WO2014069410A1 - Multilayer porous film and method for manufacturing same, and separator for non-aqueous electrolyte cell - Google Patents

Multilayer porous film and method for manufacturing same, and separator for non-aqueous electrolyte cell Download PDF

Info

Publication number
WO2014069410A1
WO2014069410A1 PCT/JP2013/079155 JP2013079155W WO2014069410A1 WO 2014069410 A1 WO2014069410 A1 WO 2014069410A1 JP 2013079155 W JP2013079155 W JP 2013079155W WO 2014069410 A1 WO2014069410 A1 WO 2014069410A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
mass
parts
dispersant
multilayer porous
Prior art date
Application number
PCT/JP2013/079155
Other languages
French (fr)
Japanese (ja)
Inventor
健 片桐
主隼 熊添
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to CN201380057208.0A priority Critical patent/CN104812579B/en
Priority to KR1020177016360A priority patent/KR102053259B1/en
Priority to JP2014544500A priority patent/JP6279479B2/en
Priority to KR1020157010852A priority patent/KR20150063119A/en
Publication of WO2014069410A1 publication Critical patent/WO2014069410A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a multilayer porous membrane, a method for producing the same, and a separator for a nonaqueous electrolyte battery.
  • Patent Document 1 discloses a battery in which a porous film containing an inorganic filler mainly composed of plate-like particles and a porous film mainly composed of polyolefin are integrated so that a shutdown state can be maintained even at high temperatures.
  • a separator for use is disclosed.
  • Patent Document 1 Although the battery separator described in Patent Document 1 is considered to have improved heat resistance as compared with a normal separator having no heat-resistant layer, it is desirable that the porous film containing the inorganic filler is made thinner. However, there is still room for improvement from the viewpoint of not being able to obtain the heat resistance.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a multilayer porous membrane having a low thermal shrinkage rate, a method for producing the same, and a separator for a nonaqueous electrolyte battery including the multilayer porous membrane.
  • the present inventors diligently studied the above problems. As a result, it has been found that the above-mentioned problems can be solved by forming a predetermined porous layer on one or both surfaces of the polyolefin porous membrane, and the present invention has been completed.
  • the present invention is as follows. [1] A polyolefin porous membrane, A porous layer containing an inorganic filler, a resin binder, and an ion dissociable inorganic dispersant, disposed on one or both sides of the polyolefin porous membrane; A multilayer porous membrane. [2] The multilayer porous membrane according to [1] above, wherein the porous layer further contains an ion dissociative organic dispersant. [3] The content of the ionic dissociable inorganic dispersant is 20 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the total content of the ionic dissociative inorganic dispersant and the ionic dissociative organic dispersant.
  • the present invention it is possible to provide a multilayer porous membrane having a low thermal shrinkage rate, a method for producing the same, and a separator for a nonaqueous electrolyte battery provided with the multilayer porous membrane.
  • the present embodiment a mode for carrying out the present invention (hereinafter abbreviated as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • the multilayer porous membrane of this embodiment is A polyolefin porous membrane, It has a porous layer (hereinafter also simply referred to as “porous layer”) containing an inorganic filler, a resin binder, and an ion dissociating inorganic dispersant, which is disposed on one or both surfaces of the polyolefin porous membrane.
  • a porous layer hereinafter also simply referred to as “porous layer” containing an inorganic filler, a resin binder, and an ion dissociating inorganic dispersant, which is disposed on one or both surfaces of the polyolefin porous membrane.
  • the polyolefin porous film is not particularly limited, and a porous film containing a polyolefin resin can be used.
  • the content of the polyolefin resin in the polyolefin porous membrane is not particularly limited, but is preferably 50% by mass or more, and more preferably 70 to 100% by mass. When the content of the polyolefin resin in the polyolefin porous membrane is within the above range, the shutdown performance when used as a battery separator tends to be further improved.
  • the polyolefin resin is not particularly limited, and for example, a polyolefin resin used for normal extrusion, injection, inflation, blow molding and the like can be used.
  • polyolefin resins include homopolymers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene, copolymers thereof, and these And a multistage polymer. More specifically, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, ethylene-propylene random copolymer, polybutene, and Examples include ethylene propylene rubber.
  • polyolefin resin may be used individually by 1 type, or may use 2 or more types together.
  • the polyolefin resin preferably contains polypropylene.
  • the content of polypropylene in the polyolefin resin is not particularly limited, but is preferably 1 to 35% by mass, more preferably 3 to 20% by mass, and further preferably 4 to 10% by mass.
  • the content of polypropylene is 1% by mass or more, the heat resistance of the porous membrane tends to be further improved.
  • the content of polypropylene having a relatively high melting point is 35% by mass or less, when the multilayer porous membrane of this embodiment is used as a battery separator, the membrane is more thermally melted at the shutdown temperature. It tends to block (shutdown property) and tends to cause shutdown at a lower temperature.
  • the viscosity average molecular weight (Mv) of the polyolefin resin is not particularly limited, but is preferably 50,000 to 3,000,000, more preferably 100,000 to 1,000,000, still more preferably 200, 000 to 800,000.
  • Mv the mechanical strength of the resulting polyolefin porous film tends to be further improved.
  • Mv of the polyolefin resin is 3,000,000 or less, the moldability during production tends to be further improved.
  • Mv is 1,000,000 or less
  • the hole tends to be blocked when the temperature rises, and the shutdown function tends to be further improved.
  • a mixture of two or more polyolefin resins having different Mvs may be used.
  • the viscosity average molecular weight (Mv) of polyolefin resin can be measured by the method as described in an Example.
  • Polyolefin porous membranes are made of antioxidants such as phenolic compounds, phosphorus compounds, or sulfur compounds, metal soaps such as calcium stearate and zinc stearate, UV absorbers, light stabilizers, and antistatics as necessary.
  • antioxidants such as phenolic compounds, phosphorus compounds, or sulfur compounds
  • metal soaps such as calcium stearate and zinc stearate
  • UV absorbers such as calcium stearate and zinc stearate
  • UV absorbers such as calcium stearate and zinc stearate
  • light stabilizers such as an additive
  • An additive such as an agent, an antifogging agent, and a color pigment may be included.
  • the film thickness of the polyolefin porous membrane is not particularly limited, but is preferably 0.10 ⁇ m or more and 25 ⁇ m or less, more preferably 1.0 ⁇ m or more and 20 ⁇ m or less, further preferably 3.0 ⁇ m or more and 18 ⁇ m or less, and particularly preferably. Is 5.0 ⁇ m or more and 16 ⁇ m or less.
  • the film thickness of the polyolefin porous membrane is 0.10 ⁇ m or more, the mechanical strength of the resulting multilayer porous membrane tends to be further improved.
  • the film thickness of the polyolefin porous membrane is 25 ⁇ m or less, the battery tends to have a higher capacity.
  • the film thickness of a polyolefin porous membrane can be measured by the method as described in an Example.
  • the average pore diameter of the polyolefin porous membrane is not particularly limited, but is preferably 0.030 ⁇ m or more and 0.20 ⁇ m or less, more preferably 0.040 ⁇ m or more and 0.10 ⁇ m or less, and further preferably 0.050 ⁇ m or more and 0.090 ⁇ m or less. Or less, and particularly preferably 0.060 ⁇ m or more and 0.090 ⁇ m or less.
  • the porosity of the polyolefin porous membrane is not particularly limited, but is preferably 25% or more and 65% or less, more preferably 30% or more and 60% or less, and further preferably 35% or more and 55% or less.
  • the porosity of the polyolefin porous membrane is 25% or more, an increase in the air permeability after applying the inorganic filler-containing dispersion described later tends to be further suppressed.
  • the porosity of a polyolefin porous membrane can be measured by the method as described in an Example.
  • the maximum value of the heat shrinkage stress of the polyolefin porous film is not particularly limited, but is preferably 10 g or less in both the drawing direction (hereinafter also referred to as “MD”) and the width direction (hereinafter also referred to as “TD”). More preferably, it is 8 g or less, More preferably, it is 6 g or less, Especially preferably, it is 4 g or less.
  • MD drawing direction
  • TD width direction
  • the multilayer porous membrane of this embodiment has a porous layer containing an inorganic filler, a resin binder, and an ion dissociative inorganic dispersant, which are disposed on one or both sides of a polyolefin porous membrane.
  • a porous layer containing an inorganic filler, a resin binder, and an ion dissociative inorganic dispersant, which are disposed on one or both sides of a polyolefin porous membrane.
  • the heat resistance is further improved.
  • the ion dissociable inorganic dispersant has a strong affinity with the surface of the inorganic filler, and in the slurry used when forming the porous layer, the affinity of the inorganic filler to the slurry solvent can be increased, and charge repulsion can be achieved. This is considered to be because the dispersibility of the inorganic filler in the slurry solvent can be improved.
  • the reason why the heat resistance is improved is not limited to these.
  • the ion dissociable inorganic dispersant is not particularly limited, and examples thereof include inorganic acid salts.
  • inorganic acid salts include orthophosphates, condensed phosphates, and aluminates. Among them, it has multiple phosphate groups in one molecule and is considered to exhibit strong affinity with the inorganic filler surface.
  • a condensed phosphate is preferred.
  • the condensed phosphate is not particularly limited, and examples thereof include polyphosphate, metaphosphate, and ultraphosphate. Among these, polyphosphate and metaphosphate are preferable.
  • polyphosphate has a structure in which orthophosphoric acid is linked in a chain
  • metaphosphate has a structure linked in a ring
  • ultraphosphate has a structure linked in a network.
  • polyphosphate and metaphosphate are particularly preferable.
  • the polyphosphates are not particularly limited, for example, a compound represented by the formula (M n + 2 P n O 3n + 1) and the like.
  • the degree of condensation n in the formula is not particularly limited, but is preferably 2 to 30, more preferably 2 to 10, and further preferably 2 to 6.
  • M is a cation.
  • the polyphosphate is not particularly limited, and examples thereof include pyrophosphate, tripolyphosphate, tetrapolyphosphate, pentapolyphosphate, and hexapolyphosphate.
  • the metaphosphate is not particularly limited, for example, a compound represented by the formula (MPO 3) n and the like.
  • the degree of condensation n in the formula is not particularly limited, but is preferably 3 to 200, more preferably 3 to 25, and further preferably 3 to 6.
  • M is a cation.
  • a metaphosphate For example, a trimetaphosphate, a tetrametaphosphate, a pentametaphosphate, and a hexametaphosphate are mentioned. By using such a metaphosphate, adsorption to the inorganic filler becomes faster, stable dispersibility can be maintained, and aggregation of a resin binder or the like tends not to occur.
  • a cation which comprises an ion dissociable inorganic dispersing agent for example, an inorganic cation or an organic cation is mentioned.
  • the inorganic cation is not particularly limited, and examples thereof include alkali metal ions or alkaline earth metal ions such as potassium ions and sodium ions.
  • an organic cation For example, an amine ion, an ammonium ion, etc. are mentioned.
  • the cation constituting the ion dissociable inorganic dispersant is preferably an amine ion or an ammonium ion from the viewpoint of affinity with the resin binder.
  • condensed phosphate As the condensed phosphate, commercially available products such as those manufactured by Taiyo Chemical Industry Co., Ltd., phosphorus chemical industry Co., Ltd., San Nopco Co., Ltd., and Kirin Kyowa Foods Co., Ltd. can be used.
  • An ion dissociative inorganic dispersing agent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the ion dissociable inorganic dispersant in the porous layer is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, further preferably 100 parts by mass of the inorganic filler. 0.3 parts by mass or more.
  • the content of the ion dissociable inorganic dispersant in the porous layer is 0.05 parts by mass or more, the heat resistance of the multilayer porous membrane tends to be further improved.
  • the content of the ion dissociable inorganic dispersant in the porous layer is preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and further preferably 3 parts by mass with respect to 100 parts by mass of the inorganic filler. Or less.
  • the content of the ion dissociable inorganic dispersant in the porous layer is 5 parts by mass or less, the content ratio of the other components in the porous layer is reduced, and the effect of the other components is further suppressed from being reduced. There is a tendency.
  • the content of the ion dissociable inorganic dispersant in the porous layer is the total content of the ion dissociable inorganic dispersant and the ion dissociable organic dispersant. Preferably it is 20 to 95 mass parts with respect to 100 mass parts, More preferably, it is 30 to 93 mass parts, More preferably, it is 50 to 90 mass parts.
  • the content of the ion dissociable inorganic dispersant in the porous layer is within the above range, the heat resistance tends to be further improved.
  • the porous layer of this embodiment contains an inorganic filler
  • the heat resistance of a multilayer porous membrane improves.
  • the inorganic filler contained in the porous layer has a melting point of 200 ° C. or higher, high electrical insulation, and under the conditions for use as a separator. Those that are electrochemically stable are preferred.
  • the inorganic filler is not particularly limited.
  • alumina aluminum hydroxide oxide (boehmite), silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide, and other oxide ceramics and hydration thereof.
  • Nitride ceramics such as silicon nitride, titanium nitride, boron nitride; ceramics such as silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, barium titanate; talc, kaolinite, dickite, nacrite, halloysite, pyrophyll Layered silicate minerals such as light, montmorillonite, sericite, mica, and amesite; glass fibers and the like.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • aluminum oxide ceramics such as alumina and aluminum hydroxide oxide (boehmite) and hydrates thereof; layered silicates having no ion exchange ability such as kaolinite, dickite, nacrite, halloysite, and pyrophyllite Minerals are preferred.
  • layered silicates having no ion exchange ability such as kaolinite, dickite, nacrite, halloysite, and pyrophyllite Minerals are preferred.
  • the aluminum oxide ceramics and their hydrates are not particularly limited, but for example, aluminum hydroxide oxide is more preferable.
  • kaolin mainly composed of kaolinite is more preferable.
  • Kaolin includes wet kaolin and calcined kaolin, which is calcined. However, calcined kaolin releases crystal water during the calcining process and removes impurities. Particularly preferred.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably from 0.10 ⁇ m to 3.0 ⁇ m, more preferably from 0.20 ⁇ m to 2.0 ⁇ m, still more preferably from 0.50 ⁇ m to 1. It is 2 ⁇ m or less, more preferably 0.50 ⁇ m or more and 0.80 ⁇ m or less.
  • the average particle size of the inorganic filler is 0.10 ⁇ m or more, the short temperature when used as a battery separator tends to be higher.
  • the average particle size of the inorganic filler can be obtained as a value of a particle size at which the cumulative frequency of the number of particles is 50% by measuring the particle size distribution using water as a dispersion medium and using a laser particle size distribution measuring device.
  • the content of the inorganic filler in the porous layer is not particularly limited, but is preferably 50% or more and less than 100%, more preferably 55% or more and 99.99% or less, and further preferably 60% or more and 99.9%. % Or less, particularly preferably 65% or more and 99% or less, and most preferably 90% or more and 99% or less.
  • the heat resistance and the like tend to be further improved.
  • the resin binder contained in the porous layer has a function for binding the inorganic filler onto the porous film.
  • the resin binder contained in the porous layer is insoluble in the electrolyte solution of the lithium ion secondary battery, and the use of the lithium ion secondary battery It is preferable to use one that is electrochemically stable within a range.
  • Such a resin binder is not particularly limited, but examples thereof include polyolefin resins such as polyethylene, polypropylene, and ⁇ -polyolefin; fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene and copolymers containing them; butadiene, isoprene, and the like A diene polymer containing a conjugated diene as a monomer unit or a copolymer thereof and a hydride thereof; an acrylic polymer containing an acrylate ester, a methacrylic acid ester or the like as a monomer unit or a copolymer containing the same and a hydride thereof; ethylene propylene Rubbers such as rubber, polyvinyl alcohol and polyvinyl acetate; cellulose derivatives such as ethyl cellulose, methyl cellulose, hydroxyethyl cellulose and carboxymethyl cellulose ; Polyphenylene ether, polysulfone, poly
  • a resin binder may be used individually by 1 type, or may use 2 or more types together.
  • a fluorine polymer, a diene polymer, and an acrylic polymer are preferable, and an acrylic polymer is more preferable.
  • the binding property, heat resistance, and permeability tend to be further improved.
  • oxidation resistance tends to be further improved by using an acrylic polymer.
  • electrochemical stability tends to be improved by using a fluorine-based polymer.
  • the fluorine-based polymer is not particularly limited, and examples thereof include a homopolymer of vinylidene fluoride and a copolymer with a monomer copolymerizable with vinylidene fluoride.
  • the content of the vinylidene fluoride monomer unit in the fluoropolymer is not particularly limited, but is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more.
  • the monomer copolymerizable with vinylidene fluoride is not particularly limited.
  • the fluorine-based polymer is not particularly limited, but a homopolymer of vinylidene fluoride, a vinylidene fluoride / tetrafluoroethylene copolymer, a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, or the like is preferable. Among these, a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer is more preferable.
  • the monomer composition of the vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer is not particularly limited.
  • a fluorine-type polymer may be used individually by 1 type, or may use 2 or more types together.
  • the diene polymer is not particularly limited as long as it contains a diene monomer unit having two double bonds as a repeating unit.
  • a diene monomer homopolymer or a copolymer of a diene monomer and a copolymerizable monomer can be used. Can be mentioned.
  • the diene monomer is not particularly limited, and examples thereof include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-pentadiene, 2- Examples include methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, and 3-butyl-1,3-octadiene.
  • a diene monomer may be used individually by 1 type, or may use 2 or more types together.
  • the content of the diene monomer unit in the diene polymer is not particularly limited, but is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% with respect to the total amount of the diene polymer. It is at least mass%.
  • the monomer copolymerizable with the diene monomer is not particularly limited, and examples thereof include a (meth) acrylate monomer described below and the following monomers (hereinafter also referred to as “other monomers”).
  • Other monomers are not particularly limited, and examples thereof include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, and vinyl benzoic acid.
  • Styrene monomers such as methyl, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene, divinylbenzene; olefins such as ethylene and propylene; halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; vinyl acetate, propion Vinyl esters such as vinyl acid vinyl, vinyl butyrate, vinyl benzoate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hex Vinyl ketones such as ruvinyl ketone and isopropenyl vinyl ketone; heterocycle-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole; amide monomers such as acrylamide, N-methylol acrylamide and acrylamide-2-methyl
  • the acrylic polymer is not particularly limited as long as it is a polymer containing a (meth) acrylate monomer unit, and examples thereof include a homopolymer of a (meth) acrylate monomer and a copolymer of a monomer copolymerizable with a (meth) acrylate monomer.
  • (meth) acrylic acid means “acrylic acid or methacrylic acid”
  • (meth) acrylate” means “acrylate or methacrylate”.
  • the acrylic polymer is not particularly limited, but is preferably latex.
  • the (meth) acrylate monomer is not particularly limited.
  • the content of the (meth) acrylate monomer unit in the acrylic polymer is not particularly limited, but is preferably 40% by mass or more, more preferably 50% by mass or more, based on the total amount of the acrylic polymer. Preferably it is 60 mass% or more.
  • the monomer copolymerizable with the (meth) acrylate monomer is not particularly limited, and examples thereof include other monomers listed in the item of the diene polymer.
  • the monomer copolymerizable with the (meth) acrylate monomer may be used alone or in combination of two or more.
  • unsaturated carboxylic acids it is preferable to use unsaturated carboxylic acids.
  • Unsaturated carboxylic acids are not particularly limited.
  • monocarboxylic acids such as acrylic acid, methacrylic acid, itaconic acid half ester, maleic acid half ester, fumaric acid half ester; itaconic acid, fumaric acid, maleic acid.
  • dicarboxylic acids such as acids. Of these, acrylic acid, methacrylic acid and itaconic acid are preferred, and acrylic acid and methacrylic acid are more preferred.
  • the saponification degree is preferably 85% or more and 100% or less, more preferably 90% or more and 100% or less, and further preferably 95% or more and 100%. Or less, particularly preferably 99% or more and 100% or less.
  • the saponification degree is 85% or more, when the multilayer porous membrane is used as a battery separator, the temperature at which a short circuit occurs (short temperature) is improved, and the safety performance tends to be further improved.
  • the polymerization degree of polyvinyl alcohol is preferably 200 or more and 5000 or less, more preferably 300 or more and 4000 or less, and particularly preferably 500 or more and 3500 or less.
  • the polymerization degree is 200 or more, the inorganic filler can be firmly bound with a small amount of polyvinyl alcohol, and the increase in the air permeability of the multilayer porous film due to the formation of the porous layer can be suppressed while maintaining the mechanical strength of the porous layer. It tends to be possible.
  • content of the resin binder in a porous layer is not specifically limited, Preferably it is 0.5 mass part or more with respect to 100 mass parts of inorganic fillers, More preferably, it is 0.7 mass part or more, More preferably Is 1.2 parts by mass or more, particularly preferably 1.5 parts by mass or more.
  • the content of the resin binder in the porous layer is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and further preferably 7 parts by mass or less.
  • the content of the resin binder in the porous layer is 10 parts by mass or less, the ion permeability tends to be further improved.
  • the porous layer may contain other additives other than the inorganic filler, the resin binder, and the ion dissociable inorganic dispersant.
  • Other additives are not particularly limited, and examples thereof include ion dissociable organic dispersants.
  • the porous layer of the present embodiment it is preferable that the porous layer further contains an ion dissociative organic dispersant from the viewpoint of heat resistance of the multilayer porous membrane.
  • the reason why heat resistance is improved by including an ion dissociable organic dispersant is that the dispersion stability of the inorganic filler and resin binder in the slurry is further improved by using a dispersant other than the ion dissociable inorganic dispersant. Although it is thought that it is because it can be made, it is not specifically limited.
  • Organic acid salt can be mentioned.
  • the organic acid salt for example, various anionic or cationic polymer surfactants can be used.
  • the ion dissociable organic dispersant is an ion dissociable acid group (carboxyl group, sulfonic acid group, amino acid group, maleic acid group, etc.) or ion dissociable acid base (carboxylic acid group, sulfonic acid). Those containing a plurality of bases, maleate bases, etc.) are preferred.
  • polycarboxylate, polyacrylate, and polymethacrylate are more preferable.
  • An ion dissociative organic dispersing agent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the ion dissociable organic dispersant in the porous layer is not particularly limited, but is preferably 20 parts by mass or more with respect to 100 parts by mass of the total content of the ion dissociable inorganic dispersant and the ion dissociable organic dispersant. 95 parts by mass or less, more preferably 30 parts by mass or more and 93 parts by mass or less, and further preferably 50 parts by mass or more and 90 parts by mass or less.
  • the content of the ion dissociable inorganic dispersant in the porous layer is 20 parts by mass or more and 95 parts by mass or less, the heat resistance tends to be further improved.
  • the layer thickness of the porous layer in the present embodiment is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.5 ⁇ m or more and 8 ⁇ m or less, further preferably 1 ⁇ m or more and 6 ⁇ m or less, and particularly preferably 1.5 ⁇ m. It is 5 ⁇ m or less.
  • the thickness of the porous layer is 0.1 ⁇ m or more, the heat resistance tends to be further improved.
  • the layer thickness of the porous layer is 10 ⁇ m or less, the battery has a higher capacity, the ion permeability of the separator is further improved, and the powder of the inorganic filler during use tends to be further suppressed.
  • the porous layer has a permeability that does not significantly impair the permeability of the polyolefin porous membrane in the state of the multilayer porous membrane, but the air permeability of the multilayer porous membrane due to the formation of the porous layer is sufficient.
  • the rate of increase in the degree is preferably 0% or more and 200% or less, more preferably 0% or more and 100% or less, and further preferably 0% or more and 70% or less.
  • the rate of increase in the air permeability of the multilayer porous membrane after forming the porous layer is preferably 0% or more and 500% or less. is there.
  • the multilayer porous membrane of this embodiment has a polyolefin porous membrane and a porous layer disposed on one side or both sides of the polyolefin porous membrane.
  • the air permeability of the multilayer porous membrane of the present embodiment is not particularly limited, but is preferably 10 seconds / 100 cc to 650 seconds / 100 cc, more preferably 20 seconds / 100 cc to 500 seconds / 100 cc, It is preferably 30 seconds / 100 cc or more and 450 seconds / 100 cc or less, particularly preferably 50 seconds / 100 cc or more and 400 seconds / 100 cc or less.
  • the air permeability of the multilayer porous membrane is 10 seconds / 100 cc or more, the self-discharge resistance tends to be further improved. Moreover, when the air permeability of the multilayer porous membrane is 650 seconds / 100 cc or less, the charge / discharge characteristics tend to be further improved.
  • the final film thickness of the multilayer porous membrane of the present embodiment is not particularly limited, but is preferably 2 ⁇ m or more and 20 ⁇ m or less, more preferably 5 ⁇ m or more and 19 ⁇ m or less, and further preferably 7 ⁇ m or more and 18 ⁇ m or less. Preferably they are 9 micrometers or more and 17 micrometers or less.
  • the final film thickness of the multilayer porous membrane is 2 ⁇ m or more, the mechanical strength tends to be further improved.
  • the final film thickness of the multilayer porous membrane is 20 ⁇ m or less, the battery tends to have a higher capacity.
  • the heat shrinkage rate at 150 ° C. of the multilayer porous membrane of the present embodiment is not particularly limited, but both MD and TD are preferably 0% or more and 15% or less, more preferably 0% or more and 10% or less, More preferably, it is 0% or more and 5% or less. Since the thermal contraction rate at 150 ° C. in both the MD and TD directions is 15% or less, it is possible to prevent the separator from being broken even when the battery is abnormally heated. Good safety performance tends to be obtained.
  • the shutdown temperature of the multilayer porous membrane of this embodiment is not particularly limited, but is preferably 120 ° C. or higher and 160 ° C. or lower, more preferably 120 ° C. or higher and 150 ° C. or lower.
  • the shutdown temperature of the multilayer porous membrane is 160 ° C. or lower, even when the battery generates heat, current interruption is promptly promoted, and better safety performance tends to be obtained.
  • the shutdown temperature of the multilayer porous membrane is 120 ° C. or higher because, for example, use of a high temperature around 100 ° C., heat treatment, etc. can be carried out.
  • the short-circuit temperature of the multilayer porous membrane of the present embodiment is not particularly limited, but is preferably 180 ° C. or higher, preferably 190 ° C. or higher, and more preferably 200 ° C. or higher.
  • the multilayer porous membrane has a short-circuit temperature of 180 ° C. or higher, contact between the positive and negative electrodes can be suppressed until heat is dissipated even in abnormal battery heat generation, and thus better safety performance tends to be obtained.
  • the manufacturing method of the multilayer porous membrane of this embodiment has the application
  • the manufacturing method of a multilayer porous membrane may have the process of manufacturing a polyolefin porous membrane as needed.
  • the production method of the polyolefin porous film is not particularly limited.
  • the polyolefin resin and the plasticizer are melt-kneaded and formed into a sheet shape, and then the porous film is extracted by extracting the plasticizer.
  • Polyolefin resin is melt-kneaded and extruded at a high draw ratio, then the polyolefin crystal interface is peeled off by heat treatment and stretching, and polyolefin resin and inorganic filler are melt-kneaded and molded on a sheet After that, by making the interface by peeling the interface between the polyolefin resin and the inorganic filler by stretching, the polyolefin resin is dissolved and then immersed in a poor solvent for the polyolefin resin to solidify the polyolefin resin and simultaneously remove the solvent.
  • Well-known methods such as a method of making it porous, can be mentioned.
  • the inorganic filler-containing resin dispersion can be more uniformly applied and moreover, after the coating. Since the adhesiveness of an inorganic filler containing resin layer and the polyolefin porous membrane surface improves, it is preferable.
  • the surface treatment method is not particularly limited as long as the porous structure of the polyolefin porous membrane is not significantly impaired, and examples thereof include a corona discharge treatment method, a mechanical surface roughening method, a solvent treatment method, an acid treatment method, and an ultraviolet oxidation method. Can be mentioned.
  • a dispersion containing an inorganic filler, a resin binder, and an ion dissociating inorganic dispersant is applied to one or both sides of the polyolefin porous membrane.
  • the dispersion used in the production method of the present embodiment contains an ion dissociable inorganic dispersant in addition to the inorganic filler and the resin binder, the dispersion stability of the inorganic filler in the dispersion is further improved. Since the dispersion contains a resin binder, the binding property between the porous film, the inorganic filler, and the inorganic filler is further improved.
  • the inorganic filler is not particularly limited, and those described above can be used.
  • the resin binder is not particularly limited, and the above-mentioned ones can be used. Of these, aliphatic conjugated diene monomers and unsaturated carboxylic acid monomers and their copolymerization are possible because the ion permeability is less likely to decrease when the porous layer is laminated on at least one side of the porous membrane. It is preferable to use a latex obtained by emulsion polymerization of other monomers.
  • the resin binder is preferably an acrylic polymer, particularly an acrylic latex. In particular, depending on the inorganic filler used, aggregation is likely to occur when an acrylic polymer is added. However, in the manufacturing method of this embodiment, since a dispersant containing an ion dissociable inorganic dispersant is used, the aggregation of the resin binder is suppressed. Can do.
  • the ion dissociable inorganic dispersant is not particularly limited, and those described above can be used.
  • the solvent of the dispersion is not particularly limited, and examples thereof include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, and hexane. Water is preferable from the viewpoint of dispersibility of the inorganic filler and the resin binder.
  • the dispersion preferably further contains an ion dissociable organic dispersant.
  • the dispersion stability of the inorganic filler and the resin binder in the dispersion tends to be further improved. It does not specifically limit as an ion dissociative organic dispersing agent, The same thing as the above can be used.
  • the ion dissociable organic dispersant, together with the ion dissociable inorganic dispersant, serves as a dispersant in the dispersion of the production method of the present embodiment.
  • the content of the ion dissociable inorganic dispersant in the dispersion is not particularly limited, but is the total of the ion dissociable inorganic dispersant and the ion dissociable organic dispersant.
  • it is 20 mass parts or more and 95 mass parts or less with respect to 100 mass parts of content, More preferably, they are 30 mass parts or more and 93 mass parts or less, More preferably, they are 50 mass parts or more and 90 mass parts or less.
  • the content of the ion dissociable inorganic dispersant in the dispersion is 20 parts by mass or more and 95 parts by mass or less, the dispersibility of the inorganic filler and the resin binder in the slurry solvent tends to be further improved.
  • a dispersant such as a surfactant, a thickener, a wetting agent, an antifoaming agent, Various additives such as pH adjusting agents including acids and alkalis may be added. These additives are preferably those that can be removed upon solvent removal or plasticizer extraction. However, if they are electrochemically stable in the range of use of the lithium ion secondary battery and do not inhibit the battery reaction, May remain.
  • a method for dissolving or dispersing the inorganic filler, the resin binder, and the ion dissociable inorganic dispersant in a solvent is not particularly limited.
  • a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid examples thereof include a mill, an attritor, a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, a high-speed impact mill, ultrasonic dispersion, and mechanical stirring using a stirring blade.
  • the method for applying the dispersion to the polyolefin porous film is not particularly limited as long as it can realize the required layer thickness and application area.
  • gravure coater method small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze coater method
  • examples thereof include a cast coater method, a die coater method, a screen printing method, and a spray coating method.
  • an inorganic filler containing resin dispersion liquid may be apply
  • the solvent after applying the dispersion.
  • a method for removing the solvent for example, a method of drying at a temperature below the melting point while fixing the polyolefin porous film, a method of drying under reduced pressure at a low temperature, and immersing in a poor solvent for the resin binder to solidify the resin binder The method of extracting a solvent simultaneously is mentioned.
  • the separator for nonaqueous electrolyte batteries of this embodiment includes the multilayer porous film.
  • the multilayer porous membrane has heat resistance and can be suitably used as a separator for nonaqueous electrolyte batteries.
  • the multilayer porous membrane of this embodiment can achieve both good heat resistance and ion permeability (air permeability). When such a multilayer porous membrane is used as a separator for a non-aqueous electrolyte battery, a non-aqueous electrolyte battery excellent in safety performance and output characteristics can be realized.
  • the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
  • the physical property in an Example was measured with the following method. Unless otherwise stated, various measurements and evaluations were performed under conditions of room temperature 23 ° C., 1 atm, and relative humidity 50%.
  • Thickness ( ⁇ m) of multilayer porous membrane and polyolefin porous membrane, and layer thickness ( ⁇ m) of porous layer The film thicknesses of the multilayer porous membrane and the polyolefin porous membrane were measured with a dial gauge (manufactured by Ozaki Seisakusho, trade name “PEACOCK No. 25”). Specifically, a sample having a dimension of 100 mm in the MD direction ⁇ 100 mm in the TD direction was cut out, and the local film thicknesses at 9 locations (3 points ⁇ 3 points) were measured in a lattice shape. The arithmetic average value was defined as the film thickness. The thickness of the porous layer was calculated from the difference between the thickness of the multilayer porous membrane and the thickness of the polyolefin porous membrane (measured by peeling the porous layer).
  • Air permeability (second / 100 cc), rate of increase in air permeability (%) of multilayer porous membrane and polyolefin porous membrane For measurement of the air permeability (second / 100 cc) of the multilayer porous membrane and the polyolefin porous membrane, a Gurley type air permeability meter (G-B2 (trademark) manufactured by Toyo Seiki Co.) conforming to JIS P-8117 was used. The inner cylinder weight was 567 g, and the time required for 100 mL of air to pass through an area of 28.6 mm in diameter and 645 mm 2 was measured as the air permeability.
  • Average particle size of inorganic filler The average particle size of the inorganic filler is measured by measuring the particle size distribution using a laser particle size distribution measuring device (Microtrack MT3300EX manufactured by Nikkiso Co., Ltd.) using water as a dispersion medium, and the cumulative frequency. was the average particle size.
  • Example 1 Manufacture of polyolefin porous membrane 47 parts by mass of polyethylene having an Mv of 700,000, 46 parts by mass of polyethylene having an Mv of 300,000, and 7 parts by mass of polypropylene having an Mv of 400,000 were dry blended using a tumbler blender. Next, 1 part by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added to 99 parts by mass of the obtained pure polymer mixture. Then, the mixture was made into 100 parts by mass in total, and dry blended again using a tumbler blender to obtain a polymer mixture.
  • the obtained mixture such as polymer was fed to the twin screw extruder by a feeder under a nitrogen atmosphere. Further, liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 ⁇ 10 ⁇ 5 m 2 / s) was injected into the extruder cylinder by a plunger pump.
  • liquid paraffin kinematic viscosity at 37.78 ° C .: 7.59 ⁇ 10 ⁇ 5 m 2 / s
  • a mixture such as a polymer and liquid paraffin were melt-kneaded in a twin-screw extruder, and the feeder and pump were adjusted so that the liquid paraffin content ratio in the total mixture to be extruded was 65 parts by mass.
  • the melt kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded and cast on a cooling roll controlled at a surface temperature of 25 ° C. through a T-die to obtain a gel sheet having a thickness of 1600 ⁇ m.
  • the obtained gel sheet was guided to a simultaneous biaxial tenter stretching machine, and biaxial stretching was performed.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 7.0 times, and a preset temperature of 125 ° C.
  • the stretched gel sheet was introduced into a methyl ethyl ketone bath and sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin, and then methyl ethyl ketone was removed by drying.
  • the dried gel sheet was guided to a TD tenter and heat fixed.
  • the stretching temperature and magnification during heat setting were 128 ° C. and 2.0 times, and the temperature and relaxation rate during subsequent relaxation were 133 ° C. and 0.80.
  • the reaction vessel was charged from the tank.
  • the pH of the reaction system was maintained at 4 or lower.
  • the temperature of the reaction vessel was kept at 80 ° C. and stirring was continued for 120 minutes. Then, it cooled to room temperature.
  • Formation of porous layer 94 parts by mass of aluminum hydroxide oxide particles (average particle size: 1.0 ⁇ m) as inorganic filler, 6.0 parts by mass of acrylic polymer (solid content concentration: 45%) as resin binder, and ion dissociable inorganic dispersant Then, 1.0 part by mass of polyphosphate amine salt (dispersant) was uniformly dispersed in 100 parts by mass of water to prepare a dispersion for forming a porous layer. The prepared dispersion for forming a porous layer was applied to the surface of the polyolefin porous film using a gravure coater.
  • Example 2 The dispersant in the dispersion for forming the porous layer is 0.95 part by mass of polyphosphate amine salt, 0.05 part by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco) that is an ion dissociative organic dispersant, A multilayer porous membrane was obtained in the same manner as in Example 1 except that the mixture was used. The results are listed in Table 1.
  • Example 3 Example 1 except that the dispersant in the porous layer-forming dispersion was a mixture of 0.8 parts by mass of polyphosphate amine salt and 0.2 parts by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco). In the same manner, a multilayer porous membrane was obtained. The results are listed in Table 1.
  • Example 4 Example 1 except that the dispersant in the porous layer-forming dispersion was a mixture of 0.6 parts by mass of polyphosphate amine salt and 0.4 parts by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco). In the same manner, a multilayer porous membrane was obtained. The results are listed in Table 1.
  • Example 5 Example 1 except that the dispersant in the dispersion for forming the porous layer was a mixture of 0.2 parts by mass of polyphosphate amine salt and 0.8 parts by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco). In the same manner, a multilayer porous membrane was obtained. The results are listed in Table 1.
  • Example 6 Example 1 except that the dispersant in the dispersion for forming a porous layer was a mixture of 0.05 part by mass of a polyphosphate amine salt and 0.95 part by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco). In the same manner, a multilayer porous membrane was obtained. The results are listed in Table 1.
  • Example 7 A multilayer porous membrane was obtained in the same manner as in Example 3 except that the thickness of the porous layer was 5 ⁇ m. The results are listed in Table 1.
  • Example 8 A multilayer porous membrane was obtained in the same manner as in Example 3 except that the thickness of the porous layer was 7 ⁇ m. The results are listed in Table 1.
  • Example 9 A multilayer porous membrane was obtained in the same manner as in Example 3 except that the thickness of the porous layer was 10 ⁇ m. The results are listed in Table 1.
  • Example 10 Example except that the dispersant in the dispersion for forming the porous layer was a mixture of 0.8 parts by mass of polyphosphate amine salt and 0.2 parts by mass of sodium polyacrylate which is an ionic dissociative organic dispersant. In the same manner as in Example 3, a multilayer porous membrane was obtained. The results are listed in Table 1.
  • DOP dioctyl phthalate
  • the molded product was subjected to extraction removal of DOP with methylene chloride and silica with sodium hydroxide to form a porous film.
  • the porous membrane was heated to 118 ° C. and stretched 5.3 times in the longitudinal direction and then 1.8 times in the transverse direction.
  • a porous film having a film thickness of 11 ⁇ m, porosity of 48 volume%, air permeability of 55 seconds / 100 cc, MD maximum heat shrinkage stress of 8.7 g, and TD maximum heat shrinkage stress of 0.9 g was obtained.
  • a multilayer porous membrane was obtained in the same manner as in Example 3 except that the polyolefin porous membrane was used as a substrate. The results are listed in Table 1.
  • Example 12 A multilayer porous membrane was obtained in the same manner as in Example 1 except that calcined kaolin (average particle size: 1.0 ⁇ m) was used as the inorganic filler in the porous layer forming dispersion. The results are listed in Table 1.
  • Example 13 A multilayer porous membrane was obtained in the same manner as in Example 1 except that alumina (average particle size: 1.0 ⁇ m) was used as the inorganic filler in the dispersion for forming the porous layer. The results are listed in Table 1.
  • Example 14 A multilayer porous membrane was obtained in the same manner as in Example 1 except that ammonium polyphosphate was used as the dispersant in the dispersion for forming the porous layer. The results are also shown in Table 1.
  • Example 15 A multilayer porous membrane was obtained in the same manner as in Example 1 except that sodium polyphosphate was used as the dispersant in the dispersion for forming the porous layer. The results are also shown in Table 1.
  • Example 16 A multilayer porous membrane was obtained in the same manner as in Example 1 except that the dispersant in the dispersion for forming the porous layer was changed to 0.3 parts by mass of polyphosphate amine salt. The results are listed in Table 1.
  • Example 17 A multilayer porous membrane was obtained in the same manner as in Example 1 except that the dispersant in the dispersion for forming a porous layer was changed to 2.5 parts by mass of polyphosphate amine salt. The results are listed in Table 1.
  • Example 18 A multilayer porous membrane was obtained in the same manner as in Example 1 except that 90 parts by mass of the inorganic filler and 10 parts by mass of the resin binder in the dispersion for forming the porous layer were used. The results are listed in Table 1.
  • Example 19 A multilayer porous membrane was obtained in the same manner as in Example 1 except that 98 parts by mass of the inorganic filler in the dispersion for forming the porous layer and 2 parts by mass of the resin binder were used. The results are listed in Table 1.
  • Example 2 A multilayer porous membrane was obtained in the same manner as in Example 1 except that the dispersant in the dispersion for forming the porous layer was 1 part by mass of ammonium polycarboxylate. The results are listed in Table 1.
  • Example 3 A multilayer porous membrane was obtained in the same manner as in Example 1 except that the dispersant in the dispersion for forming the porous layer was 1 part by mass of sodium polyacrylate. The results are listed in Table 1.
  • the multilayer porous membrane of the present invention has industrial applicability as a separator for batteries, particularly high capacity batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The purpose of this invention is to provide a multilayer porous film having a low heat shrinkage rate and a method for manufacturing same, and a separator for a non-aqueous electrolyte cell provided with the multilayer porous film. A multilayer porous film having: a polyolefin porous film; and a porous layer containing an inorganic filler, a resin binder, and an ion dissociative inorganic dispersant, the porous layer being provided on one or both sides of the polyolefin porous film.

Description

多層多孔膜及びその製造方法、並びに非水電解液電池用セパレータMultilayer porous membrane, method for producing the same, and separator for non-aqueous electrolyte battery
 本発明は、多層多孔膜及びその製造方法、並びに非水電解液電池用セパレータに関する。 The present invention relates to a multilayer porous membrane, a method for producing the same, and a separator for a nonaqueous electrolyte battery.
 近年、電池の高容量化がさらに進んでおり、このような高容量電池においては厚みが薄くかつ高い耐熱性を有するセパレータが求められており、その検討が進められている。例えば、特許文献1には、高温でもシャットダウン状態を維持可能とするために、板状の粒子が主体の無機フィラーを含有する多孔質膜とポリオレフィンを主体とする多孔質膜とを一体化した電池用セパレータが開示されている。 In recent years, the capacity of batteries has been further increased, and in such high capacity batteries, a separator having a thin thickness and high heat resistance has been demanded, and studies thereof are being conducted. For example, Patent Document 1 discloses a battery in which a porous film containing an inorganic filler mainly composed of plate-like particles and a porous film mainly composed of polyolefin are integrated so that a shutdown state can be maintained even at high temperatures. A separator for use is disclosed.
特開2010-123465号公報JP 2010-123465 A
 しかしながら、特許文献1に記載の電池用セパレータは、耐熱層を有さない通常のセパレータに比して耐熱性が向上すると考えられるものの、無機フィラーを含有する多孔質膜を薄くしていくと所望の耐熱性を得られなくなるという観点から、なお改良の余地を有する。 However, although the battery separator described in Patent Document 1 is considered to have improved heat resistance as compared with a normal separator having no heat-resistant layer, it is desirable that the porous film containing the inorganic filler is made thinner. However, there is still room for improvement from the viewpoint of not being able to obtain the heat resistance.
 本発明は、上記問題点に鑑みてなされたものであり、熱収縮率の低い多層多孔膜及びその製造方法、並びに前記多層多孔膜を備えた非水電解液電池用セパレータを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a multilayer porous membrane having a low thermal shrinkage rate, a method for producing the same, and a separator for a nonaqueous electrolyte battery including the multilayer porous membrane. And
 本発明者らは上記問題点ついて鋭意検討した。その結果、ポリオレフィン多孔膜の片面または両面に、所定の多孔層を形成することにより上記の課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors diligently studied the above problems. As a result, it has been found that the above-mentioned problems can be solved by forming a predetermined porous layer on one or both surfaces of the polyolefin porous membrane, and the present invention has been completed.
 すなわち、本発明は以下の通りである。
〔1〕
 ポリオレフィン多孔膜と、
 該ポリオレフィン多孔膜の片面又は両面に配された、無機フィラー、樹脂バインダー及びイオン解離性無機分散剤を含有する多孔層と、
 を有する、多層多孔膜。
〔2〕
 前記多孔層が、イオン解離性有機分散剤をさらに含む、前項〔1〕に記載の多層多孔膜。
〔3〕
 前記イオン解離性無機分散剤及び前記イオン解離性有機分散剤の合計含有量100質量部に対して、前記イオン解離性無機分散剤の含有量が、20質量部以上95質量部以下である、前項〔2〕に記載の多層多孔膜。
〔4〕
 前記イオン解離性無機分散剤が、縮合リン酸塩を含む、前項〔1〕~〔3〕のいずれか1項に記載の多層多孔膜。
〔5〕
 前記樹脂バインダーが、アクリル系ポリマーを含む、前項〔1〕~〔4〕のいずれか1項に記載の多層多孔膜。
〔6〕
 前項〔1〕~〔5〕のいずれか1項に記載の多層多孔膜を備える、非水電解液電池用セパレータ。
〔7〕
 ポリオレフィン多孔膜の片面又は両面に、無機フィラー、樹脂バインダー及びイオン解離性無機分散剤を含有する分散液を塗布する塗布工程を有する、多層多孔膜の製造方法。
〔8〕
 前記樹脂バインダーが、アクリル系ポリマーを含む、前項〔7〕に記載の多層多孔膜の製造方法。
〔9〕
 前記分散液が、イオン解離性有機分散剤をさらに含む、前項〔7〕又は〔8〕に記載の多層多孔膜の製造方法。
That is, the present invention is as follows.
[1]
A polyolefin porous membrane,
A porous layer containing an inorganic filler, a resin binder, and an ion dissociable inorganic dispersant, disposed on one or both sides of the polyolefin porous membrane;
A multilayer porous membrane.
[2]
The multilayer porous membrane according to [1] above, wherein the porous layer further contains an ion dissociative organic dispersant.
[3]
The content of the ionic dissociable inorganic dispersant is 20 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the total content of the ionic dissociative inorganic dispersant and the ionic dissociative organic dispersant. The multilayer porous membrane according to [2].
[4]
The multilayer porous membrane according to any one of [1] to [3], wherein the ion dissociable inorganic dispersant contains a condensed phosphate.
[5]
The multilayer porous membrane according to any one of [1] to [4], wherein the resin binder includes an acrylic polymer.
[6]
A separator for a non-aqueous electrolyte battery, comprising the multilayer porous film according to any one of [1] to [5] above.
[7]
The manufacturing method of a multilayer porous membrane which has the application | coating process which apply | coats the dispersion liquid containing an inorganic filler, a resin binder, and an ion dissociative inorganic dispersing agent to the single side | surface or both surfaces of a polyolefin porous membrane.
[8]
The method for producing a multilayer porous membrane according to [7] above, wherein the resin binder contains an acrylic polymer.
[9]
The method for producing a multilayer porous membrane according to [7] or [8] above, wherein the dispersion further contains an ion dissociative organic dispersant.
 本発明によれば、熱収縮率の低い多層多孔膜及びその製造方法、並びに前記多層多孔膜を備えた非水電解液電池用セパレータを提供することができる。 According to the present invention, it is possible to provide a multilayer porous membrane having a low thermal shrinkage rate, a method for producing the same, and a separator for a nonaqueous electrolyte battery provided with the multilayer porous membrane.
 以下、本発明を実施するための形態(以下、「本実施形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter abbreviated as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
〔多層多孔膜〕
 本実施形態の多層多孔膜は、
 ポリオレフィン多孔膜と、
 該ポリオレフィン多孔膜の片面又は両面に配された、無機フィラー、樹脂バインダー及びイオン解離性無機分散剤を含有する多孔層(以下、単に「多孔層」ともいう。)を有する。
[Multilayer porous membrane]
The multilayer porous membrane of this embodiment is
A polyolefin porous membrane,
It has a porous layer (hereinafter also simply referred to as “porous layer”) containing an inorganic filler, a resin binder, and an ion dissociating inorganic dispersant, which is disposed on one or both surfaces of the polyolefin porous membrane.
〔ポリオレフィン多孔膜〕
 ポリオレフィン多孔膜としては、特に限定されず、ポリオレフィン樹脂を含む多孔膜を用いることができる。ポリオレフィン多孔膜中のポリオレフィン樹脂の含有量は、特に限定されないが、好ましくは50質量%以上であり、より好ましくは70~100質量である。ポリオレフィン多孔膜中のポリオレフィン樹脂の含有量が上記範囲内であることにより、電池用セパレータとして用いた場合のシャットダウン性能がより向上する傾向にある。
[Polyolefin porous film]
The polyolefin porous film is not particularly limited, and a porous film containing a polyolefin resin can be used. The content of the polyolefin resin in the polyolefin porous membrane is not particularly limited, but is preferably 50% by mass or more, and more preferably 70 to 100% by mass. When the content of the polyolefin resin in the polyolefin porous membrane is within the above range, the shutdown performance when used as a battery separator tends to be further improved.
 ポリオレフィン樹脂としては、特に限定されず、例えば、通常の押出、射出、インフレーション、及びブロー成形等に使用するポリオレフィン樹脂を用いることができる。このようなポリオレフィン樹脂の具体例としては、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、及び1-オクテン等のホモ重合体、並びに、これらの共重合体及びこれらの多段重合体が挙げられる。より具体的には、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、及び超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、エチレン-プロピレンランダム共重合体、ポリブテン、及びエチレンプロピレンラバー等が挙げられる。なお、ポリオレフィン樹脂は、1種単独で用いても、2種以上を併用してもよい。 The polyolefin resin is not particularly limited, and for example, a polyolefin resin used for normal extrusion, injection, inflation, blow molding and the like can be used. Specific examples of such polyolefin resins include homopolymers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene, copolymers thereof, and these And a multistage polymer. More specifically, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, ethylene-propylene random copolymer, polybutene, and Examples include ethylene propylene rubber. In addition, polyolefin resin may be used individually by 1 type, or may use 2 or more types together.
 このなかでも、ポリオレフィン樹脂は、ポリプロピレンを含むことが好ましい。ポリオレフィン樹脂中におけるポリプロピレンの含有量は、特に限定されないが、好ましくは1~35質量%であり、より好ましくは3~20質量%であり、さらに好ましくは4~10質量%である。ポリプロピレンの含有量が1質量%以上であることにより、多孔膜の耐熱性がより向上する傾向にある。また、比較的高い融点を有するポリプロピレンの含有量が35質量%以下であることにより、本実施形態の多層多孔膜を電池用セパレータとして使用する場合、シャットダウン温度において膜が熱溶融して多孔がより閉塞しやすく(シャットダウン性)、また、より低い温度でシャットダウンが生じやすい傾向にある。 Among these, the polyolefin resin preferably contains polypropylene. The content of polypropylene in the polyolefin resin is not particularly limited, but is preferably 1 to 35% by mass, more preferably 3 to 20% by mass, and further preferably 4 to 10% by mass. When the content of polypropylene is 1% by mass or more, the heat resistance of the porous membrane tends to be further improved. In addition, since the content of polypropylene having a relatively high melting point is 35% by mass or less, when the multilayer porous membrane of this embodiment is used as a battery separator, the membrane is more thermally melted at the shutdown temperature. It tends to block (shutdown property) and tends to cause shutdown at a lower temperature.
 ポリオレフィン樹脂の粘度平均分子量(Mv)は、特に限定されないが、好ましくは50,000~3,000,000であり、より好ましくは100,000~1,000,000であり、さらに好ましくは200,000~800,000である。ポリオレフィン樹脂のMvが50,000以上であることにより、得られるポリオレフィン多孔膜の機械的強度がより向上する傾向にある。また、ポリオレフィン樹脂のMvが3,000,000以下であることにより、生産時の成形性がより向上する傾向にある。さらに、Mvが1,000,000以下であることにより、電池用セパレータとして使用した場合に、温度上昇時に孔を閉塞しやすく、シャットダウン機能がさらに向上する傾向にある。なお、多孔膜の機械的強度を制御するために、Mvの異なるポリオレフィン樹脂を2種以上混合したものを用いてもよい。なお、ポリオレフィン樹脂の粘度平均分子量(Mv)は、実施例に記載の方法により測定することができる。 The viscosity average molecular weight (Mv) of the polyolefin resin is not particularly limited, but is preferably 50,000 to 3,000,000, more preferably 100,000 to 1,000,000, still more preferably 200, 000 to 800,000. When the Mv of the polyolefin resin is 50,000 or more, the mechanical strength of the resulting polyolefin porous film tends to be further improved. Moreover, when the Mv of the polyolefin resin is 3,000,000 or less, the moldability during production tends to be further improved. Furthermore, when Mv is 1,000,000 or less, when used as a battery separator, the hole tends to be blocked when the temperature rises, and the shutdown function tends to be further improved. In order to control the mechanical strength of the porous film, a mixture of two or more polyolefin resins having different Mvs may be used. In addition, the viscosity average molecular weight (Mv) of polyolefin resin can be measured by the method as described in an Example.
 ポリオレフィン多孔膜は、必要に応じて、フェノール系化合物、リン系化合物、又はイオウ系化合物等の酸化防止剤、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の添加剤を含んでもよい。 Polyolefin porous membranes are made of antioxidants such as phenolic compounds, phosphorus compounds, or sulfur compounds, metal soaps such as calcium stearate and zinc stearate, UV absorbers, light stabilizers, and antistatics as necessary. An additive such as an agent, an antifogging agent, and a color pigment may be included.
 ポリオレフィン多孔膜の膜厚は、特に限定されないが、好ましくは0.10μm以上25μm以下であり、より好ましくは1.0μm以上20μm以下であり、さらに好ましくは3.0μm以上18μm以下であり、特に好ましくは5.0μm以上16μm以下である。ポリオレフィン多孔膜の膜厚が0.10μm以上であることにより、得られる多層多孔膜の機械的強度がより向上する傾向にある。また、ポリオレフィン多孔膜の膜厚が25μm以下であることにより、電池がより高容量化する傾向にある。なお、ポリオレフィン多孔膜の膜厚は、実施例に記載の方法により測定することができる。 The film thickness of the polyolefin porous membrane is not particularly limited, but is preferably 0.10 μm or more and 25 μm or less, more preferably 1.0 μm or more and 20 μm or less, further preferably 3.0 μm or more and 18 μm or less, and particularly preferably. Is 5.0 μm or more and 16 μm or less. When the film thickness of the polyolefin porous membrane is 0.10 μm or more, the mechanical strength of the resulting multilayer porous membrane tends to be further improved. Moreover, when the film thickness of the polyolefin porous membrane is 25 μm or less, the battery tends to have a higher capacity. In addition, the film thickness of a polyolefin porous membrane can be measured by the method as described in an Example.
 ポリオレフィン多孔膜の平均孔径は、特に限定されないが、好ましくは0.030μm以上0.20μm以下であり、より好ましくは0.040μm以上0.10μm以下であり、さらに好ましくは0.050μm以上0.090μm以下であり、特に好ましくは0.060μm以上0.090μm以下である。 The average pore diameter of the polyolefin porous membrane is not particularly limited, but is preferably 0.030 μm or more and 0.20 μm or less, more preferably 0.040 μm or more and 0.10 μm or less, and further preferably 0.050 μm or more and 0.090 μm or less. Or less, and particularly preferably 0.060 μm or more and 0.090 μm or less.
 ポリオレフィン多孔膜の気孔率は、特に限定されないが、好ましくは25%以上65%以下であり、より好ましく30%以上60%以下であり、さらに好ましくは35%以上55%以下である。ポリオレフィン多孔膜の気孔率が25%以上であることにより、後述の無機フィラー含有分散液塗布後の透気度の増加がより抑制できる傾向にある。なお、ポリオレフィン多孔膜の気孔率は、実施例に記載の方法により測定することができる。 The porosity of the polyolefin porous membrane is not particularly limited, but is preferably 25% or more and 65% or less, more preferably 30% or more and 60% or less, and further preferably 35% or more and 55% or less. When the porosity of the polyolefin porous membrane is 25% or more, an increase in the air permeability after applying the inorganic filler-containing dispersion described later tends to be further suppressed. In addition, the porosity of a polyolefin porous membrane can be measured by the method as described in an Example.
 ポリオレフィン多孔膜の熱収縮応力の最大値は、特に限定されないが、引出し方向(以下、「MD」ともいう。)、幅方向(以下、「TD」ともいう。)共に好ましくは10g以下であり、より好ましくは8g以下であり、さらに好ましくは6g以下であり、特に好ましくは4g以下である。ポリオレフィン多孔膜の熱収縮応力の最大値が10g以下であることにより、耐熱性と透過性とが共に優れる傾向にある。 The maximum value of the heat shrinkage stress of the polyolefin porous film is not particularly limited, but is preferably 10 g or less in both the drawing direction (hereinafter also referred to as “MD”) and the width direction (hereinafter also referred to as “TD”). More preferably, it is 8 g or less, More preferably, it is 6 g or less, Especially preferably, it is 4 g or less. When the maximum value of the heat shrinkage stress of the polyolefin porous membrane is 10 g or less, both heat resistance and permeability tend to be excellent.
〔多孔層〕
 本実施形態の多層多孔膜は、ポリオレフィン多孔膜の片面又は両面に配された、無機フィラー、樹脂バインダー及びイオン解離性無機分散剤を含有する多孔層を有する。このような多孔層を有することにより、高温時においても、ポリオレフィン多孔膜の熱収縮が抑止され、破膜による短絡を防ぐことができる。以下、各成分について説明する。
(Porous layer)
The multilayer porous membrane of this embodiment has a porous layer containing an inorganic filler, a resin binder, and an ion dissociative inorganic dispersant, which are disposed on one or both sides of a polyolefin porous membrane. By having such a porous layer, thermal shrinkage of the polyolefin porous membrane can be suppressed even at high temperatures, and a short circuit due to a membrane breakage can be prevented. Hereinafter, each component will be described.
(イオン解離性無機分散剤)
 本実施形態の多層多孔膜が多孔層にイオン解離性無機分散剤を含むことにより、耐熱性がより向上する。この理由は、イオン解離性無機分散剤が無機フィラー表面と強い親和性を示し、多孔層を形成する際に用いられるスラリーにおいて、無機フィラーのスラリー溶媒に対する親和性を高めることができ、かつ電荷反発によりスラリー溶媒における無機フィラーの分散性を向上させることができるためであると考えられる。また、イオン解離性無機分散剤を用いることにより、無機フィラーだけでなく樹脂バインダーの分散性も良好となり、樹脂バインダーの凝集を抑制できることも耐熱性が向上する理由となる。しかしながら、耐熱性が向上する理由は、これらに限定されない。
(Ion dissociative inorganic dispersant)
When the multilayer porous membrane of this embodiment contains an ion dissociable inorganic dispersant in the porous layer, the heat resistance is further improved. The reason for this is that the ion dissociable inorganic dispersant has a strong affinity with the surface of the inorganic filler, and in the slurry used when forming the porous layer, the affinity of the inorganic filler to the slurry solvent can be increased, and charge repulsion can be achieved. This is considered to be because the dispersibility of the inorganic filler in the slurry solvent can be improved. Further, by using an ion dissociable inorganic dispersant, not only the inorganic filler but also the dispersibility of the resin binder is improved, and the fact that the aggregation of the resin binder can be suppressed is also a reason for improving the heat resistance. However, the reason why the heat resistance is improved is not limited to these.
 イオン解離性無機分散剤としては、特に限定されないが、例えば、無機酸塩が挙げられる。無機酸塩としては、オルトリン酸塩や縮合リン酸塩やアルミン酸塩が挙げられ、この中でも、一分子中に複数のリン酸基を有し、無機フィラー表面と強い親和性を示すと考えられる縮合リン酸塩が好ましい。縮合リン酸塩としては、特に限定されず、例えば、ポリリン酸塩、メタリン酸塩、ウルトラリン酸塩などが挙げられ、このなかでもポリリン酸塩やメタリン酸塩が好ましい。一般的に、ポリリン酸塩はオルトリン酸が鎖状に連結した構造であり、メタリン酸塩は環状に、ウルトラリン酸塩は網目状に連結した構造を有する。多孔層における無機フィラーの分散性向上の観点から、ポリリン酸塩やメタリン酸塩が特に好ましい。 The ion dissociable inorganic dispersant is not particularly limited, and examples thereof include inorganic acid salts. Examples of inorganic acid salts include orthophosphates, condensed phosphates, and aluminates. Among them, it has multiple phosphate groups in one molecule and is considered to exhibit strong affinity with the inorganic filler surface. A condensed phosphate is preferred. The condensed phosphate is not particularly limited, and examples thereof include polyphosphate, metaphosphate, and ultraphosphate. Among these, polyphosphate and metaphosphate are preferable. In general, polyphosphate has a structure in which orthophosphoric acid is linked in a chain, metaphosphate has a structure linked in a ring, and ultraphosphate has a structure linked in a network. From the viewpoint of improving the dispersibility of the inorganic filler in the porous layer, polyphosphate and metaphosphate are particularly preferable.
 ポリリン酸塩としては、特に限定されないが、例えば、式(Mn+23n+1)で表される化合物が挙げられる。当該式の縮合度nは、特に限定されないが、好ましくは2~30であり、より好ましくは2~10であり、さらに好ましくは2~6である。また、Mは、カチオンである。ポリリン酸塩としては、特に限定されないが、例えば、ピロリン酸塩、トリポリリン酸塩、テトラポリリン酸塩、ペンタポリリン酸塩、及びヘキサポリリン酸塩が挙げられる。このようなポリリン酸塩を用いることにより、無機フィラーへの吸着が速く安定した分散性を維持でき、樹脂バインダー等の凝集も起こりにくい傾向にある。 The polyphosphates are not particularly limited, for example, a compound represented by the formula (M n + 2 P n O 3n + 1) and the like. The degree of condensation n in the formula is not particularly limited, but is preferably 2 to 30, more preferably 2 to 10, and further preferably 2 to 6. M is a cation. The polyphosphate is not particularly limited, and examples thereof include pyrophosphate, tripolyphosphate, tetrapolyphosphate, pentapolyphosphate, and hexapolyphosphate. By using such a polyphosphate, the adsorption to the inorganic filler is fast and stable dispersibility can be maintained, and aggregation of the resin binder and the like tends not to occur.
 メタリン酸塩としては、特に限定されないが、例えば、式(MPOで表される化合物が挙げられる。当該式の縮合度nは、特に限定されないが、好ましくは3~200であり、より好ましくは3~25であり、さらに好ましくは3~6である。また、Mは、カチオンである。メタリン酸塩としては、特に限定されないが、例えば、トリメタリン酸塩、テトラメタリン酸塩、ペンタメタリン酸塩、及びヘキサメタリン酸塩が挙げられる。このようなメタリン酸塩を用いることにより、無機フィラーへの吸着がより速くなり、安定した分散性を維持でき、樹脂バインダー等の凝集も起こりにくい傾向にある。 The metaphosphate is not particularly limited, for example, a compound represented by the formula (MPO 3) n and the like. The degree of condensation n in the formula is not particularly limited, but is preferably 3 to 200, more preferably 3 to 25, and further preferably 3 to 6. M is a cation. Although it does not specifically limit as a metaphosphate, For example, a trimetaphosphate, a tetrametaphosphate, a pentametaphosphate, and a hexametaphosphate are mentioned. By using such a metaphosphate, adsorption to the inorganic filler becomes faster, stable dispersibility can be maintained, and aggregation of a resin binder or the like tends not to occur.
 イオン解離性無機分散剤を構成するカチオンとしては、特に限定されないが、例えば、無機カチオン又は有機カチオンが挙げられる。無機カチオンとしては、特に限定されないが、例えば、カリウムイオン及びナトリウムイオンのようなアルカリ金属イオン又はアルカリ土類金属イオンが挙げられる。また、有機カチオンとしては、特に限定されないが、例えば、アミンイオン、アンモニウムイオンなどが挙げられる。このなかでも、特に樹脂バインダーとして後述のアクリル系ポリマーを用いる場合には、樹脂バインダーとの親和性の観点から、イオン解離性無機分散剤を構成するカチオンは、アミンイオンやアンモニウムイオンが好ましい。 Although it does not specifically limit as a cation which comprises an ion dissociable inorganic dispersing agent, For example, an inorganic cation or an organic cation is mentioned. The inorganic cation is not particularly limited, and examples thereof include alkali metal ions or alkaline earth metal ions such as potassium ions and sodium ions. Moreover, it does not specifically limit as an organic cation, For example, an amine ion, an ammonium ion, etc. are mentioned. Among these, in particular, when an acrylic polymer described later is used as the resin binder, the cation constituting the ion dissociable inorganic dispersant is preferably an amine ion or an ammonium ion from the viewpoint of affinity with the resin binder.
 上記縮合リン酸塩としては、太洋化学工業社製、燐化学工業社製、サンノプコ社製、キリン協和フーズ社製などの市販品を用いることができる。イオン解離性無機分散剤は、1種単独で用いてもよく、2種以上を併用してもよい。 As the condensed phosphate, commercially available products such as those manufactured by Taiyo Chemical Industry Co., Ltd., phosphorus chemical industry Co., Ltd., San Nopco Co., Ltd., and Kirin Kyowa Foods Co., Ltd. can be used. An ion dissociative inorganic dispersing agent may be used individually by 1 type, and may use 2 or more types together.
 多孔層中のイオン解離性無機分散剤の含有量は、無機フィラー100質量部に対して、好ましくは0.05質量部以上であり、より好ましくは0.1質量部以上であり、さらに好ましくは0.3質量部以上である。多孔層中のイオン解離性無機分散剤の含有量が0.05質量部以上であることにより、多層多孔膜の耐熱性がより向上する傾向にある。また、多孔層中のイオン解離性無機分散剤の含有量は、無機フィラー100質量部に対して、好ましくは5質量部以下であり、より好ましくは4質量部以下であり、さらに好ましくは3質量部以下である。多孔層中のイオン解離性無機分散剤の含有量が5質量部以下であることにより、多孔層における他の成分の含有比率が小さくなり、他の成分による効果が小さくなることがより抑制される傾向にある。 The content of the ion dissociable inorganic dispersant in the porous layer is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, further preferably 100 parts by mass of the inorganic filler. 0.3 parts by mass or more. When the content of the ion dissociable inorganic dispersant in the porous layer is 0.05 parts by mass or more, the heat resistance of the multilayer porous membrane tends to be further improved. Further, the content of the ion dissociable inorganic dispersant in the porous layer is preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and further preferably 3 parts by mass with respect to 100 parts by mass of the inorganic filler. Or less. When the content of the ion dissociable inorganic dispersant in the porous layer is 5 parts by mass or less, the content ratio of the other components in the porous layer is reduced, and the effect of the other components is further suppressed from being reduced. There is a tendency.
 また、多孔層が後述するイオン解離性有機分散剤を含有する場合において、多孔層中のイオン解離性無機分散剤の含有量は、イオン解離性無機分散剤及びイオン解離性有機分散剤の合計含有量100質量部に対して、好ましくは20質量部以上95質量部以下であり、より好ましくは30質量部以上93質量部以下であり、さらに好ましくは50質量部以上90質量部以下である。多孔層中のイオン解離性無機分散剤の含有量が上記範囲内であることにより、耐熱性がより向上する傾向にある。 Further, when the porous layer contains an ion dissociable organic dispersant described later, the content of the ion dissociable inorganic dispersant in the porous layer is the total content of the ion dissociable inorganic dispersant and the ion dissociable organic dispersant. Preferably it is 20 to 95 mass parts with respect to 100 mass parts, More preferably, it is 30 to 93 mass parts, More preferably, it is 50 to 90 mass parts. When the content of the ion dissociable inorganic dispersant in the porous layer is within the above range, the heat resistance tends to be further improved.
(無機フィラー)
 本実施形態の多孔層が無機フィラーを含有することにより、多層多孔膜の耐熱性が向上する。多層多孔膜を非水電解液電池用セパレータとして使用する場合には、多孔層に含まれる無機フィラーは、200℃以上の融点を有し、電気絶縁性が高く、かつセパレータとしての使用条件下で電気化学的に安定であるものが好ましい。
(Inorganic filler)
When the porous layer of this embodiment contains an inorganic filler, the heat resistance of a multilayer porous membrane improves. When the multilayer porous membrane is used as a separator for a non-aqueous electrolyte battery, the inorganic filler contained in the porous layer has a melting point of 200 ° C. or higher, high electrical insulation, and under the conditions for use as a separator. Those that are electrochemically stable are preferred.
 無機フィラーとしては、特に限定されないが、例えば、アルミナ、水酸化酸化アルミニウム(ベーマイト)、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物系セラミックス及びそれらの水和物;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸バリウム等のセラミックス;タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト等の層状ケイ酸塩鉱物;ガラス繊維等が挙げられる。無機フィラーは、1種単独で用いてもよいし、2種類以上を併用してもよい。 The inorganic filler is not particularly limited. For example, alumina, aluminum hydroxide oxide (boehmite), silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide, and other oxide ceramics and hydration thereof. Nitride ceramics such as silicon nitride, titanium nitride, boron nitride; ceramics such as silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, barium titanate; talc, kaolinite, dickite, nacrite, halloysite, pyrophyll Layered silicate minerals such as light, montmorillonite, sericite, mica, and amesite; glass fibers and the like. An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
 上記の中でも、アルミナ、水酸化酸化アルミニウム(ベーマイト)などの酸化アルミニウム系セラミックス及びそれらの水和物;カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライトなどのイオン交換能を持たない層状ケイ酸塩鉱物が好ましい。このような無機フィラーを用いることにより、多層多孔膜の電気化学的安定性及び耐熱特性がより向上する傾向にある。 Among these, aluminum oxide ceramics such as alumina and aluminum hydroxide oxide (boehmite) and hydrates thereof; layered silicates having no ion exchange ability such as kaolinite, dickite, nacrite, halloysite, and pyrophyllite Minerals are preferred. By using such an inorganic filler, the electrochemical stability and heat resistance characteristics of the multilayer porous membrane tend to be further improved.
 酸化アルミニウム系セラミックス及びそれらの水和物としては、特に限定されないが、例えば、水酸化酸化アルミニウムがより好ましい。また、イオン交換能を持たない層状ケイ酸塩鉱物としては、安価で入手も容易なため、カオリナイトで主に構成されているカオリンがより好ましい。カオリンには湿式カオリン及びこれを焼成処理した焼成カオリンがあるが、焼成カオリンは焼成処理の際に結晶水が放出されるのに加え、不純物が除去されるので、電気化学的安定性の点で特に好ましい。 The aluminum oxide ceramics and their hydrates are not particularly limited, but for example, aluminum hydroxide oxide is more preferable. Moreover, as a layered silicate mineral which does not have ion exchange ability, since it is cheap and easy to obtain, kaolin mainly composed of kaolinite is more preferable. Kaolin includes wet kaolin and calcined kaolin, which is calcined. However, calcined kaolin releases crystal water during the calcining process and removes impurities. Particularly preferred.
 無機フィラーの平均粒径は、特に限定されないが、好ましくは0.10μm以上3.0μm以下であり、より好ましくは、0.20μm以上2.0μm以下であり、さらに好ましくは0.50μm以上1.2μm以下であり、よりさらに好ましくは0.50μm以上0.80μm以下である。無機フィラーの平均粒径が0.10μm以上であることにより、電池用セパレータとして使用した場合のショート温度をより高くできる傾向にある。また、無機フィラーの平均粒径が3.0μm以下であることにより、多孔層の厚みをより薄くできる傾向にある。さらに、無機フィラーの平均粒径が2.0μm以下であることにより、多孔層の密度がより高くなり、熱収縮抑制の効果が著しく向上する傾向にある。無機フィラーの平均粒径は、水を分散媒としてレーザー式粒度分布測定装置を用いて粒径分布を測定し、粒子数の累積頻度が50%となる粒径の値として求めることができる。 The average particle size of the inorganic filler is not particularly limited, but is preferably from 0.10 μm to 3.0 μm, more preferably from 0.20 μm to 2.0 μm, still more preferably from 0.50 μm to 1. It is 2 μm or less, more preferably 0.50 μm or more and 0.80 μm or less. When the average particle size of the inorganic filler is 0.10 μm or more, the short temperature when used as a battery separator tends to be higher. Moreover, it exists in the tendency which can make the thickness of a porous layer thinner because the average particle diameter of an inorganic filler is 3.0 micrometers or less. Furthermore, when the average particle diameter of the inorganic filler is 2.0 μm or less, the density of the porous layer becomes higher and the effect of suppressing thermal shrinkage tends to be remarkably improved. The average particle size of the inorganic filler can be obtained as a value of a particle size at which the cumulative frequency of the number of particles is 50% by measuring the particle size distribution using water as a dispersion medium and using a laser particle size distribution measuring device.
 多孔層中の無機フィラーの含有量は、特に限定されないが、好ましくは50%以上100%未満であり、より好ましくは55%以上99.99%以下であり、さらに好ましくは60%以上99.9%以下であり、特に好ましくは65%以上99%以下であり、最も好ましくは90%以上99%以下である。多孔層中の無機フィラーの含有量が上記範囲内であることにより、耐熱性等がより向上する傾向にある。 The content of the inorganic filler in the porous layer is not particularly limited, but is preferably 50% or more and less than 100%, more preferably 55% or more and 99.99% or less, and further preferably 60% or more and 99.9%. % Or less, particularly preferably 65% or more and 99% or less, and most preferably 90% or more and 99% or less. When the content of the inorganic filler in the porous layer is within the above range, the heat resistance and the like tend to be further improved.
(樹脂バインダー)
 多孔層に含まれる樹脂バインダーは、無機フィラーを多孔膜上に結着するための機能を有する。多層多孔膜をリチウムイオン二次電池用セパレータとして使用する場合には、多孔層に含まれる樹脂バインダーは、リチウムイオン二次電池の電解液に対して不溶であり、かつリチウムイオン二次電池の使用範囲で電気化学的に安定なものを用いることが好ましい。
(Resin binder)
The resin binder contained in the porous layer has a function for binding the inorganic filler onto the porous film. When the multilayer porous membrane is used as a separator for a lithium ion secondary battery, the resin binder contained in the porous layer is insoluble in the electrolyte solution of the lithium ion secondary battery, and the use of the lithium ion secondary battery It is preferable to use one that is electrochemically stable within a range.
 このような樹脂バインダーとしては、特に限定されないが、例えば、ポリエチレンやポリプロピレン、α-ポリオレフィン等のポリオレフィン樹脂;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系ポリマーとこれらを含むコポリマー;ブタジエン、イソプレンなどの共役ジエンをモノマー単位として含むジエン系ポリマー又はこれらを含むコポリマー及びその水素化物;アクリル酸エステル、メタアクリル酸エステルなどをモノマー単位として含むアクリル系ポリマー又はこれらを含むコポリマー及びその水素化物;エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類;エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステル等の融点及び/又はガラス転移温度が180℃以上の樹脂及びこれらの混合物等が挙げられる。樹脂バインダーは、1種単独で用いても又は2種類以上を併用してもよい。このなかでも、フッ素系ポリマー、ジエン系ポリマー、及びアクリル系ポリマーが好ましく、アクリル系ポリマーがより好ましい。このような樹脂バインダーを用いることにより、結着性や耐熱性、透過性がより向上する傾向にある。特に、アクリル系ポリマーを用いることにより、耐酸化性がより向上する傾向にある。また、フッ素系ポリマーをもちいることにより、電気化学的安定性がより向上する傾向にある。 Such a resin binder is not particularly limited, but examples thereof include polyolefin resins such as polyethylene, polypropylene, and α-polyolefin; fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene and copolymers containing them; butadiene, isoprene, and the like A diene polymer containing a conjugated diene as a monomer unit or a copolymer thereof and a hydride thereof; an acrylic polymer containing an acrylate ester, a methacrylic acid ester or the like as a monomer unit or a copolymer containing the same and a hydride thereof; ethylene propylene Rubbers such as rubber, polyvinyl alcohol and polyvinyl acetate; cellulose derivatives such as ethyl cellulose, methyl cellulose, hydroxyethyl cellulose and carboxymethyl cellulose ; Polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyetherimide, polyamideimide, polyamide, melting point and / or glass transition temperature is above 180 ° C. resins and mixtures thereof, such as polyester. A resin binder may be used individually by 1 type, or may use 2 or more types together. Among these, a fluorine polymer, a diene polymer, and an acrylic polymer are preferable, and an acrylic polymer is more preferable. By using such a resin binder, the binding property, heat resistance, and permeability tend to be further improved. In particular, oxidation resistance tends to be further improved by using an acrylic polymer. In addition, electrochemical stability tends to be improved by using a fluorine-based polymer.
 フッ素系ポリマーとしては、特に限定されないが、例えば、フッ化ビニリデンのホモポリマー、フッ化ビニリデンと共重合可能なモノマーとのコポリマーが挙げられる。フッ素系ポリマー中のフッ化ビニリデンモノマー単位の含有量は、特に限定されないが、好ましくは40質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは60質量%以上である。 The fluorine-based polymer is not particularly limited, and examples thereof include a homopolymer of vinylidene fluoride and a copolymer with a monomer copolymerizable with vinylidene fluoride. The content of the vinylidene fluoride monomer unit in the fluoropolymer is not particularly limited, but is preferably 40% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more.
 フッ化ビニリデンと共重合可能なモノマーとしては、特に限定されないが、例えば、フッ化ビニル、テトラフルオロエチレン、トリフルオロクロロエチレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブチレン、パーフルオロアクリル酸、パーフルオロメタクリル酸、アクリル酸又はメタクリル酸のフルオロアルキルエステル等のフッ素含有エチレン性不飽和化合物;シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテル等のフッ素非含有エチレン性不飽和化合物;ブタジエン、イソプレン、クロロプレン等のフッ素非含有ジエン化合物等を挙げることができる。 The monomer copolymerizable with vinylidene fluoride is not particularly limited. For example, vinyl fluoride, tetrafluoroethylene, trifluorochloroethylene, hexafluoropropylene, hexafluoroisobutylene, perfluoroacrylic acid, perfluoromethacrylic acid, Fluorine-containing ethylenically unsaturated compounds such as fluoroalkyl esters of acrylic acid or methacrylic acid; fluorine-free ethylenically unsaturated compounds such as cyclohexyl vinyl ether and hydroxyethyl vinyl ether; fluorine-free diene compounds such as butadiene, isoprene and chloroprene Can be mentioned.
 フッ素系ポリマーとしては、特に限定されないが、フッ化ビニリデンのホモポリマー、フッ化ビニリデン/テトラフルオロエチレンコポリマー、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレンコポリマー等が好ましい。このなかでも、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレンコポリマーがより好ましい。フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレンコポリマーのモノマー組成は、特に限定されないが、例えば、フッ化ビニリデン30~90質量%、テトラフルオロエチレン50~9質量%及びヘキサフルオロプロピレン20~1質量%である。フッ素系ポリマーは、1種単独で用いても又は2種以上を併用してもよい。 The fluorine-based polymer is not particularly limited, but a homopolymer of vinylidene fluoride, a vinylidene fluoride / tetrafluoroethylene copolymer, a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, or the like is preferable. Among these, a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer is more preferable. The monomer composition of the vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer is not particularly limited. For example, 30 to 90% by mass of vinylidene fluoride, 50 to 9% by mass of tetrafluoroethylene, and 20 to 1% by mass of hexafluoropropylene. It is. A fluorine-type polymer may be used individually by 1 type, or may use 2 or more types together.
 ジエン系ポリマーとしては、二重結合を2つ有するジエンモノマー単位を繰り返し単位として含むポリマーであれば特に限定されず、例えば、ジエンモノマーのホモポリマー又はジエンモノマーと共重合可能なモノマーとのコポリマーが挙げられる。ジエンモノマーとしては、特に限定されず、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエンなどが挙げられる。ジエンモノマーは1種単独で用いても、2種以上を併用してもよい。 The diene polymer is not particularly limited as long as it contains a diene monomer unit having two double bonds as a repeating unit. For example, a diene monomer homopolymer or a copolymer of a diene monomer and a copolymerizable monomer can be used. Can be mentioned. The diene monomer is not particularly limited, and examples thereof include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-pentadiene, 2- Examples include methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, and 3-butyl-1,3-octadiene. A diene monomer may be used individually by 1 type, or may use 2 or more types together.
 ジエン系ポリマー中のジエンモノマー単位の含有量は、特に限定されないが、ジエン系ポリマーの総量に対して、好ましくは40質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは60質量%以上である。 The content of the diene monomer unit in the diene polymer is not particularly limited, but is preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% with respect to the total amount of the diene polymer. It is at least mass%.
 ジエンモノマーと共重合可能なモノマーとしては、特に限定されないが、例えば、後述の(メタ)アクリレートモノマーや下記のモノマー(以下、「その他のモノマー」ともいう。)を挙げることができる。その他のモノマーは、特に限定されず、例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系モノマー;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有モノマー;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系モノマー;ペンテンオール等のヒドロキシ基含有ビニルモノマー;ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アクリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などのスルホン酸基含有モノマー;メタクリル酸2-アミノエチル等のアミノ基含有モノマー;アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリレート等のシアノ基含有モノマーなどが挙げられる。ジエンモノマーと共重合可能なモノマーは、1種単独で用いても、2種以上を併用してもよい。 The monomer copolymerizable with the diene monomer is not particularly limited, and examples thereof include a (meth) acrylate monomer described below and the following monomers (hereinafter also referred to as “other monomers”). Other monomers are not particularly limited, and examples thereof include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, and vinyl benzoic acid. Styrene monomers such as methyl, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, α-methylstyrene, divinylbenzene; olefins such as ethylene and propylene; halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; vinyl acetate, propion Vinyl esters such as vinyl acid vinyl, vinyl butyrate, vinyl benzoate; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hex Vinyl ketones such as ruvinyl ketone and isopropenyl vinyl ketone; heterocycle-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine and vinyl imidazole; amide monomers such as acrylamide, N-methylol acrylamide and acrylamide-2-methylpropane sulfonic acid; Hydroxy group-containing vinyl monomers such as penteneol; vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) acryl sulfonic acid, styrene sulfonic acid, ethyl (meth) acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropane Sulfonic acid group-containing monomers such as sulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid; Amino group-containing monomers such as 2-aminoethyl methacrylate; Acrylonitrile, methacrylonitrile, α Chloroacrylonitrile, a cyano group-containing monomers such as α- cyanoethyl acrylate. The monomer copolymerizable with the diene monomer may be used alone or in combination of two or more.
 アクリル系ポリマーとしては、(メタ)アクリレートモノマー単位を含むポリマーであれば特に限定されず、(メタ)アクリレートモノマーのホモポリマー、(メタ)アクリレートモノマーと共重合可能なモノマーとのコポリマーが挙げられる。なお、本明細書において「(メタ)アクリル酸」とは「アクリル酸又はメタクリル酸」を示し、「(メタ)アクリレート」とは「アクリレート又はメタクリレート」を示す。なお、アクリル系ポリマーとしては、特に限定されないが、ラテックス状であることが好ましい。 The acrylic polymer is not particularly limited as long as it is a polymer containing a (meth) acrylate monomer unit, and examples thereof include a homopolymer of a (meth) acrylate monomer and a copolymer of a monomer copolymerizable with a (meth) acrylate monomer. In the present specification, “(meth) acrylic acid” means “acrylic acid or methacrylic acid”, and “(meth) acrylate” means “acrylate or methacrylate”. The acrylic polymer is not particularly limited, but is preferably latex.
 (メタ)アクリレートモノマーとしては、特に限定されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリレート;アミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレートが挙げられる。(メタ)アクリレートモノマーは、1種単独で用いても、2種以上を併用してもよい。 The (meth) acrylate monomer is not particularly limited. For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, t -Butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate Alkyl (meth) acrylates such as lauryl (meth) acrylate, n-tetradecyl (meth) acrylate, stearyl (meth) acrylate; hydroxyethyl (meth) acrylate, hydroxypropyl (meth) ) Acrylate, hydroxy group-containing (meth) acrylate such as hydroxybutyl (meth) acrylate; amino group-containing (meth) acrylate such as aminoethyl (meth) acrylate; epoxy group-containing (meth) acrylate such as glycidyl (meth) acrylate Can be mentioned. (Meth) acrylate monomers may be used alone or in combination of two or more.
 アクリル系ポリマー中の(メタ)アクリレートモノマー単位の含有量は、特に限定されないが、アクリル系ポリマーの総量に対して、好ましくは40質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは60質量%以上である。 The content of the (meth) acrylate monomer unit in the acrylic polymer is not particularly limited, but is preferably 40% by mass or more, more preferably 50% by mass or more, based on the total amount of the acrylic polymer. Preferably it is 60 mass% or more.
 (メタ)アクリレートモノマーと共重合可能なモノマーとしては、特に限定されないが、例えば、上記ジエン系ポリマーの項目で列挙したその他のモノマーが挙げられる。(メタ)アクリレートモノマーと共重合可能なモノマーは、1種単独で用いても、2種以上を併用してもよい。その他のモノマーの中でも、不飽和カルボン酸類を用いることが好ましい。不飽和カルボン酸類としては、特に限定されないが、例えば、アクリル酸、メタクリル酸、イタコン酸のハーフエステル、マレイン酸のハーフエステル、フマル酸のハーフエステルなどのモノカルボン酸;イタコン酸、フマル酸、マレイン酸等のジカルボン酸が挙げられる。このなかでも、好ましくはアクリル酸、メタクリル酸、イタコン酸であり、さらに好ましくはアクリル酸、メタクリル酸である。 The monomer copolymerizable with the (meth) acrylate monomer is not particularly limited, and examples thereof include other monomers listed in the item of the diene polymer. The monomer copolymerizable with the (meth) acrylate monomer may be used alone or in combination of two or more. Among other monomers, it is preferable to use unsaturated carboxylic acids. Unsaturated carboxylic acids are not particularly limited. For example, monocarboxylic acids such as acrylic acid, methacrylic acid, itaconic acid half ester, maleic acid half ester, fumaric acid half ester; itaconic acid, fumaric acid, maleic acid. And dicarboxylic acids such as acids. Of these, acrylic acid, methacrylic acid and itaconic acid are preferred, and acrylic acid and methacrylic acid are more preferred.
 また、樹脂バインダーとして、ポリビニルアルコールを使用する場合、そのケン化度は、好ましくは85%以上100%以下であり、より好ましくは90%以上100%以下であり、さらに好ましくは95%以上100%以下であり、特に好ましくは99%以上100%以下である。ケン化度が85%以上であることにより、多層多孔膜を電池用セパレータとして使用した際に、短絡する温度(ショート温度)が向上し、安全性能がより向上する傾向にある。 When polyvinyl alcohol is used as the resin binder, the saponification degree is preferably 85% or more and 100% or less, more preferably 90% or more and 100% or less, and further preferably 95% or more and 100%. Or less, particularly preferably 99% or more and 100% or less. When the saponification degree is 85% or more, when the multilayer porous membrane is used as a battery separator, the temperature at which a short circuit occurs (short temperature) is improved, and the safety performance tends to be further improved.
 ポリビニルアルコールの重合度は、好ましくは200以上5000以下であり、より好ましくは300以上4000以下であり、特に好ましくは500以上3500以下である。重合度が200以上であることにより、少量のポリビニルアルコールで無機フィラーを強固に結着でき、多孔層の力学的強度を維持しながら多孔層形成による多層多孔膜の透気度増加を抑えることができる傾向にある。また、重合度5000以下であることにより、分散液を調製する際のゲル化等を防止できる傾向にある。 The polymerization degree of polyvinyl alcohol is preferably 200 or more and 5000 or less, more preferably 300 or more and 4000 or less, and particularly preferably 500 or more and 3500 or less. When the polymerization degree is 200 or more, the inorganic filler can be firmly bound with a small amount of polyvinyl alcohol, and the increase in the air permeability of the multilayer porous film due to the formation of the porous layer can be suppressed while maintaining the mechanical strength of the porous layer. It tends to be possible. Moreover, it exists in the tendency which can prevent the gelatinization at the time of preparing a dispersion liquid by having a polymerization degree of 5000 or less.
 多孔層中の樹脂バインダーの含有量は、特に限定されないが、無機フィラー100質量部に対して、好ましくは0.5質量部以上であり、より好ましくは0.7質量部以上であり、さらに好ましくは1.2質量部以上であり、特に好ましくは1.5質量部以上である。多孔層中の樹脂バインダーの含有量が0.5質量部以上であることにより、樹脂バインダーと無機フィラーとの結着性がより向上する傾向にある。また、多孔層中の樹脂バインダーの含有量は、好ましくは10質量部以下であり、より好ましくは8質量部以下であり、さらに好ましくは7質量部以下である。多孔層中の樹脂バインダーの含有量が10質量部以下であることにより、イオン透過性がより向上する傾向にある。 Although content of the resin binder in a porous layer is not specifically limited, Preferably it is 0.5 mass part or more with respect to 100 mass parts of inorganic fillers, More preferably, it is 0.7 mass part or more, More preferably Is 1.2 parts by mass or more, particularly preferably 1.5 parts by mass or more. When the content of the resin binder in the porous layer is 0.5 parts by mass or more, the binding property between the resin binder and the inorganic filler tends to be further improved. The content of the resin binder in the porous layer is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and further preferably 7 parts by mass or less. When the content of the resin binder in the porous layer is 10 parts by mass or less, the ion permeability tends to be further improved.
〔その他の添加剤〕
 多孔層は、無機フィラー、樹脂バインダー、及びイオン解離性無機分散剤以外のその他の添加剤を含んでもよい。その他の添加剤としては、特に限定されないが、例えば、イオン解離性有機分散剤などが挙げられる。
[Other additives]
The porous layer may contain other additives other than the inorganic filler, the resin binder, and the ion dissociable inorganic dispersant. Other additives are not particularly limited, and examples thereof include ion dissociable organic dispersants.
(イオン解離性有機分散剤)
 本実施形態の多孔層は、多層多孔膜の耐熱性の観点から、多孔層がイオン解離性有機分散剤をさらに含有することが好ましい。イオン解離性有機分散剤を含むことにより耐熱性が向上する理由は、イオン解離性無機分散剤以外の分散剤を併用することにより、スラリー中での無機フィラー及び樹脂バインダーの分散安定性をさらに向上させることができるためであると考えられるが、特に限定されない。
(Ion dissociative organic dispersant)
In the porous layer of the present embodiment, it is preferable that the porous layer further contains an ion dissociative organic dispersant from the viewpoint of heat resistance of the multilayer porous membrane. The reason why heat resistance is improved by including an ion dissociable organic dispersant is that the dispersion stability of the inorganic filler and resin binder in the slurry is further improved by using a dispersant other than the ion dissociable inorganic dispersant. Although it is thought that it is because it can be made, it is not specifically limited.
 イオン解離性有機分散剤としては、特に限定されないが、有機酸塩を挙げることができる。有機酸塩としては、例えば、アニオン系、又はカチオン系の各種高分子系界面活性剤を用いることができる。イオン解離性有機分散剤は、耐熱性の観点から、イオン解離性の酸基(カルボキシル基、スルホン酸基、アミノ酸基、マレイン酸基など)またはイオン解離性の酸塩基(カルボン酸塩基、スルホン酸塩基、マレイン酸塩基など)を複数含有するものが好ましい。具体的には、イオン解離性有機分散剤としては、ポリカルボン酸塩、ポリアクリル酸塩、ポリメタクリル酸塩がより好ましい。イオン解離性有機分散剤は、1種単独で用いてもよく、2種以上を併用してもよい。 Although it does not specifically limit as an ion dissociative organic dispersing agent, Organic acid salt can be mentioned. As the organic acid salt, for example, various anionic or cationic polymer surfactants can be used. From the viewpoint of heat resistance, the ion dissociable organic dispersant is an ion dissociable acid group (carboxyl group, sulfonic acid group, amino acid group, maleic acid group, etc.) or ion dissociable acid base (carboxylic acid group, sulfonic acid). Those containing a plurality of bases, maleate bases, etc.) are preferred. Specifically, as the ion dissociable organic dispersant, polycarboxylate, polyacrylate, and polymethacrylate are more preferable. An ion dissociative organic dispersing agent may be used individually by 1 type, and may use 2 or more types together.
 多孔層中のイオン解離性有機分散剤の含有量は、特に限定されないが、イオン解離性無機分散剤及びイオン解離性有機分散剤の合計含有量100質量部に対して、好ましくは20質量部以上95質量部以下であり、より好ましくは30質量部以上93質量部以下であり、さらに好ましくは50質量部以上90質量部以下である。多孔層中のイオン解離性無機分散剤の含有量が20質量部以上95質量部以下であることにより、耐熱性がより向上する傾向にある。 The content of the ion dissociable organic dispersant in the porous layer is not particularly limited, but is preferably 20 parts by mass or more with respect to 100 parts by mass of the total content of the ion dissociable inorganic dispersant and the ion dissociable organic dispersant. 95 parts by mass or less, more preferably 30 parts by mass or more and 93 parts by mass or less, and further preferably 50 parts by mass or more and 90 parts by mass or less. When the content of the ion dissociable inorganic dispersant in the porous layer is 20 parts by mass or more and 95 parts by mass or less, the heat resistance tends to be further improved.
(多孔層の特性等)
 本実施形態における多孔層の層厚は、好ましくは0.1μm以上10μm以下であり、より好ましくは0.5μm以上8μm以下であり、さらに好ましくは1μm以上6μm以下であり、特に好ましくは1.5μm以上5μm以下である。多孔層の層厚が0.1μm以上であることにより、耐熱性がより向上する傾向にある。また、多孔層の層厚が10μm以下であることにより、電池がより高容量化し、セパレータのイオン透過性がより向上し、使用時の無機フィラーの粉落ちがより抑制される傾向にある。
(Characteristics etc. of porous layer)
The layer thickness of the porous layer in the present embodiment is preferably 0.1 μm or more and 10 μm or less, more preferably 0.5 μm or more and 8 μm or less, further preferably 1 μm or more and 6 μm or less, and particularly preferably 1.5 μm. It is 5 μm or less. When the thickness of the porous layer is 0.1 μm or more, the heat resistance tends to be further improved. Moreover, when the layer thickness of the porous layer is 10 μm or less, the battery has a higher capacity, the ion permeability of the separator is further improved, and the powder of the inorganic filler during use tends to be further suppressed.
 本実施形態において、多孔層は、多層多孔膜の状態で、ポリオレフィン多孔膜の透過性を著しく阻害しない程度の透過性を備えれば足りるが、多孔層を形成したことによる多層多孔膜の透気度の増加率は、好ましくは0%以上200%以下であり、より好ましくは0%以上100%以下であり、さらに好ましくは0%以上70%以下である。なお、多孔層形成前のポリオレフィン多孔膜の透気度が100秒/100cc未満の場合は、多孔層を形成した後の多層多孔膜の透気度増加率は好ましくは0%以上500%以下である。 In the present embodiment, it is sufficient that the porous layer has a permeability that does not significantly impair the permeability of the polyolefin porous membrane in the state of the multilayer porous membrane, but the air permeability of the multilayer porous membrane due to the formation of the porous layer is sufficient. The rate of increase in the degree is preferably 0% or more and 200% or less, more preferably 0% or more and 100% or less, and further preferably 0% or more and 70% or less. When the air permeability of the polyolefin porous membrane before forming the porous layer is less than 100 seconds / 100 cc, the rate of increase in the air permeability of the multilayer porous membrane after forming the porous layer is preferably 0% or more and 500% or less. is there.
〔多層多孔膜の物性〕
 本実施形態の多層多孔膜は、ポリオレフィン多孔膜と、該ポリオレフィン多孔膜の片面又は両面に配された多孔層と、を有する。本実施形態の多層多孔膜の透気度は、特に限定されないが、好ましくは10秒/100cc以上650秒/100cc以下であり、より好ましくは20秒/100cc以上500秒/100cc以下であり、さらに好ましくは30秒/100cc以上450秒/100cc以下であり、特に好ましくは50秒/100cc以上400秒/100cc以下である。多層多孔膜の透気度が10秒/100cc以上であることにより、耐自己放電性がより向上する傾向にある。また、多層多孔膜の透気度が650秒/100cc以下であることにより、充放電特性がより向上する傾向にある。
[Physical properties of multilayer porous membrane]
The multilayer porous membrane of this embodiment has a polyolefin porous membrane and a porous layer disposed on one side or both sides of the polyolefin porous membrane. The air permeability of the multilayer porous membrane of the present embodiment is not particularly limited, but is preferably 10 seconds / 100 cc to 650 seconds / 100 cc, more preferably 20 seconds / 100 cc to 500 seconds / 100 cc, It is preferably 30 seconds / 100 cc or more and 450 seconds / 100 cc or less, particularly preferably 50 seconds / 100 cc or more and 400 seconds / 100 cc or less. When the air permeability of the multilayer porous membrane is 10 seconds / 100 cc or more, the self-discharge resistance tends to be further improved. Moreover, when the air permeability of the multilayer porous membrane is 650 seconds / 100 cc or less, the charge / discharge characteristics tend to be further improved.
 本実施形態の多層多孔膜の最終的な膜厚は、特に限定されないが、好ましくは2μm以上20μm以下であり、より好ましくは5μm以上19μm以下であり、さらに好ましくは7μm以上18μm以下であり、特に好ましくは9μm以上17μm以下である。多層多孔膜の最終的な膜厚が2μm以上であることにより、機械強度がより向上する傾向にある。また、多層多孔膜の最終的な膜厚が20μm以下であることにより、電池がより高容量化する傾向にある。 The final film thickness of the multilayer porous membrane of the present embodiment is not particularly limited, but is preferably 2 μm or more and 20 μm or less, more preferably 5 μm or more and 19 μm or less, and further preferably 7 μm or more and 18 μm or less. Preferably they are 9 micrometers or more and 17 micrometers or less. When the final film thickness of the multilayer porous membrane is 2 μm or more, the mechanical strength tends to be further improved. Moreover, when the final film thickness of the multilayer porous membrane is 20 μm or less, the battery tends to have a higher capacity.
 本実施形態の多層多孔膜の150℃での熱収縮率は、特に限定されないが、MD、TD共に、好ましくは0%以上15%以下であり、より好ましくは0%以上10%以下であり、さらに好ましくは0%以上5%以下である。MD及びTDの両方向における150℃での熱収縮率が15%以下であることにより、電池の異常発熱時においてもセパレータの破膜を防ぐことができるので、正負極間の接触を抑制でき、より良好な安全性能が得られる傾向にある。 The heat shrinkage rate at 150 ° C. of the multilayer porous membrane of the present embodiment is not particularly limited, but both MD and TD are preferably 0% or more and 15% or less, more preferably 0% or more and 10% or less, More preferably, it is 0% or more and 5% or less. Since the thermal contraction rate at 150 ° C. in both the MD and TD directions is 15% or less, it is possible to prevent the separator from being broken even when the battery is abnormally heated. Good safety performance tends to be obtained.
 本実施形態の多層多孔膜のシャットダウン温度は、特に限定されないが、好ましくは120℃以上160℃以下であり、より好ましくは120℃以上150℃以下である。多層多孔膜のシャットダウン温度が160℃以下であることにより、電池が発熱した場合などにおいても、電流遮断を速やかに促進し、より良好な安全性能が得られる傾向にある。一方、多層多孔膜のシャットダウン温度が120℃以上であることにより、例えば100℃前後での高温化の使用、熱処理等を実施できるので好ましい。 The shutdown temperature of the multilayer porous membrane of this embodiment is not particularly limited, but is preferably 120 ° C. or higher and 160 ° C. or lower, more preferably 120 ° C. or higher and 150 ° C. or lower. When the shutdown temperature of the multilayer porous membrane is 160 ° C. or lower, even when the battery generates heat, current interruption is promptly promoted, and better safety performance tends to be obtained. On the other hand, it is preferable that the shutdown temperature of the multilayer porous membrane is 120 ° C. or higher because, for example, use of a high temperature around 100 ° C., heat treatment, etc. can be carried out.
 本実施形態の多層多孔膜のショート温度は、特に限定されないが、好ましくは180℃以上であり、好ましくは190℃以上であり、さらに好ましくは200℃以上である。多層多孔膜のショート温度が180℃以上であることにより、電池異常発熱においても放熱するまで正負極間の接触を抑制し得るため、より良好な安全性能が得られる傾向にある。 The short-circuit temperature of the multilayer porous membrane of the present embodiment is not particularly limited, but is preferably 180 ° C. or higher, preferably 190 ° C. or higher, and more preferably 200 ° C. or higher. When the multilayer porous membrane has a short-circuit temperature of 180 ° C. or higher, contact between the positive and negative electrodes can be suppressed until heat is dissipated even in abnormal battery heat generation, and thus better safety performance tends to be obtained.
〔多層多孔膜の製造方法〕
 本実施態様の多層多孔膜の製造方法は、ポリオレフィン多孔膜の片面又は両面に、無機フィラー、樹脂バインダー及びイオン解離性無機分散剤を含有する分散液を塗布する塗布工程を有する。また、多層多孔膜の製造方法は、必要に応じてポリオレフィン多孔膜を製造する工程を有してもよい。
[Method for producing multilayer porous membrane]
The manufacturing method of the multilayer porous membrane of this embodiment has the application | coating process which apply | coats the dispersion liquid containing an inorganic filler, a resin binder, and an ion dissociative inorganic dispersing agent to the single side | surface or both surfaces of a polyolefin porous membrane. Moreover, the manufacturing method of a multilayer porous membrane may have the process of manufacturing a polyolefin porous membrane as needed.
 本実施形態の製造方法において、ポリオレフィン多孔膜の製造方法は、特に限定されず、例えば、ポリオレフィン樹脂と可塑剤とを溶融混練してシート状に成形後、可塑剤を抽出することで多孔化させる方法、ポリオレフィン樹脂を溶融混練して高ドロー比で押出した後、熱処理と延伸によってポリオレフィン結晶界面を剥離させることで多孔化させる方法、ポリオレフィン樹脂と無機充填材とを溶融混練してシート上に成形後、延伸によってポリオレフィン樹脂と無機充填材との界面を剥離させることで多孔化させる方法、ポリオレフィン樹脂を溶解後、ポリオレフィン樹脂に対する貧溶媒に浸漬させポリオレフィン樹脂を凝固させると同時に溶剤を除去することで多孔化させる方法など、公知の方法が挙げられる。 In the production method of the present embodiment, the production method of the polyolefin porous film is not particularly limited. For example, the polyolefin resin and the plasticizer are melt-kneaded and formed into a sheet shape, and then the porous film is extracted by extracting the plasticizer. Method: Polyolefin resin is melt-kneaded and extruded at a high draw ratio, then the polyolefin crystal interface is peeled off by heat treatment and stretching, and polyolefin resin and inorganic filler are melt-kneaded and molded on a sheet After that, by making the interface by peeling the interface between the polyolefin resin and the inorganic filler by stretching, the polyolefin resin is dissolved and then immersed in a poor solvent for the polyolefin resin to solidify the polyolefin resin and simultaneously remove the solvent. Well-known methods, such as a method of making it porous, can be mentioned.
 本実施形態の製造方法では、特に限定されないが、塗布工程に先立ち、ポリオレフィン多孔膜表面を積極的に表面処理すると、無機フィラー含有樹脂分散液がより均一に塗布し易くなる上に、塗布後の無機フィラー含有樹脂層とポリオレフィン多孔膜表面との接着性が向上するため、好ましい。 In the production method of the present embodiment, although not particularly limited, if the surface of the polyolefin porous membrane is positively treated prior to the coating step, the inorganic filler-containing resin dispersion can be more uniformly applied and moreover, after the coating. Since the adhesiveness of an inorganic filler containing resin layer and the polyolefin porous membrane surface improves, it is preferable.
 表面処理の方法は、ポリオレフィン多孔膜の多孔質構造が著しく損なわれなければ特に限定しないが、例えばコロナ放電処理法、機械的粗面化法、溶剤処理法、酸処理法、紫外線酸化法などが挙げられる。 The surface treatment method is not particularly limited as long as the porous structure of the polyolefin porous membrane is not significantly impaired, and examples thereof include a corona discharge treatment method, a mechanical surface roughening method, a solvent treatment method, an acid treatment method, and an ultraviolet oxidation method. Can be mentioned.
 ポリオレフィン多孔膜を製造した後、塗布工程において、ポリオレフィン多孔膜の片面又は両面に、無機フィラー、樹脂バインダー及びイオン解離性無機分散剤を含有する分散液を塗布する。 After producing the polyolefin porous membrane, in the coating step, a dispersion containing an inorganic filler, a resin binder, and an ion dissociating inorganic dispersant is applied to one or both sides of the polyolefin porous membrane.
 本実施形態の製造方法において用いる分散液は、無機フィラー、樹脂バインダーに加えてイオン解離性無機分散剤を含有するため、分散液における無機フィラーの分散安定性がより向上する。分散液は、樹脂バインダーを含むため、多孔膜と無機フィラー及び無機フィラー同士の結着性がより向上する。 Since the dispersion used in the production method of the present embodiment contains an ion dissociable inorganic dispersant in addition to the inorganic filler and the resin binder, the dispersion stability of the inorganic filler in the dispersion is further improved. Since the dispersion contains a resin binder, the binding property between the porous film, the inorganic filler, and the inorganic filler is further improved.
 本実施形態の製造方法において、無機フィラーは、特に限定されず、前記のものが使用できる。 In the manufacturing method of the present embodiment, the inorganic filler is not particularly limited, and those described above can be used.
 また、本実施形態の製造方法において、樹脂バインダーは、特に限定されず、前記のものが使用できる。このなかでも多孔層を多孔膜の少なくとも片面に積層した際、イオン透過性が低下しにくいという点から、脂肪族共役ジエン系単量体や不飽和カルボン酸単量体、及びこれらと共重合可能な他の単量体を乳化重合して得られるラテックスを用いることが好ましい。さらに、電気化学的安定性や結着性の観点から、樹脂バインダーはアクリル系ポリマー、特にアクリルラテックスであることが好ましい。特に、使用する無機フィラーによっては、アクリル系ポリマー添加時に凝集が起こりやすいが、本実施形態の製造方法においてはイオン解離性無機分散剤を含む分散剤を用いるため、樹脂バインダーの凝集を抑制することができる。 Further, in the manufacturing method of the present embodiment, the resin binder is not particularly limited, and the above-mentioned ones can be used. Of these, aliphatic conjugated diene monomers and unsaturated carboxylic acid monomers and their copolymerization are possible because the ion permeability is less likely to decrease when the porous layer is laminated on at least one side of the porous membrane. It is preferable to use a latex obtained by emulsion polymerization of other monomers. Furthermore, from the viewpoint of electrochemical stability and binding properties, the resin binder is preferably an acrylic polymer, particularly an acrylic latex. In particular, depending on the inorganic filler used, aggregation is likely to occur when an acrylic polymer is added. However, in the manufacturing method of this embodiment, since a dispersant containing an ion dissociable inorganic dispersant is used, the aggregation of the resin binder is suppressed. Can do.
 本実施形態の製造方法において、イオン解離性無機分散剤は、特に限定されず、前記のものが使用できる。 In the production method of the present embodiment, the ion dissociable inorganic dispersant is not particularly limited, and those described above can be used.
 分散液の溶媒は、特に限定されないが、例えば、N-メチルピロリドンやN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、ヘキサンなどが挙げられる。無機フィラー、樹脂バインダーの分散性の観点から水が好ましい。 The solvent of the dispersion is not particularly limited, and examples thereof include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, and hexane. Water is preferable from the viewpoint of dispersibility of the inorganic filler and the resin binder.
 分散液は、イオン解離性有機分散剤をさらに含むことが好ましい。分散液がイオン解離性有機分散剤を含むことにより、分散液中での無機フィラー及び樹脂バインダーの分散安定性がより向上する傾向にある。イオン解離性有機分散剤としては、特に限定されず、上記と同様のものが使用できる。イオン解離性有機分散剤は、イオン解離性無機分散剤と共に、本実施形態の製造方法の分散液において、分散剤としての役割を果たす。 The dispersion preferably further contains an ion dissociable organic dispersant. When the dispersion contains the ion dissociable organic dispersant, the dispersion stability of the inorganic filler and the resin binder in the dispersion tends to be further improved. It does not specifically limit as an ion dissociative organic dispersing agent, The same thing as the above can be used. The ion dissociable organic dispersant, together with the ion dissociable inorganic dispersant, serves as a dispersant in the dispersion of the production method of the present embodiment.
 分散液がイオン解離性有機分散剤をさらに含む場合において、分散液中のイオン解離性無機分散剤の含有量は、特に限定されないが、イオン解離性無機分散剤及びイオン解離性有機分散剤の合計含有量100質量部に対して、好ましくは20質量部以上95質量部以下であり、より好ましくは30質量部以上93質量部以下であり、さらに好ましくは50質量部以上90質量部以下である。分散液中のイオン解離性無機分散剤の含有量が20質量部以上95質量部以下であることにより、無機フィラー及び樹脂バインダーのスラリー溶媒中における分散性がより向上する傾向にある。 In the case where the dispersion further contains an ion dissociable organic dispersant, the content of the ion dissociable inorganic dispersant in the dispersion is not particularly limited, but is the total of the ion dissociable inorganic dispersant and the ion dissociable organic dispersant. Preferably it is 20 mass parts or more and 95 mass parts or less with respect to 100 mass parts of content, More preferably, they are 30 mass parts or more and 93 mass parts or less, More preferably, they are 50 mass parts or more and 90 mass parts or less. When the content of the ion dissociable inorganic dispersant in the dispersion is 20 parts by mass or more and 95 parts by mass or less, the dispersibility of the inorganic filler and the resin binder in the slurry solvent tends to be further improved.
 本実施形態の製造方法では、分散液を安定化させるため、あるいはポリオレフィン多孔膜への塗工性を向上させるために、界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤、酸やアルカリを含めたpH調製剤等の各種添加剤を加えてもよい。これらの添加剤は、溶媒除去や可塑剤抽出の際に除去できるものが好ましいが、リチウムイオン二次電池の使用範囲において電気化学的に安定で、電池反応を阻害しないものであれば、電池内に残存してもよい。 In the production method of this embodiment, in order to stabilize the dispersion or improve the coating property to the polyolefin porous membrane, a dispersant such as a surfactant, a thickener, a wetting agent, an antifoaming agent, Various additives such as pH adjusting agents including acids and alkalis may be added. These additives are preferably those that can be removed upon solvent removal or plasticizer extraction. However, if they are electrochemically stable in the range of use of the lithium ion secondary battery and do not inhibit the battery reaction, May remain.
 本実施形態の製造方法において、無機フィラー、樹脂バインダー及びイオン解離性無機分散剤を溶媒に溶解又は分散させる方法は、特に限定されず、例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌等が挙げられる。 In the production method of the present embodiment, a method for dissolving or dispersing the inorganic filler, the resin binder, and the ion dissociable inorganic dispersant in a solvent is not particularly limited. For example, a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid Examples thereof include a mill, an attritor, a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, a high-speed impact mill, ultrasonic dispersion, and mechanical stirring using a stirring blade.
 本実施形態の製造方法において、分散液をポリオレフィン多孔膜に塗布する方法については、必要とする層厚や塗布面積を実現できる方法であれば特に限定しない。例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコータ-法、ナイフコータ-法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法等が挙げられる。また、用途に応じて無機フィラー含有樹脂分散液をポリオレフィン多孔膜の片面だけに塗布してもよいし、両面に塗布してもよい。 In the production method of the present embodiment, the method for applying the dispersion to the polyolefin porous film is not particularly limited as long as it can realize the required layer thickness and application area. For example, gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze coater method, Examples thereof include a cast coater method, a die coater method, a screen printing method, and a spray coating method. Moreover, according to a use, an inorganic filler containing resin dispersion liquid may be apply | coated only to the single side | surface of a polyolefin porous membrane, and may be apply | coated to both surfaces.
 本実施形態の製造方法では、分散液を塗布後、溶媒を除去することが好ましい。溶媒を除去する方法としては、例えば、ポリオレフィン多孔膜を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、樹脂バインダーに対する貧溶媒に浸漬して樹脂バインダーを凝固させると同時に溶媒を抽出する方法、などが挙げられる。 In the manufacturing method of this embodiment, it is preferable to remove the solvent after applying the dispersion. As a method for removing the solvent, for example, a method of drying at a temperature below the melting point while fixing the polyolefin porous film, a method of drying under reduced pressure at a low temperature, and immersing in a poor solvent for the resin binder to solidify the resin binder The method of extracting a solvent simultaneously is mentioned.
〔非水電解液電池用セパレータ〕
 本実施形態の非水電解液電池用セパレータは、上記多層多孔膜を備える。多層多孔膜は耐熱性を有し、非水電解液電池用セパレータとして好適に用いることができる。本実施形態の多層多孔膜は、良好な耐熱性、イオン透過性(透気度)を両立し得る。このような多層多孔膜を非水電解液電池用セパレータとして用いた場合、安全性能や出力特性等に優れた非水電解液電池を実現し得る。
[Separator for non-aqueous electrolyte battery]
The separator for nonaqueous electrolyte batteries of this embodiment includes the multilayer porous film. The multilayer porous membrane has heat resistance and can be suitably used as a separator for nonaqueous electrolyte batteries. The multilayer porous membrane of this embodiment can achieve both good heat resistance and ion permeability (air permeability). When such a multilayer porous membrane is used as a separator for a non-aqueous electrolyte battery, a non-aqueous electrolyte battery excellent in safety performance and output characteristics can be realized.
 なお、上述した各種パラメータについては、特に断りの無い限り、後述する実施例における測定法に準じて測定される値である。 The various parameters described above are values measured according to the measurement methods in the examples described later unless otherwise specified.
 次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。なお、特に記載のない限り各種測定および評価は室温23℃、1気圧、相対湿度50%の条件で行った。 Next, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method. Unless otherwise stated, various measurements and evaluations were performed under conditions of room temperature 23 ° C., 1 atm, and relative humidity 50%.
(1)ポリオレフィン系樹脂の粘度平均分子量Mv
 ASTM-D4020に基づき、ポリオレフィン系樹脂のデカリン溶媒の135℃における極限粘度[η](dl/g)を求めた。
 ポリエチレンのMvは次式により算出した。
 [η]=6.77×10-4Mv0.67
 ポリプロピレンのMvは、次式により算出した。
 [η]=1.10×10-4Mv0.80
(1) Viscosity average molecular weight Mv of polyolefin resin
Based on ASTM-D4020, the intrinsic viscosity [η] (dl / g) of a polyolefin resin decalin solvent at 135 ° C. was determined.
Mv of polyethylene was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67
Mv of polypropylene was calculated by the following formula.
[Η] = 1.10 × 10 −4 Mv 0.80
(2)多層多孔膜及びポリオレフィン多孔膜の膜厚(μm)、並びに多孔層の層厚(μm)
 多層多孔膜及びポリオレフィン多孔膜の膜厚は、ダイヤルゲージ(尾崎製作所社製、商品名「PEACOCK No.25」)にて測定した。具体的には、MD方向100mm×TD方向100mmの寸法を有するサンプルを切り出し、格子状に9箇所(3点×3点)の局所膜厚を測定し、得られた9箇所の局所膜厚の相加平均値を膜厚とした。また、多孔層の層厚は、多層多孔膜の膜厚とポリオレフィン多孔膜の膜厚(多孔層を剥離して測定)との差から算出した。
(2) Thickness (μm) of multilayer porous membrane and polyolefin porous membrane, and layer thickness (μm) of porous layer
The film thicknesses of the multilayer porous membrane and the polyolefin porous membrane were measured with a dial gauge (manufactured by Ozaki Seisakusho, trade name “PEACOCK No. 25”). Specifically, a sample having a dimension of 100 mm in the MD direction × 100 mm in the TD direction was cut out, and the local film thicknesses at 9 locations (3 points × 3 points) were measured in a lattice shape. The arithmetic average value was defined as the film thickness. The thickness of the porous layer was calculated from the difference between the thickness of the multilayer porous membrane and the thickness of the polyolefin porous membrane (measured by peeling the porous layer).
(3)多層多孔膜及びポリオレフィン多孔膜の透気度(秒/100cc)、透気度増加率(%)
 多層多孔膜及びポリオレフィン多孔膜の透気度(秒/100cc)の測定には、JIS P-8117準拠のガーレー式透気度計(東洋精機製G-B2(商標))を用いた。内筒重量は567gで、直径28.6mm、645mmの面積を空気100mLが通過する時間を透気度として測定した。
  一方、透気度増加率は、以下の式にて算出した。
 透気度増加率(%)=100×(多層多孔膜の透気度-ポリオレフィン多孔膜の透気度)/ポリオレフィン多孔膜の透気度
(3) Air permeability (second / 100 cc), rate of increase in air permeability (%) of multilayer porous membrane and polyolefin porous membrane
For measurement of the air permeability (second / 100 cc) of the multilayer porous membrane and the polyolefin porous membrane, a Gurley type air permeability meter (G-B2 (trademark) manufactured by Toyo Seiki Co.) conforming to JIS P-8117 was used. The inner cylinder weight was 567 g, and the time required for 100 mL of air to pass through an area of 28.6 mm in diameter and 645 mm 2 was measured as the air permeability.
On the other hand, the air permeability increase rate was calculated by the following formula.
Permeability increase rate (%) = 100 × (air permeability of multilayer porous membrane−air permeability of polyolefin porous membrane) / air permeability of polyolefin porous membrane
(4)ポリオレフィン多孔膜の気孔率(%)
 10cm×10cm角の試料をポリオレフィン多孔膜から切り取り、その体積(cm)と質量(g)を求め、膜密度を0.95(g/cm)として次式を用いて計算した。
 気孔率=(1-質量/体積/0.95)×100
(4) Porosity of polyolefin porous membrane (%)
A 10 cm × 10 cm square sample was cut from the polyolefin porous membrane, its volume (cm 3 ) and mass (g) were determined, and the membrane density was calculated as 0.95 (g / cm 3 ) using the following formula.
Porosity = (1−mass / volume / 0.95) × 100
(5)ポリオレフィン多孔膜のMD及びTDの熱収縮最大応力(g)
 島津製作所製TMA50(商標)を用いて測定した。TDの幅を3mmとして切り出したポリオレフィン多孔膜のサンプルを、チャック間距離が10mmとなるようにチャックに固定し、専用プローブにセットした。初期荷重を1.0gとし、30℃から200℃まで10℃/minの昇温速度で加熱し、その時発生する荷重(g)を測定し、その最大値をMDの最大熱収縮応力(g)とした。また、MDの幅を3mmとして切り出したポリオレフィン多孔膜のサンプルを用いたこと以外は、同様の操作を行い、TDの熱収縮最大応力(g)を測定した。
(5) Maximum thermal shrinkage stress (g) of MD and TD of polyolefin porous membrane
It measured using Shimadzu Corporation TMA50 (trademark). A polyolefin porous membrane sample cut out with a TD width of 3 mm was fixed to a chuck such that the distance between chucks was 10 mm, and set on a dedicated probe. The initial load is 1.0 g, the sample is heated from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min, the load (g) generated at that time is measured, and the maximum value is the maximum heat shrinkage stress (g) of MD It was. Moreover, except having used the sample of the polyolefin porous membrane cut out by making MD width 3mm, the same operation was performed and the heat-shrinkage maximum stress (g) of TD was measured.
(6)無機フィラーの平均粒径
 無機フィラーの平均粒径は、水を分散媒としてレーザー式粒度分布測定装置(日機装(株)製マイクロトラックMT3300EX)を用いて粒径分布を測定し、累積頻度が50%となる粒径を平均粒径とした。
(6) Average particle size of inorganic filler The average particle size of the inorganic filler is measured by measuring the particle size distribution using a laser particle size distribution measuring device (Microtrack MT3300EX manufactured by Nikkiso Co., Ltd.) using water as a dispersion medium, and the cumulative frequency. Was the average particle size.
(7)多層多孔膜のMD及びTDの150℃熱収縮率
 多層多孔膜をMD方向に100mm、TD方向に100mmに切り取り、150℃のオーブン中に1時間静置した。このとき、サンプルを2枚の紙にはさむことで、温風が直接サンプルにあたらないようにした。サンプルをオーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式にてMD及びTDの熱収縮率を算出した。
 MD熱収縮率(%)=(100-加熱後のMDの長さ)/100×100
 TD熱収縮率(%)=(100-加熱後のTDの長さ)/100×100
(7) Thermal shrinkage ratio of MD and TD of multilayer porous membrane at 150 ° C. The multilayer porous membrane was cut to 100 mm in the MD direction and 100 mm in the TD direction, and left in an oven at 150 ° C. for 1 hour. At this time, the sample was sandwiched between two sheets of paper so that the hot air was not directly applied to the sample. After the sample was taken out of the oven and cooled, the length (mm) was measured, and the thermal contraction rate of MD and TD was calculated by the following formula.
MD thermal shrinkage (%) = (100−MD length after heating) / 100 × 100
TD heat shrinkage (%) = (100−length of TD after heating) / 100 × 100
[実施例1]
(ポリオレフィン多孔膜の製造)
 Mvが700,000のポリエチレン47質量部と、Mv300,000のポリエチレン46質量部と、Mv400,000のポリプロピレン7質量部とを、タンブラーブレンダーを用いてドライブレンドした。次いで、得られた純ポリマー混合物99質量部に対して酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、合計100質量部とし、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。二軸押出機内を窒素で置換を行った後に、窒素雰囲気下で、得られたポリマー等混合物を二軸押出機へフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
[Example 1]
(Manufacture of polyolefin porous membrane)
47 parts by mass of polyethylene having an Mv of 700,000, 46 parts by mass of polyethylene having an Mv of 300,000, and 7 parts by mass of polypropylene having an Mv of 400,000 were dry blended using a tumbler blender. Next, 1 part by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added to 99 parts by mass of the obtained pure polymer mixture. Then, the mixture was made into 100 parts by mass in total, and dry blended again using a tumbler blender to obtain a polymer mixture. After substituting the inside of the twin screw extruder with nitrogen, the obtained mixture such as polymer was fed to the twin screw extruder by a feeder under a nitrogen atmosphere. Further, liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 × 10 −5 m 2 / s) was injected into the extruder cylinder by a plunger pump.
 二軸押出機内でポリマー等混合物と流動パラフィンとを溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量部となるように、フィーダー及びポンプを調整した。溶融混練条件としては、設定温度を200℃とし、スクリュー回転数を240rpmとし、吐出量を12kg/hとした。続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み1600μmのゲルシートを得た。
 次に、得られたゲルシートを同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率7.0倍、設定温度125℃とした。
 次に、延伸したゲルシートをメチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
 次に、乾燥したゲルシートをTDテンターに導き、熱固定を行った。熱固定時の延伸温度・倍率は128℃、2.0倍で行い、その後の緩和時の温度・緩和率を133℃、0.80とした。その結果、膜厚12μm、気孔率40体積%、透気度130秒/100cc、MD最大熱収縮応力2.5g、TD最大熱収縮応力2.6gの多孔膜を得た。
A mixture such as a polymer and liquid paraffin were melt-kneaded in a twin-screw extruder, and the feeder and pump were adjusted so that the liquid paraffin content ratio in the total mixture to be extruded was 65 parts by mass. The melt kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded and cast on a cooling roll controlled at a surface temperature of 25 ° C. through a T-die to obtain a gel sheet having a thickness of 1600 μm.
Next, the obtained gel sheet was guided to a simultaneous biaxial tenter stretching machine, and biaxial stretching was performed. The set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 7.0 times, and a preset temperature of 125 ° C.
Next, the stretched gel sheet was introduced into a methyl ethyl ketone bath and sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin, and then methyl ethyl ketone was removed by drying.
Next, the dried gel sheet was guided to a TD tenter and heat fixed. The stretching temperature and magnification during heat setting were 128 ° C. and 2.0 times, and the temperature and relaxation rate during subsequent relaxation were 133 ° C. and 0.80. As a result, a porous film having a film thickness of 12 μm, a porosity of 40 vol%, an air permeability of 130 seconds / 100 cc, an MD maximum heat shrinkage stress of 2.5 g, and a TD maximum heat shrinkage stress of 2.6 g was obtained.
(アクリル系ポリマーの合成)
 攪拌機、還流冷却器、滴下槽及び温度計を取り付けた反応容器に、初期仕込みとして水65質量部、アクアロンKH10(ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩:100%固形分/第一工業製薬(株)製)0.5質量部を投入し、反応容器中の温度を80℃に保ち、ペルオキソ二硫酸アンモニウムの10%水溶液1.5質量部を添加した。添加した5分後に、メチルメタクリレート26.5質量部、シクロヘキシルメタクリレート6質量部、ブチルアクリレート25質量部、2-エチルヘキシルメタクリレート35質量部、メタクリル酸1質量部、アクリル酸1.5質量部、グリシジルメタクリレート3質量部、2-ヒドロキシエチルメタクリレート2質量部と、アクアロンKH10を1.5質量部、ペルオキソ二硫酸アンモニウム10%水溶液1.5質量部、水55質量部からなる乳化混合液を150分かけて滴下槽から反応容器に投入した。反応系のpHは4以下に維持した。乳化混合液の投入が終了してからそのまま反応容器の温度は80℃に保ち、120分間攪拌を続けた。その後、室温まで冷却した。
(Synthesis of acrylic polymer)
Into a reaction vessel equipped with a stirrer, reflux condenser, dripping tank and thermometer, 65 parts by weight of water as an initial charge, Aqualon KH10 (polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfate ammonium salt: 100% solids 0.5 parts by weight per minute / Daiichi Kogyo Seiyaku Co., Ltd. was added, the temperature in the reaction vessel was kept at 80 ° C., and 1.5 parts by weight of a 10% aqueous solution of ammonium peroxodisulfate was added. 5 minutes after the addition, methyl methacrylate 26.5 parts by mass, cyclohexyl methacrylate 6 parts by mass, butyl acrylate 25 parts by mass, 2-ethylhexyl methacrylate 35 parts by mass, methacrylic acid 1 part by mass, acrylic acid 1.5 parts by mass, glycidyl methacrylate 3 parts by mass, 2 parts by mass of 2-hydroxyethyl methacrylate, 1.5 parts by mass of Aqualon KH10, 1.5 parts by mass of 10% aqueous solution of ammonium peroxodisulfate, and 55 parts by mass of water were added dropwise over 150 minutes. The reaction vessel was charged from the tank. The pH of the reaction system was maintained at 4 or lower. After the addition of the emulsified liquid mixture was completed, the temperature of the reaction vessel was kept at 80 ° C. and stirring was continued for 120 minutes. Then, it cooled to room temperature.
 冷却後、200メッシュの金網でろ過を行い、凝集物等を除去した。ろ過後、25%のアンモニア水でpHを8に調整し、その後、固形分が45%となるよう水を添加し調整した。 After cooling, it was filtered through a 200 mesh wire net to remove aggregates and the like. After filtration, the pH was adjusted to 8 with 25% aqueous ammonia, and then water was added to adjust the solid content to 45%.
(多孔層の形成)
 無機フィラーである水酸化酸化アルミニウム粒子(平均粒径1.0μm)94質量部、樹脂バインダーである合成したアクリル系ポリマー(固形分濃度45%)6.0質量部、及びイオン解離性無機分散剤であるポリリン酸アミン塩(分散剤)1.0質量部を100質量部の水にそれぞれ均一に分散させて多孔層形成用分散液を調製した。調製した多孔層形成用分散液を、上記ポリオレフィン多孔膜の表面にグラビアコーターを用いて塗布した。その後、60℃にて乾燥して水を除去し、多孔膜上に厚さ2μmの多孔層を形成した、総膜厚14μmの多層多孔膜を得た。結果を表1に記載する。なお、「ポリリン酸」としてはトリポリリン酸を用いた(他の実施例も同様)。
(Formation of porous layer)
94 parts by mass of aluminum hydroxide oxide particles (average particle size: 1.0 μm) as inorganic filler, 6.0 parts by mass of acrylic polymer (solid content concentration: 45%) as resin binder, and ion dissociable inorganic dispersant Then, 1.0 part by mass of polyphosphate amine salt (dispersant) was uniformly dispersed in 100 parts by mass of water to prepare a dispersion for forming a porous layer. The prepared dispersion for forming a porous layer was applied to the surface of the polyolefin porous film using a gravure coater. Then, it dried at 60 degreeC and water was removed, and the multilayer porous film with a total film thickness of 14 micrometers which formed the porous layer with a thickness of 2 micrometers on the porous film was obtained. The results are listed in Table 1. In addition, tripolyphosphoric acid was used as “polyphosphoric acid” (the same applies to other examples).
[実施例2]
 多孔層形成用分散液中の分散剤を、ポリリン酸アミン塩0.95質量部と、イオン解離性有機分散剤であるポリカルボン酸アンモニウム(サンノプコ製SNディスパーサント5468)0.05質量部と、の混合物とした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 2]
The dispersant in the dispersion for forming the porous layer is 0.95 part by mass of polyphosphate amine salt, 0.05 part by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco) that is an ion dissociative organic dispersant, A multilayer porous membrane was obtained in the same manner as in Example 1 except that the mixture was used. The results are listed in Table 1.
[実施例3]
 多孔層形成用分散液中の分散剤を、ポリリン酸アミン塩0.8質量部とポリカルボン酸アンモニウム(サンノプコ製SNディスパーサント5468)0.2質量部と、の混合物とした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 3]
Example 1 except that the dispersant in the porous layer-forming dispersion was a mixture of 0.8 parts by mass of polyphosphate amine salt and 0.2 parts by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco). In the same manner, a multilayer porous membrane was obtained. The results are listed in Table 1.
[実施例4]
 多孔層形成用分散液中の分散剤を、ポリリン酸アミン塩0.6質量部とポリカルボン酸アンモニウム(サンノプコ製SNディスパーサント5468)0.4質量部と、の混合物とした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 4]
Example 1 except that the dispersant in the porous layer-forming dispersion was a mixture of 0.6 parts by mass of polyphosphate amine salt and 0.4 parts by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco). In the same manner, a multilayer porous membrane was obtained. The results are listed in Table 1.
[実施例5]
 多孔層形成用分散液中の分散剤を、ポリリン酸アミン塩0.2質量部とポリカルボン酸アンモニウム(サンノプコ製SNディスパーサント5468)0.8質量部と、の混合物とした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 5]
Example 1 except that the dispersant in the dispersion for forming the porous layer was a mixture of 0.2 parts by mass of polyphosphate amine salt and 0.8 parts by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco). In the same manner, a multilayer porous membrane was obtained. The results are listed in Table 1.
[実施例6]
 多孔層形成用分散液中の分散剤を、ポリリン酸アミン塩0.05質量部とポリカルボン酸アンモニウム(サンノプコ製SNディスパーサント5468)0.95質量部と、の混合物とした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 6]
Example 1 except that the dispersant in the dispersion for forming a porous layer was a mixture of 0.05 part by mass of a polyphosphate amine salt and 0.95 part by mass of ammonium polycarboxylate (SN Dispersant 5468 manufactured by San Nopco). In the same manner, a multilayer porous membrane was obtained. The results are listed in Table 1.
[実施例7]
 多孔層の厚みを5μmにした以外は実施例3と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 7]
A multilayer porous membrane was obtained in the same manner as in Example 3 except that the thickness of the porous layer was 5 μm. The results are listed in Table 1.
[実施例8]
 多孔層の厚みを7μmにした以外は実施例3と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 8]
A multilayer porous membrane was obtained in the same manner as in Example 3 except that the thickness of the porous layer was 7 μm. The results are listed in Table 1.
[実施例9]
 多孔層の厚みを10μmにした以外は実施例3と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 9]
A multilayer porous membrane was obtained in the same manner as in Example 3 except that the thickness of the porous layer was 10 μm. The results are listed in Table 1.
[実施例10]
 多孔層形成用分散液中の分散剤を、ポリリン酸アミン塩0.8質量部と、イオン解離性有機分散剤であるポリアクリル酸ナトリウム0.2質量部と、の混合物とした以外は実施例3と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 10]
Example except that the dispersant in the dispersion for forming the porous layer was a mixture of 0.8 parts by mass of polyphosphate amine salt and 0.2 parts by mass of sodium polyacrylate which is an ionic dissociative organic dispersant. In the same manner as in Example 3, a multilayer porous membrane was obtained. The results are listed in Table 1.
[実施例11]
 粘度平均分子量(Mv)2000,000の超高分子量ポリエチレン12質量部とMv280,000の高密度ポリエチレン12質量部とMv150,000の直鎖状低密度ポリエチレン16質量部とシリカ(平均粒径8.3μm)17.6質量部と、可塑剤としてフタル酸ジオクチル(DOP)を42.4質量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにてシリカを抽出除去し多孔膜とした。該多孔膜を118℃に加熱のもと、縦方向に5.3倍延伸した後、横方向に1.8倍延伸した。その結果、膜厚11μm、気孔率48体積%、透気度55秒/100cc、MD最大熱収縮応力8.7g、TD最大熱収縮応力0.9gの多孔膜を得た。
[Example 11]
Viscosity average molecular weight (Mv) 2000,000 ultra high molecular weight polyethylene 12 parts by mass, Mv280,000 high density polyethylene 12 parts by mass, Mv150,000 linear low density polyethylene 16 parts by mass and silica (average particle size 8. (3 μm) After 17.6 parts by mass and 42.4 parts by mass of dioctyl phthalate (DOP) as a plasticizer are mixed and granulated, they are kneaded and extruded by a twin screw extruder equipped with a T-die, and the thickness is 90 μm. Molded into a sheet. The molded product was subjected to extraction removal of DOP with methylene chloride and silica with sodium hydroxide to form a porous film. The porous membrane was heated to 118 ° C. and stretched 5.3 times in the longitudinal direction and then 1.8 times in the transverse direction. As a result, a porous film having a film thickness of 11 μm, porosity of 48 volume%, air permeability of 55 seconds / 100 cc, MD maximum heat shrinkage stress of 8.7 g, and TD maximum heat shrinkage stress of 0.9 g was obtained.
 上記ポリオレフィン多孔膜を基材に用いたこと以外は実施例3と同様にして多層多孔膜を得た。結果を表1に記載する。 A multilayer porous membrane was obtained in the same manner as in Example 3 except that the polyolefin porous membrane was used as a substrate. The results are listed in Table 1.
[実施例12]
 多孔層形成用分散液中の無機フィラーとして焼成カオリン(平均粒径1.0μm)を用いた以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 12]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that calcined kaolin (average particle size: 1.0 μm) was used as the inorganic filler in the porous layer forming dispersion. The results are listed in Table 1.
[実施例13]
 多孔層形成用分散液中の無機フィラーとしてアルミナ(平均粒径1.0μm)を用いた以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 13]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that alumina (average particle size: 1.0 μm) was used as the inorganic filler in the dispersion for forming the porous layer. The results are listed in Table 1.
[実施例14]
 多孔層形成用分散液中の分散剤として、ポリリン酸アンモニウム塩を用いた以外は実施例1と同様にして多層多孔膜を得た。結果を表1に併記記載する。
[Example 14]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that ammonium polyphosphate was used as the dispersant in the dispersion for forming the porous layer. The results are also shown in Table 1.
[実施例15]
 多孔層形成用分散液中の分散剤として、ポリリン酸ナトリウム塩を用いた以外は実施例1と同様にして多層多孔膜を得た。結果を表1に併記記載する。
[Example 15]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that sodium polyphosphate was used as the dispersant in the dispersion for forming the porous layer. The results are also shown in Table 1.
[実施例16]
 多孔層形成用分散液中の分散剤を、ポリリン酸アミン塩0.3質量部にした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 16]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that the dispersant in the dispersion for forming the porous layer was changed to 0.3 parts by mass of polyphosphate amine salt. The results are listed in Table 1.
[実施例17]
 多孔層形成用分散液中の分散剤を、ポリリン酸アミン塩2.5質量部にした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 17]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that the dispersant in the dispersion for forming a porous layer was changed to 2.5 parts by mass of polyphosphate amine salt. The results are listed in Table 1.
[実施例18]
 多孔層形成用分散液中の無機フィラーを90質量部、樹脂バインダーを10質量部にした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 18]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that 90 parts by mass of the inorganic filler and 10 parts by mass of the resin binder in the dispersion for forming the porous layer were used. The results are listed in Table 1.
[実施例19]
 多孔層形成用分散液中の無機フィラーを98質量部、樹脂バインダーを2質量部にした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Example 19]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that 98 parts by mass of the inorganic filler in the dispersion for forming the porous layer and 2 parts by mass of the resin binder were used. The results are listed in Table 1.
[比較例1]
 多孔層形成用分散液に、無機フィラーである水酸化酸化アルミニウム粒子(平均粒径1.0μm)94質量部、及び樹脂バインダーであるアクリル系ポリマー(固形分濃度45%)6質量部を100質量部の水にそれぞれ均一に分散させて、多孔層形成用分散液を調製した。得られた多孔層形成用分散液を用いたこと以外は、実施例11と同様にして多層多孔膜を得た。結果を表1に記載する。
[Comparative Example 1]
100 parts by mass of 94 parts by mass of an aluminum hydroxide oxide particle (average particle size 1.0 μm) as an inorganic filler and 6 parts by mass of an acrylic polymer (solid content concentration 45%) as a resin binder are added to the dispersion for forming a porous layer. A dispersion for forming a porous layer was prepared by uniformly dispersing each in a portion of water. A multilayer porous membrane was obtained in the same manner as in Example 11 except that the obtained dispersion for forming a porous layer was used. The results are listed in Table 1.
[比較例2]
 多孔層形成用分散液中の分散剤を、ポリカルボン酸アンモニウム1質量部とした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Comparative Example 2]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that the dispersant in the dispersion for forming the porous layer was 1 part by mass of ammonium polycarboxylate. The results are listed in Table 1.
[比較例3]
 多孔層形成用分散液中の分散剤を、ポリアクリル酸ナトリウム1質量部とした以外は実施例1と同様にして多層多孔膜を得た。結果を表1に記載する。
[Comparative Example 3]
A multilayer porous membrane was obtained in the same manner as in Example 1 except that the dispersant in the dispersion for forming the porous layer was 1 part by mass of sodium polyacrylate. The results are listed in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本出願は、2012年10月31日に日本国特許庁へ出願された日本特許出願(特願2012-240637)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2012-240637) filed with the Japan Patent Office on October 31, 2012, the contents of which are incorporated herein by reference.
 本発明の多層多孔膜は、電池、特に高容量電池のセパレータとして産業上の利用可能性を有する。 The multilayer porous membrane of the present invention has industrial applicability as a separator for batteries, particularly high capacity batteries.

Claims (9)

  1.  ポリオレフィン多孔膜と、
     該ポリオレフィン多孔膜の片面又は両面に配された、無機フィラー、樹脂バインダー及びイオン解離性無機分散剤を含有する多孔層と、
     を有する、多層多孔膜。
    A polyolefin porous membrane,
    A porous layer containing an inorganic filler, a resin binder, and an ion dissociable inorganic dispersant, disposed on one or both sides of the polyolefin porous membrane;
    A multilayer porous membrane.
  2.  前記多孔層が、イオン解離性有機分散剤をさらに含む、請求項1に記載の多層多孔膜。 The multilayer porous membrane according to claim 1, wherein the porous layer further contains an ion dissociable organic dispersant.
  3.  前記イオン解離性無機分散剤及び前記イオン解離性有機分散剤の合計含有量100質量部に対して、前記イオン解離性無機分散剤の含有量が、20質量部以上95質量部以下である、請求項2に記載の多層多孔膜。 The content of the ion dissociable inorganic dispersant is 20 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the total content of the ion dissociable inorganic dispersant and the ion dissociable organic dispersant. Item 3. The multilayer porous membrane according to Item 2.
  4.  前記イオン解離性無機分散剤が、縮合リン酸塩を含む、請求項1~3のいずれか1項に記載の多層多孔膜。 The multilayer porous membrane according to any one of claims 1 to 3, wherein the ion dissociable inorganic dispersant contains a condensed phosphate.
  5.  前記樹脂バインダーが、アクリル系ポリマーを含む、請求項1~4のいずれか1項に記載の多層多孔膜。 The multilayer porous membrane according to any one of claims 1 to 4, wherein the resin binder contains an acrylic polymer.
  6.  請求項1~5のいずれか1項に記載の多層多孔膜を備える、非水電解液電池用セパレータ。 A non-aqueous electrolyte battery separator comprising the multilayer porous membrane according to any one of claims 1 to 5.
  7.  ポリオレフィン多孔膜の片面又は両面に、無機フィラー、樹脂バインダー及びイオン解離性無機分散剤を含有する分散液を塗布する塗布工程を有する、多層多孔膜の製造方法。 The manufacturing method of a multilayer porous membrane which has the application | coating process which apply | coats the dispersion liquid containing an inorganic filler, a resin binder, and an ion dissociative inorganic dispersing agent to the single side | surface or both surfaces of a polyolefin porous membrane.
  8.  前記樹脂バインダーが、アクリル系ポリマーを含む、請求項7に記載の多層多孔膜の製造方法。 The method for producing a multilayer porous membrane according to claim 7, wherein the resin binder contains an acrylic polymer.
  9.  前記分散液が、イオン解離性有機分散剤をさらに含む、請求項7又は8に記載の多層多孔膜の製造方法。 The method for producing a multilayer porous membrane according to claim 7 or 8, wherein the dispersion further contains an ion dissociative organic dispersant.
PCT/JP2013/079155 2012-10-31 2013-10-28 Multilayer porous film and method for manufacturing same, and separator for non-aqueous electrolyte cell WO2014069410A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380057208.0A CN104812579B (en) 2012-10-31 2013-10-28 Multilayer porous film and its manufacture method and battery with nonaqueous electrolyte separator
KR1020177016360A KR102053259B1 (en) 2012-10-31 2013-10-28 Multilayer porous film and method for manufacturing same, and separator for non-aqueous electrolyte cell
JP2014544500A JP6279479B2 (en) 2012-10-31 2013-10-28 Multilayer porous membrane, method for producing the same, and separator for non-aqueous electrolyte battery
KR1020157010852A KR20150063119A (en) 2012-10-31 2013-10-28 Multilayer porous film and method for manufacturing same, and separator for non-aqueous electrolyte cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-240637 2012-10-31
JP2012240637 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014069410A1 true WO2014069410A1 (en) 2014-05-08

Family

ID=50627315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079155 WO2014069410A1 (en) 2012-10-31 2013-10-28 Multilayer porous film and method for manufacturing same, and separator for non-aqueous electrolyte cell

Country Status (5)

Country Link
JP (1) JP6279479B2 (en)
KR (2) KR20150063119A (en)
CN (1) CN104812579B (en)
TW (1) TWI511353B (en)
WO (1) WO2014069410A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015096A (en) * 2013-07-03 2015-01-22 旭化成株式会社 Battery separator and nonaqueous electrolyte battery
JP2015151445A (en) * 2014-02-13 2015-08-24 三菱樹脂株式会社 Laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016033916A (en) * 2014-07-30 2016-03-10 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP2016076323A (en) * 2014-10-03 2016-05-12 旭化成イーマテリアルズ株式会社 Method of manufacturing separator for power storage device
WO2017038067A1 (en) * 2015-08-31 2017-03-09 日本ゼオン株式会社 Composition for non-aqueous secondary cell functional layer, functional layer for non-aqueous secondary cell, and non-aqueous secondary cell
JP2017107851A (en) * 2015-11-30 2017-06-15 旭化成株式会社 Separator for power storage device
US20200144577A1 (en) * 2017-08-31 2020-05-07 Asahi Kasei Kabushiki Kaisha Polyolefin Microporous Membrane
JPWO2020105672A1 (en) * 2018-11-22 2021-10-14 東レ株式会社 Porous film, rechargeable battery separator and rechargeable battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851450B1 (en) 2015-10-29 2018-04-23 스미또모 가가꾸 가부시키가이샤 Laminated separator for non-aqueous secondary battery, non-aqueous secondary battery member, and non-aqueous secondary battery
KR102287723B1 (en) * 2019-12-06 2021-08-10 더블유스코프코리아 주식회사 A coating composition for a separator and a method for manufacturing a separator using the same
US20230046375A1 (en) * 2020-01-08 2023-02-16 Asahi Kasei Kabushiki Kaisha Inorganic Coating Layer Crosslinked Separator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088707A1 (en) * 2006-02-01 2007-08-09 Maruo Calcium Co., Ltd. Micropore forming agent for porous resin film and composition for porous resin film containing the agent
WO2008093575A1 (en) * 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Multilayer porous membrane and method for producing the same
WO2009096451A1 (en) * 2008-01-29 2009-08-06 Hitachi Maxell, Ltd. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
JP2011165430A (en) * 2010-02-08 2011-08-25 Nippon A&L Inc Binder for heat-resistant protective layer of secondary battery, and composition for heat-resistant protective layer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3400139B2 (en) * 1994-09-30 2003-04-28 三井化学株式会社 Laminated microporous film of olefin polymer, its production method and its use
JP5027385B2 (en) * 2004-12-17 2012-09-19 丸尾カルシウム株式会社 Porous film filler and porous film formed by blending the filler
US8110626B2 (en) * 2005-09-27 2012-02-07 Advanced Polymerik PTY. Limited Dispersing agents in composites
KR20090130885A (en) * 2007-06-06 2009-12-24 아사히 가세이 이-매터리얼즈 가부시키가이샤 Multilayer porous film
JP5262323B2 (en) * 2008-06-11 2013-08-14 ソニー株式会社 Negative electrode with porous protective film and method for producing negative electrode with porous protective film
JP5183435B2 (en) 2008-11-21 2013-04-17 日立マクセル株式会社 Battery separator and lithium secondary battery
KR101269207B1 (en) * 2010-01-25 2013-05-31 에스케이이노베이션 주식회사 Porous multi layer film with improved thermal properties
CN102394282B (en) * 2011-11-25 2014-12-10 佛山市金辉高科光电材料有限公司 Lithium ion secondary battery porous multilayer diaphragm and manufacture method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088707A1 (en) * 2006-02-01 2007-08-09 Maruo Calcium Co., Ltd. Micropore forming agent for porous resin film and composition for porous resin film containing the agent
WO2008093575A1 (en) * 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Multilayer porous membrane and method for producing the same
WO2009096451A1 (en) * 2008-01-29 2009-08-06 Hitachi Maxell, Ltd. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
JP2011165430A (en) * 2010-02-08 2011-08-25 Nippon A&L Inc Binder for heat-resistant protective layer of secondary battery, and composition for heat-resistant protective layer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015096A (en) * 2013-07-03 2015-01-22 旭化成株式会社 Battery separator and nonaqueous electrolyte battery
JP2015151445A (en) * 2014-02-13 2015-08-24 三菱樹脂株式会社 Laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016033916A (en) * 2014-07-30 2016-03-10 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP2016076323A (en) * 2014-10-03 2016-05-12 旭化成イーマテリアルズ株式会社 Method of manufacturing separator for power storage device
WO2017038067A1 (en) * 2015-08-31 2017-03-09 日本ゼオン株式会社 Composition for non-aqueous secondary cell functional layer, functional layer for non-aqueous secondary cell, and non-aqueous secondary cell
JP2017107851A (en) * 2015-11-30 2017-06-15 旭化成株式会社 Separator for power storage device
US20200144577A1 (en) * 2017-08-31 2020-05-07 Asahi Kasei Kabushiki Kaisha Polyolefin Microporous Membrane
US11837693B2 (en) * 2017-08-31 2023-12-05 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane with improved puncture elongation and thermomechanical properties and method for manufacturing the same
JPWO2020105672A1 (en) * 2018-11-22 2021-10-14 東レ株式会社 Porous film, rechargeable battery separator and rechargeable battery
JP7234941B2 (en) 2018-11-22 2023-03-08 東レ株式会社 Porous film, secondary battery separator and secondary battery

Also Published As

Publication number Publication date
KR20170073712A (en) 2017-06-28
JPWO2014069410A1 (en) 2016-09-08
TWI511353B (en) 2015-12-01
JP6279479B2 (en) 2018-02-14
KR102053259B1 (en) 2019-12-09
KR20150063119A (en) 2015-06-08
CN104812579A (en) 2015-07-29
TW201431158A (en) 2014-08-01
CN104812579B (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6279479B2 (en) Multilayer porous membrane, method for producing the same, and separator for non-aqueous electrolyte battery
JP5511214B2 (en) Multilayer porous membrane
JP4931083B2 (en) Multilayer porous membrane and method for producing the same
TWI629176B (en) Porous membranes and multilayer porous membranes
KR101479822B1 (en) Multilayer porous membrane and method for producing the same
JP5196780B2 (en) Multilayer porous membrane and method for producing the same
JP5448345B2 (en) Multilayer porous membrane and method for producing the same
JP6382051B2 (en) Storage device separator
JP2008186721A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP6412760B2 (en) Storage device separator
JP2016107642A (en) Multilayer porous membrane and separator for electricity storage device
JP6378998B2 (en) Method for manufacturing separator for power storage device
JP5645342B2 (en) Porous membrane having both high heat resistance and high permeability and its production method
JP6357395B2 (en) Battery separator
JP6404071B2 (en) Method for manufacturing separator for power storage device
JP6872397B2 (en) Manufacturing method of separator for power storage device
JP2019008882A (en) Slurry for pattern coating
JP2013144442A (en) Porous film including both high heat resistance and high transmittance, and method for manufacturing the same
JP2014078515A (en) Porous membrane having high thermal resistance and high permeability, and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544500

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157010852

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851401

Country of ref document: EP

Kind code of ref document: A1