WO2014067527A1 - Procédé de fabrication d'un objet en matériau composite allongé, comme un longeron de pale d'éolienne - Google Patents

Procédé de fabrication d'un objet en matériau composite allongé, comme un longeron de pale d'éolienne Download PDF

Info

Publication number
WO2014067527A1
WO2014067527A1 PCT/DK2013/050346 DK2013050346W WO2014067527A1 WO 2014067527 A1 WO2014067527 A1 WO 2014067527A1 DK 2013050346 W DK2013050346 W DK 2013050346W WO 2014067527 A1 WO2014067527 A1 WO 2014067527A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
composite material
tool
resin
winding
Prior art date
Application number
PCT/DK2013/050346
Other languages
English (en)
Inventor
Anton Bech
Original Assignee
Vestas Wind Systems A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1302581.2A external-priority patent/GB2510841A/en
Application filed by Vestas Wind Systems A/S filed Critical Vestas Wind Systems A/S
Publication of WO2014067527A1 publication Critical patent/WO2014067527A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/68Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels with rotatable winding feed member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for manufacturing an elongated composite material object, such as a wind turbine blade part, for example a wind turbine blade spar.
  • the method comprises providing a strip including a fibrous material for the composite material of the elongated composite material object, providing an elongated tool, such as a mandrel, and winding the strip around the tool.
  • the strip can comprise at least one layer in which all fibers are oriented in the same direction, which direction is different from a longitudinal direction of the strip.
  • the strip can be a biaxial strip comprising two layers of fibers, one of the layers having a fiber orientation of +45 degrees in relation to the longitudinal direction of the strip, another of the layers having a fiber orientation of -45 degrees in relation to the longitudinal direction of the strip.
  • Some wind turbine blade manufacturing processes include fabrication of a spar for the blade. This fabrication might include winding of a composite material, semipreg strip onto a mandrel.
  • the semipreg strip comprises a fibrous material, e.g. glass fiber or carbon fiber, which is partially impregnated with resin.
  • US8088470 describes an example of such a strip.
  • the semipreg strip can be a biax semipreg, i.e. a semipreg strip in which there are two layers of fibers which have a fiber orientation of +/- 45 degrees, respectively, in relation to the longitudinal direction of the strip.
  • the partial impregnation allows for trapped air to be bled or evacuated during the subsequent resin curing operation, wherein the resin moves so as to fully impregnate the wound strip. Even if such a process is advantageous, there is a desire to reduce the time and complexity of it. In particular, semipreg strips are complicated to manufacture.
  • the second strip is dry.
  • the impregnation of the fibrous material of the second strip with resin provided by the first strip is preferably done during a curing process of the resin.
  • the resin that impregnates the fibrous material of the second strip becomes in the elongated composite material object a matrix which is reinforced by the fibrous material of the second strip. This means that the matrix stabilizes and supports the fibrous material of the second strip in the elongated composite material object.
  • the first strip includes, in addition to the resin, a fibrous material.
  • the fibrous material of the first strip is used for reinforcing the composite material object to be manufactured.
  • the first strip could be a prepreg strip, i.e. a strip where the fibrous material is fully impregnated with resin.
  • the first strip could also be a semipreg strip.
  • the fiber arrangement of the strips can be of any kind suitable for the process undertaken, e.g. biax fiber strips or unidirectional fiber tows.
  • the amount of preimpregnated material can be halved, which provides cost saving.
  • the invention eliminates the need for semi-preg strips, which are relatively complicated to manufacture and to handle, and thus the invention reduces the complexity of manufacturing an elongated composite material object, including the process of winding.
  • the method comprises, after the step of winding, curing the resin provided in the first strip during the step of winding.
  • the resin is a thermoset, that is cured by raising the temperature of it, the resin obtains during an initial phase of the curing process, a relatively low viscosity, so that part of it flows from the first strip to the second strip to impregnate the latter.
  • the first strip includes, during the step of winding, more resin than needed to fully impregnate the fibrous material in the first strip.
  • the first strip includes an excess of resin which is sufficient to fully impregnate the fibrous material in the second strip, after the step of winding.
  • the first strip does not include, in addition to the resin, any fibrous material for reinforcing the composite material object to be manufactured.
  • the resin could be a thermoplastic resin, which is solid in room temperature, and therefore suitable for forming the first strip.
  • the first strip could include a substrate, for example a thin weave, which could carry the resin, e.g. a thermoset resin, during the step of winding.
  • the second strip comprises at least one layer in which all fibers are oriented in the same direction, which direction is different from a longitudinal direction of the second strip.
  • the first strip comprises at least one layer in which all fibers are oriented in the same direction, which direction is different from a longitudinal direction of the first strip.
  • the second strip is a biaxial strip, preferably dry, comprising two layers of fibers, one of the layers having a fiber orientation of +45 degrees in relation to a longitudinal direction of the second strip, another of the layers having a fiber orientation of -45 degrees in relation to the longitudinal direction of the second strip.
  • the fibers of the second strip are glass fibers.
  • the first strip is a biaxial strip, preferably, pre-impregnated, comprising two layers of fibers, one of the layers having a fiber orientation of +45 degrees in relation to a longitudinal direction of the first strip, another of the layers having a fiber orientation of -45 degrees in relation to the longitudinal direction of the first strip.
  • the fibers of the first strip are glass fibers.
  • the step of winding includes providing the first strip on a first roll and providing the second strip on a second roll, providing the first and second rolls on a holder which is rotatably mounted on a carrier, and rotating the holder relative to the carrier so as to move the rolls around the tool.
  • the holder and the carrier can then be parts of a winding machine.
  • the step of winding includes moving the carrier along the tool while performing said step of rotating the holder relative to the carrier.
  • the step of moving the carrier includes moving the carrier along the longitudinal direction of the tool.
  • the step of winding includes depositing the first and second strips so that they partially overlap each other on the tool or on the material provided on the tool.
  • the first and second strips are wound in the same direction on the tool, and are thereby arranged in an alternating sequence on the tool.
  • the spar can be wound with two rolls or spools on the same holder or rotor, and thereby, and the process time can be reduced compared to a case where only one roll is used.
  • first and second rolls and the carrier could be stationary, and tool could be rotating.
  • the step of winding simultaneously the first and a second strip around the tool could include moving the tool in its longitudinal direction past the rolls while simultaneously rotating the tool around its longitudinal axis so as to deposit the first and second strips onto the tool.
  • the object is also reached with an elongated composite material object in the form of a spar for a wind turbine blade, according to claim 14.
  • the object is also reached with a wind turbine blade according to claim 15.
  • fig. 1 shows a perspective view of a mandrel and parts of a winding machine winding strips onto the mandrel
  • fig. 2 shows a longitudinal cross-section of the mandrel.
  • Fig. 1 shows a winding process for a wind turbine blade spar section with two material spools herein also referred to as rolls 1 , 2.
  • a first of the rolls 1 includes a first strip 1 1 of prepreg, and a second of the rolls 2 includes a second strip 21 of dry fibrous material.
  • the first and second strips are biaxial strips, each comprising two layers of fibers, one of the layers having a fiber orientation of +45 degrees in relation to a longitudinal direction of the respective strip, another of the layers having a fiber orientation of -45 degrees in relation to the longitudinal direction of the respective strip.
  • the material of the strips 1 1 , 21 is deposited in a double spiral mode around a mandrel 3.
  • the rolls 1 , 2 are mounted on a holder 4, which in turn is rotatably mounted on a carrier (not shown).
  • the holder extends around the mandrel 3 and is rotated as indicated by the arrows A, and the carrier with the holder 4 is moved along the mandrel 3 as indicated by the arrow B.
  • the material 1 1 , 21 can be seen as positioned onto the mandrel 3.
  • the alternating order of prepreg 1 1 and dry glass 21 allows, during the subsequent curing process, entrapped air to be evacuated freely.
  • the material built onto the mandrel 3 will be similar to a semipreg. As a matter of fact, it will have improved breathability compared to a semipreg as the dry web is 100% free from resin.
  • the prepreg first strip 1 1 contains more resin than needed to fully impregnate it. More preferably, it contains an excess of resin which is sufficient to impregnate the dry second strip 21 fully during the curing process.
  • the winding with two spools 1 , 2 will, compared to winding with a single spool, with the same areal weight of the webs require the double advancement of the rotor in the spanwise direction, (parallel to the mandrel's longitudinal direction), to reach the same areal weight on the mandrel 3.
  • the off angle issue will not be profound. In cases where the increased advancement has issues, the web width can be smaller to counteract it.
  • the spools can be located opposite each other on the rotor (holder 4), but they do not have to be so. If they are opposite to each other (180° apart), they can be located in the same axial position and can perform variable pitch windings without adjustments. They can also be positioned closer to one another than 180°. Then they must be offset relative to another in their axial position. At variable pitch this offset will have to vary accordingly to the advancement of the winding, if equal stagger between the prepreg and dry fabrics is desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Composite Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un objet en matériau composite allongé, tel qu'une partie de pale d'éolienne, par exemple un longeron de pale d'éolienne. Le procédé comprend les étapes suivantes : - fournir une première bande contenant une résine pour le matériau composite de l'objet en matériau composite allongé, - fournir une seconde bande contenant un matériau fibreux pour le matériau composite de l'objet en matériau composite allongé, mais ne contenant pas de résine pour le matériau composite de l'objet en matériau composite allongé, - fournir un outil allongé, tel qu'un mandrin, - enrouler simultanément les première et seconde bandes autour de l'outil, de manière à déposer les première et seconde bandes sur l'outil ou sur un matériau prévu sur l'outil et - laisser, après l'étape d'enroulement, au moins une partie de la résine, fournie par la première bande, imprégner le matériau fibreux de la seconde bande.
PCT/DK2013/050346 2012-10-29 2013-10-29 Procédé de fabrication d'un objet en matériau composite allongé, comme un longeron de pale d'éolienne WO2014067527A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201261719590P 2012-10-29 2012-10-29
DKPA201270663 2012-10-29
DKPA201270663 2012-10-29
US61/719,590 2012-10-29
GB1302581.2 2013-02-14
GB1302581.2A GB2510841A (en) 2013-02-14 2013-02-14 A method for manufacturing an elongated composite material object, such as a wind turbine blade spar

Publications (1)

Publication Number Publication Date
WO2014067527A1 true WO2014067527A1 (fr) 2014-05-08

Family

ID=50626528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2013/050346 WO2014067527A1 (fr) 2012-10-29 2013-10-29 Procédé de fabrication d'un objet en matériau composite allongé, comme un longeron de pale d'éolienne

Country Status (1)

Country Link
WO (1) WO2014067527A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020131043A1 (fr) * 2018-12-19 2020-06-25 General Electric Company Pale de rotor articulée dotée d'une structure de support interne à orientation de fibre variable pour renforcement de broche

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2807966A1 (de) * 1978-02-24 1979-08-30 Stiebel Eltron Gmbh & Co Kg Verfahren zur herstellung eines glasfaserverstaerkten kunststoff-druckbehaelters und nach dem verfahren hergestellter druckbehaelter
US4273601A (en) * 1977-10-31 1981-06-16 Structural Composites Industries, Inc. Method for the production of elongated resin impregnated filament composite structures
US8088470B2 (en) * 2002-03-08 2012-01-03 Gurit (Uk) Limited Moulding material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273601A (en) * 1977-10-31 1981-06-16 Structural Composites Industries, Inc. Method for the production of elongated resin impregnated filament composite structures
DE2807966A1 (de) * 1978-02-24 1979-08-30 Stiebel Eltron Gmbh & Co Kg Verfahren zur herstellung eines glasfaserverstaerkten kunststoff-druckbehaelters und nach dem verfahren hergestellter druckbehaelter
US8088470B2 (en) * 2002-03-08 2012-01-03 Gurit (Uk) Limited Moulding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020131043A1 (fr) * 2018-12-19 2020-06-25 General Electric Company Pale de rotor articulée dotée d'une structure de support interne à orientation de fibre variable pour renforcement de broche
US11802543B2 (en) 2018-12-19 2023-10-31 General Electric Company Jointed rotor blade having internal support structure with varying fiber orientation for pin reinforcement

Similar Documents

Publication Publication Date Title
CN109641409B (zh) 由带有基底的预制元件制成的带状物及其生产方法
DK2314445T3 (en) A method of making a composite body and a device for making a composite body
JP5551411B2 (ja) ケースの製造方法、及びケース
KR101820217B1 (ko) 풍력 발전 시스템 로터 블레이드를 위한 반제품을 제조하기 위한 장치 및 방법 그리고 이에 의해 제조되는 로터 블레이드 및 풍력 발전 시스템
US9145277B2 (en) System and method of manufacturing composite core
JP2012016948A (ja) 複合構造物の構成部材を製造する方法
EP2262636B1 (fr) Procédé de fabrication d'un article composite stratifié par un procédé d'enroulement, appareil et produit associés
EP2772343B1 (fr) Procédé de fabrication d'un noyau composite
JP2014104975A (ja) マルチボックス翼スパーおよび外板
US20140077413A1 (en) Airfoil manufacturing system
GB2484350A (en) A method of making a hollow object comprising a flange portion
CN102615837A (zh) 与复合物铺覆有关的改进
EP2602082B1 (fr) Appareil et procédé de formation d'un composant creux
EP3069867B1 (fr) Appareils et procédés pour créer des structures composites de bande en couches
WO2014067527A1 (fr) Procédé de fabrication d'un objet en matériau composite allongé, comme un longeron de pale d'éolienne
EP2899396B1 (fr) Procédé de fabrication de pale d'éolienne
GB2510841A (en) A method for manufacturing an elongated composite material object, such as a wind turbine blade spar
CN104015346B (zh) 制造复合芯的系统和方法
CN111164034B (zh) 材料的退绕
US9724904B2 (en) Method and system for producing composite component
WO2017151603A1 (fr) Procédés de fabrication de préformes pour tubulures thermoplastiques renforcées par fibres ultra longues de grande efficacité
CA2844136C (fr) Systeme et procede de fabrication d'une ame composite
JP5852273B2 (ja) ファンケースの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13786156

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13786156

Country of ref document: EP

Kind code of ref document: A1