WO2014073378A1 - Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film - Google Patents

Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film Download PDF

Info

Publication number
WO2014073378A1
WO2014073378A1 PCT/JP2013/078694 JP2013078694W WO2014073378A1 WO 2014073378 A1 WO2014073378 A1 WO 2014073378A1 JP 2013078694 W JP2013078694 W JP 2013078694W WO 2014073378 A1 WO2014073378 A1 WO 2014073378A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
electrode
forming agent
film forming
group
Prior art date
Application number
PCT/JP2013/078694
Other languages
French (fr)
Japanese (ja)
Inventor
拓紀 牧野
順子 高田
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2014545639A priority Critical patent/JP6165162B2/en
Priority to KR1020157012238A priority patent/KR101692172B1/en
Priority to CN201380055159.7A priority patent/CN104737340B/en
Publication of WO2014073378A1 publication Critical patent/WO2014073378A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode protective film forming agent, an electrode, an electrolytic solution, a lithium secondary battery, a lithium ion capacitor, and a method for producing an electrode protective film.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, and are therefore widely used in the field of portable information devices, and their demand is rapidly expanding.
  • Currently it has established a position as a standard battery for mobile information devices such as mobile phones and notebook computers.
  • higher performance for example, higher capacity and higher energy density
  • non-aqueous electrolyte secondary batteries as its power source It has been demanded.
  • various methods such as increasing the density by improving the charging rate of the electrodes, increasing the depth of use of the current active material (particularly the negative electrode), and developing a new high-capacity active material have been studied. In reality, the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
  • the interfacial resistance on the electrode surface has a particularly large resistance.
  • the cause of the interface resistance of the negative electrode is said to be due to the rate-determining step of the desolvation reaction in which the solvent molecules coordinated to the lithium ions are eliminated during the insertion reaction of lithium ions into the negative electrode.
  • a method for promoting desolvation in the negative electrode a method using polyacrylic acid as a binder (Patent Document 1) or a method using azacrown ether has been proposed (Patent Document 2).
  • the compound of Patent Document 1 is not sufficient for the effect of reducing the interface resistance of the negative electrode.
  • the compound of Patent Document 2 is not suitable for a positive electrode protective film forming agent because the oxidation stability of azacrown ether itself is not sufficient.
  • An object of the present invention is to provide an electrode or an electrolytic solution for a lithium secondary battery or a lithium ion capacitor that is excellent in output characteristics and long-term cycle characteristics and has low electrode resistance.
  • the present invention provides at least one bond (a) selected from the group consisting of urethane bond (a1), urea bond (a2), allophanate bond (a3) and biuret bond (a4), polymerizable unsaturated bond (b )
  • membrane It is a manufacturing method of a film
  • [M is a monovalent metal ion, and A is —CO 2 ⁇ , —SO 3 ⁇ , —OPO (OR 1 ) O ⁇ , —B (O ⁇ ) 2 , —B (OR 2 ) O ⁇ or — B (OR 3 ) 3 —
  • R 1 to R 3 are each a hydrocarbon group having 1 to 10 carbon atoms, and a plurality of R 3 may be the same or different and may form a ring with each other. Good).
  • a lithium secondary battery or a lithium ion capacitor having excellent charge / discharge cycle characteristics and output characteristics and low electrode resistance is produced. it can.
  • the electrode protective film-forming agent (D) of the present invention is contained in the negative electrode, the positive electrode, or both of a lithium secondary battery or a lithium ion capacitor, and then a voltage is applied to the battery or the capacitor. A polymerized film is formed on the surface, and the charge / discharge cycle characteristics and output characteristics can be improved by the action of the polymerized film, and the electrode resistance can be reduced. Further, after the electrode protective film forming agent (D) is contained in the electrolyte solution of a lithium secondary battery or a lithium ion capacitor, a voltage is applied to the battery or the capacitor to form a polymer film on the surface of the electrode active material. In addition, charge / discharge cycle characteristics and output characteristics can be improved by the action of the polymer film, and electrode resistance can be reduced.
  • the electrode protective film forming agent (D) of the present invention comprises at least one bond (a) selected from the group consisting of urethane bond (a1), urea bond (a2), allophanate bond (a3) and biuret bond (a4), It contains a compound (C) having a polymerizable unsaturated bond (b) and a group (g) represented by the above general formula (1).
  • the urethane bond (a1) is a bond represented by —OCONH—
  • the urea bond (a2) is a bond represented by -NHCONH-
  • the allophanate bond (a3) is a bond represented by the following formula (5):
  • the biuret bond (a4) is a bond represented by the following formula (6).
  • the polymerizable unsaturated bond (b) is a carbon-carbon double bond, and examples of the group having the bond include an alkenyl ether group (j1) represented by the following general formula (3) and the following general formula (4). And at least one group (j) selected from the group consisting of an alkenyl group (j2) and a (meth) acryloyloxy group (j3).
  • (meth) acryloyloxy group means “acryloyloxy group or methacryloyloxy group”.
  • T 1 to T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • T 4 to T 6 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may form a ring with each other.
  • the alkenyl group (j2) represented by the general formula (4) is preferable from the viewpoint of the reactivity of the polymerizable group.
  • alkyl group having 1 to 3 carbon atoms examples include methyl, ethyl, n-propyl, and isopropyl.
  • alkenyl ether group (j1) examples include vinyloxy group, 1-methylvinyloxy group, 1-propenoxy group, 1-methyl-1-propenoxy group, 2-methyl-1-propenoxy group and 1,2-dimethyl-1- A propenoxy group is mentioned. Of these, a 1-propenoxy group is preferable from the viewpoint of the reactivity of the polymerizable group.
  • alkenyl group (j2) examples include a vinyl group, 1-propenyl group, 1-methyl-1-propenyl group, 2-methyl-1-propenyl group, 1,2-dimethyl-1-propenyl group, and general formula (4 ) In which T 5 is a methyl group and T 4 and T 6 form a ring (for example, 1-methyl-1-cyclohexen-2-yl and 2,6,6-trimethylcyclohexen-1-yl, etc.) ).
  • a polymerizable group in which at least two of T 4 to T 6 are substituted with an alkyl group having 1 to 3 carbon atoms, and more preferably 2- A methyl-1-propenyl group or a 1,2-dimethyl-1-propenyl group;
  • M is a monovalent metal ion
  • A is —CO 2 ⁇ , —SO 3 ⁇ , —OPO (OR 1 ) O ⁇ , —B (O — ) 2 , —B (OR 2 ) O — or —B (OR 3 ) 3 —
  • R 1 to R 3 are each a hydrocarbon group having 1 to 10 carbon atoms, and a plurality of R 3 may be the same. They may be different and may form a ring with each other.
  • R 1 and R 2 are a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, or a monovalent alicyclic group having 5 to 10 carbon atoms.
  • a hydrocarbon group etc. are mentioned.
  • a monovalent aliphatic hydrocarbon group and a monovalent alicyclic hydrocarbon group are preferable from the viewpoint of oxidation stability of the compound.
  • R 3 is a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, or a monovalent alicyclic hydrocarbon group having 5 to 10 carbon atoms. And a residue obtained by removing two hydroxyl groups from an aliphatic diol having 2 to 10 carbon atoms or a residue obtained by removing three hydroxyl groups from an aliphatic triol having 4 to 10 carbon atoms.
  • preferred from the viewpoint of oxidative stability of the compound are monovalent aliphatic hydrocarbon groups, monovalent alicyclic hydrocarbon groups, residues obtained by removing two hydroxyl groups from aliphatic diols, or fatty acids. It is a residue obtained by removing three hydroxyl groups from a group triol.
  • —SO 3 — is preferable from the viewpoint of charge / discharge cycle characteristics.
  • Examples of monovalent metal ions in M include lithium ions, sodium ions, potassium ions, rubidium ions, and cesium ions. Among these, lithium ions or sodium ions are preferable from the viewpoint of output characteristics.
  • Examples of the compound (C) include a compound represented by the following general formula (2).
  • Y is an (s + t) -valent hydrocarbon group having 2 to 42 carbon atoms (Y1), which may contain at least one atom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom;
  • a divalent residue (Y2) obtained by removing two isocyanate groups from a urethane prepolymer having isocyanate groups at both ends, which is a reaction product of diisocyanate (B) and diol (N) having 2 to 20 carbon atoms, allophanate bond
  • s is an integer of 1 to 5
  • t is an integer of 1 to 5.
  • (A5) is a urethane bond or a urea bond.
  • R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms
  • R 8 is a monovalent hydrocarbon group having a polymerizable unsaturated bond (b) having 2 to 30 carbon atoms
  • (g) is the above general formula ( It is group represented by 1).
  • the hydrocarbon group (Y1) is a (s + t) valent hydrocarbon group having 2 to 42 carbon atoms, which may contain at least one atom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom, A divalent hydrocarbon group having 6 to 13 carbon atoms is preferred.
  • divalent aliphatic hydrocarbon groups ethylene, tetramethylene, hexamethylene, octamethylene, decamethylene, 1-methyltetramethylene, 2-methyltetramethylene
  • divalent alicyclic hydrocarbon groups 1,5,5-trimethyl-cyclohexane-1,3-diyl, methylenedicyclohexyl-4,4'-diyl, cyclohexane-1,4-diyl, 1,4-dimethylene-cyclohexane (from 1,4-cyclohexanedimethanol 2)
  • a divalent aromatic hydrocarbon group toluene-2,4-diyl, toluene-2,6-diyl, methylenediphenyl-4,4′-diyl, xylylene, tetra
  • Residue (Y2) consists of two isocyanate groups from a urethane prepolymer having isocyanate groups at both ends obtained by reaction of a diisocyanate (B) having 4 to 44 carbon atoms and a diol (N) having 2 to 20 carbon atoms. It is a residue excluding.
  • Examples of the diisocyanate (B) include diisocyanates obtained by adding two isocyanate groups to the divalent hydrocarbon group (Y1).
  • Diol (N) includes divalent aliphatic diols (ethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,3-propanediol, 1,5-pentanediol, 1,8-octanediol, 1,10- Decanediol, propylene glycol, 1,3-butanediol, etc.) Divalent alicyclic hydrocarbon group (1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, etc.) Etc.
  • the number average molecular weight of the urethane prepolymer is preferably 700 to 4800, and more preferably 1000 to 3000.
  • the residue (Y3) is a residue obtained by removing (s + t) isocyanate groups from a diisocyanate (B) modified product having 9 to 118 carbon atoms having an allophanate bond (a3).
  • Examples of the modified diisocyanate (B) having 9 to 118 carbon atoms having an allophanate bond (a3) include compounds represented by the following general formula (7).
  • R 4 is a divalent group in the hydrocarbon group (Y1), and a plurality of R 4 may be the same or different.
  • R 5 is a hydrocarbon group having 1 to 20 carbon atoms.
  • R 5 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms (methyl, ethyl, n-propyl, isopropyl, n-butyl, 1-methylpropyl, isobutyl, t-butyl, n-pentyl, isopentyl, 1-methylbutyl, 2-methylbutyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, isohexyl, 3-methylpentyl 2-methylpentyl, 1-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl, heptyl, octyl, isooctyl, 2 -Ethylhexyl, nonyl, decyl
  • the residue (Y4) is a residue obtained by removing (s + t) isocyanate groups from a modified diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4).
  • modified diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4) include compounds represented by the following general formula (8).
  • R 6 is a divalent group in the hydrocarbon group (Y1), and a plurality of R 6 may be the same or different. ]
  • s is an integer of 1 to 5, preferably an integer of 1 to 3.
  • t is an integer of 1 to 5, preferably an integer of 1 to 3.
  • the sum of these s and t is an integer of 2 to 10, preferably an integer of 2 to 6.
  • (a5) is a urethane bond or a urea bond. Two or more (a5) s may be urethane bonds, all urea bonds, or both urethane bonds and urea bonds, but all are preferably urethane bonds.
  • R 8 is a monovalent hydrocarbon group having 2 to 30 carbon atoms and having a polymerizable unsaturated bond (b).
  • R 8 is a linear or branched monovalent hydrocarbon group having 2 to 30 carbon atoms (residue obtained by removing a hydroxyl group from an unsaturated alcohol such as vinyl alcohol, citronellol, linalool, prenol or geraniol), carbon number 5
  • monovalent unsaturated alicyclic hydrocarbon groups (residues obtained by removing hydroxyl groups from unsaturated alicyclic alcohols such as retinol). Citronellol, linalool, prenol and geraniol are preferred from the viewpoint of reactivity.
  • R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms.
  • R 7 is a linear or branched divalent aliphatic hydrocarbon group having 1 to 12 carbon atoms (methylene, ethylene, trimethylene, ethylidene, tetramethylene, 1-methyltrimethylene, 2-methyltrimethylene, 1-ethyl Ethylene, 1,1-dimethylethylene, ethylmethylmethylene, propylmethylene, pentamethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1,2 -Dimethyltrimethylene, 1,3-dimethyltrimethylene, 1-ethyltrimethylene, 1,1,2-trimethylethylene, diethylmethylene, 1-propylethylene, butylmethylene, hexamethylene, 1-methylpentamethylene, 1, 1-dimethyltetramethylene, 2,2-dimethyltetramethyle 1,1,3
  • the concentration of the bond (a) in the compound (C) is preferably 0.2 to 10 mmol / g, more preferably 0.5 to 5 mmol / g.
  • the concentration of the polymerizable unsaturated bond (b) in the compound (C) is preferably 0.2 to 10 mmol / g, more preferably 0.2 to 5 mmol / g.
  • the number average molecular weight of the compound (C) is preferably 238 to 5000, more preferably 450 to 3500.
  • the number average molecular weight (Mn) of the compound (C) can be measured using gel permeation chromatography (hereinafter referred to as GPC).
  • GPC gel permeation chromatography
  • the measurement conditions for GPC the measurement conditions for the number average molecular weight (Mn) of the compounds (C-5) and (C-6) according to Examples 5 and 6 described later can be used.
  • the molecular weight can be measured with a mass spectrometer or calculated from the structural formula.
  • Compound (C) can be obtained, for example, by the following method. (1) having a compound (B1) having two or more isocyanate groups, an active hydrogen compound (L) having a polymerizable unsaturated bond (b), and a group (g) represented by the general formula (1) It is synthesized by reacting with an active hydrogen compound (G1).
  • the above reactions (1) to (3) are preferably carried out in the presence of a urethanization catalyst from the viewpoint of shortening the reaction time.
  • the reaction is carried out without using a solvent or in a solvent.
  • the reaction solvent include N-methylpyrrolidone, dimethylformamide, dioxolane and the like, and N-methylpyrrolidone is preferable.
  • the reaction time is 1 to 24 hours, but 5 to 8 hours are preferable.
  • the order of preparation may be that the active hydrogen compound is charged first, or the compound having an isocyanate group may be charged first.
  • the molar ratio is preferably reacted with a total of 1 to 1.5 equivalents of hydroxy group or amino group with respect to the isocyanate group so as not to leave an isocyanate group.
  • Examples of the compound (B1) include dicyclohexylmethane-4,4′-diisocyanate, hexamethylene diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, and the like.
  • Examples of the compound (B2) include DURANATE A201H (allophanate-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation], DURANATE 24A-100 (biuret-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation], and the like.
  • Examples of the compound (B3) include a urethane prepolymer obtained by reacting dicyclohexylmethane-4,4′-diisocyanate with 1,4-cyclohexanedimethanol.
  • Examples of the active hydrogen compound (L) having a polymerizable unsaturated bond (b) include 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, Examples include linalool, citronellol, retinol, prenol and the like.
  • Examples of the active hydrogen compound (G1) having the group (g) represented by the general formula (1) include lithium isethionate, sodium isethionate, lithium lactate, sodium lactate, lithium 2-aminoethanesulfonate, 2- Examples include sodium aminoethanesulfonate, lithium 4-hydroxyphenylboronate, lithium 4- (hydroxymethyl) phenylboronate, lithium (3-aminophenyl) cyclic triol borate and the like.
  • Examples of the active hydrogen compound (G2) having a group represented by formula (I) include isethionic acid, taurine, lactic acid, glycolic acid, 4-hydroxyphenylboronic acid, 4- (hydroxymethyl) phenylboronic acid, and the like.
  • diol (N) examples include 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, and the like. Can be mentioned.
  • the electrode protective film forming agent (D) may contain a component other than the compound (C), but preferably does not contain any component other than the compound (C).
  • components other than the compound (C) include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and ⁇ -bromo- ⁇ -butyrolactone.
  • the content of the compound (C) in the electrode protective film forming agent (D) is preferably 10 to 100% by weight, more preferably 50 to 100% by weight, based on the weight of the electrode protective film forming agent (D). %.
  • the electrode of the present invention contains an electrode protective film forming agent (D), an active material (H), and a binder (K) before charging and discharging. While charging / discharging is started, a part of the electrode protective film forming agent (D) undergoes a polymerization reaction to form a polymer on the surface of the active material (H). At this time, the electrode of the present invention comprises an unreacted electrode protective film forming agent (D), an active material (H) having an electrode protective film made of a polymer of (D) on the surface, and a binder ( K).
  • a negative electrode for a lithium secondary battery is obtained by using the negative electrode active material (H1) as the active material (H), and a negative electrode for a lithium ion capacitor is obtained by doping lithium into (H1). Moreover, the positive electrode active material (H2) for lithium secondary batteries and the positive electrode active material (H3) for lithium ion capacitors are mentioned.
  • Examples of the negative electrode active material (H1) include graphite, amorphous carbon, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin and furan resin, etc.), cokes (for example, pitch coke, needle coke, and petroleum coke), And carbon fibers, conductive polymers (for example, polyacetylene and polypyrrole), tin, silicon, and metal alloys (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy). .
  • Examples of the positive electrode active material (H2) for the lithium secondary battery include composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2). O 5 ), transition metal sulfides (eg, MoS 2 and TiS 2 ), and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
  • Examples of the positive electrode active material (H3) for a lithium ion capacitor include activated carbon, carbon fiber, and a conductive polymer (for example, polyacetylene and polypyrrole).
  • binder (K) examples include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
  • the electrode of the present invention can further contain a conductive additive (J).
  • a conductive additive J
  • the conductive assistant (J) graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black) and metal powder (for example, Aluminum powder and nickel powder), conductive metal oxides (for example, zinc oxide and titanium oxide), and the like.
  • the preferred contents of (K) and the conductive additive (J) are as follows.
  • the content of the electrode protective film forming agent (D) is preferably 0.1 to 5% by weight, more preferably 0.2 to 2% by weight, from the viewpoint of charge / discharge cycle characteristics.
  • the content of the active material (H) is preferably 70 to 98% by weight, more preferably 90 to 98% by weight, from the viewpoint of battery capacity.
  • the content of the binder (K) is preferably 0.1 to 29% by weight and more preferably 0.5 to 10% by weight from the viewpoint of battery capacity.
  • the content of the conductive auxiliary agent (J) is preferably 0 to 29% by weight, more preferably 1 to 10% by weight from the viewpoint of battery output.
  • the electrode of the present invention comprises, for example, an electrode protective film forming agent (D), an active material (H), a binder (K), and optionally a conductive assistant (J) in 30 to 60% by weight in water or a solvent.
  • D electrode protective film forming agent
  • H active material
  • K binder
  • J conductive assistant
  • lactam compounds, ketone compounds, amide compounds, amine compounds, cyclic ether compounds and the like can be used.
  • examples thereof include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine and tetrahydrofuran (THF).
  • the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, a conductive polymer, and conductive glass.
  • the electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E) and a non-aqueous solvent (F), and is preferably useful as an electrolytic solution for lithium secondary batteries and lithium ion capacitors. .
  • the electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E), and a nonaqueous solvent (F) before charging and discharging. While charging / discharging is started, a part of the electrode protective film forming agent (D) undergoes a polymerization reaction to form a polymer film on the surface of the active material (H) constituting the electrode. As the polymerization reaction proceeds, the electrode protective film forming agent (D) in the electrolytic solution of the present invention decreases.
  • LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
  • non-aqueous solvent (F) those used in ordinary electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphoric acid Esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof can be used.
  • cyclic or chain carbonates are preferred from the viewpoint of battery output and charge / discharge cycle characteristics.
  • cyclic carbonate include propylene carbonate, ethylene carbonate, butylene carbonate, and the like.
  • chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
  • Electrode protective film-forming agent (D), electrolyte (E) and non-aqueous solvent (F) based on the total weight of electrode protective film-forming agent (D), electrolyte (E) and non-aqueous solvent (F) in the electrolytic solution of the present invention ) are preferably as follows.
  • the content of the electrode protective film forming agent (D) is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight, from the viewpoints of charge / discharge cycle characteristics, battery capacity and high-temperature storage characteristics. .
  • the content of the electrolyte (E) in the electrolytic solution is preferably 0.1 to 30% by weight, more preferably 0.5 to 20% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
  • the content of the non-aqueous solvent (F) is preferably 60 to 99% by weight, more preferably 85 to 95% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
  • the electrolytic solution of the present invention may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
  • additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
  • the content of each component of the following additives is based on the total weight of the electrode protective film forming agent (D), the electrolyte (E), and the nonaqueous solvent (F).
  • the overcharge inhibitor include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene and t-amylbenzene.
  • the amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight.
  • the dehydrating agent examples include zeolite, silica gel and calcium oxide.
  • the amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight of the electrolytic solution.
  • the capacity stabilizer examples include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene.
  • the amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight of the electrolytic solution.
  • the lithium secondary battery of the present invention uses the electrode of the present invention as a positive electrode or a negative electrode when the electrolytic solution is injected into a battery can containing a positive electrode, a negative electrode, and a separator, and the battery can be sealed.
  • the electrolytic solution of the present invention is used, or it can be obtained by a combination thereof.
  • a separator in a lithium secondary battery As a separator in a lithium secondary battery, a microporous film made of polyethylene or polypropylene film, a multilayer film of porous polyethylene film and polypropylene, a nonwoven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica on these surfaces, The thing to which ceramic fine particles, such as an alumina and titania, were made to adhere is mentioned.
  • the battery can in the lithium secondary battery, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application. Further, the battery can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
  • the lithium ion capacitor of the present invention can be obtained by replacing the positive electrode with a positive electrode for a lithium ion capacitor and replacing the battery can with a capacitor can in the basic configuration of the lithium secondary battery of the present invention.
  • Examples of the material and shape of the capacitor can include the same as those exemplified for the battery can.
  • the electrode of the present invention is used as a positive electrode or a negative electrode
  • the electrolytic solution of the present invention is used as an electrolytic solution, or a voltage is applied to a combination thereof. There is a way to make it.
  • the number average molecular weights (Mn) of compounds (C-5) and (C-6) according to Examples 5 and 6 described later were measured using GPC under the following conditions.
  • TSK GEL GMH6 2 Measurement temperature: 40 degreeC Sample solution: 0.25 wt% THF solution Solution injection amount: 100 ⁇ l
  • Detection device Refractive index detector
  • Reference material Standard polystyrene (TSK standard POLYSTYRENE) 12 points (Mw 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1890000 2890000) manufactured by Tosoh Corporation
  • Lithium isethionate A flask equipped with a stirrer and thermometer was charged with 5.0 parts of a 70% 2-hydroxyethanesulfonic acid solution [manufactured by Wako Pure Chemical Industries, Ltd.] and cooled in an ice bath while lithium hydroxide [Wako Pure Chemical Industries, Ltd.] Neutralized with an aqueous solution containing 0.66 parts. The obtained aqueous solution was heated to evaporate water, and then dried under reduced pressure (1.3 kPa) to obtain 3.6 parts of lithium isethionate (G1-1) (yield 98%).
  • Electrode protective film forming agent (D-1) In a flask equipped with a stirrer, a thermometer and a condenser tube, 8.5 parts of lithium isethionate (G1-1), dicyclohexylmethane-4,4′-diisocyanate [manufactured by Wako Pure Chemical Industries, Ltd.] 15.3 parts 9.9 parts of linalool [manufactured by Wako Pure Chemical Industries, Ltd.], 100 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and dibutyltin dilaurate [manufactured by Tokyo Chemical Industry Co., Ltd.] 07 parts were charged and heated at 80 ° C.
  • Electrode protective film forming agent (D-2) Example 1 was used except that 11.8 parts of hexamethylene diisocyanate [hexamethylene diisocyanate manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate. 9.6 parts of compound (C-2) represented by the following formula was obtained (yield 36%).
  • the compound (C-2) is referred to as an electrode protective film forming agent (D-2).
  • Electrode protective film forming agent (D-3) Other than using 13.0 parts of 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate [manufactured by Wako Pure Chemical Industries, Ltd.] instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate was carried out in the same manner as in Example 1 to obtain 11.9 parts of the compound (C-3) represented by the following formula (yield 40%).
  • the compound (C-3) is used as an electrode protective film forming agent (D-3).
  • Electrode protective film forming agent (D-4) The same procedure as in Example 1 was carried out except that 11.8 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane (L-1) was used instead of 9.9 parts of linalool. 13.8 parts of the compound (C-4) shown were obtained (41% yield). The compound (C-4) is used as an electrode protective film forming agent (D-4).
  • Electrode protective film forming agent (D-5) In a flask equipped with a stirrer, a thermometer and a condenser, 46.0 parts of dicyclohexylmethane-4,4′-diisocyanate, 16.8 parts of 1,4-cyclohexanedimethanol [manufactured by Wako Pure Chemical Industries, Ltd.] Charge 100 parts of N-methylpyrrolidone and 0.07 part of dibutyltin dilaurate and heat at 80 ° C. for 8 hours, then add 8.5 parts of lithium 2-hydroxysulfonate and 9.9 parts of linalool, and further heat at 80 ° C. for 8 hours. did.
  • Electrode protective film forming agent (D-6) Dicyclohexylmethane-4,4'-diisocyanate instead of 46.0 parts dicyclohexylmethane-4,4'-diisocyanate 117.4 parts, 1,4-cyclohexanedimethanol instead of 16.8 parts 1,4-cyclohexanedi 39.9 parts of compound (C-6) was obtained in the same manner as in Example 5 except that 56.1 parts of methanol was used (yield 21%). [Mn: 3300]. The compound (C-6) is used as an electrode protective film forming agent (D-6).
  • Electrode protective film forming agent (D-7) Example 1 was repeated except that 28.7 parts of duranate A201H (allophanate-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation] was used instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate. As a result, 20.4 parts of urethane compound (C-7) having an allophanate bond was obtained (yield 45%). The compound (C-7) is used as an electrode protective film forming agent (D-7).
  • duranate A201H allophanate-modified hexamethylene diisocyanate
  • Electrode protective film forming agent (D-8) Instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate, 27.9 parts of duranate 24A-100 (biuret-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Co., Ltd.] were used, and instead of 9.9 parts of linalool. In addition, 19.8 parts of a urethane compound (C-8) having a biuret bond was obtained in the same manner as in Example 1 except that 19.8 parts of linalool was used (yield 37%). The compound (C-8) is used as an electrode protective film forming agent (D-8).
  • Electrode protective film forming agent (D-9) A compound represented by the following formula (C-9) was prepared in the same manner as in Example 1 except that 9.5 parts of sodium isethionate [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 8.5 parts of lithium isethionate. ) 12.5 parts was obtained (38% yield). The compound (C-9) is used as an electrode protective film forming agent (D-9).
  • Electrode protective film forming agent (D-10) instead of 8.5 parts of lithium isethionate, 8.0 parts of taurine [manufactured by Wako Pure Chemical Industries, Ltd.] was used, and the reaction and purification were carried out in the same manner as in Example 1, followed by methanol [Wako Pure Chemical Industries, Ltd.] Suspended in [manufactured by Co., Ltd.] and neutralized with 1 equivalent of lithium hydroxide [Wako Pure Chemical Industries, Ltd.]. Methanol was removed under reduced pressure (1.3 kPa) to obtain 10.2 parts of compound (C-10) represented by the following formula (yield 32%). The compound (C-10) is used as an electrode protective film forming agent (D-10).
  • Electrode protective film forming agent (D-11) A compound represented by the following formula (C-11) was prepared in the same manner as in Example 1 except that 7.5 parts of 2-hydroxyethyl acrylate [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 9.9 parts of linalool. ) 10.7 parts were obtained (yield 36%). Compound (C-11) is referred to as an electrode protective film forming agent (D-11).
  • Electrode protective film forming agent (D-12) A compound represented by the following formula was reacted, neutralized and purified in the same manner as in Example 10 except that 5.8 parts of lactic acid [Wako Pure Chemical Industries, Ltd.] was used instead of 8.0 parts of taurine. C-12) 14.7 parts were obtained (yield 52%). The compound (C-12) is used as an electrode protective film forming agent (D-12).
  • Electrode protective film forming agent (D-13) Compound (C-13) 14.8 represented by the following formula was carried out in the same manner as in Example 1 except that 10.0 parts of citronellol [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 9.9 parts of linalool. Parts were obtained (yield 46%). The compound (C-13) is used as an electrode protective film forming agent (D-13).
  • Electrode protective film forming agent (D-14) This was performed in the same manner as in Example 1 except that 5.5 parts of prenol [3-methyl-2-buten-1-ol manufactured by Tokyo Chemical Industry Co., Ltd.] was used instead of 9.9 parts of linalool. Of the compound (C-14) (43% yield). Compound (C-14) is referred to as electrode protective film forming agent (D-14).
  • Electrode protective film forming agent (D-15) The compound represented by the following formula (C-15) was prepared in the same manner as in Example 14 except that 9.6 parts of lithium 4-hydroxyphenylboronate (G1-1) was used instead of 9.9 parts of lithium isethionate. 18.7 parts were obtained (yield 30%). The compound (C-15) is used as an electrode protective film forming agent (D-15).
  • Electrode protective film forming agent (D-16) A compound represented by the following formula, which was prepared in the same manner as in Example 14 except that 14.6 parts of (3-aminophenyl) cyclic triol borate lithium salt (G1-2) was used instead of 9.9 parts of lithium isethionate ( C-16) 9.1 parts were obtained (yield 27%). The compound (C-16) is used as an electrode protective film forming agent (D-16).
  • Comparative protective film forming agent (D'-1) In a flask equipped with a stirrer, a thermometer and a condenser tube, 0.72 part of 4,7-diaza-15-crown 5-ether [manufactured by Tokyo Chemical Industry Co., Ltd.], chloromethylstyrene [manufactured by Tokyo Chemical Industry Co., Ltd.] ] 1 part and 10 parts of acetonitrile [manufactured by Wako Pure Chemical Industries, Ltd.] were charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring.
  • Acetonitrile was removed under reduced pressure (1.3 kPa) and then purified by an alumina column [150 mesh, Blockman 1, standard grade, Sigma-Aldrich] using acetone [manufactured by Wako Pure Chemical Industries, Ltd.] as a solvent. 1.1 parts of the compound (C′-1) represented by the formula (yield 75%) was obtained.
  • the compound (C′-1) is used as a comparative electrode protective film forming agent (D′-1).
  • the electrode protective film forming agents (D-1) to (D-16) and the comparative electrode protective film forming agent (D′-1) of the present invention are summarized in Table 1.
  • the positive electrode and the negative electrode prepared above were arranged at both ends in the 2032 type coin cell so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to prepare a secondary battery cell.
  • the solution was poured and sealed in a cell in which an electrolytic solution was prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) at a ratio of 12 wt%.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a slurry was obtained by thoroughly mixing 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride and 200 parts of 1-methyl-2-pyrrolidone in a mortar.
  • the obtained slurry was applied to one side of a copper foil having a thickness of 20 ⁇ m using a wire bar in the atmosphere, dried at 80 ° C. for 1 hour, and further reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. After drying for a time, it was punched to 16.15 mm ⁇ , and the thickness was made 30 ⁇ m with a press machine to produce a negative electrode for a lithium secondary battery.
  • the positive electrode and the negative electrode were arranged at both ends in the 2032 type coin cell so that the respective coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to produce a secondary battery cell.
  • the electrolyte solution was poured into the prepared secondary battery cell and sealed to prepare a secondary battery.
  • a positive electrode and a negative electrode for a lithium ion capacitor containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the number of parts shown in Table 3 were prepared by the following method.
  • a lithium ion capacitor was prepared by the following method.
  • the high voltage charge / discharge cycle characteristics and electrode resistance were evaluated by the above method, the output characteristics were evaluated by the following method, and the results are shown in Table 3.
  • the positive electrode active material activated carbon having a specific surface area of about 2200 m 2 / g obtained by an alkali activation method was used. Activated carbon powder, acetylene black, and polyvinylidene fluoride are mixed in a weight ratio of 80:10:10, and this mixture is added to 1-methyl-2-pyrrolidone as a solvent and mixed by stirring. To obtain a slurry. This slurry was applied onto an aluminum foil having a thickness of 30 ⁇ m by a doctor blade method, temporarily dried, and then cut so that the electrode size was 20 mm ⁇ 30 mm. The electrode thickness was about 50 ⁇ m. Before assembling the cell, it was dried in a vacuum at 120 ° C. for 10 hours to produce a positive electrode for a lithium ion capacitor.
  • the obtained electrode and lithium metal foil are sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity of lithium ions is occluded in the negative electrode over about 10 hours.
  • a negative electrode was prepared.
  • a separator nonwoven fabric made of polypropylene
  • a separator is inserted between the positive electrode and the negative electrode obtained as described above, impregnated with the above electrolyte solution, sealed in a storage case made of polypropylene aluminum laminate film, and lithium ion A capacitor cell was produced.
  • the high voltage charge / discharge cycle characteristics, the output characteristics, and the electrode resistance were evaluated by the above methods. The results are shown in Table 3.
  • the lithium secondary battery and lithium ion capacitor produced using the electrode protective film forming agent of the present invention are excellent in charge / discharge cycle performance and output characteristics, and can reduce electrode resistance.
  • the lithium ion coordination polymer film formed on the surface of the electrode active material suppresses the decomposition of the electrolyte solution on the electrode surface under high voltage, This is considered to reduce the desolvation energy of lithium ions.
  • the cause of the decrease in electrode resistance is thought to be that the salt concentration at the electrode interface increased and the ionic conductivity near the interface increased.
  • the electrode and electrolyte using the electrode protective film-forming agent (D) of the present invention are excellent in charge / discharge cycle performance and output characteristics under a high voltage
  • the electrode for lithium secondary batteries or lithium ion capacitors is particularly used.
  • it is useful as an additive for electrolytic solutions, and is suitable for electric vehicles.
  • the present invention can also be applied to other electrochemical devices such as electric double layer capacitors, nickel metal hydride batteries, nickel cadmium batteries, air batteries, alkaline batteries and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Composite Materials (AREA)

Abstract

The purpose of the present invention is to provide: a lithium secondary battery having excellent output characteristics, long-term cycle characteristics, and low electrode resistance; an electrode for a lithium-ion capacitor; and an electrolyte. This electrode protective film forming agent (D) contains a compound (C) having: at least one bond (a) selected from a group comprising a urethane bond (a1), a urea bond (a2), an allophanate bond (a3) and a biuret bond (a4); a polymerizable unsaturated bond (b); and a group (g) represented by general formula (1). [M is a monovalent metal ion, and A represents -CO2 -,-SO3 -, -OPO(OR1)O-, -B(O-)2, -B(OR2)O- or -B(OR3)3 - (R1 to R3 are each a hydrocarbon group with a carbon number of 1 to 10; and there is a plurality of R3, each of which may be the same or different, and may combine with each other to form a ring.)]

Description

電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、および、電極保護膜の製造方法Electrode protective film forming agent, electrode, electrolytic solution, lithium secondary battery, lithium ion capacitor, and method for producing electrode protective film
 本発明は、電極保護膜形成剤、電極、電解液、リチウム二次電池、リチウムイオンキャパシタ、および、電極保護膜の製造方法に関する。 The present invention relates to an electrode protective film forming agent, an electrode, an electrolytic solution, a lithium secondary battery, a lithium ion capacitor, and a method for producing an electrode protective film.
 リチウム二次電池等の非水電解液二次電池は、高電圧、高エネルギー密度という特徴を持つことから、携帯情報機器分野において広く利用され、その需要が急速に拡大している。現在、携帯電話、ノート型パソコンを始めとするモバイル情報化機器用の標準電池としてのポジションを確立している。当然ながら、携帯機器等の高性能化と多機能化に伴い、その電源としての非水電解液二次電池に対しても更なる高性能化(例えば、高容量化と高エネルギー密度化)が求められている。この要求に応えるため、電極の充電率の向上による高密度化、現行の活物質(特に負極)の利用深度の向上、新規高容量の活物質の開発等、種々の方法が検討されている。そして、現実に非水電解液二次電池がこれらの方法によって確実に高容量化されている。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, and are therefore widely used in the field of portable information devices, and their demand is rapidly expanding. Currently, it has established a position as a standard battery for mobile information devices such as mobile phones and notebook computers. Of course, along with the high performance and multi-functionality of portable devices, etc., even higher performance (for example, higher capacity and higher energy density) for non-aqueous electrolyte secondary batteries as its power source It has been demanded. In order to meet this demand, various methods such as increasing the density by improving the charging rate of the electrodes, increasing the depth of use of the current active material (particularly the negative electrode), and developing a new high-capacity active material have been studied. In reality, the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
 近年、電気自動車のニーズに応えるため、リチウム二次電池の高出力化が急務となっている。一般に、リチウム二次電池の高出力化には2つの重要な要素が考えられる。ひとつは電極材料において電子伝導性が高いこと、もうひとつはリチウムイオンの伝導性が高いことである。いずれか一方が劣る場合は、電池の内部抵抗が高くなり十分な出力特性は得られない。内部抵抗の主な原因となる箇所は、イオン伝導と電子伝導の反応界面が集中する電極材料である。 In recent years, there is an urgent need to increase the output of lithium secondary batteries to meet the needs of electric vehicles. Generally, two important factors can be considered for increasing the output of a lithium secondary battery. One is that the electrode material has high electron conductivity, and the other is that lithium ion has high conductivity. When either one is inferior, the internal resistance of the battery becomes high and sufficient output characteristics cannot be obtained. The main cause of the internal resistance is the electrode material where the reaction interface between ion conduction and electron conduction is concentrated.
 イオン伝導の中でも特に大きな抵抗となっているのが電極表面での界面抵抗である。負極の界面抵抗の原因は、リチウムイオンの負極への挿入反応の際にリチウムイオンに配位している溶媒分子が脱離する脱溶媒和反応が律速段階となっているためと言われている。負極において脱溶媒和を促進する方法としては、バインダーにポリアクリル酸を使用する方法(特許文献1)または、アザクラウンエーテルを使用する方法が提案されている(特許文献2)。 Among the ionic conduction, the interfacial resistance on the electrode surface has a particularly large resistance. The cause of the interface resistance of the negative electrode is said to be due to the rate-determining step of the desolvation reaction in which the solvent molecules coordinated to the lithium ions are eliminated during the insertion reaction of lithium ions into the negative electrode. . As a method for promoting desolvation in the negative electrode, a method using polyacrylic acid as a binder (Patent Document 1) or a method using azacrown ether has been proposed (Patent Document 2).
特開2007-287570号公報JP 2007-287570 A 特開2010-86954号公報JP 2010-86954 A
 しかしながら、正極の界面抵抗を低減する方法はなく、負極の界面抵抗の低減効果については特許文献1の化合物では十分ではない。また特許文献2の化合物ではアザクラウンエーテル自体の酸化安定性が十分でないため正極保護膜形成剤には向かない。 However, there is no method for reducing the interface resistance of the positive electrode, and the compound of Patent Document 1 is not sufficient for the effect of reducing the interface resistance of the negative electrode. Further, the compound of Patent Document 2 is not suitable for a positive electrode protective film forming agent because the oxidation stability of azacrown ether itself is not sufficient.
 本発明は、出力特性と長期サイクル特性に優れ、電極抵抗の低いリチウム二次電池またはリチウムイオンキャパシタ用の電極または電解液を提供することを目的とする。 An object of the present invention is to provide an electrode or an electrolytic solution for a lithium secondary battery or a lithium ion capacitor that is excellent in output characteristics and long-term cycle characteristics and has low electrode resistance.
 本発明者らは、上記の目的を達成すべく鋭意検討を行った結果、本発明に到達した。即ち、本発明は、ウレタン結合(a1)、ウレア結合(a2)、アロファネート結合(a3)およびビウレット結合(a4)からなる群より選ばれる少なくとも1つの結合(a)、重合性不飽和結合(b)ならびに一般式(1)で表される基(g)を有する化合物(C)を含有する電極保護膜形成剤(D);前記電極保護膜形成剤(D)を含有する電極または電解液;前記電極および/または前記電解液を有するリチウム二次電池またはリチウムイオンキャパシタ;前記電極保護膜形成剤(D)を電極および/または電解液に含有させた後、電圧を印加する工程を含む電極保護膜の製造方法である。
Figure JPOXMLDOC01-appb-C000005
[Mは1価の金属イオンであり、Aは-CO 、-SO 、-OPO(OR)O、-B(O、-B(OR)Oまたは-B(OR (R~Rは各炭素数1~10の炭化水素基であり、複数個あるRはそれぞれ同一でも異なっていてもよく、互いに環を形成していてもよい。)を表す。]
As a result of intensive studies to achieve the above object, the present inventors have reached the present invention. That is, the present invention provides at least one bond (a) selected from the group consisting of urethane bond (a1), urea bond (a2), allophanate bond (a3) and biuret bond (a4), polymerizable unsaturated bond (b ) And an electrode protective film forming agent (D) containing the compound (C) having the group (g) represented by the general formula (1); an electrode or an electrolytic solution containing the electrode protective film forming agent (D); Lithium secondary battery or lithium ion capacitor having the electrode and / or the electrolytic solution; electrode protection including a step of applying a voltage after the electrode protective film forming agent (D) is contained in the electrode and / or the electrolytic solution It is a manufacturing method of a film | membrane.
Figure JPOXMLDOC01-appb-C000005
[M is a monovalent metal ion, and A is —CO 2 , —SO 3 , —OPO (OR 1 ) O , —B (O ) 2 , —B (OR 2 ) O or — B (OR 3 ) 3 (R 1 to R 3 are each a hydrocarbon group having 1 to 10 carbon atoms, and a plurality of R 3 may be the same or different and may form a ring with each other. Good). ]
 本発明の電極保護膜形成剤(D)を含有する電極および/または電解液を使用することで、充放電サイクル特性および出力特性に優れ、電極抵抗の低いリチウム二次電池またはリチウムイオンキャパシタを作製できる。 By using an electrode and / or electrolyte containing the electrode protective film forming agent (D) of the present invention, a lithium secondary battery or a lithium ion capacitor having excellent charge / discharge cycle characteristics and output characteristics and low electrode resistance is produced. it can.
<電極保護膜形成剤(D)>
本発明の電極保護膜形成剤(D)は、リチウム二次電池またはリチウムイオンキャパシタの負極、正極またはそのいずれにも含有させた後、該電池または該キャパシタに電圧を印加すると電極の活物質の表面上に重合膜を形成し、該重合膜の作用で充放電サイクル特性および出力特性を向上させるとともに、電極抵抗を低下させることができる。
また、電極保護膜形成剤(D)はリチウム二次電池またはリチウムイオンキャパシタの電解液に含有させた後、該電池または該キャパシタに電圧を印加すると電極の活物質の表面上に重合膜を形成し、該重合膜の作用で充放電サイクル特性および出力特性を向上させるとともに、電極抵抗を低下させることができる。
<Electrode protective film forming agent (D)>
The electrode protective film-forming agent (D) of the present invention is contained in the negative electrode, the positive electrode, or both of a lithium secondary battery or a lithium ion capacitor, and then a voltage is applied to the battery or the capacitor. A polymerized film is formed on the surface, and the charge / discharge cycle characteristics and output characteristics can be improved by the action of the polymerized film, and the electrode resistance can be reduced.
Further, after the electrode protective film forming agent (D) is contained in the electrolyte solution of a lithium secondary battery or a lithium ion capacitor, a voltage is applied to the battery or the capacitor to form a polymer film on the surface of the electrode active material. In addition, charge / discharge cycle characteristics and output characteristics can be improved by the action of the polymer film, and electrode resistance can be reduced.
本発明の電極保護膜形成剤(D)は、ウレタン結合(a1)、ウレア結合(a2)、アロファネート結合(a3)およびビウレット結合(a4)からなる群より選ばれる少なくとも1つの結合(a)、重合性不飽和結合(b)ならびに上記一般式(1)で表される基(g)を有する化合物(C)を含有することを特徴とする。 The electrode protective film forming agent (D) of the present invention comprises at least one bond (a) selected from the group consisting of urethane bond (a1), urea bond (a2), allophanate bond (a3) and biuret bond (a4), It contains a compound (C) having a polymerizable unsaturated bond (b) and a group (g) represented by the above general formula (1).
ウレタン結合(a1)は-OCONH-で示される結合、
ウレア結合(a2)は-NHCONH-で示される結合、
アロファネート結合(a3)は下記式(5)で示される結合、
Figure JPOXMLDOC01-appb-C000006
ビウレット結合(a4)は下記式(6)で示される結合である。
Figure JPOXMLDOC01-appb-C000007
The urethane bond (a1) is a bond represented by —OCONH—,
The urea bond (a2) is a bond represented by -NHCONH-,
The allophanate bond (a3) is a bond represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000006
The biuret bond (a4) is a bond represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000007
重合性不飽和結合(b)は炭素-炭素二重結合であり、該結合を有する基としては、例えば下記一般式(3)で表されるアルケニルエーテル基(j1)、下記一般式(4)で表されるアルケニル基(j2)および(メタ)アクリロイロキシ基(j3)からなる群より選ばれる少なくとも1つの基(j)が挙げられる。なお、本明細書において、「(メタ)アクリロイロキシ基」とは「アクリロイロキシ基またはメタクリロイロキシ基」を意味する。
Figure JPOXMLDOC01-appb-C000008
 [式(3)中、T~Tは水素原子、または炭素数1~3のアルキル基である。]
Figure JPOXMLDOC01-appb-C000009
 [式(4)中、T~Tは水素原子、または炭素数1~3のアルキル基であり、互いに環を形成していてもよい。]
これらの中で重合性基の反応性という観点から好ましいものは一般式(4)で表されるアルケニル基(j2)である。
The polymerizable unsaturated bond (b) is a carbon-carbon double bond, and examples of the group having the bond include an alkenyl ether group (j1) represented by the following general formula (3) and the following general formula (4). And at least one group (j) selected from the group consisting of an alkenyl group (j2) and a (meth) acryloyloxy group (j3). In the present specification, “(meth) acryloyloxy group” means “acryloyloxy group or methacryloyloxy group”.
Figure JPOXMLDOC01-appb-C000008
[In the formula (3), T 1 to T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000009
[In Formula (4), T 4 to T 6 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may form a ring with each other. ]
Among these, the alkenyl group (j2) represented by the general formula (4) is preferable from the viewpoint of the reactivity of the polymerizable group.
上記炭素数1~3のアルキル基としては、メチル、エチル、n-プロピル、イソプロピルが挙げられる。 Examples of the alkyl group having 1 to 3 carbon atoms include methyl, ethyl, n-propyl, and isopropyl.
アルケニルエーテル基(j1)としては、ビニルオキシ基、1-メチルビニルオキシ基、1-プロペノキシ基、1-メチル-1-プロペノキシ基、2-メチル-1-プロペノキシ基および1,2-ジメチル-1-プロペノキシ基が挙げられる。
これらの中で重合性基の反応性という観点から好ましいのは1-プロペノキシ基である。
Examples of the alkenyl ether group (j1) include vinyloxy group, 1-methylvinyloxy group, 1-propenoxy group, 1-methyl-1-propenoxy group, 2-methyl-1-propenoxy group and 1,2-dimethyl-1- A propenoxy group is mentioned.
Of these, a 1-propenoxy group is preferable from the viewpoint of the reactivity of the polymerizable group.
アルケニル基(j2)としては、ビニル基、1-プロペニル基、1-メチル-1-プロペニル基、2-メチル-1-プロペニル基、1,2-ジメチル-1-プロペニル基、および一般式(4)において、Tがメチル基でありTとTが環を形成している基(例えば1-メチル-1-シクロヘキセン-2-イルおよび2,6,6-トリメチルシクロヘキセン-1-イル等)が挙げられる。
これらの中で重合性基の反応性という観点から好ましいのは、T~Tのうち少なくとも2つが炭素数1~3のアルキル基で置換された重合性基であり、より好ましくは2-メチル-1-プロペニル基または1,2-ジメチル-1-プロペニル基である。
Examples of the alkenyl group (j2) include a vinyl group, 1-propenyl group, 1-methyl-1-propenyl group, 2-methyl-1-propenyl group, 1,2-dimethyl-1-propenyl group, and general formula (4 ) In which T 5 is a methyl group and T 4 and T 6 form a ring (for example, 1-methyl-1-cyclohexen-2-yl and 2,6,6-trimethylcyclohexen-1-yl, etc.) ).
Among these, from the viewpoint of the reactivity of the polymerizable group, preferred is a polymerizable group in which at least two of T 4 to T 6 are substituted with an alkyl group having 1 to 3 carbon atoms, and more preferably 2- A methyl-1-propenyl group or a 1,2-dimethyl-1-propenyl group;
上記一般式(1)で表される基(g)におけるMは1価の金属イオンであり、Aは-CO 、-SO 、-OPO(OR)O、-B(O、-B(OR)Oまたは-B(OR (R~Rは各炭素数1~10の炭化水素基であり、複数個あるRはそれぞれ同一でも異なっていてもよく、互いに環を形成していてもよい。)である。 In the group (g) represented by the general formula (1), M is a monovalent metal ion, A is —CO 2 , —SO 3 , —OPO (OR 1 ) O , —B (O ) 2 , —B (OR 2 ) O or —B (OR 3 ) 3 (R 1 to R 3 are each a hydrocarbon group having 1 to 10 carbon atoms, and a plurality of R 3 may be the same. They may be different and may form a ring with each other.
およびRとしては、炭素数1~10の1価の脂肪族炭化水素基、炭素数6~10の1価の芳香族炭化水素基または炭素数5~10の1価の脂環式炭化水素基等が挙げられる。これらの中で化合物の酸化安定性という観点から好ましいものは、1価の脂肪族炭化水素基および1価の脂環式炭化水素基である。 R 1 and R 2 are a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, or a monovalent alicyclic group having 5 to 10 carbon atoms. A hydrocarbon group etc. are mentioned. Among these, a monovalent aliphatic hydrocarbon group and a monovalent alicyclic hydrocarbon group are preferable from the viewpoint of oxidation stability of the compound.
としては、炭素数1~10の1価の脂肪族炭化水素基、炭素数6~10の1価の芳香族炭化水素基、炭素数5~10の1価の脂環式炭化水素基、炭素数2~10の脂肪族ジオールから2個の水酸基を除いた残基または炭素数4~10の脂肪族トリオールから3個の水酸基を除いた残基等が挙げられる。これらの中で化合物の酸化安定性という観点から好ましいものは、1価の脂肪族炭化水素基、1価の脂環式炭化水素基、脂肪族ジオールから2個の水酸基を除いた残基または脂肪族トリオールから3個の水酸基を除いた残基である。 R 3 is a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, or a monovalent alicyclic hydrocarbon group having 5 to 10 carbon atoms. And a residue obtained by removing two hydroxyl groups from an aliphatic diol having 2 to 10 carbon atoms or a residue obtained by removing three hydroxyl groups from an aliphatic triol having 4 to 10 carbon atoms. Among these, preferred from the viewpoint of oxidative stability of the compound are monovalent aliphatic hydrocarbon groups, monovalent alicyclic hydrocarbon groups, residues obtained by removing two hydroxyl groups from aliphatic diols, or fatty acids. It is a residue obtained by removing three hydroxyl groups from a group triol.
Aのうち、充放電サイクル特性の観点から好ましいのは-SO である。 Among A, —SO 3 is preferable from the viewpoint of charge / discharge cycle characteristics.
Mのうち、1価の金属イオンとしては、例えばリチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等が挙げられる。
これらの中で出力特性の観点からリチウムイオンまたはナトリウムイオンが好ましい。
Examples of monovalent metal ions in M include lithium ions, sodium ions, potassium ions, rubidium ions, and cesium ions.
Among these, lithium ions or sodium ions are preferable from the viewpoint of output characteristics.
化合物(C)は、例えば下記一般式(2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Yは酸素原子、硫黄原子および窒素原子からなる群より選ばれる少なくとも1つの原子を含有していてもよい炭素数2~42の(s+t)価の炭化水素基(Y1)、炭素数4~44のジイソシアネート(B)と炭素数2~20のジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマーから2個のイソシアネート基を除いた2価の残基(Y2)、アロファネート結合(a3)を有する炭素数9~118のジイソシアネート(B)変性物から(s+t)個のイソシアネート基を除いた残基(Y3)またはビウレット結合(a4)を有する炭素数11~131のジイソシアネート(B)変性物から(s+t)個のイソシアネート基を除いた残基(Y4)である。
sは1~5の整数、tは1~5の整数である。(a5)はウレタン結合またはウレア結合である。Rは炭素数1~12の2価の炭化水素基、Rは炭素数2~30の重合性不飽和結合(b)を有する1価の炭化水素基、(g)は上記一般式(1)で表される基である。
Examples of the compound (C) include a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000010
Y is an (s + t) -valent hydrocarbon group having 2 to 42 carbon atoms (Y1), which may contain at least one atom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom; A divalent residue (Y2) obtained by removing two isocyanate groups from a urethane prepolymer having isocyanate groups at both ends, which is a reaction product of diisocyanate (B) and diol (N) having 2 to 20 carbon atoms, allophanate bond A diisocyanate having 11 to 131 carbon atoms having a residue (Y3) or biuret bond (a4) obtained by removing (s + t) isocyanate groups from a diisocyanate (B) modified product having 9 to 118 carbon atoms having (a3) and having (a3) ) Residue (Y4) obtained by removing (s + t) isocyanate groups from the modified product.
s is an integer of 1 to 5, and t is an integer of 1 to 5. (A5) is a urethane bond or a urea bond. R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms, R 8 is a monovalent hydrocarbon group having a polymerizable unsaturated bond (b) having 2 to 30 carbon atoms, and (g) is the above general formula ( It is group represented by 1).
炭化水素基(Y1)は、酸素原子、硫黄原子および窒素原子からなる群より選ばれる少なくとも1つの原子を含有していてもよい炭素数2~42の(s+t)価の炭化水素基であり、好ましくは炭素数6~13の2価の炭化水素基である。具体例としては、2価の脂肪族炭化水素基(エチレン、テトラメチレン、ヘキサメチレン、オクタメチレン、デカメチレン、1-メチルテトラメチレン、2-メチルテトラメチレン)、2価の脂環式炭化水素基(1,5,5-トリメチル-シクロヘキサン-1,3-ジイル、メチレンジシクロヘキシル-4,4’-ジイル、シクロヘキサン-1,4-ジイル、1,4-ジメチレン-シクロヘキサン(1,4-シクロヘキサンジメタノールから2個の水酸基を除いた残基))、2価の芳香族炭化水素基(トルエン-2,4-ジイル、トルエン-2,6-ジイル、メチレンジフェニル-4,4’-ジイル、キシリレン、テトラメチルキシリレン、フェニレン、1,5-ナフチレン)、イソシアヌレート基を含む炭素数9~42の3価の炭化水素基等が挙げられ、化合物の酸化安定性という観点から、好ましいものは2価の脂肪族炭化水素基および2価の脂環式炭化水素基である。 The hydrocarbon group (Y1) is a (s + t) valent hydrocarbon group having 2 to 42 carbon atoms, which may contain at least one atom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom, A divalent hydrocarbon group having 6 to 13 carbon atoms is preferred. Specific examples include divalent aliphatic hydrocarbon groups (ethylene, tetramethylene, hexamethylene, octamethylene, decamethylene, 1-methyltetramethylene, 2-methyltetramethylene), divalent alicyclic hydrocarbon groups ( 1,5,5-trimethyl-cyclohexane-1,3-diyl, methylenedicyclohexyl-4,4'-diyl, cyclohexane-1,4-diyl, 1,4-dimethylene-cyclohexane (from 1,4-cyclohexanedimethanol 2) a divalent aromatic hydrocarbon group (toluene-2,4-diyl, toluene-2,6-diyl, methylenediphenyl-4,4′-diyl, xylylene, tetra A trivalent hydrocarbon group having 9 to 42 carbon atoms, including methylxylylene, phenylene, 1,5-naphthylene) and isocyanurate groups And the like, from the viewpoint of oxidation stability of the compounds, preferred are a divalent aliphatic hydrocarbon group and a divalent alicyclic hydrocarbon group.
残基(Y2)は、炭素数4~44のジイソシアネート(B)と炭素数2~20のジオール(N)との反応により得られる両末端にイソシアネート基を有するウレタンプレポリマーから2個のイソシアネート基を除いた残基である。
ジイソシアネート(B)としては、上記2価の炭化水素基(Y1)に2個のイソシアネート基が付加したジイソシアネートが挙げられる。
ジオール(N)としては、2価の脂肪族ジオール(エチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、1,3-プロパンジオール、1,5-ペンタンジオール、1,8-オクタンジオール、1,10-デカンジオール、プロピレングリコール、1,3-ブタンジオール等)、2価の脂環式炭化水素基(1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール等)等が挙げられる。
ウレタンプレポリマーの数平均分子量は700~4800であることが好ましく、1000~3000であることがさらに好ましい。
Residue (Y2) consists of two isocyanate groups from a urethane prepolymer having isocyanate groups at both ends obtained by reaction of a diisocyanate (B) having 4 to 44 carbon atoms and a diol (N) having 2 to 20 carbon atoms. It is a residue excluding.
Examples of the diisocyanate (B) include diisocyanates obtained by adding two isocyanate groups to the divalent hydrocarbon group (Y1).
Diol (N) includes divalent aliphatic diols (ethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,3-propanediol, 1,5-pentanediol, 1,8-octanediol, 1,10- Decanediol, propylene glycol, 1,3-butanediol, etc.) Divalent alicyclic hydrocarbon group (1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, etc.) Etc.
The number average molecular weight of the urethane prepolymer is preferably 700 to 4800, and more preferably 1000 to 3000.
残基(Y3)は、アロファネート結合(a3)を有する炭素数9~118のジイソシアネート(B)変性物から(s+t)個のイソシアネート基を除いた残基である。
アロファネート結合(a3)を有する炭素数9~118のジイソシアネート(B)変性物としては、例えば下記の一般式(7)で表される化合物が挙げられる。
The residue (Y3) is a residue obtained by removing (s + t) isocyanate groups from a diisocyanate (B) modified product having 9 to 118 carbon atoms having an allophanate bond (a3).
Examples of the modified diisocyanate (B) having 9 to 118 carbon atoms having an allophanate bond (a3) include compounds represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000011
[式(7)中、Rは上記炭化水素基(Y1)のうち2価の基であり、複数個あるRはそれぞれ同一でも異なっていてもよい。Rは炭素数1~20の炭化水素基である。]
Figure JPOXMLDOC01-appb-C000011
[In Formula (7), R 4 is a divalent group in the hydrocarbon group (Y1), and a plurality of R 4 may be the same or different. R 5 is a hydrocarbon group having 1 to 20 carbon atoms. ]
 Rとしては、炭素数1~20の直鎖または分岐の1価の脂肪族炭化水素基(メチル、エチル、n-プロピル、イソプロピル、n-ブチル、1-メチルプロピル、イソブチル、t-ブチル、n-ペンチル、イソペンチル、1-メチルブチル、2-メチルブチル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,2-ジメチルプロピル、1-エチルプロピル、n-ヘキシル、イソヘキシル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、1,1-ジメチルブチル、2,2-ジメチルブチル、1,1,2-トリメチルプロピル、1-エチル-1-メチルプロピル、ヘプチル、オクチル、イソオクチル、2-エチルヘキシル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル)、炭素数5~20の1価の脂環式炭化水素基(シクロペンチル、シクロへキシル、シクロヘキシルメチル、シクロヘキシルエチル)が挙げられる。 R 5 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms (methyl, ethyl, n-propyl, isopropyl, n-butyl, 1-methylpropyl, isobutyl, t-butyl, n-pentyl, isopentyl, 1-methylbutyl, 2-methylbutyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, isohexyl, 3-methylpentyl 2-methylpentyl, 1-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl, heptyl, octyl, isooctyl, 2 -Ethylhexyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, Xadecyl, heptadecyl, octadecyl, nonadecyl, icosyl) and monovalent alicyclic hydrocarbon groups having 5 to 20 carbon atoms (cyclopentyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl).
残基(Y4)は、ビウレット結合(a4)を有する炭素数11~131のジイソシアネート(B)変性物から(s+t)個のイソシアネート基を除いた残基である。
ビウレット結合(a4)を有する炭素数11~131のジイソシアネート(B)変性物としては、例えば下記の一般式(8)で表される化合物が挙げられる。
The residue (Y4) is a residue obtained by removing (s + t) isocyanate groups from a modified diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4).
Examples of the modified diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4) include compounds represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000012
[式(8)中、Rは上記炭化水素基(Y1)のうち2価の基であり、複数個あるRはそれぞれ同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000012
[In Formula (8), R 6 is a divalent group in the hydrocarbon group (Y1), and a plurality of R 6 may be the same or different. ]
 上記一般式(2)において、sは1~5の整数であり、好ましくは1~3の整数である。また、上記一般式(2)において、tは1~5の整数であり、好ましくは1~3の整数である。これらsおよびtの合計は2~10の整数であり、好ましくは2~6の整数である。
上記一般式(2)において、(a5)はウレタン結合またはウレア結合である。2個以上ある(a5)はすべてウレタン結合の場合、すべてウレア結合の場合、ウレタン結合およびウレア結合が両方ある場合のいずれであってもよいが、すべてウレタン結合の場合が好ましい。
In the general formula (2), s is an integer of 1 to 5, preferably an integer of 1 to 3. In the general formula (2), t is an integer of 1 to 5, preferably an integer of 1 to 3. The sum of these s and t is an integer of 2 to 10, preferably an integer of 2 to 6.
In the general formula (2), (a5) is a urethane bond or a urea bond. Two or more (a5) s may be urethane bonds, all urea bonds, or both urethane bonds and urea bonds, but all are preferably urethane bonds.
上記一般式(2)において、Rは重合性不飽和結合(b)を有する炭素数2~30の1価の炭化水素基である。
としては、炭素数2~30の直鎖または分岐の1価の炭化水素基(ビニルアルコール、シトロネロール、リナロール、プレノール、ゲラニオール等の不飽和アルコールから水酸基を除いた残基)、炭素数5~30の1価の不飽和脂環式炭化水素基(レチノール等の不飽和脂環式アルコールから水酸基を除いた残基)が挙げられる。
反応性の観点から、シトロネロール、リナロール、プレノール、ゲラニオールが好ましい。
In the above general formula (2), R 8 is a monovalent hydrocarbon group having 2 to 30 carbon atoms and having a polymerizable unsaturated bond (b).
R 8 is a linear or branched monovalent hydrocarbon group having 2 to 30 carbon atoms (residue obtained by removing a hydroxyl group from an unsaturated alcohol such as vinyl alcohol, citronellol, linalool, prenol or geraniol), carbon number 5 To 30 monovalent unsaturated alicyclic hydrocarbon groups (residues obtained by removing hydroxyl groups from unsaturated alicyclic alcohols such as retinol).
Citronellol, linalool, prenol and geraniol are preferred from the viewpoint of reactivity.
 上記一般式(2)において、Rは炭素数1~12の2価の炭化水素基である。
としては炭素数1~12の直鎖または分岐の2価の脂肪族炭化水素基(メチレン、エチレン、トリメチレン、エチリデン、テトラメチレン、1-メチルトリメチレン、2-メチルトリメチレン、1-エチルエチレン、1,1-ジメチルエチレン、エチルメチルメチレン、プロピルメチレン、ペンタメチレン、1-メチルテトラメチレン、2-メチルテトラメチレン、1,1-ジメチルトリメチレン、2,2-ジメチルトリメチレン、1,2-ジメチルトリメチレン、1,3-ジメチルトリメチレン、1-エチルトリメチレン、1,1,2-トリメチルエチレン、ジエチルメチレン、1-プロピルエチレン、ブチルメチレン、ヘキサメチレン、1-メチルペンタメチレン、1,1-ジメチルテトラメチレン、2,2-ジメチルテトラメチレン、1,1,3-トリメチルトリメチレン、1,1,2-トリメチルトリメチレン、1,1,2,2-テトラメチルエチレン、1,1-ジメチル-2-エチルエチレン、1,1-ジエチルエチレン、1-プロピルトリメチレン、2-プロピルトリメチレン、1-ブチルエチレン、1-メチル-1-プロピルエチレン、1-メチル-2-プロピルエチレン、ペンチルメチレン、ブチルメチルメチレン、エチルプロピルメチレン、1-メチル-1-ビニル-1,3-プロパンジイル、3-メチル-ペンタン-1,5-ジイルまたは3,7-ジメチルノナ-2,4,6,8-テトラエン-1,9-ジイル)、炭素数5~12の2価の脂環式炭化水素基(1,2-シクロペンチレン、1,2-シクロへキシレン、1,3-シクロへキシレン、1,4-シクロへキシレン、1,3-シクロヘキサンジメタノールから2個の水酸基を除いた残基、1,4-シクロヘキサンジメタノールから2個の水酸基を除いた残基、1-ヒドロキシ-3-ヒドロキシメチルシクロヘキサンから2個の水酸基を除いた残基、1-ヒドロキシ-4-ヒドロキシメチルシクロヘキサンから2個の水酸基を除いた残基、1,4-シクロヘキサンジエタノールから2個の水酸基を除いた残基または1,4-シクロヘキサンジプロパノールから2個の水酸基を除いた残基)、炭素数6~12の2価の芳香族炭化水素基(1,2-フェニレン、1,3-フェニレン、1,4-フェニレン、2,4-トリレン、2,5-トリレンまたは1,5-ナフチレン)が挙げられる。
In the general formula (2), R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms.
R 7 is a linear or branched divalent aliphatic hydrocarbon group having 1 to 12 carbon atoms (methylene, ethylene, trimethylene, ethylidene, tetramethylene, 1-methyltrimethylene, 2-methyltrimethylene, 1-ethyl Ethylene, 1,1-dimethylethylene, ethylmethylmethylene, propylmethylene, pentamethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1,2 -Dimethyltrimethylene, 1,3-dimethyltrimethylene, 1-ethyltrimethylene, 1,1,2-trimethylethylene, diethylmethylene, 1-propylethylene, butylmethylene, hexamethylene, 1-methylpentamethylene, 1, 1-dimethyltetramethylene, 2,2-dimethyltetramethyle 1,1,3-trimethyltrimethylene, 1,1,2-trimethyltrimethylene, 1,1,2,2-tetramethylethylene, 1,1-dimethyl-2-ethylethylene, 1,1-diethyl Ethylene, 1-propyltrimethylene, 2-propyltrimethylene, 1-butylethylene, 1-methyl-1-propylethylene, 1-methyl-2-propylethylene, pentylmethylene, butylmethylmethylene, ethylpropylmethylene, 1- Methyl-1-vinyl-1,3-propanediyl, 3-methyl-pentane-1,5-diyl or 3,7-dimethylnona-2,4,6,8-tetraene-1,9-diyl), carbon number 5 to 12 divalent alicyclic hydrocarbon groups (1,2-cyclopentylene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4- Chlohexylene, a residue obtained by removing two hydroxyl groups from 1,3-cyclohexanedimethanol, a residue obtained by removing two hydroxyl groups from 1,4-cyclohexanedimethanol, and 1-hydroxy-3-hydroxymethylcyclohexane A residue obtained by removing two hydroxyl groups, a residue obtained by removing two hydroxyl groups from 1-hydroxy-4-hydroxymethylcyclohexane, a residue obtained by removing two hydroxyl groups from 1,4-cyclohexanediethanol, or 1,4 A residue obtained by removing two hydroxyl groups from cyclohexanedipropanol), a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms (1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 2 , 4-tolylene, 2,5-tolylene or 1,5-naphthylene).
化合物(C)中の結合(a)の濃度は0.2~10mmol/gが好ましく、より好ましくは0.5~5mmol/gである。 The concentration of the bond (a) in the compound (C) is preferably 0.2 to 10 mmol / g, more preferably 0.5 to 5 mmol / g.
化合物(C)中の重合性不飽和結合(b)の濃度は0.2~10mmol/gが好ましく、より好ましくは0.2~5mmol/gである。 The concentration of the polymerizable unsaturated bond (b) in the compound (C) is preferably 0.2 to 10 mmol / g, more preferably 0.2 to 5 mmol / g.
化合物(C)の数平均分子量は238~5000であることが好ましく、さらに好ましくは450~3500である。化合物(C)の数平均分子量(Mn)はゲルパーミエーションクロマトグラフィー(以下GPCと記載する。)を用いて測定することができる。GPCの測定条件は、後述する実施例5および6に係る化合物(C-5)および(C-6)の数平均分子量(Mn)の測定条件を用いることができる。さらに、分子量は質量分析計で測定、または構造式から計算することもできる。 The number average molecular weight of the compound (C) is preferably 238 to 5000, more preferably 450 to 3500. The number average molecular weight (Mn) of the compound (C) can be measured using gel permeation chromatography (hereinafter referred to as GPC). As the measurement conditions for GPC, the measurement conditions for the number average molecular weight (Mn) of the compounds (C-5) and (C-6) according to Examples 5 and 6 described later can be used. Furthermore, the molecular weight can be measured with a mass spectrometer or calculated from the structural formula.
化合物(C)は、例えば以下の方法で得ることができる。
(1)2個以上のイソシアネート基を有する化合物(B1)と、重合性不飽和結合(b)を有する活性水素化合物(L)と、一般式(1)で表される基(g)を有する活性水素化合物(G1)とを反応させて合成する。
または、上記2個以上のイソシアネート基を有する化合物(B1)と、重合性不飽和結合(b)を有する活性水素化合物(L)と、-COH、-SOH、-OPO(OR)OH、-B(OH)または-B(OR)OH(R、Rは各炭素数1~10の炭化水素基)で表される基を有する活性水素化合物(G2)とを反応させた後、1価の金属水酸化物により中和することで合成する。
(2)上記(1)において、2個以上のイソシアネート基を有する化合物(B1)の代わりに、アロファネート結合(a3)およびビウレット結合(a4)からなる群より選ばれる少なくとも1つの結合(a)を有し2個以上のイソシアネート基を有する化合物(B2)を使用して合成する。
(3)上記(1)において、2個以上のイソシアネート基を有する化合物(B1)の代わりに、炭素数4~44のジイソシアネート(B)と炭素数2~20のジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマー(B3)を使用して合成する。
Compound (C) can be obtained, for example, by the following method.
(1) having a compound (B1) having two or more isocyanate groups, an active hydrogen compound (L) having a polymerizable unsaturated bond (b), and a group (g) represented by the general formula (1) It is synthesized by reacting with an active hydrogen compound (G1).
Alternatively, the compound (B1) having two or more isocyanate groups, the active hydrogen compound (L) having a polymerizable unsaturated bond (b), -CO 2 H, -SO 3 H, -OPO (OR 1 ) OH, —B (OH) 2 or —B (OR 2 ) OH (R 1 and R 2 are each a hydrocarbon group having 1 to 10 carbon atoms) and an active hydrogen compound (G2) having a group represented by After reacting, it is synthesized by neutralizing with a monovalent metal hydroxide.
(2) In the above (1), instead of the compound (B1) having two or more isocyanate groups, at least one bond (a) selected from the group consisting of allophanate bond (a3) and biuret bond (a4) is used. The compound (B2) having two or more isocyanate groups is synthesized.
(3) In the above (1), instead of the compound (B1) having two or more isocyanate groups, a reaction product of a diisocyanate (B) having 4 to 44 carbon atoms and a diol (N) having 2 to 20 carbon atoms is used. It is synthesized using a urethane prepolymer (B3) having a certain terminal isocyanate group.
上記の(1)~(3)の反応は、反応時間の短縮という点からウレタン化触媒存在下で行うことが好ましい。
反応は溶媒を使用せずに行うか、または溶媒中で行う。反応溶媒としてはN-メチルピロリドン、ジメチルホルムアミド、ジオキソラン等が挙げられるが、N-メチルピロリドンが好ましい。
反応時間は1~24時間だが、5~8時間が好ましい。
仕込み順は活性水素化合物を先に仕込んでいてもよく、イソシネート基を有する化合物を先に仕込んでいてもよい。
モル比は、イソシアネート基を残さないために、イソシアネート基に対して合計1~1.5当量のヒドロキシ基またはアミノ基と反応させることが好ましい。
The above reactions (1) to (3) are preferably carried out in the presence of a urethanization catalyst from the viewpoint of shortening the reaction time.
The reaction is carried out without using a solvent or in a solvent. Examples of the reaction solvent include N-methylpyrrolidone, dimethylformamide, dioxolane and the like, and N-methylpyrrolidone is preferable.
The reaction time is 1 to 24 hours, but 5 to 8 hours are preferable.
The order of preparation may be that the active hydrogen compound is charged first, or the compound having an isocyanate group may be charged first.
The molar ratio is preferably reacted with a total of 1 to 1.5 equivalents of hydroxy group or amino group with respect to the isocyanate group so as not to leave an isocyanate group.
 化合物(B1)としては、例えば、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ヘキサメチレンジイソシアネート、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート等が挙げられる。
化合物(B2)としては、デュラネートA201H(アロファネート変性ヘキサメチレンジイソシアネート)[旭化成ケミカルズ(株)製]、デュラネート24A-100(ビウレット変性ヘキサメチレンジイソシアネート)[旭化成ケミカルズ(株)製]等が挙げられる。化合物(B3)としては、ジシクロヘキシルメタン-4,4’-ジイソシアネートと1,4-シクロヘキサンジメタノールを反応させたウレタンプレポリマー等が挙げられる。
Examples of the compound (B1) include dicyclohexylmethane-4,4′-diisocyanate, hexamethylene diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, and the like.
Examples of the compound (B2) include DURANATE A201H (allophanate-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation], DURANATE 24A-100 (biuret-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation], and the like. Examples of the compound (B3) include a urethane prepolymer obtained by reacting dicyclohexylmethane-4,4′-diisocyanate with 1,4-cyclohexanedimethanol.
 重合性不飽和結合(b)を有する活性水素化合物(L)としては、例えば、1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、リナロール、シトロネロール、レチノール、プレノール等が挙げられる。 Examples of the active hydrogen compound (L) having a polymerizable unsaturated bond (b) include 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, Examples include linalool, citronellol, retinol, prenol and the like.
 一般式(1)で表される基(g)を有する活性水素化合物(G1)としては、例えば、イセチオン酸リチウム、イセチオン酸ナトリウム、乳酸リチウム、乳酸ナトリウム、2-アミノエタンスルホン酸リチウム、2-アミノエタンスルホン酸ナトリウム、4-ヒドロキシフェニルボロン酸リチウム、4-(ヒドロキシメチル)フェニルボロン酸リチウム、(3-アミノフェニル)環状トリオールボレートリチウム塩等が挙げられる。 Examples of the active hydrogen compound (G1) having the group (g) represented by the general formula (1) include lithium isethionate, sodium isethionate, lithium lactate, sodium lactate, lithium 2-aminoethanesulfonate, 2- Examples include sodium aminoethanesulfonate, lithium 4-hydroxyphenylboronate, lithium 4- (hydroxymethyl) phenylboronate, lithium (3-aminophenyl) cyclic triol borate and the like.
 -COH,-SOH、-OPO(OR)OH、-B(OH)または-B(OR)OH(R、Rは各炭素数1~10の炭化水素基)で表される基を有する活性水素化合物(G2)としては、例えば、イセチオン酸、タウリン、乳酸、グリコール酸、4-ヒドロキシフェニルボロン酸、4-(ヒドロキシメチル)フェニルボロン酸等が挙げられる。 —CO 2 H, —SO 3 H, —OPO (OR 1 ) OH, —B (OH) 2 or —B (OR 2 ) OH (R 1 and R 2 are each a hydrocarbon group having 1 to 10 carbon atoms) Examples of the active hydrogen compound (G2) having a group represented by formula (I) include isethionic acid, taurine, lactic acid, glycolic acid, 4-hydroxyphenylboronic acid, 4- (hydroxymethyl) phenylboronic acid, and the like.
 ジオール(N)としては、例えば、1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール等が挙げられる。 Examples of the diol (N) include 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, and the like. Can be mentioned.
 電極保護膜形成剤(D)は化合物(C)以外の成分を含有していてもよいが、化合物(C)以外の成分を含有しない方が好ましい。化合物(C)以外の成分としては例えば、ビニレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、エチレンサルファイト、プロピレンサルファイトおよびα-ブロモ-γ-ブチロラクトン等が挙げられる。
電極保護膜形成剤(D)における化合物(C)の含有量は、電極保護膜形成剤(D)の重量を基準として、10~100重量%であることが好ましく、更に好ましくは50~100重量%である。
The electrode protective film forming agent (D) may contain a component other than the compound (C), but preferably does not contain any component other than the compound (C). Examples of components other than the compound (C) include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and α-bromo-γ-butyrolactone.
The content of the compound (C) in the electrode protective film forming agent (D) is preferably 10 to 100% by weight, more preferably 50 to 100% by weight, based on the weight of the electrode protective film forming agent (D). %.
<電極>
本発明の電極は、充放電して使用する前は電極保護膜形成剤(D)、活物質(H)、および結着剤(K)を含有する。充放電を開始すると共に、電極保護膜形成剤(D)の一部は重合反応して活物質(H)の表面上に重合物を形成する。この時点で本発明の電極は、未反応の電極保護膜形成剤(D)、表面上に(D)の重合物よりなる電極保護膜が形成された活物質(H)、および結着剤(K)を含有する。
<Electrode>
The electrode of the present invention contains an electrode protective film forming agent (D), an active material (H), and a binder (K) before charging and discharging. While charging / discharging is started, a part of the electrode protective film forming agent (D) undergoes a polymerization reaction to form a polymer on the surface of the active material (H). At this time, the electrode of the present invention comprises an unreacted electrode protective film forming agent (D), an active material (H) having an electrode protective film made of a polymer of (D) on the surface, and a binder ( K).
 活物質(H)としては負極活物質(H1)を用いることによりリチウム二次電池用の負極が得られ、(H1)にリチウムをドーピングすることによりリチウムイオンキャパシタ用負極が得られる。また、リチウム二次電池用正極活物質(H2)およびリチウムイオンキャパシタ用正極活物質(H3)が挙げられる。
 負極活物質(H1)としては、黒鉛、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂およびフラン樹脂等を焼成し炭素化したもの)、コークス類(例えばピッチコークス、ニードルコークスおよび石油コークス)、炭素繊維、導電性高分子(例えばポリアセチレンおよびポリピロール)、スズ、シリコン、および金属合金(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金およびリチウム-アルミニウム-マンガン合金等)等が挙げられる。
 リチウム二次電池用正極活物質(H2)としてはリチウムと遷移金属との複合酸化物(例えばLiCoO、LiNiO、LiMnOおよびLiMn)、遷移金属酸化物(例えばMnOおよびV)、遷移金属硫化物(例えばMoSおよびTiS)、および導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレンおよびポリカルバゾール)等が挙げられる。
 リチウムイオンキャパシタ用正極活物質(H3)としては活性炭、炭素繊維および導電性高分子(例えばポリアセチレンおよびポリピロール)等が挙げられる。
A negative electrode for a lithium secondary battery is obtained by using the negative electrode active material (H1) as the active material (H), and a negative electrode for a lithium ion capacitor is obtained by doping lithium into (H1). Moreover, the positive electrode active material (H2) for lithium secondary batteries and the positive electrode active material (H3) for lithium ion capacitors are mentioned.
Examples of the negative electrode active material (H1) include graphite, amorphous carbon, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin and furan resin, etc.), cokes (for example, pitch coke, needle coke, and petroleum coke), And carbon fibers, conductive polymers (for example, polyacetylene and polypyrrole), tin, silicon, and metal alloys (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy). .
Examples of the positive electrode active material (H2) for the lithium secondary battery include composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2). O 5 ), transition metal sulfides (eg, MoS 2 and TiS 2 ), and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
Examples of the positive electrode active material (H3) for a lithium ion capacitor include activated carbon, carbon fiber, and a conductive polymer (for example, polyacetylene and polypyrrole).
 結着剤(K)としてはデンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレンおよびポリプロピレン等の高分子化合物が挙げられる。 Examples of the binder (K) include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
 本発明の電極は更に導電助剤(J)を含有することができる。
 導電助剤(J)としては黒鉛(例えば天然黒鉛および人工黒鉛)、カーボンブラック類(例えばカーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラックおよびサーマルブラック)および金属粉末(例えばアルミニウム粉およびニッケル粉)、導電性金属酸化物(例えば酸化亜鉛および酸化チタン)等が挙げられる。
The electrode of the present invention can further contain a conductive additive (J).
As the conductive assistant (J), graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black) and metal powder (for example, Aluminum powder and nickel powder), conductive metal oxides (for example, zinc oxide and titanium oxide), and the like.
 本発明の電極における、電極保護膜形成剤(D)、活物質(H)および結着剤(K)の合計重量に基づく電極保護膜形成剤(D)、活物質(H)、結着剤(K)、および導電助剤(J)のそれぞれの好ましい含有量は以下の通りである。
 電極保護膜形成剤(D)の含有量は、充放電サイクル特性の観点から、好ましくは0.1~5重量%であり、更に好ましくは0.2~2重量%である。
 活物質(H)の含有量は、電池容量の観点から、好ましくは70~98重量%であり、更に好ましくは90~98重量%である。
 結着剤(K)の含有量は、電池容量の観点から、好ましくは0.1~29重量%であり、更に好ましくは0.5~10重量%である。
 導電助剤(J)の含有量は、電池出力の観点から、好ましくは0~29重量%であり、更に好ましくは1~10重量%である。
Electrode protective film forming agent (D), active material (H), binder based on total weight of electrode protective film forming agent (D), active material (H) and binder (K) in the electrode of the present invention The preferred contents of (K) and the conductive additive (J) are as follows.
The content of the electrode protective film forming agent (D) is preferably 0.1 to 5% by weight, more preferably 0.2 to 2% by weight, from the viewpoint of charge / discharge cycle characteristics.
The content of the active material (H) is preferably 70 to 98% by weight, more preferably 90 to 98% by weight, from the viewpoint of battery capacity.
The content of the binder (K) is preferably 0.1 to 29% by weight and more preferably 0.5 to 10% by weight from the viewpoint of battery capacity.
The content of the conductive auxiliary agent (J) is preferably 0 to 29% by weight, more preferably 1 to 10% by weight from the viewpoint of battery output.
 本発明の電極は、例えば電極保護膜形成剤(D)、活物質(H)、結着剤(K)、および必要により導電助剤(J)を、水または溶媒に30~60重量%の濃度で分散してスラリー化したものを、集電体にバーコーター等の塗工装置で塗布後、乾燥して溶媒を除去して、必要によりプレス機でプレスすることにより得られる。 The electrode of the present invention comprises, for example, an electrode protective film forming agent (D), an active material (H), a binder (K), and optionally a conductive assistant (J) in 30 to 60% by weight in water or a solvent. A slurry dispersed at a concentration is applied to a current collector with a coating device such as a bar coater, dried to remove the solvent, and, if necessary, obtained by pressing with a press.
 溶媒としては、ラクタム化合物、ケトン化合物、アミド化合物、アミン化合物、環状エーテル化合物等を用いることができる。
例えば1-メチル-2-ピロリドン、メチルエチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N,N-ジメチルアミノプロピルアミンおよびテトラヒドロフラン(THF)等が挙げられる。
 集電体としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子および導電性ガラス等が挙げられる。
As the solvent, lactam compounds, ketone compounds, amide compounds, amine compounds, cyclic ether compounds and the like can be used.
Examples thereof include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine and tetrahydrofuran (THF).
Examples of the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, a conductive polymer, and conductive glass.
 本発明の電解液は、電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)を含有し、好ましくはリチウム二次電池用およびリチウムイオンキャパシタ用の電解液として有用である。
 本発明の電解液は、充放電して使用する前は電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)を含有する。充放電を開始すると共に、電極保護膜形成剤(D)の一部は重合反応して電極を構成する活物質(H)の表面上に重合物の膜を形成する。重合反応の進行と共に本発明の電解液中の電極保護膜形成剤(D)は減少する。
The electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E) and a non-aqueous solvent (F), and is preferably useful as an electrolytic solution for lithium secondary batteries and lithium ion capacitors. .
The electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E), and a nonaqueous solvent (F) before charging and discharging. While charging / discharging is started, a part of the electrode protective film forming agent (D) undergoes a polymerization reaction to form a polymer film on the surface of the active material (H) constituting the electrode. As the polymerization reaction proceeds, the electrode protective film forming agent (D) in the electrolytic solution of the present invention decreases.
 電解質(E)としては、通常の電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsFおよびLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSOおよびLiC(CFSO等の有機酸のリチウム塩が挙げられる。これらの内、電池出力および充放電サイクル特性の観点から好ましいのはLiPFである。 The electrolyte (E), normal is can be used such as those used in the electrolytic solution, for example, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6 and LiClO 4 lithium salts of inorganic acids such as, LiN (CF 3 Examples include lithium salts of organic acids such as SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Among these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
 非水溶媒(F)としては、通常の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状または鎖状炭酸エステル、鎖状カルボン酸エステル、環状または鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等およびこれらの混合物を用いることができる。 As the non-aqueous solvent (F), those used in ordinary electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphoric acid Esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof can be used.
 非水溶媒(F)の内、電池出力および充放電サイクル特性の観点から好ましいのは環状または鎖状炭酸エステルである。
 環状炭酸エステルの具体例としては、プロピレンカーボネート、エチレンカーボネートおよびブチレンカーボネート等が挙げられる。
 鎖状炭酸エステルの具体例としては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネートおよびジ-n-プロピルカーボネート等が挙げられる。
Of the non-aqueous solvents (F), cyclic or chain carbonates are preferred from the viewpoint of battery output and charge / discharge cycle characteristics.
Specific examples of the cyclic carbonate include propylene carbonate, ethylene carbonate, butylene carbonate, and the like.
Specific examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
 本発明の電解液における電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)の合計重量に基づく電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)のそれぞれ好ましい含有量は以下の通りである。 Electrode protective film-forming agent (D), electrolyte (E) and non-aqueous solvent (F) based on the total weight of electrode protective film-forming agent (D), electrolyte (E) and non-aqueous solvent (F) in the electrolytic solution of the present invention ) Are preferably as follows.
 電極保護膜形成剤(D)の含有量は、充放電サイクル特性、電池容量および高温貯蔵特性の観点から、好ましくは0.01~10重量%、更に好ましくは0.05~1重量%である。
 電解液中の電解質(E)の含有量は、電池出力および充放電サイクル特性の観点から好ましくは0.1~30重量%であり、更に好ましくは0.5~20重量%である。
 非水溶媒(F)の含有量は、電池出力および充放電サイクル特性の観点から好ましくは60~99重量%であり、更に好ましくは85~95重量%である。
The content of the electrode protective film forming agent (D) is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight, from the viewpoints of charge / discharge cycle characteristics, battery capacity and high-temperature storage characteristics. .
The content of the electrolyte (E) in the electrolytic solution is preferably 0.1 to 30% by weight, more preferably 0.5 to 20% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
The content of the non-aqueous solvent (F) is preferably 60 to 99% by weight, more preferably 85 to 95% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
 本発明の電解液は、更に過充電防止剤、脱水剤および容量安定化剤等の添加剤を含有してもよい。以下の添加剤各成分の含有量は、電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)の合計重量に基づくものである。
 過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼンおよびt-アミルベンゼン等の芳香族化合物等が挙げられる。過充電防止剤の使用量は、通常0~5重量%、好ましくは0.5~3重量%である。
The electrolytic solution of the present invention may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer. The content of each component of the following additives is based on the total weight of the electrode protective film forming agent (D), the electrolyte (E), and the nonaqueous solvent (F).
Examples of the overcharge inhibitor include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene and t-amylbenzene. The amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight.
 脱水剤としては、ゼオライト、シリカゲルおよび酸化カルシウム等が挙げられる。脱水剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0.5~3重量%である。 Examples of the dehydrating agent include zeolite, silica gel and calcium oxide. The amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight of the electrolytic solution.
 容量安定化剤としては、フルオロエチレンカーボネート、無水コハク酸、1-メチル-2-ピペリドン、ヘプタンおよびフルオロベンゼン等が挙げられる。容量安定化剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0.5~3重量%である。 Examples of the capacity stabilizer include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene. The amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight of the electrolytic solution.
 本発明のリチウム二次電池は、正極、負極およびセパレータを収納した電池缶内に電解液を注入して電池缶を密封する際に、正極または負極として本発明の電極を用いるか、電解液に本発明の電解液を用いるか、またはこれらの併用により得られる。 The lithium secondary battery of the present invention uses the electrode of the present invention as a positive electrode or a negative electrode when the electrolytic solution is injected into a battery can containing a positive electrode, a negative electrode, and a separator, and the battery can be sealed. The electrolytic solution of the present invention is used, or it can be obtained by a combination thereof.
 リチウム二次電池におけるセパレータとしては、ポリエチレンまたはポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維およびガラス繊維等からなる不織布並びにこれらの表面にシリカ、アルミナおよびチタニア等のセラミック微粒子を付着させたものが挙げられる。 As a separator in a lithium secondary battery, a microporous film made of polyethylene or polypropylene film, a multilayer film of porous polyethylene film and polypropylene, a nonwoven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica on these surfaces, The thing to which ceramic fine particles, such as an alumina and titania, were made to adhere is mentioned.
 リチウム二次電池における電池缶としては、ステンレススチール、鉄、アルミニウムおよびニッケルメッキスチール等の金属材料を用いることができるが、電池用途に応じてプラスチック材料を用いることもできる。また電池缶は、用途に応じて円筒型、コイン型、角型またはその他任意の形状にすることができる。 As the battery can in the lithium secondary battery, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application. Further, the battery can can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
 本発明のリチウムイオンキャパシタは、本発明のリチウム二次電池の基本構成において、正極をリチウムイオンキャパシタ用の正極に代え、電池缶をキャパシタ缶に代えることにより得られる。キャパシタ缶の材質および形状としては、電池缶で例示したものと同様のものが挙げられる。 The lithium ion capacitor of the present invention can be obtained by replacing the positive electrode with a positive electrode for a lithium ion capacitor and replacing the battery can with a capacitor can in the basic configuration of the lithium secondary battery of the present invention. Examples of the material and shape of the capacitor can include the same as those exemplified for the battery can.
 本発明の電極保護膜の製造方法としては、正極または負極として本発明の電極を用いるか、電解液に本発明の電解液を用いるか、またはこれらを併用したものに電圧を印加することで形成させる方法がある。 As a method for producing the electrode protective film of the present invention, the electrode of the present invention is used as a positive electrode or a negative electrode, the electrolytic solution of the present invention is used as an electrolytic solution, or a voltage is applied to a combination thereof. There is a way to make it.
 以下、実施例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
 後述する実施例5および6に係る化合物(C-5)および(C-6)の数平均分子量(Mn)はGPCを用いて以下の条件で測定した。
 装置(一例) : 東ソー(株)製 HLC-8120
 カラム(一例): 東ソー(株)製 TSK GEL GMH6 2本
 測定温度   : 40℃
 試料溶液   : 0.25重量%のTHF溶液
 溶液注入量  : 100μl
 検出装置   : 屈折率検出器
 基準物質   : 東ソー(株)製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点(Mw 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000)
The number average molecular weights (Mn) of compounds (C-5) and (C-6) according to Examples 5 and 6 described later were measured using GPC under the following conditions.
Apparatus (example): HLC-8120 manufactured by Tosoh Corporation
Column (example): Tosoh Co., Ltd. TSK GEL GMH6 2 Measurement temperature: 40 degreeC
Sample solution: 0.25 wt% THF solution Solution injection amount: 100 μl
Detection device: Refractive index detector Reference material: Standard polystyrene (TSK standard POLYSTYRENE) 12 points (Mw 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1890000 2890000) manufactured by Tosoh Corporation
<製造例1>
 1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサンの合成;
 撹拌機、温度計および冷却管を取り付けたフラスコに、1,4-シクロヘキサンジメタノール[東京化成工業(株)製]9.86部、塩化アリル[東京化成工業(株)製]5.76部、水酸化ナトリウム[和光純薬工業(株)製]6.00部、およびトルエン[和光純薬工業(株)製]100部を仕込み、撹拌しながら均一に溶解させた後、室温で15分間撹拌後、テトラブチルアンモニウムブロマイド[和光純薬工業(株)製]1.32部を加えた。2時間かけて65℃まで昇温し更に4時間撹拌して、エーテル化反応および転位反応を行った。放冷後に水200部を加え、水層を分離した。更に有機層を水200部で洗浄した。トルエンを減圧(1.3kPa)下に除去後、ヘキサン[和光純薬工業(株)製]を溶剤としたアルミナカラム[150mesh,Brockman1,standard grade,シグマアルドリッチ社製]によって反応物を精製し、下記式で示される1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン(L-1)9.0部を得た(収率71%)。
<Production Example 1>
Synthesis of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane;
In a flask equipped with a stirrer, a thermometer, and a cooling tube, 9.86 parts of 1,4-cyclohexanedimethanol (Tokyo Chemical Industry Co., Ltd.) and allyl chloride (Tokyo Chemical Industry Co., Ltd.) 5.76 parts , Sodium hydroxide [Wako Pure Chemical Industries, Ltd.] 6.00 parts and toluene [Wako Pure Chemical Industries, Ltd.] 100 parts were charged and dissolved uniformly with stirring, then at room temperature for 15 minutes. After stirring, 1.32 parts of tetrabutylammonium bromide [manufactured by Wako Pure Chemical Industries, Ltd.] was added. The temperature was raised to 65 ° C. over 2 hours and further stirred for 4 hours to carry out an etherification reaction and a rearrangement reaction. After allowing to cool, 200 parts of water was added and the aqueous layer was separated. Further, the organic layer was washed with 200 parts of water. After removing toluene under reduced pressure (1.3 kPa), the reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich] using hexane [manufactured by Wako Pure Chemical Industries, Ltd.] as a solvent, 9.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane (L-1) represented by the following formula was obtained (yield 71%).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
<製造例2>
 イセチオン酸リチウム
 撹拌機、温度計を取り付けたフラスコに、70%2-ヒドロキシエタンスルホン酸溶液[和光純薬工業(株)製]5.0部を仕込み、氷浴にて冷却しながら水酸化リチウム[和光純薬工業(株)製]0.66部を含む水溶液を用いて中和した。得られた水溶液を加熱し水を蒸発させた後、減圧(1.3kPa)下乾燥させてイセチオン酸リチウム(G1-1)3.6部を得た(収率98%)。
<Production Example 2>
Lithium isethionate A flask equipped with a stirrer and thermometer was charged with 5.0 parts of a 70% 2-hydroxyethanesulfonic acid solution [manufactured by Wako Pure Chemical Industries, Ltd.] and cooled in an ice bath while lithium hydroxide [Wako Pure Chemical Industries, Ltd.] Neutralized with an aqueous solution containing 0.66 parts. The obtained aqueous solution was heated to evaporate water, and then dried under reduced pressure (1.3 kPa) to obtain 3.6 parts of lithium isethionate (G1-1) (yield 98%).
<製造例3>
 4-ヒドロキシフェニルボロン酸リチウム
 撹拌機、温度計を取り付けたフラスコに、4-ヒドロキシフェニルボロン酸[東京化成工業(株)製]5.0部およびTHF300部を仕込み、氷浴にて冷却しながら水素化リチウム[和光純薬工業(株)製]0.58部を用いて中和した。THFを減圧(1.3kPa)下除去して、下記式で示される4-ヒドロキシフェニルボロン酸リチウム(G1-2)5.3部を得た(97%)。
<Production Example 3>
4-hydroxyphenylboronic acid lithium A flask equipped with a stirrer and a thermometer was charged with 5.0 parts of 4-hydroxyphenylboronic acid [manufactured by Tokyo Chemical Industry Co., Ltd.] and 300 parts of THF while cooling in an ice bath. Neutralization was performed using 0.58 parts of lithium hydride [Wako Pure Chemical Industries, Ltd.]. The THF was removed under reduced pressure (1.3 kPa) to obtain 5.3 parts of lithium 4-hydroxyphenylboronate (G1-2) represented by the following formula (97%).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
<製造例4>
 (3-アミノフェニル)環状トリオールボレートリチウム塩
 撹拌機、温度計およびディーン・スターク管を取り付けたフラスコに、3-アミノフェニルボロン酸[和光純薬工業(株)製]5.0部、トリメチロールエタン[東京化成工業(株)製]4.4部およびトルエン64部を仕込み、115℃で8時間加熱した。トルエンを減圧(1.3kPa)下で除去後、THF160部を仕込み、氷浴にて冷却しながら水素化リチウム0.29部を含むTHF溶液を滴下しながら加えた。反応溶液を室温にて8時間撹拌した後、減圧(1.3kPa)下溶媒を留去して、下記式で示される(3-アミノフェニル)環状トリオールボレートリチウム塩(G1-3)6.8部を得た(82%)。
<Production Example 4>
(3-Aminophenyl) cyclic triol borate lithium salt In a flask equipped with a stirrer, thermometer and Dean-Stark tube, 5.0 parts of 3-aminophenylboronic acid [manufactured by Wako Pure Chemical Industries, Ltd.], trimethylol 4.4 parts of ethane [manufactured by Tokyo Chemical Industry Co., Ltd.] and 64 parts of toluene were charged and heated at 115 ° C. for 8 hours. After removing toluene under reduced pressure (1.3 kPa), 160 parts of THF was charged, and a THF solution containing 0.29 parts of lithium hydride was added dropwise while cooling in an ice bath. After stirring the reaction solution at room temperature for 8 hours, the solvent was distilled off under reduced pressure (1.3 kPa) to give a (3-aminophenyl) cyclic triol borate lithium salt (G1-3) 6.8 represented by the following formula. Parts were obtained (82%).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
<実施例1>
 電極保護膜形成剤(D-1)
 撹拌機、温度計および冷却管を取り付けたフラスコに、イセチオン酸リチウム(G1-1)8.5部、ジシクロヘキシルメタン-4,4’-ジイソシアネート[和光純薬工業(株)製]15.3部、リナロール[和光純薬工業(株)製]9.9部、1-メチル-2-ピロリドン[東京化成工業(株)製]100部およびジラウリン酸ジブチルスズ[東京化成工業(株)製]0.07部を仕込み80℃で8時間加熱した。室温まで放冷した後、ヘキサン中に懸濁させて濾過により反応物を精製し、下記式で示される化合物(C-1)10.9部を得た(収率34%)。化合物(C-1)を電極保護膜形成剤(D-1)とする。
<Example 1>
Electrode protective film forming agent (D-1)
In a flask equipped with a stirrer, a thermometer and a condenser tube, 8.5 parts of lithium isethionate (G1-1), dicyclohexylmethane-4,4′-diisocyanate [manufactured by Wako Pure Chemical Industries, Ltd.] 15.3 parts 9.9 parts of linalool [manufactured by Wako Pure Chemical Industries, Ltd.], 100 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and dibutyltin dilaurate [manufactured by Tokyo Chemical Industry Co., Ltd.] 07 parts were charged and heated at 80 ° C. for 8 hours. After allowing to cool to room temperature, the reaction product was suspended in hexane and purified by filtration to obtain 10.9 parts of compound (C-1) represented by the following formula (yield 34%). The compound (C-1) is used as an electrode protective film forming agent (D-1).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<実施例2>
 電極保護膜形成剤(D-2)
 ジシクロヘキシルメタン-4,4’-ジイソシアネート15.3部の代わりに、ヘキサメチレンジイソシアネート[和光純薬工業(株)製ジイソシアン酸ヘキサメチレン]11.8部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-2)9.6部を得た(収率36%)。化合物(C-2)を電極保護膜形成剤(D-2)とする。
<Example 2>
Electrode protective film forming agent (D-2)
Example 1 was used except that 11.8 parts of hexamethylene diisocyanate [hexamethylene diisocyanate manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate. 9.6 parts of compound (C-2) represented by the following formula was obtained (yield 36%). The compound (C-2) is referred to as an electrode protective film forming agent (D-2).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<実施例3>
 電極保護膜形成剤(D-3)
 ジシクロヘキシルメタン-4,4’-ジイソシアネート15.3部の代わりに、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート[和光純薬工業(株)製]13.0部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-3)11.9部を得た(収率40%)。化合物(C-3)を電極保護膜形成剤(D-3)とする。
<Example 3>
Electrode protective film forming agent (D-3)
Other than using 13.0 parts of 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate [manufactured by Wako Pure Chemical Industries, Ltd.] instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate Was carried out in the same manner as in Example 1 to obtain 11.9 parts of the compound (C-3) represented by the following formula (yield 40%). The compound (C-3) is used as an electrode protective film forming agent (D-3).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<実施例4>
 電極保護膜形成剤(D-4)
 リナロール9.9部の代わりに、1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン(L-1)11.8部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-4)13.8部を得た(収率41%)。化合物(C-4)を電極保護膜形成剤(D-4)とする。
<Example 4>
Electrode protective film forming agent (D-4)
The same procedure as in Example 1 was carried out except that 11.8 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane (L-1) was used instead of 9.9 parts of linalool. 13.8 parts of the compound (C-4) shown were obtained (41% yield). The compound (C-4) is used as an electrode protective film forming agent (D-4).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<実施例5>
 電極保護膜形成剤(D-5)
 撹拌機、温度計および冷却管を取り付けたフラスコに、ジシクロヘキシルメタン-4,4’-ジイソシアネート46.0部、1,4-シクロヘキサンジメタノール[和光純薬工業(株)製]16.8部、N-メチルピロリドン100部およびジラウリン酸ジブチルスズ0.07部仕込み80℃で8時間加熱した後、2-ヒドロキシスルホン酸リチウム8.5部およびリナロール9.9部を加え、さらに80℃で8時間加熱した。実施例1と同様に精製を行い下記式で示される化合物(C-5)18.3部を得た(収率23%)。[Mn:1400]。化合物(C-5)を電極保護膜形成剤(D-5)とする。
<Example 5>
Electrode protective film forming agent (D-5)
In a flask equipped with a stirrer, a thermometer and a condenser, 46.0 parts of dicyclohexylmethane-4,4′-diisocyanate, 16.8 parts of 1,4-cyclohexanedimethanol [manufactured by Wako Pure Chemical Industries, Ltd.] Charge 100 parts of N-methylpyrrolidone and 0.07 part of dibutyltin dilaurate and heat at 80 ° C. for 8 hours, then add 8.5 parts of lithium 2-hydroxysulfonate and 9.9 parts of linalool, and further heat at 80 ° C. for 8 hours. did. Purification was performed in the same manner as in Example 1 to obtain 18.3 parts of the compound (C-5) represented by the following formula (yield: 23%). [Mn: 1400]. The compound (C-5) is used as an electrode protective film forming agent (D-5).
Figure JPOXMLDOC01-appb-C000020
  [式中Xは、メチレンジシクロヘキシル-4,4’-ジイルを表す。]
Figure JPOXMLDOC01-appb-C000020
[Wherein X represents methylenedicyclohexyl-4,4′-diyl. ]
<実施例6>
 電極保護膜形成剤(D-6)
 ジシクロヘキシルメタン-4,4’-ジイソシアネート46.0部の代わりにジシクロヘキシルメタン-4,4’-ジイソシアネート117.4部、1,4-シクロヘキサンジメタノール16.8部の代わりに1,4-シクロヘキサンジメタノール56.1部を用いた以外は実施例5と同様にして行い化合物(C-6)39.9部を得た(収率21%)。[Mn:3300]。化合物(C-6)を電極保護膜形成剤(D-6)とする。
<Example 6>
Electrode protective film forming agent (D-6)
Dicyclohexylmethane-4,4'-diisocyanate instead of 46.0 parts dicyclohexylmethane-4,4'-diisocyanate 117.4 parts, 1,4-cyclohexanedimethanol instead of 16.8 parts 1,4-cyclohexanedi 39.9 parts of compound (C-6) was obtained in the same manner as in Example 5 except that 56.1 parts of methanol was used (yield 21%). [Mn: 3300]. The compound (C-6) is used as an electrode protective film forming agent (D-6).
<実施例7>
 電極保護膜形成剤(D-7)
 ジシクロヘキシルメタン-4,4’-ジイソシアネート15.3部の代わりに、デュラネートA201H(アロファネート変性ヘキサメチレンジイソシアネート)[旭化成ケミカルズ(株)製]28.7部を用いた以外は実施例1と同様にして行いアロファネート結合を有するウレタン化合物(C-7)20.4部を得た(収率45%)。化合物(C-7)を電極保護膜形成剤(D-7)とする。
<Example 7>
Electrode protective film forming agent (D-7)
Example 1 was repeated except that 28.7 parts of duranate A201H (allophanate-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation] was used instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate. As a result, 20.4 parts of urethane compound (C-7) having an allophanate bond was obtained (yield 45%). The compound (C-7) is used as an electrode protective film forming agent (D-7).
<実施例8>
 電極保護膜形成剤(D-8)
 ジシクロヘキシルメタン-4,4’-ジイソシアネート15.3部の代わりに、デュラネート24A-100(ビウレット変性ヘキサメチレンジイソシアネート)[旭化成ケミカルズ(株)製]27.9部を用い、リナロール9.9部の代わりに、リナロールを19.8部用いた以外は実施例1と同様にして行いビウレット結合を有するウレタン化合物(C-8)19.8部を得た(収率37%)。化合物(C-8)を電極保護膜形成剤(D-8)とする。
<Example 8>
Electrode protective film forming agent (D-8)
Instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate, 27.9 parts of duranate 24A-100 (biuret-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Co., Ltd.] were used, and instead of 9.9 parts of linalool. In addition, 19.8 parts of a urethane compound (C-8) having a biuret bond was obtained in the same manner as in Example 1 except that 19.8 parts of linalool was used (yield 37%). The compound (C-8) is used as an electrode protective film forming agent (D-8).
<実施例9>
 電極保護膜形成剤(D-9)
 イセチオン酸リチウム8.5部の代わりにイセチオン酸ナトリウム[和光純薬工業(株)製]9.5部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-9)12.5部を得た(収率38%)。化合物(C-9)を電極保護膜形成剤(D-9)とする。
<Example 9>
Electrode protective film forming agent (D-9)
A compound represented by the following formula (C-9) was prepared in the same manner as in Example 1 except that 9.5 parts of sodium isethionate [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 8.5 parts of lithium isethionate. ) 12.5 parts was obtained (38% yield). The compound (C-9) is used as an electrode protective film forming agent (D-9).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
<実施例10>
 電極保護膜形成剤(D-10)
 イセチオン酸リチウム8.5部の代わりにタウリン[和光純薬工業(株)製]8.0部を用い、他は実施例1と同様に反応および精製を行った後、メタノール[和光純薬工業(株)製]に懸濁させ1当量の水酸化リチウム[和光純薬工業(株)製]により中和した。減圧(1.3kPa)下メタノールを除去し、下記式で示される化合物(C-10)10.2部を得た(収率32%)。化合物(C-10)を電極保護膜形成剤(D-10)とする。
<Example 10>
Electrode protective film forming agent (D-10)
Instead of 8.5 parts of lithium isethionate, 8.0 parts of taurine [manufactured by Wako Pure Chemical Industries, Ltd.] was used, and the reaction and purification were carried out in the same manner as in Example 1, followed by methanol [Wako Pure Chemical Industries, Ltd.] Suspended in [manufactured by Co., Ltd.] and neutralized with 1 equivalent of lithium hydroxide [Wako Pure Chemical Industries, Ltd.]. Methanol was removed under reduced pressure (1.3 kPa) to obtain 10.2 parts of compound (C-10) represented by the following formula (yield 32%). The compound (C-10) is used as an electrode protective film forming agent (D-10).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
<実施例11>
 電極保護膜形成剤(D-11)
 リナロール9.9部の代わりに2-ヒドロキシエチルアクリレート[和光純薬工業(株)製]7.5部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-11)10.7部を得た(収率36%)。化合物(C-11)を電極保護膜形成剤(D-11)とする。
<Example 11>
Electrode protective film forming agent (D-11)
A compound represented by the following formula (C-11) was prepared in the same manner as in Example 1 except that 7.5 parts of 2-hydroxyethyl acrylate [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 9.9 parts of linalool. ) 10.7 parts were obtained (yield 36%). Compound (C-11) is referred to as an electrode protective film forming agent (D-11).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
<実施例12>
 電極保護膜形成剤(D-12)
 タウリン8.0部の代わりに乳酸[和光純薬工業(株)製]5.8部を用いた以外は実施例10と同様にして反応、中和および精製を行い下記式で示される化合物(C-12)14.7部を得た(収率52%)。化合物(C-12)を電極保護膜形成剤(D-12)とする。
<Example 12>
Electrode protective film forming agent (D-12)
A compound represented by the following formula was reacted, neutralized and purified in the same manner as in Example 10 except that 5.8 parts of lactic acid [Wako Pure Chemical Industries, Ltd.] was used instead of 8.0 parts of taurine. C-12) 14.7 parts were obtained (yield 52%). The compound (C-12) is used as an electrode protective film forming agent (D-12).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<実施例13>
 電極保護膜形成剤(D-13)
リナロール9.9部の代わりにシトロネロール[和光純薬工業(株)製]10.0部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-13)14.8部を得た(収率46%)。化合物(C-13)を電極保護膜形成剤(D-13)とする。
<Example 13>
Electrode protective film forming agent (D-13)
Compound (C-13) 14.8 represented by the following formula was carried out in the same manner as in Example 1 except that 10.0 parts of citronellol [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 9.9 parts of linalool. Parts were obtained (yield 46%). The compound (C-13) is used as an electrode protective film forming agent (D-13).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
<実施例14>
 電極保護膜形成剤(D-14)
リナロール9.9部の代わりにプレノール[東京化成工業(株)製3-メチル-2-ブテン-1-オール]5.5部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-14)12.1部を得た(収率43%)。化合物(C-14)を電極保護膜形成剤(D-14)とする。
<Example 14>
Electrode protective film forming agent (D-14)
This was performed in the same manner as in Example 1 except that 5.5 parts of prenol [3-methyl-2-buten-1-ol manufactured by Tokyo Chemical Industry Co., Ltd.] was used instead of 9.9 parts of linalool. Of the compound (C-14) (43% yield). Compound (C-14) is referred to as electrode protective film forming agent (D-14).
Figure JPOXMLDOC01-appb-C000026
<実施例15>
Figure JPOXMLDOC01-appb-C000026
<Example 15>
 電極保護膜形成剤(D-15)
イセチオン酸リチウム9.9部の代わりに4-ヒドロキシフェニルボロン酸リチウム(G1-1)9.6部を用いた以外は実施例14と同様にして行い下記式で示される化合物(C-15)18.7部を得た(収率30%)。化合物(C-15)を電極保護膜形成剤(D-15)とする。
Electrode protective film forming agent (D-15)
The compound represented by the following formula (C-15) was prepared in the same manner as in Example 14 except that 9.6 parts of lithium 4-hydroxyphenylboronate (G1-1) was used instead of 9.9 parts of lithium isethionate. 18.7 parts were obtained (yield 30%). The compound (C-15) is used as an electrode protective film forming agent (D-15).
Figure JPOXMLDOC01-appb-C000027
<実施例16>
Figure JPOXMLDOC01-appb-C000027
<Example 16>
 電極保護膜形成剤(D-16)
イセチオン酸リチウム9.9部の代わりに(3-アミノフェニル)環状トリオールボレートリチウム塩(G1-2)14.6部を用いた以外は実施例14と同様にして行い下記式で示される化合物(C-16)9.1部を得た(収率27%)。化合物(C-16)を電極保護膜形成剤(D-16)とする。
Electrode protective film forming agent (D-16)
A compound represented by the following formula, which was prepared in the same manner as in Example 14 except that 14.6 parts of (3-aminophenyl) cyclic triol borate lithium salt (G1-2) was used instead of 9.9 parts of lithium isethionate ( C-16) 9.1 parts were obtained (yield 27%). The compound (C-16) is used as an electrode protective film forming agent (D-16).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
<比較例1>
 比較保護膜形成剤(D’-1)
 攪拌機、温度計および冷却管を取り付けたフラスコに、4,7-ジアザ-15-クラウン5-エーテル[東京化成工業(株)製]0.72部、クロロメチルスチレン[東京化成工業(株)製]1部およびアセトニトリル[和光純薬工業(株)製]10部を仕込み、撹拌しながら均一に溶解させた後、撹拌下室温で24時間反応させた。アセトニトリルを減圧(1.3kPa)下に除去した後、アセトン[和光純薬工業(株)製]を溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、シグマアルドリッチ社製]によって精製し、下記式で示される化合物(C’-1)1.1部を得た(収率75%)。化合物(C’-1)を比較電極保護膜形成剤(D’-1)とする。
<Comparative Example 1>
Comparative protective film forming agent (D'-1)
In a flask equipped with a stirrer, a thermometer and a condenser tube, 0.72 part of 4,7-diaza-15-crown 5-ether [manufactured by Tokyo Chemical Industry Co., Ltd.], chloromethylstyrene [manufactured by Tokyo Chemical Industry Co., Ltd.] ] 1 part and 10 parts of acetonitrile [manufactured by Wako Pure Chemical Industries, Ltd.] were charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. Acetonitrile was removed under reduced pressure (1.3 kPa) and then purified by an alumina column [150 mesh, Blockman 1, standard grade, Sigma-Aldrich] using acetone [manufactured by Wako Pure Chemical Industries, Ltd.] as a solvent. 1.1 parts of the compound (C′-1) represented by the formula (yield 75%) was obtained. The compound (C′-1) is used as a comparative electrode protective film forming agent (D′-1).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
本発明の電極保護膜形成剤(D-1)~(D-16)、比較電極保護膜形成剤(D’-1)について、表1にまとめた。 The electrode protective film forming agents (D-1) to (D-16) and the comparative electrode protective film forming agent (D′-1) of the present invention are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
リチウム二次電池、電極の評価
<実施例17~34、比較例2~3>
 上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表2に示した配合部数で含有するリチウム二次電池用正極および負極を下記の方法で作製し、該正極および負極を使用して下記の方法でリチウム二次電池を作製した。
 以下の方法で高電圧充放電サイクル特性、出力特性および電極抵抗を評価した結果を表2に示した。
Evaluation of Lithium Secondary Battery and Electrode <Examples 17 to 34, Comparative Examples 2 to 3>
A positive electrode and a negative electrode for a lithium secondary battery containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the number of parts shown in Table 2 were prepared by the following method. Using the negative electrode, a lithium secondary battery was produced by the following method.
Table 2 shows the results of evaluating the high-voltage charge / discharge cycle characteristics, output characteristics, and electrode resistance by the following methods.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
[リチウム二次電池用正極の作製]
LiCoO粉末90.0部、ケチェンブラック[シグマアルドリッチ社製]5.0部、ポリフッ化ビニリデン[シグマアルドリッチ社製]5.0部および表2に示した部数の上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を乳鉢で十分に混合した後、1-メチル-2-ピロリドン70.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、リチウム二次電池用正極を作製した。
[Preparation of positive electrode for lithium secondary battery]
90.0 parts of LiCoO 2 powder, 5.0 parts of Ketjen black [manufactured by Sigma Aldrich], 5.0 parts of polyvinylidene fluoride [manufactured by Sigma Aldrich] and the number of parts of the electrode protective film forming agent shown in Table 2 ( D) or the comparative electrode protective film forming agent (D ′) was thoroughly mixed in a mortar, then 70.0 parts of 1-methyl-2-pyrrolidone was added, and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the air, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 2 hours and punched out to 15.95 mmφ to produce a positive electrode for a lithium secondary battery.
[リチウム二次電池用負極の作製]
平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン200部および表1に示した部数の上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmの銅箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにしてリチウム二次電池用負極を作製した。
[Preparation of negative electrode for lithium secondary battery]
92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone, and the number of parts of the electrode protective film forming agent (D) shown in Table 1 or A comparative electrode protective film forming agent (D ′) was sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a copper foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 80 ° C. for 1 hour, and further reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. It was dried for a time, punched to 16.15 mmφ, and made a negative electrode for a lithium secondary battery with a thickness of 30 μm using a press.
[リチウム二次電池の作製]
2032型コインセル内の両端に、上記で作製した正極および負極をそれぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、二次電池用セルを作製した。エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)に、LiPFを12重量%の割合で溶解させた電解液を作製したセルに注液密封した。
[Production of lithium secondary battery]
The positive electrode and the negative electrode prepared above were arranged at both ends in the 2032 type coin cell so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to prepare a secondary battery cell. The solution was poured and sealed in a cell in which an electrolytic solution was prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) at a ratio of 12 wt%.
<高電圧充放電サイクル特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[(株)東陽テクニカ製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を3.5Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と50サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出した。数値が大きいほど、充放電サイクル特性が良好であることを示す。
高電圧充放電サイクル特性(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
<Evaluation of high voltage charge / discharge cycle characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], the battery voltage is charged to a voltage of 4.5 V with a current of 0.1 C, and after a pause of 10 minutes, the battery voltage with a current of 0.1 C Was discharged to 3.5 V, and this charge / discharge was repeated. At this time, the battery capacity at the first charge and the battery capacity at the 50th cycle charge were measured, and the charge / discharge cycle characteristics were calculated from the following formula. It shows that charging / discharging cycling characteristics are so favorable that a numerical value is large.
High voltage charge / discharge cycle characteristics (%) = (battery capacity at the 50th cycle charge / battery capacity at the first charge) × 100
<二次電池出力特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[(株)東陽テクニカ製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電圧を3.0Vまで放電し、放電容量(以下0.1C放電容量と記載)を測定した。次に0.1Cの電流で電圧4.5まで充電し、10分間の休止後、1Cの電流で電圧を3.0Vまで放電し容量(以下1C放電容量と記載)を測定し、下記式から1C放電時の容量維持率を算出する。数値が大きい程、出力特性が良好であることを示す。
1C放電時の容量維持率(%)=(1C放電容量/0.1C放電容量)×100
<Evaluation of secondary battery output characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], charge to a voltage of 4.5 V with a current of 0.1 C, and after a pause of 10 minutes, apply a voltage with a current of 0.1 C The battery was discharged to 3.0 V, and the discharge capacity (hereinafter referred to as 0.1 C discharge capacity) was measured. Next, the battery was charged to a voltage of 4.5 with a current of 0.1 C, paused for 10 minutes, discharged to a voltage of 3.0 V with a current of 1 C, and the capacity (hereinafter referred to as 1 C discharge capacity) was measured. The capacity maintenance rate at the time of 1C discharge is calculated. The larger the value, the better the output characteristics.
Capacity maintenance rate during 1 C discharge (%) = (1 C discharge capacity / 0.1 C discharge capacity) × 100
<電極抵抗の評価>
 充放電測定装置「バッテリーアナライザー1470型」[(株)東陽テクニカ製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を3.95Vまで放電した。次に電極の抵抗を測定するため、BioLogic社製「SP-150」(周波数範囲200kHz~50mHz、3.95V)を用いインピーダンスを測定し、抵抗を求めた。
<Evaluation of electrode resistance>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], the battery voltage is charged to a voltage of 4.5 V with a current of 0.1 C, and after a pause of 10 minutes, the battery voltage with a current of 0.1 C Was discharged to 3.95V. Next, in order to measure the resistance of the electrode, impedance was measured using “SP-150” (frequency range: 200 kHz to 50 mHz, 3.95 V) manufactured by BioLogic, and the resistance was obtained.
リチウム二次電池、電解液の評価
<実施例35~50、比較例4~5>
上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表2に示した配合部数で含有するリチウム二次電池用電解液を使用したリチウム二次電池を下記の方法で作製した。電極の場合と同様に、上記の方法で高電圧充放電サイクル特性、出力特性および電極抵抗を評価し、結果を表2に示した。
Evaluation of Lithium Secondary Battery and Electrolyte <Examples 35 to 50 and Comparative Examples 4 to 5>
A lithium secondary battery using the electrolyte solution for a lithium secondary battery containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the blending part shown in Table 2 by the following method. Produced. Similarly to the case of the electrodes, the high voltage charge / discharge cycle characteristics, the output characteristics and the electrode resistance were evaluated by the above-mentioned methods, and the results are shown in Table 2.
[電解液の作製]
エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比率1:1)87.5部に、表1に示した部数で電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を配合し、そこに12重量%となるように電解質(E)としてのLiPFを溶解させ、電解液を調製した。
[Preparation of electrolyte]
In 87.5 parts of a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1), the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) is blended in the number of parts shown in Table 1. , there by dissolving LiPF 6 as an electrolyte (E) so that 12 wt%, thereby preparing an electrolytic solution.
[正極の作製]
 LiCoO粉末90.0部、ケチェンブラック5.0部およびポリフッ化ビニリデン5.0部を乳鉢で十分に混合した後、1-メチル-2-ピロリドン70.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、膜厚30μmのリチウム二次電池用の正極を作製した。
[Production of positive electrode]
After thoroughly mixing 90.0 parts of LiCoO 2 powder, 5.0 parts of Ketjen black and 5.0 parts of polyvinylidene fluoride in a mortar, 70.0 parts of 1-methyl-2-pyrrolidone was added, and further in a mortar. Mix well to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the air, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 2 hours, punched to 15.95 mmφ, and a positive electrode for a lithium secondary battery having a film thickness of 30 μm was produced.
[負極の作製]
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部および1-メチル-2-ピロリドン200部を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmの銅箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにしてリチウム二次電池用の負極を作製した。
[Production of negative electrode]
A slurry was obtained by thoroughly mixing 92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride and 200 parts of 1-methyl-2-pyrrolidone in a mortar. The obtained slurry was applied to one side of a copper foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 80 ° C. for 1 hour, and further reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. After drying for a time, it was punched to 16.15 mmφ, and the thickness was made 30 μm with a press machine to produce a negative electrode for a lithium secondary battery.
[二次電池の作製]
 2032型コインセル内の両端に、上記正極および負極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、二次電池用セルを作製した。
上記電解液を、作製した二次電池用セルに注液後密封し二次電池を作製した。
[Production of secondary battery]
The positive electrode and the negative electrode were arranged at both ends in the 2032 type coin cell so that the respective coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to produce a secondary battery cell.
The electrolyte solution was poured into the prepared secondary battery cell and sealed to prepare a secondary battery.
リチウムイオンキャパシタ、電極の評価
<実施例51~68、比較例6~7>
 上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表3に示した配合部数で含有するリチウムイオンキャパシタ用正極および負極を下記の方法で作製し、該正極および負極を使用して下記の方法でリチウムイオンキャパシタを作製した。
 リチウム二次電池の場合と同様に、上記の方法で高電圧充放電サイクル特性および電極抵抗を評価し、以下の方法で出力特性を評価し、結果を表3に示した。
Evaluation of Lithium Ion Capacitor and Electrode <Examples 51 to 68, Comparative Examples 6 to 7>
A positive electrode and a negative electrode for a lithium ion capacitor containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the number of parts shown in Table 3 were prepared by the following method. A lithium ion capacitor was prepared by the following method.
As in the case of the lithium secondary battery, the high voltage charge / discharge cycle characteristics and electrode resistance were evaluated by the above method, the output characteristics were evaluated by the following method, and the results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
[リチウムイオンキャパシタ用正極の作製]
 活性炭粉末90.0部、ケチェンブラック5.0部、ポリフッ化ビニリデン5.0部および表2に示した部数の上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を乳鉢で十分に混合した後、1-メチル-2-ピロリドン70.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、リチウムイオンキャパシタ用正極を作製した。
[Production of positive electrode for lithium ion capacitor]
90.0 parts of activated carbon powder, 5.0 parts of Ketjen black, 5.0 parts of polyvinylidene fluoride, and the number of parts of the electrode protective film forming agent (D) or comparative electrode protective film forming agent (D ′) shown in Table 2 After thoroughly mixing with a mortar, 70.0 parts of 1-methyl-2-pyrrolidone was added and further mixed well with a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the air, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 2 hours and punched out to 15.95 mmφ to produce a positive electrode for a lithium ion capacitor.
[リチウムイオンキャパシタ用負極の作製]
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン200部および表3に示した部数の上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmの銅箔の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにした。得られた電極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、負極理論容量の約75%のリチウムイオンを約10時間かけて負極に吸蔵させ、リチウムイオンキャパシタ用負極を作製した。
[Production of negative electrode for lithium ion capacitor]
92.5 parts of graphite powder having an average particle diameter of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone, and the number of parts of the electrode protective film forming agent (D) shown in Table 3 or A comparative electrode protective film forming agent (D ′) was sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a 20 μm-thick copper foil in the air using a wire bar, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. It was dried, punched to 16.15 mmφ, and made 30 μm thick with a press. The obtained electrode and lithium metal foil are sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity of lithium ions is occluded in the negative electrode over about 10 hours. A negative electrode was prepared.
[リチウムイオンキャパシタの作製]
 ポリプロピレンのアルミラミネートフィルムからなる収納ケースに、上記で作製した正極および負極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、キャパシタ用セルを作製した。プロピレンカーボネート(PC)に、LiPFを12重量%の割合で溶解させた電解液を作製したセルに注液密封した。
[Production of lithium ion capacitors]
The positive and negative electrodes produced above are placed in a storage case made of polypropylene aluminum laminate film so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) is inserted between the electrodes to produce a capacitor cell. did. The solution was injected and sealed in a cell in which an electrolytic solution in which LiPF 6 was dissolved in a proportion of 12% by weight in propylene carbonate (PC) was produced.
<キャパシタ出力特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[(株)東陽テクニカ製]を用いて、1Cの電流で電圧3.8Vまで充電し、10分間の休止後、1Cの電流で電圧を1.0Vまで放電し、放電容量(以下1C放電容量と記載)を測定した。次に1Cの電流で電圧3.8Vまで充電し、10分間の休止後、10Cの電流で電圧を2.0Vまで放電し容量(以下10C放電容量と記載)を測定し、下記式から10C放電時の容量維持率を算出する。数値が大きい程、出力特性が良好であることを示す。
10C放電時の容量維持率(%)=(10C放電容量/1C放電容量)×100
<Evaluation of capacitor output characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], the battery is charged to a voltage of 3.8 V with a current of 1 C. After discharging, the discharge capacity (hereinafter referred to as 1C discharge capacity) was measured. Next, the battery is charged to a voltage of 3.8 V with a current of 1 C, and after a pause of 10 minutes, the voltage is discharged to 2.0 V with a current of 10 C, and the capacity (hereinafter referred to as 10 C discharge capacity) is measured. Calculate the capacity maintenance rate at the time. The larger the value, the better the output characteristics.
Capacity maintenance rate during 10C discharge (%) = (10C discharge capacity / 1C discharge capacity) × 100
リチウムイオンキャパシタ、電解液の評価
<実施例69~84、比較例8~9>
上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表3に示した配合部数で含有するリチウムイオンキャパシタ用電解液を使用したリチウムイオンキャパシタを下記の方法で作製した。電極の場合と同様に、上記の方法で高電圧充放電サイクル特性、出力特性および電極抵抗を評価し、結果を表3に示した。
Evaluation of Lithium Ion Capacitor and Electrolyte <Examples 69 to 84, Comparative Examples 8 to 9>
A lithium ion capacitor using the electrolytic solution for a lithium ion capacitor containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the blending number shown in Table 3 was prepared by the following method. . Similarly to the case of the electrodes, the high voltage charge / discharge cycle characteristics, the output characteristics and the electrode resistance were evaluated by the above-mentioned methods, and the results are shown in Table 3.
[電解液の作製]
プロピレンカーボネート87.5部からなる非水溶媒(F)に、表3に示した部数で上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を配合し、そこに12重量%となるように電解質(E)としてのLiPFを溶解させ、電解液を調製した。
[Preparation of electrolyte]
In the non-aqueous solvent (F) composed of 87.5 parts of propylene carbonate, the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) is blended in the number of parts shown in Table 3 and 12 parts are added thereto. of LiPF 6 as an electrolyte (E) dissolved at a percent by weight, to prepare an electrolytic solution.
[正極の作製]
 正極活物質として、アルカリ賦活法によって得られた比表面積が約2200m/gである活性炭を用いた。活性炭粉末、アセチレンブラックおよびポリフッ化ビニリデンを、それぞれ重量比80:10:10の割合となるように混合し、この混合物を、溶媒である1-メチル-2-ピロリドン中に添加し、撹拌混合してスラリーを得た。このスラリーを、厚さ30μmのアルミニウム箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは約50μmであった。セルの組み立て前には、真空中で120℃、10時間乾燥しリチウムイオンキャパシタ用の正極を作製した。
[Production of positive electrode]
As the positive electrode active material, activated carbon having a specific surface area of about 2200 m 2 / g obtained by an alkali activation method was used. Activated carbon powder, acetylene black, and polyvinylidene fluoride are mixed in a weight ratio of 80:10:10, and this mixture is added to 1-methyl-2-pyrrolidone as a solvent and mixed by stirring. To obtain a slurry. This slurry was applied onto an aluminum foil having a thickness of 30 μm by a doctor blade method, temporarily dried, and then cut so that the electrode size was 20 mm × 30 mm. The electrode thickness was about 50 μm. Before assembling the cell, it was dried in a vacuum at 120 ° C. for 10 hours to produce a positive electrode for a lithium ion capacitor.
[負極の作製]
 平均粒子径約8~12μmの黒鉛粉末80部、アセチレンブラック10部、およびポリフッ化ビニリデン10部を混合し、この混合物を溶媒である1-メチル-2-ピロリドンに添加して撹拌混合し、スラリーを得た。このスラリーを、厚さ18μmの銅箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは、約50μmであった。さらに真空中で120℃、5時間乾燥した。得られた電極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、負極理論容量の約75%のリチウムイオンを約10時間かけて負極に吸蔵させ、リチウムイオンキャパシタ用負極を作製した。
[Production of negative electrode]
80 parts of graphite powder having an average particle size of about 8 to 12 μm, 10 parts of acetylene black, and 10 parts of polyvinylidene fluoride are mixed, and this mixture is added to 1-methyl-2-pyrrolidone as a solvent and mixed by stirring. Got. This slurry was applied onto a copper foil having a thickness of 18 μm by a doctor blade method and temporarily dried, and then cut so that the electrode size was 20 mm × 30 mm. The electrode thickness was about 50 μm. Further, it was dried in vacuum at 120 ° C. for 5 hours. The obtained electrode and lithium metal foil are sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity of lithium ions is occluded in the negative electrode over about 10 hours. A negative electrode was prepared.
[キャパシタセルの組み立て]
 上記のようにして得られた正極と負極の間に、セパレータ(ポリプロピレン製不織布)を挿入し、これに上記電解液を含浸させ、ポリプロピレンのアルミラミネートフィルムからなる収納ケースに入れて密封しリチウムイオンキャパシタセルを作製した。
 リチウム二次電池の場合と同様に、上記の方法で高電圧充放電サイクル特性、出力特性および電極抵抗を評価し、結果を表3に示した。
[Assembly of capacitor cell]
A separator (nonwoven fabric made of polypropylene) is inserted between the positive electrode and the negative electrode obtained as described above, impregnated with the above electrolyte solution, sealed in a storage case made of polypropylene aluminum laminate film, and lithium ion A capacitor cell was produced.
Similarly to the case of the lithium secondary battery, the high voltage charge / discharge cycle characteristics, the output characteristics, and the electrode resistance were evaluated by the above methods. The results are shown in Table 3.
 本発明の電極保護膜形成剤を用いて作製したリチウム二次電池およびリチウムイオンキャパシタは、充放電サイクル性能、出力特性に優れているとともに、電極抵抗を低下させることができることが判った。充放電サイクル性能および出力特性が向上する原因としては、電極活物質の表面上に形成したリチウムイオン配位性の重合膜が、高電圧下の電極表面での電解液の分解を抑制するとともに、リチウムイオンの脱溶媒和エネルギーを低減するためと考える。電極抵抗の低下の原因としては、電極界面での塩濃度が上昇して、界面付近のイオン伝導度が上がったためと考える。 It has been found that the lithium secondary battery and lithium ion capacitor produced using the electrode protective film forming agent of the present invention are excellent in charge / discharge cycle performance and output characteristics, and can reduce electrode resistance. As a cause of improving the charge / discharge cycle performance and output characteristics, the lithium ion coordination polymer film formed on the surface of the electrode active material suppresses the decomposition of the electrolyte solution on the electrode surface under high voltage, This is considered to reduce the desolvation energy of lithium ions. The cause of the decrease in electrode resistance is thought to be that the salt concentration at the electrode interface increased and the ionic conductivity near the interface increased.
 本発明の電極保護膜形成剤(D)を使用した電極および電解液は高電圧下での充放電サイクル性能および出力特性に優れているため、特にリチウム二次電池用またはリチウムイオンキャパシタ用の電極および電解液用添加剤として有用であり、電気自動車用として好適である。また、その他の電気化学デバイス、例えば電気二重層キャパシタ、ニッケル水素電池、ニッケルカドミウム電池、空気電池、アルカリ電池等にも適用できる。
 
Since the electrode and electrolyte using the electrode protective film-forming agent (D) of the present invention are excellent in charge / discharge cycle performance and output characteristics under a high voltage, the electrode for lithium secondary batteries or lithium ion capacitors is particularly used. In addition, it is useful as an additive for electrolytic solutions, and is suitable for electric vehicles. The present invention can also be applied to other electrochemical devices such as electric double layer capacitors, nickel metal hydride batteries, nickel cadmium batteries, air batteries, alkaline batteries and the like.

Claims (17)

  1. ウレタン結合(a1)、ウレア結合(a2)、アロファネート結合(a3)およびビウレット結合(a4)からなる群より選ばれる少なくとも1つの結合(a)、重合性不飽和結合(b)ならびに下記一般式(1)で表される基(g)を有する化合物(C)を含有する電極保護膜形成剤(D)。
    Figure JPOXMLDOC01-appb-C000001
    [Mは1価の金属イオンであり、Aは-CO 、-SO 、-OPO(OR)O、-B(O、-B(OR)Oまたは-B(OR (R~Rは各炭素数1~10の炭化水素基であり、複数個あるRはそれぞれ同一でも異なっていてもよく、互いに環を形成していてもよい。)を表す。]
    At least one bond (a) selected from the group consisting of urethane bond (a1), urea bond (a2), allophanate bond (a3) and biuret bond (a4), polymerizable unsaturated bond (b) and the following general formula ( The electrode protective film forming agent (D) containing the compound (C) which has group (g) represented by 1).
    Figure JPOXMLDOC01-appb-C000001
    [M is a monovalent metal ion, and A is —CO 2 , —SO 3 , —OPO (OR 1 ) O , —B (O ) 2 , —B (OR 2 ) O or — B (OR 3 ) 3 (R 1 to R 3 are each a hydrocarbon group having 1 to 10 carbon atoms, and a plurality of R 3 may be the same or different and may form a ring with each other. Good). ]
  2. 前記化合物(C)が下記一般式(2)で表される請求項1に記載の電極保護膜形成剤(D)。
    Figure JPOXMLDOC01-appb-C000002
    [Yは酸素原子、硫黄原子および窒素原子からなる群より選ばれる少なくとも1つの原子を含有していてもよい炭素数2~42の(s+t)価の炭化水素基(Y1)、
    炭素数4~44のジイソシアネート(B)と炭素数2~20のジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマーから2個のイソシアネート基を除いた2価の残基(Y2)、
    アロファネート結合(a3)を有する炭素数9~118のジイソシアネート(B)変性物から(s+t)個のイソシアネート基を除いた残基(Y3)
    またはビウレット結合(a4)を有する炭素数11~131のジイソシアネート(B)の反応物から(s+t)個のイソシアネート基を除いた残基(Y4)であり、
    sは1~5の整数、tは1~5の整数であり、
    (a5)はウレタン結合またはウレア結合であり、
    は炭素数1~12の2価の炭化水素基、Rは重合性不飽和結合(b)を有する炭素数2~30の1価の炭化水素基、(g)は上記一般式(1)で表される基である。]
    The electrode protective film forming agent (D) according to claim 1, wherein the compound (C) is represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    [Y is an (s + t) -valent hydrocarbon group having 2 to 42 carbon atoms (Y1), which may contain at least one atom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom,
    A divalent residue obtained by removing two isocyanate groups from a urethane prepolymer having both terminal isocyanate groups, which is a reaction product of a diisocyanate (B) having 4 to 44 carbon atoms and a diol (N) having 2 to 20 carbon atoms ( Y2),
    Residue (Y3) obtained by removing (s + t) isocyanate groups from a modified diisocyanate (B) having 9 to 118 carbon atoms having an allophanate bond (a3)
    Or a residue (Y4) obtained by removing (s + t) isocyanate groups from a reaction product of a diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4),
    s is an integer from 1 to 5, t is an integer from 1 to 5,
    (A5) is a urethane bond or a urea bond,
    R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms, R 8 is a monovalent hydrocarbon group having 2 to 30 carbon atoms having a polymerizable unsaturated bond (b), and (g) is the above general formula ( It is group represented by 1). ]
  3. 前記化合物(C)中の結合(a)の濃度が0.2~10mmol/gである請求項1または2に記載の電極保護膜形成剤(D)。 The electrode protective film forming agent (D) according to claim 1 or 2, wherein the concentration of the bond (a) in the compound (C) is 0.2 to 10 mmol / g.
  4. 前記化合物(C)中の重合性不飽和結合(b)の濃度が0.2~10mmol/gである請求項1~3のいずれか1項に記載の電極保護膜形成剤(D)。 The electrode protective film-forming agent (D) according to any one of claims 1 to 3, wherein the concentration of the polymerizable unsaturated bond (b) in the compound (C) is 0.2 to 10 mmol / g.
  5. 前記化合物(C)の数平均分子量が238~5000である請求項1~4のいずれか1項に記載の電極保護膜形成剤(D)。 The electrode protective film-forming agent (D) according to any one of claims 1 to 4, wherein the number average molecular weight of the compound (C) is 238 to 5000.
  6. 前記1価の金属イオンMがリチウムイオンまたはナトリウムイオンである請求項1~5のいずれか1項に記載の電極保護膜形成剤(D)。 The electrode protective film forming agent (D) according to any one of claims 1 to 5, wherein the monovalent metal ion M is a lithium ion or a sodium ion.
  7. 前記重合性不飽和結合(b)が、下記一般式(3)で表されるアルケニルエーテル基(j1)、下記一般式(4)で表されるアルケニル基(j2)および(メタ)アクリロイロキシ基(j3)からなる群より選ばれる少なくとも1つの基(j)として前記化合物(C)中に含有される請求項1~6のいずれか1項に記載の電極保護膜形成剤(D)。
    Figure JPOXMLDOC01-appb-C000003
     [式(3)中、T~Tは水素原子、または炭素数1~3のアルキル基である。]
    Figure JPOXMLDOC01-appb-C000004
     [式(4)中、T~Tは水素原子、または炭素数1~3のアルキル基であり、互いに環を形成していてもよい。]
    The polymerizable unsaturated bond (b) is an alkenyl ether group (j1) represented by the following general formula (3), an alkenyl group (j2) represented by the following general formula (4), and a (meth) acryloyloxy group ( The electrode protective film forming agent (D) according to any one of claims 1 to 6, which is contained in the compound (C) as at least one group (j) selected from the group consisting of j3).
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (3), T 1 to T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000004
    [In Formula (4), T 4 to T 6 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may form a ring with each other. ]
  8.  請求項1~7のいずれか1項に記載の電極保護膜形成剤(D)を含有する電極。 An electrode containing the electrode protective film forming agent (D) according to any one of claims 1 to 7.
  9.  前記電極保護膜形成剤(D)を重合することにより形成される保護膜を有する請求項8に記載の電極。 The electrode according to claim 8, which has a protective film formed by polymerizing the electrode protective film forming agent (D).
  10.  リチウム二次電池用である請求項8または9に記載の電極。 The electrode according to claim 8 or 9, which is for a lithium secondary battery.
  11. リチウムイオンキャパシタ用である請求項8または9に記載の電極。 The electrode according to claim 8 or 9, which is for a lithium ion capacitor.
  12.  請求項1~7のいずれか1項に記載の電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)を含有する電解液。 An electrolyte solution comprising the electrode protective film forming agent (D) according to any one of claims 1 to 7, an electrolyte (E), and a nonaqueous solvent (F).
  13.  リチウム二次電池用である請求項12に記載の電解液。 The electrolyte solution according to claim 12, which is for a lithium secondary battery.
  14.  リチウムイオンキャパシタ用である請求項12に記載の電解液。 The electrolyte solution according to claim 12, which is used for a lithium ion capacitor.
  15.  請求項10に記載の電極および/または請求項13に記載の電解液を有するリチウム二次電池。 A lithium secondary battery comprising the electrode according to claim 10 and / or the electrolytic solution according to claim 13.
  16.  請求項11に記載の電極および/または請求項14に記載の電解液を有するリチウムイオンキャパシタ。 A lithium ion capacitor having the electrode according to claim 11 and / or the electrolytic solution according to claim 14.
  17.  請求項1~7のいずれか1項に記載の電極保護膜形成剤(D)を電極および/または電解液に含有させた後、電圧を印加する工程を含む電極保護膜の製造方法。
     
    A method for producing an electrode protective film comprising a step of applying a voltage after the electrode protective film forming agent (D) according to any one of claims 1 to 7 is contained in an electrode and / or an electrolytic solution.
PCT/JP2013/078694 2012-11-07 2013-10-23 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film WO2014073378A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014545639A JP6165162B2 (en) 2012-11-07 2013-10-23 Electrode protective film forming agent, electrode, electrolytic solution, lithium secondary battery, lithium ion capacitor, and method for producing electrode protective film
KR1020157012238A KR101692172B1 (en) 2012-11-07 2013-10-23 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
CN201380055159.7A CN104737340B (en) 2012-11-07 2013-10-23 The manufacture method of electrode protective membrane forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor and electrode protective membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-244972 2012-11-07
JP2012244972 2012-11-07
JP2013-112277 2013-05-28
JP2013112277 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014073378A1 true WO2014073378A1 (en) 2014-05-15

Family

ID=50684489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078694 WO2014073378A1 (en) 2012-11-07 2013-10-23 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film

Country Status (4)

Country Link
JP (1) JP6165162B2 (en)
KR (1) KR101692172B1 (en)
CN (1) CN104737340B (en)
WO (1) WO2014073378A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062158A (en) * 2013-08-20 2015-04-02 三洋化成工業株式会社 Electrode protection-film-forming agent
CN105098264A (en) * 2015-06-19 2015-11-25 宁德时代新能源科技有限公司 Anode slurry, anode piece and lithium ion battery
JP2016225135A (en) * 2015-05-29 2016-12-28 三菱化学株式会社 Active material for nonaqueous secondary battery negative electrode and negative electrode using the same, and nonaqueous secondary battery
JP2018170236A (en) * 2017-03-30 2018-11-01 三井化学株式会社 Nonaqueous electrolyte solution for battery, and lithium secondary battery
WO2020200957A1 (en) * 2019-03-29 2020-10-08 Technische Universität Darmstadt Bicyclic triol borate and use thereof in an electrolyte composition in an energy store
WO2023054128A1 (en) 2021-09-30 2023-04-06 セントラル硝子株式会社 Non-aqueous electrolytic solution, non-aqueous electrolyte battery, compound and additive for non-aqueous electrolyte

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280922A (en) * 2015-09-15 2016-01-27 宁德新能源科技有限公司 Positive electrode paste, and positive plate and lithium ion battery containing same
CN105226236B (en) * 2015-09-15 2018-03-09 宁德新能源科技有限公司 Anode sizing agent and positive plate, lithium ion battery including the anode sizing agent
JPWO2022107740A1 (en) 2020-11-18 2022-05-27

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044681A (en) * 2003-07-24 2005-02-17 Nippon Synthetic Chem Ind Co Ltd:The Binder composition for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery and manufacturing method thereof
JP2009129893A (en) * 2007-11-28 2009-06-11 Sony Corp Negative electrode, battery, and manufacturing method of them
WO2011129053A1 (en) * 2010-04-12 2011-10-20 三洋化成工業株式会社 Agent for forming electrode protective film and electrolyte solution
WO2012111335A1 (en) * 2011-02-18 2012-08-23 三洋化成工業株式会社 Agent for forming electrode protection film
JP2012256515A (en) * 2011-06-09 2012-12-27 Sanyo Chem Ind Ltd Electrode protective film forming agent
WO2013002186A1 (en) * 2011-06-27 2013-01-03 三洋化成工業株式会社 Agent for forming electrode protection film, electrode, electrolyte solution, lithium secondary cell, lithium ion capacitor, and method for forming electrode protection film
WO2014006845A1 (en) * 2012-07-05 2014-01-09 三洋化成工業株式会社 Agent for forming electrode protection film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852700B2 (en) 2006-04-19 2012-01-11 国立大学法人岩手大学 Lithium ion secondary battery
JP5340860B2 (en) 2008-09-03 2013-11-13 三洋化成工業株式会社 Additive for electrolyte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044681A (en) * 2003-07-24 2005-02-17 Nippon Synthetic Chem Ind Co Ltd:The Binder composition for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery and manufacturing method thereof
JP2009129893A (en) * 2007-11-28 2009-06-11 Sony Corp Negative electrode, battery, and manufacturing method of them
WO2011129053A1 (en) * 2010-04-12 2011-10-20 三洋化成工業株式会社 Agent for forming electrode protective film and electrolyte solution
WO2012111335A1 (en) * 2011-02-18 2012-08-23 三洋化成工業株式会社 Agent for forming electrode protection film
JP2012256515A (en) * 2011-06-09 2012-12-27 Sanyo Chem Ind Ltd Electrode protective film forming agent
WO2013002186A1 (en) * 2011-06-27 2013-01-03 三洋化成工業株式会社 Agent for forming electrode protection film, electrode, electrolyte solution, lithium secondary cell, lithium ion capacitor, and method for forming electrode protection film
WO2014006845A1 (en) * 2012-07-05 2014-01-09 三洋化成工業株式会社 Agent for forming electrode protection film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062158A (en) * 2013-08-20 2015-04-02 三洋化成工業株式会社 Electrode protection-film-forming agent
JP2016225135A (en) * 2015-05-29 2016-12-28 三菱化学株式会社 Active material for nonaqueous secondary battery negative electrode and negative electrode using the same, and nonaqueous secondary battery
CN105098264A (en) * 2015-06-19 2015-11-25 宁德时代新能源科技有限公司 Anode slurry, anode piece and lithium ion battery
JP2018170236A (en) * 2017-03-30 2018-11-01 三井化学株式会社 Nonaqueous electrolyte solution for battery, and lithium secondary battery
WO2020200957A1 (en) * 2019-03-29 2020-10-08 Technische Universität Darmstadt Bicyclic triol borate and use thereof in an electrolyte composition in an energy store
WO2023054128A1 (en) 2021-09-30 2023-04-06 セントラル硝子株式会社 Non-aqueous electrolytic solution, non-aqueous electrolyte battery, compound and additive for non-aqueous electrolyte

Also Published As

Publication number Publication date
CN104737340A (en) 2015-06-24
JPWO2014073378A1 (en) 2016-09-08
JP6165162B2 (en) 2017-07-19
CN104737340B (en) 2016-12-14
KR20150068462A (en) 2015-06-19
KR101692172B1 (en) 2017-01-02

Similar Documents

Publication Publication Date Title
JP6165162B2 (en) Electrode protective film forming agent, electrode, electrolytic solution, lithium secondary battery, lithium ion capacitor, and method for producing electrode protective film
EP2250700B1 (en) Redox shuttles for high voltage cathodes
JP5827404B2 (en) Electrode protective film forming agent
JPWO2015111612A1 (en) Secondary battery additive, electrode and electrolyte using the same, lithium ion battery and lithium ion capacitor
US8530086B2 (en) Non-aqueous electrolyte secondary battery
JP2016139567A (en) Additive agent for secondary battery, electrode using the same and electrolyte
CN103038224A (en) Ether compound, electrolyte composition for non-aqueous battery, binder composition for non-aqueous battery electrode, slurry composition for non-aqueous battery electrode, electrode for non-aqueous battery and non-aqueous battery
JP2015225689A (en) Additive agent for battery
JP2015064998A (en) Nonaqueous electrolyte secondary battery, and additive agent for nonaqueous electrolyte secondary batteries
JP6284772B2 (en) Electrode protective film forming agent
JP2014137843A (en) Electrode protection film-forming agent
JP2014175192A (en) Additive agent for secondary battery
JPWO2012111335A1 (en) Electrode protective film forming agent
JP6326255B2 (en) Battery additive
JP2013026180A (en) Electrode protective film forming agent
WO2013031045A1 (en) Additive for electrode, and electrode
JP2018133183A (en) Additive agent for battery
JP2012256515A (en) Electrode protective film forming agent
JP2014078475A (en) Electrode-protection-film-forming agent
JP2015207392A (en) Additive agent for batteries
JPWO2015163254A1 (en) Battery additives, electrodes, electrolytes and electrochemical devices
JP2015035409A (en) Additive for electrochemical device
JP2017183093A (en) Additive agent for nonaqueous electrolyte secondary battery, electrode, electrolyte solution, and electrochemical device
JP2015135780A (en) Additive for secondary battery
JPWO2015060156A1 (en) Additive for lithium ion secondary battery, electrode and electrolyte using the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157012238

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13854089

Country of ref document: EP

Kind code of ref document: A1