屈折率層とは異なる金属酸化物粒子であることが好ましい。
[Metal oxide particles in the high refractive index layer (second metal oxide particles)]
The high refractive index layer of the present invention preferably contains metal oxide particles (second metal oxide particles). Moreover, it is preferable that the 2nd metal oxide particle which can be contained in a high refractive index layer is a metal oxide particle different from a low refractive index layer.
 本発明に係る高屈折率層に用いられる金属酸化物粒子としては、例えば、酸化チタン、ジルコニア、酸化亜鉛、アルミナ、コロイダルアルミナ、酸化ニオブ、酸化ユーロピウム、ジルコンを挙げることができる。本発明において、屈折率を調整するために、第2の金属酸化物は1種であっても2種以上を併用してもよい。 Examples of the metal oxide particles used in the high refractive index layer according to the present invention include titanium oxide, zirconia, zinc oxide, alumina, colloidal alumina, niobium oxide, europium oxide, and zircon. In the present invention, in order to adjust the refractive index, the second metal oxide may be used alone or in combination of two or more.
 本発明では、透明でより屈折率の高い高屈折率層を形成するために、高屈折率層は、酸化チタン、ジルコニア等の高屈折率を有する金属酸化物粒子、すなわち、酸化チタン粒子、ジルコニア粒子を含有することが好ましい。また、体積平均粒径が100nm以下のルチル型(正方晶形)酸化チタン粒子を含有することがより好ましい。また、複数種の酸化チタン粒子を混合してもよい。 In the present invention, in order to form a transparent and higher refractive index layer having a higher refractive index, the high refractive index layer is formed of metal oxide particles having a high refractive index such as titanium oxide and zirconia, that is, titanium oxide particles and zirconia. It is preferable to contain particles. Moreover, it is more preferable to contain rutile (tetragonal) titanium oxide particles having a volume average particle size of 100 nm or less. A plurality of types of titanium oxide particles may be mixed.
 また、低屈折率層に含まれる第1の金属酸化物粒子と高屈折率層に含まれる第2の金属酸化物粒子とは、イオン性をそろえた状態(すなわち、電荷が同符号)にすることが好ましい。例えば、同時重層塗布する場合にはイオン性が異なると、界面で反応し凝集物ができヘイズが悪くなるためである。イオン性をそろえる手段としては、例えば、低屈折率層に二酸化ケイ素(アニオン)、高屈折率層に酸化チタン(カチオン)を用いた場合に、二酸化ケイ素をアルミニウム等で処理してカチオン化したり、あるいは、後述するように、酸化チタンを含ケイ素の水和酸化物で処理してアニオン化したりすることが可能である。 In addition, the first metal oxide particles contained in the low refractive index layer and the second metal oxide particles contained in the high refractive index layer are in a state of having ionicity (that is, the electric charges have the same sign). It is preferable. For example, in the case of simultaneous multilayer coating, if the ionicity is different, it reacts at the interface to form aggregates and haze deteriorates. As means for aligning ionicity, for example, when silicon dioxide (anion) is used for the low refractive index layer and titanium oxide (cation) is used for the high refractive index layer, silicon dioxide is treated with aluminum or the like to be cationized, Alternatively, as described later, titanium oxide can be anionized by treatment with a silicon-containing hydrated oxide.
 本発明の高屈折率層に含まれる第2の金属酸化物粒子は、その平均粒径(個数平均)が3~100nmであることが好ましく、3~50nmであることがより好ましい。 The average particle diameter (number average) of the second metal oxide particles contained in the high refractive index layer of the present invention is preferably 3 to 100 nm, and more preferably 3 to 50 nm.
 また、高屈折率層に含まれる第2の金属酸化物粒子は、体積平均粒径が50nm以下であることが好ましく、1~45nmであることがより好ましく、5~40nmであるのがさらに好ましい。体積平均粒径が50nm以下であれば、ヘイズが少なく可視光透過性に優れる観点で好ましい。 The second metal oxide particles contained in the high refractive index layer preferably have a volume average particle size of 50 nm or less, more preferably 1 to 45 nm, and even more preferably 5 to 40 nm. . A volume average particle size of 50 nm or less is preferable from the viewpoint of low visible light transmittance and low haze.
 ここでいう体積平均粒径とは、媒体中に分散された一次粒子または二次粒子の体積平均粒径であり、レーザー回折/散乱法、動的光散乱法等により測定できる。 Here, the volume average particle diameter is a volume average particle diameter of primary particles or secondary particles dispersed in a medium, and can be measured by a laser diffraction / scattering method, a dynamic light scattering method, or the like.
 具体的には、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、それぞれd1、d2・・・di・・・dkの粒径を持つ粒子がそれぞれn1、n2・・・ni・・・nk個存在する金属酸化物粒子の集団において、粒子1個当りの体積をviとした場合に、体積平均粒径mv={Σ(vi・di)}/{Σ(vi)}で表される体積で重み付けされた平均粒径を算出する。 Specifically, the particles themselves or the particles appearing on the cross section or surface of the refractive index layer are observed with an electron microscope, and the particle diameters of 1,000 arbitrary particles are measured, and d1, d2,. .. In a group of metal oxide particles having n1, n2,..., Nk particles each having a particle size of dk, the volume average particle size when the volume per particle is vi The average particle diameter weighted by the volume represented by mv = {Σ (vi · di)} / {Σ (vi)} is calculated.
 さらに、本発明で用いられる金属酸化物粒子は、単分散であることが好ましい。ここでいう単分散とは、下記式で求められる単分散度が40%以下であることをいう。この単分散度は、さらに好ましくは30%以下であり、特に好ましくは0.1~20%である。 Furthermore, the metal oxide particles used in the present invention are preferably monodispersed. The monodispersion here means that the monodispersity obtained by the following formula is 40% or less. This monodispersity is more preferably 30% or less, and particularly preferably 0.1 to 20%.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 高屈折率層における金属酸化物粒子の含有量としては、高屈折率層の全固形分100質量%に対して、15~90質量%であることが好ましく、20~85質量%であることがより好ましく、30~80質量%であることがさらに好ましい。上記範囲とすることで、赤外遮蔽性の良好なものとできる。 The content of the metal oxide particles in the high refractive index layer is preferably 15 to 90% by mass, and preferably 20 to 85% by mass with respect to 100% by mass of the total solid content of the high refractive index layer. More preferably, it is 30 to 80% by mass. By setting it as the said range, it can be set as the favorable infrared shielding property.
 本発明の第2の金属酸化物粒子として好ましく用いられる酸化チタン粒子は、酸化チタンゾルの表面を変性して水または有機溶剤等に分散可能な状態にしたものを用い水系のることが好ましい。 The titanium oxide particles preferably used as the second metal oxide particles of the present invention are preferably water-based using a titanium oxide sol whose surface is modified so as to be dispersible in water or an organic solvent.
 水系の酸化チタンゾルの調製方法としては、例えば、特開昭63-17221号公報、特開平7-819号公報、特開平9-165218号公報、特開平11-43327号公報、特開昭63-17221号公報等に記載された事項を参照にすることができる。 Examples of the preparation method of the aqueous titanium oxide sol include, for example, JP-A-63-17221, JP-A-7-819, JP-A-9-165218, JP-A-11-43327, JP-A-63-3. Reference can be made to the matters described in Japanese Patent No. 17221.
 第2の金属酸化物粒子として酸化チタン粒子を用いる場合、酸化チタン粒子のその他の製造方法については、例えば、「酸化チタン-物性と応用技術」清野学 p255~258(2000年)技報堂出版株式会社、またはWO2007/039953号明細書の段落番号「0011」~「0023」に記載の工程(2)の方法を参考にすることができる。 When titanium oxide particles are used as the second metal oxide particles, for example, “Titanium oxide—physical properties and applied technology” Manabu Seino, p. 255-258 (2000) Gihodo Publishing Co., Ltd. Alternatively, the method of step (2) described in paragraph numbers “0011” to “0023” of WO2007 / 039953 can be referred to.
 上記工程(2)による製造方法とは、二酸化チタン水和物をアルカリ金属の水酸物またはアルカリ土類金属の水酸化物からなる群から選択される、少なくとも1種の塩基性化合物で処理する工程(1)の後に、得られた二酸化チタン分散物を、カルボン酸基含有化合物および無機酸で処理する工程(2)からなる。 In the production method according to the above step (2), titanium dioxide hydrate is treated with at least one basic compound selected from the group consisting of alkali metal hydroxides or alkaline earth metal hydroxides. After the step (1), the titanium dioxide dispersion obtained comprises a step (2) of treating with a carboxylic acid group-containing compound and an inorganic acid.
 また、本発明の第2の金属酸化物粒子は、酸化チタン粒子が含ケイ素の水和酸化物で被覆されたコアシェル粒子の形態が好ましい。コアシェル粒子としては、コアの部分である酸化チタン粒子の体積平均粒径が、好ましくは1nm超50nm以下、より好ましくは4nm以上40nm以下であり、当該酸化チタン粒子の表面を、コアとなる酸化チタン100質量%に対して、含ケイ素の水和酸化物の被覆量がSiOとして3~30質量%となるように含ケイ素の水和酸化物からなるシェルが被覆してなる構造である。本発明において、第2の金属酸化物粒子としてコアシェル粒子を含有させることで、シェル層の含ケイ素の水和酸化物とポリビニルアルコール系樹脂との相互作用により、高屈折率層と低屈折率層との層間混合が抑制される効果を奏する。 The second metal oxide particles of the present invention are preferably in the form of core-shell particles in which titanium oxide particles are coated with a silicon-containing hydrated oxide. As the core-shell particles, the volume average particle diameter of the titanium oxide particles as the core part is preferably more than 1 nm and 50 nm or less, more preferably 4 nm or more and 40 nm or less, and the surface of the titanium oxide particles is the titanium oxide that becomes the core. This is a structure in which a shell made of silicon-containing hydrated oxide is coated such that the coating amount of silicon-containing hydrated oxide is 3 to 30% by mass as SiO 2 with respect to 100% by mass. In the present invention, by including the core-shell particles as the second metal oxide particles, the high refractive index layer and the low refractive index layer are obtained by the interaction between the silicon-containing hydrated oxide of the shell layer and the polyvinyl alcohol resin. There is an effect that inter-layer mixing is suppressed.
 本明細書における含ケイ素の水和酸化物とは、無機ケイ素化合物の水和物、有機ケイ素化合物の加水分解物および/または縮合物のいずれでもよく本願の発明効果を得るためにはシラノール基を有することがより好ましい。よって、本発明において、第2の金属酸化物粒子としては、酸化チタン粒子がシリカ変性されたシリカ変性(シラノール変性)酸化チタン粒子であることが好ましい。 In the present specification, the silicon-containing hydrated oxide may be either a hydrate of an inorganic silicon compound, a hydrolyzate of an organic silicon compound, and / or a condensate. More preferably. Therefore, in the present invention, the second metal oxide particles are preferably silica-modified (silanol-modified) titanium oxide particles in which the titanium oxide particles are silica-modified.
 酸化チタンの含ケイ素の水和化合物の被覆量は、酸化チタン100質量%に対して、3~30質量%、好ましくは3~10質量%、より好ましくは3~8質量%である。被覆量が30質量%以下であると、高屈折率層の所望の屈折率化が得られ、被覆量が3質量%以上であると粒子を安定に形成することができるからである。 The coating amount of the silicon-containing hydrated compound of titanium oxide is 3 to 30% by mass, preferably 3 to 10% by mass, more preferably 3 to 8% by mass with respect to 100% by mass of titanium oxide. This is because when the coating amount is 30% by mass or less, a desired refractive index of the high refractive index layer can be obtained, and when the coating amount is 3% by mass or more, particles can be stably formed.
 また、本発明の第2の金属酸化物粒子としては、公知の方法で製造されたコアシェル粒子を用いることもできる。例えば、以下の(i)~(iv);(i)酸化チタン粒子を含有する水溶液を加熱加水分解し、または酸化チタン粒子を含有する水溶液にアルカリを添加し中和して、平均粒径が1~30nmの酸化チタンを得た後、モル比で表して酸化チタン粒子/鉱酸が1/0.5~1/2の範囲になるように、前記酸化チタン粒子と鉱酸とを混合したスラリーを、50℃以上該スラリーの沸点以下の温度で加熱処理し、その後得られた酸化チタン粒子を含むスラリーに、ケイ素の化合物(例えば、ケイ酸ナトリウム水溶液)を添加し、酸化チタン粒子の表面にケイ素の含水酸化物を析出させて表面処理し、次いで、得られた表面処理された酸化チタン粒子のスラリーから不純物を除去する方法(特開平10-158015号);(ii)含水酸化チタンなどの酸化チタンを一塩基酸またはその塩で解膠処理して得られる酸性域のpHで安定した酸化チタンゾルと、分散安定化剤としてのアルキルシリケートを常法により混合し、中性化する方法(特開2000-053421号);(iii)過酸化水素および金属スズを、2~3のH/Snモル比に保持しつつ同時にまたは交互にチタン塩(例えば、四塩化チタン)等の混合物水溶液に添加し、チタンを含む塩基性塩水溶液を生成し、該塩基性塩水溶液を0.1~100時間かけて50~100℃の温度で保持して酸化チタンを含む複合体コロイドの凝集体を生成させ、次いで、該凝集体スラリー中の電解質を除去し、酸化チタンを含む複合体コロイド粒子の安定な水性ゾルが製造される。一方、ケイ酸塩(例えば、ケイ酸ナトリウム水溶液)等を含有する水溶液を調製し、水溶液中に存在する陽イオンを除去することで、二酸化ケイ素を含む複合体コロイド粒子の安定な水性ゾルが製造される。得られた酸化チタンを含む複合体水性ゾルを金属酸化物TiOに換算して100質量部と、得られた二酸化ケイ素を含む複合体水性ゾルを金属酸化物SiOに換算して2~100質量部と混合し、陰イオンを除去後、80℃で1時間加熱熟成する方法(特開2000-063119号);(iv)含水チタン酸のゲルまたはゾルに過酸化水素を加えて含水チタン酸を溶解し、得られたペルオキソチタン酸水溶液に、ケイ素化合物等を添加し加熱し、ルチル型構造をとる複合固溶体酸化物からなるコア粒子の分散液が得られ、次いで、該コア粒子の分散液にケイ素化合物等を添加した後、加熱しコア粒子表面に被覆層を形成し、複合酸化物粒子が分散されたゾルが得られ、さらに、加熱する方法(特開2000-204301号);(v)含水酸化チタンを解膠して得られた酸化チタンのヒドロゾルに、安定剤としてのオルガノアルコキシシラン(RnSiX4-n)または過酸化水素および脂肪族もしくは芳香族ヒドロキシカルボン酸から選ばれた化合物を添加し、溶液のpHを3以上9未満へ調節し熟成させた後に脱塩処理を行う方法(特開4550753号);で製造されたコアシェル粒子が挙げられる。 Moreover, as the second metal oxide particles of the present invention, core-shell particles produced by a known method can be used. For example, the following (i) to (iv); (i) an aqueous solution containing titanium oxide particles is heated and hydrolyzed, or an aqueous solution containing titanium oxide particles is neutralized by adding an alkali to obtain an average particle size. After obtaining 1 to 30 nm of titanium oxide, the titanium oxide particles and the mineral acid were mixed so that the molar ratio of titanium oxide particles / mineral acid was in the range of 1 / 0.5 to 1/2. The slurry is heat-treated at a temperature not lower than the boiling point of the slurry and not higher than the boiling point of the slurry, and then a silicon compound (for example, an aqueous sodium silicate solution) is added to the obtained slurry containing the titanium oxide particles. (Ii) Hydrous titanium oxide; (ii) Hydrous titanium oxide; Precipitating silicon hydrated oxide on the surface and then treating the surface, and then removing impurities from the resulting slurry of the surface treated titanium oxide particles (Japanese Patent Laid-Open No. 10-158015); A method of neutralizing by mixing a titanium oxide sol stabilized at a pH in an acidic range obtained by peptizing a monobasic acid or a salt thereof with an alkyl silicate as a dispersion stabilizer by a conventional method ( (Iii) Hydrogen peroxide and tin metal are maintained at a H 2 O 2 / Sn molar ratio of 2 to 3 at the same time or alternately, such as a titanium salt (eg, titanium tetrachloride). The mixture is added to the aqueous solution to form a basic salt aqueous solution containing titanium, and the basic salt aqueous solution is kept at a temperature of 50 to 100 ° C. for 0.1 to 100 hours to coagulate the composite colloid containing titanium oxide. Aggregates are formed and the electrolyte in the aggregate slurry is then removed to produce a stable aqueous sol of composite colloidal particles comprising titanium oxide. On the other hand, a stable aqueous sol of composite colloidal particles containing silicon dioxide is produced by preparing an aqueous solution containing silicate (eg, sodium silicate aqueous solution) and removing cations present in the aqueous solution. Is done. The obtained composite aqueous sol containing titanium oxide is converted to 100 parts by mass in terms of metal oxide TiO 2 , and the obtained composite aqueous sol containing silicon dioxide is converted to 2 to 100 in terms of metal oxide SiO 2. A method of mixing with parts by mass and removing anions, followed by heating and aging at 80 ° C. for 1 hour (Japanese Patent Laid-open No. 2000-063119); (iv) Hydrous titanic acid by adding hydrogen peroxide to hydrous titanic acid gel or sol In the resulting peroxotitanic acid aqueous solution, a silicon compound or the like is added and heated to obtain a dispersion of core particles composed of a complex solid solution oxide having a rutile structure, and then the dispersion of the core particles After adding a silicon compound or the like, a coating layer is formed on the surface of the core particles by heating to obtain a sol in which the composite oxide particles are dispersed, followed by heating (Japanese Patent Laid-Open No. 2000-204301); The hydrous titanium oxide hydrosol titanium oxide obtained by peptization, organoalkoxysilane (R 1 nSiX 4-n) or hydrogen peroxide and an aliphatic or compounds selected from aromatic hydroxycarboxylic acid as a stabilizer And the core-shell particles produced by the desalting treatment after adjusting the pH of the solution to 3 to less than 9 and aging (Japanese Patent No. 4550753).
 本発明に係るコアシェル粒子は、コアである酸化チタン粒子の表面全体を含ケイ素の水和酸化物で被覆したものでもよく、また、コアである酸化チタン粒子の表面の一部を含ケイ素の水和酸化物で被覆したものでもよい。 The core-shell particle according to the present invention may be one in which the entire surface of the titanium oxide particle as the core is coated with a silicon-containing hydrated oxide, and a part of the surface of the titanium oxide particle as the core is covered with a silicon-containing water. What coated with the sum oxide may be used.
 〔硬化剤〕
 本発明の低屈折率層および/または高屈折率層は、硬化剤を含んでいてもよい。硬化剤は、ポリビニルアルコール系樹脂と反応して、水素結合のネットワークを形成することができるためである。また、バインダー樹脂としてポリビニルアルコール系樹脂またはシラノール変性ポリビニルアルコールを用いた場合、その効果は特に発揮されうる。
[Curing agent]
The low refractive index layer and / or the high refractive index layer of the present invention may contain a curing agent. This is because the curing agent can react with the polyvinyl alcohol-based resin to form a hydrogen bond network. In addition, when a polyvinyl alcohol resin or silanol-modified polyvinyl alcohol is used as the binder resin, the effect can be exhibited particularly.
 本発明において、ポリビニルアルコール系樹脂(または、シラノール変性ポリビニルアルコール)と共に用いることのできる硬化剤としては、ポリビニルアルコール系樹脂と硬化反応を起こすものであれば特に制限はないが、ホウ酸、ホウ酸塩、およびホウ砂からなる群から選択されることが好ましい。ホウ酸、ホウ酸塩、およびホウ砂以外にも公知のものが使用でき、一般的にはポリビニルアルコール系樹脂と反応し得る基を有する化合物あるいはポリビニルアルコール系樹脂が有する異なる基同士の反応を促進するような化合物であり、適宜選択して用いられる。硬化剤の具体例としては、例えば、エポキシ系硬化剤(ジグリシジルエチルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ジグリシジルシクロヘキサン、N,N-ジグリシジル-4-グリシジルオキシアニリン、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル等)、アルデヒド系硬化剤(ホルムアルデヒド、グリオキザール等)、活性ハロゲン系硬化剤(2,4-ジクロロ-4-ヒドロキシ-1,3,5,-s-トリアジン等)、活性ビニル系化合物(1,3,5-トリスアクリロイル-ヘキサヒドロ-s-トリアジン、ビスビニルスルホニルメチルエーテル等)、アルミニウム明礬等が挙げられる。 In the present invention, the curing agent that can be used together with the polyvinyl alcohol-based resin (or silanol-modified polyvinyl alcohol) is not particularly limited as long as it causes a curing reaction with the polyvinyl alcohol-based resin, but boric acid, boric acid It is preferably selected from the group consisting of salt and borax. In addition to boric acid, borate, and borax, known materials can be used, and in general, a compound having a group capable of reacting with a polyvinyl alcohol resin or a reaction between different groups of a polyvinyl alcohol resin is promoted. And are appropriately selected and used. Specific examples of the curing agent include, for example, epoxy curing agents (diglycidyl ethyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-diglycidyl cyclohexane, N, N-diglycidyl- 4-glycidyloxyaniline, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, etc.), aldehyde curing agents (formaldehyde, glioxal, etc.), active halogen curing agents (2,4-dichloro-4-hydroxy-1,3,5) , -S-triazine, etc.), active vinyl compounds (1,3,5-trisacryloyl-hexahydro-s-triazine, bisvinylsulfonylmethyl ether, etc.), aluminum alum and the like.
 ホウ酸またはホウ酸塩とは、硼素原子を中心原子とする酸素酸およびその塩のことをいい、具体的には、オルトホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸および八ホウ酸およびそれらの塩が挙げられる。 Boric acid or borate refers to oxyacids and salts thereof having a boron atom as a central atom, and specifically, orthoboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, and octaborate. Boric acid and their salts.
 ホウ砂とは、Na(OH)・8HO(四ホウ酸ナトリウム Naの十水和物)で表される鉱物である。 Borax is a mineral represented by Na 2 B 4 O 5 (OH) 4 .8H 2 O (decahydrate of sodium tetraborate Na 2 B 4 O 7 ).
 硬化剤としてのホウ素原子を有するホウ酸、ホウ酸塩、およびホウ砂は、単独の水溶液でも、また、2種以上を混合して使用しても良い。ホウ酸の水溶液またはホウ酸とホウ砂の混合水溶液が好ましい。ホウ酸とホウ砂の水溶液は、それぞれ比較的希薄水溶液でしか添加することが出来ないが両者を混合することで濃厚な水溶液にすることが出来、塗布液を濃縮化する事が出来る。また、添加する水溶液のpHを比較的自由にコントロールすることが出来る利点がある。 Boric acid having a boron atom, borate, and borax as a curing agent may be used alone or as a mixture of two or more. An aqueous solution of boric acid or a mixed aqueous solution of boric acid and borax is preferred. The aqueous solutions of boric acid and borax can be added only in relatively dilute aqueous solutions, respectively, but by mixing them both can be made into a concentrated aqueous solution and the coating solution can be concentrated. Further, there is an advantage that the pH of the aqueous solution to be added can be controlled relatively freely.
 本発明では、ホウ酸およびその塩並びに/またはホウ砂を用いることが本発明の効果を得るためには好ましい。ホウ酸およびその塩並びに/またはホウ砂を用いた場合には、金属酸化物粒子とポリビニルアルコール系樹脂のOH基と水素結合ネットワークを形成し、その結果として高屈折率層と低屈折率層との層間混合が抑制され、好ましい赤外遮蔽特性が達成されると考えられる。特に、高屈折率層と低屈折率層の多層重層をコーターで塗布後、一旦塗膜の膜面温度を15℃程度に冷やした後、膜面を乾燥させるセット系塗布プロセスを用いた場合には、より好ましく効果を発現することができる。 In the present invention, it is preferable to use boric acid and a salt thereof and / or borax in order to obtain the effects of the present invention. When boric acid and its salt and / or borax are used, the metal oxide particles and the OH group of the polyvinyl alcohol resin form a hydrogen bond network, and as a result, the high refractive index layer and the low refractive index layer It is considered that the interlayer mixing is suppressed and preferable infrared shielding properties are achieved. In particular, when a multilayer coating of a high refractive index layer and a low refractive index layer is applied with a coater, the film surface temperature of the coating film is once cooled to about 15 ° C., and then the set surface coating process is used to dry the film surface. Can express an effect more preferably.
 上記硬化剤の総使用量は、バインダー樹脂(ポリビニアルアルコール系樹脂、または、シラノール変性ポリビニルアルコールをも併用する場合にはポリビニルアルコール系樹脂とシラノール変性ポリビニルアルコールとの合計量)1g当たり1~600mgが好ましく、100~600mgがより好ましい。 The total amount of the curing agent used is 1 to 1 per 1 g of binder resin (the total amount of polyvinyl alcohol resin and silanol modified polyvinyl alcohol when a polyvinyl alcohol resin or silanol modified polyvinyl alcohol is also used). 600 mg is preferable, and 100 to 600 mg is more preferable.
 〔基材〕
 本発明の赤外遮蔽フィルムに用いられる基材としては、透明な有機材料で形成されたものであれば特に限定されるものではない。
〔Base material〕
The base material used for the infrared shielding film of the present invention is not particularly limited as long as it is formed of a transparent organic material.
 かような基材としては、例えば、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリスチレン(PS)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の樹脂からなるフィルム、さらには前記樹脂を二層以上積層してなる樹脂フィルム等が挙げられる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などが好ましく用いられる。 Examples of such a substrate include methacrylic acid ester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polystyrene (PS), aromatic polyamide, polyether ether ketone, polysulfone. , A film made of a resin such as polyethersulfone, polyimide, or polyetherimide, and a resin film obtained by laminating two or more layers of the resin. From the viewpoint of cost and availability, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) and the like are preferably used.
 基材の厚さは、5~200μm程度が好ましく、さらに好ましくは15~150μmである。基材は、2枚以上を重ねたものであってもよく、この際、基材の種類は同じでもよいし異なっていてもよい。 The thickness of the substrate is preferably about 5 to 200 μm, more preferably 15 to 150 μm. Two or more substrates may be stacked, and in this case, the types of the substrates may be the same or different.
 また、基材は、JIS R3106(1998)で示される可視光領域の透過率としては85%以上であることが好ましく、特に90%以上(上限:100%)であることが好ましい。基材が上記透過率以上であることにより、赤外遮蔽フィルムとしたときのJIS R3106(1998)で示される可視光領域の透過率を50%以上(上限:100%)にするという点で有利であり、好ましい。 Further, the substrate preferably has a visible light region transmittance of 85% or more as shown in JIS R3106 (1998), particularly preferably 90% or more (upper limit: 100%). Advantageous in that the transmittance of the visible light region indicated by JIS R3106 (1998) is 50% or more (upper limit: 100%) when the base material is above the above transmittance. It is preferable.
 また、上記樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。 In addition, the base material using the resin or the like may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
 基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。 The base material can be manufactured by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. In addition, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
 また、基材は、寸法安定性の点で弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は前記ポリエステルフィルムの延伸製膜工程中の熱固定した後、横延伸のテンター内、またはテンターを出た後の巻き取りまでの工程で行われることが好ましい。弛緩処理は処理温度が80~200℃で行われることが好ましく、より好ましくは処理温度が100~180℃である。また長手方向、幅手方向ともに、弛緩率が0.1~10%の範囲で行われることが好ましく、より好ましくは弛緩率が2~6%で処理されることである。弛緩処理された基材は、下記のオフライン熱処理を施すことにより耐熱性が向上し、さらに、寸法安定性が良好になる。 Also, the base material may be subjected to relaxation treatment or offline heat treatment in terms of dimensional stability. It is preferable that the relaxation treatment is performed in the process from the heat setting in the stretching process of the polyester film to the winding in the transversely stretched tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature of 80 to 200 ° C., more preferably a treatment temperature of 100 to 180 ° C. In addition, the relaxation rate is preferably in the range of 0.1 to 10% in both the longitudinal direction and the width direction, and more preferably, the relaxation rate is 2 to 6%. The relaxed base material is subjected to the following off-line heat treatment to improve heat resistance and to improve dimensional stability.
 基材は、製膜過程で片面または両面にインラインで下引層塗布液を塗布することが好ましい。本発明においては、製膜工程中での下引塗布をインライン下引という。本発明に有用な下引層塗布液に使用する樹脂としては、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂、変性ポリビニルアルコール樹脂およびゼラチン等が挙げられ、いずれも好ましく用いることができる。これらの下引層には、従来公知の添加剤を加えることもできる。そして、上記の下引層は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法によりコーティングすることができる。上記の下引層の塗布量としては、0.01~2g/m(乾燥状態)程度が好ましい。 It is preferable that the substrate is coated with the undercoat layer coating solution inline on one side or both sides during the film forming process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating. Examples of resins used in the undercoat layer coating solution useful in the present invention include polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polyethyleneimine resins, and polyvinyl alcohol resins. , Modified polyvinyl alcohol resin, gelatin and the like, and any of them can be preferably used. A conventionally well-known additive can also be added to these undercoat layers. The undercoat layer can be coated by a known method such as roll coating, gravure coating, knife coating, dip coating or spray coating. The coating amount of the undercoat layer is preferably about 0.01 to 2 g / m 2 (dry state).
 [赤外遮蔽フィルムの製造方法]
 本発明の赤外遮蔽フィルムの製造方法について特に制限はなく、基材上に、高屈折率層と低屈折率層とから構成されるユニットを少なくとも1つ形成することができるのであれば、いかなる方法でも用いられうる。
[Infrared shielding film manufacturing method]
There is no restriction | limiting in particular about the manufacturing method of the infrared shielding film of this invention, As long as at least 1 unit comprised from a high-refractive-index layer and a low-refractive-index layer can be formed on a base material, what kind of thing The method can also be used.
 本発明の赤外遮蔽フィルムの製造方法では、基材上に高屈折率層と低屈折率層とから構成される積層体(ユニット)を積層して形成され、例えば、高屈折率層用塗布液と低屈折率層用塗布液とを交互に塗布、乾燥して積層体を形成する。すなわち、所望の成分(例えば、金属酸化物粒子、ポリビニルアルコール系樹脂及び溶媒など)を含む低屈折率層用塗布液と、所望の成分(例えば、金属酸化物粒子、ポリビニルアルコール系樹脂及び溶媒など)を含む高屈折率層用塗布液と、を基材に塗布する工程と、塗布液が塗布された前記基材を乾燥する工程と、を含む赤外遮蔽フィルムの製造方法により得られる。 In the method for producing an infrared shielding film of the present invention, a laminate (unit) composed of a high refractive index layer and a low refractive index layer is laminated on a substrate, for example, a coating for a high refractive index layer. The laminate and the coating solution for the low refractive index layer are alternately applied and dried to form a laminate. That is, a coating solution for a low refractive index layer containing desired components (for example, metal oxide particles, polyvinyl alcohol-based resin and solvent), and desired components (for example, metal oxide particles, polyvinyl alcohol-based resin and solvent) ) Containing a coating solution for a high refractive index layer, and a step of drying the substrate coated with the coating solution.
 具体的には高屈折率層と低屈折率層とを交互に塗布、乾燥して積層体を形成することが好ましい。具体的には以下の形態が挙げられる;(1)基材上に、高屈折率層用塗布液を塗布し乾燥して高屈折率層を形成した後、低屈折率層用塗布液を塗布し乾燥して低屈折率層を形成し、赤外遮蔽フィルムを形成する方法;(2)基材上に、低屈折率層用塗布液を塗布し乾燥して低屈折率層を形成した後、高屈折率層用塗布液を塗布し乾燥して高屈折率層を形成し、赤外遮蔽フィルムを形成する方法;(3)基材上に、高屈折率層用塗布液と、低屈折率層用塗布液とを交互に逐次重層塗布した後乾燥して、高屈折率層、および低屈折率層を含む赤外遮蔽フィルムを形成する方法;(4)基材上に、高屈折率層用塗布液と、低屈折率層用塗布液とを同時重層塗布し、乾燥して、高屈折率層、および低屈折率層を含む赤外遮蔽フィルムを形成する方法;などが挙げられる。なかでも、より簡便な製造プロセスとなる上記(4)の方法が好ましい。また、同時重層塗布の場合には、界面の混合がより生じやすいため、本発明は同時重層塗布により製造する場合に、より効果が発揮されやすい。 Specifically, it is preferable that a high refractive index layer and a low refractive index layer are alternately applied and dried to form a laminate. Specific examples include: (1) A high refractive index layer coating solution is applied on a substrate and dried to form a high refractive index layer, and then a low refractive index layer coating solution is applied. And then drying to form a low refractive index layer to form an infrared shielding film; (2) After applying a low refractive index layer coating solution on a substrate and drying to form a low refractive index layer A method for forming a high refractive index layer by applying a coating solution for a high refractive index layer and drying; and (3) forming an infrared shielding film; and (3) a coating solution for a high refractive index layer and a low refractive index on a substrate. A method of forming an infrared shielding film including a high refractive index layer and a low refractive index layer by alternately applying successive coating layers with the coating liquid for the refractive index layer and then drying; (4) High refractive index on the substrate A method of forming an infrared shielding film including a high refractive index layer and a low refractive index layer by simultaneously applying a multilayer coating solution and a low refractive index layer coating solution, followed by drying; Etc., and the like. Among these, the method (4), which is a simpler manufacturing process, is preferable. In addition, in the case of simultaneous multilayer coating, interfacial mixing is more likely to occur, and therefore the present invention is more effective when manufactured by simultaneous multilayer coating.
 (塗布液の調製方法)
 まず、高屈折率層用塗布液および低屈折率層用塗布液の調製方法について述べる。
(Method for preparing coating solution)
First, a method for preparing a coating solution for a high refractive index layer and a coating solution for a low refractive index layer will be described.
 高屈折率層用塗布液および低屈折率層用塗布液の調製方法は、特に制限されず、例えば、金属酸化物粒子、ポリビニルアルコール系樹脂、その他のバインダー樹脂、および必要に応じて添加されるその他の添加剤を添加し、攪拌混合する方法が挙げられる。この際、各成分の添加順も特に制限されず、攪拌しながら各成分を順次添加し混合してもよいし、攪拌しながら一度に添加し混合してもよい。必要に応じて、さらに溶媒を用いて、適当な粘度に調製される。 The method for preparing the coating liquid for the high refractive index layer and the coating liquid for the low refractive index layer is not particularly limited, and for example, metal oxide particles, polyvinyl alcohol resin, other binder resins, and are added as necessary. A method of adding other additives and stirring and mixing them may be mentioned. At this time, the order of addition of the respective components is not particularly limited, and the respective components may be sequentially added and mixed while stirring, or may be added and mixed at one time while stirring. If necessary, it is further adjusted to an appropriate viscosity using a solvent.
 なお、屈折率層用塗布液、特に高屈折率層用塗布液に含まれる第2の金属酸化物粒子は、塗布液を調製する前に、別途、分散液の状態に調製したものを用いることが好ましい。すなわち、体積平均粒径が100nm以下のルチル型の酸化チタンを添加、分散して調製した水系の高屈折率層用塗布液を用いて、高屈折率層を形成することが好ましい。さらに、本発明では、上述した方法で、含ケイ素の水和酸化物で被覆された酸化チタン粒子を添加、分散して調製した水系の高屈折率層塗布液を用いて、高屈折率層を形成することがより好ましい。分散液を用いる場合は、各層において任意の濃度となるように分散液を適宜添加すればよい。 The second metal oxide particles contained in the coating solution for the refractive index layer, particularly the coating solution for the high refractive index layer, should be prepared separately in a dispersion state before preparing the coating solution. Is preferred. That is, it is preferable to form the high refractive index layer using an aqueous high refractive index coating solution prepared by adding and dispersing rutile type titanium oxide having a volume average particle size of 100 nm or less. Furthermore, in the present invention, a high refractive index layer is formed using an aqueous high refractive index layer coating solution prepared by adding and dispersing titanium oxide particles coated with a silicon-containing hydrated oxide by the method described above. More preferably, it is formed. In the case of using a dispersion liquid, the dispersion liquid may be appropriately added so as to have an arbitrary concentration in each layer.
 高屈折率層用塗布液および低屈折率層用塗布液を調製するための溶媒は、特に制限されないが、水、有機溶媒、またはその混合溶媒が好ましい。本発明においては、樹脂バインダーとして、ポリビニルアルコール系樹脂を主に用いるために、水系溶媒を用いることができる。水系溶媒は、有機溶媒を用いる場合と比較して、大規模な生産設備を必要とすることがないため、生産性の点で好ましく、また環境保全の点でも好ましい。 The solvent for preparing the coating solution for the high refractive index layer and the coating solution for the low refractive index layer is not particularly limited, but water, an organic solvent, or a mixed solvent thereof is preferable. In the present invention, an aqueous solvent can be used because a polyvinyl alcohol resin is mainly used as the resin binder. Compared to the case where an organic solvent is used, the aqueous solvent does not require a large-scale production facility, so that it is preferable in terms of productivity and also in terms of environmental conservation.
 前記有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類などが挙げられる。これら有機溶媒は、単独でもまたは2種以上混合して用いてもよい。環境面、操作の簡便性などから、塗布液の溶媒としては、水系溶媒が好ましく、水、または水とメタノール、エタノール、もしくは酢酸エチルとの混合溶媒がより好ましく、水が特に好ましい。 Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate, diethyl ether, Examples thereof include ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, and ketones such as acetone, methyl ethyl ketone, acetylacetone and cyclohexanone. These organic solvents may be used alone or in combination of two or more. From the viewpoint of environment and simplicity of operation, the solvent of the coating solution is preferably an aqueous solvent, more preferably water or a mixed solvent of water and methanol, ethanol, or ethyl acetate, and water is particularly preferable.
 また、低屈折率層用塗布液および高屈折率層用塗布液としては、塗布後に塗膜をセットさせて層間の混合を抑制できるという点から、ポリビニルアルコールなどの水溶性樹脂と、水あるいはこれに水溶性有機溶剤を含む水系溶媒を主成分とする水系塗布液を用いることが好ましい。 In addition, the coating liquid for the low refractive index layer and the coating liquid for the high refractive index layer include a water-soluble resin such as polyvinyl alcohol, water or the It is preferable to use an aqueous coating solution mainly composed of an aqueous solvent containing a water-soluble organic solvent.
 高屈折率層用塗布液中のバインダー樹脂(例えば、ポリビニルアルコール系樹脂)の濃度は、0.5~10質量%であることが好ましい。また、高屈折率層用塗布液中の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。 The concentration of the binder resin (for example, polyvinyl alcohol resin) in the coating solution for the high refractive index layer is preferably 0.5 to 10% by mass. The concentration of the metal oxide particles in the coating solution for the high refractive index layer is preferably 1 to 50% by mass.
 低屈折率層用塗布液中のバインダー樹脂(例えば、ポリビニルアルコール系樹脂)の濃度は、0.5~10質量%であることが好ましい。また、低屈折率層用塗布液中の金属酸化物粒子の濃度は、1~50質量%であることが好ましい。 The concentration of the binder resin (for example, polyvinyl alcohol resin) in the coating solution for the low refractive index layer is preferably 0.5 to 10% by mass. The concentration of the metal oxide particles in the coating solution for the low refractive index layer is preferably 1 to 50% by mass.
 同時重層塗布を行う際の高屈折率層用塗布液と低屈折率層用塗布液の粘度としては、スライドビード塗布方式を用いる場合には、45℃における粘度が、5~100mPa・sの範囲が好ましく、さらに好ましくは10~50mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、45℃における粘度が、5~1200mPa・sの範囲が好ましく、さらに好ましくは25~500mPa・sの範囲である。 The viscosity of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer at the time of simultaneous multilayer coating is in the range of 5 to 100 mPa · s when the slide bead coating method is used. Is more preferable, and the range of 10 to 50 mPa · s is more preferable. When the curtain coating method is used, the viscosity at 45 ° C. is preferably in the range of 5 to 1200 mPa · s, more preferably in the range of 25 to 500 mPa · s.
 また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100~30,000mPa・sがより好ましく、さらに好ましくは3,000~30,000mPa・sであり、最も好ましいのは10,000~30,000mPa・sである。 The viscosity of the coating solution at 15 ° C. is preferably 100 mPa · s or more, more preferably 100 to 30,000 mPa · s, still more preferably 3,000 to 30,000 mPa · s, and most preferably 10 , 30,000 to 30,000 mPa · s.
 塗布および乾燥方法としては、高屈折率層用塗布液および低屈折率層用塗布液を30℃以上に加温して、塗布を行った後、形成した塗膜の温度を1~15℃に一旦冷却し、10℃以上で乾燥することが好ましく、より好ましくは、乾燥条件として、湿球温度5~50℃、膜面温度10~50℃の範囲の条件で行うことである。また、塗布直後の冷却方式としては、形成された塗膜均一性の観点から、水平セット方式で行うことが好ましい。 As a coating and drying method, the coating solution for high refractive index layer and the coating solution for low refractive index layer are heated to 30 ° C. or more, and after coating, the temperature of the formed coating film is set to 1 to 15 ° C. It is preferably cooled once and dried at 10 ° C. or higher, and more preferably, the drying conditions are wet bulb temperature 5 to 50 ° C. and film surface temperature 10 to 50 ° C. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the formed coating-film uniformity.
 塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号公報、米国特許第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。 As the coating method, for example, roll coating method, rod bar coating method, air knife coating method, spray coating method, curtain coating method, US Pat. No. 2,761,419, US Pat. No. 2,761,791 The slide bead coating method using the hopper described in 1), the extrusion coating method and the like are preferably used.
 (塗布および乾燥方法)
 塗布および乾燥方法の条件は、特に制限されないが、例えば、逐次塗布法の場合は、まず、30~60℃に加温した高屈折率層用塗布液および低屈折率層用塗布液のいずれか一方を基材上に塗布、乾燥して層を形成した後、もう一方の塗布液をこの層上に塗布、乾燥して積層膜前駆体(ユニット)を形成する。次に、所望の赤外遮蔽性能を発現するために必要なユニット数を、前記方法にて逐次塗布、乾燥して積層させて積層膜前駆体を得る。乾燥する際は、形成した塗膜を、30℃以上で乾燥することが好ましい。例えば、湿球温度5~50℃、膜面温度30~100℃(好ましくは10~50℃)の範囲で乾燥するのが好ましく、例えば、40~60℃の温風を1~5秒吹き付けて乾燥する。乾燥方法としては、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。また単一プロセスでの乾燥よりも多段プロセスの乾燥が好ましく、恒率乾燥部の温度<減率乾燥部の温度にするのがより好ましい。この場合の恒率乾燥部の温度範囲は30~60℃、減率乾燥部の温度範囲は50~100℃にすることが好ましい。
(Coating and drying method)
The conditions for the coating and drying method are not particularly limited. For example, in the case of the sequential coating method, first, one of the coating solution for the high refractive index layer and the coating solution for the low refractive index layer heated to 30 to 60 ° C. One is coated on a substrate and dried to form a layer, and then the other coating liquid is coated on this layer and dried to form a laminated film precursor (unit). Next, the number of units necessary for expressing the desired infrared shielding performance is sequentially applied and dried by the above method to obtain a laminated film precursor. When drying, it is preferable to dry the formed coating film at 30 ° C. or higher. For example, drying is preferably performed in the range of a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 30 to 100 ° C. (preferably 10 to 50 ° C.). For example, hot air of 40 to 60 ° C. is blown for 1 to 5 seconds. dry. As a drying method, warm air drying, infrared drying, and microwave drying are used. Further, drying in a multi-stage process is preferable to drying in a single process, and it is more preferable to set the temperature of the constant rate drying section <the temperature of the decremental drying section. In this case, the temperature range of the constant rate drying section is preferably 30 to 60 ° C., and the temperature range of the decreasing rate drying section is preferably 50 to 100 ° C.
 また、同時重層塗布を行う場合の塗布および乾燥方法の条件は、高屈折率層用塗布液および低屈折率層用塗布液を30~60℃に加温して、基材上に高屈折率層用塗布液および低屈折率層用塗布液の同時重層塗布を行った後、形成した塗膜の温度を好ましくは1~15℃にいったん冷却し(セット)、その後10℃以上で乾燥することが好ましい。より好ましい乾燥条件は、湿球温度5~50℃、膜面温度10~50℃の範囲の条件である。例えば、80℃の温風を1~5秒吹き付けて乾燥する。また、塗布直後の冷却方式としては、形成された塗膜の均一性向上の観点から、水平セット方式で行うことが好ましい。 The conditions of the coating and drying method when performing simultaneous multilayer coating are as follows. The coating solution for the high refractive index layer and the coating solution for the low refractive index layer are heated to 30 to 60 ° C., and the high refractive index is applied onto the substrate. After the simultaneous multilayer coating of the layer coating solution and the low refractive index layer coating solution, the temperature of the formed coating film is preferably cooled (set) preferably to 1 to 15 ° C., and then dried at 10 ° C. or higher. Is preferred. More preferable drying conditions are a wet bulb temperature of 5 to 50 ° C. and a film surface temperature of 10 to 50 ° C. For example, it is dried by blowing warm air at 80 ° C. for 1 to 5 seconds. Moreover, as a cooling method immediately after application | coating, it is preferable to carry out by a horizontal set system from a viewpoint of the uniformity improvement of the formed coating film.
 ここで、前記セットとは、冷風等を塗膜に当てて温度を下げるなどの手段により、塗膜組成物の粘度を高め、各層間および各層内の物質の流動性を低下させたり、またゲル化する工程のことを意味する。冷風を塗布膜に表面から当てて、塗布膜の表面に指を押し付けたときに指に何もつかなくなった状態を、セット完了の状態と定義する。 Here, the set means that the viscosity of the coating composition is increased by means such as lowering the temperature by applying cold air or the like to the coating film, the fluidity of the substances in each layer and in each layer is reduced, or the gel It means the process of converting. A state in which the cold air is applied to the coating film from the surface and the finger is pressed against the surface of the coating film is defined as a set completion state.
 塗布した時点から、冷風を当ててセットが完了するまでの時間(セット時間)は、5分以内であることが好ましく、2分以内であることがより好ましい。また、下限の時間は特に制限されないが、45秒以上の時間をとることが好ましい。このようなセット時間であれば、層中の成分を十分混合でき、金属酸化物微粒子の層間拡散を抑えて、高屈折率層と低屈折率層との屈折率差を十分とることができる。なお、高屈折率層と低屈折率層との間の中間層の高弾性化が素早く起こるのであれば、セットさせる工程は設けなくてもよい。 The time (setting time) from the time of application until the setting is completed by applying cold air is preferably within 5 minutes, and more preferably within 2 minutes. Further, the lower limit time is not particularly limited, but it is preferable to take 45 seconds or more. With such a set time, the components in the layer can be sufficiently mixed, the interlayer diffusion of the metal oxide fine particles can be suppressed, and the difference in refractive index between the high refractive index layer and the low refractive index layer can be sufficiently taken. If the intermediate layer between the high-refractive index layer and the low-refractive index layer is highly elastic, the setting step may not be provided.
 セット時間の調整は、ポリビニルアルコール系樹脂(バインダー樹脂)の濃度や金属酸化物粒子の濃度を調整したり、ゼラチン、ペクチン、寒天、カラギ-ナン、ゲランガム等の各種公知のゲル化剤など、他の成分を添加することにより調整することができる。 The set time can be adjusted by adjusting the concentration of polyvinyl alcohol resin (binder resin) and metal oxide particles, various known gelling agents such as gelatin, pectin, agar, carrageenan, gellan gum, etc. It can adjust by adding the component of.
 冷風の温度は、0~25℃であることが好ましく、5~10℃であることがより好ましい。また、塗膜が冷風に晒される時間は、塗膜の搬送速度にもよるが、好ましくは10~360秒、より好ましくは10~300秒、さらに好ましくは10~120秒である。 The temperature of the cold air is preferably 0 to 25 ° C, more preferably 5 to 10 ° C. The time for which the coating film is exposed to cold air is preferably 10 to 360 seconds, more preferably 10 to 300 seconds, and further preferably 10 to 120 seconds, although it depends on the transport speed of the coating film.
 高屈折率層用塗布液および低屈折率層用塗布液の塗布厚は、上記で示したような好ましい乾燥時の厚さとなるように塗布すればよい。 What is necessary is just to apply | coat so that the coating thickness of the coating liquid for high refractive index layers and the coating liquid for low refractive index layers may become the preferable thickness at the time of drying as shown above.
 [赤外遮蔽体]
 本発明により提供される赤外遮蔽フィルムは、幅広い分野に応用することができる。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備に貼り合せ、赤外遮蔽効果を付与する赤外遮蔽フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。
[Infrared shield]
The infrared shielding film provided by the present invention can be applied to a wide range of fields. For example, pasting to facilities exposed to sunlight for a long time, such as outdoor windows of buildings and automobile windows, films for window pasting such as infrared shielding films that give an infrared shielding effect, films for agricultural greenhouses, etc. As, it is mainly used for the purpose of improving the weather resistance.
 特に、本発明に係る赤外遮蔽フィルムが直接または接着剤を介してガラスまたはガラス代替の樹脂などの基体に貼合されている部材に好適である。 Particularly, it is suitable for a member in which the infrared shielding film according to the present invention is bonded to a substrate such as glass or a glass substitute resin directly or via an adhesive.
 すなわち、本発明のさらに他の形態によれば、本発明に係る赤外遮蔽フィルムを、基体の少なくとも一方の面に設けた、赤外遮蔽体をも提供する。 That is, according to still another embodiment of the present invention, there is also provided an infrared shielding body in which the infrared shielding film according to the present invention is provided on at least one surface of a substrate.
 前記基体の具体的な例としては、例えば、ガラス、ポリカーボネート樹脂、ポリスルホン樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスルフィド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、スチレン樹脂、塩化ビニル樹脂、金属板、セラミック等が挙げられる。樹脂の種類は、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂のいずれでも良く、これらを2種以上組み合わせて用いても良い。本発明で使用されうる基体は、押出成形、カレンダー成形、射出成形、中空成形、圧縮成形等、公知の方法で製造することができる。基体の厚さは特に制限されないが、通常0.1mm~5cmである。 Specific examples of the substrate include, for example, glass, polycarbonate resin, polysulfone resin, acrylic resin, polyolefin resin, polyether resin, polyester resin, polyamide resin, polysulfide resin, unsaturated polyester resin, epoxy resin, melamine resin, Examples thereof include phenol resin, diallyl phthalate resin, polyimide resin, urethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, styrene resin, vinyl chloride resin, metal plate, ceramic and the like. The type of resin may be any of a thermoplastic resin, a thermosetting resin, and an ionizing radiation curable resin, and two or more of these may be used in combination. The substrate that can be used in the present invention can be produced by a known method such as extrusion molding, calendar molding, injection molding, hollow molding, compression molding and the like. The thickness of the substrate is not particularly limited, but is usually 0.1 mm to 5 cm.
 赤外遮蔽フィルムと基体とを貼り合わせる接着層または粘着層は、赤外遮蔽フィルムを日光(熱線)入射面側に設置することが好ましい。また、本発明に係る赤外遮蔽フィルムを、窓ガラスと基体との間に挟持すると、水分等の周囲のガスから封止でき耐久性に優れるため好ましい。本発明に係る赤外遮蔽フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。 The adhesive layer or adhesive layer that bonds the infrared shielding film and the substrate is preferably provided with the infrared shielding film on the sunlight (heat ray) incident surface side. In addition, it is preferable to sandwich the infrared shielding film according to the present invention between a window glass and a substrate because it can be sealed from surrounding gas such as moisture and has excellent durability. Even if the infrared shielding film according to the present invention is installed outdoors or outside a car (for external application), it is preferable because of environmental durability.
 本発明に適用可能な接着剤としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤を用いることができる。 As the adhesive applicable to the present invention, an adhesive mainly composed of a photocurable or thermosetting resin can be used.
 接着剤は紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤が好ましい。さらに粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。 The adhesive preferably has durability against ultraviolet rays, and is preferably an acrylic adhesive or a silicone adhesive. Furthermore, an acrylic adhesive is preferable from the viewpoint of adhesive properties and cost. In particular, a solvent system is preferable in the acrylic pressure-sensitive adhesive because the peel strength can be easily controlled. When a solution polymerization polymer is used as the acrylic solvent-based pressure-sensitive adhesive, known monomers can be used as the monomer.
 また、合わせガラスの中間層として用いられるポリビニルブチラール系樹脂、あるいはエチレン-酢酸ビニル共重合体系樹脂を用いてもよい。具体的には可塑性ポリビニルブチラール(積水化学工業社製、三菱モンサント社製等)、エチレン-酢酸ビニル共重合体(デュポン社製、武田薬品工業社製、デュラミン)、変性エチレン-酢酸ビニル共重合体(東ソー社製、メルセンG)等である。なお、接着層には紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合してもよい。 Further, a polyvinyl butyral resin or an ethylene-vinyl acetate copolymer resin used as an intermediate layer of laminated glass may be used. Specifically, plastic polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Co., Ltd.), ethylene-vinyl acetate copolymer (manufactured by DuPont, Takeda Pharmaceutical Company Limited, duramin), modified ethylene-vinyl acetate copolymer (Mersen G, manufactured by Tosoh Corporation). In addition, you may add and mix | blend an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a lubricant, a filler, coloring, an adhesion adjusting agent etc. suitably in a contact bonding layer.
 赤外遮蔽フィルムまたは赤外遮蔽体の断熱性能、日射熱遮へい性能は、一般的にJIS R 3209-1998(複層ガラス)、JIS R 3106-1998(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)、JIS R 3107-1998(板ガラス類の熱抵抗および建築における熱貫流率の算定方法)に準拠した方法により求めることができる。 The heat insulation performance and solar heat shielding performance of infrared shielding films or infrared shields are generally JIS R 3209-1998 (multi-layer glass), JIS R 3106-1998 (transmittance / reflectance / emissivity of sheet glass).・ Test method for solar heat acquisition rate), JIS R 3107-1998 (calculation method of thermal resistance of plate glass and heat transmissivity in architecture).
 日射透過率、日射反射率、放射率、可視光透過率の測定は、(1)波長(300~2500nm)の分光測光器を用い、各種単板ガラスの分光透過率、分光反射率を測定する。また、波長5.5~50μmの分光測定器を用いて放射率を測定する。なお、フロート板ガラス、磨き板ガラス、型板ガラス、熱線吸収板ガラスの放射率は既定値を用いる。(2)日射透過率、日射反射率、日射吸収率、修正放射率の算出は、JIS R 3106-1998に従い、日射透過率、日射反射率、日射吸収率、垂直放射率を算出する。修正放射率に関しては、JIS R 3107-1998に示されている係数を、垂直放射率に乗ずることにより求める。断熱性、日射熱遮へい性の算出は、(1)厚さの測定値、修正放射率を用いJIS R 3209-1998に従って複層ガラスの熱抵抗を算出する。ただし中空層が2mmを超える場合はJIS R 3107-1998に従って中空層の気体熱コンダクタンスを求める。(2)断熱性は、複層ガラスの熱抵抗に熱伝達抵抗を加えて熱貫流抵抗で求める。(3)日射熱遮蔽性はJIS R 3106-1998により日射熱取得率を求め、1から差し引いて算出する。 Measure solar transmittance, solar reflectance, emissivity, and visible light transmittance. (1) Using a spectrophotometer with a wavelength (300 to 2500 nm), measure the spectral transmittance and spectral reflectance of various single glass plates. The emissivity is measured using a spectrophotometer having a wavelength of 5.5 to 50 μm. In addition, a predetermined value is used for the emissivity of float plate glass, polished plate glass, mold plate glass, and heat ray absorbing plate glass. (2) For calculating the solar transmittance, solar reflectance, solar absorption rate, and modified emissivity, the solar transmittance, solar reflectance, solar absorption rate, and vertical emissivity are calculated according to JIS R 3106-1998. The corrected emissivity is obtained by multiplying the vertical emissivity by the coefficient shown in JIS R 3107-1998. The heat insulation and solar heat shielding properties are calculated by (1) calculating the thermal resistance of the multi-layer glass according to JIS R 3209-1998 using the measured thickness value and the corrected emissivity. However, when the hollow layer exceeds 2 mm, the gas thermal conductance of the hollow layer is obtained according to JIS R 3107-1998. (2) The heat insulation is obtained by adding a heat transfer resistance to the heat resistance of the double-glazed glass and calculating the heat flow resistance. (3) The solar heat shielding property is calculated by obtaining the solar heat acquisition rate according to JIS R 3106-1998 and subtracting it from 1.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 《赤外遮蔽フィルムの作製》
 [実施例1]
 (低屈折率層用塗布液L1の調製)
 以下の材料を、以下の組成で40℃に加熱しながら、順番に撹拌しながら添加し、低屈折率層用塗布液L1を調製した。
<Production of infrared shielding film>
[Example 1]
(Preparation of coating liquid L1 for low refractive index layer)
The following materials were added in the following composition while being heated to 40 ° C. with stirring in order to prepare a coating solution L1 for a low refractive index layer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (高屈折率層用塗布液H1の調製)
 二酸化チタン水和物を水に懸濁させた水性懸濁液(TiO濃度:100g/L)10L(リットル)に、水酸化ナトリウム水溶液(濃度:10モル/L)30Lを撹拌下で添加し、90℃に昇温し、5時間熟成した後、塩酸で中和、濾過、水洗した。なお、上記反応(処理)において、二酸化チタン水和物は公知の手法に従い、硫酸チタン水溶液を熱加水分解して得られたものを用いた。
(Preparation of coating liquid H1 for high refractive index layer)
30 L of an aqueous sodium hydroxide solution (concentration: 10 mol / L) was added to 10 L (liter) of an aqueous suspension (TiO 2 concentration: 100 g / L) in which titanium dioxide hydrate was suspended in water with stirring. The mixture was heated to 90 ° C., aged for 5 hours, neutralized with hydrochloric acid, filtered, and washed with water. In the above reaction (treatment), titanium dioxide hydrate was obtained by thermal hydrolysis of an aqueous titanium sulfate solution according to a known method.
 塩基処理チタン化合物をTiO濃度が20g/Lになるよう純水に懸濁させ、撹拌下でクエン酸をTiO量に対し0.4mol%加え、昇温した。液温が95℃になったところで、濃塩酸を塩酸濃度30g/Lになるように加え、液温を維持しながら3時間撹拌した。 The base-treated titanium compound was suspended in pure water so that the TiO 2 concentration was 20 g / L, and 0.4 mol% of citric acid was added to the amount of TiO 2 with stirring, and the temperature was raised. When the liquid temperature reached 95 ° C., concentrated hydrochloric acid was added to a hydrochloric acid concentration of 30 g / L, and the mixture was stirred for 3 hours while maintaining the liquid temperature.
 得られた酸化チタンゾル水系分散液のpHおよびゼータ電位を測定したところ、pHは1.4、ゼータ電位は+40mVであった。さらに、マルバーン社製ゼータサイザーナノにより粒径測定を行ったところ、体積平均粒径は35nm、単分散度は16%であった。 When the pH and zeta potential of the obtained titanium oxide sol aqueous dispersion were measured, the pH was 1.4 and the zeta potential was +40 mV. Furthermore, when the particle size was measured by Zetasizer Nano manufactured by Malvern, the volume average particle size was 35 nm, and the monodispersity was 16%.
 体積平均粒径35nmのルチル型酸化チタン粒子を含む20.0質量%酸化チタンゾル水系分散液1kgに純水1kgを添加した。 1 kg of pure water was added to 1 kg of a 20.0 mass% titanium oxide sol aqueous dispersion containing rutile type titanium oxide particles having a volume average particle size of 35 nm.
 ・ケイ酸水溶液の調製
 SiO濃度が2.0質量%のケイ酸水溶液を調製した。
Preparation SiO 2 concentration of silicate solution to prepare a 2.0 wt% aqueous solution silicate.
 ・シリカ変性酸化チタン粒子の調製
 上記の10.0質量%酸化チタンゾル水系分散液0.5kgに、純水2kgを加えた後、90℃に加熱した。その後、2.0質量%のケイ酸水溶液1.3kgを徐々に添加し、次いで、得られた分散液をオートクレーブ中、175℃で18時間加熱処理を行い、さらに濃縮して、コアがルチル型構造を有する酸化チタンで、被覆層がSiOである、20質量%のシリカ変性酸化チタン粒子のゾル水分散液(シリカ変性酸化チタン粒子水分散液)を得た。
-Preparation of silica-modified titanium oxide particles 2 kg of pure water was added to 0.5 kg of the 10.0 mass% titanium oxide sol aqueous dispersion described above, and then heated to 90 ° C. Thereafter, 1.3 kg of a 2.0 mass% aqueous silicic acid solution was gradually added, and then the obtained dispersion was subjected to heat treatment at 175 ° C. for 18 hours in an autoclave, and further concentrated, so that the core was a rutile type. A sol water dispersion (silica-modified titanium oxide particle aqueous dispersion) of 20 mass% silica-modified titanium oxide particles having a structure of titanium oxide and a coating layer of SiO 2 was obtained.
 そして、以下の材料を、以下の組成で40℃に加熱しながら、順番に撹拌しながら添加し、高屈折率層用塗布液H1を調製した。 Then, the following materials were added with the following composition while being heated to 40 ° C. with stirring in order to prepare a coating solution H1 for a high refractive index layer.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (試料1の作製)
 上記で得られた塗布液(低屈折率層用塗布液L1及び高屈折率層用塗布液H1)を、10時間停滞してから、15層重層塗布可能なスライドホッパー塗布装置を用い、40℃に保温しながら、40℃に加温した厚さ50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300:両面易接着層、長さ200m×幅210mm)上に、最下層と最上層は低屈折率層とし、それ以外はそれぞれ交互に、乾燥時の膜厚が最下層の膜厚は1510nm、低屈折率層は各層150nm、高屈折率層は各層150nmになるように計15層の同時重層塗布を行った。
(Preparation of sample 1)
Using the slide hopper coating apparatus capable of coating 15 layers in layers after the coating liquids obtained above (the coating liquid L1 for the low refractive index layer and the coating liquid H1 for the high refractive index layer) were stagnated for 10 hours, On the 50 μm thick polyethylene terephthalate film (Toyobo A4300: double-sided easy-adhesion layer, length 200 m × width 210 mm) heated to 40 ° C., and the lowermost layer and the uppermost layer are low refractive index layers, Other than that, a total of 15 layers were simultaneously applied so that the film thickness at the time of drying was 1510 nm, the low refractive index layer was 150 nm, and the high refractive index layer was 150 nm. .
 塗布直後、5℃の冷風を吹き付けてセットさせた。このとき、表面を指で触れても指に何もつかなくなるまでの時間(セット時間)は5分であった。 Immediately after application, 5 ° C. cold air was blown to set. At this time, even if the surface was touched with a finger, the time until the finger was lost (set time) was 5 minutes.
 セット完了後、80℃の温風を吹き付けて乾燥させて、15層からなる重層塗布品を作
製した。
After completion of the setting, warm air of 80 ° C. was blown and dried to prepare a multi-layer coated product consisting of 15 layers.
 上記15層重層塗布品の裏面に、さらに15層重層塗布を行い、両面計30層からなる試料1を作製した。 Further, a 15-layer coating was applied to the back surface of the 15-layer coating product to prepare Sample 1 consisting of 30 layers on both sides.
 [実施例2]
 実施例1において、ポリビニルアルコール(JP-33、日本酢ビ・ポバール(株)製)の代わりに、ポリビニルアルコール(PVA224、重合度:2400、鹸化度:88mol%、(株)クラレ製)を使用して、高屈折率層用塗布液H2を作製した以外は、実施例1と同様にして、試料2を作製した。
[Example 2]
In Example 1, polyvinyl alcohol (PVA224, degree of polymerization: 2400, degree of saponification: 88 mol%, manufactured by Kuraray Co., Ltd.) was used instead of polyvinyl alcohol (JP-33, manufactured by Nippon Vinegar Poval Co., Ltd.). Sample 2 was prepared in the same manner as in Example 1 except that the coating liquid H2 for the high refractive index layer was prepared.
 [実施例3]
 実施例2において、ポリビニルアルコール(PVA235、(株)クラレ製)の代わりに、ポリビニルアルコール(JP-20、重合度:2000、鹸化度:88mol%、日本酢ビ・ポバール(株)製)を使用して、低屈折率層用塗布液L2を作製した以外は、実施例2と同様にして、試料3を作製した。
[Example 3]
In Example 2, instead of polyvinyl alcohol (PVA235, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (JP-20, degree of polymerization: 2000, degree of saponification: 88 mol%, manufactured by Nihon Vineyard Poval Co., Ltd.) was used. Then, Sample 3 was produced in the same manner as in Example 2 except that the coating liquid L2 for low refractive index layer was produced.
 [実施例4]
 実施例1において、ポリビニルアルコール(JP-33、日本酢ビ・ポバール(株)製)の代わりに、ポリビニルアルコール(JP-20、重合度:2000、鹸化度:88mol%、日本酢ビ・ポバール(株)製)を使用して、高屈折率層用塗布液H3を作製した以外は、実施例1と同様にして、試料4を作製した。
[Example 4]
In Example 1, instead of polyvinyl alcohol (JP-33, manufactured by Nippon Vinegar Pover Co., Ltd.), polyvinyl alcohol (JP-20, degree of polymerization: 2000, degree of saponification: 88 mol%, Nippon Vinegar Pover ( Sample 4 was produced in the same manner as in Example 1 except that the coating liquid H3 for the high refractive index layer was produced.
 [実施例5]
 実施例2において、ポリビニルアルコール(PVA235(株)クラレ製)の代わりに、ポリビニルアルコール(JP-45、重合度:4500、鹸化度:88mol%、日本酢ビ・ポバール(株)製)を使用して、低屈折率層用塗布液L3を作製した以外は、実施例2と同様にして、試料5を作製した。
[Example 5]
In Example 2, polyvinyl alcohol (JP-45, degree of polymerization: 4500, degree of saponification: 88 mol%, made by Nippon Vineyard Poval Co., Ltd.) was used instead of polyvinyl alcohol (PVA235, manufactured by Kuraray Co., Ltd.). Sample 5 was prepared in the same manner as in Example 2 except that the coating liquid L3 for the low refractive index layer was prepared.
 [実施例6]
 実施例5において、ポリビニルアルコール(PVA224、(株)クラレ製)の代わりに、ポリビニルアルコール(JP-15、重合度:1500、鹸化度:88mol%、日本酢ビ・ポバール(株)製)を使用して、高屈折率層用塗布液H4を作製した以外は、実施例5と同様にして、試料6を作製した。
[Example 6]
In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (JP-15, degree of polymerization: 1500, degree of saponification: 88 mol%, manufactured by Nihon Vineyard Poval Co., Ltd.) was used. Sample 6 was prepared in the same manner as in Example 5 except that the coating liquid H4 for the high refractive index layer was prepared.
 [実施例7]
 実施例5において、ポリビニルアルコール(PVA224、(株)クラレ製)の代わりに、ポリビニルアルコール(PVA205、重合度:500、鹸化度:88mol%、(株)クラレ製)を使用して、高屈折率層用塗布液H5を作製した以外は、実施例5と同様にして、試料7を作製した。
[Example 7]
In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (PVA205, degree of polymerization: 500, degree of saponification: 88 mol%, manufactured by Kuraray Co., Ltd.) was used. Sample 7 was prepared in the same manner as in Example 5 except that the layer coating solution H5 was prepared.
 [実施例8]
 実施例5において、最下層の乾燥時の膜厚が150nmになる(即ち、全ての屈折率層の乾燥時の膜厚が各150nmになる)ように同時重層塗布を行った以外は、実施例5と同様にして、試料8を作製した。
[Example 8]
In Example 5, except that the simultaneous multilayer coating was performed so that the thickness of the lowermost layer when dried was 150 nm (that is, the thickness of all refractive index layers when dried was 150 nm). Sample 8 was produced in the same manner as in Example 5.
 [実施例9]
 実施例5において、ポリビニルアルコール(PVA224、(株)クラレ製)の代わりに、ポリビニルアルコール(ゴーセファイマーZ-410、重合度:2300、鹸化度:98mol%、日本合成化学工業(株)製)を使用して、高屈折率層用塗布液H6を作製した以外は、実施例5と同様にして、試料9を作製した。
[Example 9]
In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (Gosephemer Z-410, polymerization degree: 2300, saponification degree: 98 mol%, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) Sample 9 was prepared in the same manner as in Example 5 except that the coating liquid H6 for the high refractive index layer was prepared using
 [実施例10]
 実施例5において、ポリビニルアルコール(PVA224、(株)クラレ製)の代わりに、ポリビニルアルコール(PVA124、重合度:2400、鹸化度:98.5mol%、(株)クラレ製)を使用して、高屈折率層用塗布液H7を作製した以外は、実施例5と同様にして、試料10を作製した。
[Example 10]
In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (PVA124, polymerization degree: 2400, saponification degree: 98.5 mol%, manufactured by Kuraray Co., Ltd.) was used. A sample 10 was produced in the same manner as in Example 5 except that the refractive index layer coating solution H7 was produced.
 [実施例11]
 (低屈折率層用塗布液L4の調製)
 実施例1(低屈折率層用塗布液L1)において、ポリビニルアルコール(PVA235、(株)クラレ製)の代わりに、ポリビニルアルコール(JP-60、重合度:6000、鹸化度:88mol%、日本酢ビ・ポバール(株)製)を使用した以外は、実施例1と同様にして、低屈折率層用塗布液L4を作製した。
[Example 11]
(Preparation of coating liquid L4 for low refractive index layer)
In Example 1 (low refractive index layer coating liquid L1), instead of polyvinyl alcohol (PVA235, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (JP-60, polymerization degree: 6000, saponification degree: 88 mol%, Japanese vinegar) A low-refractive-index layer coating solution L4 was produced in the same manner as in Example 1, except that Bi Poval Co., Ltd. was used.
 (高屈折率層用塗布液H8の調製)
 実施例1(高屈折率層用塗布液H1)において、ポリビニルアルコール(JP-33、日本酢ビ・ポバール(株)製)の代わりに、ポリビニルアルコール(PVA235、重合度:3500、鹸化度:88mol%、(株)クラレ製)を使用した以外は、実施例1と同様にして、高屈折率層用塗布液H8を作製した。
(Preparation of coating liquid H8 for high refractive index layer)
In Example 1 (high refractive index coating solution H1), polyvinyl alcohol (PVA235, polymerization degree: 3500, saponification degree: 88 mol) was used instead of polyvinyl alcohol (JP-33, manufactured by Nippon Bibi-Poval Co., Ltd.). %, Manufactured by Kuraray Co., Ltd.), a high refractive index layer coating solution H8 was prepared in the same manner as in Example 1.
 (試料11の作製)
 実施例1において、低屈折率層用塗布液L1の代わりに上記低屈折率層用塗布液L4を、および高屈折率層用塗布液H1の代わりに上記高屈折率層用塗布液H8を、それぞれ、使用した以外は、実施例1と同様にして、試料11を作製した。
(Preparation of sample 11)
In Example 1, the low refractive index layer coating liquid L4 instead of the low refractive index layer coating liquid L1, and the high refractive index layer coating liquid H8 instead of the high refractive index layer coating liquid H1. Sample 11 was produced in the same manner as in Example 1 except that each was used.
 [実施例12]
 (低屈折率層用塗布液L5の調製)
 下記10質量%含フッ素ポリマー1水溶液45質量部に、3質量%ホウ酸水溶液10質量部を添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(JC-25(重合度2500、鹸化度99.5mol%、日本酢ビ・ポバール社製)の5質量%水溶液40質量部、界面活性剤(ラピゾールA30、日油製)の1質量%水溶液1質量部を添加し、純水2質量部を加えて低屈折率層用塗布液L5を調製した。
[Example 12]
(Preparation of coating liquid L5 for low refractive index layer)
After adding 10 parts by weight of a 3% by weight boric acid aqueous solution to 45 parts by weight of the following 10% by weight fluorine-containing polymer 1 aqueous solution, the mixture is heated to 45 ° C. and stirred with polyvinyl alcohol (JC-25 (degree of polymerization 2500, saponification). Degree 99.5 mol%, manufactured by Nihon Vinegar & Poval Co., Ltd.) 40 mass parts of 5 mass% aqueous solution, 1 mass part of 1 mass% aqueous solution of surfactant (Lapisol A30, manufactured by NOF Corporation) was added, and 2 mass of pure water. Part was added to prepare a coating solution L5 for a low refractive index layer.
 (含フッ素ポリマー1水溶液の調製)
 窒素雰囲気下、還流冷却管を備えた1Lのフラスコに6.4gの1H,1H,2H,2H-ヘプタデカフルオロデシルアクリレートと、26.4gのメトキシポリエチレングリコール#1000メタクリレートと、34.9gのメチルメタクリレートを、150mlのイソプロパノールと100mlの純水の混合溶媒に加えた。1時間室温で撹拌した後、10mlの純水に溶かした1.2gの過硫酸アンモニウムを加え、65℃で16時間加熱撹拌した。得られた反応混合物を冷ました後、ロータリーエバポレーターでイソプロパノールを留去し、さらに純水を加えて、10質量%含フッ素ポリマー1水溶液を調製した。GPCを用いて分子量を測定したところ、16,000であった。
(Preparation of fluoropolymer 1 aqueous solution)
In a 1 L flask equipped with a reflux condenser under a nitrogen atmosphere, 6.4 g of 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate, 26.4 g of methoxypolyethylene glycol # 1000 methacrylate, and 34.9 g of methyl The methacrylate was added to a mixed solvent of 150 ml of isopropanol and 100 ml of pure water. After stirring at room temperature for 1 hour, 1.2 g of ammonium persulfate dissolved in 10 ml of pure water was added, and the mixture was heated and stirred at 65 ° C. for 16 hours. After cooling the obtained reaction mixture, isopropanol was distilled off with a rotary evaporator, and pure water was further added to prepare a 10% by mass aqueous solution containing a fluoropolymer 1. It was 16,000 when molecular weight was measured using GPC.
 (高屈折率層用塗布液H9の調製)
 ポリビニルアルコール(PVA217、重合度1700、鹸化度88.0mol%、クラレ製)の5質量%水溶液80質量部を45℃で加熱・撹拌しているなかに、界面活性剤(ラピゾールA30、日油社製)の1質量%水溶液1質量部を添加し、純水19質量部を加えて高屈折率層用塗布液H9を調製した。
(Preparation of coating liquid H9 for high refractive index layer)
While 80 parts by mass of a 5% by mass aqueous solution of polyvinyl alcohol (PVA217, polymerization degree 1700, saponification degree 88.0 mol%, manufactured by Kuraray Co., Ltd.) is heated and stirred at 45 ° C., a surfactant (RAPIDOL A30, NOF Corporation) 1 part by mass of 1% by weight aqueous solution (manufactured) and 19 parts by mass of pure water were added to prepare a coating solution H9 for a high refractive index layer.
 (試料12の作製)
 実施例1において、低屈折率層用塗布液L1の代わりに上記低屈折率層用塗布液L5を、および高屈折率層用塗布液H1の代わりに上記高屈折率層用塗布液H9を、それぞれ、使用した以外は、実施例1と同様にして、試料12を作製した。
(Preparation of sample 12)
In Example 1, the low refractive index layer coating liquid L5 is used instead of the low refractive index layer coating liquid L1, and the high refractive index layer coating liquid H9 is used instead of the high refractive index layer coating liquid H1. Sample 12 was produced in the same manner as in Example 1 except that each was used.
 [実施例13]
 (低屈折率層用塗布液L6の調製)
 上記10質量%含フッ素ポリマー1水溶液45質量部に、3質量%ホウ酸水溶液10質量部を添加した後、45℃に加熱し、撹拌しながら、ポリビニルアルコール(JC-25(重合度2500、鹸化度99.5mol%、日本酢ビ・ポバール社製)と、JM-17(重合度1700、鹸化度96.4mol%、日本酢ビ・ポバール社製)と、JP-15(重合度1500、鹸化度89.8mol%、日本酢ビ・ポバール社製)との、86:5:9(固形分質量比)の混合物)の5質量%水溶液40質量部、界面活性剤(ラピゾールA30、日油製)の1質量%水溶液1質量部を添加し、純水2質量部を加えて低屈折率層用塗布液L6を調製した。
[Example 13]
(Preparation of coating liquid L6 for low refractive index layer)
After adding 10 parts by weight of a 3% by weight boric acid aqueous solution to 45 parts by weight of the 10% by weight fluorine-containing polymer 1 aqueous solution, the mixture was heated to 45 ° C. and stirred while being stirred with polyvinyl alcohol (JC-25 (degree of polymerization 2500, saponification). Degree 99.5 mol%, manufactured by Nihon Acetate Bi-Poval), JM-17 (degree of polymerization 1700, degree of saponification 96.4 mol%, Nihon Acetate-Poval), JP-15 (degree of polymerization 1500, saponification) 40 mass parts of 5 mass% aqueous solution of 86: 5: 9 (solid content mass ratio)) and surfactant (rapizole A30, manufactured by NOF Corporation). 1 parts by weight of a 1% by weight aqueous solution was added, and 2 parts by weight of pure water was added to prepare a coating solution L6 for a low refractive index layer.
 (試料13の作製)
 実施例1において、低屈折率層用塗布液L1の代わりに上記低屈折率層用塗布液L6を、および高屈折率層用塗布液H1の代わりに上記高屈折率層用塗布液H9を、それぞれ、使用した以外は、実施例1と同様にして、試料13を作製した。
(Preparation of Sample 13)
In Example 1, the low refractive index layer coating liquid L6 is used instead of the low refractive index layer coating liquid L1, and the high refractive index layer coating liquid H9 is used instead of the high refractive index layer coating liquid H1. Sample 13 was prepared in the same manner as in Example 1 except that each was used.
 [実施例14]
 (高屈折率層用塗布液H10の調製)
 高屈折率層用塗布液H1のポリビニルアルコール(JP-33)の5質量%水溶液に代えて、ポリビニルアルコール(JC-25(重合度2500、鹸化度99.5mol%、日本酢ビ・ポバール社製)と、JM-17、重合度1700、鹸化度96.4mol%、日本酢ビ・ポバール社製)と、JP-15(重合度1500、鹸化度89.8mol%、日本酢ビ・ポバール社製)と、JP-33(重合度3300、鹸化度86.7mol%、日本酢ビ・ポバール社製)と、JE-18E(重合度1800、鹸化度83.5mol%、日本酢ビ・ポバール社製)と、JL-25E(重合度2500、鹸化度79.5mol%、日本酢ビ・ポバール社製)との、10:25:25:13:13:14(固形分質量比)の混合物)の5質量%水溶液を使用したほかは高屈折率層用塗布液H1と同様にして高屈折率層用塗布液H10を調製した。
[Example 14]
(Preparation of coating liquid H10 for high refractive index layer)
Instead of a 5% by weight aqueous solution of polyvinyl alcohol (JP-33) in the coating liquid H1 for the high refractive index layer, polyvinyl alcohol (JC-25 (polymerization degree 2500, saponification degree 99.5 mol%, manufactured by Nihon Vineyard-Povar) ), JM-17, polymerization degree 1700, saponification degree 96.4 mol%, manufactured by Nihon Acetate Bi-Poval) and JP-15 (polymerization degree 1500, saponification degree 89.8 mol%, manufactured by Nihon Acetate Bi-Poval) ), JP-33 (polymerization degree 3300, saponification degree 86.7 mol%, manufactured by Nihon Acetate Bipoval), and JE-18E (polymerization degree 1800, saponification degree 83.5 mol%, manufactured by Nihon Acetate Bipoval) ) And JL-25E (polymerization degree 2500, saponification degree 79.5 mol%, manufactured by Nihon Acetate / Poval) 10: 25: 25: 13: 13: 14 (solid content mass ratio)) 5% by weight water soluble Besides using the in the same manner as the high-refractive index layer coating solution H1 was prepared a high refractive index layer coating solution H10.
 (試料14の作製)
 実施例1において、高屈折率層用塗布液H1の代わりに上記高屈折率層用塗布液H10を、使用した以外は、実施例1と同様にして、試料14を作製した。
(Preparation of sample 14)
A sample 14 was produced in the same manner as in Example 1, except that the high refractive index layer coating solution H10 was used instead of the high refractive index layer coating solution H1.
 [実施例15]
 (試料15の作製)
 実施例3おいて、最下層の乾燥時の膜厚が2250nmとなるように塗布した以外は、実施例3と同様にして、試料15を作成した。
[Example 15]
(Preparation of sample 15)
In Example 3, Sample 15 was prepared in the same manner as in Example 3 except that the lowermost layer was coated so that the film thickness when dried was 2250 nm.
 [実施例16] (試料16の作製)
 実施例3において、最下層の乾燥時の膜厚が3000nmとなるように塗布した以外は、実施例3と同様にして、試料16を作成した。
[Example 16] (Preparation of Sample 16)
In Example 3, Sample 16 was prepared in the same manner as in Example 3, except that coating was performed so that the thickness of the lowermost layer when dried was 3000 nm.
 [実施例17] (試料17の作製)
 実施例3において、最下層の乾燥時の膜厚が750nmとなるように塗布した以外は、実施例3と同様にして、試料17を作成した。
[Example 17] (Preparation of Sample 17)
In Example 3, Sample 17 was prepared in the same manner as in Example 3 except that the lowermost layer was coated so that the film thickness when dried was 750 nm.
 [実施例18]
 (低屈折率層用塗布液L7の調製)
 低屈折率層用塗布液L1のポリビニルアルコール(PVA235)の5質量%水溶液に代えて、ポリビニルアルコールZ-410(重合度2300、日本合成化学工業(株)製)と、ポリビニルアルコール(R-1130(重合度1700、鹸化度98.5mol%、クラレ社製)と、PVA235、重合度3500、クラレ社製)との、40:50:10(固形分質量比)の混合物)の5質量%水溶液を使用したほかは低屈折率層用塗布液L1と同様にして低屈折率層用塗布液L7を調製した。
[Example 18]
(Preparation of coating solution L7 for low refractive index layer)
Instead of a 5% by mass aqueous solution of polyvinyl alcohol (PVA235) in the coating liquid L1 for the low refractive index layer, polyvinyl alcohol Z-410 (degree of polymerization 2300, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and polyvinyl alcohol (R-1130) (Mixture ratio 1700, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd.) and PVA235, polymerization degree 3500, manufactured by Kuraray Co., Ltd.) The coating liquid L7 for low refractive index layers was prepared in the same manner as the coating liquid L1 for low refractive index layers except that was used.
 (高屈折率層用塗布液H11の調製)
 高屈折率層用塗布液H1のポリビニルアルコール(JP-33)の5質量%水溶液に代えて、ポリビニルアルコール(PVA103(重合度300、鹸化度98.5mol%、クラレ社製)と、PVA117、重合度1700、鹸化度98.5mol%、クラレ社製)と、Z-410(重合度2300、日本合成化学工業(株)製)との、30:60:10(固形分質量比)の混合物)の5質量%水溶液を使用したほかは高屈折率層用塗布液H1と同様にして高屈折率層用塗布液H11を調製した。
(Preparation of coating liquid H11 for high refractive index layer)
Instead of a 5 mass% aqueous solution of polyvinyl alcohol (JP-33) in the coating liquid H1 for the high refractive index layer, polyvinyl alcohol (PVA103 (polymerization degree 300, saponification degree 98.5 mol%, manufactured by Kuraray Co., Ltd.), PVA117, polymerization And a degree of saponification of 98.5 mol%, manufactured by Kuraray Co., Ltd.) and Z-410 (polymerization degree of 2300, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), 30:60:10 (solid content mass ratio)) A high-refractive-index layer coating solution H11 was prepared in the same manner as the high-refractive-index layer coating solution H1 except that a 5% by mass aqueous solution was used.
 (試料18の作製)
 実施例1において、高屈折率層用塗布液H1の代わりに上記高屈折率層用塗布液H11を、低屈折率層用塗布液L1の代わりに上記低屈折率層用塗布液L7を使用した以外は、実施例1と同様にして、試料18を作製した。
(Preparation of sample 18)
In Example 1, the high refractive index layer coating liquid H11 was used instead of the high refractive index layer coating liquid H1, and the low refractive index layer coating liquid L7 was used instead of the low refractive index layer coating liquid L1. Sample 18 was made in the same manner as Example 1 except for the above.
 [実施例19]
 (低屈折率層用塗布液L8の調製)
 低屈折率層用塗布液L1のポリビニルアルコール(PVA235)の5質量%水溶液に代えて、ポリビニルアルコール(PVA235、重合度3500、クラレ社製)と、ポリビニルアルコール(PVA205(重合度500、クラレ社製)との、25:75(固形分質量比)の混合物)の5質量%水溶液を使用したほかは低屈折率層用塗布液L1と同様にして低屈折率層用塗布液L8を調製した。
[Example 19]
(Preparation of coating liquid L8 for low refractive index layer)
Instead of the 5 mass% aqueous solution of polyvinyl alcohol (PVA235) in the coating liquid L1 for the low refractive index layer, polyvinyl alcohol (PVA235, polymerization degree 3500, manufactured by Kuraray Co., Ltd.) and polyvinyl alcohol (PVA205 (polymerization degree 500, manufactured by Kuraray Co., Ltd.) A low refractive index layer coating liquid L8 was prepared in the same manner as the low refractive index layer coating liquid L1 except that a 5% by weight aqueous solution of 25:75 (solid content mass ratio) was used.
 (試料19の作製)
 実施例4において、低屈折率層用塗布液L1の代わりに上記低屈折率層用塗布液L8を使用した以外は、実施例4と同様にして、試料19を作製した。
(Preparation of Sample 19)
In Example 4, Sample 19 was produced in the same manner as in Example 4 except that the low refractive index layer coating liquid L8 was used instead of the low refractive index layer coating liquid L1.
 [比較例1]
 実施例5において、ポリビニルアルコール(PVA224、(株)クラレ製)の代わりに、ポリビニルアルコール(JP-45、重合度:4500、鹸化度:88mol%、日本酢ビ・ポバール(株)製)を使用して、高屈折率層用塗布液H12を作製した以外は、実施例5と同様にして、試料20を作製した。
[Comparative Example 1]
In Example 5, instead of polyvinyl alcohol (PVA224, manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (JP-45, degree of polymerization: 4500, degree of saponification: 88 mol%, manufactured by Nippon Vineyard Poval Co., Ltd.) was used. A sample 20 was prepared in the same manner as in Example 5 except that the high refractive index layer coating solution H12 was prepared.
 上記実施例1~19および比較例1の試料(赤外遮蔽フィルム試料1~20)の組成を下記表1及び2に要約する。 The compositions of the samples of Examples 1 to 19 and Comparative Example 1 (infrared shielding film samples 1 to 20) are summarized in Tables 1 and 2 below.
 《赤外遮蔽フィルムの評価》
 上記で作製した各赤外遮蔽フィルム試料について、下記の性能評価を行った。結果を下記表3に示す。
<Evaluation of infrared shielding film>
The following performance evaluation was performed about each infrared shielding film sample produced above. The results are shown in Table 3 below.
 (各層の単膜屈折率の測定)
 基材上に屈折率を測定する対象層(高屈折率層、低屈折率層)をそれぞれ単層で塗設したサンプルを作製し、下記の方法に従って、各高屈折率層および低屈折率層の屈折率を求めた。
(Measurement of single film refractive index of each layer)
Samples are prepared by coating the target layers (high refractive index layer and low refractive index layer) whose refractive index is measured on the base material as single layers, and according to the following method, each of the high refractive index layer and the low refractive index layer The refractive index of was determined.
 分光光度計として、U-4000型(日立製作所社製)を用いて、各試料の測定側の裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(400nm~700nm)の反射率の測定結果より、屈折率を求めた。 Using a U-4000 model (manufactured by Hitachi, Ltd.) as a spectrophotometer, the back surface on the measurement side of each sample is roughened, and then light absorption is performed with a black spray to reflect light on the back surface. The refractive index was obtained from the measurement result of the reflectance in the visible light region (400 nm to 700 nm) under the condition of regular reflection at 5 degrees.
 上記方法に従って各層の屈折率を測定した結果、試料1~20の高屈折率層、低屈折率層の屈折率差は、いずれも0.3以上であることを確認した。 As a result of measuring the refractive index of each layer according to the above method, it was confirmed that the refractive index difference between the high refractive index layer and the low refractive index layer of Samples 1 to 20 was 0.3 or more.
 (可視光透過率および赤外透過率の測定)
 分光光度計(積分球使用、日立製作所社製、U-4000型)を用い、各赤外遮蔽フィルム試料の300nm~2000nmの領域における可視光透過率(400nm~700nm)及び赤外透過率(800~1300nm)を測定した。
(Measurement of visible light transmittance and infrared transmittance)
Using a spectrophotometer (integral sphere, manufactured by Hitachi, Ltd., U-4000 type), visible light transmittance (400 nm to 700 nm) and infrared transmittance (800 nm) in the region of 300 nm to 2000 nm of each infrared shielding film sample. ˜1300 nm) was measured.
 (層間密着性)
 上記で作製した各赤外遮蔽フィルム試料を55℃で7日間処理(放置)した後、密着性評価を行った。密着性評価は、JIS K5600-5-6(1999)にあるクロスカット(碁盤の目)法により、下記基準で評価した。
(Interlayer adhesion)
Each infrared shielding film sample prepared above was treated (leaved) at 55 ° C. for 7 days, and then evaluated for adhesion. The adhesion was evaluated according to the following criteria by the cross-cut (cross-cut) method in JIS K5600-5-6 (1999).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (塗布性)
 上記で作製した赤外遮蔽フィルム試料を目視で観察し、下記の基準に従って筋、ムラの有無を評価した。フィルムを210mm×297mmに裁断して評価した。
(Applicability)
The infrared shielding film sample produced above was observed visually, and the presence or absence of streaks and unevenness was evaluated according to the following criteria. The film was cut into 210 mm × 297 mm and evaluated.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (耐湿性)
 上記で作製した各赤外遮蔽フィルム試料を、60℃、湿度90%の環境に3日間保持した後、速やかに-20℃、湿度10%の環境に)環境下で12時間保持を1サイクルとして5サイクル行なった後、常温(25℃)の環境に12時間保持した投入前後のヘイズ変化を測定し、投入前後のヘイズ差で評価した。
(Moisture resistance)
Each infrared shielding film sample produced above is held in an environment of 60 ° C. and 90% humidity for 3 days, and then immediately held in an environment of −20 ° C. and 10% humidity) for 12 hours in the environment as one cycle. After 5 cycles, the change in haze before and after charging was measured for 12 hours in a room temperature (25 ° C.) environment, and the haze difference before and after charging was evaluated.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記表3から、本発明の赤外遮断フィルム試料1~19は、比較例1の赤外遮断フィルム試料20に比べて、層間密着性に優れることが分かる。 From Table 3 above, it can be seen that the infrared blocking film samples 1 to 19 of the present invention are superior in interlayer adhesion compared to the infrared blocking film sample 20 of Comparative Example 1.
 [実施例20]
 [赤外遮蔽体101~119の作製]
 実施例1~19で作製した試料1~19の赤外遮蔽フィルムに以下に示すようにハードコート層を設け、ハードコート層とは反対側にアクリル系の粘着層を設けた。厚さ5mm、20cm×20cmのガラス板上に、それぞれ接着して、赤外遮蔽体101~119を作製した。
[Example 20]
[Production of Infrared Shields 101 to 119]
As shown below, a hard coat layer was provided on the infrared shielding films of Samples 1 to 19 produced in Examples 1 to 19, and an acrylic adhesive layer was provided on the side opposite to the hard coat layer. Infrared shields 101 to 119 were prepared by bonding them onto glass plates having a thickness of 5 mm and 20 cm × 20 cm, respectively.
 (ハードコート層)
 ハードコート層用塗布液
 73部のペンタエリスリトールトリ/テトラアクリレート(NKエステルA-TMM-3、新中村化学工業株式会社製)と、5部のイルガキュア184(チバ・ジャパン株式会社製)と、1部のシリコーン系界面活性剤(KF-351A、信越化学工業株式会社製)と、10部のプロピレングリコールモノメチルエーテルと、70部の酢酸メチルと、70部のメチルエチルケトンと、を混合し、得られた混合液を孔径0.4μmのポリプロピレン製フィルターでろ過して、ハードコート層用塗布液を調製した。
(Hard coat layer)
Hard coat layer coating solution 73 parts pentaerythritol tri / tetraacrylate (NK ester A-TMM-3, Shin-Nakamura Chemical Co., Ltd.), 5 parts Irgacure 184 (Ciba Japan Co., Ltd.), 1 Part of a silicone surfactant (KF-351A, manufactured by Shin-Etsu Chemical Co., Ltd.), 10 parts of propylene glycol monomethyl ether, 70 parts of methyl acetate, and 70 parts of methyl ethyl ketone were obtained. The mixed solution was filtered through a polypropylene filter having a pore size of 0.4 μm to prepare a hard coat layer coating solution.
 塗布、乾燥
 前記ハードコート層用塗布液を、マイクログラビアコーターを用いて上記の樹脂接着層上に塗布し、恒率乾燥区間温度50℃、減率乾燥区間温度70℃で乾燥した。この際、塗布量については、乾燥時の膜厚が3μmになるように調節した。
Application | coating and drying The said coating liquid for hard-coat layers was apply | coated on said resin adhesive layer using the micro gravure coater, and it dried at the constant rate drying area temperature of 50 degreeC and the decreasing rate drying area temperature of 70 degreeC. At this time, the coating amount was adjusted so that the film thickness during drying was 3 μm.
 紫外線照射 窒素パージしながら、紫外線ランプを用いて得られた塗膜を硬化した。硬化条件は、酸素濃度:1.0体積%以下、照度:100mW/cm、照射量:0.2J/cmであった。 Ultraviolet irradiation While purging with nitrogen, the coating film obtained using an ultraviolet lamp was cured. The curing conditions were oxygen concentration: 1.0% by volume or less, illuminance: 100 mW / cm 2 , and irradiation amount: 0.2 J / cm 2 .
 《赤外遮蔽体の評価》
 上記で作製した本発明の赤外遮蔽体101~119、優れた赤外遮蔽性を確認することができた。
<Evaluation of infrared shielding material>
The infrared shielding bodies 101 to 119 of the present invention produced as described above were confirmed to have excellent infrared shielding properties.
 さらに、本出願は、2012年11月8日に出願された日本特許出願番号2012-246462号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2012-246462 filed on November 8, 2012, the disclosure content of which is referenced and incorporated as a whole.

Claims (11)

  1.  基材と、少なくとも光を反射する反射層とを有する、光学積層フィルムであって、
     前記反射層は、積層された複数の屈折率層を有し、
     前記屈折率層の少なくとも1つは隣接する屈折率層の少なくとも一方と異なる屈折率を有し、
     前記屈折率層は、ポリビニルアルコール系樹脂を含有し、
     一の屈折率層に含まれるポリビニルアルコール系樹脂の平均重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれるポリビニルアルコール系樹脂の平均重合度と異なる、または一の前記屈折率層に含まれる最大量のポリビニルアルコール系樹脂の重合度が前記屈折率層に隣接する屈折率層の少なくとも一方に含まれる最大量のポリビニルアルコール系樹脂の重合度と異なる、光学積層フィルム。
    An optical laminated film having a substrate and a reflective layer that reflects at least light,
    The reflective layer has a plurality of laminated refractive index layers,
    At least one of the refractive index layers has a refractive index different from at least one of the adjacent refractive index layers;
    The refractive index layer contains a polyvinyl alcohol-based resin,
    The average degree of polymerization of the polyvinyl alcohol resin contained in one refractive index layer is different from the average degree of polymerization of the polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer, or the one refractive index. An optical laminated film in which the polymerization degree of the maximum amount of polyvinyl alcohol resin contained in the layer is different from the polymerization degree of the maximum amount of polyvinyl alcohol resin contained in at least one of the refractive index layers adjacent to the refractive index layer.
  2.  前記屈折率層の少なくとも1つが金属酸化物粒子をさらに含有する、請求項1に記載の光学積層フィルム。 The optical laminated film according to claim 1, wherein at least one of the refractive index layers further contains metal oxide particles.
  3.  前記一の屈折率層に含まれるポリビニルアルコール系樹脂の重合度が5000以下である、請求項1または2に記載の光学積層フィルム。 The optical laminated film according to claim 1 or 2, wherein the degree of polymerization of the polyvinyl alcohol-based resin contained in the one refractive index layer is 5000 or less.
  4.  前記一の屈折率層と隣接する屈折率層の少なくとも一方との間の平均重合度または重合度の差が、300以上である、請求項1~3のいずれか1項に記載の光学積層フィルム。 The optical laminated film according to any one of claims 1 to 3, wherein an average polymerization degree or a difference in polymerization degree between the one refractive index layer and at least one of the adjacent refractive index layers is 300 or more. .
  5.  前記屈折率層は、高屈折率層と低屈折率層とが交互に積層しており、複数の前記高屈折率層のうち少なくとも1層の厚みが異なっているか、または複数の前記低屈折率層のうち少なくとも1層の厚みが異なっている、請求項1~4のいずれか1項に記載の光学積層フィルム。 In the refractive index layer, a high refractive index layer and a low refractive index layer are alternately laminated, and a thickness of at least one of the plurality of high refractive index layers is different, or a plurality of the low refractive indexes is formed. The optical laminated film according to any one of claims 1 to 4, wherein at least one of the layers has a different thickness.
  6.  前記反射層を構成する前記屈折率層のうち、前記反射層の最も基材側に位置する最下層が最下層以外の前記屈折率層より膜厚が9倍以上厚い、請求項1~5のいずれか1項に記載の光学積層フィルム。 The refractive index layer constituting the reflective layer, wherein the lowermost layer located on the most substrate side of the reflective layer is 9 times or more thicker than the refractive index layer other than the lowermost layer. The optical laminated film according to any one of the above.
  7.  前記屈折率層の少なくとも1つは、変性ポリビニルアルコールを含む、請求項1~6のいずれか1項に記載の光学積層フィルム。 The optical laminated film according to any one of claims 1 to 6, wherein at least one of the refractive index layers contains a modified polyvinyl alcohol.
  8.  前記屈折率層は、金属酸化物粒子として酸化チタンを含む屈折率層を有し、前記酸化チタンを有する屈折率層はゼラチン及び増粘多糖類を含まない、請求項1~7のいずれか1項に記載の光学積層フィルム。 The refractive index layer has a refractive index layer containing titanium oxide as metal oxide particles, and the refractive index layer containing titanium oxide does not contain gelatin or thickening polysaccharide. The optical laminated film according to Item.
  9.  赤外遮蔽フィルムである、請求項1~8のいずれか1項に記載の光学積層フィルム。 The optical laminated film according to any one of claims 1 to 8, which is an infrared shielding film.
  10.  請求項9に記載の光学積層フィルムを用いてなる赤外遮蔽体。 An infrared shielding body using the optical laminated film according to claim 9.
  11.  請求項1~9のいずれか1項に記載の光学反射フィルムの製造方法であって、
     基材上に、高屈折率層塗布液と、低屈折率層塗布液とを同時重層塗布したのち乾燥して、高屈折率層と低屈折率層とを含む光学反射フィルムを形成する工程を含む、光学反射フィルムの製造方法。
    A method for producing an optical reflective film according to any one of claims 1 to 9,
    A process of forming an optical reflective film including a high refractive index layer and a low refractive index layer by simultaneously applying a high refractive index layer coating liquid and a low refractive index layer coating liquid on a substrate and then drying. A method for producing an optical reflective film.
PCT/JP2013/078732 2012-11-08 2013-10-23 Optical multilayer film, infrared shielding film, and infrared shielding body WO2014073379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014545640A JP6225916B2 (en) 2012-11-08 2013-10-23 Optical laminated film, infrared shielding film and infrared shielding body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-246462 2012-11-08
JP2012246462 2012-11-08

Publications (1)

Publication Number Publication Date
WO2014073379A1 true WO2014073379A1 (en) 2014-05-15

Family

ID=50684490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078732 WO2014073379A1 (en) 2012-11-08 2013-10-23 Optical multilayer film, infrared shielding film, and infrared shielding body

Country Status (2)

Country Link
JP (1) JP6225916B2 (en)
WO (1) WO2014073379A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014644A1 (en) * 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Method for manufacturing near infrared reflective film and near infrared reflective body provided with same
WO2012014654A1 (en) * 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Near-infrared reflective film, method for manufacturing near-infrared reflective film, and near-infrared reflector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011919A1 (en) * 2006-07-28 2008-01-31 Ilford Imaging Switzerland Gmbh Flexible materials for optical applications
JP2012071446A (en) * 2010-09-28 2012-04-12 Konica Minolta Holdings Inc Near-infrared reflective film and near-infrared reflector
CN103443667B (en) * 2011-03-18 2016-09-28 柯尼卡美能达株式会社 Hot line reflectance coating, its manufacture method and hot line reflector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014644A1 (en) * 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Method for manufacturing near infrared reflective film and near infrared reflective body provided with same
WO2012014654A1 (en) * 2010-07-24 2012-02-02 コニカミノルタホールディングス株式会社 Near-infrared reflective film, method for manufacturing near-infrared reflective film, and near-infrared reflector

Also Published As

Publication number Publication date
JPWO2014073379A1 (en) 2016-09-08
JP6225916B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6083386B2 (en) Optical laminated film, infrared shielding film and infrared shielding body
JP5939257B2 (en) Near-infrared shielding film and near-infrared shielding body
JP5949910B2 (en) Method for producing multilayer laminated film
WO2013168714A1 (en) Laminated glass
WO2014069507A1 (en) Optical reflection film, infrared-shielding film, and process for producing same
WO2015104981A1 (en) Infrared-reflecting film, method for producing infrared-reflecting film, and method for producing laminated glass
JP6146410B2 (en) Infrared shielding film and infrared shielding body
JP6834984B2 (en) Optical reflective film
JPWO2014171494A1 (en) Optical reflective film, method for producing the same, and optical reflector using the same
WO2015040896A1 (en) Laminated reflective film and production method therefor, and infrared blocking body including such film
WO2016152458A1 (en) Optical film and method for manufacturing optical film
JP5817553B2 (en) Infrared shielding film and infrared shielding body
JP2014089347A (en) Infrared shield film and method of manufacturing the same
JP2013125076A (en) Near-infrared shielding film and near-infrared shielding body
JP6225916B2 (en) Optical laminated film, infrared shielding film and infrared shielding body
CN108351448A (en) Optical reflectance coating and optical reflector
JP2017096990A (en) Method for producing light reflection film
WO2014185386A1 (en) Production method for infrared shielding film
JP6683249B2 (en) Optical reflective film
JP2014215513A (en) Infrared shielding film and infrared shielding body
WO2014069506A1 (en) Optically reflective film, infrared-shielding film, and infrared shield
JP2017219774A (en) Optical reflection film
JP2012252148A (en) Infrared shielding film and infrared shielding body
WO2015174308A1 (en) Optical reflective film, method for manufacturing same, and optical reflector using same
JP2015152631A (en) optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853856

Country of ref document: EP

Kind code of ref document: A1