WO2014069331A1 - Contactless power feeding device - Google Patents

Contactless power feeding device Download PDF

Info

Publication number
WO2014069331A1
WO2014069331A1 PCT/JP2013/078845 JP2013078845W WO2014069331A1 WO 2014069331 A1 WO2014069331 A1 WO 2014069331A1 JP 2013078845 W JP2013078845 W JP 2013078845W WO 2014069331 A1 WO2014069331 A1 WO 2014069331A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power
capacitor
vehicle
capacitance
Prior art date
Application number
PCT/JP2013/078845
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 阿部田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014069331A1 publication Critical patent/WO2014069331A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a non-contact power feeding device.
  • Patent Document 1 a non-contact power supply device that supplies power in a non-contact manner by magnetic coupling of a pair of coils.
  • Patent Document 1 a non-contact power supply apparatus that supplies power in a non-contact manner by magnetic coupling of a pair of coils.
  • an electric vehicle such as an electric vehicle
  • Patent Document 2 a non-contact power supply apparatus that supplies power in a non-contact manner by magnetic coupling of a pair of coils.
  • an electric vehicle such as an electric vehicle
  • the other coil connected to a battery is installed in an electric vehicle.
  • the AC power source on the parking space side is transferred to the battery on the vehicle side via one coil and the other coil. Power can be supplied.
  • the leakage current becomes a noise source, and radiation noise may appear around the non-contact power feeding device.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to effectively suppress radiation noise in a non-contact power supply apparatus that transfers power in a non-contact manner.
  • a non-contact power feeding device includes a coil that performs non-contact power transfer with a counterpart coil by magnetic coupling, a first capacitor, and a second capacitor. ing.
  • the coil has a structure wound spirally within a predetermined plane.
  • the first capacitor is connected in series with the inner terminal of the coil.
  • the second capacitor is connected in series with the outer terminal of the coil.
  • FIG. 1 is a block diagram schematically illustrating a configuration of a contactless power feeding system according to the embodiment.
  • FIG. 2 is an explanatory diagram showing the concept of leakage current.
  • FIG. 3 is a circuit diagram schematically showing the configuration of the non-contact power feeding system of FIG.
  • FIG. 4A is a graph showing the relationship between the capacitance ratio and leakage current
  • FIG. 4B is a graph showing the relationship between the capacitance ratio and radiation noise.
  • the non-contact power supply system includes a power supply device 100 that is a ground-side unit, and an electric vehicle (hereinafter simply referred to as “vehicle”) 200 that includes the vehicle-side unit.
  • vehicle an electric vehicle
  • the non-contact power supply system supplies power from the power supply apparatus 100 in a non-contact manner and charges a battery 28 provided in the vehicle 200.
  • a non-contact power feeding device is applied to the power feeding device 100 and the vehicle 200 will be described.
  • the power feeding device 100 is installed in a charging stand or the like having a parking space for the vehicle 200 and supplies power to the vehicle 200.
  • the power supply apparatus 100 is mainly configured by a power control unit 11, a power transmission coil 12, a wireless communication unit 14, and a control unit 15.
  • the power control unit 11 is a circuit for converting AC power transmitted from the AC power source 300 into high-frequency AC power and transmitting it to the power transmission coil 12.
  • the power control unit 11 includes a rectifying unit 111, a PFC (Power Factor Correction) circuit 112, an inverter 113, and a sensor 114.
  • PFC Power Factor Correction
  • the rectifying unit 111 is a circuit that is electrically connected to the AC power supply 300 and rectifies the AC power output from the AC power supply 300.
  • the PFC circuit 112 is a circuit for improving the power factor by shaping the output waveform from the rectifying unit 111, and is connected between the rectifying unit 111 and the inverter 113.
  • the inverter 113 is a power converter including a PWM control circuit having a switching element such as a smoothing capacitor or IGBT.
  • the inverter 113 converts DC power into high-frequency AC power based on a control signal from the control unit 15 and supplies it to the power transmission coil 12.
  • the sensor 114 is connected between the PFC circuit 112 and the inverter 113, and detects a current and a voltage flowing between the PFC circuit 112 and the inverter 113.
  • the power transmission coil 12 is a coil for supplying power to the power reception coil 22 mounted on the vehicle 200 in a non-contact manner, and has a structure in which a conductive wire made of a conductor such as metal is wound in a spiral shape in a predetermined plane. have.
  • the power transmission coil 12 is provided at a destination such as a parking space where the vehicle 200 is parked. Specifically, the power transmission coil 12 is provided so as to be positioned directly below the power reception coil 22 while keeping a distance from the power reception coil 22 when the vehicle 200 is parked at an appropriate parking position in the parking space. . In other words, when the vehicle 200 is parked at a specified position in the parking space, the vehicle 200 faces the power receiving coil 22 on the vehicle 200 side.
  • the power transmission coil 12 is wound around a coil axis in a direction parallel to the road surface in the parking space. As the winding shape, a circular shape (including an ellipse) or a polygonal shape can be adopted.
  • the wireless communication unit 14 performs bidirectional communication with the wireless communication unit 24 mounted on the vehicle 200.
  • the frequency of the electromagnetic wave used for communication between the wireless communication unit 14 and the wireless communication unit 24 is set to be higher than the frequency used in the vehicle peripheral device such as an intelligent key (registered trademark). For this reason, even if it communicates between the radio
  • various wireless LAN methods are used, and communication methods suitable for long distances are used.
  • the control unit 15 has a function of controlling the power supply apparatus 100. Specifically, the control unit 15 controls the power control unit 11, the power transmission coil 12, and the wireless communication unit 14. The control unit 15 transmits a control signal to start power supply to the vehicle 200 side or receives power from the vehicle 200 side through communication between the wireless communication unit 14 and the wireless communication unit 24. Receive control signals. The control unit 15 performs switching control of the inverter 113 based on the detection current of the sensor 114 and controls electric power supplied from the power transmission coil 12. As the control unit 15, a microcomputer mainly composed of a CPU, a ROM, a RAM, and an I / O interface can be used.
  • the vehicle 200 includes, as a vehicle-side unit, a power receiving coil 22, a wireless communication unit 24, a charging control unit 25, a rectifying unit 26, a relay unit 27, a battery 28, an inverter 29, a motor 30, and a notification unit. 32.
  • the power receiving coil 22 is a coil for receiving power in a non-contact manner from the power transmitting coil 12 on the power supply apparatus 100 side, and has a structure in which a conductive wire made of a conductor such as metal is wound in a spiral shape within a predetermined plane. Yes.
  • the power receiving coil 22 is provided, for example, at a target location such as a bottom surface (chassis) of the vehicle 200, particularly between the rear wheels. When the vehicle 200 is parked at a specified position in the parking space, the power receiving coil 22 faces the power transmitting coil 12 on the power supply apparatus 100 side.
  • the wireless communication unit 24 performs bidirectional communication with the wireless communication unit 14 provided on the power supply apparatus 100 side.
  • the rectifying unit 26 is connected to the power receiving coil 22 and is configured by a rectifying circuit that rectifies AC power received by the power receiving coil 22 into direct current.
  • the relay unit 27 includes a relay switch that is turned on and off under the control of the charging control unit 25. The relay part 27 can isolate
  • the battery 28 is a power source of the vehicle 200, and is configured by electrically connecting a plurality of secondary batteries, for example.
  • the inverter 29 is a power converter including a PWM control circuit having a switching element such as an IGBT.
  • the inverter 29 converts the DC power output from the battery 28 into AC power based on the control signal, and supplies the AC power to the motor 30.
  • the motor 30 is composed of, for example, a three-phase AC motor, and is a drive source for driving the vehicle 200.
  • the notification unit 32 includes a display device of a navigation system, a warning lamp, and a speaker provided at a position where a driver such as an instrument panel in the vehicle can see.
  • the notification unit 32 outputs light, an image, sound, or the like to the user based on the control by the charge control unit 25.
  • the charging control unit 25 has a function of controlling the charging of the battery 28.
  • the charging control unit 25 controls the wireless communication unit 24 and the notification unit 32.
  • the charging control unit 25 receives a control signal for starting power supply from the power supply apparatus 100 side through communication of the wireless communication unit 24 and the wireless communication unit 14, or receives a control signal for receiving power from the vehicle 200 side. Or send to.
  • the charging control unit 25 is connected to a controller that controls the entire vehicle 200 via a CAN communication network.
  • the controller manages the switching control of the inverter 29 and the state of charge (SOC) of the battery 28.
  • SOC state of charge
  • the charging control unit 25 determines full charging based on the SOC of the battery 28 obtained from the controller, the charging control unit 25 transmits a control signal to the power supply apparatus 100 to end charging.
  • high-frequency power is transmitted between the power transmission coil 12 and the power receiving coil 22 in a non-contact state by electromagnetic induction.
  • electromagnetic induction when a voltage is applied to the power transmission coil 12, magnetic coupling occurs between the power transmission coil 12 and the power reception coil 22, and power is supplied from the power transmission coil 12 to the power reception coil 22.
  • a leakage current is generated in a closed loop as indicated by a broken line (LC) in FIG. Then, due to this leakage current, this becomes a noise source and radiation noise may appear in the surroundings.
  • the leakage current due to the power supply apparatus 100 is a small amount.
  • the configuration such as the AC power supply 300 or the power supply apparatus 100 is large, the area of the closed loop through which the leakage current flows increases, so that the level of radiation noise increases.
  • radiation noise caused by leakage current is generated not only by the ground unit, but also by the vehicle 200.
  • FIG. 3 is a circuit diagram schematically showing a configuration of the non-contact power feeding system according to the present embodiment.
  • a pair of capacitors specifically, a first capacitor 13 i and a second capacitor 13 o are connected to the power transmission coil 12 in order to suppress the generation of radiation noise due to leakage current.
  • the first capacitor 13 i is connected in series with the inner terminal of the power transmission coil 13
  • the second capacitor 13 o is connected in series with the outer terminal of the power transmission coil 13.
  • the first capacitor 13i and the second capacitor 13o are set so that the capacitance ratio satisfies the equation (1).
  • Ci is the capacitance of the first capacitor 13i
  • Co is the capacitance of the second capacitor 13o
  • Di is the inner diameter of the power transmission coil 12
  • Do is the outer diameter of the power transmission coil 12.
  • I total indicates the total leakage current due to the power transmission coil 12.
  • is a constant corresponding to the current frequency of the power transmission coil 12
  • is a dielectric constant between the power transmission coil 12 and the casing that houses the power transmission coil 12.
  • d is the distance between the coil and the bottom surface of the housing
  • W is the outer diameter of the wire of the power transmission coil 12
  • k is the total number of windings of the power transmission coil 12.
  • Vi is the voltage at the inner terminal of the power transmission coil 12
  • Vo is the voltage at the outer terminal of the power transmission coil 12.
  • the power transmission coil 12 is a planar coil wound in a spiral shape within a predetermined plane.
  • W satisfies the relationship shown in equation (5).
  • the capacitance ratio (Ci / Co) of the first capacitor 13i and the second capacitor 13o is expressed by the equation (1).
  • a pair of capacitors specifically, a first capacitor 23 i and a second capacitor 23 o are connected to the power receiving coil 22 in order to suppress the generation of radiation noise due to leakage current.
  • the first capacitor 23 i is connected in series with the inner terminal of the power receiving coil 22, while the second capacitor 23 o is connected in series with the outer terminal of the power receiving coil 22.
  • the first capacitor 23i and the second capacitor 23o are set so that the capacitance ratio (Ci / Co) satisfies the relationship expressed by the above-described equation (1).
  • FIG. 4A is a graph showing the relationship between the capacitance ratio (Ci / Co) and leakage current
  • FIG. 4B shows the capacitance ratio (Ci / Co), radiation noise
  • It is a graph which shows the relationship.
  • FIG. 4A shows the measured value (La) and the calculated value (Lc) of the leakage current.
  • “Fc” in FIGS. 4A and 4B indicates a capacitance ratio determined by the equation (1).
  • FIG. 4A it can be seen that the measured value (La) and the calculated value (Lc) of the leakage current are most suppressed in the capacitance ratio (Fc) defined by the equation (1).
  • FIG. 4B it can be seen that the radiation noise is most suppressed in the capacitance ratio (Fc) defined by the equation (1).
  • the coils (12, 22) that transfer power in a contactless manner with the counterpart coil (22, 12) by magnetic coupling are wound in a spiral shape within a predetermined plane.
  • the first capacitor (13i, 23i) is connected in series with the inner terminal of the coil, and the second capacitor (13o, 23o) is connected in series with the outer terminal of the coil.
  • the ratio (Ci / Co) between the capacitance Ci of the first capacitor and the capacitance Co of the second capacitor is set to satisfy the above equation (1).
  • the capacitors are connected in series to both ends of the coil, and the capacitance ratio of the pair of capacitors is appropriately set. Therefore, since generation
  • the coil having the above characteristics is applied to the power transmission coil 12 arranged in the power supply apparatus 100 that supplies power to the vehicle 200 on which the power receiving coil 22 of the other party is mounted.
  • the power supply apparatus 100 in which the power receiving coil 22 is arranged has a large facility scale, and therefore there is a tendency that the area of the closed loop in which leakage current flows is large and radiation noise tends to increase. Therefore, radiation noise can be effectively suppressed by applying the above configuration to the power transmission coil 12 of the power supply apparatus 100.
  • the coil having the above characteristics is also applied to the power receiving coil 22 mounted on the vehicle 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

A contactless power feeding device comprises a coil (12) which contactlessly transmits and receives power to and from a partner coil (22) using magnetic coupling, a first capacitor (13i), and a second capacitor (13o). The coil is wound into a swirl shape in a prescribed planar surface. The first capacitor is serially connected with the inner terminal of the coil. The second capacitor is serially connected with the outer terminal of the coil. When the inner diameter of the coil is Di and the outer diameter of the coil is Do, the ratio of the electrostatic capacitance Ci of the first capacitor to the electrostatic capacitance Co of the second capacitor satisfies a formula (1). Ci/Co = (2Di + Do) / (2Do + Di) … (1)

Description

非接触給電装置Non-contact power feeding device
 本発明は、非接触給電装置に関するものである。 The present invention relates to a non-contact power feeding device.
 従来より、一対のコイルの磁気的結合によって非接触で電力の供給を行う非接触給電装置が知られている(特許文献1)。この非接触給電装置は、電気自動車といった電動車両への適用が進められている。例えば、給電スタンドなどの駐車スペースには、交流電源に接続する一方のコイルが設置され、電動車両には、バッテリに接続する他方のコイルが設置されている。そして、駐車スペース側のコイルを一次コイル、電動車両側のコイルを二次コイルとして利用することにより、駐車スペース側の交流電源から車両側のバッテリへと、一方のコイル及び他方のコイルを経由して電力を供給することができる。 2. Description of the Related Art Conventionally, a non-contact power supply device that supplies power in a non-contact manner by magnetic coupling of a pair of coils is known (Patent Document 1). Application of this non-contact power supply apparatus to an electric vehicle such as an electric vehicle is being promoted. For example, one coil connected to an AC power supply is installed in a parking space such as a power supply stand, and the other coil connected to a battery is installed in an electric vehicle. And by using the coil on the parking space side as the primary coil and the coil on the electric vehicle side as the secondary coil, the AC power source on the parking space side is transferred to the battery on the vehicle side via one coil and the other coil. Power can be supplied.
特開2011-72074号公報JP 2011-72074 A
 しかしながら、非接触給電装置では、漏洩電流がノイズ源となり、非接触給電装置の周囲に放射ノイズが現れる場合がある。 However, in the non-contact power feeding device, the leakage current becomes a noise source, and radiation noise may appear around the non-contact power feeding device.
 本発明はかかる事情に鑑みてなされたものであり、その目的は、非接触で電力の授受を行う非接触給電装置において、放射ノイズを効果的に抑制することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to effectively suppress radiation noise in a non-contact power supply apparatus that transfers power in a non-contact manner.
 本発明の一態様に係わる非接触給電装置は、磁気的結合により相手方のコイルとの間で非接触で電力の授受を行うコイルと、第1のコンデンサと、第2のコンデンサと、を有している。コイルは、所定平面内で渦巻き状に巻回された構造を有している。第1のコンデンサは、コイルの内側端子と直列接続する。第2のコンデンサは、コイルの外側端子と直列接続する。コイルの内径をDi、コイルの外径をDoとしたときに、第1のコンデンサの静電容量Ciと第2のコンデンサの静電容量Coとの比は、(1)式を満たす関係に設定されている。
Figure JPOXMLDOC01-appb-M000002
A non-contact power feeding device according to one embodiment of the present invention includes a coil that performs non-contact power transfer with a counterpart coil by magnetic coupling, a first capacitor, and a second capacitor. ing. The coil has a structure wound spirally within a predetermined plane. The first capacitor is connected in series with the inner terminal of the coil. The second capacitor is connected in series with the outer terminal of the coil. When the inner diameter of the coil is Di and the outer diameter of the coil is Do, the ratio between the capacitance Ci of the first capacitor and the capacitance Co of the second capacitor is set to satisfy the relationship (1). Has been.
Figure JPOXMLDOC01-appb-M000002
図1は、実施形態に係わる非接触給電システムの構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically illustrating a configuration of a contactless power feeding system according to the embodiment. 図2は、漏洩電流の概念を示す説明図である。FIG. 2 is an explanatory diagram showing the concept of leakage current. 図3は、図1の非接触給電システムの構成を概略的に示す回路図である。FIG. 3 is a circuit diagram schematically showing the configuration of the non-contact power feeding system of FIG. 図4(a)は、静電容量比と漏洩電流との関係を示すグラフであり、図4(b)は、静電容量比と放射ノイズとの関係を示すグラフである。FIG. 4A is a graph showing the relationship between the capacitance ratio and leakage current, and FIG. 4B is a graph showing the relationship between the capacitance ratio and radiation noise.
 図1を参照して、実施形態に係る非接触給電システムの構成を説明する。非接触給電システムは、地上側ユニットである給電装置100と、車両側ユニットを含む電動車両(以下単に「車両」という)200とを備える。非接触給電システムは、給電装置100から非接触で電力を供給し、車両200に設けられるバッテリ28を充電する。実施形態では、給電装置100及び車両200に対して、非接触給電装置を適用した例を説明する。 With reference to FIG. 1, the structure of the non-contact electric power feeding system which concerns on embodiment is demonstrated. The non-contact power supply system includes a power supply device 100 that is a ground-side unit, and an electric vehicle (hereinafter simply referred to as “vehicle”) 200 that includes the vehicle-side unit. The non-contact power supply system supplies power from the power supply apparatus 100 in a non-contact manner and charges a battery 28 provided in the vehicle 200. In the embodiment, an example in which a non-contact power feeding device is applied to the power feeding device 100 and the vehicle 200 will be described.
 給電装置100は、車両200の駐車スペースを備える充電スタンドなどに設置されており、車両200に対して電力を供給する。この給電装置100は、電力制御部11と、送電コイル12と、無線通信部14と、制御部15とを主体に構成されている。 The power feeding device 100 is installed in a charging stand or the like having a parking space for the vehicle 200 and supplies power to the vehicle 200. The power supply apparatus 100 is mainly configured by a power control unit 11, a power transmission coil 12, a wireless communication unit 14, and a control unit 15.
 電力制御部11は、交流電源300から送電される交流電力を、高周波の交流電力に変換し、送電コイル12に送電するための回路である。電力制御部11は、整流部111と、PFC(Power Factor Correction)回路112と、インバータ113と、センサ114とを備えている。 The power control unit 11 is a circuit for converting AC power transmitted from the AC power source 300 into high-frequency AC power and transmitting it to the power transmission coil 12. The power control unit 11 includes a rectifying unit 111, a PFC (Power Factor Correction) circuit 112, an inverter 113, and a sensor 114.
 整流部111は、交流電源300に電気的に接続され、交流電源300から出力される交流電力を整流する回路である。PFC回路112は、整流部111からの出力波形を整形することで力率を改善するための回路であり、整流部111とインバータ113との間に接続されている。インバータ113は、平滑コンデンサやIGBT等のスイッチング素子を有するPWM制御回路などを含む電力変換装置である。インバータ113は、制御部15からの制御信号に基づいて、直流電力を高周波の交流電力に変換し、送電コイル12に供給する。センサ114は、PFC回路112とインバータ113との間に接続され、PFC回路112とインバータ113との間に流れる電流や電圧を検出する。 The rectifying unit 111 is a circuit that is electrically connected to the AC power supply 300 and rectifies the AC power output from the AC power supply 300. The PFC circuit 112 is a circuit for improving the power factor by shaping the output waveform from the rectifying unit 111, and is connected between the rectifying unit 111 and the inverter 113. The inverter 113 is a power converter including a PWM control circuit having a switching element such as a smoothing capacitor or IGBT. The inverter 113 converts DC power into high-frequency AC power based on a control signal from the control unit 15 and supplies it to the power transmission coil 12. The sensor 114 is connected between the PFC circuit 112 and the inverter 113, and detects a current and a voltage flowing between the PFC circuit 112 and the inverter 113.
 送電コイル12は、車両200に搭載された受電コイル22に対して非接触で電力を供給するためのコイルであり、金属等の導電体からなる導線を所定平面内で渦巻き状に巻回した構造を有している。送電コイル12は、車両200を駐車する駐車スペースといった目的箇所に設けられている。具体的に、送電コイル12は、車両200を駐車スペース内の適切な駐車位置に駐車した時に、受電コイル22と距離を保った状態で受電コイル22の直下に位置するように、設けられている。換言すれば、車両200が駐車スペースの規定位置に駐車した場合、車両200側の受電コイル22の下方に対峙する。なお、送電コイル12は、駐車スペース内の路面と平行な方向をコイル軸として巻かれている。その巻き形状として、円形(楕円を含む)、或いは多角形状を採用可能である。 The power transmission coil 12 is a coil for supplying power to the power reception coil 22 mounted on the vehicle 200 in a non-contact manner, and has a structure in which a conductive wire made of a conductor such as metal is wound in a spiral shape in a predetermined plane. have. The power transmission coil 12 is provided at a destination such as a parking space where the vehicle 200 is parked. Specifically, the power transmission coil 12 is provided so as to be positioned directly below the power reception coil 22 while keeping a distance from the power reception coil 22 when the vehicle 200 is parked at an appropriate parking position in the parking space. . In other words, when the vehicle 200 is parked at a specified position in the parking space, the vehicle 200 faces the power receiving coil 22 on the vehicle 200 side. The power transmission coil 12 is wound around a coil axis in a direction parallel to the road surface in the parking space. As the winding shape, a circular shape (including an ellipse) or a polygonal shape can be adopted.
 無線通信部14は、車両200に搭載された無線通信部24と、双方向に通信を行う。無線通信部14と無線通信部24との間の通信に使用される電磁波の周波数は、インテリジェントキー(登録商標)などの車両周辺機器で使用される周波数より高い周波数が設定されている。このため、無線通信部14と無線通信部24との間で通信を行っても、車両周辺機器は、当該通信による干渉を受けにくい。無線通信部14及び無線通信部24との間の通信には、例えば各種の無線LAN方式が用いられ、遠距離に適した通信方式が用いられている。 The wireless communication unit 14 performs bidirectional communication with the wireless communication unit 24 mounted on the vehicle 200. The frequency of the electromagnetic wave used for communication between the wireless communication unit 14 and the wireless communication unit 24 is set to be higher than the frequency used in the vehicle peripheral device such as an intelligent key (registered trademark). For this reason, even if it communicates between the radio | wireless communication part 14 and the radio | wireless communication part 24, a vehicle peripheral device is hard to receive the interference by the said communication. For communication between the wireless communication unit 14 and the wireless communication unit 24, for example, various wireless LAN methods are used, and communication methods suitable for long distances are used.
 制御部15は、給電装置100を制御する機能を担っている。具体的には、制御部15は、電力制御部11、送電コイル12及び無線通信部14を制御する。制御部15は、無線通信部14と無線通信部24との間の通信により、電力供給を開始する旨の制御信号を車両200側に送信したり、車両200側からの電力を受給したい旨の制御信号を受信したりする。制御部15は、センサ114の検出電流に基づいて、インバータ113のスイッチング制御を行い、送電コイル12から供給される電力を制御する。制御部15としては、CPU、ROM、RAM、I/Oインターフェースを主体に構成されたマイクロコンピュータを用いることができる。 The control unit 15 has a function of controlling the power supply apparatus 100. Specifically, the control unit 15 controls the power control unit 11, the power transmission coil 12, and the wireless communication unit 14. The control unit 15 transmits a control signal to start power supply to the vehicle 200 side or receives power from the vehicle 200 side through communication between the wireless communication unit 14 and the wireless communication unit 24. Receive control signals. The control unit 15 performs switching control of the inverter 113 based on the detection current of the sensor 114 and controls electric power supplied from the power transmission coil 12. As the control unit 15, a microcomputer mainly composed of a CPU, a ROM, a RAM, and an I / O interface can be used.
 車両200は、車両側ユニットとして、受電コイル22と、無線通信部24と、充電制御部25と、整流部26と、リレー部27と、バッテリ28と、インバータ29と、モータ30と、通知部32とを備えている。 The vehicle 200 includes, as a vehicle-side unit, a power receiving coil 22, a wireless communication unit 24, a charging control unit 25, a rectifying unit 26, a relay unit 27, a battery 28, an inverter 29, a motor 30, and a notification unit. 32.
 受電コイル22は、給電装置100側の送電コイル12から非接触で受電するためのコイルであり、金属等の導電体からなる導線を所定の平面内において渦巻き状に巻回した構造を有している。受電コイル22は、例えば、車両200の底面部(シャシ)、特に後方の車輪の間といった目的箇所に設けられている。受電コイル22は、車両200が駐車スペースの規定位置に駐車されると、給電装置100側の送電コイル12の上方に対峙する。 The power receiving coil 22 is a coil for receiving power in a non-contact manner from the power transmitting coil 12 on the power supply apparatus 100 side, and has a structure in which a conductive wire made of a conductor such as metal is wound in a spiral shape within a predetermined plane. Yes. The power receiving coil 22 is provided, for example, at a target location such as a bottom surface (chassis) of the vehicle 200, particularly between the rear wheels. When the vehicle 200 is parked at a specified position in the parking space, the power receiving coil 22 faces the power transmitting coil 12 on the power supply apparatus 100 side.
 無線通信部24は、給電装置100側に設けられた無線通信部14と、双方向に通信を行う。整流部26は、受電コイル22に接続され、受電コイル22で受電された交流電力を直流に整流する整流回路により構成されている。リレー部27は、充電制御部25の制御によりオン及びオフが切り変わるリレースイッチを備えている。リレー部27は、当該リレースイッチをオフにすることで、バッテリ28を含む強電系と、充電の回路部となる受電コイル22及び整流部26を含む弱電系とを切り離すことできる。 The wireless communication unit 24 performs bidirectional communication with the wireless communication unit 14 provided on the power supply apparatus 100 side. The rectifying unit 26 is connected to the power receiving coil 22 and is configured by a rectifying circuit that rectifies AC power received by the power receiving coil 22 into direct current. The relay unit 27 includes a relay switch that is turned on and off under the control of the charging control unit 25. The relay part 27 can isolate | separate the strong electric system containing the battery 28 and the weak electric system containing the receiving coil 22 and the rectifier 26 which become a charge circuit part by turning off the said relay switch.
 バッテリ28は、車両200の電力源であり、例えば複数の二次電池を電気的に接続して構成されている。インバータ29は、IGBT等のスイッチング素子を有したPWM制御回路等を含む電力変換装置である。インバータ29は、制御信号に基づいて、バッテリ28から出力される直流電力を交流電力に変換し、当該交流電力をモータ30に供給する。モータ30は、例えば三相の交流電動機により構成され、車両200を駆動させるための駆動源である。 The battery 28 is a power source of the vehicle 200, and is configured by electrically connecting a plurality of secondary batteries, for example. The inverter 29 is a power converter including a PWM control circuit having a switching element such as an IGBT. The inverter 29 converts the DC power output from the battery 28 into AC power based on the control signal, and supplies the AC power to the motor 30. The motor 30 is composed of, for example, a three-phase AC motor, and is a drive source for driving the vehicle 200.
 通知部32は、車室内のインストルメントパネル等のドライバが視認可能な位置に設けられるナビゲーションシステムの表示装置、警告ランプ、及びスピーカが含まれる。通知部32は、充電制御部25による制御に基づいて、ユーザに対して光、画像又は音等を出力する。 The notification unit 32 includes a display device of a navigation system, a warning lamp, and a speaker provided at a position where a driver such as an instrument panel in the vehicle can see. The notification unit 32 outputs light, an image, sound, or the like to the user based on the control by the charge control unit 25.
 充電制御部25は、バッテリ28の充電を制御する機能を担っている。例えば、充電制御部25は、無線通信部24及び通知部32を制御する。充電制御部25は、無線通信部24及び無線通信部14の通信により、電力供給を開始する旨の制御信号を給電装置100側から受信したり、電力を受給したい旨の制御信号を車両200側に送信したりする。 The charging control unit 25 has a function of controlling the charging of the battery 28. For example, the charging control unit 25 controls the wireless communication unit 24 and the notification unit 32. The charging control unit 25 receives a control signal for starting power supply from the power supply apparatus 100 side through communication of the wireless communication unit 24 and the wireless communication unit 14, or receives a control signal for receiving power from the vehicle 200 side. Or send to.
 また、図示を省略しているが、充電制御部25は、車両200全体を制御するコントローラとCAN通信網で接続されている。当該コントローラは、インバータ29のスイッチング制御や、バッテリ28の充電状態(SOC)を管理している。充電制御部25は、コントローラから得られるバッテリ28のSOCに基づいて満充電を判断した場合に、充電を終了する旨の制御信号を給電装置100側に送信する。 Although not shown, the charging control unit 25 is connected to a controller that controls the entire vehicle 200 via a CAN communication network. The controller manages the switching control of the inverter 29 and the state of charge (SOC) of the battery 28. When the charging control unit 25 determines full charging based on the SOC of the battery 28 obtained from the controller, the charging control unit 25 transmits a control signal to the power supply apparatus 100 to end charging.
 本実施形態に係る非接触給電システムでは、送電コイル12と受電コイル22との間で、電磁誘導作用により非接触状態で高周波電力の送電を行う。言い換えると、送電コイル12に電圧が加わると、送電コイル12と受電コイル22との間に磁気的な結合が生じ、送電コイル12から受電コイル22へ電力が供給される。 In the non-contact power feeding system according to the present embodiment, high-frequency power is transmitted between the power transmission coil 12 and the power receiving coil 22 in a non-contact state by electromagnetic induction. In other words, when a voltage is applied to the power transmission coil 12, magnetic coupling occurs between the power transmission coil 12 and the power reception coil 22, and power is supplied from the power transmission coil 12 to the power reception coil 22.
 このような非接触給電システムにおいて、例えば、地上側ユニットである給電装置100においては、交流電源300から電力が供給されることから、漏洩電流が発生する。この漏洩電流は、図2の破線(LC)で示すように、閉ループ内を流れることとなる。そして、この漏洩電流に起因して、これがノイズ源となり周囲に放射ノイズが現れることがある。ここで、給電装置100による漏洩電流は僅かな量である。しかし、交流電源300や給電装置100といった構成が大きいと、漏洩電流が流れる閉ループの面積が大きくなるため、放射ノイズのレベルが大きくなる。また、漏洩電流に起因する放射ノイズは、地上側ユニットによって発生するのみならず、車両200でも同様に発生する。 In such a non-contact power supply system, for example, in the power supply apparatus 100 that is a ground-side unit, power is supplied from the AC power supply 300, and thus a leakage current is generated. This leakage current flows in a closed loop as indicated by a broken line (LC) in FIG. Then, due to this leakage current, this becomes a noise source and radiation noise may appear in the surroundings. Here, the leakage current due to the power supply apparatus 100 is a small amount. However, if the configuration such as the AC power supply 300 or the power supply apparatus 100 is large, the area of the closed loop through which the leakage current flows increases, so that the level of radiation noise increases. In addition, radiation noise caused by leakage current is generated not only by the ground unit, but also by the vehicle 200.
 図3は、本実施形態に係る非接触給電システムの構成を概略的に示す回路図である。本実施形態では、漏洩電流に起因する放射ノイズの発生を抑制するために、送電コイル12には、一対のコンデンサ、具体的には、第1のコンデンサ13i及び第2のコンデンサ13oが接続されている。ここで、第1のコンデンサ13iは、送電コイル13の内側端子と直列接続され、一方、第2のコンデンサ13oは、送電コイル13の外側端子と直列接続されている。 FIG. 3 is a circuit diagram schematically showing a configuration of the non-contact power feeding system according to the present embodiment. In the present embodiment, a pair of capacitors, specifically, a first capacitor 13 i and a second capacitor 13 o are connected to the power transmission coil 12 in order to suppress the generation of radiation noise due to leakage current. Yes. Here, the first capacitor 13 i is connected in series with the inner terminal of the power transmission coil 13, while the second capacitor 13 o is connected in series with the outer terminal of the power transmission coil 13.
 ここで、第1のコンデンサ13i及び第2のコンデンサ13oは、その静電容量の比が(1)式を満たすように設定されている。
Figure JPOXMLDOC01-appb-M000003
Here, the first capacitor 13i and the second capacitor 13o are set so that the capacitance ratio satisfies the equation (1).
Figure JPOXMLDOC01-appb-M000003
 (1)式において、Ciは、第1のコンデンサ13iの静電容量であり、Coは、第2のコンデンサ13oの静電容量である。また、Diは、送電コイル12の内径であり、Doは、送電コイル12の外径である。 In the formula (1), Ci is the capacitance of the first capacitor 13i, and Co is the capacitance of the second capacitor 13o. Di is the inner diameter of the power transmission coil 12, and Do is the outer diameter of the power transmission coil 12.
 以下、静電容量比(Ci/Co)の設定概念について説明する。まず、漏洩電流は、(2)式により求められる。
Figure JPOXMLDOC01-appb-M000004
Hereinafter, the concept of setting the capacitance ratio (Ci / Co) will be described. First, the leakage current is obtained by equation (2).
Figure JPOXMLDOC01-appb-M000004
 (2)式において、Itotalは、送電コイル12による漏洩電流の合計を示す。ここで、ωは送電コイル12の電流周波数に応じた定数であり、εは送電コイル12と送電コイル12を格納する筐体との間の誘電率である。dはコイルと筐体の底面との距離であり、Wは送電コイル12の素線の外径であり、kは送電コイル12の全巻線数である。Viは送電コイル12の内側端子の電圧であり、Voは送電コイル12の外側端子の電圧である。 In equation (2), I total indicates the total leakage current due to the power transmission coil 12. Here, ω is a constant corresponding to the current frequency of the power transmission coil 12, and ε is a dielectric constant between the power transmission coil 12 and the casing that houses the power transmission coil 12. d is the distance between the coil and the bottom surface of the housing, W is the outer diameter of the wire of the power transmission coil 12, and k is the total number of windings of the power transmission coil 12. Vi is the voltage at the inner terminal of the power transmission coil 12, and Vo is the voltage at the outer terminal of the power transmission coil 12.
 ここで、Vo=G・Viとすると、(2)式は、(3)式により示すことができる。
Figure JPOXMLDOC01-appb-M000005
Here, when Vo = G · Vi, the expression (2) can be expressed by the expression (3).
Figure JPOXMLDOC01-appb-M000005
 (3)式に示す右辺の括弧の中が0のとき、Itotalは0になる。Itotalが0となる時のGは、(4)式により示される。
Figure JPOXMLDOC01-appb-M000006
When the value in the parenthesis on the right side shown in the equation (3) is 0, I total is 0. G when I total is 0 is expressed by the equation (4).
Figure JPOXMLDOC01-appb-M000006
 また、送電コイル12は所定平面内で渦巻き状に巻回された平面コイルである。この場合、Wは(5)式に示す関係を満たす。 The power transmission coil 12 is a planar coil wound in a spiral shape within a predetermined plane. In this case, W satisfies the relationship shown in equation (5).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 そして、この(5)式を、(4)式に代入すると、「G」は(6)式により示される。
Figure JPOXMLDOC01-appb-M000008
Then, when this equation (5) is substituted into equation (4), “G” is expressed by equation (6).
Figure JPOXMLDOC01-appb-M000008
 また、Vo=G・Viより、「G」は(7)式によっても示される。
Figure JPOXMLDOC01-appb-M000009
Further, from Vo = G · Vi, “G” is also expressed by equation (7).
Figure JPOXMLDOC01-appb-M000009
 このように、(6)式及び(7)式に基づいて、第1のコンデンサ13i及び第2のコンデンサ13oの静電容量比(Ci/Co)が、(1)式により示される。 Thus, based on the equations (6) and (7), the capacitance ratio (Ci / Co) of the first capacitor 13i and the second capacitor 13o is expressed by the equation (1).
 同様に、受電コイル22にも、漏洩電流に起因する放射ノイズの発生を抑制するために、一対のコンデンサ、具体的には、第1のコンデンサ23i及び第2のコンデンサ23oが接続されている。ここで、第1のコンデンサ23iは、受電コイル22の内側端子と直列接続され、一方、第2のコンデンサ23oは、受電コイル22の外側端子と直列接続する。この場合、第1のコンデンサ23i及び第2のコンデンサ23oは、その静電容量の比(Ci/Co)が、上述した(1)式に示す関係を満たすように設定されることとなる。 Similarly, a pair of capacitors, specifically, a first capacitor 23 i and a second capacitor 23 o are connected to the power receiving coil 22 in order to suppress the generation of radiation noise due to leakage current. Here, the first capacitor 23 i is connected in series with the inner terminal of the power receiving coil 22, while the second capacitor 23 o is connected in series with the outer terminal of the power receiving coil 22. In this case, the first capacitor 23i and the second capacitor 23o are set so that the capacitance ratio (Ci / Co) satisfies the relationship expressed by the above-described equation (1).
 図4(a)は、静電容量比(Ci/Co)と、漏洩電流との関係を示すグラフであり、図4(b)は、静電容量比(Ci/Co)と、放射ノイズとの関係を示すグラフである。図4(a)は、漏洩電流の測定値(La)及び計算値(Lc)を示す。図4(a)及び(b)中の「Fc」は、(1)式により定まる静電容量比を示す。図4(a)に示すように、(1)式で定義される静電容量比(Fc)において、漏洩電流の計測値(La)及び計算値(Lc)が最も抑制されていることが分かる。また、図4(b)に示すように、(1)式で定義される静電容量比(Fc)において、放射ノイズが最も抑制されていることが分かる。 4A is a graph showing the relationship between the capacitance ratio (Ci / Co) and leakage current, and FIG. 4B shows the capacitance ratio (Ci / Co), radiation noise, and It is a graph which shows the relationship. FIG. 4A shows the measured value (La) and the calculated value (Lc) of the leakage current. “Fc” in FIGS. 4A and 4B indicates a capacitance ratio determined by the equation (1). As shown in FIG. 4A, it can be seen that the measured value (La) and the calculated value (Lc) of the leakage current are most suppressed in the capacitance ratio (Fc) defined by the equation (1). . Further, as shown in FIG. 4B, it can be seen that the radiation noise is most suppressed in the capacitance ratio (Fc) defined by the equation (1).
 このように本実施形態において、磁気的結合により相手方のコイル(22、12)との間で非接触で電力の授受を行うコイル(12、22)は、所定平面内で渦巻き状に巻回された構造を有している。そして、第1のコンデンサ(13i、23i)は、コイルの内側端子と直列接続され、第2のコンデンサ(13o、23o)は、コイルの外側端子と直列接続されている。第1のコンデンサの静電容量Ciと第2のコンデンサの静電容量Coとの比(Ci/Co)が、上記の(1)式を満たす関係に設定されている。 As described above, in the present embodiment, the coils (12, 22) that transfer power in a contactless manner with the counterpart coil (22, 12) by magnetic coupling are wound in a spiral shape within a predetermined plane. Have a structure. The first capacitor (13i, 23i) is connected in series with the inner terminal of the coil, and the second capacitor (13o, 23o) is connected in series with the outer terminal of the coil. The ratio (Ci / Co) between the capacitance Ci of the first capacitor and the capacitance Co of the second capacitor is set to satisfy the above equation (1).
 かかる構成によれば、コイルの両端にコンデンサをそれぞれ直列接続し、かつ、一対のコンデンサの静電容量比を適切に設定している。これにより、漏洩電流の発生を抑制することができるので、放射ノイズを効果的に抑制することができる。 According to such a configuration, the capacitors are connected in series to both ends of the coil, and the capacitance ratio of the pair of capacitors is appropriately set. Thereby, since generation | occurrence | production of a leakage current can be suppressed, radiation noise can be suppressed effectively.
 ここで、本実施形態では、相手方の受電コイル22を搭載する車両200に電力を供給する給電装置100に配置される送電コイル12に、上記の特徴を備えるコイルが適用されている。 Here, in the present embodiment, the coil having the above characteristics is applied to the power transmission coil 12 arranged in the power supply apparatus 100 that supplies power to the vehicle 200 on which the power receiving coil 22 of the other party is mounted.
 かかる構成によれば、受電コイル22が配置される給電装置100では、設備規模が大きいことから、漏洩電流が流れる閉ループの面積が大きく、放射ノイズが大きくなり易いという傾向がある。そのため、給電装置100の送電コイル12に、上記の構成を適用することで、放射ノイズを有効に抑制することができる。 According to such a configuration, the power supply apparatus 100 in which the power receiving coil 22 is arranged has a large facility scale, and therefore there is a tendency that the area of the closed loop in which leakage current flows is large and radiation noise tends to increase. Therefore, radiation noise can be effectively suppressed by applying the above configuration to the power transmission coil 12 of the power supply apparatus 100.
 また、本実施形態では、車両200に搭載される受電コイル22にも、上記の特徴を備えるコイルが適用されている。 In this embodiment, the coil having the above characteristics is also applied to the power receiving coil 22 mounted on the vehicle 200.
 車両200側の受電コイル22でも漏洩電流が発生することから、放射ノイズが発生することとなる。車両200側の構成は、給電装置100のそれと比較して小さいものであるから、放射ノイズの影響も小さいものである。しかしながら、車両200側の受電コイル22に、上記の構成を適用することで、車両200における放射ノイズを抑制することができるとともに、非接触給電システム全体での放射ノイズを抑制することができる。 Since a leakage current is also generated in the power receiving coil 22 on the vehicle 200 side, radiation noise is generated. Since the configuration on the vehicle 200 side is smaller than that of the power supply apparatus 100, the influence of radiation noise is also small. However, by applying the above configuration to the power receiving coil 22 on the vehicle 200 side, radiation noise in the vehicle 200 can be suppressed, and radiation noise in the entire non-contact power feeding system can be suppressed.
 以上、本発明の実施形態にかかる非接触給電装置について説明したが、本発明は上述した実施形態に限定されることなく、その発明の範囲内において種々の変形が可能であることはいうまでもない。 As mentioned above, although the non-contact electric power feeding apparatus concerning embodiment of this invention was demonstrated, it cannot be overemphasized that a various deformation | transformation is possible within the scope of the invention, without this invention being limited to embodiment mentioned above. Absent.
 特願2012-239753号(出願日:2012年10月31日)の全内容は、ここに援用される。 The entire content of Japanese Patent Application No. 2012-239753 (filing date: October 31, 2012) is incorporated herein by reference.
  100  給電装置
  12   送電コイル
  13i、23i  第1のコンデンサ
  13o、23o  第2のコンデンサ
  200  車両(電動車両)
  22   受電コイル
  300  交流電源(電源)
DESCRIPTION OF SYMBOLS 100 Electric power feeder 12 Power transmission coil 13i, 23i 1st capacitor | condenser 13o, 23o 2nd capacitor | condenser 200 Vehicle (electric vehicle)
22 Power receiving coil 300 AC power supply

Claims (3)

  1.  所定平面内で渦巻き状に巻回された構造を有し、磁気的結合により相手方のコイルとの間で非接触で電力の授受を行うコイルと、
     前記コイルの内側端子と直列接続する第1のコンデンサと、
     前記コイルの外側端子と直列接続する第2のコンデンサと、を有し、
     前記第1のコンデンサの静電容量をCi、前記第2のコンデンサの静電容量をCo、前記コイルの内径をDi、前記コイルの外径をDoとしたときに、前記第1のコンデンサの静電容量と前記第2のコンデンサの静電容量との比が(1)式を満たす
     ことを特徴とする非接触給電装置。
    Figure JPOXMLDOC01-appb-M000001
    A coil having a structure wound in a spiral shape within a predetermined plane, and transferring power in a contactless manner with a counterpart coil by magnetic coupling;
    A first capacitor connected in series with an inner terminal of the coil;
    A second capacitor connected in series with the outer terminal of the coil,
    When the capacitance of the first capacitor is Ci, the capacitance of the second capacitor is Co, the inner diameter of the coil is Di, and the outer diameter of the coil is Do, the static capacity of the first capacitor is A non-contact power feeding device, wherein a ratio of a capacitance to a capacitance of the second capacitor satisfies the formula (1).
    Figure JPOXMLDOC01-appb-M000001
  2.  前記コイルは、前記相手方のコイルを搭載する電動車両に電力を供給する地上側ユニットに配置されており、電源から供給される電力によって電圧が印加されると、前記相手方のコイルとの間に磁気的な結合を生じて当該相手方のコイルに電力を供給することを特徴とする請求項1に記載された非接触給電装置。 The coil is disposed in a ground-side unit that supplies electric power to the electric vehicle on which the counterpart coil is mounted, and when a voltage is applied by the electric power supplied from a power source, the coil is magnetized between the counterpart coil. The non-contact power feeding apparatus according to claim 1, wherein electric power is supplied to the coil of the other party by generating a general coupling.
  3.  前記コイルは、電動車両に搭載されており、当該電動車両に電力を供給する地上側ユニットに配置される前記相手側コイルに電圧が印加されると当該相手側のコイルとの間に磁気的な結合を生じて電力が供給されることを特徴とする請求項1に記載された非接触給電装置。 The coil is mounted on the electric vehicle, and when a voltage is applied to the counterpart coil arranged in the ground side unit that supplies power to the electric vehicle, the coil is magnetically connected to the counterpart coil. The contactless power feeding device according to claim 1, wherein power is supplied by generating coupling.
PCT/JP2013/078845 2012-10-31 2013-10-24 Contactless power feeding device WO2014069331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012239753A JP2016007087A (en) 2012-10-31 2012-10-31 Contactless power supply device
JP2012-239753 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014069331A1 true WO2014069331A1 (en) 2014-05-08

Family

ID=50627240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078845 WO2014069331A1 (en) 2012-10-31 2013-10-24 Contactless power feeding device

Country Status (2)

Country Link
JP (1) JP2016007087A (en)
WO (1) WO2014069331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200403449A1 (en) * 2015-12-22 2020-12-24 Intel Corporation Uniform wireless charging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002268463A (en) * 2001-03-09 2002-09-18 Canon Inc Picture forming device and control method therefor
JP2009022126A (en) * 2007-07-13 2009-01-29 Seiko Epson Corp Power transmitter and electronic equipment
JP2011072074A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Noncontact charging system
JP2012115069A (en) * 2010-11-25 2012-06-14 Nec Tokin Corp Antenna, power transmission device, power reception device, and non-contact communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002268463A (en) * 2001-03-09 2002-09-18 Canon Inc Picture forming device and control method therefor
JP2009022126A (en) * 2007-07-13 2009-01-29 Seiko Epson Corp Power transmitter and electronic equipment
JP2011072074A (en) * 2009-09-24 2011-04-07 Panasonic Electric Works Co Ltd Noncontact charging system
JP2012115069A (en) * 2010-11-25 2012-06-14 Nec Tokin Corp Antenna, power transmission device, power reception device, and non-contact communication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200403449A1 (en) * 2015-12-22 2020-12-24 Intel Corporation Uniform wireless charging device

Also Published As

Publication number Publication date
JP2016007087A (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP6067211B2 (en) Non-contact power feeding device
JP6036995B2 (en) Contactless power supply system
US10202045B2 (en) Vehicle with shielded power receiving coil
JP5781882B2 (en) Power transmission device, vehicle, and power transmission system
JP4962621B2 (en) Non-contact power transmission device and vehicle equipped with non-contact power transmission device
JP5077340B2 (en) Non-contact power receiving apparatus and manufacturing method thereof
US9457676B2 (en) Contactless power transfer apparatus
US20130193749A1 (en) Vehicle and power transfer system
JP5924496B2 (en) Power transmission system
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
JP6358391B2 (en) Contactless power supply system
JP2013219210A (en) Non-contact power transmission device
US20160197492A1 (en) Contactless power transmission device
JP6075173B2 (en) Non-contact power feeding device
JP2013198260A (en) Power transmission system
JP2010073885A (en) Resonance coil and non-contact feeding system
WO2014069331A1 (en) Contactless power feeding device
JP6977654B2 (en) Wireless power receiving device and wireless power transmission system
JP2016106512A (en) Non-contact power feeding device
JP2011115017A (en) Radio power supply system and method for designing the same
WO2020122017A1 (en) Power receiving device
JP2018207670A (en) Transmission device of wireless power transmission system and wireless power transmission system
JP2014093320A (en) Power transmission system
JP2014093797A (en) Power transmission system
JP2014093321A (en) Power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP