WO2014070024A2 - A transportation and installation system and method - Google Patents

A transportation and installation system and method Download PDF

Info

Publication number
WO2014070024A2
WO2014070024A2 PCT/NO2013/050186 NO2013050186W WO2014070024A2 WO 2014070024 A2 WO2014070024 A2 WO 2014070024A2 NO 2013050186 W NO2013050186 W NO 2013050186W WO 2014070024 A2 WO2014070024 A2 WO 2014070024A2
Authority
WO
WIPO (PCT)
Prior art keywords
vessel
cargo
roll
lifting
pitch
Prior art date
Application number
PCT/NO2013/050186
Other languages
French (fr)
Other versions
WO2014070024A3 (en
Inventor
Per Martin JOHANSSON
Original Assignee
North C As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North C As filed Critical North C As
Publication of WO2014070024A2 publication Critical patent/WO2014070024A2/en
Publication of WO2014070024A3 publication Critical patent/WO2014070024A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/003Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for for transporting very large loads, e.g. offshore structure modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/10Arrangement of ship-based loading or unloading equipment for cargo or passengers of cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/52Floating cranes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/0004Nodal points
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/021Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto with relative movement between supporting construction and platform
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0039Methods for placing the offshore structure
    • E02B2017/0043Placing the offshore structure on a pre-installed foundation structure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/006Platforms with supporting legs with lattice style supporting legs
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the invention concerns seagoing vessels for transporting and/or installing structures such as structures and equipment related to offshore or inshore wind power plants.
  • a transportation vessel is transporting structures and equipment from shore to offshore location and the structures and equipment could thereafter be transferred to an installation vessel at offshore location and being installed by the installation vessel to substructures at offshore location.
  • the invention will ensure a safe offshore load transfer from a transportation vessel to an installation vessel, where both vessels are exposed for waves generating wave motions of the vessels.
  • the invention will further ensure a safe load transfer from installation vessel to a fixed offshore substructure, eliminating wave motions of the installation vessel.
  • SSCV semisubmersible crane vessel
  • slewing semisubmersible hull shape and revolving cranes able to rotate the jib (slewing) as well as luffing (moving the jib up and down).
  • jib semisubmersible hull shape and revolving cranes able to rotate the jib (slewing) as well as luffing (moving the jib up and down).
  • These types of cranes are very expensive and require strong foundation in the vessels able to handle loads and moments from the slewing crane/cargo within all angles the crane is operating.
  • These vessels require also a sophisticated ballast system for counter ballast in order to operate cranes in different slewing angles. Examples of such SSCV's are the vessels “Thialf ' and "Saipem 7000".
  • crane vessels comprise monohull vessels and catamaran-shaped crane vessels, also outfitted with revolving cranes. These are more weather sensitive compared to semisubmersible crane vessels due to larger waterplane area, and need also strong support and sophisticated ballast system for the same reason as mentioned above.
  • Shear leg cranes are another type of floating crane vessels having a barge-shaped hull or catamaran- shaped hull with large waterplane area compared to semisubmersible crane vessels, and the lifting devices have one or two lifting frames with a hoisting
  • a lifting frame is a jib attached to a hull with hinges able to rotate round the hinges (luffing) but not able to slew.
  • the lifting frames are located side-by-side for vessels outfitted with two lifting frames.
  • the lifting frames are far less expensive than revolving cranes and the ballast system less sophisticated since it is mainly needed for compensating vessel trim moment when lifting and not heal moment.
  • the main disadvantages with shear leg cranes is shallow draught and large waterplane area which makes them very weather sensitive.
  • the hull needs to rotate in order to lift/place cargo in the correct orientation relative the substructure were cargo to be placed. This could also require lifting in beam sea where shear leg will be exposed for roll motions. Shear leg cranes are therefore more suitable for inshore lift where they are not exposed to large waves.
  • Offshore wind turbine generators were in the past erected by conventional ships, outfitted with cranes and stabilizing legs fitted to the side shell of the vessels and deployed to seabed to minimize roll, pitch and heave motions.
  • the hull was not lifted out of water and these vessels were therefore suited for more shallow water due to large exposed area to waves.
  • Jack-up construction vessels are now the most common lifting tool for installation of offshore wind turbines.
  • the jack-up vessels deploy legs onto the seabed and the hull is elevated above seabed to be less weather dependant during lifting operations.
  • These vessels are outfitted with revolving cranes, which are more expensive than lifting frames and need strong support for the same reason as described above.
  • the leg and elevating mechanism for lifting the hull out of water is also heavy and expensive.
  • the weight of an elevated hull with cargo could be some 50 - 100 times bigger than the weight of the cargo to be lifted by the cranes. This gives large ground pressure from the footings of the legs, with risk for punch-through (rapid penetration of legs through layer(s) of soil if ground pressure from legs footings exceed breaking load of the soil layer).
  • the jack-up vessels have also a large waterplane area compared to semisubmersible vessels and are weather sensitive for deploying legs and bring the hull out of water (or reverse operation). It is therefore common that these types of vessels need to wait on weather (sometimes for several weeks) in order to be able deploy legs and elevate the hull out of water before lifting operations can commence.
  • the jack-up vessels normally transport the structure and equipment all the way from shore to offshore location and thereafter install the structure and equipment to substructures at offshore location since it is difficult perform load transfer offshore from transportation vessel to jack-up vessel at offshore location due to relative wave motions of the vessels.
  • a jack-up vessel is expensive compared to a transportation vessel and have; less transit speed, more fuel consumption, more stringent sailing limitation due to larger beam and large required air gap for the retracted legs compared to a
  • the installation period for a offshore windfarm will also be longer since the jack- up vessel spend lot of time performing transports and not performing installation tasks only, due to lack of safe method perform offshore load transfer operation offshore from transportation vessel to jack-up vessel.
  • EP 2 251 254 Al describes a semi-submersible vessel for transportation and installation of foundations to wind turbines and transportation and installation of wind turbines.
  • the semisubmersible is equipped with a revolving crane and not lifting frame(s). Cargo is brought onboard by skidding cargo on skid tracks mounted on the pontoon; and not lifted onboard.
  • the system cannot be used for offshore load transfer of structures and equipment from a cargo vessel.
  • skidding or use of multi-wheel trailers for loading from shore requires correct level of vessel skid tracks relative skid tracks on quay (sometimes not even possible due to height of freeboard, quay height, tidal variation or required water depth) and complex ballast operation for load transfer and for tidal variation.
  • US No. 5 037 241 A describes a cantilevered support extending past the edge of a vessel carrying cargo on top of this support.
  • WO 03/057556 Al describes a U-shaped vessel mainly designed for topside installation by float over technology. It shows also an application where a lifting frame is mounted on deck, over the U-shaped slot, and outfitted with a hoisting system..
  • WO 2011/102738 A2 describes a mono hull vessel (not semi submersible vessel) developed for transportation and installation of fully assembled wind turbines including foundations. The concept is based on skidding fully assembled wind turbines from shore (not lifting), further skid the fully assembled in a parking position onboard and then repeat this operation until the vessel is fully loaded with fully assembled wind turbines. The system cannot be used for offshore load transfer of structures and equipment from a cargo vessel.
  • GB 2 434 823 A describes a purpose-built frame and a spreader beam for lifting an assembled wind turbine from shore, transportation to offshore location by a crane vessel and landing the assembled wind turbine on a purpose built landing platform on top of a pre-installed foundation at offshore location.
  • the system cannot be used for offshore load transfer of structures and equipment from a cargo vessel.
  • the cargo is supported to a wind turbine engagement device running on a trolley along vertical tracks on the lifting tower.
  • An active compensator connected to the wind turbine engagement device is intended used as a compensator for horizontal movement of the vessel, whilst the wind turbine tower is kept in a vertical position.
  • the hoisting system could have an active heave compensation device to cope with heave motions while installing cargo.
  • the system cannot be used for offshore load transfer of structures and equipment from a cargo vessel.
  • Figure 1 shows an embodiment of the invented installation vessel, with the legs extended
  • Figure 2 shows the installation vessel of figure 1, in the water
  • Figure 3 shows the installation vessel of figure 1, afloat in the water
  • Figure 4 shows the installation vessel of figure 1, with the legs extended to the seabed;
  • Figure 5 shows an embodiment of the invented transportation vessel, loaded with a number of wind turbine (tower, generator (in nacelle) and rotor);
  • Figure 6 shows the installation vessel in position next to the transportation vessel, in the process of lifting a wind turbine ;
  • Figure 7 shows the wind turbine supported on the installation vessel
  • Figure 8 shows the installation vessel, carrying a wind turbine, sailing towards a pre- installed foundation
  • Figure 9 shows the installation vessel legs extended to the seabed, in preparation for lifting the wind turbine onto the foundation
  • FIGS 10 and 11 show the wind turbine having been lifted onto the foundation
  • Figures 15 - 18 provide further exemplary particulars re the installation vessel
  • Figures 21 and 22 are an outline of the transportation and installation of wind turbines; Figure 23 illustrates the same situation as figure 6;
  • FIG. 24 illustrates the wind turbine (WTG) being lifted off the transportation vessel, and the roll and pitch compensation system
  • Figure 25 illustrates an embodiment of the movable crane block on a tiltable gantry beam at the top of the lifting frame. Detailed description of a preferential embodiment
  • WTG wind turbine generators
  • nacelle rotor, blades and towers fully assembled or in parts or other structures for other applications
  • luffing tilt in a plane herein referred to as its "tilting plane" around the hinge points to the frame.
  • Transportation of the WTGs onboard the vessel to installation location by own propulsion or in tow.
  • X direction typically vessel longitudinal direction
  • adjusting block and tackle (or other hoisting device) in Y direction perpendicular to X direction
  • rotate WTG in a swivel hook by tugger winches before lowering the WTG to foundation (in Z direction) by paying out on a block/tackle system (or other hoisting device) from the
  • the invention is the combination of using a semisubmersible hull together with the use of lifting frame(s) and stabilizing legs for transportation and installation of wind turbine generators.
  • a semisubmersible hull is less weather sensitive compared to a mono hull or catamaran shaped hull in respect of wave motions (i.e. less motion) and wave drift forces due to relative small projected areas at water level, both in the horizontal plan (waterplane area) as in the vertical plan and pontoon(s), when submersed, acting as damper.
  • Lifting frame(s) has less weight and is less expensive compared to an offshore revolving crane with similar capacity and is more stiff compared to a more slender shape of jib on revolving cranes since hinge points of jib more apart for this type of structure.
  • the hinges on the lifting frame (A frame) are far apart from each other's (close to the side shells of the vessel) given a stable structure perpendicular to the tilting plane with large stiffness.
  • the upper hoisting block could be supported by a trolley running on a tiltable gantry beam (tilted round Y axle) at the top of the lifting frame to allow certain adjustment of WTG in transverse direction relative the installation vessel. This might be required after the vessel has fixed its position offshore by the legs to the sea bed.
  • Counter ballast is mainly needed for trim moment since lifting frame is not revolving and ballast system will therefore be less complex compared to a vessel with a revolving crane that requires counter ballast also for heeling moment, when turning (slewing) crane with cargo.
  • the hull of the semisubmersible crane vessel (with A-frame) needs to rotate in order to lift/place cargo in the correct orientation similar to conventional shear leg crane vessel, but a semisubmersible vessel is not sensitive for wave directions compared to mono hull or catamaran shaped crane vessels and is more suited to operate in omnidirectional wave conditions.
  • a jack-up construction vessel requires calm condition for deploying legs and to elevate the hull out of water (same in a reverse operation) with typical limitation in significant wave height (Hs) of 1 to 1,5 meter whilst the semi submersible crane vessel can deploy legs in more rough conditions with Hs of 3+ meter. Further, a semisubmersible vessel is not sensitive for wave directions compared to a floating jack-up construction vessel (mono hull) and is more suited to operate in omnidirectional wave conditions.
  • the semisubmersible vessel could be positioned by own thrusters and a dynamic positioning system before deploying the legs towards the seabed. When reaching target position (within given tolerances) the legs will be lowered to seabed.
  • the footings of the legs for jack-up vessels have normally fixed tip that penetrate first. The speed of the mechanism driving the legs is limited with risk the vessel come outside given tolerances before the tip of the leg penetrate and "secure" the horizontal position of the jack-up.
  • the proposed semisubmersible vessel could have a movable tip activated by a hydraulic cylinder (or other mechanism) in order to secure the horizontal position in a quicker way than the mechanism for driving the legs could manage.
  • the extended and penetrated tip together with the footing of the leg gives also better holding capacity towards horizontal forces compared to a short and fixed tip on a conventional footing.
  • the legs and elevating mechanisms for lifting the hull out of water of a jack- up construction vessel are heavy and expensive.
  • the weight of elevated hull with cargo could be some 50 - 100 times bigger than the weight of the cargo to be lifted by the cranes. This gives large ground pressure from the footings of the legs with risk for punch through (rapid penetration of legs through layer(s) of soil if ground pressure from legs footings exceed breaking load of the soil layer).
  • the hull of the proposed semisubmersible vessel is not lifted out of water but legs are preloaded towards the seabed by ballasting the hull and or legs in order to always have contact towards seabed within the design condition.
  • Weight and moment from cargo is mainly taken by buoyancy of the hull in combination with ballast in the hull (for moment).
  • Mechanism for running/holding the legs will therefore be considerable lighter (and less expensive) compared to jack-up construction vessels and less energy is required since the hull is not elevated out of water. It is also less risk for punch through since ground pressure is considerable lower compared to the ground pressure from an elevated loaded jack-up construction vessel.
  • the semi submersible vessel has an operation limitation when having the hull buoyant that is stricter compared to an elevated jack- up construction vessel and the vessel need to retract the leg and go to a standby position with retracted legs if waves exceed a certain sea state (because of bending moment in the legs). For long term operation (several days' operation in bad weather season) this is a disadvantage., however installation of WTGs are a quick operation. The WTG could be installed in matters of hours after the semisubmersible vessel has been positioned and legs deployed why this operation limitation is not considered to be a bottle neck in an installation campaign for WTG.
  • Load transfer of cargo from a transportation vessel to a crane vessel in open sea is challenging due to relative motions between the two vessels caused by environmental loading (mainly waves and wind). It is even more challenging if the cargo is tall and transported in upright position where even small roll and pitch angles on the
  • Transportation vessels results in large moment at the top of the cargo.
  • Transportation vessels are normally monohull and therefore sensitive for roll and pitch motions.
  • the crane vessel could be of a semisubmersible; less sensitive in respect of motions.
  • New technology has therefore been invented to solve the problem related to lifting cargo from vessel exposed for waves in open sea.
  • the invention further comprises a roll and pitch compensator connected to the cargo, minimizing cargo to "roll and pitch” (rotation round x axis and y axis) and be kept in a vertical position whilst the transportation vessel follows the sea with roll and pitch motions.
  • the invented compensator comprises a passive system placed on bottom of a cargo hold or deck of the transportation vessel and an active system located above the passive system at deck level or above deck level on supporting structure
  • the weight of the cargo is resting on the passive system and is kept in a vertical position by the active system whilst the vessel is rolling and pitching following the sea. (Could also be the vice versa application if it is natural, taking the load in the upper support and have an active system in the lower support).
  • the passive system allows the cargo to rotate in the vertical planes and comprises in one embodiment of a structure on which the cargo is resting, supported by hydraulic jacks connected hydraulically in a single suspension mode where hydraulic oil is free-floating between the hydraulic jacks, allowing the cargo to tilt in any direction in the vertical planes. It could also comprise of a mechanical system with the same feature such as a single ball-bearing.
  • the stoppers and the active system are taken the vertical forces acting on the cargo.
  • the active system comprises in one embodiment of an inner frame (or other structure) running in longitudinal (or transverse) direction of the transportation vessel in an outer frame (or other structure) running in the perpendicular direction to the inner frame on supports attached to the transportation vessel.
  • Hydraulic jacks or other type of linear actuators are moving the inner and outer frame controlled by a computer system with input from a gauge system measuring
  • the inner and outer frames may also be replaced by three or more hydraulic jacks, or other linear actuators, attached to cargo directly or indirectly to move the upper part of the cargo in the horizontal plan (or by other means) whilst cargo is resting on a pivot point to compensate for the roll and pitch motions and keep the cargo in a vertical position.
  • the active support could either be locked or activated during transport of cargo to the installation area but will be activated whilst deploying lifting attachment from a crane vessel and performing the lift off of cargo from the transportation vessel.
  • the crane vessel could be outfitted with a heave compensation system in order to avoid snatch loading in the lifting gear and cargo when transportation vessel and crane are exposed for relative motions in the vertical direction.
  • the heave compensation could be of a passive type (saving weight and costs) with increased stiffness when load is transferred gradually from the transportation vessel to the crane vessel.
  • the passive system at the bottom of the cargo, previously supporting the weight of the cargo, and the stoppers at the bottom of the cargo could be retracted at moment of lift off in order to achieve sufficient air gap between support and cargo to avoid a "second contact” if hoisting speed of crane vessel is slower than the relative vertical motions between the transportation vessel and the crane vessel.
  • Hydraulic pressure in the hydraulic jacks supporting the structure carrying the weight of the cargo on the transportation vessel could be measured to follow percentage load transfer from the transportation vessel to the crane vessel and give a signal when load, or majority of load, is transferred to the crane to retract the support and stoppers.
  • the inner frame (or other structure) of the active system could be outfitted with a series of rollers forming a diameter in the horizontal plan for embracing cylindrical cargo such as towers to wind turbines (or other shapes).
  • the diameter could be adjusted by moving the rollers in a radial directions by means of linear actuators (such as hydraulic jacks) or by other means.
  • the diameter could also be adjusted whilst lifting cargo out from the cargo holds if the diameter of the cargo varies, such as for towers to wind turbines.
  • the cargo After liftoff of the cargo from the structure the weight of the cargo was resting on (passive system), the cargo is lifted out of cargo hold guided by the rollers in the inner frame in the active system.
  • the roll and pitch compensator could still be active during lifting cargo free from transportation vessel but could also be locked and cargo rotating round the rollers whilst being lifted free from the transportation vessel.
  • a series of roll/pitch compensators could be installed onboard the transportation vessel to allow a number of fully assembled wind turbines generators being transported to offshore location and lifted off the transportation vessel for installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Ship Loading And Unloading (AREA)

Abstract

A transportation and installation system and method as disclosed in the specification and the enclosed drawings.

Description

A transportation and installation system and method
Field of the invention
The invention concerns seagoing vessels for transporting and/or installing structures such as structures and equipment related to offshore or inshore wind power plants. A transportation vessel is transporting structures and equipment from shore to offshore location and the structures and equipment could thereafter be transferred to an installation vessel at offshore location and being installed by the installation vessel to substructures at offshore location. The invention will ensure a safe offshore load transfer from a transportation vessel to an installation vessel, where both vessels are exposed for waves generating wave motions of the vessels. The invention will further ensure a safe load transfer from installation vessel to a fixed offshore substructure, eliminating wave motions of the installation vessel.
Background of the invention
There are several types of floating crane vessels. One type is the semisubmersible crane vessel (SSCV) that has a semisubmersible hull shape and revolving cranes able to rotate the jib (slewing) as well as luffing (moving the jib up and down). These types of cranes are very expensive and require strong foundation in the vessels able to handle loads and moments from the slewing crane/cargo within all angles the crane is operating. These vessels require also a sophisticated ballast system for counter ballast in order to operate cranes in different slewing angles. Examples of such SSCV's are the vessels "Thialf ' and "Saipem 7000".
Other types of crane vessels comprise monohull vessels and catamaran-shaped crane vessels, also outfitted with revolving cranes. These are more weather sensitive compared to semisubmersible crane vessels due to larger waterplane area, and need also strong support and sophisticated ballast system for the same reason as mentioned above.
Shear leg cranes are another type of floating crane vessels having a barge-shaped hull or catamaran- shaped hull with large waterplane area compared to semisubmersible crane vessels, and the lifting devices have one or two lifting frames with a hoisting
arrangement at the top of the frame(s). A lifting frame is a jib attached to a hull with hinges able to rotate round the hinges (luffing) but not able to slew. The lifting frames are located side-by-side for vessels outfitted with two lifting frames. The lifting frames are far less expensive than revolving cranes and the ballast system less sophisticated since it is mainly needed for compensating vessel trim moment when lifting and not heal moment. The main disadvantages with shear leg cranes is shallow draught and large waterplane area which makes them very weather sensitive. The hull needs to rotate in order to lift/place cargo in the correct orientation relative the substructure were cargo to be placed. This could also require lifting in beam sea where shear leg will be exposed for roll motions. Shear leg cranes are therefore more suitable for inshore lift where they are not exposed to large waves.
Offshore wind turbine generators were in the past erected by conventional ships, outfitted with cranes and stabilizing legs fitted to the side shell of the vessels and deployed to seabed to minimize roll, pitch and heave motions. The hull was not lifted out of water and these vessels were therefore suited for more shallow water due to large exposed area to waves.
Jack-up construction vessels are now the most common lifting tool for installation of offshore wind turbines. The jack-up vessels deploy legs onto the seabed and the hull is elevated above seabed to be less weather dependant during lifting operations. These vessels are outfitted with revolving cranes, which are more expensive than lifting frames and need strong support for the same reason as described above. The leg and elevating mechanism for lifting the hull out of water is also heavy and expensive. The weight of an elevated hull with cargo could be some 50 - 100 times bigger than the weight of the cargo to be lifted by the cranes. This gives large ground pressure from the footings of the legs, with risk for punch-through (rapid penetration of legs through layer(s) of soil if ground pressure from legs footings exceed breaking load of the soil layer).
The jack-up vessels have also a large waterplane area compared to semisubmersible vessels and are weather sensitive for deploying legs and bring the hull out of water (or reverse operation). It is therefore common that these types of vessels need to wait on weather (sometimes for several weeks) in order to be able deploy legs and elevate the hull out of water before lifting operations can commence. The jack-up vessels normally transport the structure and equipment all the way from shore to offshore location and thereafter install the structure and equipment to substructures at offshore location since it is difficult perform load transfer offshore from transportation vessel to jack-up vessel at offshore location due to relative wave motions of the vessels. A jack-up vessel is expensive compared to a transportation vessel and have; less transit speed, more fuel consumption, more stringent sailing limitation due to larger beam and large required air gap for the retracted legs compared to a
transportation vessel. The installation period for a offshore windfarm will also be longer since the jack- up vessel spend lot of time performing transports and not performing installation tasks only, due to lack of safe method perform offshore load transfer operation offshore from transportation vessel to jack-up vessel.
EP 2 251 254 Al describes a semi-submersible vessel for transportation and installation of foundations to wind turbines and transportation and installation of wind turbines. The semisubmersible is equipped with a revolving crane and not lifting frame(s). Cargo is brought onboard by skidding cargo on skid tracks mounted on the pontoon; and not lifted onboard. The system cannot be used for offshore load transfer of structures and equipment from a cargo vessel.
Further, skidding (or use of multi-wheel trailers) for loading from shore requires correct level of vessel skid tracks relative skid tracks on quay (sometimes not even possible due to height of freeboard, quay height, tidal variation or required water depth) and complex ballast operation for load transfer and for tidal variation.
US No. 5 037 241 A describes a cantilevered support extending past the edge of a vessel carrying cargo on top of this support.
WO 03/057556 Al describes a U-shaped vessel mainly designed for topside installation by float over technology. It shows also an application where a lifting frame is mounted on deck, over the U-shaped slot, and outfitted with a hoisting system..
WO 2011/102738 A2 describes a mono hull vessel (not semi submersible vessel) developed for transportation and installation of fully assembled wind turbines including foundations. The concept is based on skidding fully assembled wind turbines from shore (not lifting), further skid the fully assembled in a parking position onboard and then repeat this operation until the vessel is fully loaded with fully assembled wind turbines. The system cannot be used for offshore load transfer of structures and equipment from a cargo vessel.
GB 2 434 823 A describes a purpose-built frame and a spreader beam for lifting an assembled wind turbine from shore, transportation to offshore location by a crane vessel and landing the assembled wind turbine on a purpose built landing platform on top of a pre-installed foundation at offshore location. The system cannot be used for offshore load transfer of structures and equipment from a cargo vessel.
GB 060 2503.5 describes a catamaran shaped vessel (SWATH = small waterplane area twin hull) outfitted with a fixed lifting tower for transport and installation of assembled wind turbine generators as well as transportation and installation of foundations for wind turbine generators. The cargo is supported to a wind turbine engagement device running on a trolley along vertical tracks on the lifting tower. An active compensator connected to the wind turbine engagement device is intended used as a compensator for horizontal movement of the vessel, whilst the wind turbine tower is kept in a vertical position. The hoisting system could have an active heave compensation device to cope with heave motions while installing cargo. The system cannot be used for offshore load transfer of structures and equipment from a cargo vessel.
The applicant has devised and embodied this invention to overcome certain
shortcomings of the prior art and to obtain further advantages. Brief description of the drawings
Figure 1 shows an embodiment of the invented installation vessel, with the legs extended;
Figure 2 shows the installation vessel of figure 1, in the water;
Figure 3 shows the installation vessel of figure 1, afloat in the water;
Figure 4 shows the installation vessel of figure 1, with the legs extended to the seabed;
Figure 5 shows an embodiment of the invented transportation vessel, loaded with a number of wind turbine (tower, generator (in nacelle) and rotor);
Figure 6 shows the installation vessel in position next to the transportation vessel, in the process of lifting a wind turbine ;
Figure 7 shows the wind turbine supported on the installation vessel;
Figure 8 shows the installation vessel, carrying a wind turbine, sailing towards a pre- installed foundation;
Figure 9 shows the installation vessel legs extended to the seabed, in preparation for lifting the wind turbine onto the foundation;
Figures 10 and 11 show the wind turbine having been lifted onto the foundation;
Figures 12-14 (deleted);
Figures 15 - 18 provide further exemplary particulars re the installation vessel;
Figure 19 (deleted);
Figure 20 (deleted);
Figures 21 and 22 are an outline of the transportation and installation of wind turbines; Figure 23 illustrates the same situation as figure 6;
Figure 24 illustrates the wind turbine (WTG) being lifted off the transportation vessel, and the roll and pitch compensation system; and
Figure 25 illustrates an embodiment of the movable crane block on a tiltable gantry beam at the top of the lifting frame. Detailed description of a preferential embodiment
A Transportation/Installation vessel for wind turbine generators
Vessel for transportation/installation of wind turbine generators (WTG) (including nacelle, rotor, blades and towers fully assembled or in parts or other structures for other applications) consisting of a semisubmersible shaped hull with pontoon(s), upper deck and columns between pontoon(s) and upper deck, outfitted with lifting frame(s) able to lift WTGs from transportation vessel (or quay side) and bring WTG onboard the vessel by luffing (tilting) the lifting frame(s) towards the vessel. During luffing/tilting, the frame tilt in a plane herein referred to as its "tilting plane" around the hinge points to the frame. Transportation of the WTGs onboard the vessel to installation location by own propulsion or in tow. Stabilize the hull from motions caused by environmental loading by deploying legs to the seabed hindering roll, pitch, heave, sway, yaw and surge motions. Positioning the WTG above the pre-installed foundation by luffing the frame(s) in X direction (typically vessel longitudinal direction), adjusting block and tackle (or other hoisting device) in Y direction (perpendicular to X direction) and rotate WTG in a swivel hook by tugger winches before lowering the WTG to foundation (in Z direction) by paying out on a block/tackle system (or other hoisting device) from the lifting frame(s).
The invention is the combination of using a semisubmersible hull together with the use of lifting frame(s) and stabilizing legs for transportation and installation of wind turbine generators.
A semisubmersible hull is less weather sensitive compared to a mono hull or catamaran shaped hull in respect of wave motions (i.e. less motion) and wave drift forces due to relative small projected areas at water level, both in the horizontal plan (waterplane area) as in the vertical plan and pontoon(s), when submersed, acting as damper.
Lifting frame(s) has less weight and is less expensive compared to an offshore revolving crane with similar capacity and is more stiff compared to a more slender shape of jib on revolving cranes since hinge points of jib more apart for this type of structure. The hinges on the lifting frame (A frame) are far apart from each other's (close to the side shells of the vessel) given a stable structure perpendicular to the tilting plane with large stiffness.
As shown in Fig. 25, the upper hoisting block could be supported by a trolley running on a tiltable gantry beam (tilted round Y axle) at the top of the lifting frame to allow certain adjustment of WTG in transverse direction relative the installation vessel. This might be required after the vessel has fixed its position offshore by the legs to the sea bed.
Counter ballast is mainly needed for trim moment since lifting frame is not revolving and ballast system will therefore be less complex compared to a vessel with a revolving crane that requires counter ballast also for heeling moment, when turning (slewing) crane with cargo.
The hull of the semisubmersible crane vessel (with A-frame) needs to rotate in order to lift/place cargo in the correct orientation similar to conventional shear leg crane vessel, but a semisubmersible vessel is not sensitive for wave directions compared to mono hull or catamaran shaped crane vessels and is more suited to operate in omnidirectional wave conditions.
Installation by lifting of WTGs (or components of WTGs) at offshore location is more delicate and challenging than installation of foundations to WTGs. Foundations consists mainly of steel and will be lowered into water where the water is damping horizontal motions. The lifting height could be smaller compared to cranes required for WTGs to be lifted some 100 - 120 meter above sea level (depending on size of WTG). The WTG is also more sensible with mechanical and electrical components. Only one degree roll or pitch motion gives a couple of meter in horizontal motions at the top of the WTG (single amplitude). The semisubmersible crane vessel could therefore be outfitted with legs, going through the columns and to be deployed at installation site towards the seabed to eliminate roll, pitch, heave, yaw, surge and sway motion.
A jack-up construction vessel requires calm condition for deploying legs and to elevate the hull out of water (same in a reverse operation) with typical limitation in significant wave height (Hs) of 1 to 1,5 meter whilst the semi submersible crane vessel can deploy legs in more rough conditions with Hs of 3+ meter. Further, a semisubmersible vessel is not sensitive for wave directions compared to a floating jack-up construction vessel (mono hull) and is more suited to operate in omnidirectional wave conditions.
The semisubmersible vessel could be positioned by own thrusters and a dynamic positioning system before deploying the legs towards the seabed. When reaching target position (within given tolerances) the legs will be lowered to seabed. The footings of the legs for jack-up vessels have normally fixed tip that penetrate first. The speed of the mechanism driving the legs is limited with risk the vessel come outside given tolerances before the tip of the leg penetrate and "secure" the horizontal position of the jack-up. The proposed semisubmersible vessel could have a movable tip activated by a hydraulic cylinder (or other mechanism) in order to secure the horizontal position in a quicker way than the mechanism for driving the legs could manage. The extended and penetrated tip together with the footing of the leg gives also better holding capacity towards horizontal forces compared to a short and fixed tip on a conventional footing.
The legs and elevating mechanisms for lifting the hull out of water of a jack- up construction vessel are heavy and expensive. The weight of elevated hull with cargo could be some 50 - 100 times bigger than the weight of the cargo to be lifted by the cranes. This gives large ground pressure from the footings of the legs with risk for punch through (rapid penetration of legs through layer(s) of soil if ground pressure from legs footings exceed breaking load of the soil layer).
The hull of the proposed semisubmersible vessel is not lifted out of water but legs are preloaded towards the seabed by ballasting the hull and or legs in order to always have contact towards seabed within the design condition. Weight and moment from cargo is mainly taken by buoyancy of the hull in combination with ballast in the hull (for moment). Mechanism for running/holding the legs will therefore be considerable lighter (and less expensive) compared to jack-up construction vessels and less energy is required since the hull is not elevated out of water. It is also less risk for punch through since ground pressure is considerable lower compared to the ground pressure from an elevated loaded jack-up construction vessel.
The semi submersible vessel has an operation limitation when having the hull buoyant that is stricter compared to an elevated jack- up construction vessel and the vessel need to retract the leg and go to a standby position with retracted legs if waves exceed a certain sea state (because of bending moment in the legs). For long term operation (several days' operation in bad weather season) this is a disadvantage., however installation of WTGs are a quick operation. The WTG could be installed in matters of hours after the semisubmersible vessel has been positioned and legs deployed why this operation limitation is not considered to be a bottle neck in an installation campaign for WTG.
B Roll and pitch compensator
Load transfer of cargo from a transportation vessel to a crane vessel in open sea is challenging due to relative motions between the two vessels caused by environmental loading (mainly waves and wind). It is even more challenging if the cargo is tall and transported in upright position where even small roll and pitch angles on the
transportation vessel results in large moment at the top of the cargo. Transportation vessels are normally monohull and therefore sensitive for roll and pitch motions. The crane vessel could be of a semisubmersible; less sensitive in respect of motions. New technology has therefore been invented to solve the problem related to lifting cargo from vessel exposed for waves in open sea.
The invention further comprises a roll and pitch compensator connected to the cargo, minimizing cargo to "roll and pitch" (rotation round x axis and y axis) and be kept in a vertical position whilst the transportation vessel follows the sea with roll and pitch motions.
The invented compensator comprises a passive system placed on bottom of a cargo hold or deck of the transportation vessel and an active system located above the passive system at deck level or above deck level on supporting structure
The weight of the cargo is resting on the passive system and is kept in a vertical position by the active system whilst the vessel is rolling and pitching following the sea. (Could also be the vice versa application if it is natural, taking the load in the upper support and have an active system in the lower support).
The passive system allows the cargo to rotate in the vertical planes and comprises in one embodiment of a structure on which the cargo is resting, supported by hydraulic jacks connected hydraulically in a single suspension mode where hydraulic oil is free-floating between the hydraulic jacks, allowing the cargo to tilt in any direction in the vertical planes. It could also comprise of a mechanical system with the same feature such as a single ball-bearing.
Moment required to keep the cargo in upright position is taken by passive stoppers connected to the lower part of the cargo, either directly or via the structure in the passive system resting on hydraulic jacks, and by the active system above the passive system.
The stoppers and the active system are taken the vertical forces acting on the cargo.
The active system comprises in one embodiment of an inner frame (or other structure) running in longitudinal (or transverse) direction of the transportation vessel in an outer frame (or other structure) running in the perpendicular direction to the inner frame on supports attached to the transportation vessel.
Hydraulic jacks or other type of linear actuators are moving the inner and outer frame controlled by a computer system with input from a gauge system measuring
accelerations and angles of the vessel (or other required input) to ensure the cargo maintain in its vertical position whilst the vessel roll and pitch. (Active compensation by hydraulic jacks or other types of linear actuators are considered as known technology in other application). The inner and outer frames may also be replaced by three or more hydraulic jacks, or other linear actuators, attached to cargo directly or indirectly to move the upper part of the cargo in the horizontal plan (or by other means) whilst cargo is resting on a pivot point to compensate for the roll and pitch motions and keep the cargo in a vertical position.
The active support could either be locked or activated during transport of cargo to the installation area but will be activated whilst deploying lifting attachment from a crane vessel and performing the lift off of cargo from the transportation vessel.
The crane vessel could be outfitted with a heave compensation system in order to avoid snatch loading in the lifting gear and cargo when transportation vessel and crane are exposed for relative motions in the vertical direction. The heave compensation could be of a passive type (saving weight and costs) with increased stiffness when load is transferred gradually from the transportation vessel to the crane vessel.
The passive system at the bottom of the cargo, previously supporting the weight of the cargo, and the stoppers at the bottom of the cargo could be retracted at moment of lift off in order to achieve sufficient air gap between support and cargo to avoid a "second contact" if hoisting speed of crane vessel is slower than the relative vertical motions between the transportation vessel and the crane vessel. Hydraulic pressure in the hydraulic jacks supporting the structure carrying the weight of the cargo on the transportation vessel could be measured to follow percentage load transfer from the transportation vessel to the crane vessel and give a signal when load, or majority of load, is transferred to the crane to retract the support and stoppers.
The inner frame (or other structure) of the active system, minimizing cargo pitch (or roll) motions, could be outfitted with a series of rollers forming a diameter in the horizontal plan for embracing cylindrical cargo such as towers to wind turbines (or other shapes). The diameter could be adjusted by moving the rollers in a radial directions by means of linear actuators (such as hydraulic jacks) or by other means. The diameter could also be adjusted whilst lifting cargo out from the cargo holds if the diameter of the cargo varies, such as for towers to wind turbines.
After liftoff of the cargo from the structure the weight of the cargo was resting on (passive system), the cargo is lifted out of cargo hold guided by the rollers in the inner frame in the active system. The roll and pitch compensator could still be active during lifting cargo free from transportation vessel but could also be locked and cargo rotating round the rollers whilst being lifted free from the transportation vessel.
A series of roll/pitch compensators could be installed onboard the transportation vessel to allow a number of fully assembled wind turbines generators being transported to offshore location and lifted off the transportation vessel for installation.

Claims

Claims
1. A vessel for lifting operations at sea, comprising a semisubmersible hull, wherein said hull comprises at least one pontoon structure, a deck structure, columns between the pontoon structure and the deck structure, and vertically movable legs, and wherein the vessel is provided with one A-shaped lifting frame tiltably connected to the deck structure for lifting cargo next to the lifting vessel.
2. A vessel according to claim 1, wherein each respective vertically movable leg is provided within a respective one of the columns between the pontoon structure and the deck structure.
3. A vessel according to any one of claims 1-2, wherein the vertically movable tips are provided at lower ends of the vertically movable legs or footings.
4. A vessel according to claim 3, wherein the vertically movable legs are connected to primary driving devices for driving the vertically movable legs, wherein the movable tips are connected to secondary driving devices for driving the movable tips, wherein the primary and secondary driving devices are configured such that the movable tips are movable at a higher speed than a maximum speed of movement of the vertically movable legs.
5. A vessel according to any one of the preceding claims, wherein the pontoon structures are substantially arranged in a triangular shape.
6. A vessel according to claim 5, wherein the lifting frame is tiltably connected to the vessel such that it is tiltable around hinge points on deck structure.
7. A vessel according to any one of the preceding claims, wherein the lifting frame is provided at a top portion with a hoisting device configured to optionally lift or lower cargo.
8. A vessel according to claim 7, wherein the hoisting device is movably attached to the lifting frame for horisontal movement perpendicular to the tilting plane of the lifting frame to allow improved position adjustment of cargo hanging from the hoisting system relative the installation vessel.
9. A vessel according to claim 8, wherein the hoisting device is movably attached to the lifting frame by means of a trolley running on a gantry beam provided at the top portion of the lifting frame to allow adjustment of cargo in transverse direction relative the lifting frame.
10. A vessel according to claim 9, wherein the gantry beam is tiltably attached to the lifting frame.
11. A vessel according to any one of claims 7-10, further comprising a heave compensation system configured to mitigate snatch loading in the hoisting device at relative motion between cargo and lifting vessel.
12. A vessel according to claim 11, wherein the heave compensation system is configured such that its stiffness is variable.
13. A vessel according to claim 12, wherein the heave compensation system comprises a control means configured to actively control lifting force applied to the cargo in response to heave motions of the lifting vessel and/or transportation vessel.
14. A roll and pitch compensator suitable for stabilizing cargo on a sea transportation vessel, said compensator comprising a first cargo support system on the bottom of a cargo hold or deck of the transportation vessel and a second cargo support system located above the first system, wherein second system is an active system configured to keep the cargo in a vertical position, and wherein the first system pivotally attaches the cargo to the vessel.
15. A roll and pitch compensator according to claim 14, wherein the first system pivotally attaching the cargo to the vessel comprises a ball-bearing.
16. A roll and pitch compensator according to claim 15, wherein the first system pivotally attaching the cargo to the vessel comprises hydraulic jacks connected to each other in a single suspension mode where hydraulic oil is free-floating between the hydraulic jacks.
17. A roll and pitch compensator according to claim 16, further provided with sensing means configured to measure hydraulic pressure in the hydraulic jacks to determine load from the cargo, and provided with a control means configured to disengage the cargo from the jacks when the load determined is below a lower predetermined threshold value.
18. A roll and pitch compensator according to claim 17, wherein the control means further is configured to engage the second support system to the cargo when the pressure sensed is above an upper predetermined threshold value pressure sensed is above an upper predetermined threshold value.
19. A roll and pitch compensator according to any one claims 14-18, wherein the inner frame is provided with a plurality of rollers forming a support for the cargo.
20. A roll and pitch compensator according to claim 19, wherein the rollers are configured to jointly form a semi-cylindrical support for a substantially cylindrical body, such as a tower to a wind turbine.
21. A roll and pitch compensator according to any one of claims 19-20, wherein the rollers are movable to support objects of varying shape at varying height.
22. A roll and pitch compensator according to claim 21, wherein the active system comprises linear actuators configured to control the positions of said rollers.
23. A roll and pitch compensator according to any one of claims 21-22, wherein the active system comprises a control means configured to control the positions of said rollers to provide support of varying shape and height.
24. A roll and pitch compensator according to any one of claims 14-23, wherein the active system comprises an inner frame movably attached to an outer frame for movement along a first longitudinal axis, wherein said outer frame is movably attached to the vessel for movement along a second longitudinal axis substantially perpendicular to said first axis, wherein said inner frame is attachable to the cargo, and wherein roll and pitch compensator further comprises means for moving the frames along said first and second longitudinal axes respectively in response to one or more control signals related to the roll and pitch of the vessel.
25. A vessel for transportation of cargo at sea, comprising at least one roll and pitch compensator according to any one of claims 14-24.
26. A vessel for transportation of cargo at sea according to claim 25, wherein the vessel is an elongate cargo ship, such as a modified container ship, and wherein a plurality of said at least one roll and pitch compensators are arranged along the length of the ship.
27. A transport and installation system for wind tower generators comprising a transportation vessel according to claims 25-26 and a lifting vessel according to any one of claims 1-13.
28. A method of securing a semi submersible vessel to a seabed comprising the steps of, positioning the vessel, lowering vertically movable legs of said vessel to a
predetermined depth, lowering vertically movable tips provided on the legs such that the tips penetrate into the seabed thereby mitigating horizontal movement of the vessel, and further lowering the vertically movable legs into contact with the seabed for securing the vessel.
PCT/NO2013/050186 2012-11-05 2013-11-05 A transportation and installation system and method WO2014070024A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20121300 2012-11-05
NO20121300 2012-11-05

Publications (2)

Publication Number Publication Date
WO2014070024A2 true WO2014070024A2 (en) 2014-05-08
WO2014070024A3 WO2014070024A3 (en) 2014-08-07

Family

ID=49759503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2013/050186 WO2014070024A2 (en) 2012-11-05 2013-11-05 A transportation and installation system and method

Country Status (1)

Country Link
WO (1) WO2014070024A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255211A1 (en) * 2016-06-10 2017-12-13 Neptun Ship Design GmbH Jack-up bridge structure
CN111688882A (en) * 2020-06-15 2020-09-22 研海能源科技(上海)有限公司 Offshore wind turbine installation device without using hoisting equipment
CN111734583A (en) * 2020-04-30 2020-10-02 广东水电二局股份有限公司 Accurate in-place installation method for wind power generation large-elevation impeller
WO2020200380A1 (en) * 2019-04-01 2020-10-08 Maersk Supply Service A/S A method of securing and transferring a load between a vessel and an offshore installation and an apparatus therefor
CN112027001A (en) * 2020-08-31 2020-12-04 广东工业大学 Self-elevating type offshore integral fan installation ship
US11136206B2 (en) 2019-04-01 2021-10-05 Phoenix Ii A/S Method of securing and transferring a load between a vessel and an offshore installation and an apparatus therefor
WO2022218485A1 (en) * 2021-04-14 2022-10-20 Phoenix Ii A/S A method and system of ballasting and deballasting a vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037241A (en) 1990-03-29 1991-08-06 Exxon Production Research Company Method and apparatus for setting a superstructure onto an offshore platform
WO2003057556A1 (en) 2002-01-09 2003-07-17 Itrec B.V. Multifunctional catamaran shape vessel
GB2434823A (en) 2006-02-06 2007-08-08 Engineering Business Ltd Transport and installation of offshore structures
EP2251254A1 (en) 2009-05-15 2010-11-17 Cees Eugen Jochem Leenars Installation vessel for offshore wind turbines
WO2011102738A2 (en) 2010-02-18 2011-08-25 Aker Marine Contractors As A method and vessel for offshore transport and installation of windmill assemblies

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2954676A (en) * 1957-05-13 1960-10-04 Jersey Prod Res Co Lifting assembly for structures
JPS6062318A (en) * 1983-09-13 1985-04-10 Kajima Corp Offshore working platform
US6082947A (en) * 1999-08-17 2000-07-04 Adamson; James E. Coordinated motion marine lifting device
NL2004402C2 (en) * 2010-03-16 2011-09-20 Mammoet Europ B V Semisubmersible and method of its operation.
NO333885B1 (en) * 2010-03-31 2013-10-14 Rolls Royce Marine As Device by lift frame

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037241A (en) 1990-03-29 1991-08-06 Exxon Production Research Company Method and apparatus for setting a superstructure onto an offshore platform
WO2003057556A1 (en) 2002-01-09 2003-07-17 Itrec B.V. Multifunctional catamaran shape vessel
GB2434823A (en) 2006-02-06 2007-08-08 Engineering Business Ltd Transport and installation of offshore structures
EP2251254A1 (en) 2009-05-15 2010-11-17 Cees Eugen Jochem Leenars Installation vessel for offshore wind turbines
WO2011102738A2 (en) 2010-02-18 2011-08-25 Aker Marine Contractors As A method and vessel for offshore transport and installation of windmill assemblies

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255211A1 (en) * 2016-06-10 2017-12-13 Neptun Ship Design GmbH Jack-up bridge structure
WO2020200380A1 (en) * 2019-04-01 2020-10-08 Maersk Supply Service A/S A method of securing and transferring a load between a vessel and an offshore installation and an apparatus therefor
US11008073B2 (en) 2019-04-01 2021-05-18 Phoenix Ii A/S Method of securing and transferring a load between a vessel and an offshore installation and an apparatus therefor
US11136206B2 (en) 2019-04-01 2021-10-05 Phoenix Ii A/S Method of securing and transferring a load between a vessel and an offshore installation and an apparatus therefor
US11161571B2 (en) 2019-04-01 2021-11-02 Phoenix Ii A/S Method of securing and transferring a load between a vessel and an offshore installation and an apparatus therefor
US11560277B2 (en) 2019-04-01 2023-01-24 Phoenix Ii A/S Method of securing and transferring a load between a vessel and an offshore installation and an apparatus therefor
CN111734583A (en) * 2020-04-30 2020-10-02 广东水电二局股份有限公司 Accurate in-place installation method for wind power generation large-elevation impeller
CN111734583B (en) * 2020-04-30 2021-05-07 广东水电二局股份有限公司 Accurate in-place installation method for wind power generation large-elevation impeller
CN111688882A (en) * 2020-06-15 2020-09-22 研海能源科技(上海)有限公司 Offshore wind turbine installation device without using hoisting equipment
CN112027001A (en) * 2020-08-31 2020-12-04 广东工业大学 Self-elevating type offshore integral fan installation ship
CN112027001B (en) * 2020-08-31 2022-09-23 广东工业大学 Self-elevating type offshore integral fan installation ship
WO2022218485A1 (en) * 2021-04-14 2022-10-20 Phoenix Ii A/S A method and system of ballasting and deballasting a vessel

Also Published As

Publication number Publication date
WO2014070024A3 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
US8701579B2 (en) Offshore wind turbine installation
JP7355807B2 (en) Device and method for lifting objects from the deck of a ship subject to motion
US11970370B2 (en) Motion compensating crane for use on an offshore vessel
WO2014070024A2 (en) A transportation and installation system and method
EP2724021B1 (en) A self-propelled offshore wind farm installation vessel, and method of installation used in the construction of an offshore wind turbine farm
US20100067989A1 (en) Vessel for transporting wind turbines and methods thereof
US20230392584A1 (en) Installation of a wind turbine on a floating foundation
US20230043092A1 (en) Feeder vessel
EP3529141B1 (en) Self-propelled jack-up vessel
WO2010026555A2 (en) A vessel for transporting wind turbines and methods thereof
PL199885B1 (en) Vessel
CN115812066A (en) Crane vessel for lifting an offshore wind turbine or a component thereof
JP2024519473A (en) Erection crane and installation vessel
US20230399206A1 (en) Offshore wind turbine assembly vessel
US20240208619A1 (en) A semi-submersible service vessel for a floating installation and method therefor
SG193028A1 (en)
EP3992368B1 (en) Jack-up platform with receiving space for a barge and method for offshore installation of a wind turbine
NL2027280B1 (en) Installation of a wind turbine on a floating foundation
CN108674597A (en) A kind of jack up wind-powered electricity generation mounting platform
TWI834746B (en) Work platform vessel equipped with crane and method of using the crane
CN114041012A (en) System for offshore power generation
EP4274797A1 (en) Offshore wind turbine assembly vessel
CN116963990A (en) Offshore wind turbine assembly vessel
RU2021139620A (en) SYSTEM FOR POWER GENERATION IN THE HIGH SEA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803289

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/09/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13803289

Country of ref document: EP

Kind code of ref document: A2