WO2014069625A1 - Crystal of oligosaccharide, and method for producing same - Google Patents
Crystal of oligosaccharide, and method for producing same Download PDFInfo
- Publication number
- WO2014069625A1 WO2014069625A1 PCT/JP2013/079697 JP2013079697W WO2014069625A1 WO 2014069625 A1 WO2014069625 A1 WO 2014069625A1 JP 2013079697 W JP2013079697 W JP 2013079697W WO 2014069625 A1 WO2014069625 A1 WO 2014069625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal
- crystals
- hydrate
- powder
- fucosyl lactose
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H3/00—Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
- C07H3/06—Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
Definitions
- the present invention relates to an oligosaccharide crystal that is useful, for example, as a product, a raw material or an intermediate for health foods, pharmaceuticals, cosmetics, and the like, and a method for producing the crystal.
- Oligosaccharides are useful, for example, as raw materials or intermediates for health foods, pharmaceuticals, cosmetics and the like. Synthetic methods and fermentation methods are known as oligosaccharide production methods (Non-patent Documents 1 and 2, and Patent Documents 1 and 2).
- Synthetic methods and fermentation methods are known as oligosaccharide production methods (Non-patent Documents 1 and 2, and Patent Documents 1 and 2).
- oligosaccharides 2'- O -fucosyl lactose [4- O- (2- O- ⁇ -L-fucosylpyranosyl- ⁇ -D-galactopyranosyl) -D-galactose] is contained in human breast milk It is one of the important oligosaccharides and has functions such as intestinal bacterial growth action, antibacterial activity, antiviral activity, immune system enhancement action and brain function enhancement action.
- Non-Patent Document 3 and Patent Document 3 have described that crystals of 2′- O -fucosyl lactose have been obtained, but there is no description regarding the properties of the obtained crystals, and industrially useful 2′- O—. There is a need for fucosyl lactose crystals.
- An object of the present invention is to provide crystals of 2′- O -fucosyl lactose, which is an oligosaccharide useful as, for example, products such as health foods, pharmaceuticals and cosmetics, raw materials or intermediates, and a method for producing the same.
- the present invention relates to the following (1) to (12).
- (1) 2′- O -fucosyl lactose n-hydrate crystal (where n represents any number from 0 to 3, and when n 0, 2′- O -fucosyl lactose-anhydride Called).
- diffraction angles (2 ⁇ ) are 10.00 ° ⁇ 0.20 °, 18.94 ° ⁇ 0.20 °, 20.44 ° ⁇ 0.20 ° and 21.72 °.
- a crystal of 2′- O -fucosyl lactose n-hydrate according to (1) above having a peak at ⁇ 0.20 ° [n is as defined in (1) above].
- diffraction angles (2 ⁇ ) are further changed to 11.88 ° ⁇ 0.20 °, 14.26 ° ⁇ 0.20 °, 15.60 ° ⁇ 0.20 °, and 17.
- a crystal of 2'- O -fucosyl lactose n-hydrate according to (6) above, having a peak at 12 ° ⁇ 0.20 ° [n is as defined in (1) above].
- the method for producing 2'- O -fucosyl lactose n-hydrate crystals [n is synonymous with the above (1)] comprising the step of gradually adding.
- the aqueous solution amount while maintaining the temperature of 15 ⁇ 60 ° C.
- the 2′- O -fucosyl lactose n-hydrate crystals of the above (1) comprising a step of gradually adding 0.1 to 3 times the amount of C1-C6 alcohol to the aqueous solution little by little [n is Synonymous with (1) above].
- the method includes the step of gradually adding the C1-C6 alcohol to the 2′- O -fucosyl lactose-containing aqueous solution little by little and then holding the resulting water / alcohol solution at 15-60 ° C. for 1 hour or more ( 9) The manufacturing method of (10). (12) The production method according to any one of (9) to (11) above, wherein the C1 to C6 alcohol is methanol or ethanol.
- the present invention provides oligosaccharide crystals that are useful as products, raw materials, intermediates, and the like such as health foods, pharmaceuticals, and cosmetics, and a method for producing the same.
- FIG. 1 is a diagram showing a powder X-ray diffraction peak pattern of 2′- O -fucosyl lactose 1.4 hydrate crystals.
- the vertical axis of the graph is intensity (unit cps), and the horizontal axis is diffraction angle (2 ⁇ ) (unit °).
- FIG. 2 is a diagram showing a powder X-ray diffraction peak pattern of 2′- O -fucosyl lactose 2.5 hydrate crystals.
- the vertical axis of the graph is intensity (unit cps), and the horizontal axis is diffraction angle (2 ⁇ ) (unit °).
- FIG. 1 is a diagram showing a powder X-ray diffraction peak pattern of 2′- O -fucosyl lactose 1.4 hydrate crystals.
- the vertical axis of the graph is intensity (unit cps), and the horizontal axis is diffraction angle (2 ⁇ ) (unit °).
- FIG. 3 is a diagram showing the results of thermogravimetric analysis (TG) of crystal A of 2′- O -fucosyl lactose.
- the vertical axis of the graph is weight (%), and the horizontal axis is temperature.
- the region represented by A represents the amount of water loss between room temperature and 50 ° C, and the region represented by B represents the amount of water loss between 50 and 180 ° C.
- FIG. 4 is a diagram showing a temperature variable powder X-ray diffraction peak pattern of 2′- O -fucosyl lactose crystals.
- the vertical axis of the graph is intensity (unit cps), and the horizontal axis is diffraction angle (2 ⁇ ) (unit °).
- 2'O of the present invention - fucosyl sill lactose crystals present invention 2'O - fucosyllactose crystal (hereinafter sometimes abbreviated as 2'FL) ⁇ n-hydrate (where, n is 0-3 Any number, preferably n is any number greater than 0 and less than or equal to 3, more preferably n is any number from 0 to 3 in any decimal place, more preferably n is greater than 0; Any number up to the first decimal place of 3 or less.
- 2′FL ⁇ anhydride can be cited as A and B crystals, and 2′- O -fucosyl.
- Crystal A Crystal in which the conformation of glucose in lactose is ⁇ -type and / or ⁇ -type can be mentioned.
- the crystal of 2′FL ⁇ 1.4 hydrate is a crystal whose powder X-ray diffraction pattern using CuK ⁇ as an X-ray source is defined by the values shown in FIG. 1 and Table 1.
- the analyzer used for powder X-ray diffraction and the measurement conditions are the sample horizontal multi-purpose X-ray diffractometer Ultima IV manufactured by Rigaku Corporation, and the measurement conditions are a copper target sealed tube in the X-ray source. It is possible to raise conditions for irradiating a sample with X-rays that are not monochromatic and detecting diffracted X-rays derived from CuK ⁇ rays (wavelength 1.541 ⁇ ⁇ ⁇ ⁇ ⁇ ) using an energy-resolving detector.
- the powder X-ray diffraction patterns simulated from the single crystal structures of 2′FL ⁇ 1.3 hydrate and 1.4 hydrate are as shown in Table 2.
- a structural analysis by a single crystal X-ray diffraction method can be mentioned.
- a single crystal of 2'FL ⁇ n hydrate is attached to a diffractometer, and a diffraction image is measured using X-rays having a predetermined wavelength in an atmosphere of room temperature or an inert gas stream at a predetermined temperature.
- the structure is determined by the direct method and the structure is refined by the least square method to obtain a single crystal structure.
- a method for simulating a powder X-ray diffraction pattern from a single crystal structure for example, a crystal structure display program Mercury (Cambridge Crystallographic Data Center) or PowderCell (German Federal Materials Research Laboratory) can be used.
- a powder X-ray diffraction pattern is calculated by inputting a crystal lattice constant, atomic coordinates, and an X-ray wavelength used for calculation.
- the diffraction angle (2 ⁇ ) was 17.00 ° ⁇ 0.20 °, 18.82 ° ⁇ 0.20 ° and 21.58 ° ⁇ 0.20 °, preferably 17.00 ° ⁇ 0.20 °, 18.82 ° ⁇ 0.20 °, 21.58 ° ⁇ 0.20 °, 9.86 ° ⁇ 0.20 °, 14.16 ° ⁇ 0.20 °, 16.12 ° ⁇ 0.20 ° and 20.30 ° ⁇ 0.20 °, more preferably 17.00 ° ⁇ 0.20 °, 18.82 ° ⁇ 0.20 °, 21.58 ° ⁇ 0.20 °, 9.86 ° ⁇ 0.20 °, 14.16 ° ⁇ 0.20 °, 16.12 ° ⁇ 0.20 °, 20.30 ° ⁇ 0.20 °, 15.52 ° ⁇ 0.20 °, 23.88 ° ⁇ 0.20 °, preferably 17.00 ° ⁇ 0.20 °, 18.82 ° ⁇ 0.20 °,
- Crystal B Crystal B is 2′FL ⁇ p hydrate (where p is any number greater than 1.7 and less than or equal to 3, preferably p is any number from 1.8 to 3.0
- the crystal of 2′FL ⁇ 2.5 hydrate, which is a B crystal, is a powder X-ray diffraction pattern using CuK ⁇ as an X-ray source. And crystals defined by the values shown in Table 3.
- the powder X-ray diffraction pattern simulated from the single crystal structure of 2′FL ⁇ 2.5 hydrate crystals is as shown in Table 4.
- the powder X-ray diffraction pattern of 2'FL ⁇ 2.5 hydrate crystals and the powder X-ray diffraction pattern simulated from the single crystal structure analysis of 2'FL ⁇ 2.5 hydrate crystals are in good agreement That is, the peak intensity changes depending on the number of water molecules contained in the crystal.
- the crystal B also has a tendency to move to a high angle because the crystal lattice contracts as water molecules escape from the crystal.
- the crystal of the crystal B can be defined as follows.
- the diffraction angle (2 ⁇ ) was 10.00 ° ⁇ 0.20 °, 18.94 ° ⁇ 0.20 °, 20.44 ° ⁇ 0.20 ° and 21.72 ° ⁇ 0.20 °, preferably 10.00 ° ⁇ 0.20 °, 18.94 ° ⁇ 0.20 °, 20.44 ° ⁇ 0.20 °, 21.72 ° ⁇ 0.20 °, 11.88 ° ⁇ 0.20 °, 14.26 ° ⁇ 0.20 °, 15.60 ° ⁇ 0.20 ° and 17.12 ° ⁇ 0.20 °, more preferably 10.00 ° ⁇ 0.20 °, 18.94 ° ⁇ 0.20 °, 20.44 ° ⁇ 0.20 °, 21.72 ° ⁇ 0.20 °, 11.88 ° ⁇ 0.20 °, 14.26 ° ⁇ 0.20 °, 15.60 ° ⁇ 0.20 ° and 17.12 ° ⁇ 0.20 °, more preferably 10.00 ° ⁇ 0.20 °
- 2′FL hydrate crystals having a peak at 8 ° ⁇ 0.20 ° and 19.86 ° ⁇ 0.20 °, most preferably 2 ⁇ in Table 3, are 2′FL ⁇ p hydration of the present invention. It is a crystal of an object.
- the 2′FL-containing aqueous solution may be any aqueous solution containing 2′FL, for example, 2′FL
- the purity of FL is 80% or more, more preferably 85% or more, and more preferably 90% or more
- a 2'FL-containing aqueous solution can be given, and most of the impurities contained in the aqueous solution are sugars such as lactose. Does not hinder crystallization even if the purity of the 2′FL aqueous solution is less than 80%.
- 2′FL-containing aqueous solution is, for example, Chem. Rev., Vol.100, p4445, 2000, Curr.Opin. In Drug Discovery & Develop., Vol. 3, p756, 2000, International Publication No. 98/12343 pamphlet.
- 2′FL obtained by a synthesis method, an enzymatic method, a method using resting cells, or a fermentation method is also described in the above-mentioned literature. It can be obtained by purification using a certain known purification method. It can also be obtained by dissolving commercially available 2'FL powder.
- solids such as bacterial cells can be obtained by centrifugation, filtration, ceramic filter or the like from 2′FL obtained by enzymatic method, method using resting bacterial cells, or fermentation method as necessary. After removing the substances, the resulting aqueous solution can be passed through a column packed with an ion exchange resin such as Diaion (Mitsubishi Chemical Corporation), desalted, concentrated, and crystallized. . In the case of commercially available 2'FL, it can be concentrated and crystallized as it is.
- an ion exchange resin such as Diaion (Mitsubishi Chemical Corporation)
- the concentration of the 2′FL-containing aqueous solution used in the method of the present invention is 500 g / L or more, preferably 600 g / L or more, more preferably 700 g / L or more, and more preferably 800 g / L or more.
- the 2′FL-containing aqueous solution obtained above is set to 15 to 60 ° C., preferably 20 to 55 ° C., more preferably 25 to 50 ° C., still more preferably 30 to 45 ° C., and most preferably 35 to 43 ° C.
- 2′FL crystals are 0.001 to 0.1 wt%, preferably 0.005 to 0.05 wt%, more preferably 0 Crystals are maintained at 35 to 50 ° C. for 30 minutes to 10 hours, preferably 1 to 8 hours, more preferably 3 to 6 hours after addition to the aqueous solution so as to be 0.01 to 0.03% by weight. It is also possible to promote precipitation.
- the 2'FL crystals added above can also be obtained by adding methanol to a 2'FL-containing aqueous solution with a concentration of 700 g / L to a concentration of 50-60% and storing at 4 ° C for about 30 days. can do.
- C1 to C6 alcohol is gradually added to the aqueous solution little by little to precipitate crystals.
- the amount of the C1 to C6 alcohol added is 0.1 to 3 times, preferably 0.2 to 2.5 times, more preferably 0.4 to 2 times the amount of the 2′FL-containing aqueous solution. I can give you.
- C1-C6 alcohols examples include ethanol, methanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, t-butanol, amyl alcohol, and n-hexanol, preferably C1-C4.
- alcohols such as ethanol, methanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, and t-butanol, more preferably methanol and ethanol, and still more preferably ethanol.
- Gradual addition of C1 to C6 alcohols means dropwise addition to the aqueous solution so that the temperature of the 2'FL-containing aqueous solution does not change abruptly.
- the dropping speed is 2 to 20 hours, preferably 4 to 18 hours, more preferably 6 to 15 hours, and further preferably 8 to 12 hours.
- the rate at which the total amount of ethanol is dropped over time can be increased, and can be set as appropriate according to the type of alcohol used, the 2′FL-containing aqueous solution, and the amount of alcohol.
- the obtained water / alcohol solution is kept for 1 hour or more, preferably 1 to 30 hours, more preferably 5 to 25 hours, further preferably 8 to 20 hours, most preferably 12 to 18 hours, at 15 to 60 ° C.
- the crystals are aged by holding. After aging the crystals, the crystals may be further precipitated by gradually cooling the water / alcohol solution to a temperature lower than the temperature of the aging step by 5 ° C. or more, preferably 10 ° C. or more, more preferably 15 ° C. or more. Good.
- the temperature of the aging step is 40 ° C.
- the crystal is obtained by gradually cooling the water / alcohol solution to 35 ° C. or less, more preferably 30 to 10 ° C., and further preferably 25 to 20 ° C. It may be deposited.
- the term “gradual cooling” means to lower the temperature at a rate of, for example, 1 to 10 ° C./hour, preferably 2 to 8 ° C./hour, more preferably 4 to 6 ° C./hour.
- the obtained crystals are separated using a basket-type centrifuge, etc., and are washed with a C1 to C6 alcohol used for crystallization, an aqueous solution of the alcohol, or without being washed, and then subjected to vacuum in a conical dryer or the like.
- a ventilator such as a dryer or a fluidized bed dryer, the highly pure 2′FL ⁇ n hydrate crystals of the present invention having a purity of 95% or more are obtained. Can be acquired.
- the drying temperature in the drying step is 10 to 105 ° C., preferably 20 to 90 ° C., and the drying time is 1 to 24 hours, preferably 1 to 10 hours.
- the drying time is 10 to 90 ° C., preferably 20 to 60 ° C., and the drying time is 1 to 24 hours, preferably 1 to 10 hours.
- the 2′FL ⁇ n hydrate crystals of the present invention having a purity of 95% or more can be obtained without drying with a dryer. Further, by repeating the above-described crystallization process of the 2′FL ⁇ n hydrate of the present invention 2 to 5 times, preferably 2 to 3 times, the purity of the 2′FL ⁇ n hydrate of the present invention having a purity of 99.5% or more is increased. Crystals of n-hydrate can be obtained.
- reaction solution supernatant was passed through a column packed with SK1B (Mitsubishi Chemical Corporation) and then with WA30 (Mitsubishi Chemical Corporation), and 2'- O -fucosyl lactose from which the salt had been removed was removed.
- the containing fraction was collected.
- the fraction was concentrated under reduced pressure to obtain a 2′- O -fucosyl lactose-containing aqueous solution having a 2′FL concentration of 800 g / L.
- the purity of 2'FL of the aqueous solution was measured by HPLC, it was 80.7% (area%).
- the moisture content of the 2'FL crystals obtained in (2) above was measured by the following method. Using a moisture analyzer AQV-2200 (Hiranuma Sangyo Co., Ltd., Karl Fischer method), 0.5 g of sample was precisely weighed and stirred for 10 minutes in 50 mL of anhydrous methanol, then HYDRANAL-Composite 5 (1 mL-5 mg H 2 O ) To determine the water content. As a result, the moisture content of the 2′FL crystals obtained in the above (2) was 5.2%. From comparison with the theoretical moisture content, the 2′FL crystals were 2′FL ⁇ 1.4 hydrate.
- the 2′FL single crystal obtained by the above method is attached to the R-AXIS V diffractometer (Rigaku) installed in the beam line BL26B1 of the large synchrotron radiation facility SPring-8.
- the diffraction image was measured using synchrotron radiation (wavelength 0.711 ⁇ ) corresponding to MoK ⁇ rays while blowing a 100 K nitrogen stream on the single crystal. From the set of plane index and diffraction intensity calculated from the diffraction image, the structure was determined by the direct method and the structure was refined by the least square method using SHELX-97 (University of Göttingen) to obtain a single crystal structure.
- the crystals used for the analysis are 2′FL ⁇ 1.3 hydrate and 1.4 hydrate crystals, and both hydrate crystals have two water molecules having different occupancy rates, that is, occupancy rates of 100 % Occupancy is 30% in the I-position water molecule and 2′FL ⁇ 1.3 hydrate crystals, and 38.1% in the 2′FL ⁇ 1.4 hydrate crystals. It was found that the water molecule at position II was included, and the water molecule at position II was more easily dehydrated than the water molecule at position I.
- glucose in 2′FL ⁇ 1.4 hydrate is 11.6 and 88.4% of ⁇ type and ⁇ type, respectively. It was shown to contain. This is probably because the water molecule at position II collides with the oxygen atom of ⁇ -type glucose, so the ⁇ -type ratio is lower than ⁇ -type. Therefore, in the 2′FL ⁇ m hydrate crystals containing more than 1.4 water molecules, the abundance ratio of ⁇ -type glucose is lower than 11.6%, or all are ⁇ -type.
- thermogravimetric analysis Thermogravimetric analysis (TG) The thermogravimetric analysis was performed using Q500 (manufactured by TA Instruments). Crystals of 2′FL ⁇ 1.7 hydrate obtained by the method described in Example 1 to be described later are weighed and attached to the apparatus, and at a rate of 10 ° C./min from room temperature to 200 ° C. in a dry nitrogen stream. The temperature was raised, and the change in mass with respect to temperature and time was measured. If a mass change rate of 0.20% / min or more is observed during measurement, the measurement is performed while maintaining the temperature at that time, and when the mass change rate becomes less than 0.05% / min, the temperature is increased. Resumed.
- the obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol. The obtained crystals were dried at 30 ° C. for 180 minutes using a vacuum dryer to obtain 2′FL ⁇ 1.3 hydrate crystals. The amount of hydrated crystals was determined by the same method as in Example 1 (4). (3) Production of 2′FL ⁇ 1.0 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
- the obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol. The obtained crystals were dried at 40 ° C. for 180 minutes using a vacuum dryer to obtain 2′FL ⁇ 1.0 hydrate crystals. The amount of hydrated crystals was determined by the same method as in Example 1 (4). (4) Production of 2′FL ⁇ anhydride crystals 2′FL is produced in the same manner as in Example 1, and the crystals are precipitated and aged.
- the obtained 2′FL crystals are recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
- the obtained crystals are dried at 90 ° C. for 24 hours using a vacuum dryer to obtain 2′FL ⁇ anhydride crystals.
- the amount of hydrated crystals can be determined by the same method as in Example 1 (4).
- Production of crystals of 2'- O -fucosyl lactose p-hydrate 1 (1) Production of 2′FL 2′FL was produced in the same manner as in Example 1 (1). (2) Production of 2′FL ⁇ 2.5 hydrate crystals After 2′FL crystals were precipitated by the same method as in Example 1 (2), the 2′FL crystals were hydrated in a water / ethanol solution. The crystals were aged.
- the obtained 2′FL crystals were recovered using a basket-type centrifuge and used as 2′FL crystals used for the subsequent analysis. Purity measurement by HPLC confirms that 95.2% (area%) or more of 2′FL crystals have been obtained. By dissolving the crystals once more in water and repeating the above crystallization procedure, 99 ′ is obtained. More than 4% (area%) of 2′FL crystals could be obtained.
- (3) Powder X-ray diffraction The 2′FL crystals obtained in (2) above were subjected to powder X-ray diffraction. The analysis conditions are the same as in Example 1 (3), and the measurement results are shown in Table 7.
- Production of 2'- O -fucosyl lactose p-hydrate crystals 2 (1) Production of 2′FL ⁇ 2.0 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged. The obtained 2′FL crystals were recovered using a basket-type centrifuge. The obtained crystals were dried at 30 ° C. for 30 minutes using a vacuum dryer to obtain 2′FL ⁇ 2.0 hydrate crystals. (2) Production of 2′FL ⁇ 2.2 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
- the obtained 2′FL crystals were recovered using a basket-type centrifuge. The obtained crystals were dried at 25 ° C. for 30 minutes using a vacuum dryer to obtain 2′FL ⁇ 2.2 hydrate crystals. (3) Production of 2′FL ⁇ 2.7 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
- the obtained 2′FL crystals were recovered using a basket-type centrifuge.
- the obtained crystals were dried at 20 ° C. for 30 minutes using a fluidized bed dryer to obtain 2′FL ⁇ 2.7 hydrate crystals.
- 2′- O -fucosyl lactose crystals useful as products, raw materials or intermediates for health foods, pharmaceuticals, cosmetics and the like, and a method for producing the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Saccharide Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A crystal of 2'-O-fucosyllactose n-hydrate (wherein n represents an arbitrary numerical number of 0 to 3, wherein when n = 0, the compound is referred to as "2'-O-fucosyllactose anhydride") is produced by a method comprising a step of adding a C1-C6 alcohol to an aqueous solution containing 2'-O-fucosyllactose and having a temperature of 15 to 60˚C while keeping the temperature of the aqueous solution at the above-mentioned temperature, wherein the amount of the alcohol to be added is 0.1 to 3 folds the volume of the aqueous solution and the alcohol is added to the aqueous solution slowly in small portions.
Description
本発明は、例えば健康食品、医薬品、化粧品等の製品、原料もしくは中間体等として有用であるオリゴ糖の結晶、および該結晶の製造方法に関する。
The present invention relates to an oligosaccharide crystal that is useful, for example, as a product, a raw material or an intermediate for health foods, pharmaceuticals, cosmetics, and the like, and a method for producing the crystal.
オリゴ糖は、例えば健康食品、医薬品、化粧品等の原料または中間体等として有用である。
オリゴ糖の製造方法としては、合成法および発酵法が知られている(非特許文献1及び2、並びに特許文献1及び2)。
オリゴ糖のうち、2’-O-フコシルラクトース[4-O-(2-O-α-L-フコシルピラノシル-β-D-ガラクトピラノシル)-D-ガラクトース]はヒト母乳に含まれる重要なオリゴ糖の1つであり、腸内細菌増殖作用、抗菌活性、抗ウィルス活性、免疫システム亢進作用及び脳機能亢進作用などの機能があるとされている。 Oligosaccharides are useful, for example, as raw materials or intermediates for health foods, pharmaceuticals, cosmetics and the like.
Synthetic methods and fermentation methods are known as oligosaccharide production methods (Non-patent Documents 1 and 2, and Patent Documents 1 and 2).
Among oligosaccharides, 2'- O -fucosyl lactose [4- O- (2- O- α-L-fucosylpyranosyl-β-D-galactopyranosyl) -D-galactose] is contained in human breast milk It is one of the important oligosaccharides and has functions such as intestinal bacterial growth action, antibacterial activity, antiviral activity, immune system enhancement action and brain function enhancement action.
オリゴ糖の製造方法としては、合成法および発酵法が知られている(非特許文献1及び2、並びに特許文献1及び2)。
オリゴ糖のうち、2’-O-フコシルラクトース[4-O-(2-O-α-L-フコシルピラノシル-β-D-ガラクトピラノシル)-D-ガラクトース]はヒト母乳に含まれる重要なオリゴ糖の1つであり、腸内細菌増殖作用、抗菌活性、抗ウィルス活性、免疫システム亢進作用及び脳機能亢進作用などの機能があるとされている。 Oligosaccharides are useful, for example, as raw materials or intermediates for health foods, pharmaceuticals, cosmetics and the like.
Synthetic methods and fermentation methods are known as oligosaccharide production methods (Non-patent Documents 1 and 2, and Patent Documents 1 and 2).
Among oligosaccharides, 2'- O -fucosyl lactose [4- O- (2- O- α-L-fucosylpyranosyl-β-D-galactopyranosyl) -D-galactose] is contained in human breast milk It is one of the important oligosaccharides and has functions such as intestinal bacterial growth action, antibacterial activity, antiviral activity, immune system enhancement action and brain function enhancement action.
上記のような有用な作用を有する2’-O-フコシルラクトースを、健康食品等の原料として用いるためには、保存安定性が良好で、かつ高純度であることが求められている。結晶は保存安定性が高く、また結晶化は純度を上げる手段として非常に有効である。非特許文献3および特許文献3には、2’-O-フコシルラクトースの結晶が取得されたとの記載はあるが、取得された結晶の性質に関する記載はなく、産業上有用な2’-O-フコシルラクトースの結晶が求められている。
In order to use 2′- O -fucosyl lactose having the above-described useful action as a raw material for health foods or the like, it is required to have good storage stability and high purity. Crystals have high storage stability, and crystallization is very effective as a means for increasing purity. Non-Patent Document 3 and Patent Document 3 have described that crystals of 2′- O -fucosyl lactose have been obtained, but there is no description regarding the properties of the obtained crystals, and industrially useful 2′- O—. There is a need for fucosyl lactose crystals.
本発明の目的は、例えば健康食品、医薬品、化粧品等の製品、原料もしくは中間体等として有用なオリゴ糖である2’-O-フコシルラクトースの結晶、およびその製造方法を提供することにある。
An object of the present invention is to provide crystals of 2′- O -fucosyl lactose, which is an oligosaccharide useful as, for example, products such as health foods, pharmaceuticals and cosmetics, raw materials or intermediates, and a method for producing the same.
本発明は、以下の(1)~(12)に関する。
(1)2’-O-フコシルラクトース・n水和物の結晶(ただし、nは0~3のいずれかの数字を表し、n=0の場合は、2’-O-フコシルラクトース・無水物という)。
(2)粉末X線回折において、回折角(2θ)が、17.00°±0.20°、18.82°±0.20°および21.58°±0.20°にピークを有することを特徴とする請求項1記載の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(3)粉末X線回折において、回折角(2θ)が、さらに9.86°±0.20°、14.16°±0.20°、16.12°±0.20°および20.30°±0.20°にピークを有することを特徴とする上記(2)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(4)粉末X線回折において、回折角(2θ)が、さらに15.52°±0.20°、23.88°±0.20°、24.76°±0.20°および27.52°±0.20°にピークを有することを特徴とする上記(3)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(5)粉末X線回折において、回折角(2θ)が、さらに12.72°±0.20°にピークを有することを特徴とする上記(4)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(6)粉末X線回折において、回折角(2θ)が、10.00°±0.20°、18.94°±0.20°、20.44°±0.20°および21.72°±0.20°にピークを有することを特徴とする上記(1)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(7)粉末X線回折において、回折角(2θ)が、さらに、11.88°±0.20°、14.26°±0.20°、15.60°±0.20°および17.12°±0.20°にピークを有することを特徴とする上記(6)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(8)粉末X線回折において、回折角(2θ)が、さらに、16.24°±0.20°、16.88°±0.20°、18.58°±0.20°および19.86°±0.20°にピークを有することを特徴とする上記(7)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(9)15~60℃の2’-O-フコシルラクトース含有水溶液に、その温度を維持しながら該水溶液量に対して0.1~3倍量のC1~C6のアルコールを該水溶液に少量ずつ徐々に添加する工程を含む上記(1)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]の製造方法。
(10)15~60℃の2’-O-フコシルラクトース含有水溶液に、種晶として2’-O-フコシルラクトースの結晶を添加した後、15~60℃の温度を維持しながら該水溶液量に対して0.1~3倍量のC1~C6のアルコールを該水溶液に少量ずつ徐々に添加する工程を含む上記(1)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]の製造方法。
(11)C1~C6のアルコールを2’-O-フコシルラクトース含有水溶液に少量ずつ徐々に添加した後、得られた水/アルコール溶液を15~60℃で1時間以上保持する工程を含む上記(9)または(10)の製造方法。
(12)C1~C6のアルコールが、メタノールまたはエタノールである上記(9)~(11)のいずれか1つに記載の製造方法。 The present invention relates to the following (1) to (12).
(1) 2′- O -fucosyl lactose n-hydrate crystal (where n represents any number from 0 to 3, and when n = 0, 2′- O -fucosyl lactose-anhydride Called).
(2) In powder X-ray diffraction, the diffraction angle (2θ) has peaks at 17.00 ° ± 0.20 °, 18.82 ° ± 0.20 °, and 21.58 ° ± 0.20 °. The crystal of 2'- O -fucosyl lactose n-hydrate according to claim 1, wherein n is as defined in (1) above.
(3) In powder X-ray diffraction, the diffraction angles (2θ) are further increased to 9.86 ° ± 0.20 °, 14.16 ° ± 0.20 °, 16.12 ° ± 0.20 °, and 20.30. A crystal of 2′- O -fucosyl lactose n-hydrate according to (2) above, having a peak at ° ± 0.20 ° [n is as defined in (1) above].
(4) In powder X-ray diffraction, diffraction angles (2θ) are further 15.52 ° ± 0.20 °, 23.88 ° ± 0.20 °, 24.76 ° ± 0.20 °, and 27.52. A crystal of 2′- O -fucosyl lactose n-hydrate according to (3) above having a peak at ° ± 0.20 ° [n is as defined in (1) above].
(5) 2′- O -fucosyl lactose / n water according to (4) above, wherein the diffraction angle (2θ) further has a peak at 12.72 ° ± 0.20 ° in powder X-ray diffraction Japanese crystals [n is as defined in (1) above].
(6) In powder X-ray diffraction, diffraction angles (2θ) are 10.00 ° ± 0.20 °, 18.94 ° ± 0.20 °, 20.44 ° ± 0.20 ° and 21.72 °. A crystal of 2′- O -fucosyl lactose n-hydrate according to (1) above having a peak at ± 0.20 ° [n is as defined in (1) above].
(7) In powder X-ray diffraction, diffraction angles (2θ) are further changed to 11.88 ° ± 0.20 °, 14.26 ° ± 0.20 °, 15.60 ° ± 0.20 °, and 17. A crystal of 2'- O -fucosyl lactose n-hydrate according to (6) above, having a peak at 12 ° ± 0.20 ° [n is as defined in (1) above].
(8) In powder X-ray diffraction, the diffraction angle (2θ) is further changed to 16.24 ° ± 0.20 °, 16.88 ° ± 0.20 °, 18.58 ° ± 0.20 °, and 19. A crystal of 2′- O -fucosyl lactose · n hydrate according to (7) above having a peak at 86 ° ± 0.20 ° [n is as defined in (1) above].
(9) Into the aqueous solution containing 2′- O -fucosyl lactose at 15 to 60 ° C., 0.1 to 3 times the amount of C1 to C6 alcohol is added to the aqueous solution little by little while maintaining the temperature. The method for producing 2'- O -fucosyl lactose n-hydrate crystals [n is synonymous with the above (1)] comprising the step of gradually adding.
The fucosyllactose containing aqueous solution, 2'O as seed - - (10) 2'- O of 15 ~ 60 ° C. After addition of fucosyl lactose crystals, the aqueous solution amount while maintaining the temperature of 15 ~ 60 ° C. In contrast, the 2′- O -fucosyl lactose n-hydrate crystals of the above (1) comprising a step of gradually adding 0.1 to 3 times the amount of C1-C6 alcohol to the aqueous solution little by little [n is Synonymous with (1) above].
(11) The method includes the step of gradually adding the C1-C6 alcohol to the 2′- O -fucosyl lactose-containing aqueous solution little by little and then holding the resulting water / alcohol solution at 15-60 ° C. for 1 hour or more ( 9) The manufacturing method of (10).
(12) The production method according to any one of (9) to (11) above, wherein the C1 to C6 alcohol is methanol or ethanol.
(1)2’-O-フコシルラクトース・n水和物の結晶(ただし、nは0~3のいずれかの数字を表し、n=0の場合は、2’-O-フコシルラクトース・無水物という)。
(2)粉末X線回折において、回折角(2θ)が、17.00°±0.20°、18.82°±0.20°および21.58°±0.20°にピークを有することを特徴とする請求項1記載の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(3)粉末X線回折において、回折角(2θ)が、さらに9.86°±0.20°、14.16°±0.20°、16.12°±0.20°および20.30°±0.20°にピークを有することを特徴とする上記(2)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(4)粉末X線回折において、回折角(2θ)が、さらに15.52°±0.20°、23.88°±0.20°、24.76°±0.20°および27.52°±0.20°にピークを有することを特徴とする上記(3)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(5)粉末X線回折において、回折角(2θ)が、さらに12.72°±0.20°にピークを有することを特徴とする上記(4)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(6)粉末X線回折において、回折角(2θ)が、10.00°±0.20°、18.94°±0.20°、20.44°±0.20°および21.72°±0.20°にピークを有することを特徴とする上記(1)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(7)粉末X線回折において、回折角(2θ)が、さらに、11.88°±0.20°、14.26°±0.20°、15.60°±0.20°および17.12°±0.20°にピークを有することを特徴とする上記(6)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(8)粉末X線回折において、回折角(2θ)が、さらに、16.24°±0.20°、16.88°±0.20°、18.58°±0.20°および19.86°±0.20°にピークを有することを特徴とする上記(7)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]。
(9)15~60℃の2’-O-フコシルラクトース含有水溶液に、その温度を維持しながら該水溶液量に対して0.1~3倍量のC1~C6のアルコールを該水溶液に少量ずつ徐々に添加する工程を含む上記(1)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]の製造方法。
(10)15~60℃の2’-O-フコシルラクトース含有水溶液に、種晶として2’-O-フコシルラクトースの結晶を添加した後、15~60℃の温度を維持しながら該水溶液量に対して0.1~3倍量のC1~C6のアルコールを該水溶液に少量ずつ徐々に添加する工程を含む上記(1)の2’-O-フコシルラクトース・n水和物の結晶[nは上記(1)と同義]の製造方法。
(11)C1~C6のアルコールを2’-O-フコシルラクトース含有水溶液に少量ずつ徐々に添加した後、得られた水/アルコール溶液を15~60℃で1時間以上保持する工程を含む上記(9)または(10)の製造方法。
(12)C1~C6のアルコールが、メタノールまたはエタノールである上記(9)~(11)のいずれか1つに記載の製造方法。 The present invention relates to the following (1) to (12).
(1) 2′- O -fucosyl lactose n-hydrate crystal (where n represents any number from 0 to 3, and when n = 0, 2′- O -fucosyl lactose-anhydride Called).
(2) In powder X-ray diffraction, the diffraction angle (2θ) has peaks at 17.00 ° ± 0.20 °, 18.82 ° ± 0.20 °, and 21.58 ° ± 0.20 °. The crystal of 2'- O -fucosyl lactose n-hydrate according to claim 1, wherein n is as defined in (1) above.
(3) In powder X-ray diffraction, the diffraction angles (2θ) are further increased to 9.86 ° ± 0.20 °, 14.16 ° ± 0.20 °, 16.12 ° ± 0.20 °, and 20.30. A crystal of 2′- O -fucosyl lactose n-hydrate according to (2) above, having a peak at ° ± 0.20 ° [n is as defined in (1) above].
(4) In powder X-ray diffraction, diffraction angles (2θ) are further 15.52 ° ± 0.20 °, 23.88 ° ± 0.20 °, 24.76 ° ± 0.20 °, and 27.52. A crystal of 2′- O -fucosyl lactose n-hydrate according to (3) above having a peak at ° ± 0.20 ° [n is as defined in (1) above].
(5) 2′- O -fucosyl lactose / n water according to (4) above, wherein the diffraction angle (2θ) further has a peak at 12.72 ° ± 0.20 ° in powder X-ray diffraction Japanese crystals [n is as defined in (1) above].
(6) In powder X-ray diffraction, diffraction angles (2θ) are 10.00 ° ± 0.20 °, 18.94 ° ± 0.20 °, 20.44 ° ± 0.20 ° and 21.72 °. A crystal of 2′- O -fucosyl lactose n-hydrate according to (1) above having a peak at ± 0.20 ° [n is as defined in (1) above].
(7) In powder X-ray diffraction, diffraction angles (2θ) are further changed to 11.88 ° ± 0.20 °, 14.26 ° ± 0.20 °, 15.60 ° ± 0.20 °, and 17. A crystal of 2'- O -fucosyl lactose n-hydrate according to (6) above, having a peak at 12 ° ± 0.20 ° [n is as defined in (1) above].
(8) In powder X-ray diffraction, the diffraction angle (2θ) is further changed to 16.24 ° ± 0.20 °, 16.88 ° ± 0.20 °, 18.58 ° ± 0.20 °, and 19. A crystal of 2′- O -fucosyl lactose · n hydrate according to (7) above having a peak at 86 ° ± 0.20 ° [n is as defined in (1) above].
(9) Into the aqueous solution containing 2′- O -fucosyl lactose at 15 to 60 ° C., 0.1 to 3 times the amount of C1 to C6 alcohol is added to the aqueous solution little by little while maintaining the temperature. The method for producing 2'- O -fucosyl lactose n-hydrate crystals [n is synonymous with the above (1)] comprising the step of gradually adding.
The fucosyllactose containing aqueous solution, 2'O as seed - - (10) 2'- O of 15 ~ 60 ° C. After addition of fucosyl lactose crystals, the aqueous solution amount while maintaining the temperature of 15 ~ 60 ° C. In contrast, the 2′- O -fucosyl lactose n-hydrate crystals of the above (1) comprising a step of gradually adding 0.1 to 3 times the amount of C1-C6 alcohol to the aqueous solution little by little [n is Synonymous with (1) above].
(11) The method includes the step of gradually adding the C1-C6 alcohol to the 2′- O -fucosyl lactose-containing aqueous solution little by little and then holding the resulting water / alcohol solution at 15-60 ° C. for 1 hour or more ( 9) The manufacturing method of (10).
(12) The production method according to any one of (9) to (11) above, wherein the C1 to C6 alcohol is methanol or ethanol.
本発明により、例えば健康食品、医薬品、化粧品等の製品、原料もしくは中間体等として有用であるオリゴ糖の結晶およびその製造方法が提供される。
The present invention provides oligosaccharide crystals that are useful as products, raw materials, intermediates, and the like such as health foods, pharmaceuticals, and cosmetics, and a method for producing the same.
1.本発明の2’-O-フコシルラクトースの結晶
本発明の2’-O-フコシルラクトース(以下、2’FLと略す場合もある)・n水和物の結晶(ただし、nは0~3の任意の数字、好ましくはnは0より大きく、3以下の任意の数字であり、より好ましくはnは0~3の任意の小数数第1位までの数字、さらに好ましくはnは0より大きく、3以下の任意の小数第1位までの数字である。n=0のときは2’FL・無水物という)としては、A晶及びB晶をあげることができ、さらに2’-O-フコシルラクトース中のグルコースの立体配座がα型及び/又はβ型である結晶をあげることができる。
(1)A晶
A晶は、2’FL・m水和物の結晶(ただし、mは0~1.7の任意の数字、好ましくはmは0より大きく、1.7以下の任意の数字であり、より好ましくはmは0.1~1.7の任意の小数第一位までの数字である。m=0のときは2’FL・無水物という)であり、例えばA晶である2’FL・1.4水和物の結晶は、X線源としてCuKαを用いた粉末X線回折パターンが、図1及び表1に示す値で規定される結晶である。 1. 2'O of the present invention - fucosyl sill lactose crystals present invention 2'O - fucosyllactose crystal (hereinafter sometimes abbreviated as 2'FL) · n-hydrate (where, n is 0-3 Any number, preferably n is any number greater than 0 and less than or equal to 3, more preferably n is any number from 0 to 3 in any decimal place, more preferably n is greater than 0; Any number up to the first decimal place of 3 or less. When n = 0, 2′FL · anhydride can be cited as A and B crystals, and 2′- O -fucosyl. A crystal in which the conformation of glucose in lactose is α-type and / or β-type can be mentioned.
(1) Crystal A Crystal A is a 2′FL · m hydrate crystal (where m is any number from 0 to 1.7, preferably m is greater than 0 and any number less than 1.7) More preferably, m is a number up to the first decimal place in the range of 0.1 to 1.7. When m = 0, it is 2′FL · anhydride), for example, crystal A The crystal of 2′FL · 1.4 hydrate is a crystal whose powder X-ray diffraction pattern using CuKα as an X-ray source is defined by the values shown in FIG. 1 and Table 1.
本発明の2’-O-フコシルラクトース(以下、2’FLと略す場合もある)・n水和物の結晶(ただし、nは0~3の任意の数字、好ましくはnは0より大きく、3以下の任意の数字であり、より好ましくはnは0~3の任意の小数数第1位までの数字、さらに好ましくはnは0より大きく、3以下の任意の小数第1位までの数字である。n=0のときは2’FL・無水物という)としては、A晶及びB晶をあげることができ、さらに2’-O-フコシルラクトース中のグルコースの立体配座がα型及び/又はβ型である結晶をあげることができる。
(1)A晶
A晶は、2’FL・m水和物の結晶(ただし、mは0~1.7の任意の数字、好ましくはmは0より大きく、1.7以下の任意の数字であり、より好ましくはmは0.1~1.7の任意の小数第一位までの数字である。m=0のときは2’FL・無水物という)であり、例えばA晶である2’FL・1.4水和物の結晶は、X線源としてCuKαを用いた粉末X線回折パターンが、図1及び表1に示す値で規定される結晶である。 1. 2'O of the present invention - fucosyl sill lactose crystals present invention 2'O - fucosyllactose crystal (hereinafter sometimes abbreviated as 2'FL) · n-hydrate (where, n is 0-3 Any number, preferably n is any number greater than 0 and less than or equal to 3, more preferably n is any number from 0 to 3 in any decimal place, more preferably n is greater than 0; Any number up to the first decimal place of 3 or less. When n = 0, 2′FL · anhydride can be cited as A and B crystals, and 2′- O -fucosyl. A crystal in which the conformation of glucose in lactose is α-type and / or β-type can be mentioned.
(1) Crystal A Crystal A is a 2′FL · m hydrate crystal (where m is any number from 0 to 1.7, preferably m is greater than 0 and any number less than 1.7) More preferably, m is a number up to the first decimal place in the range of 0.1 to 1.7. When m = 0, it is 2′FL · anhydride), for example, crystal A The crystal of 2′FL · 1.4 hydrate is a crystal whose powder X-ray diffraction pattern using CuKα as an X-ray source is defined by the values shown in FIG. 1 and Table 1.
粉末X線回折を行う際に用いる分析装置、および測定条件としては、分析装置は株式会社リガク社製の試料水平型多目的X線回折装置UltimaIV、測定条件は、X線源に銅ターゲット封入管を用いて、単色化しないX線を試料に照射し、エネルギー分解型検出器を用いてCuKα線(波長1.541 Å)由来の回折X線を検出する条件をあげることができる。
また、2’FL・1.3水和物及び1.4水和物の単結晶構造からシミュレーションされる粉末X線回折パターンは、表2に示すとおりである。 The analyzer used for powder X-ray diffraction and the measurement conditions are the sample horizontal multi-purpose X-ray diffractometer Ultima IV manufactured by Rigaku Corporation, and the measurement conditions are a copper target sealed tube in the X-ray source. It is possible to raise conditions for irradiating a sample with X-rays that are not monochromatic and detecting diffracted X-rays derived from CuKα rays (wavelength 1.541 エ ネ ル ギ ー) using an energy-resolving detector.
The powder X-ray diffraction patterns simulated from the single crystal structures of 2′FL · 1.3 hydrate and 1.4 hydrate are as shown in Table 2.
また、2’FL・1.3水和物及び1.4水和物の単結晶構造からシミュレーションされる粉末X線回折パターンは、表2に示すとおりである。 The analyzer used for powder X-ray diffraction and the measurement conditions are the sample horizontal multi-purpose X-ray diffractometer Ultima IV manufactured by Rigaku Corporation, and the measurement conditions are a copper target sealed tube in the X-ray source. It is possible to raise conditions for irradiating a sample with X-rays that are not monochromatic and detecting diffracted X-rays derived from CuKα rays (wavelength 1.541 エ ネ ル ギ ー) using an energy-resolving detector.
The powder X-ray diffraction patterns simulated from the single crystal structures of 2′FL · 1.3 hydrate and 1.4 hydrate are as shown in Table 2.
結晶構造を決定する方法としては、単結晶X線回折法による構造解析を挙げることができる。2’FL・n水和物の単結晶を回折計に取り付け、室温の大気中あるいは所定の温度の不活性ガス気流中で、所定の波長のX線を用いて、回折画像を測定する。回折画像から算出された面指数と回折強度の組から、直接法による構造決定と最小二乗法による構造精密化を行い、単結晶構造を得る。
As a method for determining the crystal structure, a structural analysis by a single crystal X-ray diffraction method can be mentioned. A single crystal of 2'FL · n hydrate is attached to a diffractometer, and a diffraction image is measured using X-rays having a predetermined wavelength in an atmosphere of room temperature or an inert gas stream at a predetermined temperature. From a set of plane index and diffraction intensity calculated from the diffraction image, the structure is determined by the direct method and the structure is refined by the least square method to obtain a single crystal structure.
単結晶構造から粉末X線回折パターンのシミュレーションを行う方法としては、例えば結晶構造表示プログラムMercury(ケンブリッジ結晶学データセンター)やPowderCell(ドイツ連邦材料研究試験所)を用いることができる。結晶の格子定数と原子座標、そして計算に用いるX線の波長を入力することにより、粉末X線回折パターンを算出する。
As a method for simulating a powder X-ray diffraction pattern from a single crystal structure, for example, a crystal structure display program Mercury (Cambridge Crystallographic Data Center) or PowderCell (German Federal Materials Research Laboratory) can be used. A powder X-ray diffraction pattern is calculated by inputting a crystal lattice constant, atomic coordinates, and an X-ray wavelength used for calculation.
2’FL・1.4水和物結晶の粉末X線回折パターンの実測値と、2’FL・1.4水和物および1.3水和物の単結晶構造解析からシミュレートされる粉末X線回折パターンはよく一致しており、結晶に含まれる水分子の数によってピーク強度が変化する程度である。
A晶は、結晶から水分子が抜けるに従って結晶の格子が収縮するため、ピークが高角に移動する傾向にあるが、A晶の結晶は以下のように定義することができる。 Powders simulated from measured values of powder X-ray diffraction patterns of 2′FL · 1.4 hydrate crystals and single crystal structure analysis of 2′FL · 1.4 hydrate and 1.3 hydrate The X-ray diffraction patterns are in good agreement, and the peak intensity changes depending on the number of water molecules contained in the crystal.
In crystal A, the crystal lattice contracts as water molecules escape from the crystal, so the peak tends to move to a high angle, but crystal A can be defined as follows.
A晶は、結晶から水分子が抜けるに従って結晶の格子が収縮するため、ピークが高角に移動する傾向にあるが、A晶の結晶は以下のように定義することができる。 Powders simulated from measured values of powder X-ray diffraction patterns of 2′FL · 1.4 hydrate crystals and single crystal structure analysis of 2′FL · 1.4 hydrate and 1.3 hydrate The X-ray diffraction patterns are in good agreement, and the peak intensity changes depending on the number of water molecules contained in the crystal.
In crystal A, the crystal lattice contracts as water molecules escape from the crystal, so the peak tends to move to a high angle, but crystal A can be defined as follows.
すなわち、上記装置を用いて上記条件下で粉末X線回折パターンの分析を行ったとき、回折角(2θ)が、17.00°±0.20°、18.82°±0.20°および21.58°±0.20°、好ましくは17.00°±0.20°、18.82°±0.20°、21.58°±0.20°、9.86°±0.20°、14.16°±0.20°、16.12°±0.20°および20.30°±0.20°、より好ましくは17.00°±0.20°、18.82°±0.20°、21.58°±0.20°、9.86°±0.20°、14.16°±0.20°、16.12°±0.20°、20.30°±0.20°、15.52°±0.20°、23.88°±0.20°、24.76°±0.20°および27.52°±0.20°、さらに好ましくは17.00°±0.20°、18.82°±0.20°、21.58°±0.20°、9.86°±0.20°、14.16°±0.20°、16.12°±0.20°、20.30°±0.20°、15.52°±0.20°、23.88°±0.20°、24.76°±0.20°、27.52°±0.20°および12.72°±0.20°、最も好ましくは表1の2θにピークを有する2’FL・m水和物の結晶、は本発明の2’FL・m水和物の結晶である。
That is, when the powder X-ray diffraction pattern was analyzed using the above apparatus under the above conditions, the diffraction angle (2θ) was 17.00 ° ± 0.20 °, 18.82 ° ± 0.20 ° and 21.58 ° ± 0.20 °, preferably 17.00 ° ± 0.20 °, 18.82 ° ± 0.20 °, 21.58 ° ± 0.20 °, 9.86 ° ± 0.20 °, 14.16 ° ± 0.20 °, 16.12 ° ± 0.20 ° and 20.30 ° ± 0.20 °, more preferably 17.00 ° ± 0.20 °, 18.82 ° ± 0.20 °, 21.58 ° ± 0.20 °, 9.86 ° ± 0.20 °, 14.16 ° ± 0.20 °, 16.12 ° ± 0.20 °, 20.30 ° ± 0.20 °, 15.52 ° ± 0.20 °, 23.88 ° ± 0.20 °, 24.76 ° ± 0.20 ° and 27.52 ° ± 0.20 °, more preferably 17. 00 ° ± 0. 0 °, 18.82 ° ± 0.20 °, 21.58 ° ± 0.20 °, 9.86 ° ± 0.20 °, 14.16 ° ± 0.20 °, 16.12 ° ± 0. 20 °, 20.30 ° ± 0.20 °, 15.52 ° ± 0.20 °, 23.88 ° ± 0.20 °, 24.76 ° ± 0.20 °, 27.52 ° ± 0. 2′FL · m hydrate crystals having a peak at 20 ° and 12.72 ° ± 0.20 °, most preferably 2θ in Table 1, are the 2′FL · m hydrate crystals of the present invention. is there.
(2)B晶
B晶は、2’FL・p水和物(ただし、pは1.7より大きく3以下の任意の数字であり、好ましくはpは1.8~3.0の任意の小数第一位までの数字である)の結晶であり、B晶である2’FL・2.5水和物の結晶は、X線源としてCuKαを用いた粉末X線回折パターンが、図2及び表3に示す値で規定される結晶である。 (2) Crystal B Crystal B is 2′FL · p hydrate (where p is any number greater than 1.7 and less than or equal to 3, preferably p is any number from 1.8 to 3.0 The crystal of 2′FL · 2.5 hydrate, which is a B crystal, is a powder X-ray diffraction pattern using CuKα as an X-ray source. And crystals defined by the values shown in Table 3.
B晶は、2’FL・p水和物(ただし、pは1.7より大きく3以下の任意の数字であり、好ましくはpは1.8~3.0の任意の小数第一位までの数字である)の結晶であり、B晶である2’FL・2.5水和物の結晶は、X線源としてCuKαを用いた粉末X線回折パターンが、図2及び表3に示す値で規定される結晶である。 (2) Crystal B Crystal B is 2′FL · p hydrate (where p is any number greater than 1.7 and less than or equal to 3, preferably p is any number from 1.8 to 3.0 The crystal of 2′FL · 2.5 hydrate, which is a B crystal, is a powder X-ray diffraction pattern using CuKα as an X-ray source. And crystals defined by the values shown in Table 3.
2’FL・2.5水和物の結晶の単結晶構造からシミュレーションされる粉末X線回折パターンは、表4に示すとおりである。
The powder X-ray diffraction pattern simulated from the single crystal structure of 2′FL · 2.5 hydrate crystals is as shown in Table 4.
2’FL・2.5水和物結晶の粉末X線回折パターンと、2’FL・2.5水和物結晶の単結晶構造解析からシミュレートされる粉末X線回折パターンはよく一致しており、結晶に含まれる水分子の数によってピーク強度が変化する程度である。
B晶も、その結晶から水分子が抜けるに従って結晶の格子が収縮するため、ピークが高角に移動する傾向にあるが、B晶の結晶は以下のように定義することができる。 The powder X-ray diffraction pattern of 2'FL · 2.5 hydrate crystals and the powder X-ray diffraction pattern simulated from the single crystal structure analysis of 2'FL · 2.5 hydrate crystals are in good agreement That is, the peak intensity changes depending on the number of water molecules contained in the crystal.
The crystal B also has a tendency to move to a high angle because the crystal lattice contracts as water molecules escape from the crystal. The crystal of the crystal B can be defined as follows.
B晶も、その結晶から水分子が抜けるに従って結晶の格子が収縮するため、ピークが高角に移動する傾向にあるが、B晶の結晶は以下のように定義することができる。 The powder X-ray diffraction pattern of 2'FL · 2.5 hydrate crystals and the powder X-ray diffraction pattern simulated from the single crystal structure analysis of 2'FL · 2.5 hydrate crystals are in good agreement That is, the peak intensity changes depending on the number of water molecules contained in the crystal.
The crystal B also has a tendency to move to a high angle because the crystal lattice contracts as water molecules escape from the crystal. The crystal of the crystal B can be defined as follows.
すなわち、上記装置を用いて上記条件下で粉末X線回折パターンの分析を行ったとき、回折角(2θ)が、10.00°±0.20°、18.94°±0.20°、20.44°±0.20°および21.72°±0.20°、好ましくは10.00°±0.20°、18.94°±0.20°、20.44°±0.20°、21.72°±0.20°、11.88°±0.20°、14.26°±0.20°、15.60°±0.20°および17.12°±0.20°、さらに好ましくは10.00°±0.20°、18.94°±0.20°、20.44°±0.20°、21.72°±0.20°、11.88°±0.20°、14.26°±0.20°、15.60°±0.20°、17.12°±0.20°、16.24°±0.20°、16.88°±0.20°、18.58°±0.20°および19.86°±0.20°、最も好ましくは表3の2θにピークを有する2’FLの水和物の結晶、は本発明の2’FL・p水和物の結晶である。
That is, when the powder X-ray diffraction pattern was analyzed using the above apparatus under the above conditions, the diffraction angle (2θ) was 10.00 ° ± 0.20 °, 18.94 ° ± 0.20 °, 20.44 ° ± 0.20 ° and 21.72 ° ± 0.20 °, preferably 10.00 ° ± 0.20 °, 18.94 ° ± 0.20 °, 20.44 ° ± 0.20 °, 21.72 ° ± 0.20 °, 11.88 ° ± 0.20 °, 14.26 ° ± 0.20 °, 15.60 ° ± 0.20 ° and 17.12 ° ± 0.20 °, more preferably 10.00 ° ± 0.20 °, 18.94 ° ± 0.20 °, 20.44 ° ± 0.20 °, 21.72 ° ± 0.20 °, 11.88 ° ± 0.20 °, 14.26 ° ± 0.20 °, 15.60 ° ± 0.20 °, 17.12 ° ± 0.20 °, 16.24 ° ± 0.20 °, 16.88 ° ± 0.20 °, 18. 2′FL hydrate crystals having a peak at 8 ° ± 0.20 ° and 19.86 ° ± 0.20 °, most preferably 2θ in Table 3, are 2′FL · p hydration of the present invention. It is a crystal of an object.
2.本発明の2’-O-フコシルラクトース・n水和物の結晶の製造方法
本発明において、2’FL含有水溶液としては、2’FLを含有する水溶液であればいずれでもよいが、例えば2’FLの純度が80%以上、より好ましくは85%以上、さらに好ましくは90%以上の2’FL含有水溶液をあげることができ、該水溶液に含まれる不純物のほとんどがラクトースのような糖類である場合は、2’FL水溶液の純度が80%未満であっても結晶化には支障がない。 2. 2. Method for Producing Crystal of 2′- O- Fucosyl Lactose n Hydrate of the Present Invention In the present invention, the 2′FL-containing aqueous solution may be any aqueous solution containing 2′FL, for example, 2′FL In the case where the purity of FL is 80% or more, more preferably 85% or more, and more preferably 90% or more, a 2'FL-containing aqueous solution can be given, and most of the impurities contained in the aqueous solution are sugars such as lactose. Does not hinder crystallization even if the purity of the 2′FL aqueous solution is less than 80%.
本発明において、2’FL含有水溶液としては、2’FLを含有する水溶液であればいずれでもよいが、例えば2’FLの純度が80%以上、より好ましくは85%以上、さらに好ましくは90%以上の2’FL含有水溶液をあげることができ、該水溶液に含まれる不純物のほとんどがラクトースのような糖類である場合は、2’FL水溶液の純度が80%未満であっても結晶化には支障がない。 2. 2. Method for Producing Crystal of 2′- O- Fucosyl Lactose n Hydrate of the Present Invention In the present invention, the 2′FL-containing aqueous solution may be any aqueous solution containing 2′FL, for example, 2′FL In the case where the purity of FL is 80% or more, more preferably 85% or more, and more preferably 90% or more, a 2'FL-containing aqueous solution can be given, and most of the impurities contained in the aqueous solution are sugars such as lactose. Does not hinder crystallization even if the purity of the 2′FL aqueous solution is less than 80%.
上記の2’FL含有水溶液は、例えばChem. Rev., Vol.100, p4445, 2000、Curr.Opin. in Drug Discovery & Develop., Vol. 3,p756, 2000、国際公開第98/12343号パンフレット、または国際公開第99/40205号パンフレットに記載の方法に準じて、合成法、酵素法、休止菌体を用いた方法、または発酵法により得られる2’FLを、上記した文献にも記載がある公知の精製方法を用いて精製することによって取得することができる。また市販されている2’FLの粉末を溶解することによっても取得できる。
The above 2′FL-containing aqueous solution is, for example, Chem. Rev., Vol.100, p4445, 2000, Curr.Opin. In Drug Discovery & Develop., Vol. 3, p756, 2000, International Publication No. 98/12343 pamphlet. According to the method described in International Publication No. 99/40205 pamphlet, 2′FL obtained by a synthesis method, an enzymatic method, a method using resting cells, or a fermentation method is also described in the above-mentioned literature. It can be obtained by purification using a certain known purification method. It can also be obtained by dissolving commercially available 2'FL powder.
より具体的な精製方法としては、酵素法、休止菌体を用いた方法、または発酵法により取得した2’FLから必要に応じて遠心分離、濾過またはセラミックフィルタ等を用いて菌体等の固形物を除去した後、得られた水溶液をダイヤイオン(三菱化学株式会社)等のイオン交換樹脂を充填したカラムに通塔して脱塩してから濃縮し、結晶化する方法をあげることができる。市販されている2’FLの場合は、そのまま濃縮して結晶化することができる。
As a more specific purification method, solids such as bacterial cells can be obtained by centrifugation, filtration, ceramic filter or the like from 2′FL obtained by enzymatic method, method using resting bacterial cells, or fermentation method as necessary. After removing the substances, the resulting aqueous solution can be passed through a column packed with an ion exchange resin such as Diaion (Mitsubishi Chemical Corporation), desalted, concentrated, and crystallized. . In the case of commercially available 2'FL, it can be concentrated and crystallized as it is.
本発明の方法に用いられる2’FL含有水溶液の濃度としては、500g/L以上、好ましくは600g/L以上、さらに好ましくは700g/L以上、より好ましくは800g/L以上をあげることができる。
上記で取得される2’FL含有水溶液を15~60℃、好ましくは20~55℃、より好ましくは25~50℃、さらに好ましくは30~45℃、最も好ましくは35~43℃にする。 The concentration of the 2′FL-containing aqueous solution used in the method of the present invention is 500 g / L or more, preferably 600 g / L or more, more preferably 700 g / L or more, and more preferably 800 g / L or more.
The 2′FL-containing aqueous solution obtained above is set to 15 to 60 ° C., preferably 20 to 55 ° C., more preferably 25 to 50 ° C., still more preferably 30 to 45 ° C., and most preferably 35 to 43 ° C.
上記で取得される2’FL含有水溶液を15~60℃、好ましくは20~55℃、より好ましくは25~50℃、さらに好ましくは30~45℃、最も好ましくは35~43℃にする。 The concentration of the 2′FL-containing aqueous solution used in the method of the present invention is 500 g / L or more, preferably 600 g / L or more, more preferably 700 g / L or more, and more preferably 800 g / L or more.
The 2′FL-containing aqueous solution obtained above is set to 15 to 60 ° C., preferably 20 to 55 ° C., more preferably 25 to 50 ° C., still more preferably 30 to 45 ° C., and most preferably 35 to 43 ° C.
濃度が700g/L以上の2’FL含有水溶液を用いる場合には、2’FLの結晶を0.001~0.1重量%、好ましくは0.005~0.05重量%、より好ましくは0.01~0.03重量%になるように該水溶液に添加してから30分~10時間、好ましくは1~8時間、より好ましくは3~6時間、35~50℃に維持することにより結晶の析出を促すこともできる。
上記で添加する2’FLの結晶は、濃度が700g/Lの2’FL含有水溶液に、50~60%になるようにメタノールを加えたのち、4℃で30日程度保存することによっても取得することができる。 When a 2′FL-containing aqueous solution having a concentration of 700 g / L or more is used, 2′FL crystals are 0.001 to 0.1 wt%, preferably 0.005 to 0.05 wt%, more preferably 0 Crystals are maintained at 35 to 50 ° C. for 30 minutes to 10 hours, preferably 1 to 8 hours, more preferably 3 to 6 hours after addition to the aqueous solution so as to be 0.01 to 0.03% by weight. It is also possible to promote precipitation.
The 2'FL crystals added above can also be obtained by adding methanol to a 2'FL-containing aqueous solution with a concentration of 700 g / L to a concentration of 50-60% and storing at 4 ° C for about 30 days. can do.
上記で添加する2’FLの結晶は、濃度が700g/Lの2’FL含有水溶液に、50~60%になるようにメタノールを加えたのち、4℃で30日程度保存することによっても取得することができる。 When a 2′FL-containing aqueous solution having a concentration of 700 g / L or more is used, 2′FL crystals are 0.001 to 0.1 wt%, preferably 0.005 to 0.05 wt%, more preferably 0 Crystals are maintained at 35 to 50 ° C. for 30 minutes to 10 hours, preferably 1 to 8 hours, more preferably 3 to 6 hours after addition to the aqueous solution so as to be 0.01 to 0.03% by weight. It is also possible to promote precipitation.
The 2'FL crystals added above can also be obtained by adding methanol to a 2'FL-containing aqueous solution with a concentration of 700 g / L to a concentration of 50-60% and storing at 4 ° C for about 30 days. can do.
次に、2’FL含有水溶液の温度を15~60℃に維持した状態で、C1~C6のアルコールを少量ずつ徐々に該水溶液に添加することで、結晶を析出させる。
C1~C6のアルコールの添加量としては、2’FL含有水溶液に対して0.1~3倍量、好ましくは0.2~2.5倍量、より好ましくは0.4~2倍量をあげることができる。 Next, while maintaining the temperature of the 2′FL-containing aqueous solution at 15 to 60 ° C., C1 to C6 alcohol is gradually added to the aqueous solution little by little to precipitate crystals.
The amount of the C1 to C6 alcohol added is 0.1 to 3 times, preferably 0.2 to 2.5 times, more preferably 0.4 to 2 times the amount of the 2′FL-containing aqueous solution. I can give you.
C1~C6のアルコールの添加量としては、2’FL含有水溶液に対して0.1~3倍量、好ましくは0.2~2.5倍量、より好ましくは0.4~2倍量をあげることができる。 Next, while maintaining the temperature of the 2′FL-containing aqueous solution at 15 to 60 ° C., C1 to C6 alcohol is gradually added to the aqueous solution little by little to precipitate crystals.
The amount of the C1 to C6 alcohol added is 0.1 to 3 times, preferably 0.2 to 2.5 times, more preferably 0.4 to 2 times the amount of the 2′FL-containing aqueous solution. I can give you.
C1~C6のアルコールとしては、例えばエタノール、メタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、s-ブタノール、t-ブタノール、アミルアルコール、およびn-ヘキサノール、好ましくはC1~C4のアルコール、例えばエタノール、メタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、s-ブタノール、およびt-ブタノール、より好ましくはメタノールおよびエタノール、さらに好ましくはエタノールをあげることができる。
Examples of C1-C6 alcohols include ethanol, methanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, t-butanol, amyl alcohol, and n-hexanol, preferably C1-C4. And alcohols such as ethanol, methanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, and t-butanol, more preferably methanol and ethanol, and still more preferably ethanol.
C1~C6のアルコールを少量ずつ徐々に添加するとは、2’FL含有水溶液の温度が急激に変化しないように、該水溶液に滴下することを意味する。滴下する速度としては、例えば500mlの2’FL含有水溶液に250mlのエタノールを滴下する場合は、2~20時間、好ましくは4~18時間、より好ましくは6~15時間、さらに好ましくは8~12時間かけてエタノール全量を滴下する速度をあげることができ、用いるアルコールの種類、2’FL含有水溶液およびアルコールの量に応じて適宜設定できる。
Gradual addition of C1 to C6 alcohols means dropwise addition to the aqueous solution so that the temperature of the 2'FL-containing aqueous solution does not change abruptly. For example, when 250 ml of ethanol is dropped into 500 ml of 2′FL-containing aqueous solution, the dropping speed is 2 to 20 hours, preferably 4 to 18 hours, more preferably 6 to 15 hours, and further preferably 8 to 12 hours. The rate at which the total amount of ethanol is dropped over time can be increased, and can be set as appropriate according to the type of alcohol used, the 2′FL-containing aqueous solution, and the amount of alcohol.
その後、得られた水/アルコール溶液を1時間以上、好ましくは1~30時間、より好ましくは5~25時間、さらに好ましくは8~20時間、最も好ましくは12~18時間、15~60℃で保持することによって結晶を熟成させる。
結晶を熟成させた後、熟成工程の温度より5℃以上、好ましくは10℃以上、より好ましくは15℃以上低い温度に徐々に水/アルコール溶液を冷却することにより、さらに結晶を析出させてもよい。例えば、上記熟成工程の温度が40℃であった場合、好ましくは35℃以下、より好ましくは30~10℃、さらに好ましくは25~20℃に水/アルコール溶液を徐々に冷却することによって結晶を析出させてもよい。 Thereafter, the obtained water / alcohol solution is kept for 1 hour or more, preferably 1 to 30 hours, more preferably 5 to 25 hours, further preferably 8 to 20 hours, most preferably 12 to 18 hours, at 15 to 60 ° C. The crystals are aged by holding.
After aging the crystals, the crystals may be further precipitated by gradually cooling the water / alcohol solution to a temperature lower than the temperature of the aging step by 5 ° C. or more, preferably 10 ° C. or more, more preferably 15 ° C. or more. Good. For example, when the temperature of the aging step is 40 ° C., the crystal is obtained by gradually cooling the water / alcohol solution to 35 ° C. or less, more preferably 30 to 10 ° C., and further preferably 25 to 20 ° C. It may be deposited.
結晶を熟成させた後、熟成工程の温度より5℃以上、好ましくは10℃以上、より好ましくは15℃以上低い温度に徐々に水/アルコール溶液を冷却することにより、さらに結晶を析出させてもよい。例えば、上記熟成工程の温度が40℃であった場合、好ましくは35℃以下、より好ましくは30~10℃、さらに好ましくは25~20℃に水/アルコール溶液を徐々に冷却することによって結晶を析出させてもよい。 Thereafter, the obtained water / alcohol solution is kept for 1 hour or more, preferably 1 to 30 hours, more preferably 5 to 25 hours, further preferably 8 to 20 hours, most preferably 12 to 18 hours, at 15 to 60 ° C. The crystals are aged by holding.
After aging the crystals, the crystals may be further precipitated by gradually cooling the water / alcohol solution to a temperature lower than the temperature of the aging step by 5 ° C. or more, preferably 10 ° C. or more, more preferably 15 ° C. or more. Good. For example, when the temperature of the aging step is 40 ° C., the crystal is obtained by gradually cooling the water / alcohol solution to 35 ° C. or less, more preferably 30 to 10 ° C., and further preferably 25 to 20 ° C. It may be deposited.
徐々に冷却するとは、例えば1~10℃/時間、好ましくは2~8℃/時間、より好ましくは4~6℃/時間の割合で温度を下げることを意味する。
得られた結晶は、バスケット型遠心分離機等を用いて分離し、結晶化に用いたC1~C6のアルコール、または該アルコールの水溶液で洗浄後、または洗浄せずにそのままコニカル乾燥機等の真空乾燥機または流動層乾燥機等の通風乾燥機を用いて適宜温度および乾燥時間を調整することにより、純度が95%以上である高純度の本発明の2’FL・n水和物の結晶を取得することができる。当該乾燥工程の乾燥温度は真空乾燥の場合、10~105℃、好ましくは20~90℃、乾燥時間は1~24時間、好ましくは1~10時間である。通風乾燥の場合、10~90℃、好ましくは20~60℃、乾燥時間は1~24時間、好ましくは1~10時間である。 The term “gradual cooling” means to lower the temperature at a rate of, for example, 1 to 10 ° C./hour, preferably 2 to 8 ° C./hour, more preferably 4 to 6 ° C./hour.
The obtained crystals are separated using a basket-type centrifuge, etc., and are washed with a C1 to C6 alcohol used for crystallization, an aqueous solution of the alcohol, or without being washed, and then subjected to vacuum in a conical dryer or the like. By adjusting the temperature and drying time as appropriate using a ventilator such as a dryer or a fluidized bed dryer, the highly pure 2′FL · n hydrate crystals of the present invention having a purity of 95% or more are obtained. Can be acquired. In the case of vacuum drying, the drying temperature in the drying step is 10 to 105 ° C., preferably 20 to 90 ° C., and the drying time is 1 to 24 hours, preferably 1 to 10 hours. In the case of ventilation drying, the drying time is 10 to 90 ° C., preferably 20 to 60 ° C., and the drying time is 1 to 24 hours, preferably 1 to 10 hours.
得られた結晶は、バスケット型遠心分離機等を用いて分離し、結晶化に用いたC1~C6のアルコール、または該アルコールの水溶液で洗浄後、または洗浄せずにそのままコニカル乾燥機等の真空乾燥機または流動層乾燥機等の通風乾燥機を用いて適宜温度および乾燥時間を調整することにより、純度が95%以上である高純度の本発明の2’FL・n水和物の結晶を取得することができる。当該乾燥工程の乾燥温度は真空乾燥の場合、10~105℃、好ましくは20~90℃、乾燥時間は1~24時間、好ましくは1~10時間である。通風乾燥の場合、10~90℃、好ましくは20~60℃、乾燥時間は1~24時間、好ましくは1~10時間である。 The term “gradual cooling” means to lower the temperature at a rate of, for example, 1 to 10 ° C./hour, preferably 2 to 8 ° C./hour, more preferably 4 to 6 ° C./hour.
The obtained crystals are separated using a basket-type centrifuge, etc., and are washed with a C1 to C6 alcohol used for crystallization, an aqueous solution of the alcohol, or without being washed, and then subjected to vacuum in a conical dryer or the like. By adjusting the temperature and drying time as appropriate using a ventilator such as a dryer or a fluidized bed dryer, the highly pure 2′FL · n hydrate crystals of the present invention having a purity of 95% or more are obtained. Can be acquired. In the case of vacuum drying, the drying temperature in the drying step is 10 to 105 ° C., preferably 20 to 90 ° C., and the drying time is 1 to 24 hours, preferably 1 to 10 hours. In the case of ventilation drying, the drying time is 10 to 90 ° C., preferably 20 to 60 ° C., and the drying time is 1 to 24 hours, preferably 1 to 10 hours.
また、乾燥機による乾燥も行わなくとも純度が95%以上である高純度の本発明の2’FL・n水和物の結晶を取得することもできる。
また上記した本発明の2’FL・n水和物の結晶化の工程を2~5回、好ましくは2~3回繰り返すことにより、純度が99.5%以上の本発明の2’FL・n水和物の結晶を取得することができる。 Further, the 2′FL · n hydrate crystals of the present invention having a purity of 95% or more can be obtained without drying with a dryer.
Further, by repeating the above-described crystallization process of the 2′FL · n hydrate of the present invention 2 to 5 times, preferably 2 to 3 times, the purity of the 2′FL · n hydrate of the present invention having a purity of 99.5% or more is increased. Crystals of n-hydrate can be obtained.
また上記した本発明の2’FL・n水和物の結晶化の工程を2~5回、好ましくは2~3回繰り返すことにより、純度が99.5%以上の本発明の2’FL・n水和物の結晶を取得することができる。 Further, the 2′FL · n hydrate crystals of the present invention having a purity of 95% or more can be obtained without drying with a dryer.
Further, by repeating the above-described crystallization process of the 2′FL · n hydrate of the present invention 2 to 5 times, preferably 2 to 3 times, the purity of the 2′FL · n hydrate of the present invention having a purity of 99.5% or more is increased. Crystals of n-hydrate can be obtained.
以下に本発明の実施例を記載するが、本発明はこれに限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited thereto.
2’-O-フコシルラクトース・m水和物の結晶の製造1
(1)2’FLの製造
国際公開第98/12343号パンフレットに記載の方法に従って取得した2’-O-フコシルラクトースを含有する10Lの休止菌体反応液に塩酸を加えてpH3に合わせてから、遠心分離により菌体を除去した。 Production of crystals of 2′- O -fucosyl lactose m hydrate 1
(1) Production of 2′FL After adding hydrochloric acid to 10 L resting cell reaction solution containing 2′- O -fucosyl lactose obtained according to the method described in the pamphlet of WO 98/12343, the pH is adjusted to 3. The cells were removed by centrifugation.
(1)2’FLの製造
国際公開第98/12343号パンフレットに記載の方法に従って取得した2’-O-フコシルラクトースを含有する10Lの休止菌体反応液に塩酸を加えてpH3に合わせてから、遠心分離により菌体を除去した。 Production of crystals of 2′- O -fucosyl lactose m hydrate 1
(1) Production of 2′FL After adding hydrochloric acid to 10 L resting cell reaction solution containing 2′- O -fucosyl lactose obtained according to the method described in the pamphlet of WO 98/12343, the pH is adjusted to 3. The cells were removed by centrifugation.
次に、得られた反応液上清をSK1B(三菱化学株式会社)、続いてWA30(三菱化学株式会社)を充填したカラムに通塔し、塩が除去された2’-O-フコシルラクトースを含有する画分を回収した。
続いて当該画分を減圧濃縮することで2’FLの濃度が800g/Lである2’-O-フコシルラクトース含有水溶液を取得した。当該水溶液の2’FLの純度をHPLCで測定したところ、80.7%(面積%)であった。
(2)2’FL・1.4水和物の結晶の製造
上記で取得した800g/Lの2’FL含有水溶液500mlを40℃に加温した。次に該水溶液に2’FLの結晶を0.1g添加した後、40℃の温度を保持したままで5時間放置することにより2’FLの結晶を析出させた。 Next, the obtained reaction solution supernatant was passed through a column packed with SK1B (Mitsubishi Chemical Corporation) and then with WA30 (Mitsubishi Chemical Corporation), and 2'- O -fucosyl lactose from which the salt had been removed was removed. The containing fraction was collected.
Subsequently, the fraction was concentrated under reduced pressure to obtain a 2′- O -fucosyl lactose-containing aqueous solution having a 2′FL concentration of 800 g / L. When the purity of 2'FL of the aqueous solution was measured by HPLC, it was 80.7% (area%).
(2) Production of 2′FL · 1.4 hydrate crystals 500 ml of the 800 g / L 2′FL-containing aqueous solution obtained above was heated to 40 ° C. Next, 0.1 g of 2′FL crystals was added to the aqueous solution, and then left for 5 hours while maintaining a temperature of 40 ° C., thereby precipitating 2′FL crystals.
続いて当該画分を減圧濃縮することで2’FLの濃度が800g/Lである2’-O-フコシルラクトース含有水溶液を取得した。当該水溶液の2’FLの純度をHPLCで測定したところ、80.7%(面積%)であった。
(2)2’FL・1.4水和物の結晶の製造
上記で取得した800g/Lの2’FL含有水溶液500mlを40℃に加温した。次に該水溶液に2’FLの結晶を0.1g添加した後、40℃の温度を保持したままで5時間放置することにより2’FLの結晶を析出させた。 Next, the obtained reaction solution supernatant was passed through a column packed with SK1B (Mitsubishi Chemical Corporation) and then with WA30 (Mitsubishi Chemical Corporation), and 2'- O -fucosyl lactose from which the salt had been removed was removed. The containing fraction was collected.
Subsequently, the fraction was concentrated under reduced pressure to obtain a 2′- O -fucosyl lactose-containing aqueous solution having a 2′FL concentration of 800 g / L. When the purity of 2'FL of the aqueous solution was measured by HPLC, it was 80.7% (area%).
(2) Production of 2′FL · 1.4 hydrate crystals 500 ml of the 800 g / L 2′FL-containing aqueous solution obtained above was heated to 40 ° C. Next, 0.1 g of 2′FL crystals was added to the aqueous solution, and then left for 5 hours while maintaining a temperature of 40 ° C., thereby precipitating 2′FL crystals.
次に、結晶が析出している該水溶液の温度を40℃に維持させながら、250mlのエタノールを10時間かけて該溶液に滴下添加することで、さらに結晶を析出させた。
エタノールの添加が終了した後、得られた水/エタノール溶液を40℃で16時間保持することにより結晶を熟成させた。
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収し、200mlのエタノールで洗浄した。 Next, while maintaining the temperature of the aqueous solution in which crystals were precipitated at 40 ° C., 250 ml of ethanol was added dropwise over 10 hours to further precipitate crystals.
After the addition of ethanol was completed, the resulting water / ethanol solution was kept at 40 ° C. for 16 hours to age the crystals.
The obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
エタノールの添加が終了した後、得られた水/エタノール溶液を40℃で16時間保持することにより結晶を熟成させた。
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収し、200mlのエタノールで洗浄した。 Next, while maintaining the temperature of the aqueous solution in which crystals were precipitated at 40 ° C., 250 ml of ethanol was added dropwise over 10 hours to further precipitate crystals.
After the addition of ethanol was completed, the resulting water / ethanol solution was kept at 40 ° C. for 16 hours to age the crystals.
The obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
得られた結晶を、真空乾燥機を用いて30℃で30分間乾燥することにより2’FLの結晶を取得した。
HPLCによる純度測定では95.2%(面積%)以上の2’FLの結晶が得られていることが確認され、当該結晶をもう一度水に溶解して上記の晶析操作を繰り返すことにより、99.8%(面積%)以上の2’-O-フコシルラクトースの結晶を取得することができた。
(3)粉末X線回折
上記(2)で得られた2’FLの結晶を粉末X線回折に供した。結果を表5に示す。 The obtained crystals were dried at 30 ° C. for 30 minutes using a vacuum dryer to obtain 2′FL crystals.
Purity measurement by HPLC confirms that 95.2% (area%) or more of 2′FL crystals have been obtained. By dissolving the crystals once more in water and repeating the above crystallization procedure, 99 ′ is obtained. It was possible to obtain crystals of 2′- O -fucosyl lactose in an amount of 0.8% (area%) or more.
(3) Powder X-ray diffraction The 2′FL crystals obtained in (2) above were subjected to powder X-ray diffraction. The results are shown in Table 5.
HPLCによる純度測定では95.2%(面積%)以上の2’FLの結晶が得られていることが確認され、当該結晶をもう一度水に溶解して上記の晶析操作を繰り返すことにより、99.8%(面積%)以上の2’-O-フコシルラクトースの結晶を取得することができた。
(3)粉末X線回折
上記(2)で得られた2’FLの結晶を粉末X線回折に供した。結果を表5に示す。 The obtained crystals were dried at 30 ° C. for 30 minutes using a vacuum dryer to obtain 2′FL crystals.
Purity measurement by HPLC confirms that 95.2% (area%) or more of 2′FL crystals have been obtained. By dissolving the crystals once more in water and repeating the above crystallization procedure, 99 ′ is obtained. It was possible to obtain crystals of 2′- O -fucosyl lactose in an amount of 0.8% (area%) or more.
(3) Powder X-ray diffraction The 2′FL crystals obtained in (2) above were subjected to powder X-ray diffraction. The results are shown in Table 5.
分析条件および測定結果は以下のとおりである。
分析装置:リガク電機社製 試料水平型多目的X線回折装置UltimaIV
測定条件:X線原はCuKα、測定波長1.541Å、モノクロメーターを使用した単色化は未実施のKα線を使用 Analysis conditions and measurement results are as follows.
Analyzer: Rigaku Electric Co., Ltd. Sample horizontal multipurpose X-ray diffractometer UltimaIV
Measurement conditions: X-ray source is CuKα, measurement wavelength is 1.541 mm, and monochromatization using a monochromator uses unimplemented Kα rays
分析装置:リガク電機社製 試料水平型多目的X線回折装置UltimaIV
測定条件:X線原はCuKα、測定波長1.541Å、モノクロメーターを使用した単色化は未実施のKα線を使用 Analysis conditions and measurement results are as follows.
Analyzer: Rigaku Electric Co., Ltd. Sample horizontal multipurpose X-ray diffractometer UltimaIV
Measurement conditions: X-ray source is CuKα, measurement wavelength is 1.541 mm, and monochromatization using a monochromator uses unimplemented Kα rays
(4)水分量測定
上記(2)で得られた2’FLの結晶の水分量を以下の方法で測定した。
水分測定装置AQV-2200型(平沼産業社製、カールフィッシャー法)を用い、試料0.5gを精秤して無水メタノール50mL中で10分間撹拌した後、HYDRANAL-Composite 5(1mL-5mg H2O)で滴定を行うことで水分量を求めた。その結果、上記(2)で得られた2’FLの結晶の水分量は5.2%であり、理論水分量との比較から、当該2’FLの結晶は2’FL・1.4水和物であることがわかった。
(5)単結晶構造解析
上記(1)と同様に2’FLの結晶を熟成させた後、遠心分離により結晶を分離し、水:エタノール=1:2の水溶液を用いて再度結晶化を行い、風乾した後、単結晶構造解析に供した。
単結晶X線構造解析は、以下の手順により行った。室温(298 K)での測定では、上記の方法で取得した2’FLの単結晶を、R-AXIS RAPID-F回折計(リガク)に取り付け、大気中で、CuKα線を用いて、回折画像を測定した。低温(100 K)での測定では、上記の方法で取得した2’FLの単結晶を、大型放射光施設SPring-8のビームラインBL26B1に設置されたR-AXIS V回折計(リガク)に取り付け、100 Kの窒素気流を単結晶に吹き付けながら、MoKα線相当のシンクロトロン放射光(波長0.711 Å)を用いて、回折画像を測定した。回折画像から算出された面指数と回折強度の組から、SHELX-97(ゲッチンゲン大学)を用いて直接法による構造決定と最小二乗法による構造精密化を行い、単結晶構造を得た。 (4) Moisture content measurement The moisture content of the 2'FL crystals obtained in (2) above was measured by the following method.
Using a moisture analyzer AQV-2200 (Hiranuma Sangyo Co., Ltd., Karl Fischer method), 0.5 g of sample was precisely weighed and stirred for 10 minutes in 50 mL of anhydrous methanol, then HYDRANAL-Composite 5 (1 mL-5 mg H 2 O ) To determine the water content. As a result, the moisture content of the 2′FL crystals obtained in the above (2) was 5.2%. From comparison with the theoretical moisture content, the 2′FL crystals were 2′FL · 1.4 hydrate. I found out that
(5) Single crystal structure analysis As in (1) above, after ripening 2'FL crystals, the crystals are separated by centrifugation and recrystallized using an aqueous solution of water: ethanol = 1: 2. After air drying, it was subjected to single crystal structure analysis.
Single crystal X-ray structural analysis was performed according to the following procedure. In the measurement at room temperature (298 K), the 2′FL single crystal obtained by the above method was attached to an R-AXIS RAPID-F diffractometer (Rigaku), and a diffraction image was obtained using CuKα rays in the atmosphere. Was measured. For measurement at low temperature (100 K), the 2′FL single crystal obtained by the above method is attached to the R-AXIS V diffractometer (Rigaku) installed in the beam line BL26B1 of the large synchrotron radiation facility SPring-8. The diffraction image was measured using synchrotron radiation (wavelength 0.711 Å) corresponding to MoKα rays while blowing a 100 K nitrogen stream on the single crystal. From the set of plane index and diffraction intensity calculated from the diffraction image, the structure was determined by the direct method and the structure was refined by the least square method using SHELX-97 (University of Göttingen) to obtain a single crystal structure.
上記(2)で得られた2’FLの結晶の水分量を以下の方法で測定した。
水分測定装置AQV-2200型(平沼産業社製、カールフィッシャー法)を用い、試料0.5gを精秤して無水メタノール50mL中で10分間撹拌した後、HYDRANAL-Composite 5(1mL-5mg H2O)で滴定を行うことで水分量を求めた。その結果、上記(2)で得られた2’FLの結晶の水分量は5.2%であり、理論水分量との比較から、当該2’FLの結晶は2’FL・1.4水和物であることがわかった。
(5)単結晶構造解析
上記(1)と同様に2’FLの結晶を熟成させた後、遠心分離により結晶を分離し、水:エタノール=1:2の水溶液を用いて再度結晶化を行い、風乾した後、単結晶構造解析に供した。
単結晶X線構造解析は、以下の手順により行った。室温(298 K)での測定では、上記の方法で取得した2’FLの単結晶を、R-AXIS RAPID-F回折計(リガク)に取り付け、大気中で、CuKα線を用いて、回折画像を測定した。低温(100 K)での測定では、上記の方法で取得した2’FLの単結晶を、大型放射光施設SPring-8のビームラインBL26B1に設置されたR-AXIS V回折計(リガク)に取り付け、100 Kの窒素気流を単結晶に吹き付けながら、MoKα線相当のシンクロトロン放射光(波長0.711 Å)を用いて、回折画像を測定した。回折画像から算出された面指数と回折強度の組から、SHELX-97(ゲッチンゲン大学)を用いて直接法による構造決定と最小二乗法による構造精密化を行い、単結晶構造を得た。 (4) Moisture content measurement The moisture content of the 2'FL crystals obtained in (2) above was measured by the following method.
Using a moisture analyzer AQV-2200 (Hiranuma Sangyo Co., Ltd., Karl Fischer method), 0.5 g of sample was precisely weighed and stirred for 10 minutes in 50 mL of anhydrous methanol, then HYDRANAL-Composite 5 (1 mL-5 mg H 2 O ) To determine the water content. As a result, the moisture content of the 2′FL crystals obtained in the above (2) was 5.2%. From comparison with the theoretical moisture content, the 2′FL crystals were 2′FL · 1.4 hydrate. I found out that
(5) Single crystal structure analysis As in (1) above, after ripening 2'FL crystals, the crystals are separated by centrifugation and recrystallized using an aqueous solution of water: ethanol = 1: 2. After air drying, it was subjected to single crystal structure analysis.
Single crystal X-ray structural analysis was performed according to the following procedure. In the measurement at room temperature (298 K), the 2′FL single crystal obtained by the above method was attached to an R-AXIS RAPID-F diffractometer (Rigaku), and a diffraction image was obtained using CuKα rays in the atmosphere. Was measured. For measurement at low temperature (100 K), the 2′FL single crystal obtained by the above method is attached to the R-AXIS V diffractometer (Rigaku) installed in the beam line BL26B1 of the large synchrotron radiation facility SPring-8. The diffraction image was measured using synchrotron radiation (wavelength 0.711 Å) corresponding to MoKα rays while blowing a 100 K nitrogen stream on the single crystal. From the set of plane index and diffraction intensity calculated from the diffraction image, the structure was determined by the direct method and the structure was refined by the least square method using SHELX-97 (University of Göttingen) to obtain a single crystal structure.
解析に供した結晶は、2’FL・1.3水和物及び1.4水和物の結晶であり、両水和物結晶には占有率が異なる2つの水分子、すなわち占有率が100%であるI位の水分子、及び2’FL・1.3水和物の結晶では占有率が30%、2’FL・1.4水和物の結晶では占有率が38.1%であるII位の水分子が包含されており、II位の水分子はI位の水分子に比べ、より脱水されやすい状態にあることがわかった。
The crystals used for the analysis are 2′FL · 1.3 hydrate and 1.4 hydrate crystals, and both hydrate crystals have two water molecules having different occupancy rates, that is, occupancy rates of 100 % Occupancy is 30% in the I-position water molecule and 2′FL · 1.3 hydrate crystals, and 38.1% in the 2′FL · 1.4 hydrate crystals. It was found that the water molecule at position II was included, and the water molecule at position II was more easily dehydrated than the water molecule at position I.
また、2’FL・1.4水和物の結晶構造解析によれば、2’FL・1.4水和物中のグルコースは、α型及びβ型をそれぞれ11.6及び88.4%で含むことが示された。これはII位の水分子がα型のグルコースの酸素原子と衝突するため、β型よりα型の比率が低いと考えられる。よって、水分子を1.4分子より多く含む2’FL・m水和物の結晶では、α型のグルコースの存在比率は11.6%より低いか、すべてβ型であることになる。
(6)単結晶構造解析からの粉末X線回折パターンのシミュレーション
上記(5)の解析結果に基づき、2’FL・1.3水和物及び1.4水和物の粉末X線結晶回折パターンのシミュレーションを行った。単結晶構造からの粉末X線回折パターンのシミュレーションには、Mercuryを用いた。上記の単結晶X線構造解析によって得られた結晶の格子定数と原子座標から、CuKα線に対する粉末X線回折パターンを算出した。 Further, according to the crystal structure analysis of 2′FL · 1.4 hydrate, glucose in 2′FL · 1.4 hydrate is 11.6 and 88.4% of α type and β type, respectively. It was shown to contain. This is probably because the water molecule at position II collides with the oxygen atom of α-type glucose, so the α-type ratio is lower than β-type. Therefore, in the 2′FL · m hydrate crystals containing more than 1.4 water molecules, the abundance ratio of α-type glucose is lower than 11.6%, or all are β-type.
(6) Simulation of powder X-ray diffraction pattern from single crystal structure analysis Based on the analysis result of (5) above, powder X-ray crystal diffraction pattern of 2′FL · 1.3 hydrate and 1.4 hydrate A simulation was performed. Mercury was used for the simulation of the powder X-ray diffraction pattern from the single crystal structure. A powder X-ray diffraction pattern for CuKα rays was calculated from the lattice constant and atomic coordinates of the crystal obtained by the single crystal X-ray structural analysis.
(6)単結晶構造解析からの粉末X線回折パターンのシミュレーション
上記(5)の解析結果に基づき、2’FL・1.3水和物及び1.4水和物の粉末X線結晶回折パターンのシミュレーションを行った。単結晶構造からの粉末X線回折パターンのシミュレーションには、Mercuryを用いた。上記の単結晶X線構造解析によって得られた結晶の格子定数と原子座標から、CuKα線に対する粉末X線回折パターンを算出した。 Further, according to the crystal structure analysis of 2′FL · 1.4 hydrate, glucose in 2′FL · 1.4 hydrate is 11.6 and 88.4% of α type and β type, respectively. It was shown to contain. This is probably because the water molecule at position II collides with the oxygen atom of α-type glucose, so the α-type ratio is lower than β-type. Therefore, in the 2′FL · m hydrate crystals containing more than 1.4 water molecules, the abundance ratio of α-type glucose is lower than 11.6%, or all are β-type.
(6) Simulation of powder X-ray diffraction pattern from single crystal structure analysis Based on the analysis result of (5) above, powder X-ray crystal diffraction pattern of 2′FL · 1.3 hydrate and 1.4 hydrate A simulation was performed. Mercury was used for the simulation of the powder X-ray diffraction pattern from the single crystal structure. A powder X-ray diffraction pattern for CuKα rays was calculated from the lattice constant and atomic coordinates of the crystal obtained by the single crystal X-ray structural analysis.
表6に示すとおり、2’FL・1.4水和物結晶の粉末X線回折パターンの実測値と、2’FL・1.3水和物及び1.4水和物の単結晶構造からシミュレートした粉末X線回折パターンはよく一致しており、これらは新規な2’FL・水和物の結晶であった。
As shown in Table 6, from the measured value of the powder X-ray diffraction pattern of 2′FL · 1.4 hydrate crystals and the single crystal structures of 2′FL · 1.3 hydrate and 1.4 hydrate The simulated powder X-ray diffraction patterns were in good agreement, and these were new 2′FL hydrate crystals.
(7)熱重量分析(TG)
熱重量分析は、Q500(ティー・エイ・インスツルメント社製)を用いて行った。後述の実施例1に記載の方法で取得した2’FL・1.7水和物の結晶を秤量して装置に取り付け、乾燥窒素気流中で室温から200 ℃まで、10 ℃/minの速度で昇温し、温度並びに時間に対する質量の変化を測定した。測定中に0.20%/min以上の質量変化速度が観測された場合は、その時点の温度を保持して測定を行い、質量変化速度が0.05%/min未満になったら、昇温を再開した。 (7) Thermogravimetric analysis (TG)
The thermogravimetric analysis was performed using Q500 (manufactured by TA Instruments). Crystals of 2′FL · 1.7 hydrate obtained by the method described in Example 1 to be described later are weighed and attached to the apparatus, and at a rate of 10 ° C./min from room temperature to 200 ° C. in a dry nitrogen stream. The temperature was raised, and the change in mass with respect to temperature and time was measured. If a mass change rate of 0.20% / min or more is observed during measurement, the measurement is performed while maintaining the temperature at that time, and when the mass change rate becomes less than 0.05% / min, the temperature is increased. Resumed.
熱重量分析は、Q500(ティー・エイ・インスツルメント社製)を用いて行った。後述の実施例1に記載の方法で取得した2’FL・1.7水和物の結晶を秤量して装置に取り付け、乾燥窒素気流中で室温から200 ℃まで、10 ℃/minの速度で昇温し、温度並びに時間に対する質量の変化を測定した。測定中に0.20%/min以上の質量変化速度が観測された場合は、その時点の温度を保持して測定を行い、質量変化速度が0.05%/min未満になったら、昇温を再開した。 (7) Thermogravimetric analysis (TG)
The thermogravimetric analysis was performed using Q500 (manufactured by TA Instruments). Crystals of 2′FL · 1.7 hydrate obtained by the method described in Example 1 to be described later are weighed and attached to the apparatus, and at a rate of 10 ° C./min from room temperature to 200 ° C. in a dry nitrogen stream. The temperature was raised, and the change in mass with respect to temperature and time was measured. If a mass change rate of 0.20% / min or more is observed during measurement, the measurement is performed while maintaining the temperature at that time, and when the mass change rate becomes less than 0.05% / min, the temperature is increased. Resumed.
熱重量分析結果から温度上昇にしたがって2’FL・1.7水和物の2つの水分子は徐々に脱水されて結晶から抜けてゆくこと(図3、Aの領域はII位の水分子の脱水、Bの領域はI位の水分子の脱水と考えられる)、及び温度可変粉末X線回折の結果から脱水されても結晶構造を維持している(図4、160℃までA晶のピークを示している)ことから、2’FL・水和物の結晶には、無水物から約1.7水和物までの連続したm水和物の結晶状態が存在することが明らかとなり、これは新規な2’FL・m水和物の結晶(A晶。mは0~1.7の任意の数字であり、好ましくは0~1.7の任意の小数第一位までの数字である。mが0の場合は2’FL・無水和物の結晶という)である。
From the thermogravimetric analysis results, the two water molecules of 2'FL · 1.7 hydrate are gradually dehydrated and escape from the crystal as the temperature rises (Fig. 3, area A is the water molecule at position II) Dehydration, region B is considered to be dehydration of water molecule at position I), and maintains the crystal structure even after dehydration from the results of temperature variable powder X-ray diffraction (FIG. 4, peak of crystal A up to 160 ° C. From the above, it is clear that 2′FL · hydrate crystals have a continuous m-hydrate crystal state from anhydride to about 1.7 hydrate. Is a novel 2′FL · m hydrate crystal (crystal A. m is an arbitrary number from 0 to 1.7, preferably an arbitrary number from 0 to 1.7 up to the first decimal place. When m is 0, it is called 2'FL.anhydrous crystal).
2’-O-フコシルラクトース・m水和物の結晶の製造2
(1)2’FL・1.7水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収し、200mlのエタノールで洗浄した。 Production of crystals of 2'- O -fucosyl lactose m hydrate 2
(1) Production of 2′FL · 1.7 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
The obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
(1)2’FL・1.7水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収し、200mlのエタノールで洗浄した。 Production of crystals of 2'- O -fucosyl lactose m hydrate 2
(1) Production of 2′FL · 1.7 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
The obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
得られた結晶を、真空乾燥機を用いて30℃で30分間乾燥することにより2’FL・1.7水和物の結晶を取得した。
結晶の水和物量は、実施例1の(4)と同様の方法により決定した。
(2)2’FL・1.3水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。 The obtained crystals were dried at 30 ° C. for 30 minutes using a vacuum dryer to obtain crystals of 2′FL · 1.7 hydrate.
The amount of hydrated crystals was determined by the same method as in Example 1 (4).
(2) Production of 2′FL · 1.3 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
結晶の水和物量は、実施例1の(4)と同様の方法により決定した。
(2)2’FL・1.3水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。 The obtained crystals were dried at 30 ° C. for 30 minutes using a vacuum dryer to obtain crystals of 2′FL · 1.7 hydrate.
The amount of hydrated crystals was determined by the same method as in Example 1 (4).
(2) Production of 2′FL · 1.3 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収し、200mlのエタノールで洗浄した。
得られた結晶を、真空乾燥機を用いて30℃で180分間乾燥することにより2’FL・1.3水和物の結晶を取得した。
結晶の水和物量は、実施例1の(4)と同様の方法により決定した。
(3)2’FL・1.0水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。 The obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
The obtained crystals were dried at 30 ° C. for 180 minutes using a vacuum dryer to obtain 2′FL · 1.3 hydrate crystals.
The amount of hydrated crystals was determined by the same method as in Example 1 (4).
(3) Production of 2′FL · 1.0 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
得られた結晶を、真空乾燥機を用いて30℃で180分間乾燥することにより2’FL・1.3水和物の結晶を取得した。
結晶の水和物量は、実施例1の(4)と同様の方法により決定した。
(3)2’FL・1.0水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。 The obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
The obtained crystals were dried at 30 ° C. for 180 minutes using a vacuum dryer to obtain 2′FL · 1.3 hydrate crystals.
The amount of hydrated crystals was determined by the same method as in Example 1 (4).
(3) Production of 2′FL · 1.0 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収し、200mlのエタノールで洗浄した。
得られた結晶を、真空乾燥機を用いて40℃で180分間乾燥することにより2’FL・1.0水和物の結晶を取得した。
結晶の水和物量は、実施例1の(4)と同様の方法により決定した。
(4)2’FL・無水物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させる。 The obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
The obtained crystals were dried at 40 ° C. for 180 minutes using a vacuum dryer to obtain 2′FL · 1.0 hydrate crystals.
The amount of hydrated crystals was determined by the same method as in Example 1 (4).
(4) Production of 2′FL · anhydride crystals 2′FL is produced in the same manner as in Example 1, and the crystals are precipitated and aged.
得られた結晶を、真空乾燥機を用いて40℃で180分間乾燥することにより2’FL・1.0水和物の結晶を取得した。
結晶の水和物量は、実施例1の(4)と同様の方法により決定した。
(4)2’FL・無水物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させる。 The obtained 2′FL crystals were recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
The obtained crystals were dried at 40 ° C. for 180 minutes using a vacuum dryer to obtain 2′FL · 1.0 hydrate crystals.
The amount of hydrated crystals was determined by the same method as in Example 1 (4).
(4) Production of 2′FL · anhydride crystals 2′FL is produced in the same manner as in Example 1, and the crystals are precipitated and aged.
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収し、200mlのエタノールで洗浄する。
得られた結晶を、真空乾燥機を用いて90℃で24時間乾燥することにより2’FL・無水物の結晶を取得できる。
結晶の水和物量は、実施例1の(4)と同様の方法により決定することができる。 The obtained 2′FL crystals are recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
The obtained crystals are dried at 90 ° C. for 24 hours using a vacuum dryer to obtain 2′FL · anhydride crystals.
The amount of hydrated crystals can be determined by the same method as in Example 1 (4).
得られた結晶を、真空乾燥機を用いて90℃で24時間乾燥することにより2’FL・無水物の結晶を取得できる。
結晶の水和物量は、実施例1の(4)と同様の方法により決定することができる。 The obtained 2′FL crystals are recovered using a basket-type centrifuge and washed with 200 ml of ethanol.
The obtained crystals are dried at 90 ° C. for 24 hours using a vacuum dryer to obtain 2′FL · anhydride crystals.
The amount of hydrated crystals can be determined by the same method as in Example 1 (4).
2’-O-フコシルラクトース・p水和物の結晶の製造1
(1)2’FLの製造
実施例1の(1)と同様の方法により2’FLを製造した。
(2)2’FL・2.5水和物の結晶の製造
実施例1の(2)と同様の方法により2’FLの結晶を析出させた後、水/エタノール溶液内で2’FLの結晶を熟成させた。 Production of crystals of 2'- O -fucosyl lactose p-hydrate 1
(1) Production of 2′FL 2′FL was produced in the same manner as in Example 1 (1).
(2) Production of 2′FL · 2.5 hydrate crystals After 2′FL crystals were precipitated by the same method as in Example 1 (2), the 2′FL crystals were hydrated in a water / ethanol solution. The crystals were aged.
(1)2’FLの製造
実施例1の(1)と同様の方法により2’FLを製造した。
(2)2’FL・2.5水和物の結晶の製造
実施例1の(2)と同様の方法により2’FLの結晶を析出させた後、水/エタノール溶液内で2’FLの結晶を熟成させた。 Production of crystals of 2'- O -fucosyl lactose p-hydrate 1
(1) Production of 2′FL 2′FL was produced in the same manner as in Example 1 (1).
(2) Production of 2′FL · 2.5 hydrate crystals After 2′FL crystals were precipitated by the same method as in Example 1 (2), the 2′FL crystals were hydrated in a water / ethanol solution. The crystals were aged.
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収し、その後の解析に用いる2’FLの結晶とした。
HPLCによる純度測定では95.2%(面積%)以上の2’FLの結晶が得られていることが確認され、当該結晶をもう一度水に溶解して上記の晶析操作を繰り返すことにより、99.4%(面積%)以上の2’FLの結晶を取得することができた。
(3)粉末X線回折
上記(2)で得られた2’FLの結晶を粉末X線回折に供した。分析条件は実施例1の(3)と同様であり、測定結果は表7のとおりである。 The obtained 2′FL crystals were recovered using a basket-type centrifuge and used as 2′FL crystals used for the subsequent analysis.
Purity measurement by HPLC confirms that 95.2% (area%) or more of 2′FL crystals have been obtained. By dissolving the crystals once more in water and repeating the above crystallization procedure, 99 ′ is obtained. More than 4% (area%) of 2′FL crystals could be obtained.
(3) Powder X-ray diffraction The 2′FL crystals obtained in (2) above were subjected to powder X-ray diffraction. The analysis conditions are the same as in Example 1 (3), and the measurement results are shown in Table 7.
HPLCによる純度測定では95.2%(面積%)以上の2’FLの結晶が得られていることが確認され、当該結晶をもう一度水に溶解して上記の晶析操作を繰り返すことにより、99.4%(面積%)以上の2’FLの結晶を取得することができた。
(3)粉末X線回折
上記(2)で得られた2’FLの結晶を粉末X線回折に供した。分析条件は実施例1の(3)と同様であり、測定結果は表7のとおりである。 The obtained 2′FL crystals were recovered using a basket-type centrifuge and used as 2′FL crystals used for the subsequent analysis.
Purity measurement by HPLC confirms that 95.2% (area%) or more of 2′FL crystals have been obtained. By dissolving the crystals once more in water and repeating the above crystallization procedure, 99 ′ is obtained. More than 4% (area%) of 2′FL crystals could be obtained.
(3) Powder X-ray diffraction The 2′FL crystals obtained in (2) above were subjected to powder X-ray diffraction. The analysis conditions are the same as in Example 1 (3), and the measurement results are shown in Table 7.
(4)水分量測定
実施例1の(4)と同様の方法により、上記(2)で取得した2’FLの結晶の水分量を測定したところ、該結晶は2’FL・2.5水和物であった。
(5)単結晶構造解析
上記(2)で取得した2’FLの結晶を試料として、実施例1の(5)と同様の方法で単結晶構造解析を行った。ただし、室温での測定に際しては、結晶からの脱水による単結晶の崩壊を防ぐために、結晶を少量の晶析溶媒とともに毛細管に封入した試料を使用した。 (4) Moisture content measurement The moisture content of the 2′FL crystal obtained in (2) above was measured by the same method as in (4) of Example 1, and the crystal was found to be 2′FL · 2.5 water. It was a Japanese product.
(5) Single crystal structure analysis Single crystal structure analysis was performed in the same manner as (5) of Example 1 using the 2′FL crystal obtained in (2) above as a sample. However, in the measurement at room temperature, a sample in which the crystal was sealed in a capillary together with a small amount of a crystallization solvent was used in order to prevent the single crystal from collapsing due to dehydration from the crystal.
実施例1の(4)と同様の方法により、上記(2)で取得した2’FLの結晶の水分量を測定したところ、該結晶は2’FL・2.5水和物であった。
(5)単結晶構造解析
上記(2)で取得した2’FLの結晶を試料として、実施例1の(5)と同様の方法で単結晶構造解析を行った。ただし、室温での測定に際しては、結晶からの脱水による単結晶の崩壊を防ぐために、結晶を少量の晶析溶媒とともに毛細管に封入した試料を使用した。 (4) Moisture content measurement The moisture content of the 2′FL crystal obtained in (2) above was measured by the same method as in (4) of Example 1, and the crystal was found to be 2′FL · 2.5 water. It was a Japanese product.
(5) Single crystal structure analysis Single crystal structure analysis was performed in the same manner as (5) of Example 1 using the 2′FL crystal obtained in (2) above as a sample. However, in the measurement at room temperature, a sample in which the crystal was sealed in a capillary together with a small amount of a crystallization solvent was used in order to prevent the single crystal from collapsing due to dehydration from the crystal.
その結果、2’FL・2.5水和物の結晶は、2’FL・2水和物:2’FL・3水和物=1:1からなる結晶であると考えられ、グルコース分子の配座によって結晶から押し出されやすい水分子が存在することが明らかとなった。よって、A晶と同様にB晶もまた1.7水和物より大きく3水和物までの連続した水和物の結晶状態が存在することが明らかとなった。またB晶のグルコースはβ型であった。
(6)単結晶構造解析に基づく粉末X線結晶回折パターンのシミュレーション
実施例1の(6)と同様の方法により、単結晶構造解析の結果に基づく2’FL・2.5水和物の結晶について粉末X線回折パターン分析を行った。結果は表8のとおりである。 As a result, the 2′FL · 2.5 hydrate crystal is considered to be a crystal consisting of 2′FL · 2 hydrate: 2′FL · 3 hydrate = 1: 1, It was found that there are water molecules that are easily pushed out of the crystal by conformation. Therefore, it was clarified that the crystal state of continuous hydrate of B crystal as well as A crystal is larger than 1.7 hydrate up to trihydrate. In addition, the glucose of crystal B was β-type.
(6) Simulation of powder X-ray crystal diffraction pattern based on single crystal structure analysis Crystal of 2′FL · 2.5 hydrate based on the result of single crystal structure analysis by the same method as (6) of Example 1 A powder X-ray diffraction pattern analysis was performed on. The results are shown in Table 8.
(6)単結晶構造解析に基づく粉末X線結晶回折パターンのシミュレーション
実施例1の(6)と同様の方法により、単結晶構造解析の結果に基づく2’FL・2.5水和物の結晶について粉末X線回折パターン分析を行った。結果は表8のとおりである。 As a result, the 2′FL · 2.5 hydrate crystal is considered to be a crystal consisting of 2′FL · 2 hydrate: 2′FL · 3 hydrate = 1: 1, It was found that there are water molecules that are easily pushed out of the crystal by conformation. Therefore, it was clarified that the crystal state of continuous hydrate of B crystal as well as A crystal is larger than 1.7 hydrate up to trihydrate. In addition, the glucose of crystal B was β-type.
(6) Simulation of powder X-ray crystal diffraction pattern based on single crystal structure analysis Crystal of 2′FL · 2.5 hydrate based on the result of single crystal structure analysis by the same method as (6) of Example 1 A powder X-ray diffraction pattern analysis was performed on. The results are shown in Table 8.
上記の2’FL・2.5水和物の結晶の粉末X線回折パターンの実測値と、その単結晶構造解析からシミュレーションした粉末X線回折パターンはよく一致しており、A晶は粉末X線回折パターンが明らかに異なる新規な2’FL・水和物の結晶(B晶)であった。
単結晶構造解析の結果を合わせると、A晶と同様、B晶もその結晶に含有される水含量により、1.7より多い水分を含有する水和物から3水和物までの連続したp水和物の結晶状態が存在することは明らかであり、これは新規な2’FL・p水和物の結晶(B晶。pは1.7より大きく3以下の任意の数字であり、好ましくは1.7より大きく3.0以下の任意の少数第一位までの数字である)である。 The measured value of the powder X-ray diffraction pattern of the above 2′FL · 2.5 hydrate crystal agrees well with the powder X-ray diffraction pattern simulated from the single crystal structure analysis. It was a novel 2'FL hydrate crystal (crystal B) with a clearly different line diffraction pattern.
Combining the results of the single crystal structure analysis, like crystal A, crystal B is a continuous p from hydrate containing more than 1.7 to trihydrate depending on the water content contained in the crystal. It is clear that there is a crystalline state of hydrate, which is a novel 2′FL · p hydrate crystal (crystal B. p is any number greater than 1.7 and less than or equal to 3, preferably Is a number up to a first decimal place of any number greater than 1.7 and less than or equal to 3.0).
単結晶構造解析の結果を合わせると、A晶と同様、B晶もその結晶に含有される水含量により、1.7より多い水分を含有する水和物から3水和物までの連続したp水和物の結晶状態が存在することは明らかであり、これは新規な2’FL・p水和物の結晶(B晶。pは1.7より大きく3以下の任意の数字であり、好ましくは1.7より大きく3.0以下の任意の少数第一位までの数字である)である。 The measured value of the powder X-ray diffraction pattern of the above 2′FL · 2.5 hydrate crystal agrees well with the powder X-ray diffraction pattern simulated from the single crystal structure analysis. It was a novel 2'FL hydrate crystal (crystal B) with a clearly different line diffraction pattern.
Combining the results of the single crystal structure analysis, like crystal A, crystal B is a continuous p from hydrate containing more than 1.7 to trihydrate depending on the water content contained in the crystal. It is clear that there is a crystalline state of hydrate, which is a novel 2′FL · p hydrate crystal (crystal B. p is any number greater than 1.7 and less than or equal to 3, preferably Is a number up to a first decimal place of any number greater than 1.7 and less than or equal to 3.0).
2’-O-フコシルラクトース・p水和物の結晶の製造2
(1)2’FL・2.0水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収した。
得られた結晶を、真空乾燥機を用いて30℃で30分間乾燥することにより2’FL・2.0水和物の結晶を取得した。
(2)2’FL・2.2水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。 Production of 2'- O -fucosyl lactose p-hydrate crystals 2
(1) Production of 2′FL · 2.0 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
The obtained 2′FL crystals were recovered using a basket-type centrifuge.
The obtained crystals were dried at 30 ° C. for 30 minutes using a vacuum dryer to obtain 2′FL · 2.0 hydrate crystals.
(2) Production of 2′FL · 2.2 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
(1)2’FL・2.0水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収した。
得られた結晶を、真空乾燥機を用いて30℃で30分間乾燥することにより2’FL・2.0水和物の結晶を取得した。
(2)2’FL・2.2水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。 Production of 2'- O -fucosyl lactose p-hydrate crystals 2
(1) Production of 2′FL · 2.0 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
The obtained 2′FL crystals were recovered using a basket-type centrifuge.
The obtained crystals were dried at 30 ° C. for 30 minutes using a vacuum dryer to obtain 2′FL · 2.0 hydrate crystals.
(2) Production of 2′FL · 2.2 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収した。
得られた結晶を、真空乾燥機を用いて25℃で30分間乾燥することにより2’FL・2.2水和物の結晶を取得した。
(3)2’FL・2.7水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。 The obtained 2′FL crystals were recovered using a basket-type centrifuge.
The obtained crystals were dried at 25 ° C. for 30 minutes using a vacuum dryer to obtain 2′FL · 2.2 hydrate crystals.
(3) Production of 2′FL · 2.7 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
得られた結晶を、真空乾燥機を用いて25℃で30分間乾燥することにより2’FL・2.2水和物の結晶を取得した。
(3)2’FL・2.7水和物の結晶の製造
実施例1と同様の方法により2’FLを製造し、その結晶を析出、熟成させた。 The obtained 2′FL crystals were recovered using a basket-type centrifuge.
The obtained crystals were dried at 25 ° C. for 30 minutes using a vacuum dryer to obtain 2′FL · 2.2 hydrate crystals.
(3) Production of 2′FL · 2.7 hydrate crystals 2′FL was produced in the same manner as in Example 1, and the crystals were precipitated and aged.
得られた2’FLの結晶は、バスケット型遠心分離機を用いて回収した。
得られた結晶を、流動層乾燥機を用いて20℃で30分間乾燥することにより2’FL・2.7水和物の結晶を取得した。 The obtained 2′FL crystals were recovered using a basket-type centrifuge.
The obtained crystals were dried at 20 ° C. for 30 minutes using a fluidized bed dryer to obtain 2′FL · 2.7 hydrate crystals.
得られた結晶を、流動層乾燥機を用いて20℃で30分間乾燥することにより2’FL・2.7水和物の結晶を取得した。 The obtained 2′FL crystals were recovered using a basket-type centrifuge.
The obtained crystals were dried at 20 ° C. for 30 minutes using a fluidized bed dryer to obtain 2′FL · 2.7 hydrate crystals.
本発明により、例えば健康食品、医薬品、化粧品等の製品、原料もしくは中間体等として有用である2’-O-フコシルラクトースの結晶およびその製造方法が提供される。
According to the present invention, there are provided 2′- O -fucosyl lactose crystals useful as products, raw materials or intermediates for health foods, pharmaceuticals, cosmetics and the like, and a method for producing the same.
Claims (12)
- 2’-O-フコシルラクトース・n水和物の結晶(ただし、nは0~3のいずれかの数字を表し、n=0の場合は、2’-O-フコシルラクトース・無水物という)。 Crystal of 2'- O -fucosyl lactose n-hydrate (where n represents any number from 0 to 3, and when n = 0, it is referred to as 2'- O -fucosyl lactose-anhydride).
- 粉末X線回折において、回折角(2θ)が、17.00°±0.20°、18.82°±0.20°および21.58°±0.20°にピークを有することを特徴とする請求項1記載の2’-O-フコシルラクトース・n水和物の結晶(nは請求項1と同義)。 In powder X-ray diffraction, the diffraction angle (2θ) has peaks at 17.00 ° ± 0.20 °, 18.82 ° ± 0.20 ° and 21.58 ° ± 0.20 °. A crystal of 2′- O -fucosyl lactose n-hydrate according to claim 1, wherein n is as defined in claim 1.
- 粉末X線回折において、回折角(2θ)が、さらに9.86°±0.20°、14.16°±0.20°、16.12°±0.20°および20.30°±0.20°にピークを有することを特徴とする請求項2記載の2’-O-フコシルラクトース・n水和物の結晶(nは請求項1と同義)。 In powder X-ray diffraction, diffraction angles (2θ) are further increased to 9.86 ° ± 0.20 °, 14.16 ° ± 0.20 °, 16.12 ° ± 0.20 °, and 20.30 ° ± 0. The 2'- O -fucosyl lactose n-hydrate crystal according to claim 2, which has a peak at 20 ° (n is as defined in claim 1).
- 粉末X線回折において、回折角(2θ)が、さらに15.52°±0.20°、23.88°±0.20°、24.76°±0.20°および27.52°±0.20°にピークを有することを特徴とする請求項3記載の2’-O-フコシルラクトース・n水和物の結晶(nは請求項1と同義)。 In powder X-ray diffraction, diffraction angles (2θ) are further 15.52 ° ± 0.20 °, 23.88 ° ± 0.20 °, 24.76 ° ± 0.20 ° and 27.52 ° ± 0. The 2'- O -fucosyl lactose n-hydrate crystal according to claim 3, which has a peak at 20 ° (n is as defined in claim 1).
- 粉末X線回折において、回折角(2θ)が、さらに12.72°±0.20°にピークを有することを特徴とする請求項4記載の2’-O-フコシルラクトース・n水和物の結晶(nは請求項1と同義)。 The powder of 2'- O -fucosyl lactose n-hydrate according to claim 4, characterized in that, in powder X-ray diffraction, the diffraction angle (2θ) further has a peak at 12.72 ° ± 0.20 °. Crystal (n is as defined in claim 1).
- 粉末X線回折において、回折角(2θ)が、10.00°±0.20°、18.94°±0.20°、20.44°±0.20°および21.72°±0.20°にピークを有することを特徴とする請求項1記載の2’-O-フコシルラクトース・n水和物の結晶(nは請求項1と同義)。 In powder X-ray diffraction, diffraction angles (2θ) are 10.000 ° ± 0.20 °, 18.94 ° ± 0.20 °, 20.44 ° ± 0.20 ° and 21.72 ° ± 0. The 2'- O -fucosyl lactose n-hydrate crystal according to claim 1, which has a peak at 20 ° (n is as defined in claim 1).
- 粉末X線回折において、回折角(2θ)が、さらに11.88°±0.20°、14.26°±0.20°、15.60°±0.20°および17.12°±0.20°にピークを有することを特徴とする請求項6の2’-O-フコシルラクトース・n水和物の結晶(nは請求項1と同義)。 In powder X-ray diffraction, the diffraction angles (2θ) are further 11.88 ° ± 0.20 °, 14.26 ° ± 0.20 °, 15.60 ° ± 0.20 ° and 17.12 ° ± 0. A crystal of 2'- O -fucosyl lactose n-hydrate according to claim 6, which has a peak at 20 ° (n is as defined in claim 1).
- 粉末X線回折において、回折角(2θ)が、さらに16.24°±0.20°、16.88°±0.20°、18.58°±0.20°および19.86°±0.20°にピークを有することを特徴とする請求項7の2’-O-フコシルラクトース・n水和物の結晶(nは請求項1と同義)。 In powder X-ray diffraction, diffraction angles (2θ) are further increased to 16.24 ° ± 0.20 °, 16.88 ° ± 0.20 °, 18.58 ° ± 0.20 ° and 19.86 ° ± 0. A crystal of 2'- O -fucosyl lactose n-hydrate according to claim 7, which has a peak at 20 ° (n is as defined in claim 1).
- 15~60℃の2’-O-フコシルラクトース含有水溶液に、その温度を維持しながら該水溶液量に対して0.1~3倍量のC1~C6のアルコールを該水溶液に少量ずつ徐々に添加する工程を含む請求項1記載の2’-O-フコシルラクトース・n水和物の結晶(nは請求項1と同義)の製造方法。 To a 2'- O -fucosyl lactose-containing aqueous solution at 15 to 60 ° C, 0.1 to 3 times the amount of C1-C6 alcohol is gradually added to the aqueous solution little by little while maintaining the temperature. A method for producing a crystal of 2'- O -fucosyl lactose n-hydrate according to claim 1, wherein n is as defined in claim 1.
- 15~60℃の2’-O-フコシルラクトース含有水溶液に、種晶として2’-O-フコシルラクトースの結晶を添加した後、15~60℃の温度を維持しながら該水溶液量に対して0.1~3倍量のC1~C6のアルコールを該水溶液に少量ずつ徐々に添加する工程を含む請求項1記載の2’-O-フコシルラクトース・n水和物の結晶(nは請求項1と同義)の製造方法。 Of 15 ~ 60 ℃ 2'- O - in fucosyllactose containing aqueous solution, 2'O as seed - After addition of fucosyl lactose crystals, 0 for the aqueous solution amount while maintaining the temperature of 15 ~ 60 ° C. 2. The crystal of 2′- O -fucosyl lactose n-hydrate according to claim 1, comprising the step of gradually adding 1 to 3 times the amount of C1-C6 alcohol to the aqueous solution little by little. The same method).
- C1~C6のアルコールを2’-O-フコシルラクトース含有水溶液に少量ずつ徐々に添加した後、得られた水/アルコール溶液を15~60℃で1時間以上保持する工程を含む請求項9または10記載の製造方法。 The method further comprises the step of gradually adding the C1-C6 alcohol to the 2'- O -fucosyl lactose-containing aqueous solution little by little and then maintaining the resulting water / alcohol solution at 15-60 ° C for 1 hour or longer. The manufacturing method as described.
- C1~C6のアルコールが、メタノールまたはエタノールである請求項9~11のいずれか1項に記載の製造方法。 The production method according to any one of claims 9 to 11, wherein the C1-C6 alcohol is methanol or ethanol.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-241933 | 2012-11-01 | ||
JP2012241933 | 2012-11-01 | ||
JP2013115005 | 2013-05-31 | ||
JP2013-115005 | 2013-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014069625A1 true WO2014069625A1 (en) | 2014-05-08 |
Family
ID=50627519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079697 WO2014069625A1 (en) | 2012-11-01 | 2013-11-01 | Crystal of oligosaccharide, and method for producing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014069625A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015188834A1 (en) * | 2014-06-11 | 2015-12-17 | Glycom A/S | Separation of 2'-o-fucosyllactose from fermentation broth |
WO2016086947A1 (en) * | 2014-12-05 | 2016-06-09 | Glycom A/S | Crystalline difucosyllactose |
WO2016095924A1 (en) | 2014-12-16 | 2016-06-23 | Glycom A/S | Separation of 2'-fl from a fermentation broth |
WO2017195743A1 (en) | 2016-05-09 | 2017-11-16 | 協和発酵バイオ株式会社 | Crystal of 3'-sialyllactose sodium salt n-hydrate, and method for producing same |
WO2018077368A1 (en) | 2016-10-31 | 2018-05-03 | Glycom A/S | Method for removing residual organic solvent from a crystalline oligosaccharide |
WO2020079146A1 (en) | 2018-10-18 | 2020-04-23 | Basf Se | Crystalline form ii of 2'-o-fucosyllactose, process for its preparation, nutritional, cosmetic or pharmaceutical formulation containing the same |
US11505567B2 (en) | 2017-07-12 | 2022-11-22 | Glycom A/S | Amorphous mixture comprising a neutral mono- or oligosaccharide and an acidic non-carbohydrate component |
CN115873051A (en) * | 2022-05-17 | 2023-03-31 | 山东恒鲁生物科技有限公司 | Novel crystal form of trisaccharide |
CN116425810A (en) * | 2023-06-14 | 2023-07-14 | 山东合成远景生物科技有限公司 | Purification method of 3-fucosyllactose in mixed solution |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003292444A (en) * | 2002-02-04 | 2003-10-15 | Kyowa Hakko Kogyo Co Ltd | Insulin secretion promoting agent |
JP2007525487A (en) * | 2003-12-05 | 2007-09-06 | チルドレンズ ホスピタル メディカル センター | Oligosaccharide composition and use of the composition in the treatment of infectious diseases |
WO2011150939A1 (en) * | 2010-06-01 | 2011-12-08 | Glycom A/S | Polymorphs of 2'-o-fucosyllactose and producing thereof |
-
2013
- 2013-11-01 WO PCT/JP2013/079697 patent/WO2014069625A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003292444A (en) * | 2002-02-04 | 2003-10-15 | Kyowa Hakko Kogyo Co Ltd | Insulin secretion promoting agent |
JP2007525487A (en) * | 2003-12-05 | 2007-09-06 | チルドレンズ ホスピタル メディカル センター | Oligosaccharide composition and use of the composition in the treatment of infectious diseases |
WO2011150939A1 (en) * | 2010-06-01 | 2011-12-08 | Glycom A/S | Polymorphs of 2'-o-fucosyllactose and producing thereof |
Non-Patent Citations (5)
Title |
---|
MARUZEN CO., LTD., JIKKEN KAGAKU KOZA (ZOKU) 2 BUNRI TO SEISEI, 25 January 1967 (1967-01-25), pages 159 - 178, 186-187 * |
NANKODO CO., LTD., SHINOYAKUZAIGAKU SORON (REVISED 3RD EDITION), vol. 3RD, 10 April 1987 (1987-04-10), pages 111 * |
NANZANDO CO., LTD., CHOZAIGAKU -KISO TO OYO, 20 September 1977 (1977-09-20), pages 142 - 145 * |
NANZANDO CO., LTD., SHINSEIZAIGAKU, 25 April 1984 (1984-04-25), pages 102 - 103, 232-233 * |
RICHARD KUHN ET AL.: "Kristallisierte Fucosido- lactose", CHEMISCHE BERICHTE, vol. 89, no. 11, 1956, pages 2513 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015188834A1 (en) * | 2014-06-11 | 2015-12-17 | Glycom A/S | Separation of 2'-o-fucosyllactose from fermentation broth |
WO2016086947A1 (en) * | 2014-12-05 | 2016-06-09 | Glycom A/S | Crystalline difucosyllactose |
US10500221B2 (en) | 2014-12-05 | 2019-12-10 | Glycom A/S | Crystalline difucosyllactose |
WO2016095924A1 (en) | 2014-12-16 | 2016-06-23 | Glycom A/S | Separation of 2'-fl from a fermentation broth |
US12060594B2 (en) | 2014-12-16 | 2024-08-13 | Glycom A/S | Separation of 2′-FL from a fermentation broth |
EP4151645A3 (en) * | 2014-12-16 | 2023-06-21 | Glycom A/S | Separation of 2'-fl from a fermentation broth |
US10676770B2 (en) | 2014-12-16 | 2020-06-09 | Glycom A/S | Separation of 2′-FL from a fermentation broth |
WO2017195743A1 (en) | 2016-05-09 | 2017-11-16 | 協和発酵バイオ株式会社 | Crystal of 3'-sialyllactose sodium salt n-hydrate, and method for producing same |
US11384110B2 (en) | 2016-10-31 | 2022-07-12 | Glycom A/S | Method for removing residual organic solvent from a crystalline oligosaccharide |
WO2018077368A1 (en) | 2016-10-31 | 2018-05-03 | Glycom A/S | Method for removing residual organic solvent from a crystalline oligosaccharide |
US11505567B2 (en) | 2017-07-12 | 2022-11-22 | Glycom A/S | Amorphous mixture comprising a neutral mono- or oligosaccharide and an acidic non-carbohydrate component |
US11939351B2 (en) | 2017-07-12 | 2024-03-26 | Glycom A/S | Amorphous mixture comprising a neutral mono- or oligosaccharide and an acidic non-carbohydrate component |
US12054513B2 (en) | 2017-07-12 | 2024-08-06 | Glycom A/S | Amorphous mixture comprising a neutral mono- or oligosaccharide and an acidic non-carbohydrate component |
WO2020079146A1 (en) | 2018-10-18 | 2020-04-23 | Basf Se | Crystalline form ii of 2'-o-fucosyllactose, process for its preparation, nutritional, cosmetic or pharmaceutical formulation containing the same |
CN115873051A (en) * | 2022-05-17 | 2023-03-31 | 山东恒鲁生物科技有限公司 | Novel crystal form of trisaccharide |
CN116425810A (en) * | 2023-06-14 | 2023-07-14 | 山东合成远景生物科技有限公司 | Purification method of 3-fucosyllactose in mixed solution |
CN116425810B (en) * | 2023-06-14 | 2023-08-11 | 山东合成远景生物科技有限公司 | Purification method of 3-fucosyllactose in mixed solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014069625A1 (en) | Crystal of oligosaccharide, and method for producing same | |
JP2021036002A (en) | Crystals of 6'-sialyl lactose sodium salt and method for producing the same | |
WO2018047715A1 (en) | CRYSTALS OF β-NICOTINAMIDE MONONUCLEOTIDE AND PRODUCTION PROCESS THEREFOR | |
WO2016159317A1 (en) | Crystal of reduced glutathione | |
JP6283429B2 (en) | α-Glucosyl hesperidin crystals and their uses | |
JP6671305B2 (en) | Crystal of ammonium N-acetylneuraminic acid salt / anhydride and method for producing the same | |
JP6761564B2 (en) | L-proline compound of sodium-glucose cotransporter 2 inhibitor, and monohydrate and crystal of L-proline compound | |
JP6918790B2 (en) | Crystals of 3'-sialyllactose sodium salt / n-hydrate and its production method | |
TW201302773A (en) | Crystallization of epirubicin hydrochloride | |
JP2011219388A (en) | Pyrroloquinolinequinone solid low in hygroscopicity | |
JP6867806B2 (en) | Crystals of N-acetylneuraminic acid alkali metal salt / anhydrate and its production method | |
EP3560948B1 (en) | L-alanyl-l-glutamine crystals and method for producing same | |
CN106543250A (en) | A kind of stable tofogliflozin hydrate compound | |
CN115925777A (en) | Hydrate of calendula E, crystal form of hydrate, preparation method of hydrate and application of hydrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13852212 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13852212 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |