WO2014073378A1 - Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film - Google Patents
Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film Download PDFInfo
- Publication number
- WO2014073378A1 WO2014073378A1 PCT/JP2013/078694 JP2013078694W WO2014073378A1 WO 2014073378 A1 WO2014073378 A1 WO 2014073378A1 JP 2013078694 W JP2013078694 W JP 2013078694W WO 2014073378 A1 WO2014073378 A1 WO 2014073378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protective film
- electrode
- forming agent
- film forming
- group
- Prior art date
Links
- 230000001681 protective effect Effects 0.000 title claims abstract description 105
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 99
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 54
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 41
- 239000003990 capacitor Substances 0.000 title claims abstract description 39
- 239000003792 electrolyte Substances 0.000 title claims abstract description 18
- -1 electrode Substances 0.000 title claims description 95
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 72
- 239000004202 carbamide Substances 0.000 claims abstract description 10
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 51
- 239000008151 electrolyte solution Substances 0.000 claims description 37
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 22
- 125000005442 diisocyanate group Chemical group 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 14
- 125000003342 alkenyl group Chemical group 0.000 claims description 7
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 150000002009 diols Chemical class 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 125000004429 atom Chemical group 0.000 claims description 3
- 125000001033 ether group Chemical group 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 229910001415 sodium ion Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 125000004434 sulfur atom Chemical group 0.000 claims description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 23
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 230000007774 longterm Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 description 34
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 22
- 238000000034 method Methods 0.000 description 21
- 150000002430 hydrocarbons Chemical group 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 239000002002 slurry Substances 0.000 description 16
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 12
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 11
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 11
- 239000011149 active material Substances 0.000 description 11
- 229930007744 linalool Natural products 0.000 description 11
- 239000002033 PVDF binder Substances 0.000 description 10
- 125000002723 alicyclic group Chemical group 0.000 description 10
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 9
- 125000001931 aliphatic group Chemical group 0.000 description 9
- 239000004570 mortar (masonry) Substances 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000003125 aqueous solvent Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- PBRIPPUXJQITLO-UHFFFAOYSA-N dilithium 4-dioxidoboranylphenol Chemical compound OC1=CC=C(C=C1)B([O-])[O-].[Li+].[Li+] PBRIPPUXJQITLO-UHFFFAOYSA-N 0.000 description 7
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 7
- 239000004745 nonwoven fabric Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 229910013870 LiPF 6 Inorganic materials 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 6
- OWBGWTJJGCEXFW-UHFFFAOYSA-N [4-(prop-1-enoxymethyl)cyclohexyl]methanol Chemical compound CC=COCC1CCC(CO)CC1 OWBGWTJJGCEXFW-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- ASUAYTHWZCLXAN-UHFFFAOYSA-N prenol Chemical compound CC(C)=CCO ASUAYTHWZCLXAN-UHFFFAOYSA-N 0.000 description 6
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 4
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical group NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 4
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 4
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 235000000484 citronellol Nutrition 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 239000003273 ketjen black Substances 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 150000005678 chain carbonates Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 150000005676 cyclic carbonates Chemical class 0.000 description 3
- 239000012024 dehydrating agents Substances 0.000 description 3
- 238000004807 desolvation Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920001197 polyacetylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229960003080 taurine Drugs 0.000 description 3
- COIQUVGFTILYGA-UHFFFAOYSA-N (4-hydroxyphenyl)boronic acid Chemical compound OB(O)C1=CC=C(O)C=C1 COIQUVGFTILYGA-UHFFFAOYSA-N 0.000 description 2
- 125000006034 1,2-dimethyl-1-propenyl group Chemical group 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- JVGDVPVEKJSWIO-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)cyclohexyl]ethanol Chemical compound OCCC1CCC(CCO)CC1 JVGDVPVEKJSWIO-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000005792 Geraniol Substances 0.000 description 2
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229940113087 geraniol Drugs 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910000103 lithium hydride Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229960003471 retinol Drugs 0.000 description 2
- 235000020944 retinol Nutrition 0.000 description 2
- 239000011607 retinol Substances 0.000 description 2
- 229940045998 sodium isethionate Drugs 0.000 description 2
- LADXKQRVAFSPTR-UHFFFAOYSA-M sodium;2-hydroxyethanesulfonate Chemical compound [Na+].OCCS([O-])(=O)=O LADXKQRVAFSPTR-UHFFFAOYSA-M 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- 125000005837 1,2-cyclopentylene group Chemical group [H]C1([H])C([H])([H])C([H])([*:1])C([H])([*:2])C1([H])[H] 0.000 description 1
- WDXYVJKNSMILOQ-UHFFFAOYSA-N 1,3,2-dioxathiolane 2-oxide Chemical compound O=S1OCCO1 WDXYVJKNSMILOQ-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- JPBHXVRMWGWSMX-UHFFFAOYSA-N 1,4-dimethylidenecyclohexane Chemical compound C=C1CCC(=C)CC1 JPBHXVRMWGWSMX-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- 125000006019 1-methyl-1-propenyl group Chemical group 0.000 description 1
- GGYVTHJIUNGKFZ-UHFFFAOYSA-N 1-methylpiperidin-2-one Chemical compound CN1CCCCC1=O GGYVTHJIUNGKFZ-UHFFFAOYSA-N 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- 125000006020 2-methyl-1-propenyl group Chemical group 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- QHTJSSMHBLGUHV-UHFFFAOYSA-N 2-methylbutan-2-ylbenzene Chemical compound CCC(C)(C)C1=CC=CC=C1 QHTJSSMHBLGUHV-UHFFFAOYSA-N 0.000 description 1
- PFXRPUFYSLHDMF-UHFFFAOYSA-N 3-(hydroxymethyl)cyclohexan-1-ol Chemical compound OCC1CCCC(O)C1 PFXRPUFYSLHDMF-UHFFFAOYSA-N 0.000 description 1
- NSPPRYXGGYQMPY-UHFFFAOYSA-N 3-Methylbuten-2-ol-1 Natural products CC(C)C(O)=C NSPPRYXGGYQMPY-UHFFFAOYSA-N 0.000 description 1
- ZDLGNSBLGNPTMB-UHFFFAOYSA-N 3-[1-(3-hydroxypropyl)cyclohexyl]propan-1-ol Chemical compound OCCCC1(CCCO)CCCCC1 ZDLGNSBLGNPTMB-UHFFFAOYSA-N 0.000 description 1
- LFJJGHGXHXXDFT-UHFFFAOYSA-N 3-bromooxolan-2-one Chemical compound BrC1CCOC1=O LFJJGHGXHXXDFT-UHFFFAOYSA-N 0.000 description 1
- IWTYTFSSTWXZFU-UHFFFAOYSA-N 3-chloroprop-1-enylbenzene Chemical compound ClCC=CC1=CC=CC=C1 IWTYTFSSTWXZFU-UHFFFAOYSA-N 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- VGRZISGVNOKTQU-UHFFFAOYSA-N 4-(hydroxymethyl)cyclohexan-1-ol Chemical compound OCC1CCC(O)CC1 VGRZISGVNOKTQU-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ACIAHEMYLLBZOI-ZZXKWVIFSA-N Unsaturated alcohol Chemical compound CC\C(CO)=C/C ACIAHEMYLLBZOI-ZZXKWVIFSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- XDODWINGEHBYRT-UHFFFAOYSA-N [2-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCCC1CO XDODWINGEHBYRT-UHFFFAOYSA-N 0.000 description 1
- PZRPBPMLSSNFOM-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]boronic acid Chemical compound OCC1=CC=C(B(O)O)C=C1 PZRPBPMLSSNFOM-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- RSYNHXZMASRGMC-UHFFFAOYSA-N butan-2-yl hydrogen carbonate Chemical compound CCC(C)OC(O)=O RSYNHXZMASRGMC-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229920001795 coordination polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229960004275 glycolic acid Drugs 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 229960000448 lactic acid Drugs 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- UIDWHMKSOZZDAV-UHFFFAOYSA-N lithium tin Chemical compound [Li].[Sn] UIDWHMKSOZZDAV-UHFFFAOYSA-N 0.000 description 1
- GOFCFHJDHIRYNF-UHFFFAOYSA-M lithium;2-aminoethanesulfonate Chemical compound [Li+].NCCS([O-])(=O)=O GOFCFHJDHIRYNF-UHFFFAOYSA-M 0.000 description 1
- GKQWYZBANWAFMQ-UHFFFAOYSA-M lithium;2-hydroxypropanoate Chemical compound [Li+].CC(O)C([O-])=O GKQWYZBANWAFMQ-UHFFFAOYSA-M 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical class [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- JMZFEHDNIAQMNB-UHFFFAOYSA-N m-aminophenylboronic acid Chemical compound NC1=CC=CC(B(O)O)=C1 JMZFEHDNIAQMNB-UHFFFAOYSA-N 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- SWVGZFQJXVPIKM-UHFFFAOYSA-N n,n-bis(methylamino)propan-1-amine Chemical compound CCCN(NC)NC SWVGZFQJXVPIKM-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- YYSONLHJONEUMT-UHFFFAOYSA-N pentan-3-yl hydrogen carbonate Chemical compound CCC(CC)OC(O)=O YYSONLHJONEUMT-UHFFFAOYSA-N 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 238000006462 rearrangement reaction Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 229910001419 rubidium ion Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- NSFYPZRDTCJZAS-UHFFFAOYSA-M sodium;1-aminoethanesulfonate Chemical compound [Na+].CC(N)S([O-])(=O)=O NSFYPZRDTCJZAS-UHFFFAOYSA-M 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 125000006839 xylylene group Chemical group 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/38—Carbon pastes or blends; Binders or additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/64—Liquid electrolytes characterised by additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an electrode protective film forming agent, an electrode, an electrolytic solution, a lithium secondary battery, a lithium ion capacitor, and a method for producing an electrode protective film.
- Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, and are therefore widely used in the field of portable information devices, and their demand is rapidly expanding.
- Currently it has established a position as a standard battery for mobile information devices such as mobile phones and notebook computers.
- higher performance for example, higher capacity and higher energy density
- non-aqueous electrolyte secondary batteries as its power source It has been demanded.
- various methods such as increasing the density by improving the charging rate of the electrodes, increasing the depth of use of the current active material (particularly the negative electrode), and developing a new high-capacity active material have been studied. In reality, the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
- the interfacial resistance on the electrode surface has a particularly large resistance.
- the cause of the interface resistance of the negative electrode is said to be due to the rate-determining step of the desolvation reaction in which the solvent molecules coordinated to the lithium ions are eliminated during the insertion reaction of lithium ions into the negative electrode.
- a method for promoting desolvation in the negative electrode a method using polyacrylic acid as a binder (Patent Document 1) or a method using azacrown ether has been proposed (Patent Document 2).
- the compound of Patent Document 1 is not sufficient for the effect of reducing the interface resistance of the negative electrode.
- the compound of Patent Document 2 is not suitable for a positive electrode protective film forming agent because the oxidation stability of azacrown ether itself is not sufficient.
- An object of the present invention is to provide an electrode or an electrolytic solution for a lithium secondary battery or a lithium ion capacitor that is excellent in output characteristics and long-term cycle characteristics and has low electrode resistance.
- the present invention provides at least one bond (a) selected from the group consisting of urethane bond (a1), urea bond (a2), allophanate bond (a3) and biuret bond (a4), polymerizable unsaturated bond (b )
- membrane It is a manufacturing method of a film
- [M is a monovalent metal ion, and A is —CO 2 ⁇ , —SO 3 ⁇ , —OPO (OR 1 ) O ⁇ , —B (O ⁇ ) 2 , —B (OR 2 ) O ⁇ or — B (OR 3 ) 3 —
- R 1 to R 3 are each a hydrocarbon group having 1 to 10 carbon atoms, and a plurality of R 3 may be the same or different and may form a ring with each other. Good).
- a lithium secondary battery or a lithium ion capacitor having excellent charge / discharge cycle characteristics and output characteristics and low electrode resistance is produced. it can.
- the electrode protective film-forming agent (D) of the present invention is contained in the negative electrode, the positive electrode, or both of a lithium secondary battery or a lithium ion capacitor, and then a voltage is applied to the battery or the capacitor. A polymerized film is formed on the surface, and the charge / discharge cycle characteristics and output characteristics can be improved by the action of the polymerized film, and the electrode resistance can be reduced. Further, after the electrode protective film forming agent (D) is contained in the electrolyte solution of a lithium secondary battery or a lithium ion capacitor, a voltage is applied to the battery or the capacitor to form a polymer film on the surface of the electrode active material. In addition, charge / discharge cycle characteristics and output characteristics can be improved by the action of the polymer film, and electrode resistance can be reduced.
- the electrode protective film forming agent (D) of the present invention comprises at least one bond (a) selected from the group consisting of urethane bond (a1), urea bond (a2), allophanate bond (a3) and biuret bond (a4), It contains a compound (C) having a polymerizable unsaturated bond (b) and a group (g) represented by the above general formula (1).
- the urethane bond (a1) is a bond represented by —OCONH—
- the urea bond (a2) is a bond represented by -NHCONH-
- the allophanate bond (a3) is a bond represented by the following formula (5):
- the biuret bond (a4) is a bond represented by the following formula (6).
- the polymerizable unsaturated bond (b) is a carbon-carbon double bond, and examples of the group having the bond include an alkenyl ether group (j1) represented by the following general formula (3) and the following general formula (4). And at least one group (j) selected from the group consisting of an alkenyl group (j2) and a (meth) acryloyloxy group (j3).
- (meth) acryloyloxy group means “acryloyloxy group or methacryloyloxy group”.
- T 1 to T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
- T 4 to T 6 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may form a ring with each other.
- the alkenyl group (j2) represented by the general formula (4) is preferable from the viewpoint of the reactivity of the polymerizable group.
- alkyl group having 1 to 3 carbon atoms examples include methyl, ethyl, n-propyl, and isopropyl.
- alkenyl ether group (j1) examples include vinyloxy group, 1-methylvinyloxy group, 1-propenoxy group, 1-methyl-1-propenoxy group, 2-methyl-1-propenoxy group and 1,2-dimethyl-1- A propenoxy group is mentioned. Of these, a 1-propenoxy group is preferable from the viewpoint of the reactivity of the polymerizable group.
- alkenyl group (j2) examples include a vinyl group, 1-propenyl group, 1-methyl-1-propenyl group, 2-methyl-1-propenyl group, 1,2-dimethyl-1-propenyl group, and general formula (4 ) In which T 5 is a methyl group and T 4 and T 6 form a ring (for example, 1-methyl-1-cyclohexen-2-yl and 2,6,6-trimethylcyclohexen-1-yl, etc.) ).
- a polymerizable group in which at least two of T 4 to T 6 are substituted with an alkyl group having 1 to 3 carbon atoms, and more preferably 2- A methyl-1-propenyl group or a 1,2-dimethyl-1-propenyl group;
- M is a monovalent metal ion
- A is —CO 2 ⁇ , —SO 3 ⁇ , —OPO (OR 1 ) O ⁇ , —B (O — ) 2 , —B (OR 2 ) O — or —B (OR 3 ) 3 —
- R 1 to R 3 are each a hydrocarbon group having 1 to 10 carbon atoms, and a plurality of R 3 may be the same. They may be different and may form a ring with each other.
- R 1 and R 2 are a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, or a monovalent alicyclic group having 5 to 10 carbon atoms.
- a hydrocarbon group etc. are mentioned.
- a monovalent aliphatic hydrocarbon group and a monovalent alicyclic hydrocarbon group are preferable from the viewpoint of oxidation stability of the compound.
- R 3 is a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, or a monovalent alicyclic hydrocarbon group having 5 to 10 carbon atoms. And a residue obtained by removing two hydroxyl groups from an aliphatic diol having 2 to 10 carbon atoms or a residue obtained by removing three hydroxyl groups from an aliphatic triol having 4 to 10 carbon atoms.
- preferred from the viewpoint of oxidative stability of the compound are monovalent aliphatic hydrocarbon groups, monovalent alicyclic hydrocarbon groups, residues obtained by removing two hydroxyl groups from aliphatic diols, or fatty acids. It is a residue obtained by removing three hydroxyl groups from a group triol.
- —SO 3 — is preferable from the viewpoint of charge / discharge cycle characteristics.
- Examples of monovalent metal ions in M include lithium ions, sodium ions, potassium ions, rubidium ions, and cesium ions. Among these, lithium ions or sodium ions are preferable from the viewpoint of output characteristics.
- Examples of the compound (C) include a compound represented by the following general formula (2).
- Y is an (s + t) -valent hydrocarbon group having 2 to 42 carbon atoms (Y1), which may contain at least one atom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom;
- a divalent residue (Y2) obtained by removing two isocyanate groups from a urethane prepolymer having isocyanate groups at both ends, which is a reaction product of diisocyanate (B) and diol (N) having 2 to 20 carbon atoms, allophanate bond
- s is an integer of 1 to 5
- t is an integer of 1 to 5.
- (A5) is a urethane bond or a urea bond.
- R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms
- R 8 is a monovalent hydrocarbon group having a polymerizable unsaturated bond (b) having 2 to 30 carbon atoms
- (g) is the above general formula ( It is group represented by 1).
- the hydrocarbon group (Y1) is a (s + t) valent hydrocarbon group having 2 to 42 carbon atoms, which may contain at least one atom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom, A divalent hydrocarbon group having 6 to 13 carbon atoms is preferred.
- divalent aliphatic hydrocarbon groups ethylene, tetramethylene, hexamethylene, octamethylene, decamethylene, 1-methyltetramethylene, 2-methyltetramethylene
- divalent alicyclic hydrocarbon groups 1,5,5-trimethyl-cyclohexane-1,3-diyl, methylenedicyclohexyl-4,4'-diyl, cyclohexane-1,4-diyl, 1,4-dimethylene-cyclohexane (from 1,4-cyclohexanedimethanol 2)
- a divalent aromatic hydrocarbon group toluene-2,4-diyl, toluene-2,6-diyl, methylenediphenyl-4,4′-diyl, xylylene, tetra
- Residue (Y2) consists of two isocyanate groups from a urethane prepolymer having isocyanate groups at both ends obtained by reaction of a diisocyanate (B) having 4 to 44 carbon atoms and a diol (N) having 2 to 20 carbon atoms. It is a residue excluding.
- Examples of the diisocyanate (B) include diisocyanates obtained by adding two isocyanate groups to the divalent hydrocarbon group (Y1).
- Diol (N) includes divalent aliphatic diols (ethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,3-propanediol, 1,5-pentanediol, 1,8-octanediol, 1,10- Decanediol, propylene glycol, 1,3-butanediol, etc.) Divalent alicyclic hydrocarbon group (1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, etc.) Etc.
- the number average molecular weight of the urethane prepolymer is preferably 700 to 4800, and more preferably 1000 to 3000.
- the residue (Y3) is a residue obtained by removing (s + t) isocyanate groups from a diisocyanate (B) modified product having 9 to 118 carbon atoms having an allophanate bond (a3).
- Examples of the modified diisocyanate (B) having 9 to 118 carbon atoms having an allophanate bond (a3) include compounds represented by the following general formula (7).
- R 4 is a divalent group in the hydrocarbon group (Y1), and a plurality of R 4 may be the same or different.
- R 5 is a hydrocarbon group having 1 to 20 carbon atoms.
- R 5 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms (methyl, ethyl, n-propyl, isopropyl, n-butyl, 1-methylpropyl, isobutyl, t-butyl, n-pentyl, isopentyl, 1-methylbutyl, 2-methylbutyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, isohexyl, 3-methylpentyl 2-methylpentyl, 1-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl, heptyl, octyl, isooctyl, 2 -Ethylhexyl, nonyl, decyl
- the residue (Y4) is a residue obtained by removing (s + t) isocyanate groups from a modified diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4).
- modified diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4) include compounds represented by the following general formula (8).
- R 6 is a divalent group in the hydrocarbon group (Y1), and a plurality of R 6 may be the same or different. ]
- s is an integer of 1 to 5, preferably an integer of 1 to 3.
- t is an integer of 1 to 5, preferably an integer of 1 to 3.
- the sum of these s and t is an integer of 2 to 10, preferably an integer of 2 to 6.
- (a5) is a urethane bond or a urea bond. Two or more (a5) s may be urethane bonds, all urea bonds, or both urethane bonds and urea bonds, but all are preferably urethane bonds.
- R 8 is a monovalent hydrocarbon group having 2 to 30 carbon atoms and having a polymerizable unsaturated bond (b).
- R 8 is a linear or branched monovalent hydrocarbon group having 2 to 30 carbon atoms (residue obtained by removing a hydroxyl group from an unsaturated alcohol such as vinyl alcohol, citronellol, linalool, prenol or geraniol), carbon number 5
- monovalent unsaturated alicyclic hydrocarbon groups (residues obtained by removing hydroxyl groups from unsaturated alicyclic alcohols such as retinol). Citronellol, linalool, prenol and geraniol are preferred from the viewpoint of reactivity.
- R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms.
- R 7 is a linear or branched divalent aliphatic hydrocarbon group having 1 to 12 carbon atoms (methylene, ethylene, trimethylene, ethylidene, tetramethylene, 1-methyltrimethylene, 2-methyltrimethylene, 1-ethyl Ethylene, 1,1-dimethylethylene, ethylmethylmethylene, propylmethylene, pentamethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1,2 -Dimethyltrimethylene, 1,3-dimethyltrimethylene, 1-ethyltrimethylene, 1,1,2-trimethylethylene, diethylmethylene, 1-propylethylene, butylmethylene, hexamethylene, 1-methylpentamethylene, 1, 1-dimethyltetramethylene, 2,2-dimethyltetramethyle 1,1,3
- the concentration of the bond (a) in the compound (C) is preferably 0.2 to 10 mmol / g, more preferably 0.5 to 5 mmol / g.
- the concentration of the polymerizable unsaturated bond (b) in the compound (C) is preferably 0.2 to 10 mmol / g, more preferably 0.2 to 5 mmol / g.
- the number average molecular weight of the compound (C) is preferably 238 to 5000, more preferably 450 to 3500.
- the number average molecular weight (Mn) of the compound (C) can be measured using gel permeation chromatography (hereinafter referred to as GPC).
- GPC gel permeation chromatography
- the measurement conditions for GPC the measurement conditions for the number average molecular weight (Mn) of the compounds (C-5) and (C-6) according to Examples 5 and 6 described later can be used.
- the molecular weight can be measured with a mass spectrometer or calculated from the structural formula.
- Compound (C) can be obtained, for example, by the following method. (1) having a compound (B1) having two or more isocyanate groups, an active hydrogen compound (L) having a polymerizable unsaturated bond (b), and a group (g) represented by the general formula (1) It is synthesized by reacting with an active hydrogen compound (G1).
- the above reactions (1) to (3) are preferably carried out in the presence of a urethanization catalyst from the viewpoint of shortening the reaction time.
- the reaction is carried out without using a solvent or in a solvent.
- the reaction solvent include N-methylpyrrolidone, dimethylformamide, dioxolane and the like, and N-methylpyrrolidone is preferable.
- the reaction time is 1 to 24 hours, but 5 to 8 hours are preferable.
- the order of preparation may be that the active hydrogen compound is charged first, or the compound having an isocyanate group may be charged first.
- the molar ratio is preferably reacted with a total of 1 to 1.5 equivalents of hydroxy group or amino group with respect to the isocyanate group so as not to leave an isocyanate group.
- Examples of the compound (B1) include dicyclohexylmethane-4,4′-diisocyanate, hexamethylene diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, and the like.
- Examples of the compound (B2) include DURANATE A201H (allophanate-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation], DURANATE 24A-100 (biuret-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation], and the like.
- Examples of the compound (B3) include a urethane prepolymer obtained by reacting dicyclohexylmethane-4,4′-diisocyanate with 1,4-cyclohexanedimethanol.
- Examples of the active hydrogen compound (L) having a polymerizable unsaturated bond (b) include 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, Examples include linalool, citronellol, retinol, prenol and the like.
- Examples of the active hydrogen compound (G1) having the group (g) represented by the general formula (1) include lithium isethionate, sodium isethionate, lithium lactate, sodium lactate, lithium 2-aminoethanesulfonate, 2- Examples include sodium aminoethanesulfonate, lithium 4-hydroxyphenylboronate, lithium 4- (hydroxymethyl) phenylboronate, lithium (3-aminophenyl) cyclic triol borate and the like.
- Examples of the active hydrogen compound (G2) having a group represented by formula (I) include isethionic acid, taurine, lactic acid, glycolic acid, 4-hydroxyphenylboronic acid, 4- (hydroxymethyl) phenylboronic acid, and the like.
- diol (N) examples include 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, and the like. Can be mentioned.
- the electrode protective film forming agent (D) may contain a component other than the compound (C), but preferably does not contain any component other than the compound (C).
- components other than the compound (C) include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and ⁇ -bromo- ⁇ -butyrolactone.
- the content of the compound (C) in the electrode protective film forming agent (D) is preferably 10 to 100% by weight, more preferably 50 to 100% by weight, based on the weight of the electrode protective film forming agent (D). %.
- the electrode of the present invention contains an electrode protective film forming agent (D), an active material (H), and a binder (K) before charging and discharging. While charging / discharging is started, a part of the electrode protective film forming agent (D) undergoes a polymerization reaction to form a polymer on the surface of the active material (H). At this time, the electrode of the present invention comprises an unreacted electrode protective film forming agent (D), an active material (H) having an electrode protective film made of a polymer of (D) on the surface, and a binder ( K).
- a negative electrode for a lithium secondary battery is obtained by using the negative electrode active material (H1) as the active material (H), and a negative electrode for a lithium ion capacitor is obtained by doping lithium into (H1). Moreover, the positive electrode active material (H2) for lithium secondary batteries and the positive electrode active material (H3) for lithium ion capacitors are mentioned.
- Examples of the negative electrode active material (H1) include graphite, amorphous carbon, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin and furan resin, etc.), cokes (for example, pitch coke, needle coke, and petroleum coke), And carbon fibers, conductive polymers (for example, polyacetylene and polypyrrole), tin, silicon, and metal alloys (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy). .
- Examples of the positive electrode active material (H2) for the lithium secondary battery include composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2). O 5 ), transition metal sulfides (eg, MoS 2 and TiS 2 ), and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
- Examples of the positive electrode active material (H3) for a lithium ion capacitor include activated carbon, carbon fiber, and a conductive polymer (for example, polyacetylene and polypyrrole).
- binder (K) examples include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
- the electrode of the present invention can further contain a conductive additive (J).
- a conductive additive J
- the conductive assistant (J) graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black) and metal powder (for example, Aluminum powder and nickel powder), conductive metal oxides (for example, zinc oxide and titanium oxide), and the like.
- the preferred contents of (K) and the conductive additive (J) are as follows.
- the content of the electrode protective film forming agent (D) is preferably 0.1 to 5% by weight, more preferably 0.2 to 2% by weight, from the viewpoint of charge / discharge cycle characteristics.
- the content of the active material (H) is preferably 70 to 98% by weight, more preferably 90 to 98% by weight, from the viewpoint of battery capacity.
- the content of the binder (K) is preferably 0.1 to 29% by weight and more preferably 0.5 to 10% by weight from the viewpoint of battery capacity.
- the content of the conductive auxiliary agent (J) is preferably 0 to 29% by weight, more preferably 1 to 10% by weight from the viewpoint of battery output.
- the electrode of the present invention comprises, for example, an electrode protective film forming agent (D), an active material (H), a binder (K), and optionally a conductive assistant (J) in 30 to 60% by weight in water or a solvent.
- D electrode protective film forming agent
- H active material
- K binder
- J conductive assistant
- lactam compounds, ketone compounds, amide compounds, amine compounds, cyclic ether compounds and the like can be used.
- examples thereof include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine and tetrahydrofuran (THF).
- the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, a conductive polymer, and conductive glass.
- the electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E) and a non-aqueous solvent (F), and is preferably useful as an electrolytic solution for lithium secondary batteries and lithium ion capacitors. .
- the electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E), and a nonaqueous solvent (F) before charging and discharging. While charging / discharging is started, a part of the electrode protective film forming agent (D) undergoes a polymerization reaction to form a polymer film on the surface of the active material (H) constituting the electrode. As the polymerization reaction proceeds, the electrode protective film forming agent (D) in the electrolytic solution of the present invention decreases.
- LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
- non-aqueous solvent (F) those used in ordinary electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphoric acid Esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof can be used.
- cyclic or chain carbonates are preferred from the viewpoint of battery output and charge / discharge cycle characteristics.
- cyclic carbonate include propylene carbonate, ethylene carbonate, butylene carbonate, and the like.
- chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
- Electrode protective film-forming agent (D), electrolyte (E) and non-aqueous solvent (F) based on the total weight of electrode protective film-forming agent (D), electrolyte (E) and non-aqueous solvent (F) in the electrolytic solution of the present invention ) are preferably as follows.
- the content of the electrode protective film forming agent (D) is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight, from the viewpoints of charge / discharge cycle characteristics, battery capacity and high-temperature storage characteristics. .
- the content of the electrolyte (E) in the electrolytic solution is preferably 0.1 to 30% by weight, more preferably 0.5 to 20% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
- the content of the non-aqueous solvent (F) is preferably 60 to 99% by weight, more preferably 85 to 95% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
- the electrolytic solution of the present invention may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
- additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
- the content of each component of the following additives is based on the total weight of the electrode protective film forming agent (D), the electrolyte (E), and the nonaqueous solvent (F).
- the overcharge inhibitor include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene and t-amylbenzene.
- the amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight.
- the dehydrating agent examples include zeolite, silica gel and calcium oxide.
- the amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight of the electrolytic solution.
- the capacity stabilizer examples include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene.
- the amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight of the electrolytic solution.
- the lithium secondary battery of the present invention uses the electrode of the present invention as a positive electrode or a negative electrode when the electrolytic solution is injected into a battery can containing a positive electrode, a negative electrode, and a separator, and the battery can be sealed.
- the electrolytic solution of the present invention is used, or it can be obtained by a combination thereof.
- a separator in a lithium secondary battery As a separator in a lithium secondary battery, a microporous film made of polyethylene or polypropylene film, a multilayer film of porous polyethylene film and polypropylene, a nonwoven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica on these surfaces, The thing to which ceramic fine particles, such as an alumina and titania, were made to adhere is mentioned.
- the battery can in the lithium secondary battery, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application. Further, the battery can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
- the lithium ion capacitor of the present invention can be obtained by replacing the positive electrode with a positive electrode for a lithium ion capacitor and replacing the battery can with a capacitor can in the basic configuration of the lithium secondary battery of the present invention.
- Examples of the material and shape of the capacitor can include the same as those exemplified for the battery can.
- the electrode of the present invention is used as a positive electrode or a negative electrode
- the electrolytic solution of the present invention is used as an electrolytic solution, or a voltage is applied to a combination thereof. There is a way to make it.
- the number average molecular weights (Mn) of compounds (C-5) and (C-6) according to Examples 5 and 6 described later were measured using GPC under the following conditions.
- TSK GEL GMH6 2 Measurement temperature: 40 degreeC Sample solution: 0.25 wt% THF solution Solution injection amount: 100 ⁇ l
- Detection device Refractive index detector
- Reference material Standard polystyrene (TSK standard POLYSTYRENE) 12 points (Mw 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1890000 2890000) manufactured by Tosoh Corporation
- Lithium isethionate A flask equipped with a stirrer and thermometer was charged with 5.0 parts of a 70% 2-hydroxyethanesulfonic acid solution [manufactured by Wako Pure Chemical Industries, Ltd.] and cooled in an ice bath while lithium hydroxide [Wako Pure Chemical Industries, Ltd.] Neutralized with an aqueous solution containing 0.66 parts. The obtained aqueous solution was heated to evaporate water, and then dried under reduced pressure (1.3 kPa) to obtain 3.6 parts of lithium isethionate (G1-1) (yield 98%).
- Electrode protective film forming agent (D-1) In a flask equipped with a stirrer, a thermometer and a condenser tube, 8.5 parts of lithium isethionate (G1-1), dicyclohexylmethane-4,4′-diisocyanate [manufactured by Wako Pure Chemical Industries, Ltd.] 15.3 parts 9.9 parts of linalool [manufactured by Wako Pure Chemical Industries, Ltd.], 100 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and dibutyltin dilaurate [manufactured by Tokyo Chemical Industry Co., Ltd.] 07 parts were charged and heated at 80 ° C.
- Electrode protective film forming agent (D-2) Example 1 was used except that 11.8 parts of hexamethylene diisocyanate [hexamethylene diisocyanate manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate. 9.6 parts of compound (C-2) represented by the following formula was obtained (yield 36%).
- the compound (C-2) is referred to as an electrode protective film forming agent (D-2).
- Electrode protective film forming agent (D-3) Other than using 13.0 parts of 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate [manufactured by Wako Pure Chemical Industries, Ltd.] instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate was carried out in the same manner as in Example 1 to obtain 11.9 parts of the compound (C-3) represented by the following formula (yield 40%).
- the compound (C-3) is used as an electrode protective film forming agent (D-3).
- Electrode protective film forming agent (D-4) The same procedure as in Example 1 was carried out except that 11.8 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane (L-1) was used instead of 9.9 parts of linalool. 13.8 parts of the compound (C-4) shown were obtained (41% yield). The compound (C-4) is used as an electrode protective film forming agent (D-4).
- Electrode protective film forming agent (D-5) In a flask equipped with a stirrer, a thermometer and a condenser, 46.0 parts of dicyclohexylmethane-4,4′-diisocyanate, 16.8 parts of 1,4-cyclohexanedimethanol [manufactured by Wako Pure Chemical Industries, Ltd.] Charge 100 parts of N-methylpyrrolidone and 0.07 part of dibutyltin dilaurate and heat at 80 ° C. for 8 hours, then add 8.5 parts of lithium 2-hydroxysulfonate and 9.9 parts of linalool, and further heat at 80 ° C. for 8 hours. did.
- Electrode protective film forming agent (D-6) Dicyclohexylmethane-4,4'-diisocyanate instead of 46.0 parts dicyclohexylmethane-4,4'-diisocyanate 117.4 parts, 1,4-cyclohexanedimethanol instead of 16.8 parts 1,4-cyclohexanedi 39.9 parts of compound (C-6) was obtained in the same manner as in Example 5 except that 56.1 parts of methanol was used (yield 21%). [Mn: 3300]. The compound (C-6) is used as an electrode protective film forming agent (D-6).
- Electrode protective film forming agent (D-7) Example 1 was repeated except that 28.7 parts of duranate A201H (allophanate-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation] was used instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate. As a result, 20.4 parts of urethane compound (C-7) having an allophanate bond was obtained (yield 45%). The compound (C-7) is used as an electrode protective film forming agent (D-7).
- duranate A201H allophanate-modified hexamethylene diisocyanate
- Electrode protective film forming agent (D-8) Instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate, 27.9 parts of duranate 24A-100 (biuret-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Co., Ltd.] were used, and instead of 9.9 parts of linalool. In addition, 19.8 parts of a urethane compound (C-8) having a biuret bond was obtained in the same manner as in Example 1 except that 19.8 parts of linalool was used (yield 37%). The compound (C-8) is used as an electrode protective film forming agent (D-8).
- Electrode protective film forming agent (D-9) A compound represented by the following formula (C-9) was prepared in the same manner as in Example 1 except that 9.5 parts of sodium isethionate [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 8.5 parts of lithium isethionate. ) 12.5 parts was obtained (38% yield). The compound (C-9) is used as an electrode protective film forming agent (D-9).
- Electrode protective film forming agent (D-10) instead of 8.5 parts of lithium isethionate, 8.0 parts of taurine [manufactured by Wako Pure Chemical Industries, Ltd.] was used, and the reaction and purification were carried out in the same manner as in Example 1, followed by methanol [Wako Pure Chemical Industries, Ltd.] Suspended in [manufactured by Co., Ltd.] and neutralized with 1 equivalent of lithium hydroxide [Wako Pure Chemical Industries, Ltd.]. Methanol was removed under reduced pressure (1.3 kPa) to obtain 10.2 parts of compound (C-10) represented by the following formula (yield 32%). The compound (C-10) is used as an electrode protective film forming agent (D-10).
- Electrode protective film forming agent (D-11) A compound represented by the following formula (C-11) was prepared in the same manner as in Example 1 except that 7.5 parts of 2-hydroxyethyl acrylate [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 9.9 parts of linalool. ) 10.7 parts were obtained (yield 36%). Compound (C-11) is referred to as an electrode protective film forming agent (D-11).
- Electrode protective film forming agent (D-12) A compound represented by the following formula was reacted, neutralized and purified in the same manner as in Example 10 except that 5.8 parts of lactic acid [Wako Pure Chemical Industries, Ltd.] was used instead of 8.0 parts of taurine. C-12) 14.7 parts were obtained (yield 52%). The compound (C-12) is used as an electrode protective film forming agent (D-12).
- Electrode protective film forming agent (D-13) Compound (C-13) 14.8 represented by the following formula was carried out in the same manner as in Example 1 except that 10.0 parts of citronellol [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 9.9 parts of linalool. Parts were obtained (yield 46%). The compound (C-13) is used as an electrode protective film forming agent (D-13).
- Electrode protective film forming agent (D-14) This was performed in the same manner as in Example 1 except that 5.5 parts of prenol [3-methyl-2-buten-1-ol manufactured by Tokyo Chemical Industry Co., Ltd.] was used instead of 9.9 parts of linalool. Of the compound (C-14) (43% yield). Compound (C-14) is referred to as electrode protective film forming agent (D-14).
- Electrode protective film forming agent (D-15) The compound represented by the following formula (C-15) was prepared in the same manner as in Example 14 except that 9.6 parts of lithium 4-hydroxyphenylboronate (G1-1) was used instead of 9.9 parts of lithium isethionate. 18.7 parts were obtained (yield 30%). The compound (C-15) is used as an electrode protective film forming agent (D-15).
- Electrode protective film forming agent (D-16) A compound represented by the following formula, which was prepared in the same manner as in Example 14 except that 14.6 parts of (3-aminophenyl) cyclic triol borate lithium salt (G1-2) was used instead of 9.9 parts of lithium isethionate ( C-16) 9.1 parts were obtained (yield 27%). The compound (C-16) is used as an electrode protective film forming agent (D-16).
- Comparative protective film forming agent (D'-1) In a flask equipped with a stirrer, a thermometer and a condenser tube, 0.72 part of 4,7-diaza-15-crown 5-ether [manufactured by Tokyo Chemical Industry Co., Ltd.], chloromethylstyrene [manufactured by Tokyo Chemical Industry Co., Ltd.] ] 1 part and 10 parts of acetonitrile [manufactured by Wako Pure Chemical Industries, Ltd.] were charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring.
- Acetonitrile was removed under reduced pressure (1.3 kPa) and then purified by an alumina column [150 mesh, Blockman 1, standard grade, Sigma-Aldrich] using acetone [manufactured by Wako Pure Chemical Industries, Ltd.] as a solvent. 1.1 parts of the compound (C′-1) represented by the formula (yield 75%) was obtained.
- the compound (C′-1) is used as a comparative electrode protective film forming agent (D′-1).
- the electrode protective film forming agents (D-1) to (D-16) and the comparative electrode protective film forming agent (D′-1) of the present invention are summarized in Table 1.
- the positive electrode and the negative electrode prepared above were arranged at both ends in the 2032 type coin cell so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to prepare a secondary battery cell.
- the solution was poured and sealed in a cell in which an electrolytic solution was prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) at a ratio of 12 wt%.
- EC ethylene carbonate
- DEC diethyl carbonate
- a slurry was obtained by thoroughly mixing 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride and 200 parts of 1-methyl-2-pyrrolidone in a mortar.
- the obtained slurry was applied to one side of a copper foil having a thickness of 20 ⁇ m using a wire bar in the atmosphere, dried at 80 ° C. for 1 hour, and further reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. After drying for a time, it was punched to 16.15 mm ⁇ , and the thickness was made 30 ⁇ m with a press machine to produce a negative electrode for a lithium secondary battery.
- the positive electrode and the negative electrode were arranged at both ends in the 2032 type coin cell so that the respective coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to produce a secondary battery cell.
- the electrolyte solution was poured into the prepared secondary battery cell and sealed to prepare a secondary battery.
- a positive electrode and a negative electrode for a lithium ion capacitor containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the number of parts shown in Table 3 were prepared by the following method.
- a lithium ion capacitor was prepared by the following method.
- the high voltage charge / discharge cycle characteristics and electrode resistance were evaluated by the above method, the output characteristics were evaluated by the following method, and the results are shown in Table 3.
- the positive electrode active material activated carbon having a specific surface area of about 2200 m 2 / g obtained by an alkali activation method was used. Activated carbon powder, acetylene black, and polyvinylidene fluoride are mixed in a weight ratio of 80:10:10, and this mixture is added to 1-methyl-2-pyrrolidone as a solvent and mixed by stirring. To obtain a slurry. This slurry was applied onto an aluminum foil having a thickness of 30 ⁇ m by a doctor blade method, temporarily dried, and then cut so that the electrode size was 20 mm ⁇ 30 mm. The electrode thickness was about 50 ⁇ m. Before assembling the cell, it was dried in a vacuum at 120 ° C. for 10 hours to produce a positive electrode for a lithium ion capacitor.
- the obtained electrode and lithium metal foil are sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity of lithium ions is occluded in the negative electrode over about 10 hours.
- a negative electrode was prepared.
- a separator nonwoven fabric made of polypropylene
- a separator is inserted between the positive electrode and the negative electrode obtained as described above, impregnated with the above electrolyte solution, sealed in a storage case made of polypropylene aluminum laminate film, and lithium ion A capacitor cell was produced.
- the high voltage charge / discharge cycle characteristics, the output characteristics, and the electrode resistance were evaluated by the above methods. The results are shown in Table 3.
- the lithium secondary battery and lithium ion capacitor produced using the electrode protective film forming agent of the present invention are excellent in charge / discharge cycle performance and output characteristics, and can reduce electrode resistance.
- the lithium ion coordination polymer film formed on the surface of the electrode active material suppresses the decomposition of the electrolyte solution on the electrode surface under high voltage, This is considered to reduce the desolvation energy of lithium ions.
- the cause of the decrease in electrode resistance is thought to be that the salt concentration at the electrode interface increased and the ionic conductivity near the interface increased.
- the electrode and electrolyte using the electrode protective film-forming agent (D) of the present invention are excellent in charge / discharge cycle performance and output characteristics under a high voltage
- the electrode for lithium secondary batteries or lithium ion capacitors is particularly used.
- it is useful as an additive for electrolytic solutions, and is suitable for electric vehicles.
- the present invention can also be applied to other electrochemical devices such as electric double layer capacitors, nickel metal hydride batteries, nickel cadmium batteries, air batteries, alkaline batteries and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Composite Materials (AREA)
Abstract
Description
本発明の電極保護膜形成剤(D)は、リチウム二次電池またはリチウムイオンキャパシタの負極、正極またはそのいずれにも含有させた後、該電池または該キャパシタに電圧を印加すると電極の活物質の表面上に重合膜を形成し、該重合膜の作用で充放電サイクル特性および出力特性を向上させるとともに、電極抵抗を低下させることができる。
また、電極保護膜形成剤(D)はリチウム二次電池またはリチウムイオンキャパシタの電解液に含有させた後、該電池または該キャパシタに電圧を印加すると電極の活物質の表面上に重合膜を形成し、該重合膜の作用で充放電サイクル特性および出力特性を向上させるとともに、電極抵抗を低下させることができる。 <Electrode protective film forming agent (D)>
The electrode protective film-forming agent (D) of the present invention is contained in the negative electrode, the positive electrode, or both of a lithium secondary battery or a lithium ion capacitor, and then a voltage is applied to the battery or the capacitor. A polymerized film is formed on the surface, and the charge / discharge cycle characteristics and output characteristics can be improved by the action of the polymerized film, and the electrode resistance can be reduced.
Further, after the electrode protective film forming agent (D) is contained in the electrolyte solution of a lithium secondary battery or a lithium ion capacitor, a voltage is applied to the battery or the capacitor to form a polymer film on the surface of the electrode active material. In addition, charge / discharge cycle characteristics and output characteristics can be improved by the action of the polymer film, and electrode resistance can be reduced.
ウレア結合(a2)は-NHCONH-で示される結合、
アロファネート結合(a3)は下記式(5)で示される結合、
The urea bond (a2) is a bond represented by -NHCONH-,
The allophanate bond (a3) is a bond represented by the following formula (5):
これらの中で重合性基の反応性という観点から好ましいものは一般式(4)で表されるアルケニル基(j2)である。 The polymerizable unsaturated bond (b) is a carbon-carbon double bond, and examples of the group having the bond include an alkenyl ether group (j1) represented by the following general formula (3) and the following general formula (4). And at least one group (j) selected from the group consisting of an alkenyl group (j2) and a (meth) acryloyloxy group (j3). In the present specification, “(meth) acryloyloxy group” means “acryloyloxy group or methacryloyloxy group”.
Among these, the alkenyl group (j2) represented by the general formula (4) is preferable from the viewpoint of the reactivity of the polymerizable group.
これらの中で重合性基の反応性という観点から好ましいのは1-プロペノキシ基である。 Examples of the alkenyl ether group (j1) include vinyloxy group, 1-methylvinyloxy group, 1-propenoxy group, 1-methyl-1-propenoxy group, 2-methyl-1-propenoxy group and 1,2-dimethyl-1- A propenoxy group is mentioned.
Of these, a 1-propenoxy group is preferable from the viewpoint of the reactivity of the polymerizable group.
これらの中で重合性基の反応性という観点から好ましいのは、T4~T6のうち少なくとも2つが炭素数1~3のアルキル基で置換された重合性基であり、より好ましくは2-メチル-1-プロペニル基または1,2-ジメチル-1-プロペニル基である。 Examples of the alkenyl group (j2) include a vinyl group, 1-propenyl group, 1-methyl-1-propenyl group, 2-methyl-1-propenyl group, 1,2-dimethyl-1-propenyl group, and general formula (4 ) In which T 5 is a methyl group and T 4 and T 6 form a ring (for example, 1-methyl-1-cyclohexen-2-yl and 2,6,6-trimethylcyclohexen-1-yl, etc.) ).
Among these, from the viewpoint of the reactivity of the polymerizable group, preferred is a polymerizable group in which at least two of T 4 to T 6 are substituted with an alkyl group having 1 to 3 carbon atoms, and more preferably 2- A methyl-1-propenyl group or a 1,2-dimethyl-1-propenyl group;
これらの中で出力特性の観点からリチウムイオンまたはナトリウムイオンが好ましい。 Examples of monovalent metal ions in M include lithium ions, sodium ions, potassium ions, rubidium ions, and cesium ions.
Among these, lithium ions or sodium ions are preferable from the viewpoint of output characteristics.
sは1~5の整数、tは1~5の整数である。(a5)はウレタン結合またはウレア結合である。R7は炭素数1~12の2価の炭化水素基、R8は炭素数2~30の重合性不飽和結合(b)を有する1価の炭化水素基、(g)は上記一般式(1)で表される基である。 Examples of the compound (C) include a compound represented by the following general formula (2).
s is an integer of 1 to 5, and t is an integer of 1 to 5. (A5) is a urethane bond or a urea bond. R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms, R 8 is a monovalent hydrocarbon group having a polymerizable unsaturated bond (b) having 2 to 30 carbon atoms, and (g) is the above general formula ( It is group represented by 1).
ジイソシアネート(B)としては、上記2価の炭化水素基(Y1)に2個のイソシアネート基が付加したジイソシアネートが挙げられる。
ジオール(N)としては、2価の脂肪族ジオール(エチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、1,3-プロパンジオール、1,5-ペンタンジオール、1,8-オクタンジオール、1,10-デカンジオール、プロピレングリコール、1,3-ブタンジオール等)、2価の脂環式炭化水素基(1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール等)等が挙げられる。
ウレタンプレポリマーの数平均分子量は700~4800であることが好ましく、1000~3000であることがさらに好ましい。 Residue (Y2) consists of two isocyanate groups from a urethane prepolymer having isocyanate groups at both ends obtained by reaction of a diisocyanate (B) having 4 to 44 carbon atoms and a diol (N) having 2 to 20 carbon atoms. It is a residue excluding.
Examples of the diisocyanate (B) include diisocyanates obtained by adding two isocyanate groups to the divalent hydrocarbon group (Y1).
Diol (N) includes divalent aliphatic diols (ethylene glycol, tetramethylene glycol, hexamethylene glycol, 1,3-propanediol, 1,5-pentanediol, 1,8-octanediol, 1,10- Decanediol, propylene glycol, 1,3-butanediol, etc.) Divalent alicyclic hydrocarbon group (1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, etc.) Etc.
The number average molecular weight of the urethane prepolymer is preferably 700 to 4800, and more preferably 1000 to 3000.
アロファネート結合(a3)を有する炭素数9~118のジイソシアネート(B)変性物としては、例えば下記の一般式(7)で表される化合物が挙げられる。 The residue (Y3) is a residue obtained by removing (s + t) isocyanate groups from a diisocyanate (B) modified product having 9 to 118 carbon atoms having an allophanate bond (a3).
Examples of the modified diisocyanate (B) having 9 to 118 carbon atoms having an allophanate bond (a3) include compounds represented by the following general formula (7).
ビウレット結合(a4)を有する炭素数11~131のジイソシアネート(B)変性物としては、例えば下記の一般式(8)で表される化合物が挙げられる。 The residue (Y4) is a residue obtained by removing (s + t) isocyanate groups from a modified diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4).
Examples of the modified diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4) include compounds represented by the following general formula (8).
上記一般式(2)において、(a5)はウレタン結合またはウレア結合である。2個以上ある(a5)はすべてウレタン結合の場合、すべてウレア結合の場合、ウレタン結合およびウレア結合が両方ある場合のいずれであってもよいが、すべてウレタン結合の場合が好ましい。 In the general formula (2), s is an integer of 1 to 5, preferably an integer of 1 to 3. In the general formula (2), t is an integer of 1 to 5, preferably an integer of 1 to 3. The sum of these s and t is an integer of 2 to 10, preferably an integer of 2 to 6.
In the general formula (2), (a5) is a urethane bond or a urea bond. Two or more (a5) s may be urethane bonds, all urea bonds, or both urethane bonds and urea bonds, but all are preferably urethane bonds.
R8としては、炭素数2~30の直鎖または分岐の1価の炭化水素基(ビニルアルコール、シトロネロール、リナロール、プレノール、ゲラニオール等の不飽和アルコールから水酸基を除いた残基)、炭素数5~30の1価の不飽和脂環式炭化水素基(レチノール等の不飽和脂環式アルコールから水酸基を除いた残基)が挙げられる。
反応性の観点から、シトロネロール、リナロール、プレノール、ゲラニオールが好ましい。 In the above general formula (2), R 8 is a monovalent hydrocarbon group having 2 to 30 carbon atoms and having a polymerizable unsaturated bond (b).
R 8 is a linear or branched monovalent hydrocarbon group having 2 to 30 carbon atoms (residue obtained by removing a hydroxyl group from an unsaturated alcohol such as vinyl alcohol, citronellol, linalool, prenol or geraniol), carbon number 5 To 30 monovalent unsaturated alicyclic hydrocarbon groups (residues obtained by removing hydroxyl groups from unsaturated alicyclic alcohols such as retinol).
Citronellol, linalool, prenol and geraniol are preferred from the viewpoint of reactivity.
R7としては炭素数1~12の直鎖または分岐の2価の脂肪族炭化水素基(メチレン、エチレン、トリメチレン、エチリデン、テトラメチレン、1-メチルトリメチレン、2-メチルトリメチレン、1-エチルエチレン、1,1-ジメチルエチレン、エチルメチルメチレン、プロピルメチレン、ペンタメチレン、1-メチルテトラメチレン、2-メチルテトラメチレン、1,1-ジメチルトリメチレン、2,2-ジメチルトリメチレン、1,2-ジメチルトリメチレン、1,3-ジメチルトリメチレン、1-エチルトリメチレン、1,1,2-トリメチルエチレン、ジエチルメチレン、1-プロピルエチレン、ブチルメチレン、ヘキサメチレン、1-メチルペンタメチレン、1,1-ジメチルテトラメチレン、2,2-ジメチルテトラメチレン、1,1,3-トリメチルトリメチレン、1,1,2-トリメチルトリメチレン、1,1,2,2-テトラメチルエチレン、1,1-ジメチル-2-エチルエチレン、1,1-ジエチルエチレン、1-プロピルトリメチレン、2-プロピルトリメチレン、1-ブチルエチレン、1-メチル-1-プロピルエチレン、1-メチル-2-プロピルエチレン、ペンチルメチレン、ブチルメチルメチレン、エチルプロピルメチレン、1-メチル-1-ビニル-1,3-プロパンジイル、3-メチル-ペンタン-1,5-ジイルまたは3,7-ジメチルノナ-2,4,6,8-テトラエン-1,9-ジイル)、炭素数5~12の2価の脂環式炭化水素基(1,2-シクロペンチレン、1,2-シクロへキシレン、1,3-シクロへキシレン、1,4-シクロへキシレン、1,3-シクロヘキサンジメタノールから2個の水酸基を除いた残基、1,4-シクロヘキサンジメタノールから2個の水酸基を除いた残基、1-ヒドロキシ-3-ヒドロキシメチルシクロヘキサンから2個の水酸基を除いた残基、1-ヒドロキシ-4-ヒドロキシメチルシクロヘキサンから2個の水酸基を除いた残基、1,4-シクロヘキサンジエタノールから2個の水酸基を除いた残基または1,4-シクロヘキサンジプロパノールから2個の水酸基を除いた残基)、炭素数6~12の2価の芳香族炭化水素基(1,2-フェニレン、1,3-フェニレン、1,4-フェニレン、2,4-トリレン、2,5-トリレンまたは1,5-ナフチレン)が挙げられる。 In the general formula (2), R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms.
R 7 is a linear or branched divalent aliphatic hydrocarbon group having 1 to 12 carbon atoms (methylene, ethylene, trimethylene, ethylidene, tetramethylene, 1-methyltrimethylene, 2-methyltrimethylene, 1-ethyl Ethylene, 1,1-dimethylethylene, ethylmethylmethylene, propylmethylene, pentamethylene, 1-methyltetramethylene, 2-methyltetramethylene, 1,1-dimethyltrimethylene, 2,2-dimethyltrimethylene, 1,2 -Dimethyltrimethylene, 1,3-dimethyltrimethylene, 1-ethyltrimethylene, 1,1,2-trimethylethylene, diethylmethylene, 1-propylethylene, butylmethylene, hexamethylene, 1-methylpentamethylene, 1, 1-dimethyltetramethylene, 2,2-dimethyltetramethyle 1,1,3-trimethyltrimethylene, 1,1,2-trimethyltrimethylene, 1,1,2,2-tetramethylethylene, 1,1-dimethyl-2-ethylethylene, 1,1-diethyl Ethylene, 1-propyltrimethylene, 2-propyltrimethylene, 1-butylethylene, 1-methyl-1-propylethylene, 1-methyl-2-propylethylene, pentylmethylene, butylmethylmethylene, ethylpropylmethylene, 1- Methyl-1-vinyl-1,3-propanediyl, 3-methyl-pentane-1,5-diyl or 3,7-dimethylnona-2,4,6,8-tetraene-1,9-diyl), carbon number 5 to 12 divalent alicyclic hydrocarbon groups (1,2-cyclopentylene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4- Chlohexylene, a residue obtained by removing two hydroxyl groups from 1,3-cyclohexanedimethanol, a residue obtained by removing two hydroxyl groups from 1,4-cyclohexanedimethanol, and 1-hydroxy-3-hydroxymethylcyclohexane A residue obtained by removing two hydroxyl groups, a residue obtained by removing two hydroxyl groups from 1-hydroxy-4-hydroxymethylcyclohexane, a residue obtained by removing two hydroxyl groups from 1,4-cyclohexanediethanol, or 1,4 A residue obtained by removing two hydroxyl groups from cyclohexanedipropanol), a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms (1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 2 , 4-tolylene, 2,5-tolylene or 1,5-naphthylene).
(1)2個以上のイソシアネート基を有する化合物(B1)と、重合性不飽和結合(b)を有する活性水素化合物(L)と、一般式(1)で表される基(g)を有する活性水素化合物(G1)とを反応させて合成する。
または、上記2個以上のイソシアネート基を有する化合物(B1)と、重合性不飽和結合(b)を有する活性水素化合物(L)と、-CO2H、-SO3H、-OPO(OR1)OH、-B(OH)2または-B(OR2)OH(R1、R2は各炭素数1~10の炭化水素基)で表される基を有する活性水素化合物(G2)とを反応させた後、1価の金属水酸化物により中和することで合成する。
(2)上記(1)において、2個以上のイソシアネート基を有する化合物(B1)の代わりに、アロファネート結合(a3)およびビウレット結合(a4)からなる群より選ばれる少なくとも1つの結合(a)を有し2個以上のイソシアネート基を有する化合物(B2)を使用して合成する。
(3)上記(1)において、2個以上のイソシアネート基を有する化合物(B1)の代わりに、炭素数4~44のジイソシアネート(B)と炭素数2~20のジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマー(B3)を使用して合成する。 Compound (C) can be obtained, for example, by the following method.
(1) having a compound (B1) having two or more isocyanate groups, an active hydrogen compound (L) having a polymerizable unsaturated bond (b), and a group (g) represented by the general formula (1) It is synthesized by reacting with an active hydrogen compound (G1).
Alternatively, the compound (B1) having two or more isocyanate groups, the active hydrogen compound (L) having a polymerizable unsaturated bond (b), -CO 2 H, -SO 3 H, -OPO (OR 1 ) OH, —B (OH) 2 or —B (OR 2 ) OH (R 1 and R 2 are each a hydrocarbon group having 1 to 10 carbon atoms) and an active hydrogen compound (G2) having a group represented by After reacting, it is synthesized by neutralizing with a monovalent metal hydroxide.
(2) In the above (1), instead of the compound (B1) having two or more isocyanate groups, at least one bond (a) selected from the group consisting of allophanate bond (a3) and biuret bond (a4) is used. The compound (B2) having two or more isocyanate groups is synthesized.
(3) In the above (1), instead of the compound (B1) having two or more isocyanate groups, a reaction product of a diisocyanate (B) having 4 to 44 carbon atoms and a diol (N) having 2 to 20 carbon atoms is used. It is synthesized using a urethane prepolymer (B3) having a certain terminal isocyanate group.
反応は溶媒を使用せずに行うか、または溶媒中で行う。反応溶媒としてはN-メチルピロリドン、ジメチルホルムアミド、ジオキソラン等が挙げられるが、N-メチルピロリドンが好ましい。
反応時間は1~24時間だが、5~8時間が好ましい。
仕込み順は活性水素化合物を先に仕込んでいてもよく、イソシネート基を有する化合物を先に仕込んでいてもよい。
モル比は、イソシアネート基を残さないために、イソシアネート基に対して合計1~1.5当量のヒドロキシ基またはアミノ基と反応させることが好ましい。 The above reactions (1) to (3) are preferably carried out in the presence of a urethanization catalyst from the viewpoint of shortening the reaction time.
The reaction is carried out without using a solvent or in a solvent. Examples of the reaction solvent include N-methylpyrrolidone, dimethylformamide, dioxolane and the like, and N-methylpyrrolidone is preferable.
The reaction time is 1 to 24 hours, but 5 to 8 hours are preferable.
The order of preparation may be that the active hydrogen compound is charged first, or the compound having an isocyanate group may be charged first.
The molar ratio is preferably reacted with a total of 1 to 1.5 equivalents of hydroxy group or amino group with respect to the isocyanate group so as not to leave an isocyanate group.
化合物(B2)としては、デュラネートA201H(アロファネート変性ヘキサメチレンジイソシアネート)[旭化成ケミカルズ(株)製]、デュラネート24A-100(ビウレット変性ヘキサメチレンジイソシアネート)[旭化成ケミカルズ(株)製]等が挙げられる。化合物(B3)としては、ジシクロヘキシルメタン-4,4’-ジイソシアネートと1,4-シクロヘキサンジメタノールを反応させたウレタンプレポリマー等が挙げられる。 Examples of the compound (B1) include dicyclohexylmethane-4,4′-diisocyanate, hexamethylene diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, and the like.
Examples of the compound (B2) include DURANATE A201H (allophanate-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation], DURANATE 24A-100 (biuret-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation], and the like. Examples of the compound (B3) include a urethane prepolymer obtained by reacting dicyclohexylmethane-4,4′-diisocyanate with 1,4-cyclohexanedimethanol.
電極保護膜形成剤(D)における化合物(C)の含有量は、電極保護膜形成剤(D)の重量を基準として、10~100重量%であることが好ましく、更に好ましくは50~100重量%である。 The electrode protective film forming agent (D) may contain a component other than the compound (C), but preferably does not contain any component other than the compound (C). Examples of components other than the compound (C) include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and α-bromo-γ-butyrolactone.
The content of the compound (C) in the electrode protective film forming agent (D) is preferably 10 to 100% by weight, more preferably 50 to 100% by weight, based on the weight of the electrode protective film forming agent (D). %.
本発明の電極は、充放電して使用する前は電極保護膜形成剤(D)、活物質(H)、および結着剤(K)を含有する。充放電を開始すると共に、電極保護膜形成剤(D)の一部は重合反応して活物質(H)の表面上に重合物を形成する。この時点で本発明の電極は、未反応の電極保護膜形成剤(D)、表面上に(D)の重合物よりなる電極保護膜が形成された活物質(H)、および結着剤(K)を含有する。 <Electrode>
The electrode of the present invention contains an electrode protective film forming agent (D), an active material (H), and a binder (K) before charging and discharging. While charging / discharging is started, a part of the electrode protective film forming agent (D) undergoes a polymerization reaction to form a polymer on the surface of the active material (H). At this time, the electrode of the present invention comprises an unreacted electrode protective film forming agent (D), an active material (H) having an electrode protective film made of a polymer of (D) on the surface, and a binder ( K).
負極活物質(H1)としては、黒鉛、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂およびフラン樹脂等を焼成し炭素化したもの)、コークス類(例えばピッチコークス、ニードルコークスおよび石油コークス)、炭素繊維、導電性高分子(例えばポリアセチレンおよびポリピロール)、スズ、シリコン、および金属合金(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金およびリチウム-アルミニウム-マンガン合金等)等が挙げられる。
リチウム二次電池用正極活物質(H2)としてはリチウムと遷移金属との複合酸化物(例えばLiCoO2、LiNiO2、LiMnO2およびLiMn2O4)、遷移金属酸化物(例えばMnO2およびV2O5)、遷移金属硫化物(例えばMoS2およびTiS2)、および導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレンおよびポリカルバゾール)等が挙げられる。
リチウムイオンキャパシタ用正極活物質(H3)としては活性炭、炭素繊維および導電性高分子(例えばポリアセチレンおよびポリピロール)等が挙げられる。 A negative electrode for a lithium secondary battery is obtained by using the negative electrode active material (H1) as the active material (H), and a negative electrode for a lithium ion capacitor is obtained by doping lithium into (H1). Moreover, the positive electrode active material (H2) for lithium secondary batteries and the positive electrode active material (H3) for lithium ion capacitors are mentioned.
Examples of the negative electrode active material (H1) include graphite, amorphous carbon, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin and furan resin, etc.), cokes (for example, pitch coke, needle coke, and petroleum coke), And carbon fibers, conductive polymers (for example, polyacetylene and polypyrrole), tin, silicon, and metal alloys (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy). .
Examples of the positive electrode active material (H2) for the lithium secondary battery include composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2). O 5 ), transition metal sulfides (eg, MoS 2 and TiS 2 ), and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
Examples of the positive electrode active material (H3) for a lithium ion capacitor include activated carbon, carbon fiber, and a conductive polymer (for example, polyacetylene and polypyrrole).
導電助剤(J)としては黒鉛(例えば天然黒鉛および人工黒鉛)、カーボンブラック類(例えばカーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラックおよびサーマルブラック)および金属粉末(例えばアルミニウム粉およびニッケル粉)、導電性金属酸化物(例えば酸化亜鉛および酸化チタン)等が挙げられる。 The electrode of the present invention can further contain a conductive additive (J).
As the conductive assistant (J), graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black) and metal powder (for example, Aluminum powder and nickel powder), conductive metal oxides (for example, zinc oxide and titanium oxide), and the like.
電極保護膜形成剤(D)の含有量は、充放電サイクル特性の観点から、好ましくは0.1~5重量%であり、更に好ましくは0.2~2重量%である。
活物質(H)の含有量は、電池容量の観点から、好ましくは70~98重量%であり、更に好ましくは90~98重量%である。
結着剤(K)の含有量は、電池容量の観点から、好ましくは0.1~29重量%であり、更に好ましくは0.5~10重量%である。
導電助剤(J)の含有量は、電池出力の観点から、好ましくは0~29重量%であり、更に好ましくは1~10重量%である。 Electrode protective film forming agent (D), active material (H), binder based on total weight of electrode protective film forming agent (D), active material (H) and binder (K) in the electrode of the present invention The preferred contents of (K) and the conductive additive (J) are as follows.
The content of the electrode protective film forming agent (D) is preferably 0.1 to 5% by weight, more preferably 0.2 to 2% by weight, from the viewpoint of charge / discharge cycle characteristics.
The content of the active material (H) is preferably 70 to 98% by weight, more preferably 90 to 98% by weight, from the viewpoint of battery capacity.
The content of the binder (K) is preferably 0.1 to 29% by weight and more preferably 0.5 to 10% by weight from the viewpoint of battery capacity.
The content of the conductive auxiliary agent (J) is preferably 0 to 29% by weight, more preferably 1 to 10% by weight from the viewpoint of battery output.
例えば1-メチル-2-ピロリドン、メチルエチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N,N-ジメチルアミノプロピルアミンおよびテトラヒドロフラン(THF)等が挙げられる。
集電体としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子および導電性ガラス等が挙げられる。 As the solvent, lactam compounds, ketone compounds, amide compounds, amine compounds, cyclic ether compounds and the like can be used.
Examples thereof include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine and tetrahydrofuran (THF).
Examples of the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, a conductive polymer, and conductive glass.
本発明の電解液は、充放電して使用する前は電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)を含有する。充放電を開始すると共に、電極保護膜形成剤(D)の一部は重合反応して電極を構成する活物質(H)の表面上に重合物の膜を形成する。重合反応の進行と共に本発明の電解液中の電極保護膜形成剤(D)は減少する。 The electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E) and a non-aqueous solvent (F), and is preferably useful as an electrolytic solution for lithium secondary batteries and lithium ion capacitors. .
The electrolytic solution of the present invention contains an electrode protective film forming agent (D), an electrolyte (E), and a nonaqueous solvent (F) before charging and discharging. While charging / discharging is started, a part of the electrode protective film forming agent (D) undergoes a polymerization reaction to form a polymer film on the surface of the active material (H) constituting the electrode. As the polymerization reaction proceeds, the electrode protective film forming agent (D) in the electrolytic solution of the present invention decreases.
環状炭酸エステルの具体例としては、プロピレンカーボネート、エチレンカーボネートおよびブチレンカーボネート等が挙げられる。
鎖状炭酸エステルの具体例としては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネートおよびジ-n-プロピルカーボネート等が挙げられる。 Of the non-aqueous solvents (F), cyclic or chain carbonates are preferred from the viewpoint of battery output and charge / discharge cycle characteristics.
Specific examples of the cyclic carbonate include propylene carbonate, ethylene carbonate, butylene carbonate, and the like.
Specific examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
電解液中の電解質(E)の含有量は、電池出力および充放電サイクル特性の観点から好ましくは0.1~30重量%であり、更に好ましくは0.5~20重量%である。
非水溶媒(F)の含有量は、電池出力および充放電サイクル特性の観点から好ましくは60~99重量%であり、更に好ましくは85~95重量%である。 The content of the electrode protective film forming agent (D) is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight, from the viewpoints of charge / discharge cycle characteristics, battery capacity and high-temperature storage characteristics. .
The content of the electrolyte (E) in the electrolytic solution is preferably 0.1 to 30% by weight, more preferably 0.5 to 20% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
The content of the non-aqueous solvent (F) is preferably 60 to 99% by weight, more preferably 85 to 95% by weight from the viewpoint of battery output and charge / discharge cycle characteristics.
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼンおよびt-アミルベンゼン等の芳香族化合物等が挙げられる。過充電防止剤の使用量は、通常0~5重量%、好ましくは0.5~3重量%である。 The electrolytic solution of the present invention may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer. The content of each component of the following additives is based on the total weight of the electrode protective film forming agent (D), the electrolyte (E), and the nonaqueous solvent (F).
Examples of the overcharge inhibitor include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene and t-amylbenzene. The amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0.5 to 3% by weight.
装置(一例) : 東ソー(株)製 HLC-8120
カラム(一例): 東ソー(株)製 TSK GEL GMH6 2本
測定温度 : 40℃
試料溶液 : 0.25重量%のTHF溶液
溶液注入量 : 100μl
検出装置 : 屈折率検出器
基準物質 : 東ソー(株)製 標準ポリスチレン(TSKstandard POLYSTYRENE)12点(Mw 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1090000 2890000) The number average molecular weights (Mn) of compounds (C-5) and (C-6) according to Examples 5 and 6 described later were measured using GPC under the following conditions.
Apparatus (example): HLC-8120 manufactured by Tosoh Corporation
Column (example): Tosoh Co., Ltd. TSK GEL GMH6 2 Measurement temperature: 40 degreeC
Sample solution: 0.25 wt% THF solution Solution injection amount: 100 μl
Detection device: Refractive index detector Reference material: Standard polystyrene (TSK standard POLYSTYRENE) 12 points (Mw 500 1050 2800 5970 9100 18100 37900 96400 190000 355000 1890000 2890000) manufactured by Tosoh Corporation
1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサンの合成;
撹拌機、温度計および冷却管を取り付けたフラスコに、1,4-シクロヘキサンジメタノール[東京化成工業(株)製]9.86部、塩化アリル[東京化成工業(株)製]5.76部、水酸化ナトリウム[和光純薬工業(株)製]6.00部、およびトルエン[和光純薬工業(株)製]100部を仕込み、撹拌しながら均一に溶解させた後、室温で15分間撹拌後、テトラブチルアンモニウムブロマイド[和光純薬工業(株)製]1.32部を加えた。2時間かけて65℃まで昇温し更に4時間撹拌して、エーテル化反応および転位反応を行った。放冷後に水200部を加え、水層を分離した。更に有機層を水200部で洗浄した。トルエンを減圧(1.3kPa)下に除去後、ヘキサン[和光純薬工業(株)製]を溶剤としたアルミナカラム[150mesh,Brockman1,standard grade,シグマアルドリッチ社製]によって反応物を精製し、下記式で示される1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン(L-1)9.0部を得た(収率71%)。 <Production Example 1>
Synthesis of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane;
In a flask equipped with a stirrer, a thermometer, and a cooling tube, 9.86 parts of 1,4-cyclohexanedimethanol (Tokyo Chemical Industry Co., Ltd.) and allyl chloride (Tokyo Chemical Industry Co., Ltd.) 5.76 parts , Sodium hydroxide [Wako Pure Chemical Industries, Ltd.] 6.00 parts and toluene [Wako Pure Chemical Industries, Ltd.] 100 parts were charged and dissolved uniformly with stirring, then at room temperature for 15 minutes. After stirring, 1.32 parts of tetrabutylammonium bromide [manufactured by Wako Pure Chemical Industries, Ltd.] was added. The temperature was raised to 65 ° C. over 2 hours and further stirred for 4 hours to carry out an etherification reaction and a rearrangement reaction. After allowing to cool, 200 parts of water was added and the aqueous layer was separated. Further, the organic layer was washed with 200 parts of water. After removing toluene under reduced pressure (1.3 kPa), the reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich] using hexane [manufactured by Wako Pure Chemical Industries, Ltd.] as a solvent, 9.0 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane (L-1) represented by the following formula was obtained (yield 71%).
イセチオン酸リチウム
撹拌機、温度計を取り付けたフラスコに、70%2-ヒドロキシエタンスルホン酸溶液[和光純薬工業(株)製]5.0部を仕込み、氷浴にて冷却しながら水酸化リチウム[和光純薬工業(株)製]0.66部を含む水溶液を用いて中和した。得られた水溶液を加熱し水を蒸発させた後、減圧(1.3kPa)下乾燥させてイセチオン酸リチウム(G1-1)3.6部を得た(収率98%)。 <Production Example 2>
Lithium isethionate A flask equipped with a stirrer and thermometer was charged with 5.0 parts of a 70% 2-hydroxyethanesulfonic acid solution [manufactured by Wako Pure Chemical Industries, Ltd.] and cooled in an ice bath while lithium hydroxide [Wako Pure Chemical Industries, Ltd.] Neutralized with an aqueous solution containing 0.66 parts. The obtained aqueous solution was heated to evaporate water, and then dried under reduced pressure (1.3 kPa) to obtain 3.6 parts of lithium isethionate (G1-1) (yield 98%).
4-ヒドロキシフェニルボロン酸リチウム
撹拌機、温度計を取り付けたフラスコに、4-ヒドロキシフェニルボロン酸[東京化成工業(株)製]5.0部およびTHF300部を仕込み、氷浴にて冷却しながら水素化リチウム[和光純薬工業(株)製]0.58部を用いて中和した。THFを減圧(1.3kPa)下除去して、下記式で示される4-ヒドロキシフェニルボロン酸リチウム(G1-2)5.3部を得た(97%)。 <Production Example 3>
4-hydroxyphenylboronic acid lithium A flask equipped with a stirrer and a thermometer was charged with 5.0 parts of 4-hydroxyphenylboronic acid [manufactured by Tokyo Chemical Industry Co., Ltd.] and 300 parts of THF while cooling in an ice bath. Neutralization was performed using 0.58 parts of lithium hydride [Wako Pure Chemical Industries, Ltd.]. The THF was removed under reduced pressure (1.3 kPa) to obtain 5.3 parts of lithium 4-hydroxyphenylboronate (G1-2) represented by the following formula (97%).
(3-アミノフェニル)環状トリオールボレートリチウム塩
撹拌機、温度計およびディーン・スターク管を取り付けたフラスコに、3-アミノフェニルボロン酸[和光純薬工業(株)製]5.0部、トリメチロールエタン[東京化成工業(株)製]4.4部およびトルエン64部を仕込み、115℃で8時間加熱した。トルエンを減圧(1.3kPa)下で除去後、THF160部を仕込み、氷浴にて冷却しながら水素化リチウム0.29部を含むTHF溶液を滴下しながら加えた。反応溶液を室温にて8時間撹拌した後、減圧(1.3kPa)下溶媒を留去して、下記式で示される(3-アミノフェニル)環状トリオールボレートリチウム塩(G1-3)6.8部を得た(82%)。 <Production Example 4>
(3-Aminophenyl) cyclic triol borate lithium salt In a flask equipped with a stirrer, thermometer and Dean-Stark tube, 5.0 parts of 3-aminophenylboronic acid [manufactured by Wako Pure Chemical Industries, Ltd.], trimethylol 4.4 parts of ethane [manufactured by Tokyo Chemical Industry Co., Ltd.] and 64 parts of toluene were charged and heated at 115 ° C. for 8 hours. After removing toluene under reduced pressure (1.3 kPa), 160 parts of THF was charged, and a THF solution containing 0.29 parts of lithium hydride was added dropwise while cooling in an ice bath. After stirring the reaction solution at room temperature for 8 hours, the solvent was distilled off under reduced pressure (1.3 kPa) to give a (3-aminophenyl) cyclic triol borate lithium salt (G1-3) 6.8 represented by the following formula. Parts were obtained (82%).
電極保護膜形成剤(D-1)
撹拌機、温度計および冷却管を取り付けたフラスコに、イセチオン酸リチウム(G1-1)8.5部、ジシクロヘキシルメタン-4,4’-ジイソシアネート[和光純薬工業(株)製]15.3部、リナロール[和光純薬工業(株)製]9.9部、1-メチル-2-ピロリドン[東京化成工業(株)製]100部およびジラウリン酸ジブチルスズ[東京化成工業(株)製]0.07部を仕込み80℃で8時間加熱した。室温まで放冷した後、ヘキサン中に懸濁させて濾過により反応物を精製し、下記式で示される化合物(C-1)10.9部を得た(収率34%)。化合物(C-1)を電極保護膜形成剤(D-1)とする。 <Example 1>
Electrode protective film forming agent (D-1)
In a flask equipped with a stirrer, a thermometer and a condenser tube, 8.5 parts of lithium isethionate (G1-1), dicyclohexylmethane-4,4′-diisocyanate [manufactured by Wako Pure Chemical Industries, Ltd.] 15.3 parts 9.9 parts of linalool [manufactured by Wako Pure Chemical Industries, Ltd.], 100 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and dibutyltin dilaurate [manufactured by Tokyo Chemical Industry Co., Ltd.] 07 parts were charged and heated at 80 ° C. for 8 hours. After allowing to cool to room temperature, the reaction product was suspended in hexane and purified by filtration to obtain 10.9 parts of compound (C-1) represented by the following formula (yield 34%). The compound (C-1) is used as an electrode protective film forming agent (D-1).
電極保護膜形成剤(D-2)
ジシクロヘキシルメタン-4,4’-ジイソシアネート15.3部の代わりに、ヘキサメチレンジイソシアネート[和光純薬工業(株)製ジイソシアン酸ヘキサメチレン]11.8部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-2)9.6部を得た(収率36%)。化合物(C-2)を電極保護膜形成剤(D-2)とする。 <Example 2>
Electrode protective film forming agent (D-2)
Example 1 was used except that 11.8 parts of hexamethylene diisocyanate [hexamethylene diisocyanate manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate. 9.6 parts of compound (C-2) represented by the following formula was obtained (yield 36%). The compound (C-2) is referred to as an electrode protective film forming agent (D-2).
電極保護膜形成剤(D-3)
ジシクロヘキシルメタン-4,4’-ジイソシアネート15.3部の代わりに、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート[和光純薬工業(株)製]13.0部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-3)11.9部を得た(収率40%)。化合物(C-3)を電極保護膜形成剤(D-3)とする。 <Example 3>
Electrode protective film forming agent (D-3)
Other than using 13.0 parts of 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate [manufactured by Wako Pure Chemical Industries, Ltd.] instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate Was carried out in the same manner as in Example 1 to obtain 11.9 parts of the compound (C-3) represented by the following formula (yield 40%). The compound (C-3) is used as an electrode protective film forming agent (D-3).
電極保護膜形成剤(D-4)
リナロール9.9部の代わりに、1-ヒドロキシメチル-4-(1-プロペノキシメチル)シクロヘキサン(L-1)11.8部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-4)13.8部を得た(収率41%)。化合物(C-4)を電極保護膜形成剤(D-4)とする。 <Example 4>
Electrode protective film forming agent (D-4)
The same procedure as in Example 1 was carried out except that 11.8 parts of 1-hydroxymethyl-4- (1-propenoxymethyl) cyclohexane (L-1) was used instead of 9.9 parts of linalool. 13.8 parts of the compound (C-4) shown were obtained (41% yield). The compound (C-4) is used as an electrode protective film forming agent (D-4).
電極保護膜形成剤(D-5)
撹拌機、温度計および冷却管を取り付けたフラスコに、ジシクロヘキシルメタン-4,4’-ジイソシアネート46.0部、1,4-シクロヘキサンジメタノール[和光純薬工業(株)製]16.8部、N-メチルピロリドン100部およびジラウリン酸ジブチルスズ0.07部仕込み80℃で8時間加熱した後、2-ヒドロキシスルホン酸リチウム8.5部およびリナロール9.9部を加え、さらに80℃で8時間加熱した。実施例1と同様に精製を行い下記式で示される化合物(C-5)18.3部を得た(収率23%)。[Mn:1400]。化合物(C-5)を電極保護膜形成剤(D-5)とする。 <Example 5>
Electrode protective film forming agent (D-5)
In a flask equipped with a stirrer, a thermometer and a condenser, 46.0 parts of dicyclohexylmethane-4,4′-diisocyanate, 16.8 parts of 1,4-cyclohexanedimethanol [manufactured by Wako Pure Chemical Industries, Ltd.] Charge 100 parts of N-methylpyrrolidone and 0.07 part of dibutyltin dilaurate and heat at 80 ° C. for 8 hours, then add 8.5 parts of lithium 2-hydroxysulfonate and 9.9 parts of linalool, and further heat at 80 ° C. for 8 hours. did. Purification was performed in the same manner as in Example 1 to obtain 18.3 parts of the compound (C-5) represented by the following formula (yield: 23%). [Mn: 1400]. The compound (C-5) is used as an electrode protective film forming agent (D-5).
電極保護膜形成剤(D-6)
ジシクロヘキシルメタン-4,4’-ジイソシアネート46.0部の代わりにジシクロヘキシルメタン-4,4’-ジイソシアネート117.4部、1,4-シクロヘキサンジメタノール16.8部の代わりに1,4-シクロヘキサンジメタノール56.1部を用いた以外は実施例5と同様にして行い化合物(C-6)39.9部を得た(収率21%)。[Mn:3300]。化合物(C-6)を電極保護膜形成剤(D-6)とする。 <Example 6>
Electrode protective film forming agent (D-6)
Dicyclohexylmethane-4,4'-diisocyanate instead of 46.0 parts dicyclohexylmethane-4,4'-diisocyanate 117.4 parts, 1,4-cyclohexanedimethanol instead of 16.8 parts 1,4-cyclohexanedi 39.9 parts of compound (C-6) was obtained in the same manner as in Example 5 except that 56.1 parts of methanol was used (yield 21%). [Mn: 3300]. The compound (C-6) is used as an electrode protective film forming agent (D-6).
電極保護膜形成剤(D-7)
ジシクロヘキシルメタン-4,4’-ジイソシアネート15.3部の代わりに、デュラネートA201H(アロファネート変性ヘキサメチレンジイソシアネート)[旭化成ケミカルズ(株)製]28.7部を用いた以外は実施例1と同様にして行いアロファネート結合を有するウレタン化合物(C-7)20.4部を得た(収率45%)。化合物(C-7)を電極保護膜形成剤(D-7)とする。 <Example 7>
Electrode protective film forming agent (D-7)
Example 1 was repeated except that 28.7 parts of duranate A201H (allophanate-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Corporation] was used instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate. As a result, 20.4 parts of urethane compound (C-7) having an allophanate bond was obtained (yield 45%). The compound (C-7) is used as an electrode protective film forming agent (D-7).
電極保護膜形成剤(D-8)
ジシクロヘキシルメタン-4,4’-ジイソシアネート15.3部の代わりに、デュラネート24A-100(ビウレット変性ヘキサメチレンジイソシアネート)[旭化成ケミカルズ(株)製]27.9部を用い、リナロール9.9部の代わりに、リナロールを19.8部用いた以外は実施例1と同様にして行いビウレット結合を有するウレタン化合物(C-8)19.8部を得た(収率37%)。化合物(C-8)を電極保護膜形成剤(D-8)とする。 <Example 8>
Electrode protective film forming agent (D-8)
Instead of 15.3 parts of dicyclohexylmethane-4,4′-diisocyanate, 27.9 parts of duranate 24A-100 (biuret-modified hexamethylene diisocyanate) [manufactured by Asahi Kasei Chemicals Co., Ltd.] were used, and instead of 9.9 parts of linalool. In addition, 19.8 parts of a urethane compound (C-8) having a biuret bond was obtained in the same manner as in Example 1 except that 19.8 parts of linalool was used (yield 37%). The compound (C-8) is used as an electrode protective film forming agent (D-8).
電極保護膜形成剤(D-9)
イセチオン酸リチウム8.5部の代わりにイセチオン酸ナトリウム[和光純薬工業(株)製]9.5部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-9)12.5部を得た(収率38%)。化合物(C-9)を電極保護膜形成剤(D-9)とする。 <Example 9>
Electrode protective film forming agent (D-9)
A compound represented by the following formula (C-9) was prepared in the same manner as in Example 1 except that 9.5 parts of sodium isethionate [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 8.5 parts of lithium isethionate. ) 12.5 parts was obtained (38% yield). The compound (C-9) is used as an electrode protective film forming agent (D-9).
電極保護膜形成剤(D-10)
イセチオン酸リチウム8.5部の代わりにタウリン[和光純薬工業(株)製]8.0部を用い、他は実施例1と同様に反応および精製を行った後、メタノール[和光純薬工業(株)製]に懸濁させ1当量の水酸化リチウム[和光純薬工業(株)製]により中和した。減圧(1.3kPa)下メタノールを除去し、下記式で示される化合物(C-10)10.2部を得た(収率32%)。化合物(C-10)を電極保護膜形成剤(D-10)とする。 <Example 10>
Electrode protective film forming agent (D-10)
Instead of 8.5 parts of lithium isethionate, 8.0 parts of taurine [manufactured by Wako Pure Chemical Industries, Ltd.] was used, and the reaction and purification were carried out in the same manner as in Example 1, followed by methanol [Wako Pure Chemical Industries, Ltd.] Suspended in [manufactured by Co., Ltd.] and neutralized with 1 equivalent of lithium hydroxide [Wako Pure Chemical Industries, Ltd.]. Methanol was removed under reduced pressure (1.3 kPa) to obtain 10.2 parts of compound (C-10) represented by the following formula (yield 32%). The compound (C-10) is used as an electrode protective film forming agent (D-10).
電極保護膜形成剤(D-11)
リナロール9.9部の代わりに2-ヒドロキシエチルアクリレート[和光純薬工業(株)製]7.5部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-11)10.7部を得た(収率36%)。化合物(C-11)を電極保護膜形成剤(D-11)とする。 <Example 11>
Electrode protective film forming agent (D-11)
A compound represented by the following formula (C-11) was prepared in the same manner as in Example 1 except that 7.5 parts of 2-hydroxyethyl acrylate [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 9.9 parts of linalool. ) 10.7 parts were obtained (yield 36%). Compound (C-11) is referred to as an electrode protective film forming agent (D-11).
電極保護膜形成剤(D-12)
タウリン8.0部の代わりに乳酸[和光純薬工業(株)製]5.8部を用いた以外は実施例10と同様にして反応、中和および精製を行い下記式で示される化合物(C-12)14.7部を得た(収率52%)。化合物(C-12)を電極保護膜形成剤(D-12)とする。 <Example 12>
Electrode protective film forming agent (D-12)
A compound represented by the following formula was reacted, neutralized and purified in the same manner as in Example 10 except that 5.8 parts of lactic acid [Wako Pure Chemical Industries, Ltd.] was used instead of 8.0 parts of taurine. C-12) 14.7 parts were obtained (yield 52%). The compound (C-12) is used as an electrode protective film forming agent (D-12).
電極保護膜形成剤(D-13)
リナロール9.9部の代わりにシトロネロール[和光純薬工業(株)製]10.0部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-13)14.8部を得た(収率46%)。化合物(C-13)を電極保護膜形成剤(D-13)とする。 <Example 13>
Electrode protective film forming agent (D-13)
Compound (C-13) 14.8 represented by the following formula was carried out in the same manner as in Example 1 except that 10.0 parts of citronellol [manufactured by Wako Pure Chemical Industries, Ltd.] was used instead of 9.9 parts of linalool. Parts were obtained (yield 46%). The compound (C-13) is used as an electrode protective film forming agent (D-13).
電極保護膜形成剤(D-14)
リナロール9.9部の代わりにプレノール[東京化成工業(株)製3-メチル-2-ブテン-1-オール]5.5部を用いた以外は実施例1と同様にして行い下記式で示される化合物(C-14)12.1部を得た(収率43%)。化合物(C-14)を電極保護膜形成剤(D-14)とする。 <Example 14>
Electrode protective film forming agent (D-14)
This was performed in the same manner as in Example 1 except that 5.5 parts of prenol [3-methyl-2-buten-1-ol manufactured by Tokyo Chemical Industry Co., Ltd.] was used instead of 9.9 parts of linalool. Of the compound (C-14) (43% yield). Compound (C-14) is referred to as electrode protective film forming agent (D-14).
イセチオン酸リチウム9.9部の代わりに4-ヒドロキシフェニルボロン酸リチウム(G1-1)9.6部を用いた以外は実施例14と同様にして行い下記式で示される化合物(C-15)18.7部を得た(収率30%)。化合物(C-15)を電極保護膜形成剤(D-15)とする。 Electrode protective film forming agent (D-15)
The compound represented by the following formula (C-15) was prepared in the same manner as in Example 14 except that 9.6 parts of lithium 4-hydroxyphenylboronate (G1-1) was used instead of 9.9 parts of lithium isethionate. 18.7 parts were obtained (yield 30%). The compound (C-15) is used as an electrode protective film forming agent (D-15).
イセチオン酸リチウム9.9部の代わりに(3-アミノフェニル)環状トリオールボレートリチウム塩(G1-2)14.6部を用いた以外は実施例14と同様にして行い下記式で示される化合物(C-16)9.1部を得た(収率27%)。化合物(C-16)を電極保護膜形成剤(D-16)とする。 Electrode protective film forming agent (D-16)
A compound represented by the following formula, which was prepared in the same manner as in Example 14 except that 14.6 parts of (3-aminophenyl) cyclic triol borate lithium salt (G1-2) was used instead of 9.9 parts of lithium isethionate ( C-16) 9.1 parts were obtained (yield 27%). The compound (C-16) is used as an electrode protective film forming agent (D-16).
比較保護膜形成剤(D’-1)
攪拌機、温度計および冷却管を取り付けたフラスコに、4,7-ジアザ-15-クラウン5-エーテル[東京化成工業(株)製]0.72部、クロロメチルスチレン[東京化成工業(株)製]1部およびアセトニトリル[和光純薬工業(株)製]10部を仕込み、撹拌しながら均一に溶解させた後、撹拌下室温で24時間反応させた。アセトニトリルを減圧(1.3kPa)下に除去した後、アセトン[和光純薬工業(株)製]を溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、シグマアルドリッチ社製]によって精製し、下記式で示される化合物(C’-1)1.1部を得た(収率75%)。化合物(C’-1)を比較電極保護膜形成剤(D’-1)とする。 <Comparative Example 1>
Comparative protective film forming agent (D'-1)
In a flask equipped with a stirrer, a thermometer and a condenser tube, 0.72 part of 4,7-diaza-15-crown 5-ether [manufactured by Tokyo Chemical Industry Co., Ltd.], chloromethylstyrene [manufactured by Tokyo Chemical Industry Co., Ltd.] ] 1 part and 10 parts of acetonitrile [manufactured by Wako Pure Chemical Industries, Ltd.] were charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. Acetonitrile was removed under reduced pressure (1.3 kPa) and then purified by an alumina column [150 mesh, Blockman 1, standard grade, Sigma-Aldrich] using acetone [manufactured by Wako Pure Chemical Industries, Ltd.] as a solvent. 1.1 parts of the compound (C′-1) represented by the formula (yield 75%) was obtained. The compound (C′-1) is used as a comparative electrode protective film forming agent (D′-1).
<実施例17~34、比較例2~3>
上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表2に示した配合部数で含有するリチウム二次電池用正極および負極を下記の方法で作製し、該正極および負極を使用して下記の方法でリチウム二次電池を作製した。
以下の方法で高電圧充放電サイクル特性、出力特性および電極抵抗を評価した結果を表2に示した。 Evaluation of Lithium Secondary Battery and Electrode <Examples 17 to 34, Comparative Examples 2 to 3>
A positive electrode and a negative electrode for a lithium secondary battery containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the number of parts shown in Table 2 were prepared by the following method. Using the negative electrode, a lithium secondary battery was produced by the following method.
Table 2 shows the results of evaluating the high-voltage charge / discharge cycle characteristics, output characteristics, and electrode resistance by the following methods.
LiCoO2粉末90.0部、ケチェンブラック[シグマアルドリッチ社製]5.0部、ポリフッ化ビニリデン[シグマアルドリッチ社製]5.0部および表2に示した部数の上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を乳鉢で十分に混合した後、1-メチル-2-ピロリドン70.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、リチウム二次電池用正極を作製した。 [Preparation of positive electrode for lithium secondary battery]
90.0 parts of LiCoO 2 powder, 5.0 parts of Ketjen black [manufactured by Sigma Aldrich], 5.0 parts of polyvinylidene fluoride [manufactured by Sigma Aldrich] and the number of parts of the electrode protective film forming agent shown in Table 2 ( D) or the comparative electrode protective film forming agent (D ′) was thoroughly mixed in a mortar, then 70.0 parts of 1-methyl-2-pyrrolidone was added, and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the air, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 2 hours and punched out to 15.95 mmφ to produce a positive electrode for a lithium secondary battery.
平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン200部および表1に示した部数の上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmの銅箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにしてリチウム二次電池用負極を作製した。 [Preparation of negative electrode for lithium secondary battery]
92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone, and the number of parts of the electrode protective film forming agent (D) shown in Table 1 or A comparative electrode protective film forming agent (D ′) was sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a copper foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 80 ° C. for 1 hour, and further reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. It was dried for a time, punched to 16.15 mmφ, and made a negative electrode for a lithium secondary battery with a thickness of 30 μm using a press.
2032型コインセル内の両端に、上記で作製した正極および負極をそれぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、二次電池用セルを作製した。エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)に、LiPF6を12重量%の割合で溶解させた電解液を作製したセルに注液密封した。 [Production of lithium secondary battery]
The positive electrode and the negative electrode prepared above were arranged at both ends in the 2032 type coin cell so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to prepare a secondary battery cell. The solution was poured and sealed in a cell in which an electrolytic solution was prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) at a ratio of 12 wt%.
充放電測定装置「バッテリーアナライザー1470型」[(株)東陽テクニカ製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を3.5Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と50サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出した。数値が大きいほど、充放電サイクル特性が良好であることを示す。
高電圧充放電サイクル特性(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100 <Evaluation of high voltage charge / discharge cycle characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], the battery voltage is charged to a voltage of 4.5 V with a current of 0.1 C, and after a pause of 10 minutes, the battery voltage with a current of 0.1 C Was discharged to 3.5 V, and this charge / discharge was repeated. At this time, the battery capacity at the first charge and the battery capacity at the 50th cycle charge were measured, and the charge / discharge cycle characteristics were calculated from the following formula. It shows that charging / discharging cycling characteristics are so favorable that a numerical value is large.
High voltage charge / discharge cycle characteristics (%) = (battery capacity at the 50th cycle charge / battery capacity at the first charge) × 100
充放電測定装置「バッテリーアナライザー1470型」[(株)東陽テクニカ製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電圧を3.0Vまで放電し、放電容量(以下0.1C放電容量と記載)を測定した。次に0.1Cの電流で電圧4.5まで充電し、10分間の休止後、1Cの電流で電圧を3.0Vまで放電し容量(以下1C放電容量と記載)を測定し、下記式から1C放電時の容量維持率を算出する。数値が大きい程、出力特性が良好であることを示す。
1C放電時の容量維持率(%)=(1C放電容量/0.1C放電容量)×100 <Evaluation of secondary battery output characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], charge to a voltage of 4.5 V with a current of 0.1 C, and after a pause of 10 minutes, apply a voltage with a current of 0.1 C The battery was discharged to 3.0 V, and the discharge capacity (hereinafter referred to as 0.1 C discharge capacity) was measured. Next, the battery was charged to a voltage of 4.5 with a current of 0.1 C, paused for 10 minutes, discharged to a voltage of 3.0 V with a current of 1 C, and the capacity (hereinafter referred to as 1 C discharge capacity) was measured. The capacity maintenance rate at the time of 1C discharge is calculated. The larger the value, the better the output characteristics.
Capacity maintenance rate during 1 C discharge (%) = (1 C discharge capacity / 0.1 C discharge capacity) × 100
充放電測定装置「バッテリーアナライザー1470型」[(株)東陽テクニカ製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を3.95Vまで放電した。次に電極の抵抗を測定するため、BioLogic社製「SP-150」(周波数範囲200kHz~50mHz、3.95V)を用いインピーダンスを測定し、抵抗を求めた。 <Evaluation of electrode resistance>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], the battery voltage is charged to a voltage of 4.5 V with a current of 0.1 C, and after a pause of 10 minutes, the battery voltage with a current of 0.1 C Was discharged to 3.95V. Next, in order to measure the resistance of the electrode, impedance was measured using “SP-150” (frequency range: 200 kHz to 50 mHz, 3.95 V) manufactured by BioLogic, and the resistance was obtained.
<実施例35~50、比較例4~5>
上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表2に示した配合部数で含有するリチウム二次電池用電解液を使用したリチウム二次電池を下記の方法で作製した。電極の場合と同様に、上記の方法で高電圧充放電サイクル特性、出力特性および電極抵抗を評価し、結果を表2に示した。 Evaluation of Lithium Secondary Battery and Electrolyte <Examples 35 to 50 and Comparative Examples 4 to 5>
A lithium secondary battery using the electrolyte solution for a lithium secondary battery containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the blending part shown in Table 2 by the following method. Produced. Similarly to the case of the electrodes, the high voltage charge / discharge cycle characteristics, the output characteristics and the electrode resistance were evaluated by the above-mentioned methods, and the results are shown in Table 2.
エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比率1:1)87.5部に、表1に示した部数で電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を配合し、そこに12重量%となるように電解質(E)としてのLiPF6を溶解させ、電解液を調製した。 [Preparation of electrolyte]
In 87.5 parts of a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1), the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) is blended in the number of parts shown in Table 1. , there by dissolving LiPF 6 as an electrolyte (E) so that 12 wt%, thereby preparing an electrolytic solution.
LiCoO2粉末90.0部、ケチェンブラック5.0部およびポリフッ化ビニリデン5.0部を乳鉢で十分に混合した後、1-メチル-2-ピロリドン70.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、膜厚30μmのリチウム二次電池用の正極を作製した。 [Production of positive electrode]
After thoroughly mixing 90.0 parts of LiCoO 2 powder, 5.0 parts of Ketjen black and 5.0 parts of polyvinylidene fluoride in a mortar, 70.0 parts of 1-methyl-2-pyrrolidone was added, and further in a mortar. Mix well to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the air, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 2 hours, punched to 15.95 mmφ, and a positive electrode for a lithium secondary battery having a film thickness of 30 μm was produced.
平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部および1-メチル-2-ピロリドン200部を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmの銅箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにしてリチウム二次電池用の負極を作製した。 [Production of negative electrode]
A slurry was obtained by thoroughly mixing 92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride and 200 parts of 1-methyl-2-pyrrolidone in a mortar. The obtained slurry was applied to one side of a copper foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 80 ° C. for 1 hour, and further reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. After drying for a time, it was punched to 16.15 mmφ, and the thickness was made 30 μm with a press machine to produce a negative electrode for a lithium secondary battery.
2032型コインセル内の両端に、上記正極および負極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、二次電池用セルを作製した。
上記電解液を、作製した二次電池用セルに注液後密封し二次電池を作製した。 [Production of secondary battery]
The positive electrode and the negative electrode were arranged at both ends in the 2032 type coin cell so that the respective coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to produce a secondary battery cell.
The electrolyte solution was poured into the prepared secondary battery cell and sealed to prepare a secondary battery.
<実施例51~68、比較例6~7>
上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表3に示した配合部数で含有するリチウムイオンキャパシタ用正極および負極を下記の方法で作製し、該正極および負極を使用して下記の方法でリチウムイオンキャパシタを作製した。
リチウム二次電池の場合と同様に、上記の方法で高電圧充放電サイクル特性および電極抵抗を評価し、以下の方法で出力特性を評価し、結果を表3に示した。 Evaluation of Lithium Ion Capacitor and Electrode <Examples 51 to 68, Comparative Examples 6 to 7>
A positive electrode and a negative electrode for a lithium ion capacitor containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the number of parts shown in Table 3 were prepared by the following method. A lithium ion capacitor was prepared by the following method.
As in the case of the lithium secondary battery, the high voltage charge / discharge cycle characteristics and electrode resistance were evaluated by the above method, the output characteristics were evaluated by the following method, and the results are shown in Table 3.
活性炭粉末90.0部、ケチェンブラック5.0部、ポリフッ化ビニリデン5.0部および表2に示した部数の上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を乳鉢で十分に混合した後、1-メチル-2-ピロリドン70.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、リチウムイオンキャパシタ用正極を作製した。 [Production of positive electrode for lithium ion capacitor]
90.0 parts of activated carbon powder, 5.0 parts of Ketjen black, 5.0 parts of polyvinylidene fluoride, and the number of parts of the electrode protective film forming agent (D) or comparative electrode protective film forming agent (D ′) shown in Table 2 After thoroughly mixing with a mortar, 70.0 parts of 1-methyl-2-pyrrolidone was added and further mixed well with a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the air, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 2 hours and punched out to 15.95 mmφ to produce a positive electrode for a lithium ion capacitor.
平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン200部および表3に示した部数の上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmの銅箔の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにした。得られた電極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、負極理論容量の約75%のリチウムイオンを約10時間かけて負極に吸蔵させ、リチウムイオンキャパシタ用負極を作製した。 [Production of negative electrode for lithium ion capacitor]
92.5 parts of graphite powder having an average particle diameter of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone, and the number of parts of the electrode protective film forming agent (D) shown in Table 3 or A comparative electrode protective film forming agent (D ′) was sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a 20 μm-thick copper foil in the air using a wire bar, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. It was dried, punched to 16.15 mmφ, and made 30 μm thick with a press. The obtained electrode and lithium metal foil are sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity of lithium ions is occluded in the negative electrode over about 10 hours. A negative electrode was prepared.
ポリプロピレンのアルミラミネートフィルムからなる収納ケースに、上記で作製した正極および負極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、キャパシタ用セルを作製した。プロピレンカーボネート(PC)に、LiPF6を12重量%の割合で溶解させた電解液を作製したセルに注液密封した。 [Production of lithium ion capacitors]
The positive and negative electrodes produced above are placed in a storage case made of polypropylene aluminum laminate film so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) is inserted between the electrodes to produce a capacitor cell. did. The solution was injected and sealed in a cell in which an electrolytic solution in which LiPF 6 was dissolved in a proportion of 12% by weight in propylene carbonate (PC) was produced.
充放電測定装置「バッテリーアナライザー1470型」[(株)東陽テクニカ製]を用いて、1Cの電流で電圧3.8Vまで充電し、10分間の休止後、1Cの電流で電圧を1.0Vまで放電し、放電容量(以下1C放電容量と記載)を測定した。次に1Cの電流で電圧3.8Vまで充電し、10分間の休止後、10Cの電流で電圧を2.0Vまで放電し容量(以下10C放電容量と記載)を測定し、下記式から10C放電時の容量維持率を算出する。数値が大きい程、出力特性が良好であることを示す。
10C放電時の容量維持率(%)=(10C放電容量/1C放電容量)×100 <Evaluation of capacitor output characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], the battery is charged to a voltage of 3.8 V with a current of 1 C. After discharging, the discharge capacity (hereinafter referred to as 1C discharge capacity) was measured. Next, the battery is charged to a voltage of 3.8 V with a current of 1 C, and after a pause of 10 minutes, the voltage is discharged to 2.0 V with a current of 10 C, and the capacity (hereinafter referred to as 10 C discharge capacity) is measured. Calculate the capacity maintenance rate at the time. The larger the value, the better the output characteristics.
Capacity maintenance rate during 10C discharge (%) = (10C discharge capacity / 1C discharge capacity) × 100
<実施例69~84、比較例8~9>
上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を表3に示した配合部数で含有するリチウムイオンキャパシタ用電解液を使用したリチウムイオンキャパシタを下記の方法で作製した。電極の場合と同様に、上記の方法で高電圧充放電サイクル特性、出力特性および電極抵抗を評価し、結果を表3に示した。 Evaluation of Lithium Ion Capacitor and Electrolyte <Examples 69 to 84, Comparative Examples 8 to 9>
A lithium ion capacitor using the electrolytic solution for a lithium ion capacitor containing the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) in the blending number shown in Table 3 was prepared by the following method. . Similarly to the case of the electrodes, the high voltage charge / discharge cycle characteristics, the output characteristics and the electrode resistance were evaluated by the above-mentioned methods, and the results are shown in Table 3.
プロピレンカーボネート87.5部からなる非水溶媒(F)に、表3に示した部数で上記電極保護膜形成剤(D)または比較電極保護膜形成剤(D’)を配合し、そこに12重量%となるように電解質(E)としてのLiPF6を溶解させ、電解液を調製した。 [Preparation of electrolyte]
In the non-aqueous solvent (F) composed of 87.5 parts of propylene carbonate, the electrode protective film forming agent (D) or the comparative electrode protective film forming agent (D ′) is blended in the number of parts shown in Table 3 and 12 parts are added thereto. of LiPF 6 as an electrolyte (E) dissolved at a percent by weight, to prepare an electrolytic solution.
正極活物質として、アルカリ賦活法によって得られた比表面積が約2200m2/gである活性炭を用いた。活性炭粉末、アセチレンブラックおよびポリフッ化ビニリデンを、それぞれ重量比80:10:10の割合となるように混合し、この混合物を、溶媒である1-メチル-2-ピロリドン中に添加し、撹拌混合してスラリーを得た。このスラリーを、厚さ30μmのアルミニウム箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは約50μmであった。セルの組み立て前には、真空中で120℃、10時間乾燥しリチウムイオンキャパシタ用の正極を作製した。 [Production of positive electrode]
As the positive electrode active material, activated carbon having a specific surface area of about 2200 m 2 / g obtained by an alkali activation method was used. Activated carbon powder, acetylene black, and polyvinylidene fluoride are mixed in a weight ratio of 80:10:10, and this mixture is added to 1-methyl-2-pyrrolidone as a solvent and mixed by stirring. To obtain a slurry. This slurry was applied onto an aluminum foil having a thickness of 30 μm by a doctor blade method, temporarily dried, and then cut so that the electrode size was 20 mm × 30 mm. The electrode thickness was about 50 μm. Before assembling the cell, it was dried in a vacuum at 120 ° C. for 10 hours to produce a positive electrode for a lithium ion capacitor.
平均粒子径約8~12μmの黒鉛粉末80部、アセチレンブラック10部、およびポリフッ化ビニリデン10部を混合し、この混合物を溶媒である1-メチル-2-ピロリドンに添加して撹拌混合し、スラリーを得た。このスラリーを、厚さ18μmの銅箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは、約50μmであった。さらに真空中で120℃、5時間乾燥した。得られた電極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、負極理論容量の約75%のリチウムイオンを約10時間かけて負極に吸蔵させ、リチウムイオンキャパシタ用負極を作製した。 [Production of negative electrode]
80 parts of graphite powder having an average particle size of about 8 to 12 μm, 10 parts of acetylene black, and 10 parts of polyvinylidene fluoride are mixed, and this mixture is added to 1-methyl-2-pyrrolidone as a solvent and mixed by stirring. Got. This slurry was applied onto a copper foil having a thickness of 18 μm by a doctor blade method and temporarily dried, and then cut so that the electrode size was 20 mm × 30 mm. The electrode thickness was about 50 μm. Further, it was dried in vacuum at 120 ° C. for 5 hours. The obtained electrode and lithium metal foil are sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity of lithium ions is occluded in the negative electrode over about 10 hours. A negative electrode was prepared.
上記のようにして得られた正極と負極の間に、セパレータ(ポリプロピレン製不織布)を挿入し、これに上記電解液を含浸させ、ポリプロピレンのアルミラミネートフィルムからなる収納ケースに入れて密封しリチウムイオンキャパシタセルを作製した。
リチウム二次電池の場合と同様に、上記の方法で高電圧充放電サイクル特性、出力特性および電極抵抗を評価し、結果を表3に示した。 [Assembly of capacitor cell]
A separator (nonwoven fabric made of polypropylene) is inserted between the positive electrode and the negative electrode obtained as described above, impregnated with the above electrolyte solution, sealed in a storage case made of polypropylene aluminum laminate film, and lithium ion A capacitor cell was produced.
Similarly to the case of the lithium secondary battery, the high voltage charge / discharge cycle characteristics, the output characteristics, and the electrode resistance were evaluated by the above methods. The results are shown in Table 3.
Since the electrode and electrolyte using the electrode protective film-forming agent (D) of the present invention are excellent in charge / discharge cycle performance and output characteristics under a high voltage, the electrode for lithium secondary batteries or lithium ion capacitors is particularly used. In addition, it is useful as an additive for electrolytic solutions, and is suitable for electric vehicles. The present invention can also be applied to other electrochemical devices such as electric double layer capacitors, nickel metal hydride batteries, nickel cadmium batteries, air batteries, alkaline batteries and the like.
Claims (17)
- ウレタン結合(a1)、ウレア結合(a2)、アロファネート結合(a3)およびビウレット結合(a4)からなる群より選ばれる少なくとも1つの結合(a)、重合性不飽和結合(b)ならびに下記一般式(1)で表される基(g)を有する化合物(C)を含有する電極保護膜形成剤(D)。
- 前記化合物(C)が下記一般式(2)で表される請求項1に記載の電極保護膜形成剤(D)。
炭素数4~44のジイソシアネート(B)と炭素数2~20のジオール(N)の反応物である両末端イソシアネート基を有するウレタンプレポリマーから2個のイソシアネート基を除いた2価の残基(Y2)、
アロファネート結合(a3)を有する炭素数9~118のジイソシアネート(B)変性物から(s+t)個のイソシアネート基を除いた残基(Y3)
またはビウレット結合(a4)を有する炭素数11~131のジイソシアネート(B)の反応物から(s+t)個のイソシアネート基を除いた残基(Y4)であり、
sは1~5の整数、tは1~5の整数であり、
(a5)はウレタン結合またはウレア結合であり、
R7は炭素数1~12の2価の炭化水素基、R8は重合性不飽和結合(b)を有する炭素数2~30の1価の炭化水素基、(g)は上記一般式(1)で表される基である。] The electrode protective film forming agent (D) according to claim 1, wherein the compound (C) is represented by the following general formula (2).
A divalent residue obtained by removing two isocyanate groups from a urethane prepolymer having both terminal isocyanate groups, which is a reaction product of a diisocyanate (B) having 4 to 44 carbon atoms and a diol (N) having 2 to 20 carbon atoms ( Y2),
Residue (Y3) obtained by removing (s + t) isocyanate groups from a modified diisocyanate (B) having 9 to 118 carbon atoms having an allophanate bond (a3)
Or a residue (Y4) obtained by removing (s + t) isocyanate groups from a reaction product of a diisocyanate (B) having 11 to 131 carbon atoms having a biuret bond (a4),
s is an integer from 1 to 5, t is an integer from 1 to 5,
(A5) is a urethane bond or a urea bond,
R 7 is a divalent hydrocarbon group having 1 to 12 carbon atoms, R 8 is a monovalent hydrocarbon group having 2 to 30 carbon atoms having a polymerizable unsaturated bond (b), and (g) is the above general formula ( It is group represented by 1). ] - 前記化合物(C)中の結合(a)の濃度が0.2~10mmol/gである請求項1または2に記載の電極保護膜形成剤(D)。 The electrode protective film forming agent (D) according to claim 1 or 2, wherein the concentration of the bond (a) in the compound (C) is 0.2 to 10 mmol / g.
- 前記化合物(C)中の重合性不飽和結合(b)の濃度が0.2~10mmol/gである請求項1~3のいずれか1項に記載の電極保護膜形成剤(D)。 The electrode protective film-forming agent (D) according to any one of claims 1 to 3, wherein the concentration of the polymerizable unsaturated bond (b) in the compound (C) is 0.2 to 10 mmol / g.
- 前記化合物(C)の数平均分子量が238~5000である請求項1~4のいずれか1項に記載の電極保護膜形成剤(D)。 The electrode protective film-forming agent (D) according to any one of claims 1 to 4, wherein the number average molecular weight of the compound (C) is 238 to 5000.
- 前記1価の金属イオンMがリチウムイオンまたはナトリウムイオンである請求項1~5のいずれか1項に記載の電極保護膜形成剤(D)。 The electrode protective film forming agent (D) according to any one of claims 1 to 5, wherein the monovalent metal ion M is a lithium ion or a sodium ion.
- 前記重合性不飽和結合(b)が、下記一般式(3)で表されるアルケニルエーテル基(j1)、下記一般式(4)で表されるアルケニル基(j2)および(メタ)アクリロイロキシ基(j3)からなる群より選ばれる少なくとも1つの基(j)として前記化合物(C)中に含有される請求項1~6のいずれか1項に記載の電極保護膜形成剤(D)。
- 請求項1~7のいずれか1項に記載の電極保護膜形成剤(D)を含有する電極。 An electrode containing the electrode protective film forming agent (D) according to any one of claims 1 to 7.
- 前記電極保護膜形成剤(D)を重合することにより形成される保護膜を有する請求項8に記載の電極。 The electrode according to claim 8, which has a protective film formed by polymerizing the electrode protective film forming agent (D).
- リチウム二次電池用である請求項8または9に記載の電極。 The electrode according to claim 8 or 9, which is for a lithium secondary battery.
- リチウムイオンキャパシタ用である請求項8または9に記載の電極。 The electrode according to claim 8 or 9, which is for a lithium ion capacitor.
- 請求項1~7のいずれか1項に記載の電極保護膜形成剤(D)、電解質(E)および非水溶媒(F)を含有する電解液。 An electrolyte solution comprising the electrode protective film forming agent (D) according to any one of claims 1 to 7, an electrolyte (E), and a nonaqueous solvent (F).
- リチウム二次電池用である請求項12に記載の電解液。 The electrolyte solution according to claim 12, which is for a lithium secondary battery.
- リチウムイオンキャパシタ用である請求項12に記載の電解液。 The electrolyte solution according to claim 12, which is used for a lithium ion capacitor.
- 請求項10に記載の電極および/または請求項13に記載の電解液を有するリチウム二次電池。 A lithium secondary battery comprising the electrode according to claim 10 and / or the electrolytic solution according to claim 13.
- 請求項11に記載の電極および/または請求項14に記載の電解液を有するリチウムイオンキャパシタ。 A lithium ion capacitor having the electrode according to claim 11 and / or the electrolytic solution according to claim 14.
- 請求項1~7のいずれか1項に記載の電極保護膜形成剤(D)を電極および/または電解液に含有させた後、電圧を印加する工程を含む電極保護膜の製造方法。
A method for producing an electrode protective film comprising a step of applying a voltage after the electrode protective film forming agent (D) according to any one of claims 1 to 7 is contained in an electrode and / or an electrolytic solution.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014545639A JP6165162B2 (en) | 2012-11-07 | 2013-10-23 | Electrode protective film forming agent, electrode, electrolytic solution, lithium secondary battery, lithium ion capacitor, and method for producing electrode protective film |
KR1020157012238A KR101692172B1 (en) | 2012-11-07 | 2013-10-23 | Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film |
CN201380055159.7A CN104737340B (en) | 2012-11-07 | 2013-10-23 | The manufacture method of electrode protective membrane forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor and electrode protective membrane |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-244972 | 2012-11-07 | ||
JP2012244972 | 2012-11-07 | ||
JP2013-112277 | 2013-05-28 | ||
JP2013112277 | 2013-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014073378A1 true WO2014073378A1 (en) | 2014-05-15 |
Family
ID=50684489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078694 WO2014073378A1 (en) | 2012-11-07 | 2013-10-23 | Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6165162B2 (en) |
KR (1) | KR101692172B1 (en) |
CN (1) | CN104737340B (en) |
WO (1) | WO2014073378A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015062158A (en) * | 2013-08-20 | 2015-04-02 | 三洋化成工業株式会社 | Electrode protection-film-forming agent |
CN105098264A (en) * | 2015-06-19 | 2015-11-25 | 宁德时代新能源科技有限公司 | Anode slurry, anode piece and lithium ion battery |
JP2016225135A (en) * | 2015-05-29 | 2016-12-28 | 三菱化学株式会社 | Active material for nonaqueous secondary battery negative electrode and negative electrode using the same, and nonaqueous secondary battery |
JP2018170236A (en) * | 2017-03-30 | 2018-11-01 | 三井化学株式会社 | Nonaqueous electrolyte solution for battery, and lithium secondary battery |
WO2020200957A1 (en) * | 2019-03-29 | 2020-10-08 | Technische Universität Darmstadt | Bicyclic triol borate and use thereof in an electrolyte composition in an energy store |
WO2023054128A1 (en) | 2021-09-30 | 2023-04-06 | セントラル硝子株式会社 | Non-aqueous electrolytic solution, non-aqueous electrolyte battery, compound and additive for non-aqueous electrolyte |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105280922A (en) * | 2015-09-15 | 2016-01-27 | 宁德新能源科技有限公司 | Positive electrode paste, and positive plate and lithium ion battery containing same |
CN105226236B (en) * | 2015-09-15 | 2018-03-09 | 宁德新能源科技有限公司 | Anode sizing agent and positive plate, lithium ion battery including the anode sizing agent |
JPWO2022107740A1 (en) | 2020-11-18 | 2022-05-27 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005044681A (en) * | 2003-07-24 | 2005-02-17 | Nippon Synthetic Chem Ind Co Ltd:The | Binder composition for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery and manufacturing method thereof |
JP2009129893A (en) * | 2007-11-28 | 2009-06-11 | Sony Corp | Negative electrode, battery, and manufacturing method of them |
WO2011129053A1 (en) * | 2010-04-12 | 2011-10-20 | 三洋化成工業株式会社 | Agent for forming electrode protective film and electrolyte solution |
WO2012111335A1 (en) * | 2011-02-18 | 2012-08-23 | 三洋化成工業株式会社 | Agent for forming electrode protection film |
JP2012256515A (en) * | 2011-06-09 | 2012-12-27 | Sanyo Chem Ind Ltd | Electrode protective film forming agent |
WO2013002186A1 (en) * | 2011-06-27 | 2013-01-03 | 三洋化成工業株式会社 | Agent for forming electrode protection film, electrode, electrolyte solution, lithium secondary cell, lithium ion capacitor, and method for forming electrode protection film |
WO2014006845A1 (en) * | 2012-07-05 | 2014-01-09 | 三洋化成工業株式会社 | Agent for forming electrode protection film |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4852700B2 (en) | 2006-04-19 | 2012-01-11 | 国立大学法人岩手大学 | Lithium ion secondary battery |
JP5340860B2 (en) | 2008-09-03 | 2013-11-13 | 三洋化成工業株式会社 | Additive for electrolyte |
-
2013
- 2013-10-23 KR KR1020157012238A patent/KR101692172B1/en active IP Right Grant
- 2013-10-23 JP JP2014545639A patent/JP6165162B2/en active Active
- 2013-10-23 CN CN201380055159.7A patent/CN104737340B/en active Active
- 2013-10-23 WO PCT/JP2013/078694 patent/WO2014073378A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005044681A (en) * | 2003-07-24 | 2005-02-17 | Nippon Synthetic Chem Ind Co Ltd:The | Binder composition for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery and manufacturing method thereof |
JP2009129893A (en) * | 2007-11-28 | 2009-06-11 | Sony Corp | Negative electrode, battery, and manufacturing method of them |
WO2011129053A1 (en) * | 2010-04-12 | 2011-10-20 | 三洋化成工業株式会社 | Agent for forming electrode protective film and electrolyte solution |
WO2012111335A1 (en) * | 2011-02-18 | 2012-08-23 | 三洋化成工業株式会社 | Agent for forming electrode protection film |
JP2012256515A (en) * | 2011-06-09 | 2012-12-27 | Sanyo Chem Ind Ltd | Electrode protective film forming agent |
WO2013002186A1 (en) * | 2011-06-27 | 2013-01-03 | 三洋化成工業株式会社 | Agent for forming electrode protection film, electrode, electrolyte solution, lithium secondary cell, lithium ion capacitor, and method for forming electrode protection film |
WO2014006845A1 (en) * | 2012-07-05 | 2014-01-09 | 三洋化成工業株式会社 | Agent for forming electrode protection film |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015062158A (en) * | 2013-08-20 | 2015-04-02 | 三洋化成工業株式会社 | Electrode protection-film-forming agent |
JP2016225135A (en) * | 2015-05-29 | 2016-12-28 | 三菱化学株式会社 | Active material for nonaqueous secondary battery negative electrode and negative electrode using the same, and nonaqueous secondary battery |
CN105098264A (en) * | 2015-06-19 | 2015-11-25 | 宁德时代新能源科技有限公司 | Anode slurry, anode piece and lithium ion battery |
JP2018170236A (en) * | 2017-03-30 | 2018-11-01 | 三井化学株式会社 | Nonaqueous electrolyte solution for battery, and lithium secondary battery |
WO2020200957A1 (en) * | 2019-03-29 | 2020-10-08 | Technische Universität Darmstadt | Bicyclic triol borate and use thereof in an electrolyte composition in an energy store |
WO2023054128A1 (en) | 2021-09-30 | 2023-04-06 | セントラル硝子株式会社 | Non-aqueous electrolytic solution, non-aqueous electrolyte battery, compound and additive for non-aqueous electrolyte |
Also Published As
Publication number | Publication date |
---|---|
CN104737340A (en) | 2015-06-24 |
JPWO2014073378A1 (en) | 2016-09-08 |
JP6165162B2 (en) | 2017-07-19 |
CN104737340B (en) | 2016-12-14 |
KR20150068462A (en) | 2015-06-19 |
KR101692172B1 (en) | 2017-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6165162B2 (en) | Electrode protective film forming agent, electrode, electrolytic solution, lithium secondary battery, lithium ion capacitor, and method for producing electrode protective film | |
EP2250700B1 (en) | Redox shuttles for high voltage cathodes | |
JP5827404B2 (en) | Electrode protective film forming agent | |
JPWO2015111612A1 (en) | Secondary battery additive, electrode and electrolyte using the same, lithium ion battery and lithium ion capacitor | |
US8530086B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2016139567A (en) | Additive agent for secondary battery, electrode using the same and electrolyte | |
CN103038224A (en) | Ether compound, electrolyte composition for non-aqueous battery, binder composition for non-aqueous battery electrode, slurry composition for non-aqueous battery electrode, electrode for non-aqueous battery and non-aqueous battery | |
JP2015225689A (en) | Additive agent for battery | |
JP2015064998A (en) | Nonaqueous electrolyte secondary battery, and additive agent for nonaqueous electrolyte secondary batteries | |
JP6284772B2 (en) | Electrode protective film forming agent | |
JP2014137843A (en) | Electrode protection film-forming agent | |
JP2014175192A (en) | Additive agent for secondary battery | |
JPWO2012111335A1 (en) | Electrode protective film forming agent | |
JP6326255B2 (en) | Battery additive | |
JP2013026180A (en) | Electrode protective film forming agent | |
WO2013031045A1 (en) | Additive for electrode, and electrode | |
JP2018133183A (en) | Additive agent for battery | |
JP2012256515A (en) | Electrode protective film forming agent | |
JP2014078475A (en) | Electrode-protection-film-forming agent | |
JP2015207392A (en) | Additive agent for batteries | |
JPWO2015163254A1 (en) | Battery additives, electrodes, electrolytes and electrochemical devices | |
JP2015035409A (en) | Additive for electrochemical device | |
JP2017183093A (en) | Additive agent for nonaqueous electrolyte secondary battery, electrode, electrolyte solution, and electrochemical device | |
JP2015135780A (en) | Additive for secondary battery | |
JPWO2015060156A1 (en) | Additive for lithium ion secondary battery, electrode and electrolyte using the same, and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13854089 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014545639 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157012238 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13854089 Country of ref document: EP Kind code of ref document: A1 |