WO2014067283A1 - 一种检测网络故障的方法、节点及监控中心 - Google Patents

一种检测网络故障的方法、节点及监控中心 Download PDF

Info

Publication number
WO2014067283A1
WO2014067283A1 PCT/CN2013/075616 CN2013075616W WO2014067283A1 WO 2014067283 A1 WO2014067283 A1 WO 2014067283A1 CN 2013075616 W CN2013075616 W CN 2013075616W WO 2014067283 A1 WO2014067283 A1 WO 2014067283A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
voice quality
type
voice
parameter
Prior art date
Application number
PCT/CN2013/075616
Other languages
English (en)
French (fr)
Inventor
王乐临
杨闳博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13786143.1A priority Critical patent/EP2741439B1/en
Priority to US14/079,860 priority patent/US9419866B2/en
Publication of WO2014067283A1 publication Critical patent/WO2014067283A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5061Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the interaction between service providers and their network customers, e.g. customer relationship management
    • H04L41/5067Customer-centric QoS measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/508Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement
    • H04L41/5087Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement wherein the managed service relates to voice services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/006Networks other than PSTN/ISDN providing telephone service, e.g. Voice over Internet Protocol (VoIP), including next generation networks with a packet-switched transport layer
    • H04M7/0081Network operation, administration, maintenance, or provisioning
    • H04M7/0084Network monitoring; Error detection; Error recovery; Network testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/2236Quality of speech transmission monitoring

Definitions

  • the invention relates to a method for detecting network failure, a node and a monitoring center.
  • the application is submitted to the China Tujia Patent Office on November 1, 2012, and the application number is 201210430 708.1.
  • the invention name is "a method, node and method for detecting network failure”.
  • the present invention relates to the field of network communications, and in particular, to a method, a node, and a monitoring center for detecting a network fault. Background technique
  • the prior art provides a method for detecting a network fault, which may be: after a user complains, a specific test device is used to detect the network, and the test device includes a sending device and a receiving device, and the voice sample test sequence is sent to the network through the sending device.
  • the receiving device receives the degraded sequence corresponding to the voice sample test sequence from the network, compares the voice sample test sequence with the received degraded sequence to obtain a degree of information loss, and obtains MOS according to the obtained information loss degree (Mean Poinion Score, subjective opinion)
  • the average score is based on the MOS score to determine if the network has a network failure.
  • the prior art detects whether the network has failed after the user complains, so when the network has a network failure, the network failure occurring in the network cannot be detected in time.
  • the present invention provides a method, a node and a monitoring center for detecting network faults.
  • the technical solution is as follows:
  • a method for detecting a network fault comprising:
  • the obtaining, by the codec type and the voice quality parameter, the fault score corresponding to the node includes:
  • the obtaining, according to the codec type, the corresponding first baseline value includes:
  • the acquiring the damage value corresponding to the voice quality parameter includes:
  • the voice quality parameter into a first type parameter and a second type parameter, where the first type parameter includes a packet loss rate, a delay, an echo loss, an echo delay, a voice level, a noise level, and a voice clipping Proportional and/or murmur ratio, the second type of parameter includes a single pass identifier, a crosstalk identifier, and/or a discontinuous identifier; and obtaining the according to the correspondence between the first type of parameter and the stored parameter range and the damage value The damage value corresponding to the first type of parameter;
  • the obtaining, by the first baseline value, the damage value corresponding to the voice quantity parameter, the fault score corresponding to the node includes:
  • the barrier score determines whether a network fault occurs in the network between the source corresponding to the source identifier and the node, including:
  • the fault score corresponding to the node is less than the preset score threshold, it is determined that the network between the source corresponding to the source identifier and the node does not have a network fault
  • the fault score corresponding to the node is greater than or equal to the preset score threshold, it is determined that a network fault occurs between the source corresponding to the source identifier and the network between the nodes.
  • the method further includes: determining, if the network fault occurs, determining a voice of the node according to the source corresponding to the source identifier and the node Link
  • the network fault is located according to a fault score corresponding to the node included in the voice link.
  • the determining, by the fault score corresponding to the node that is included in the voice link, the fault of the network includes:
  • Determining where the network failure occurs is at a network segment between the two adjacent nodes.
  • the method further includes: if the network fault occurs, selecting, by using the voice quality parameter, a preset number of voice quality parameters that have the largest damage value;
  • the obtaining the weight of the selected voice quality parameter includes:
  • the calculated ratio is determined as the weight of the selected speech quality parameter.
  • a method for detecting a network fault comprising:
  • the node When the node receives the voice stream, obtaining the source identifier, the codec type, and the voice quality parameter from the voice stream;
  • the acquiring, by the codec type and the voice quality parameter, the fault score corresponding to the node includes:
  • the obtaining, according to the codec type, the first baseline value includes:
  • the acquiring the damage value corresponding to the voice quality parameter includes:
  • the voice quality parameter into a first type parameter and a second type parameter, where the first type parameter includes a packet loss rate, a delay, an echo loss, an echo delay, a voice level, a noise level, and a voice clipping Proportional and/or murmur ratio, the second type of parameter includes a single pass identifier, a crosstalk identifier, and/or a discontinuous identifier; and obtaining the according to the correspondence between the first type of parameter and the stored parameter range and the damage value The damage value corresponding to the first type of parameter;
  • the acquiring the fault score corresponding to the node according to the first baseline value and the damage value corresponding to the voice quality parameter includes:
  • the method further includes:
  • the obtaining the weight of the selected voice quality parameter includes:
  • the calculated ratio is determined as the weight of the selected speech quality parameter.
  • a third aspect is a monitoring center for detecting a network fault, where the monitoring center includes: a first receiving module, configured to: when a node receives a voice stream, receive a source identifier corresponding to the voice stream sent by the node, Decoding type and voice quality parameters;
  • a first acquiring module configured to acquire, according to the codec type and the voice quality parameter, a fault score corresponding to the node
  • a first detecting module configured to detect, according to the fault score corresponding to the node, whether a network fault occurs in a network between the source corresponding to the source identifier and the node.
  • the first acquiring module includes: a first acquiring unit, configured to acquire a corresponding first baseline value according to the codec type; Obtaining a damage value corresponding to the voice quality parameter;
  • a third acquiring unit configured to acquire, according to the first baseline value and the damage value corresponding to the voice quality parameter, a fault score corresponding to the node.
  • the first acquiring unit includes: a first acquiring subunit, configured to correspond to a codec type from a stored codec according to the codec type Obtain the corresponding bandwidth in the relationship;
  • a second acquiring sub-unit configured to acquire, according to the obtained bandwidth condition, a corresponding first baseline value from a correspondence between the stored bandwidth condition and the first baseline value.
  • the second acquiring unit includes: a first dividing subunit, configured to divide the voice quality parameter into a first type parameter and a second type parameter, where
  • the first type of parameters include packet loss rate, delay, echo loss, echo delay, speech level, noise level, speech clipping ratio, and/or noise ratio.
  • the second type of parameters include a single pass identifier, a string. Word identification and/or intermittent identification;
  • a third obtaining subunit configured to acquire, according to the first type of parameter and the corresponding relationship between the stored parameter range and the damage value, the damage value corresponding to the first type of parameter;
  • a fourth acquiring subunit configured to acquire, according to a specific value of the second type of parameter, a damage value corresponding to the second type of parameter.
  • the third acquiring unit includes: a first calculating subunit, configured to calculate a sum of damage values corresponding to the voice quality parameter; Calculating a difference between the first baseline value and a sum of damage values corresponding to the voice quality parameter, and determining the calculated difference as a second baseline value;
  • a fifth obtaining subunit configured to obtain a fault score corresponding to the node according to the second baseline value and by using a mapping formula.
  • the first detecting module includes: a first determining unit, configured to determine, if the fault score corresponding to the node is less than a preset score threshold, The network between the source corresponding to the source identifier and the node does not have a network fault; the second determining unit is configured to determine, if the fault score corresponding to the node is greater than or equal to the preset score threshold, A network failure occurs between the source corresponding to the source identifier and the network between the nodes.
  • the monitoring center further includes: a determining unit, configured to determine, according to the source identifier and the node, the source identifier and the node if the network fault occurs The voice link where the node is located;
  • a positioning unit configured to locate the network fault according to a fault score corresponding to the node included in the voice link.
  • the positioning unit includes: a sixth acquiring subunit, configured to acquire two adjacent nodes according to a fault score corresponding to the node included in the voice link The fault score corresponding to one of the two adjacent nodes is greater than or equal to a preset score threshold, and the fault score corresponding to the other node is smaller than the preset score threshold; the second determining subunit is configured to determine The network fault occurs at a network segment between the two adjacent nodes.
  • the monitoring center further includes: a first selecting unit, configured to: if the network fault occurs, select a preset with the largest damage value from the voice quality parameter a number of voice quality parameters;
  • a fourth acquiring unit configured to acquire a weight of the selected voice quality parameter.
  • the fourth acquiring unit includes: a second calculating subunit, configured to calculate a sum of damage values corresponding to the voice quality parameter; a third calculating subunit, configured to calculate a ratio between a damage value of the selected voice quality parameter and a sum of damage values corresponding to the voice quality parameter;
  • a third determining subunit configured to determine the calculated ratio as a weight of the selected voice quality parameter.
  • a node for detecting a network fault includes:
  • a second acquiring module configured to: when the node receives the voice stream, obtain a source identifier, a codec type, and a voice quality parameter from the voice stream;
  • a third acquiring module configured to acquire, according to the codec type and the voice quality parameter, a fault score corresponding to the node
  • a second detecting module configured to send the source identifier and the fault score corresponding to the node to the monitoring center, so that the monitoring center detects whether a network between the source corresponding to the source identifier and the node occurs Network failure.
  • the third acquiring module includes: a fifth acquiring unit, configured to acquire a corresponding first baseline value according to the codec type; Obtaining a damage value corresponding to the voice quantity parameter;
  • a seventh acquiring unit configured to acquire, according to the first baseline value and the damage value corresponding to the voice quality parameter, a fault score corresponding to the node.
  • the fifth obtaining unit includes: a seventh acquiring subunit, configured to correspond to a codec type from a stored codec according to the codec type Obtain the corresponding bandwidth in the relationship;
  • an eighth obtaining subunit configured to obtain a corresponding first baseline value from a correspondence between the stored bandwidth condition and the first baseline value according to the acquired bandwidth condition.
  • the sixth acquiring unit includes: a second dividing subunit, configured to divide the voice quality parameter into a first type parameter and a second type parameter, where
  • the first type of parameters include packet loss rate, delay, echo loss, echo delay, speech level, noise level, speech clipping ratio, and/or noise ratio.
  • the second type of parameters include a single pass identifier, a string. Word identification and/or intermittent identification;
  • a ninth obtaining sub-unit configured to acquire, according to the first type parameter and the stored relationship between the parameter range and the damage value, a damage value corresponding to the first type parameter
  • the seventh acquiring unit includes: a fourth calculating subunit, configured to calculate a sum of damage values corresponding to the voice quality parameter; and a fourth determining subunit, Calculating a difference between the first baseline value and a sum of damage values corresponding to the voice quality parameter, and determining the calculated difference as a second baseline value;
  • an eleventh acquiring subunit configured to obtain a fault score corresponding to the node according to the second baseline value and by using a mapping formula.
  • the node further includes: a second selecting unit, configured to select, by using the voice quality parameter, a preset number of voice quality parameters that have the largest damage value;
  • the first sending unit is configured to obtain a weight of the selected voice quality parameter, and send a weight of the selected voice quality parameter to the monitoring center.
  • the first sending unit includes: a fifth calculating subunit, configured to calculate a sum of damage values corresponding to the voice quality parameter; and a sixth calculating subunit, Calculating a ratio between a damage value of the selected voice quality parameter and a sum of damage values corresponding to the voice quality parameter;
  • a fifth determining subunit configured to determine the calculated ratio as a weight of the selected voice quality parameter.
  • a monitoring center for detecting a network fault includes a first memory and a first processor, configured to perform a method for detecting a network fault.
  • a node for detecting a network failure comprising a second memory and a second processor for performing a method of adjusting a network failure.
  • the node when the node receives the voice stream, the node acquires the source identifier, the codec type, and the voice quality parameter corresponding to the voice stream; the monitoring center acquires the fault corresponding to the node according to the codec type and the voice quality parameter.
  • the score according to the fault score corresponding to the node, detects whether a network fault occurs between the source and the node corresponding to the source identifier, and real-time detects the network fault, so that the network fault occurring in the network can be detected in time.
  • FIG. 1 is a flowchart of a method for detecting a network fault according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another method for detecting a network fault according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another method for detecting a network fault according to an embodiment of the present invention
  • 4 is a flowchart of another method for detecting a network fault according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a monitoring center for detecting a network fault according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a node for detecting a network fault according to an embodiment of the present invention
  • FIG. 7 is another schematic diagram of an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of another node for detecting a network fault according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for detecting a network fault, including: Step 101: When a node receives a voice stream, receiving a source identifier, a codec type, and a voice quality corresponding to the voice stream sent by the node Parameter
  • Step 102 Acquire a fault score corresponding to the node according to the codec type and the voice quality parameter.
  • Step 103 Detect whether a network fault occurs in the network between the source corresponding to the source identifier and the node according to the fault score corresponding to the node.
  • the node when the node receives the voice stream, the node acquires the source identifier, the codec type, and the voice quality parameter corresponding to the voice stream; the monitoring center acquires the fault score corresponding to the node according to the codec type and the voice quality parameter. According to the fault score corresponding to the node, it is detected whether the network between the source and the node corresponding to the source identifier is faulty, and the network fault is detected in real time, so that the network fault occurring in the network can be detected in time.
  • the embodiment of the present invention provides a method for detecting a network fault. Referring to FIG. 2, the method includes:
  • Step 201 The node receives a voice stream from the network, and obtains a source identifier, a codec type, and a voice quality parameter from the voice stream.
  • the voice quality parameter includes a Qos (Quality of Service) parameter and a source parameter.
  • Qos Quality of Service
  • the node receives the voice stream from the network, and obtains the source identifier, the Qos parameter, and the source parameter from the voice stream. If the acquired QoS parameter is not the packet loss rate and/or the delay, the obtained Qos parameter is converted. For packet loss rate and/or delay. If the number of acquired QoS parameters is 1, it is determined whether a obtained QoS parameter is a packet loss rate or a delay, and if not, a obtained QoS parameter is respectively converted into a packet loss rate or a delay, if The number of acquired QoS parameters is 2, and it is determined whether the obtained two QoS parameters are packet loss rate and delay respectively. If not, the obtained two QoS parameters are respectively converted into a packet loss rate and a delay.
  • the Qos parameters obtained by the nodes in different types of networks from the received voice streams may be different from each other; for example, when the node is in the wireless network, the Qos parameters obtained by the node from the received voice stream include a frame loss rate and / or frame error rate, the frame loss rate and / or frame error rate need to be converted to packet loss rate; when the node is in the IP (Internet Protocol) network, the node obtains the Qos from the received voice stream.
  • the parameters include the packet loss rate, and there is no need to convert the acquired Qos parameters.
  • the sending node sends a voice stream to the receiving node through a voice link, where the voice link includes a sending node, one or more network nodes, and a receiving node; the node in this step can receive the voice link. Any node of the voice stream.
  • the Qos parameter includes at least a packet loss rate, and may also include a delay; the source parameters include a voice level, a noise level, an echo loss, an echo delay, a speech clipping ratio, a noise ratio, a single pass identifier, and a crosstalk. At least one of the identifier and the intermittent identifier; wherein, the single-pass identifier is used to identify whether the voice stream has a single-pass, the cross-talk identifier is used to identify whether the voice stream is cross-talk, and the intermittent identifier is used to identify whether the voice stream occurs. Intermittent.
  • the node obtains the voice level and/or the noise level from the voice stream, which may be:
  • the node obtains the echo loss and/or the echo delay from the voice stream, which may be specifically: the node receives the voice stream and forwards the voice stream, and obtains a forwarding time for forwarding the voice stream; the node receives the echo signal of the voice stream, and obtains Receiving the receiving time of the echo signal, calculating a time difference between the receiving time and the forwarding time, determining the calculated time difference as an echo delay; and/or,
  • the voice stream is compared with the echo signal of the voice stream to obtain echo loss.
  • the speech frame is composed of sample points, and the sample points are used to represent the speech signal, and the sample values of each sample point are within the preset sample value range, and each sample point is performed according to the energy of the represented speech signal. Value, if the energy of the speech signal represented by a sample is large, the sample may take the maximum sample value within the preset sample value range.
  • a sample point whose sample value is the maximum sample value within the preset sample value range is obtained in the sample included in the speech frame, and the first number of the obtained sample points is counted, if If the first number is greater than the threshold of the preset sample number, the voice frame is determined to be a clipped speech frame. If the first number is less than or equal to the preset sample number threshold, it is determined that the voice frame is not Clipped speech frame.
  • the node obtains the proportion of the noise from the voice stream, which can be specifically:
  • the node obtains the single-pass identifier from the voice stream, which may be specifically:
  • the node monitors the voice link. If only one link of the voice link has a signal and the other link does not have any signal for a preset time, the voice stream occurrence in the voice link is determined.
  • the single-pass identifier is used to identify that the voice stream has a single pass. Otherwise, it is determined that the voice stream in the voice link does not have a single pass, and the single-pass identifier is set to identify that the voice stream does not have a single pass.
  • the node obtains the crosstalk identifier from the voice stream, which may be specifically:
  • the node determines the received voice stream. If the voice stream is a voice stream from the same source, it is determined that the voice stream does not have a crosstalk, and the crosstalk identifier is set to identify that the voice stream does not crosstalk; The voice stream is a voice stream from multiple sources, and it is determined that the voice stream is crosstalked, and the crosstalk identifier is set to identify the crosstalk of the voice stream.
  • the node obtains the intermittent identifier from the voice stream, which may be specifically:
  • the number of consecutive packets lost in the voice stream is compared with the number of consecutive consecutive packet drops. If the number of consecutive consecutive packets is greater than the threshold of the consecutive consecutive packets, It is determined that the voice stream is intermittent, and the intermittent identifier is set to identify that the voice stream is intermittent. Otherwise, it is determined that the voice stream is not interrupted, and the intermittent identifier is set to identify that the voice stream is not interrupted.
  • Step 202 The node sends a report message to the monitoring center, where the report message includes the source identifier and the edit Decoding type and voice quality parameters;
  • Each of the other nodes included in the voice link that receives the voice stream may acquire the source identifier, the codec type, and the voice quality parameter in the same manner as the node, and send the source identifier, the codec type, and the voice quality parameter. Send 4 messages to the monitoring center.
  • Step 203 The monitoring center receives the report message sent by the node, where the report message includes a source identifier, a codec type, and a voice quality parameter, and obtains a corresponding first baseline value according to the codec type. Specifically, the receiving includes the source identifier.
  • the report message of the codec type and the voice quality parameter is obtained according to the codec type, and the corresponding bandwidth condition is obtained from the corresponding relationship between the stored codec type and the bandwidth condition, and the stored bandwidth condition is compared according to the obtained bandwidth condition.
  • a corresponding first baseline value is obtained in the correspondence of the first baseline values.
  • the bandwidth situation includes narrowband, broadband and/or ultra-wideband.
  • Step 204 Obtain a damage value corresponding to each voice quality parameter according to each voice quality parameter.
  • each voice quality parameter is divided into a first type parameter and a second type parameter, where the first type parameter includes packet loss. Rate, delay, speech level, noise level, echo loss, echo delay, speech clipping ratio, and/or noise ratio; the second type of parameters include single pass identification, crosstalk identification, and/or intermittent identification;
  • the first type of parameters and the corresponding relationship between the stored parameter ranges and the damage values obtain the damage values corresponding to the first type of parameters; and the damage values corresponding to the second type of parameters are obtained.
  • the first type of the parameter includes the packet loss rate, and the damage value corresponding to the first type parameter is obtained according to the first type parameter and the corresponding relationship between the stored parameter range and the damage value, which may be specifically:
  • the packet loss rate range of the packet loss rate is determined, and the damage value corresponding to the packet loss rate is obtained from the corresponding relationship between the stored packet loss rate range and the damage value according to the determined packet loss rate range.
  • the first type of the parameter includes the time delay, and the damage value corresponding to the first type of parameter is obtained according to the first type of the parameter and the corresponding relationship between the stored parameter range and the damage value, which may be specifically:
  • Determining the delay range of the delay and obtaining the damage value corresponding to the delay from the corresponding relationship between the stored delay range and the damage value according to the determined delay range.
  • the damage value corresponding to the first type of parameter is obtained according to the first type of parameter and the corresponding relationship between the stored parameter range and the damage value, which may be specifically:
  • the range of the speech level at which the speech level is located is determined, and the damage value corresponding to the speech level is obtained from the correspondence between the stored speech level range and the damage value according to the determined speech level range.
  • the first type of the parameter includes the noise level, and the damage value corresponding to the first type of parameter is obtained according to the first type of the parameter and the corresponding relationship between the stored parameter range and the damage value, which may be specifically: A noise level range in which the noise level is located is determined, and a damage value corresponding to the noise level is obtained from a correspondence relationship between the stored noise level range and the damage value according to the determined noise level range.
  • the damage value corresponding to the first type of parameter is obtained according to the first type of the parameter and the corresponding relationship between the stored parameter range and the damage value, which may be specifically:
  • the echo loss range in which the echo loss is located is determined, and the damage value corresponding to the echo loss is obtained from the corresponding relationship between the stored echo loss range and the damage value according to the determined echo loss range.
  • the damage value corresponding to the first type of parameter is obtained according to the first type of the parameter and the corresponding relationship between the stored parameter range and the damage value, which may be specifically:
  • the echo delay range of the echo delay is determined, and the damage value corresponding to the echo delay is obtained from the corresponding relationship between the stored echo delay range and the damage value according to the determined echo delay range.
  • the damage value corresponding to the first type of parameter is obtained according to the first type of parameter and the corresponding relationship between the stored parameter range and the damage value, which may be specifically: determining a speech clipping The scale of the speech clipping ratio is obtained, and the damage value corresponding to the speech clipping ratio is obtained from the correspondence relationship between the stored speech clipping ratio range and the damage value according to the determined speech clipping ratio range.
  • the damage value corresponding to the first type of parameter is obtained according to the first type of parameter and the corresponding relationship between the stored parameter range and the damage value, which may be specifically:
  • the damage value corresponding to the second type of parameter is obtained, which may be specifically:
  • the preset first damage value is greater than the preset second damage value, and the preset second damage value may be 0 or 1 equal value.
  • the damage value corresponding to the second type of the parameter is obtained, which may be specifically:
  • the cross-talk identifier it is determined whether crosstalk occurs. If yes, the damage value corresponding to the cross-talk identifier is set to a preset third damage value; if not, the damage value corresponding to the cross-talk identifier is set to a preset fourth damage value.
  • the preset third damage value is greater than the preset fourth damage value, and the preset fourth damage value may be 0 or 1 equivalent. If the second type of the parameter includes the intermittent identifier, the damage value corresponding to the second type of parameter is obtained, which may be specifically:
  • the preset fifth damage value is greater than the preset sixth damage value, and the preset sixth damage value may be 0 or
  • Step 205 The monitoring center obtains a fault score corresponding to the node according to the first baseline value and the damage value corresponding to each voice quality parameter.
  • calculating a sum of damage values corresponding to each voice quality parameter calculating a difference between a first baseline value and a sum of damage values corresponding to each voice quantity parameter, and determining the calculated difference value as a second baseline value, Obtaining a fault score corresponding to the node according to the second baseline value and by using a mapping formula.
  • the failure score can be MOS score and the like.
  • the monitoring center can calculate the fault score corresponding to each other node in the voice link as the node.
  • Step 206 The monitoring center determines, according to the fault score, whether a network fault occurs in the network, and if yes, locates a location where the network fault occurs;
  • the fault score corresponding to the node is less than the preset score threshold, it is determined that the network does not have a network fault; if the fault score of the node is greater than or equal to the preset score threshold, it is determined that the network fault occurs in the network, and the network is located.
  • the location where the network fault occurs is the network segment between the source corresponding to the source identifier and the node.
  • the monitoring center determines the voice link where the node is located according to the source and the node corresponding to the source identifier, and obtains two adjacent nodes from the node included in the voice link according to the fault score corresponding to the node included in the voice link.
  • the fault score of one of the two adjacent nodes is greater than or equal to a preset score threshold, and the fault score of the other node is less than a preset score threshold, and the location where the network fault occurs is determined to be the two adjacent The network segment between nodes.
  • the fault score corresponding to the node may be directly displayed.
  • Step 207 The monitoring center selects a preset number of voice quality parameters with the largest damage value from each voice quality parameter, and obtains weights of the selected voice quality parameters.
  • the monitoring center selects a preset number of words with the largest damage value from each voice quality parameter. a sound quality parameter, calculating a sum of damage values corresponding to each voice quality parameter, calculating a ratio between a damage value of the selected voice quality parameter and a sum of damage values corresponding to each voice quality parameter, and determining the calculated ratio as the selected voice The weight of the quality parameter.
  • Step 208 The monitoring center displays the fault score corresponding to the node, the selected voice quality parameter, and the weight of the selected voice quality parameter.
  • the node when the node receives the voice stream, it receives the source identifier, the codec type, and the voice quality parameter corresponding to the voice stream sent by the node; and obtains the fault score corresponding to the node according to the codec type and the voice quality parameter. According to the fault score corresponding to the node, it is detected whether a network fault occurs between the source corresponding to the source identifier and the network between the nodes. In this embodiment, the node obtains the source identifier, the codec type, and the voice quality parameter in the voice stream, and sends the report message including the source identifier, the codec type, and the voice quality parameter, while receiving the voice stream.
  • an embodiment of the present invention provides a method for detecting a network fault, including: Step 301: When a node receives a voice stream, obtain a source identifier, a codec type, and a voice quality parameter from the voice stream.
  • Step 302 Acquire a fault score corresponding to the node according to the codec type and the voice quality parameter.
  • the node when the node receives the voice stream, the node acquires the source identifier, the codec type, and the voice quality parameter corresponding to the voice stream, and obtains the fault score corresponding to the node according to the codec type and the voice quality parameter;
  • the center detects whether a network fault occurs in the network between the source and the node corresponding to the source identifier according to the fault score corresponding to the node, and implements real-time detection of the network fault, so that the network fault occurring in the network can be detected in time.
  • the embodiment of the present invention provides another method for detecting network faults. Method, referring to Figure 4, the method includes:
  • Step 401 The node receives a voice stream from the network, and obtains a source identifier, a codec type, and a voice quality parameter from the voice stream.
  • the specific process of the node obtaining the source identifier, the codec type, and the voice quality parameter is the same as the specific process of the node obtaining the source identifier, the codec type, and the voice quality parameter in step 201, and is not described in detail herein. Refer to step 201.
  • Step 402 The node acquires a corresponding first baseline value according to the codec type.
  • the corresponding bandwidth situation is obtained from the corresponding relationship between the stored codec type and the bandwidth condition, and the corresponding relationship between the stored bandwidth condition and the first baseline value is obtained according to the obtained bandwidth condition.
  • Corresponding first baseline value is obtained according to the codec type.
  • the bandwidth situation includes narrowband, broadband and/or ultra-wideband.
  • Step 403 The node acquires a damage value corresponding to each voice quality parameter according to each voice quality parameter.
  • the specific process for the node to obtain the damage value corresponding to each voice quality parameter is the same as the specific process for the monitoring center to obtain the damage value corresponding to each voice quality parameter, and is not described in detail herein. For details, refer to step 204.
  • Step 404 The node obtains a fault score corresponding to itself according to the first baseline value and the damage value corresponding to each voice quality parameter.
  • calculating a sum of damage values corresponding to each voice quality parameter calculating a difference between a first baseline value and a sum of damage values corresponding to each voice quality parameter, and determining the calculated difference as a second baseline value, according to The second baseline value is obtained by the mapping formula to obtain the fault score corresponding to the node.
  • the failure score can be MOS score and the like.
  • All the nodes in the voice link can obtain the corresponding fault scores as the node.
  • Step 405 The node selects a preset number of voice quality parameters with the largest damage value from each voice quality parameter, and obtains weights of the selected voice quality parameters.
  • the node selects a preset number of voice quality parameters with the largest damage value from each voice quality parameter, calculates a sum of damage values corresponding to each voice quality parameter, and calculates a damage value of the selected voice quality parameter and each voice.
  • the ratio between the sum of the damage values corresponding to the quality parameter, and the calculated ratio is determined as the weight of the selected speech quality parameter.
  • Step 406 The node sends a report message to the monitoring center, where the report message includes a source identifier, and the The fault score corresponding to the node and the weight of the selected voice quality parameter;
  • Each node that receives the voice stream included in the voice link may send a report message including a source identifier, a fault score corresponding to the node, and a weight of the selected voice quality parameter to the monitoring center.
  • Step 407 The monitoring center receives the report message, where the report message includes a source identifier, a fault score corresponding to the node, and a weight of the selected voice quality parameter, and determines whether the network fault occurs according to the fault score corresponding to the node, and if yes, Positioning the location where the network failure occurred;
  • determining whether a network fault occurs in the network and the location where the network fault occurs is specific
  • Step 408 The monitoring center displays the fault score corresponding to the node, the selected voice quality parameter, and the weight of the selected voice quality parameter.
  • the fault score corresponding to the node may be directly displayed.
  • the source identifier, the codec type, and the voice quality parameter are obtained from the voice stream received by the node; the fault score corresponding to the node is obtained according to the codec type and the voice quality parameter; and the source identifier and the node corresponding to the node are sent.
  • the fault score is given to the monitoring center, so that the controlled center detects whether a network fault occurs in the network between the source and the node corresponding to the source identifier.
  • the node obtains the source identifier, the codec type, and the voice quality parameter in the voice stream, and obtains the fault score corresponding to the node according to the codec type and the voice quality parameter.
  • Selecting a voice quality parameter and a weight of the selected voice quality parameter and sending a report message including a fault score corresponding to the node, a selected voice quality parameter, and a weight of the selected voice quality parameter to the monitoring center, and the monitoring center according to the fault score corresponding to the node Detecting network faults in the network, real-time detection of network faults, and timely detection of network faults occurring in the network. Further, according to the fault score corresponding to each node in the network, the specific location where the network fault occurs may be located; and the cause of the network fault may be determined according to the selected voice quality parameter and the weight of the selected voice quality parameter. Referring to FIG.
  • an embodiment of the present invention provides a monitoring center for detecting a network fault, including: a first receiving module 501, configured to: when a node receives a voice stream, receive a source identifier corresponding to the voice sent by the node, Decoding type and voice quality parameters;
  • the first obtaining module 502 is configured to: according to the codec type received by the first receiving module 501, The voice quality parameter obtains a fault score corresponding to the node;
  • the first detecting module 503 is configured to detect, according to the fault score corresponding to the node acquired by the first acquiring module 502, whether a network fault occurs between the source corresponding to the source identifier and the network between the nodes.
  • the first obtaining module 502 includes:
  • a first acquiring unit configured to acquire a corresponding first baseline value according to the codec type
  • a second acquiring unit configured to acquire, according to the voice quality parameter, a damage value corresponding to the voice quality parameter
  • a third acquiring unit configured to acquire a fault score corresponding to the node according to the first baseline value acquired by the first acquiring unit and the damage value corresponding to the voice quality parameter acquired by the second acquiring unit.
  • the first obtaining unit includes:
  • a first acquiring subunit configured to obtain, according to the codec type, a corresponding bandwidth condition from a correspondence between the stored codec type and the bandwidth condition;
  • a second acquiring sub-unit configured to obtain a corresponding first baseline value from a correspondence between the stored bandwidth condition and the first baseline value according to the bandwidth condition acquired by the first acquiring sub-unit.
  • the second obtaining unit includes:
  • a first dividing subunit configured to divide the voice quality parameter into a first type parameter and a second type parameter, where the first type parameter includes a packet loss rate, a delay, an echo loss, an echo delay, a voice level, and a noise Flat, speech clipping ratio and/or noise ratio, the second type of parameters including single pass identification, crosstalk identification and/or intermittent identification;
  • a third obtaining sub-unit configured to obtain a damage value corresponding to the first type of parameter according to the first type of parameter divided by the first divided subunit and the corresponding relationship between the stored parameter range and the damage value;
  • a fourth acquiring subunit configured to obtain a damage value corresponding to the second type of parameter according to the specific value of the second type of parameter divided by the second divided subunit.
  • the third obtaining unit includes:
  • a first calculating subunit configured to calculate a sum of damage values corresponding to the voice quality parameter
  • a first determining subunit configured to calculate a sum of damage values corresponding to the first baseline value and the voice quality parameter calculated by the first calculating subunit The difference between the two is determined as a second baseline value
  • the fifth obtaining subunit is configured to obtain a fault score corresponding to the node according to the second baseline value determined by the first determining subunit and by using a mapping formula.
  • the first detecting module 503 includes:
  • a first determining unit configured to: if the fault score corresponding to the node is less than a preset score threshold, A network failure occurs in the network between the source corresponding to the source identifier and the node;
  • the second determining unit is configured to determine, if the first determining unit determines that the fault score corresponding to the node is greater than or equal to the preset score threshold, determine that the network corresponding to the source identifier and the network in the node are faulty.
  • the monitoring center also includes:
  • a determining unit configured to determine, according to the source corresponding to the source identifier and the node, a voice link where the node is located if a network failure occurs;
  • a positioning unit configured to locate a network fault according to a fault score corresponding to the node included in the voice link determined by the determining unit.
  • the positioning unit includes:
  • a sixth obtaining sub-unit configured to acquire two adjacent nodes according to a fault score corresponding to the node included in the voice link, where a fault score corresponding to one of the two adjacent nodes is greater than or equal to a preset score Threshold, the fault score corresponding to another node is less than the preset score threshold;
  • a second determining subunit configured to determine a network segment between the two adjacent nodes acquired by the sixth acquiring subunit at a location where the network fault occurs.
  • the monitoring center further includes:
  • a first selecting unit configured to: if a network fault occurs, select a preset number of voice quality parameters with the largest damage value from the voice quality parameter;
  • the fourth obtaining unit includes:
  • a second calculation subunit configured to calculate a sum of damage values corresponding to the voice quality parameter
  • a third calculation subunit configured to calculate a damage value of the selected voice quality parameter corresponding to the voice quality parameter calculated by the second calculation subunit The ratio between the sum of the damage values
  • a third determining subunit configured to determine a ratio calculated by the third calculating subunit as a weight of the selected speech quality parameter.
  • the node when the node receives the voice stream, the node acquires the source identifier, the codec type, and the voice quality parameter corresponding to the voice stream; the monitoring center acquires the node corresponding according to the codec type and the voice quality parameter.
  • the fault score according to the fault score corresponding to the node, detects whether a network fault occurs between the source and the node corresponding to the source identifier, realizing real-time detection of the network fault, so that the network appearing in the network can be detected in time malfunction. Further, according to the fault score corresponding to each node in the network, the specific location where the network fault occurs may be located; according to the selected voice The weight of the quality parameters and the selected voice quality parameters can determine the cause of the network failure.
  • an embodiment of the present invention improves a node for detecting a network fault, and includes: a second obtaining module 601, configured to: when a node receives a voice stream, obtain a source identifier, a codec type, and a voice from the voice stream.
  • Quality parameter configured to: when a node receives a voice stream, obtain a source identifier, a codec type, and a voice from the voice stream.
  • the third obtaining module 602 is configured to obtain, according to the codec type acquired by the second obtaining module 601 and the voice quality parameter, a fault score corresponding to the node;
  • the second detecting module 603 is configured to send the source identifier and the fault score corresponding to the node acquired by the third obtaining module 602 to the monitoring center, so that the monitoring center detects the source between the source corresponding to the source identifier and the node. Whether the network has a network failure.
  • the third obtaining module 602 includes:
  • a fifth acquiring unit configured to acquire a corresponding first baseline value according to the codec type
  • a sixth acquiring unit configured to acquire a damage value corresponding to the voice quality parameter
  • a seventh acquiring unit configured to acquire a fault score corresponding to the node according to the first baseline value acquired by the fifth acquiring unit and the damage value corresponding to the voice quality parameter acquired by the sixth acquiring unit.
  • the fifth obtaining unit includes:
  • a seventh acquiring subunit configured to obtain, according to the codec type, a corresponding bandwidth condition from a correspondence between the stored codec type and the bandwidth condition;
  • the eighth obtaining subunit is configured to obtain a corresponding first baseline value from a correspondence between the stored bandwidth condition and the first baseline value according to the bandwidth condition acquired by the seventh acquiring subunit.
  • the sixth obtaining unit includes:
  • a second dividing subunit configured to divide the voice quality parameter into a first type parameter and a second type parameter, where the first type parameter includes a packet loss rate, a delay, an echo loss, an echo delay, a voice level, and a noise Flat, speech clipping ratio and/or noise ratio, the second type of parameters including single pass identification, crosstalk identification and/or intermittent identification;
  • a ninth obtaining sub-unit configured to obtain a damage value corresponding to the first type of parameter according to the first type parameter of the second divided sub-unit and the corresponding relationship between the stored parameter range and the damage value;
  • a tenth obtaining subunit configured to obtain a damage value corresponding to the second type of parameter according to the specific value of the second type of parameter divided by the second divided subunit.
  • the seventh obtaining unit includes:
  • the node further includes:
  • a second selecting unit configured to select, from the voice quality parameter, a preset number of voice quality parameters with the largest damage value
  • the first sending unit is configured to obtain a weight of the voice quality parameter selected by the second selecting unit, and send a weight of the selected voice quality parameter to the monitoring center.
  • the first sending unit includes:
  • a fifth calculating subunit configured to calculate a sum of damage values corresponding to the voice quality parameter
  • a sixth calculating subunit configured to calculate a damage value of the selected voice quality parameter corresponding to the voice quality parameter calculated by the fifth calculating subunit The ratio between the sum of the damage values
  • a fifth determining subunit configured to determine a ratio calculated by the sixth calculating subunit as a weight of the selected speech quality parameter.
  • the source identifier, the codec type, and the voice quality parameter are obtained from the voice stream received by the node; the fault score corresponding to the node is obtained according to the codec type and the voice quality parameter, and the source identifier and the node are sent.
  • the corresponding fault score is given to the monitoring center, so that the monitoring center detects whether the network between the source and the node corresponding to the source identifier has a network fault, realizing the real-time detection of the network fault, thereby being able to detect the network fault occurring in the network in time. .
  • an embodiment of the present invention provides a monitoring center for detecting a network fault, including: a first memory 701 and a first processor 702, configured to perform the following method for detecting a network fault: when a node receives a voice stream, receiving a source identifier, a codec type, and a voice quality parameter corresponding to the voice stream sent by the node;
  • the acquiring the damage value corresponding to the voice quality parameter includes:
  • the voice quality parameter into a first type parameter and a second type parameter, where the first type parameter includes a packet loss rate, a delay, an echo loss, an echo delay, a voice level, a noise level, and a voice clipping Proportional and/or murmur ratio, the second type of parameter includes a single pass identifier, a crosstalk identifier, and/or a discontinuous identifier; and obtaining the according to the correspondence between the first type of parameter and the stored parameter range and the damage value The damage value corresponding to the first type of parameter;
  • the fault score corresponding to the node is less than the preset score threshold, it is determined that the network between the source corresponding to the source identifier and the node does not have a network fault
  • the fault score corresponding to the node is greater than or equal to the preset score threshold, it is determined that a network fault occurs between the source corresponding to the source identifier and the network between the nodes.
  • the method further includes:
  • the network fault is located according to a fault score corresponding to the node included in the voice link.
  • the locating the network fault according to the fault score corresponding to the node included in the voice link includes:
  • Determining where the network failure occurs is at a network segment between the two adjacent nodes.
  • the method further includes:
  • the obtaining the weight of the selected voice quality parameter includes:
  • an embodiment of the present invention provides a node for detecting a network fault, including: a second memory 801 and a second processor 802, configured to perform the following method for detecting a network fault: when a node receives a voice stream, Obtaining a source identifier, a codec type, and a voice quality parameter in the voice stream;
  • the acquiring the damage value corresponding to the voice quality parameter includes:
  • the voice quality parameter into a first type parameter and a second type parameter, where the first type parameter includes a packet loss rate, a delay, an echo loss, an echo delay, a voice level, a noise level, and a voice clipping Proportional and/or murmur ratio, the second type of parameter includes a single pass identifier, a crosstalk identifier, and/or a discontinuous identifier; and obtaining the according to the correspondence between the first type of parameter and the stored parameter range and the damage value The damage value corresponding to the first type of parameter;
  • the method further includes:
  • the obtaining the weight of the selected voice quality parameter includes:
  • the calculated ratio is determined as the weight of the selected speech quality parameter.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc., which are within the spirit and scope of the present invention, should be included in the protection of the present invention. Within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Telephonic Communication Services (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种检测网络故障的方法、节点及监控中心,属于网络通信领域。所述方法包括:当节点接收语音流时,接收所述节点发送的所述语音流对应的信源标识、编解码类型和语音质量参数;根据所述编解码类型和所述语音质量参数获取所述节点对应的故障分数;根据所述节点对应的故障分数检测所述信源标识对应的信源与所述节点之间的网络是否发生网络故障。所述监控中心包括:第一接收模块、第一获取模块和第一检测模块;所述节点包括:第二获取模块、第三获取模块和第二检测模块。本发明能够及时检测网络中发生的网络故障。

Description

说 明 书 一种检测网络故障的方法、 节点及监控中心 本申请要求于 2012年 11月 1 日提交中国图家专利局、申请号为 201210430 708.1、发明名称为"一种检测网络故障的方法、 节点及监控中心"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及网络通信领域, 特别涉及一种检测网络故障的方法、 节点及监 控中心。 背景技术
随着通讯技术的普遍应用, 运营商越来越关心终端用户的感知和体验。 在 语音业务中, 如何保证良好的语音通话质量是各设备厂商和运营商都十分重视 的一个问题, 这就需要对网络故障进行检测。
现有技术提供了一种检测网络故障的方法, 可以为: 在用户投诉后采用特 定的测试设备对网络进行检测, 测试设备包括发送设备和接收设备, 通过发送 设备向网络发送语音样本测试序列 , 通过接收设备从网络中接收该语音样本测 试序列对应的降级序列, 将该语音样本测试序列与接收的降级序列进行对比得 到信息损耗程度,根据得到的信息损耗程度获取 MOS ( Mean Poinion Score, 主 观意见平均分) 分, 根据该 MOS分确定网络是否发生网络故障。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问题: 现有技术在用户投诉后才检测网络是否发生故障, 所以当网络出现网络故 障时, 无法及时检测网络中出现的网络故障。 发明内容
为了能够及时检测网络中的网络故障, 本发明提供了一种检测网络故障的 方法、 节点及监控中心。 所述技术方案如下:
第一方面, 一种检测网络故障的方法, 所述方法包括:
当节点接收语音流时, 接收所述节点发送的所述语音流对应的信源标识、 编解码类型和语音质量参数;
根据所述编解码类型和所述语音质量参数获取所述节点对应的故障分数; 根据所述节点对应的故障分数检测所述信源标识对应的信源与所述节点 之间的网络是否发生网络故障。
在上述第一方面的第一种可能的实现方式中, 所述才艮据所述编解码类型和 所述语音质量参数获取所述节点对应的故障分数, 包括:
根据所述编解码类型获取对应的第一基线值;
获取所述语音质量参数对应的损伤值;
根据所述第一基线值和所述语音质量参数对应的损伤值获取所述节点对 应的故障分数。
在上述第一方面的第二种可能的实现方式中, 所述才艮据所述编解码类型获 取对应的第一基线值, 包括:
根据所述编解码类型, 从已存储的编解码类型与带宽情况的对应关系中获 取对应的带宽情况;
根据所述获取的带宽情况, 从已存储的带宽情况与第一基线值的对应关系 中获取对应的第一基线值。
在上述第一方面的第三种可能的实现方式中, 所述获取所述语音质量参数 对应的损伤值, 包括:
将所述语音质量参数划分为第一类参数和第二类参数, 所述第一类参数包 括丢包率、 时延、 回声损耗、 回声时延、 语音电平、 噪声电平、 语音削波比例 和 /或杂音比例, 所述第二类参数包括单通标识、 串话标识和 /或断续标识; 根据所述第一类参数和已存储的参数范围与损伤值的对应关系获取所述 第一类参数对应的损伤值;
根据所述第二类参数的具体取值获取所述第二类参数对应的损伤值。 在上述第一方面的第四种可能的实现方式中, 所述根据所述第一基线值和 所述语音廣量参数对应的损伤值获取所述节点对应的故障分数, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述第一基线值与所述语音质量参数对应的损伤值总和之间的差值, 将所述计算的差值确定为第二基线值;
根据所述第二基线值并通过映射公式, 获取所述节点对应的故障分数。 在上述第一方面的第五种可能的实现方式中, 所述才艮据所述节点对应的故 障分数确定所述信源标识对应的信源与所述节点之间的网络是否发生网络故 障, 包括:
如果所述节点对应的故障分数小于预设分数阈值, 则判断出所述信源标识 对应的信源与所述节点之间的网络未发生网络故障;
如果所述节点对应的故障分数大于或等于所述预设分数阈值, 则判断出所 述信源标识对应的信源与所述节点之间的网络发生网络故障。
在上述第一方面的第六种可能的实现方式中, 所述方法还包括: 如果发生所述网络故障, 则根据所述信源标识对应的信源和所述节点确定 所述节点所在的语音链路;
根据所述语音链路包括的节点对应的故障分数对所述网络故障进行定位。 在上述第一方面的第七种可能的实现方式中, 所述根据所述语音链路包括 的节点对应的故障分数对所述网络故障进行定位, 包括:
根据所述语音链路包括的节点对应的故障分数, 获取两个相邻的节点, 所 述两个相邻的节点中的一个节点对应的故障分数大于或等于预设分数阈值, 另 一个节点对应的故障分数小于所述预设分数阈值;
确定所述网络故障发生的位置在所述两个相邻的节点之间的网段。
在上述第一方面的第八种可能的实现方式中, 所述方法还包括: 如果发生所述网络故障, 从所述语音质量参数中选择损伤值最大的预设个 数个语音质量参数;
获取所述选择的语音质量参数的权重。
在上述第一方面的第九种可能的实现方式中, 所述获取所述选择的语音质 量参数的权重, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述选择的语音质量参数的损伤值与所述语音质量参数对应的损伤 值总和之间的比值;
将所述计算的比值确定为所述选择的语音质量参数的权重。
第二方面, 一种检测网络故障的方法, 所述方法包括:
当节点接收语音流时, 从所述语音流中获取信源标识、 编解码类型和语音 质量参数;
根据所述编解码类型和所述语音质量参数获取所述节点对应的故障分数; 发送所述信源标识和所述节点对应的故障分数给监控中心,使所述监控中 心检测所述信源标识对应的信源与所述节点之间的网络是否发生网络故障。 在上述第二方面的第一种可能的实现方式中, 所述根据所述编解码类型和 所述语音质量参数获取所述节点对应的故障分数, 包括:
一基线值;
Figure imgf000005_0001
根据所述第一基线值和所述语音质量参数对应的损伤值获取所述节点对 应的故障分数。
在上述第二方面的第二种可能的实现方式中, 所述^^据所述编解码类型获 取对应第一基线值, 包括:
根据所述编解码类型, 从已存储的编解码类型与带宽情况的对应关系中获 取对应的带宽情况;
根据所述获取的带宽情况, 从已存储的带宽情况与第一基线值的对应关系 中获取对应的第一基线值。
在上述第二方面的第三种可能的实现方式中, 所述获取所述语音质量参数 对应的损伤值, 包括:
将所述语音质量参数划分为第一类参数和第二类参数, 所述第一类参数包 括丟包率、 时延、 回声损耗、 回声时延、 语音电平、 噪声电平、 语音削波比例 和 /或杂音比例, 所述第二类参数包括单通标识、 串话标识和 /或断续标识; 根据所述第一类参数和已存储的参数范围与损伤值的对应关系获取所述 第一类参数对应的损伤值;
根据所述第二类参数的具体取值获取所述第二类参数对应的损伤值。 在上述第二方面的第四种可能的实现方式中, 所述根据所述第一基线值和 所述语音质量参数对应的损伤值获取所述节点对应的故障分数, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述第一基线值与所述语音质量参数对应的损伤值总和之间的差值, 将所述计算的差值确定为第二基线值;
根据所述第二基线值并通过映射公式, 获取所述节点对应的故障分数。 在上述第二方面的第五种可能的实现方式中, 所述获取所述语音质量参数 对应的损伤值之后, 还包括:
从所述语音质量参数中选择损伤值最大的预设个数个语音质量参数; 获取所述选择的语音质量参数的权重,发送所述选择的语音质量参数的权 重给所述监控中心。
在上述第二方面的第六种可能的实现方式中, 所述获取所述选择的语音质 量参数的权重, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述选择的语音质量参数的损伤值与所述语音质量参数对应的损伤 值总和之间的比值;
将所述计算的比值确定为所述选择的语音质量参数的权重。
第三方面, 一种检测网络故障的监控中心, 所述监控中心包括: 第一接收模块, 用于当节点接收语音流时, 接收所述节点发送的所述语音 流对应的信源标识、 编解码类型和语音质量参数;
第一获取模块, 用于根据所述编解码类型和所述语音质量参数获取所述节 点对应的故障分数;
第一检测模块, 用于根据所述节点对应的故障分数检测所述信源标识对应 的信源与所述节点之间的网络是否发生网络故障。
在上述第三方面的第一种可能的实现方式中, 所述第一获取模块包括: 第一获取单元, 用于根据所述编解码类型获取对应的第一基线值; 第二获取单元, 用于获取所述语音质量参数对应的损伤值;
第三获取单元, 用于根据所述第一基线值和所述语音质量参数对应的损伤 值获取所述节点对应的故障分数。
在上述第三方面的第二种可能的实现方式中, 所述第一获取单元包括: 第一获取子单元, 用于根据所述编解码类型, 从已存储的编解码类型与带 宽情况的对应关系中获取对应的带宽情况;
第二获取子单元, 用于根据所述获取的带宽情况, 从已存储的带宽情况与 第一基线值的对应关系中获取对应的第一基线值。
在上述第三方面的第三种可能的实现方式中, 所述第二获取单元包括: 第一划分子单元, 用于将所述语音质量参数划分为第一类参数和第二类参 数, 所述第一类参数包括丢包率、 时延、 回声损耗、 回声时延、 语音电平、 噪 声电平、 语音削波比例和 /或杂音比例, 所述第二类参数包括单通标识、 串话标 识和 /或断续标识;
第三获取子单元, 用于根据所述第一类参数和已存储的参数范围与损伤值 的对应关系获取所述第一类参数对应的损伤值; 第四获取子单元, 用于根据所述第二类参数的具体取值获取所述第二类参 数对应的损伤值。
在上述第三方面的第四种可能的实现方式中, 所述第三获取单元包括: 第一计算子单元, 用于计算所述语音质量参数对应的损伤值总和; 第一确定子单元, 用于计算所述第一基线值与所述语音质量参数对应的损 伤值总和之间的差值, 将所述计算的差值确定为第二基线值;
第五获取子单元, 用于根据所述第二基线值并通过映射公式, 获取所述节 点对应的故障分数。
在上述第三方面的第五种可能的实现方式中, 所述第一检测模块包括: 第一判断单元, 用于如果所述节点对应的故障分数小于预设分数阈值, 则 判断出所述信源标识对应的信源与所述节点之间的网络未发生网络故障; 第二判断单元, 用于如果所述节点对应的故障分数大于或等于所述预设分 数阈值, 则判断出所述信源标识对应的信源与所述节点之间的网络发生网络故 障。
在上述第三方面的第六种可能的实现方式中, 所述监控中心还包括: 确定单元, 用于如果发生所述网络故障, 则根据所述信源标识对应的信源 和所述节点确定所述节点所在的语音链路;
定位单元, 用于根据所述语音链路包括的节点对应的故障分数对所述网络 故障进行定位。
在上述第三方面的第七种可能的实现方式中, 所述定位单元包括: 第六获取子单元, 用于根据所述语音链路包括的节点对应的故障分数, 获 取两个相邻的节点, 所述两个相邻的节点中的一个节点对应的故障分数大于或 等于预设分数阈值, 另一个节点对应的故障分数小于所述预设分数阈值; 第二确定子单元, 用于确定所述网络故障发生的位置在所述两个相邻的节 点之间的网段。
在上述第三方面的第八种可能的实现方式中, 所述监控中心还包括: 第一选择单元, 用于如果发生所述网络故障, 从所述语音质量参数中选择 损伤值最大的预设个数个语音质量参数;
第四获取单元, 用于获取所述选择的语音质量参数的权重。
在上述第三方面的第九种可能的实现方式中, 所述第四获取单元包括: 第二计算子单元, 用于计算所述语音质量参数对应的损伤值总和; 第三计算子单元, 用于计算所述选择的语音质量参数的损伤值与所述语音 质量参数对应的损伤值总和之间的比值;
第三确定子单元, 用于将所述计算的比值确定为所述选择的语音质量参数 的权重。
第四方面, 一种检测网络故障的节点, 所述节点包括:
第二获取模块,用于当节点接收语音流时,从所述语音流中获取信源标识、 编解码类型和语音质量参数;
第三获取模块, 用于根据所述编解码类型和所述语音质量参数获取所述节 点对应的故障分数;
第二检测模块, 用于发送所述信源标识和所述节点对应的故障分数给监控 中心, 使所述监控中心检测所述信源标识对应的信源与所述节点之间的网络是 否发生网络故障。
在上述第四方面的第一种可能的实现方式中, 所述第三获取模块包括: 第五获取单元, 用于根据所述编解码类型获取对应的第一基线值; 第六获取单元, 用于获取所述语音廣量参数对应的损伤值;
第七获取单元, 用于根据所述第一基线值和所述语音质量参数对应的损伤 值获取所述节点对应的故障分数。
在上述第四方面的第二种可能的实现方式中, 所述第五获取单元包括: 第七获取子单元, 用于根据所述编解码类型, 从已存储的编解码类型与带 宽情况的对应关系中获取对应的带宽情况;
第八获取子单元, 用于根据所述获取的带宽情况, 从已存储的带宽情况与 第一基线值的对应关系中获取对应的第一基线值。
在上述第四方面的第三种可能的实现方式中, 所述第六获取单元包括: 第二划分子单元, 用于将所述语音质量参数划分为第一类参数和第二类参 数, 所述第一类参数包括丢包率、 时延、 回声损耗、 回声时延、 语音电平、 噪 声电平、 语音削波比例和 /或杂音比例, 所述第二类参数包括单通标识、 串话标 识和 /或断续标识;
第九获取子单元, 用于根据所述第一类参数和已存储的参数范围与损伤值 的对应关系获取所述第一类参数对应的损伤值;
第十获取子单元, 用于根据所述第二类参数的具体取值获取所述第二类参 数对应的损伤值。 在上述第四方面的第四种可能的实现方式中, 所述第七获取单元包括: 第四计算子单元, 用于计算所述语音质量参数对应的损伤值总和; 第四确定子单元, 用于计算所述第一基线值与所述语音质量参数对应的损 伤值总和之间的差值, 将所述计算的差值确定为第二基线值;
第十一获取子单元, 用于根据所述第二基线值并通过映射公式, 获取所述 节点对应的故障分数。
在上述第四方面的第五种可能的实现方式中, 所述节点还包括: 第二选择单元, 用于从所述语音质量参数中选择损伤值最大的预设个数个 语音质量参数;
第一发送单元, 用于获取所述选择的语音质量参数的权重, 发送所述选择 的语音质量参数的权重给所述监控中心。
在上述第四方面的第六种可能的实现方式中, 所述第一发送单元包括: 第五计算子单元, 用于计算所述语音质量参数对应的损伤值总和; 第六计算子单元, 用于计算所述选择的语音质量参数的损伤值与所述语音 质量参数对应的损伤值总和之间的比值;
第五确定子单元, 用于将所述计算的比值确定为所述选择的语音质量参数 的权重。
第五方面, 一种检测网络故障的监控中心, 所述监控中心包括第一存储器 和第一处理器, 用于执行一种检测网络故障的方法。
第六方面, 一种检测网络故障的节点, 所述节点包括第二存储器和第二处 理器, 用于执行一种调节检测网络故障的方法。
在本发明实施例中, 当节点接收语音流时, 节点获取该语音流对应的信源 标识、 编解码类型和语音质量参数; 监控中心根据该编解码类型和该语音质量 参数获取节点对应的故障分数, 根据节点对应的故障分数检测信源标识对应的 信源与节点之间的网络是否发生网络故障, 实现实时检测网络故障, 如此可以 及时检测网络中出现的网络故障。 附图说明
图 1是本发明实施例提供的一种检测网络故障的方法流程图;
图 2是本发明实施例提供的另一种检测网络故障的方法流程图; 图 3是本发明实施例提供的另一种检测网絡故障的方法流程图; 图 4是本发明实施例提供的另一种检测网络故障的方法流程图;
图 5是本发明实施例提供的一种检测网络故障的监控中心结构示意图; 图 6是本发明实施例提供的一种检测网络故障的节点结构示意图; 图 7是本发明实施例提供的另一种检测网络故障的监控中心结构示意图; 图 8是本发明实施例提供的另一种检测网络故障的节点结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。 参见图 1 , 本发明实施例提供了一种检测网络故障的方法, 包括: 步驟 101 : 当节点接收语音流时, 接收该节点发送的该语音流对应的信源 标识、 编解码类型和语音质量参数;
步骤 102:根据该编解码类型和该语音质量参数获取节点对应的故障分数; 步骤 103: 根据节点对应的故障分数检测信源标识对应的信源与该节点之 间的网络是否发生网络故障。
在本发明实施例中, 当节点接收语音流时, 节点获取语音流对应的信源标 识、 编解码类型和语音质量参数; 监控中心根据该编解码类型和该语音质量参 数获取节点对应的故障分数; 根据节点对应的故障分数检测信源标识对应的信 源与节点之间的网络是否发生网络故障, 实现实时检测网络故障, 如此可以及 时检测网络中出现的网络故障。 在图 1所示实施例的基础之上, 本发明实施例提供了一种检测网络故障的 方法, 参见图 2, 该方法包括:
步骤 201 : 节点从网络中接收语音流, 从该语音流中获取信源标识、 编解 码类型和语音质量参数;
其中, 该语音质量参数包括 Qos ( Quality of Service, 服务质量)参数和信 源参数。
具体地, 节点从网络中接收语音流, 从该语音流中获取信源标识、 Qos参 数和信源参数, 如果获取的 Qos参数不是丢包率和 /或时延, 则将获取的 Qos 参数转换为丢包率和 /或时延。 其中, 如果获取的 Qos参数的个数为 1, 判断获取的一个 Qos参数是否分 别是丢包率或时延, 如果否, 则将获取的一个 Qos参数分别转换为丢包率或时 延, 如果获取的 Qos参数的个数为 2, 判断获取的 2个 Qos参数是否分别是丢 包率和时延, 如果否, 则将获取的两个 Qos参数分别转换为丟包率和时延。
其中,处于不同类型网络中的节点从接收的语音流中获取的 Qos参数可能 互不相同; 例如, 当节点处于无线网络中时, 节点从接收的语音流中获取的 Qos 参数包括丟帧率和 /或误帧率, 此时需要将丟帧率和 /或误帧率转换为丟包 率; 当节点处于 IP ( Internet Protocol, 互联网协议) 网絡中时, 节点从接收的 语音流中获取的 Qos参数包括丢包率,此时就不需要对获取的 Qos参数进行转 换。
其中, 发送节点通过语音链路发送语音流到接收节点, 该语音链路中包括 一个发送节点、 一个或多个网络节点以及一个接收节点; 在本步骤中的节点可 以为该语音链路中接收该语音流的任一节点。
其中, Qos参数至少要包括丢包率, 还可以包括时延; 信源参数包括语音 电平、 噪声电平、 回声损耗、 回声时延、 语音削波比例、 杂音比例、 单通标识、 串话标识、 断续标识中的至少一项; 其中, 单通标识用于标识语音流是否发生 单通, 串话标识用于标识语音流是否发生串话, 以及断续标识用于标识语音流 是否发生断续。
其中, 节点从语音流中获取语音电平和 /或噪声电平, 可以为:
获取语音流包括的各信号的突发性,从语音流包括的各信号中获取突发性 小于预设第一突发性阈值的语音信号, 获取语音信号的能量大小, 根据语音信 号的能量大小确定语音电平; 和 /或,
从语音流包括的各信号中获取突发性大于预设第一突发性阈值且小于预 设第二突发性阈值的噪声信号, 预设第一突发性阈值小于预设第二突发性阈 值, 获取噪声信号的能量大小, 根据噪声信号的能量大小确定噪声电平。
其中, 节点从语音流中获取回声损耗和 /或回声时延, 可以具体为: 节点接收语音流并转发该语音流, 获取转发该语音流的转发时间; 节点接 收该语音流的回声信号, 获取接收该回声信号的接收时间, 计算接收时间与转 发时间之间的时间差, 将计算的时间差确定为回声时延; 和 /或,
将语音流与该语音流的回声信号进行对比, 获取回声损耗。
其中, 节点从语音流中获取语音削波比例, 可以具体为: 从语音信号包括的语音帧中确定被削波的语音帧, 统计被削波的语音帧的 第一帧数和整个语音流包括的数据帧的第二帧数, 计算第一帧数与第二帧数的 比值, 将计算的比值确定为语音削波比例。
其中, 语音帧由样点组成, 用样点去表示语音信号, 每个样点的样点值在 预设样点值范围内取值, 且每个样点根据所表示的语音信号的能量进行取值, 如果某个样点所表示的语音信号的能量较大, 则该样点可能取预设样点值范围 内的最大样点值。
其中, 对于任一个语音帧, 在该语音帧包括的样点中获取样点值为预设样 点值范围内的最大样点值的样点, 统计获取的样点的第一个数, 如果第一个数 大于预设样点个数阈值, 则判断出该语音帧为被削波的语音帧, 如果第一个数 小于或等于预设样点个数阈值, 则判断出该语音帧不是被削波的语音帧。
其中, 节点从语音流中获取杂音比例, 可以具体为:
从语音流包括的各信号中获取突发性大于预设第二突发性阈值的杂音信 号, 统计杂音信号包括的数据帧的第三帧数和整个语音流包括的数据帧的第二 帧数, 计算第三帧数与第二帧数的比值, 将计算的比值确定为杂音比例。
其中, 节点从语音流中获取单通标识, 可以具体为:
节点监控语音链路, 如果语音链路的双向链路中只有一条链路存在信号而 另一条链路不存在任何信号的时间达到预设时间, 则判断出该语音链路中的语 音流发生单通, 设置单通标识用于标识该语音流发生单通, 否则, 判断出该语 音链路中的语音流未发生单通, 设置单通标识用于标识该语音流未发生单通。
其中, 节点从语音流中获取串话标识, 可以具体为:
节点对接收的语音流进行判断, 如果该语音流为来自同一信源的语音流, 则判断出该语音流未发生串话, 设置串话标识用于标识该语音流未发生串话; 如果该语音流为来自多个信源的语音流, 则判断出该语音流发生串话, 设置串 话标识用于标识该语音流发生串话。
其中, 节点从语音流中获取断续标识, 可以具体为:
统计语音流中的连续丢包个数, 将统计的连续丢包个数与预设连续丢包个 数阈值进行比较, 如果统计的连续丟包个数大于预设连续丟包个数阈值, 则判 断出该语音流发生断续, 设置断续标识用于标识该语音流发生断续, 否则, 判 断出该语音流未发生断续, 设置断续标识用于标识该语音流未发生断续。
步骤 202: 节点发送上报消息给监控中心, 该上报消息包括信源标识、 编 解码类型和语音质量参数;
其中, 该语音链路中包括的其他每个接收该语音流的节点可以同该节点一 样获取信源标识、 编解码类型和语音质量参数, 发送包括信源标识、 编解码类 型和语音质量参数的上 4艮消息给监控中心。
步骤 203: 监控中心接收该节点发送的上报消息, 该上报消息包括信源标 识、 编解码类型和语音质量参数, 根据该编解码类型获取对应的第一基线值; 具体地, 接收包括信源标识、 编解码类型和语音质量参数的上报消息, 根 据该编解码类型, 从已存储的编解码类型与带宽情况的对应关系中获取对应的 带宽情况, 根据获取的带宽情况从已存储的带宽情况与第一基线值的对应关系 中获取对应的第一基线值。
其中, 带宽情况包括窄带、 宽带和 /或超宽带。
步驟 204: 根据每个语音质量参数获取每个语音质量参数对应的损伤值; 具体地, 将每个语音质量参数划分为第一类参数和第二类参数, 其中, 第 一类参数包括丢包率、 时延、 语音电平、 噪声电平、 回声损耗、 回声时延、 语 音削波比例和 /或杂音比例; 第二类参数包括单通标识、 串话标识和 /或断续标 识; 根据第一类参数和已存储的参数范围与损伤值的对应关系获取第一类参数 对应的损伤值; 获取第二类参数对应的损伤值。
其中, 如果第一类参数包括丢包率, 则根据第一类参数和已存储的参数范 围与损伤值的对应关系获取第一类参数对应的损伤值, 可以具体为:
确定丢包率所在丟包率范围, 根据确定的丢包率范围从已存储的丢包率范 围与损伤值的对应关系中获取丢包率对应的损伤值。
其中, 如果第一类参数包括时延, 则根据第一类参数和已存储的参数范围 与损伤值的对应关系获取第一类参数对应的损伤值, 可以具体为:
确定时延所在时延范围, 根据确定的时延范围从已存储的时延范围与损伤 值的对应关系中获取时延对应的损伤值。
其中, 如杲第一类参数包括语音电平, 则根据第一类参数和已存储的参数 范围与损伤值的对应关系获取第一类参数对应的损伤值, 可以具体为:
确定语音电平所在语音电平范围,根据确定的语音电平范围从已存储的语 音电平范围与损伤值的对应关系中获取语音电平对应的损伤值。
其中, 如果第一类参数包括噪声电平, 则根据第一类参数和已存储的参数 范围与损伤值的对应关系获取第一类参数对应的损伤值, 可以具体为: 确定噪声电平所在噪声电平范围,根据确定的噪声电平范围从已存储的噪 声电平范围与损伤值的对应关系中获取噪声电平对应的损伤值。
其中, 如果第一类参数包括回声损耗, 则根据第一类参数和已存储的参数 范围与损伤值的对应关系获取第一类参数对应的损伤值, 可以具体为:
确定回声损耗所在回声损耗范围,根据确定的回声损耗范围从已存储的回 声损耗范围与损伤值的对应关系中获取回声损耗对应的损伤值。
其中, 如果第一类参数包括回声时延, 则根据第一类参数和已存储的参数 范围与损伤值的对应关系获取第一类参数对应的损伤值, 可以具体为:
确定回声时延所在回声时延范围,根据确定的回声时延范围从已存储的回 声时延范围与损伤值的对应关系中获取回声时延对应的损伤值。
其中, 如杲第一类参数包括语音削波比例, 则根据第一类参数和已存储的 参数范围与损伤值的对应关系获取第一类参数对应的损伤值, 可以具体为: 确定语音削波比例所在语音削波比例范围, 才艮据确定的语音削波比例范围 从已存储的语音削波比例范围与损伤值的对应关系中获取语音削波比例对应 的损伤值。
其中, 如杲第一类参数包括杂音比例, 则根据第一类参数和已存储的参数 范围与损伤值的对应关系获取第一类参数对应的损伤值, 可以具体为:
确定杂音比例所在杂音比例范围,根据确定的杂音比例范围从已存储的杂 音比例范围与损伤值的对应关系中获取杂音比例对应的损伤值。
其中, 如果第二类参数包括单通标识, 则获取第二类参数对应的损伤值, 可以具体为:
根据单通标识确定是否发生单通, 如果是, 设置单通标识对应的损伤值为 预设第一损伤值; 如果否, 设置单通标识对应的损伤值为预设第二损伤值。
其中, 预设第一损伤值大于预设第二损伤值, 预设第二损伤值可以为 0或 1等值。
其中, 如果第二类参数包括串话标识, 则获取第二类参数对应的损伤值, 可以具体为:
根据串话标识确定是否发生串话, 如果是, 设置串话标识对应的损伤值为 预设第三损伤值; 如果否, 设置串话标识对应的损伤值为预设第四损伤值。
其中, 预设第三损伤值大于预设第四损伤值, 预设第四损伤值可以为 0或 1等值。 其中, 如果第二类参数包括断续标识, 则获取第二类参数对应的损伤值, 可以具体为:
根据断续标识确定是否发生断续, 如果是, 设置断续标识对应的损伤值为 预设第五损伤值; 如果否, 设置断续标识对应的损伤值为预设第六损伤值。
其中, 预设第五损伤值大于预设第六损伤值, 预设第六损伤值可以为 0或
1等值。
步骤 205: 监控中心根据第一基线值和每个语音质量参数对应的损伤值获 取该节点对应的故障分数;
具体地, 计算每个语音质量参数对应的损伤值总和, 计算第一基线值与每 个语音廣量参数对应的损伤值总和之间的差值, 将计算的差值确定为第二基线 值, 根据第二基线值并通过映射公式获取该节点对应的故障分数。
其中, 故障分数可以为 MOS分数等。
其中,监控中心可以同该节点一样计算出该语音链路中的其他每个节点对 应的故障分数。
步骤 206:监控中心根据该故障分数判断网络是否发生网络故障 ,如果是, 则定位该网络故障发生的位置;
具体地, 如果该节点对应的故障分数小于预设分数阈值, 则判断出网络未 发生网络故障; 如果该节点的故障分数大于或等于预设分数阈值, 则判断出网 络发生网络故障, 定位出该网络故障发生的位置为信源标识对应的信源与该节 点之间的网段。
其中, 定位该网络故障发生的位置, 可以具体为:
监控中心根据信源标识对应的信源和节点确定该节点所在的语音链路, 根 据该语音链路包括的节点对应的故障分数,从该语音链路包括的节点中获取两 个相邻的节点, 该两个相邻的节点中的一个节点的故障分数大于或等于预设分 数阈值, 另一个节点的故障分数小于预设分数阈值, 判断出该网络故障发生的 位置为该两个相邻的节点之间的网段。
进一步地, 如果网络未发生网络故障, 则可以直接显示该节点对应的故障 分数。
步骤 207: 监控中心从每个语音质量参数中选择损伤值最大的预设个数个 语音质量参数, 获取选择的语音质量参数的权重;
具体地,监控中心从每个语音质量参数中选择损伤值最大的预设个数个语 音质量参数, 计算每个语音质量参数对应的损伤值总和, 计算选择的语音质量 参数的损伤值与每个语音质量参数对应的损伤值总和之间的比值, 将计算的比 值确定为选择的语音质量参数的权重。
步骤 208: 监控中心显示该节点对应的故障分数、 选择的语音质量参数和 选择的语音质量参数的权重。
在本发明实施例中, 当节点接收语音流时, 接收该节点发送的该语音流对 应的信源标识、 编解码类型和语音质量参数; 根据编解码类型和语音质量参数 获取节点对应的故障分数; 根据节点对应的故障分数检测信源标识对应的信源 与该节点之间的网络是否发生网络故障。 其中, 在本实施例中, 节点在接收到 语音流的同时, 获取语音流中的信源标识、 编解码类型及语音质量参数并发送 包括信源标识、 编解码类型及语音质量参数的上报消息给监控中心, 监控中心 根据编解码类型和语音质量参数获取节点对应的故障分数并根据节点对应的 故障分数检测网络中的网络故障, 实现了实时检测网络故障, 可以及时检测出 网络中出现的网络故障。 进一步地, 根据网络中各节点对应的故障分数, 可以 定位出网络故障发生的具体网段; 以及, 选择损伤值最大的预设个数个语音质 量参数, 并获取选择的语音质量参数的权重, 如此可以使技术人员确定导致网 络故障发生的原因以及定位出网络故障发生的位置。 参见图 3 , 本发明实施例提供了一种检测网絡故障的方法, 包括: 步骤 301 : 当节点接收语音流时, 从该语音流中获取信源标识、 编解码类 型和语音质量参数;
步骤 302:根据该编解码类型和该语音质量参数获取节点对应的故障分数; 步骤 303: 发送该信源标识和节点对应的故障分数给监控中心, 使监控中 心检测该信源标识对应的信源与节点之间的网络是否发生网络故障。
在本发明实施例中, 当节点接收语音流时, 节点获取语音流对应的信源标 识、 编解码类型和语音质量参数, 根据该编解码类型和该语音质量参数获取节 点对应的故障分数; 监控中心根据节点对应的故障分数检测信源标识对应的信 源与节点之间的网络是否发生网絡故障, 实现实时检测网络故障, 如此可以及 时检测网络中出现的网络故障。 在图 3所示实施例的基础上, 本发明实施例提供了另一种检测网络故障的 方法, 参见图 4, 该方法包括:
步骤 401 : 节点从网络中接收语音流, 从该语音流中获取信源标识、 编解 码类型和语音质量参数;
其中, 节点获取信源标识、 编解码类型和语音质量参数的具体过程与步骤 201 中节点获取信源标识、 编解码类型和语音质量参数的具体过程相同, 在此 不再详细说明, 相应内容请参考步骤 201。
步骤 402: 节点根据该编解码类型获取对应的第一基线值;
具体地, 根据该编解码类型, 从已存储的编解码类型与带宽情况的对应关 系中获取对应的带宽情况, 根据获取的带宽情况从已存储的带宽情况与第一基 线值的对应关系中获取对应的第一基线值。
其中, 带宽情况包括窄带、 宽带和 /或超宽带。
步驟 403: 节点根据每个语音质量参数获取每个语音质量参数对应的损伤 值;
其中, 节点获取每个语音质量参数对应的损伤值的具体过程与监控中心获 取每个语音质量参数对应的损伤值的具体过程相同, 在此不再详细说明, 相应 内容请参考步骤 204。
步骤 404: 节点根据第一基线值和每个语音质量参数对应的损伤值获取自 身对应的故障分数;
具体地, 计算每个语音质量参数对应的损伤值总和, 计算第一基线值与每 个语音质量参数对应的损伤值总和之间的差值, 将计算的差值确定为第二基线 值, 根据第二基线值并通过映射公式获取该节点对应的故障分数。
其中, 故障分数可以为 MOS分数等。
其中, 该语音链路中的所有节点均可以同该节点一样获取各自对应的故障 分数。
步骤 405: 节点从每个语音质量参数中选择损伤值最大的预设个数个语音 质量参数, 获取选择的语音质量参数的权重;
具体地, 节点从每个语音质量参数中选择损伤值最大的预设个数个语音质 量参数, 计算每个语音质量参数对应的损伤值总和, 计算选择的语音质量参数 的损伤值与每个语音质量参数对应的损伤值总和之间的比值, 将计算的比值确 定为选择的语音质量参数的权重。
步骤 406: 节点发送上报消息给监控中心, 该上报消息包括信源标识、 该 节点对应的故障分数和选择的语音质量参数的权重;
其中, 该语音链路中包括的每个接收该语音流的节点可以同该节点一样, 发送包括信源标识、 该节点对应的故障分数和选择的语音质量参数的权重的上 报消息给监控中心。
步骤 407: 监控中心接收该上报消息, 该上报消息包括信源标识、 该节点 对应的故障分数和选择的语音质量参数的权重, 根据该节点对应的故障分数判 断网络是否发生网络故障, 如果是, 则定位该网络故障发生的位置;
其中, 判断网络中是否发生网络故障及定位网络故障发生的位置的具体过
Figure imgf000018_0001
步骤 408: 监控中心显示节点对应的故障分数、 选择的语音质量参数和选 择的语音质量参数的权重。
进一步地, 如果网络未发生网络故障, 则可以直接显示该节点对应的故障 分数。
在本发明实施例中, 从节点接收的语音流中获取信源标识、 编解码类型和 语音质量参数; 根据编解码类型和语音质量参数获取节点对应的故障分数; 发 送信源标识和节点对应的故障分数给监控中心, 使所控中心检测信源标识对应 的信源与节点之间的网络是否发生网络故障。 其中, 在本实施例中, 节点在接 收到语音流的同时, 获取语音流中的信源标识、 编解码类型及语音质量参数, 根据编解码类型和语音质量参数获取该节点对应的故障分数、 选择的语音质量 参数及选择的语音质量参数的权重, 发送包括节点对应的故障分数、 选择的语 音质量参数及选择的语音质量参数的权重的上报消息给监控中心,监控中心根 据节点对应的故障分数检测网络中的网络故障, 实现了对网络故障的实时检 测, 能够及时检测出网络中出现的网络故障。 进一步地, 根据网络中各节点对 应的故障分数, 可以定位出网络故障发生的具体位置; 根据选择的语音质量参 数及选择的语音质量参数的权重可以确定导致网络故障发生的原因。 参见图 5 , 本发明实施例提供了一种检测网络故障的监控中心, 包括: 第一接收模块 501, 用于当节点接收语音流时, 接收该节点发送的该语音 对应的信源标识、 编解码类型和语音质量参数;
第一获取模块 502, 用于根据第一接收模块 501接收的该编解码类型和该 语音质量参数获取该节点对应的故障分数;
第一检测模块 503, 用于根据第一获取模块 502获取的该节点对应的故障 分数检测该信源标识对应的信源与该节点之间的网络是否发生网络故障。
其中, 第一获取模块 502包括:
第一获取单元, 用于根据该编解码类型获取对应的第一基线值; 第二获取单元, 用于根据该语音质量参数获取该语音质量参数对应的损伤 值;
第三获取单元, 用于根据第一获取单元获取的第一基线值和第二获取单元 获取的该语音质量参数对应的损伤值获取节点对应的故障分数。
其中, 第一获取单元包括:
第一获取子单元, 用于根据该编解码类型, 从已存储的编解码类型与带宽 情况的对应关系中获取对应的带宽情况;
第二获取子单元, 用于根据第一获取子单元获取的带宽情况, 从已存储的 带宽情况与第一基线值的对应关系中获取对应的第一基线值。
其中, 第二获取单元包括:
第一划分子单元, 用于将该语音质量参数划分为第一类参数和第二类参 数, 第一类参数包括丟包率、 时延、 回声损耗、 回声时延、 语音电平、 噪声电 平、 语音削波比例和 /或杂音比例, 第二类参数包括单通标识、 串话标识和 /或 断续标识;
第三获取子单元, 用于根据第一划分子单元划分的第一类参数和已存储的 参数范围与损伤值的对应关系获取第一类参数对应的损伤值;
第四获取子单元, 用于根据第二划分子单元划分的第二类参数的具体取值 获取第二类参数对应的损伤值。
其中, 第三获取单元包括:
第一计算子单元, 用于计算该语音质量参数对应的损伤值总和; 第一确定子单元, 用于计算第一基线值与第一计算子单元计算的该语音质 量参数对应的损伤值总和之间的差值, 将计算的差值确定为第二基线值; 第五获取子单元, 用于根据第一确定子单元确定的第二基线值并通过映射 公式, 获取该节点对应的故障分数。
其中, 第一检测模块 503包括:
第一判断单元, 用于如果该节点对应的故障分数小于预设分数阈值, 则判 断出该信源标识对应的信源与该节点之间的网络未发生网络故障;
第二判断单元, 用于如果第一判断单元判断出该节点对应的故障分数大于 或等于预设分数阈值, 则判断出该信源标识对应的信源与该节点之间的网络发 生网络故障。
其中, 该监控中心还包括:
确定单元, 用于如果发生网络故障, 则根据该信源标识对应的信源和该节 点确定该节点所在的语音链路;
定位单元, 用于根据确定单元确定的该语音链路包括的节点对应的故障分 数对网络故障进行定位。
进一步地, 定位单元包括:
第六获取子单元, 用于根据该语音链路包括的节点对应的故障分数, 获取 两个相邻的节点, 该两个相邻的节点中的一个节点对应的故障分数大于或等于 预设分数阈值, 另一个节点对应的故障分数小于预设分数阈值;
第二确定子单元, 用于确定网络故障发生的位置在第六获取子单元获取的 该两个相邻的节点之间的网段。
进一步地, 该监控中心还包括:
第一选择单元, 用于如果发生网络故障, 从该语音质量参数中选择损伤值 最大的预设个数个语音质量参数;
第四获取单元, 用于获取第一选择单元选择的语音质量参数的权重。 其中, 第四获取单元包括:
第二计算子单元, 用于计算该语音质量参数对应的损伤值总和; 第三计算子单元, 用于计算选择的语音质量参数的损伤值与第二计算子单 元计算的该语音质量参数对应的损伤值总和之间的比值;
第三确定子单元, 用于将第三计算子单元计算的比值确定为选择的语音质 量参数的权重。
在本发明实施例中, 当节点接收语音流时, 该节点获取该语音流对应的信 源标识、 编解码类型和语音质量参数; 监控中心根据该编解码类型和该语音质 量参数获取该节点对应的故障分数, 根据该节点对应的故障分数检测该信源标 识对应的信源与节点之间的网络是否发生网络故障, 实现了对网络故障的实时 检测, 如此可以及时检测出网络中出现的网络故障。 进一步地, 根据网络中各 节点对应的故障分数, 可以定位出网络故障发生的具体位置; 根据选择的语音 质量参数及选择的语音质量参数的权重可以确定导致网络故障发生的原因。 参见图 6, 本发明实施例提高了一种检测网絡故障的节点, 包括: 第二获取模块 601 , 用于当节点接收语音流时, 从该语音流中获取信源标 识、 编解码类型和语音质量参数;
第三获取模块 602, 用于根据第二获取模块 601获取的该编解码类型和该 语音质量参数获取该节点对应的故障分数;
第二检测模块 603, 用于发送该信源标识和第三获取模块 602获取的该节 点对应的故障分数给监控中心, 使该监控中心检测该信源标识对应的信源与该 节点之间的网絡是否发生网络故障。
其中, 第三获取模块 602包括:
第五获取单元, 用于根据该编解码类型获取对应的第一基线值; 第六获取单元, 用于获取该语音质量参数对应的损伤值;
第七获取单元, 用于根据第五获取单元获取的第一基线值和第六获取单元 获取的该语音质量参数对应的损伤值获取该节点对应的故障分数。
其中, 第五获取单元包括:
第七获取子单元, 用于根据该编解码类型, 从已存储的编解码类型与带宽 情况的对应关系中获取对应的带宽情况;
第八获取子单元, 用于根据第七获取子单元获取的带宽情况, 从已存储的 带宽情况与第一基线值的对应关系中获取对应的第一基线值。
其中, 第六获取单元包括:
第二划分子单元, 用于将该语音质量参数划分为第一类参数和第二类参 数, 第一类参数包括丟包率、 时延、 回声损耗、 回声时延、 语音电平、 噪声电 平、 语音削波比例和 /或杂音比例, 第二类参数包括单通标识、 串话标识和 /或 断续标识;
第九获取子单元, 用于根据第二划分子单元划分的第一类参数和已存储的 参数范围与损伤值的对应关系获取第一类参数对应的损伤值;
第十获取子单元, 用于根据第二划分子单元划分的第二类参数的具体取值 获取第二类参数对应的损伤值。
其中, 第七获取单元包括:
第四计算子单元, 用于计算该语音质量参数对应的损伤值总和; 第四确定子单元, 用于计算第一基线值与第四计算子单元计算的该语音质 量参数对应的损伤值总和之间的差值, 将计算的差值确定为第二基线值; 第十一获取子单元, 用于根据第四确定子单元确定的第二基线值并通过映 射公式, 获取该节点对应的故障分数。
其中, 该节点还包括:
第二选择单元, 用于从该语音质量参数中选择损伤值最大的预设个数个语 音质量参数;
第一发送单元, 用于获取第二选择单元选择的语音质量参数的权重, 发送 选择的语音质量参数的权重给监控中心。
其中, 第一发送单元包括:
第五计算子单元, 用于计算该语音质量参数对应的损伤值总和; 第六计算子单元, 用于计算选择的语音质量参数的损伤值与第五计算子单 元计算的该语音质量参数对应的损伤值总和之间的比值;
第五确定子单元, 用于将第六计算子单元计算的比值确定为选择的语音质 量参数的权重。
在本发明实施例中, 从节点接收的语音流中获取信源标识、 编解码类型和 语音质量参数; 根据该编解码类型和该语音质量参数获取节点对应的故障分 数, 发送信源标识和节点对应的故障分数给监控中心, 使监控中心检测信源标 识对应的信源与节点之间的网络是否发生网络故障, 实现了对网络故障的实时 检测, 从而能够及时检测出网络中出现的网络故障。 参见图 7, 本发明实施例提供了一种检测网络故障的监控中心, 包括: 第一存储器 701和第一处理器 702, 用于执行如下检测网络故障的方法: 当节点接收语音流时, 接收所述节点发送的所述语音流对应的信源标识、 编解码类型和语音质量参数;
根据所述编解码类型和所述语音质量参数获取所述节点对应的故障分数; 根据所述节点对应的故障分数检测所述信源标识对应的信源与所述节点 之间的网络是否发生网络故障。
所述根据所述编解码类型和所述语音质量参数获取所述节点对应的故障 分数, 包括:
根据所述编解码类型获取对应的第一基线值; 获取所述语音质量参数对应的损伤值;
根据所述第一基线值和所述语音质量参数对应的损伤值获取所述节点对 应的故障分数。
所述根据所述编解码类型获取对应的第一基线值, 包括:
根据所述编解码类型, 从已存储的编解码类型与带宽情况的对应关系中获 取对应的带宽情况;
根据所述获取的带宽情况, 从已存储的带宽情况与第一基线值的对应关系 中获取对应的第一基线值。
所述获取所述语音质量参数对应的损伤值, 包括:
将所述语音质量参数划分为第一类参数和第二类参数, 所述第一类参数包 括丢包率、 时延、 回声损耗、 回声时延、 语音电平、 噪声电平、 语音削波比例 和 /或杂音比例, 所述第二类参数包括单通标识、 串话标识和 /或断续标识; 根据所述第一类参数和已存储的参数范围与损伤值的对应关系获取所述 第一类参数对应的损伤值;
根据所述第二类参数的具体取值获取所述第二类参数对应的损伤值。 所述根据所述第一基线值和所述语音质量参数对应的损伤值获取所述节 点对应的故障分数, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述第一基线值与所述语音质量参数对应的损伤值总和之间的差值, 将所述计算的差值确定为第二基线值;
根据所述第二基线值并通过映射公式, 获取所述节点对应的故障分数。 所述根据所述节点对应的故障分数确定所述信源标识对应的信源与所述 节点之间的网络是否发生网络故障, 包括:
如果所述节点对应的故障分数小于预设分数阈值, 则判断出所述信源标识 对应的信源与所述节点之间的网络未发生网络故障;
如果所述节点对应的故障分数大于或等于所述预设分数阈值, 则判断出所 述信源标识对应的信源与所述节点之间的网络发生网络故障。
所述方法还包括:
如果发生所述网络故障, 则根据所述信源标识对应的信源和所述节点确定 所述节点所在的语音链路;
根据所述语音链路包括的节点对应的故障分数对所述网络故障进行定位。 所述根据所述语音链路包括的节点对应的故障分数对所述网络故障进行 定位, 包括:
根据所述语音链路包括的节点对应的故障分数, 获取两个相邻的节点, 所 述两个相邻的节点中的一个节点对应的故障分数大于或等于预设分数阈值, 另 一个节点对应的故障分数小于所述预设分数阈值;
确定所述网络故障发生的位置在所述两个相邻的节点之间的网段。
所述方法还包括:
如果发生所述网络故障, 从所述语音质量参数中选择损伤值最大的预设个 数个语音质量参数;
获取所述选择的语音质量参数的权重。
所述获取所述选择的语音质量参数的权重, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述选择的语音盾量参数的损伤值与所述语音质量参数对应的损伤 值总和之间的比值;
将所述计算的比值确定为所述选择的语音质量参数的权重。 参见图 8 , 本发明实施例提供了一种检测网络故障的节点, 包括: 第二存储器 801和第二处理器 802, 用于执行如下检测网络故障的方法: 当节点接收语音流时, 从所述语音流中获取信源标识、 编解码类型和语音 质量参数;
根据所述编解码类型和所述语音质量参数获取所述节点对应的故障分数; 发送所述信源标识和所述节点对应的故障分数给监控中心,使所述监控中 心检测所述信源标识对应的信源与所述节点之间的网络是否发生网络故障。
所述根据所述编解码类型和所述语音质量参数获取所述节点对应的故障 分数, 包括:
根据所述编解码类型获取对应的第一基线值;
获取所述语音质量参数对应的损伤值;
根据所述第一基线值和所述语音质量参数对应的损伤值获取所述节点对 应的故障分数。
所述根据所述编解码类型获取对应的第一基线值, 包括:
根据所述编解码类型, 从已存储的编解码类型与带宽情况的对应关系中获 取对应的带宽情况;
根据所述获取的带宽情况, 从已存储的带宽情况与第一基线值的对应关系 中获取对应的第一基线值。
所述获取所述语音质量参数对应的损伤值, 包括:
将所述语音质量参数划分为第一类参数和第二类参数, 所述第一类参数包 括丢包率、 时延、 回声损耗、 回声时延、 语音电平、 噪声电平、 语音削波比例 和 /或杂音比例, 所述第二类参数包括单通标识、 串话标识和 /或断续标识; 根据所述第一类参数和已存储的参数范围与损伤值的对应关系获取所述 第一类参数对应的损伤值;
根据所述第二类参数的具体取值获取所述第二类参数对应的损伤值。 所述根据所述第一基线值和所述语音质量参数对应的损伤值获取所述节 点对应的故障分数, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述第一基线值与所述语音质量参数对应的损伤值总和之间的差值, 将所述计算的差值确定为第二基线值;
根据所述第二基线值并通过映射公式, 获取所述节点对应的故障分数。 所述获取所述语音质量参数对应的损伤值之后, 还包括:
从所述语音质量参数中选择损伤值最大的预设个数个语音质量参数; 获取所述选择的语音质量参数的权重,发送所述选择的语音质量参数的权 重给所述监控中心。
所述获取所述选择的语音质量参数的权重, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述选择的语音质量参数的损伤值与所述语音质量参数对应的损伤 值总和之间的比值;
将所述计算的比值确定为所述选择的语音质量参数的权重。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种检测网络故障的方法, 其特征在于, 所述方法包括:
当节点接收语音流时, 接收所述节点发送的所述语音流对应的信源标识、 编解码类型和语音质量参数;
根据所述编解码类型和所述语音质量参数获取所述节点对应的故障分数; 根据所述节点对应的故障分数检测所述信源标识对应的信源与所述节点之 间的网络是否发生网络故障。
2、 如权利要求 1所述的方法, 其特征在于, 所述根据所述编解码类型和所 述语音质量参数获取所述节点对应的故障分数, 包括:
根据所述编解码类型获取对应的第一基线值;
获取所述语音质量参数对应的损伤值;
根据所述第一基线值和所述语音质量参数对应的损伤值获取所述节点对应 的故障分数。
3、 如权利要求 2所述的方法, 其特征在于, 所述根据所述编解码类型获取 对应的第一基线值, 包括:
根据所述编解码类型, 从已存储的编解码类型与带宽情况的对应关系中获 取对应的带宽情况;
根据所述获取的带宽情况, 从已存储的带宽情况与第一基线值的对应关系 中获取对应的第一基线值。
4、 如权利要求 2所述的方法, 其特征在于, 所述获取所述语音质量参数对 应的损伤值, 包括:
将所述语音质量参数划分为第一类参数和第二类参数, 所述第一类参数包 括丢包率、 时延、 回声损耗、 回声时延、 语音电平、 噪声电平、 语音削波比例 和 /或杂音比例, 所述第二类参数包括单通标识、 串话标识和 /或断续标识; 根据所述第一类参数和已存储的参数范围与损伤值的对应关系获取所述第 一类参数对应的损伤值;
根据所述第二类参数的具体取值获取所述第二类参数对应的损伤值。
5、 如权利要求 2所述的方法, 其特征在于, 所述根据所述第一基线值和所 述语音质量参数对应的损伤值获取所述节点对应的故障分数, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述第一基线值与所述语音质量参数对应的损伤值总和之间的差值, 将所述计算的差值确定为第二基线值;
根据所述第二基线值并通过映射公式, 获取所述节点对应的故障分数。
6、 如权利要求 1所述的方法, 其特征在于, 所述根据所述节点对应的故障 分数确定所述信源标识对应的信源与所述节点之间的网絡是否发生网络故障, 包括:
如果所述节点对应的故障分数小于预设分数阈值, 则判断出所述信源标识 对应的信源与所述节点之间的网络未发生网络故障;
如果所述节点对应的故障分数大于或等于所述预设分数阈值, 则判断出所 述信源标识对应的信源与所述节点之间的网络发生网络故障。
7、 如权利要求 1至 6任一项权利要求所述的方法, 其特征在于, 所述方法 还包括:
如果发生所述网络故障, 则根据所述信源标识对应的信源和所述节点确定 所述节点所在的语音链路;
根据所述语音链路包括的节点对应的故障分数对所述网络故障进行定位。
8、 如权利要求 7所述的方法, 其特征在于, 所述根据所述语音链路包括的 节点对应的故障分数对所述网络故障进行定位, 包括:
根据所述语音链路包括的节点对应的故障分数, 获取两个相邻的节点, 所 述两个相邻的节点中的一个节点对应的故障分数大于或等于预设分数阈值, 另 一个节点对应的故障分数小于所述预设分数阈值;
确定所述网絡故障发生的位置在所述两个相邻的节点之间的网段。
9、 如权利要求 2至 6任一项权利要求所述的方法, 其特征在于, 所述方法 还包括: 如果发生所述网络故障, 从所述语音质量参数中选择损伤值最大的预设个 数个语音质量参数;
获取所述选择的语音质量参数的权重。
10、 如权利要求 9所述的方法, 其特征在于, 所述获取所述选择的语音质 量参数的权重, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述选择的语音质量参数的损伤值与所述语音质量参数对应的损伤值 总和之间的比值;
将所述计算的比值确定为所述选择的语音质量参数的权重。
11、 一种检测网络故障的方法, 其特征在于, 所述方法包括:
当节点接收语音流时, 从所述语音流中获取信源标识、 编解码类型和语音 质量参数;
根据所述编解码类型和所述语音质量参数获取所述节点对应的故障分数; 发送所述信源标识和所述节点对应的故障分数给监控中心, 使所述监控中 心检测所述信源标识对应的信源与所述节点之间的网络是否发生网络故障。
12、 如权利要求 11所述的方法, 其特征在于, 所述根据所述编解码类型和 所述语音质量参数获取所述节点对应的故障分数, 包括:
根据所述编解码类型获取对应的第一基线值;
获取所述语音质量参数对应的损伤值;
根据所述第一基线值和所述语音质量参数对应的损伤值获取所述节点对应 的故障分数。
13、 如权利要求 12所述的方法, 其特征在于, 所述根据所述编解码类型获 取对应的第一基线值, 包括:
根据所述编解码类型, 从已存储的编解码类型与带宽情况的对应关系中获 取对应的带宽情况;
根据所述获取的带宽情况, 从已存储的带宽情况与第一基线值的对应关系 中获取对应的第一基线值。
14、 如权利要求 12所述的方法, 其特征在于, 所述获取所述语音质量参数 对应的损伤值, 包括:
将所述语音质量参数划分为第一类参数和第二类参数, 所述第一类参数包 括丟包率、 时延、 回声损耗、 回声时延、 语音电平、 噪声电平、 语音削波比例 和 /或杂音比例, 所述第二类参数包括单通标识、 串话标识和 /或断续标识; 根据所述第一类参数和已存储的参数范围与损伤值的对应关系获取所述第 一类参数对应的损伤值;
根据所述第二类参数的具体取值获取所述第二类参数对应的损伤值。
15、 如权利要求 12所述的方法, 其特征在于, 所述根据所述第一基线值和 所述语音质量参数对应的损伤值获取所述节点对应的故障分数, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述第一基线值与所述语音质量参数对应的损伤值总和之间的差值, 将所述计算的差值确定为第二基线值;
根据所述第二基线值并通过映射公式, 获取所述节点对应的故障分数。
16、 如权利要求 12至 15任一项权利要求所述的方法, 其特征在于, 所述 获取所述语音质量参数对应的损伤值之后, 还包括:
从所述语音质量参数中选择损伤值最大的预设个数个语音质量参数; 获取所述选择的语音质量参数的权重, 发送所述选择的语音质量参数的权 重给所述监控中心。
17、 如权利要求 16所述的方法, 其特征在于, 所述获取所述选择的语音质 量参数的权重, 包括:
计算所述语音质量参数对应的损伤值总和;
计算所述选择的语音质量参数的损伤值与所述语音质量参数对应的损伤值 总和之间的比值;
将所述计算的比值确定为所述选择的语音质量参数的权重。
18、 一种检测网络故障的监控中心, 其特征在于, 所述监控中心包括: 第一接收模块, 用于当节点接收语音流时, 接收所述节点发送的所述语音 流对应的信源标识、 编解码类型和语音质量参数;
第一获取模块, 用于根据所述第一接收模块接收的所述编解码类型和所述 语音质量参数获取所述节点对应的故障分数;
第一检测模块, 用于根据所述第一获取模块获取的所述节点对应的故障分 数检测所述信源标识对应的信源与所述节点之间的网络是否发生网络故障。
19、如权利要求 18所述的监控中心, 其特征在于, 所述第一获取模块包括: 第一获取单元, 用于根据所述编解码类型获取对应的第一基线值; 第二获取单元, 用于获取所述语音质量参数对应的损伤值;
第三获取单元, 用于根据所述第一获取单元获取的所述第一基线值和所述 第二获取单元获取的所述语音质量参数对应的损伤值获取所述节点对应的故障 分数。
20、如权利要求 19所述的监控中心, 其特征在于, 所述第一获取单元包括: 第一获取子单元, 用于根据所述编解码类型, 从已存储的编解码类型与带 宽情况的对应关系中获取对应的带宽情况;
第二获取子单元, 用于根据所述第一获取子单元获取的带宽情况, 从已存 储的带宽情况与第一基线值的对应关系中获取对应的第一基线值。
21、如权利要求 19所述的监控中心, 其特征在于, 所述第二获取单元包括: 第一划分子单元, 用于将所述语音质量参数划分为第一类参数和第二类参 数, 所述第一类参数包括丢包率、 时延、 回声损耗、 回声时延、 语音电平、 噪 声电平、 语音削波比例和 /或杂音比例, 所述第二类参数包括单通标识、 串话标 识和 /或断续标识;
第三获取子单元, 用于根据所述第一划分子单元划分的所述第一类参数和 已存储的参数范围与损伤值的对应关系获取所述第一类参数对应的损伤值; 第四获取子单元, 用于根据所述第一划分子单元划分的所述第二类参数的 具体取值获取所述第二类参数对应的损伤值。
22、如权利要求 19所述的监控中心, 其特征在于, 所述第三获取单元包括: 第一计算子单元, 用于计算所述语音质量参数对应的损伤值总和; 第一确定子单元, 用于计算所述第一基线值与所述第一计算子单元计算的 所述语音质量参数对应的损伤值总和之间的差值, 将所述计算的差值确定为第 二基线值;
第五获取子单元, 用于根据所述第一确定子单元确定的所述第二基线值并 通过映射公式, 获取所述节点对应的故障分数。
23、如权利要求 18所述的监控中心, 其特征在于, 所述第一检测模块包括: 第一判断单元, 用于如果所述节点对应的故障分数小于预设分数阈值, 则 判断出所述信源标识对应的信源与所述节点之间的网絡未发生网络故障;
第二判断单元, 用于如果所述节点对应的故障分数大于或等于所述预设分 数阈值, 则判断出所述信源标识对应的信源与所述节点之间的网络发生网络故 障。
24、 如权利要求 18至 23任一项权利要求所述的监控中心, 其特征在于, 所述监控中心还包括:
确定单元, 用于如果发生所述网络故障, 则根据所述信源标识对应的信源 和所述节点确定所述节点所在的语音链路;
定位单元, 用于根据所述确定单元确定的所述语音链路包括的节点对应的 故障分数对所述网络故障进行定位。
25、 如权利要求 24所述的监控中心, 其特征在于, 所述定位单元包括: 第六获取子单元, 用于根据所述语音链路包括的节点对应的故障分数, 获 取两个相邻的节点, 所述两个相邻的节点中的一个节点对应的故障分数大于或 等于预设分数阈值, 另一个节点对应的故障分数小于所述预设分数阈值;
第二确定子单元, 用于确定所述网络故障发生的位置在所述第六获取子单 元获取的所述两个相邻的节点之间的网段。
26、 如权利要求 19至 23任一项权利要求所述的监控中心, 其特征在于, 所述监控中心还包括:
第一选择单元, 用于如果发生所述网络故障, 从所述语音质量参数中选择 损伤值最大的预设个数个语音质量参数;
第四获取单元, 用于获取所述第一选择单元选择的语音质量参数的权重。
27、如权利要求 26所述的监控中心, 其特征在于, 所述第四获取单元包括: 第二计算子单元, 用于计算所述语音质量参数对应的损伤值总和; 第三计算子单元, 用于计算所述选择的语音质量参数的损伤值与所述第二 计算子单元计算的所述语音质量参数对应的损伤值总和之间的比值;
第三确定子单元, 用于将所述第三计算子单元计算的比值确定为所述选择 的语音质量参数的权重。
28、 一种检测网络故障的节点, 其特征在于, 所述节点包括:
第二获取模块, 用于当节点接收语音流时, 从所述语音流中获取信源标识、 编解码类型和语音质量参数;
第三获取模块, 用于根据所述第二获取模块获取的所述编解码类型和所述 语音质量参数获取所述节点对应的故障分数;
第二检测模块, 用于发送所述第二获取模块获取的所述信源标识和所述第 三获取模块获取的所述节点对应的故障分数给监控中心, 使所述监控中心检测 所述信源标识对应的信源与所述节点之间的网络是否发生网络故障。
29、 如权利要求 28所述的节点, 其特征在于, 所述第三获取模块包括: 第五获取单元, 用于根据所述编解码类型获取对应的第一基线值; 第六获取单元, 用于获取所述语音质量参数对应的损伤值;
第七获取单元, 用于根据所述第五获取单元获取的所述第一基线值和所述 第六获取单元获取的所述语音质量参数对应的损伤值获取所述节点对应的故障 分数。
30、 如权利要求 29所述的节点, 其特征在于, 所述第五获取单元包括: 第七获取子单元, 用于根据所述编解码类型, 从已存储的编解码类型与带 宽情况的对应关系中获取对应的带宽情况;
第八获取子单元, 用于根据所述第七获取子单元获取的带宽情况, 从已存 储的带宽情况与第一基线值的对应关系中获取对应的第一基线值。
31、 如权利要求 29所述的节点, 其特征在于, 所述第六获取单元包括: 第二划分子单元, 用于将所述语音质量参数划分为第一类参数和第二类参 数, 所述第一类参数包括丢包率、 时延、 回声损耗、 回声时延、 语音电平、 噪 声电平、 语音削波比例和 /或杂音比例, 所述第二类参数包括单通标识、 串话标 识和 /或断续标识;
第九获取子单元, 用于根据所述第二划分子单元划分的所述第一类参数和 已存储的参数范围与损伤值的对应关系获取所述第一类参数对应的损伤值; 第十获取子单元, 用于根据所述第二划分子单元划分的所述第二类参数的 具体取值获取所述第二类参数对应的损伤值。
32、 如权利要求 29所述的节点, 其特征在于, 所述第七获取单元包括: 第四计算子单元, 用于计算所述语音质量参数对应的损伤值总和; 第四确定子单元, 用于计算所述第一基线值与所述第四计算子单元计算的 所述语音质量参数对应的损伤值总和之间的差值, 将所述计算的差值确定为第 二基线值;
第十一获取子单元, 用于根据所述第四确定子单元确定的所述第二基线值 并通过映射公式, 获取所述节点对应的故障分数。
33、 如权利要求 29至 32任一项权利要求所述的节点, 其特征在于, 所述 节点还包括:
第二选择单元, 用于从所述语音质量参数中选择损伤值最大的预设个数个 语音质量参数;
第一发送单元, 用于获取所述第二选择单元选择的语音质量参数的权重, 发送所述选择的语音质量参数的权重给所述监控中心。
34、 如权利要求 33所述的节点, 其特征在于, 所述第一发送单元包括: 第五计算子单元, 用于计算所述语音质量参数对应的损伤值总和; 第六计算子单元, 用于计算所述选择的语音质量参数的损伤值与所述第五 计算子单元计算的所述语音质量参数对应的损伤值总和之间的比值;
第五确定子单元, 用于将所述第六计算子单元计算的比值确定为所述选择 的语音质量参数的权重。
35、 一种检测网络故障的监控中心, 其特征在于, 所述监控中心包括第一 存储器和第一处理器, 用于执行如权利要求 1至 10任一项权利要求所述的一种 检测网络故障的方法。
36、 一种检测网络故障的节点, 其特征在于, 所述节点包括第二存储器和 第二处理器, 用于执行如权利要求 11 至 Π任一项权利要求所述的一种检测网 络故障的方法。
PCT/CN2013/075616 2012-11-01 2013-05-14 一种检测网络故障的方法、节点及监控中心 WO2014067283A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13786143.1A EP2741439B1 (en) 2012-11-01 2013-05-14 Network failure detecting method and monitoring center
US14/079,860 US9419866B2 (en) 2012-11-01 2013-11-14 Method, node, and monitoring center detecting network fault

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210430708.1 2012-11-01
CN201210430708.1A CN102932181B (zh) 2012-11-01 2012-11-01 一种检测网络故障的方法、节点及监控中心

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/079,860 Continuation US9419866B2 (en) 2012-11-01 2013-11-14 Method, node, and monitoring center detecting network fault

Publications (1)

Publication Number Publication Date
WO2014067283A1 true WO2014067283A1 (zh) 2014-05-08

Family

ID=47646888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075616 WO2014067283A1 (zh) 2012-11-01 2013-05-14 一种检测网络故障的方法、节点及监控中心

Country Status (3)

Country Link
EP (1) EP2741439B1 (zh)
CN (1) CN102932181B (zh)
WO (1) WO2014067283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583642A (zh) * 2020-12-10 2021-03-30 广州虎牙科技有限公司 异常检测方法、模型、电子设备及计算机可读存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419866B2 (en) 2012-11-01 2016-08-16 Huawei Technologies Co., Ltd. Method, node, and monitoring center detecting network fault
CN102932181B (zh) * 2012-11-01 2016-06-22 华为技术有限公司 一种检测网络故障的方法、节点及监控中心
CN105721184B (zh) * 2014-12-03 2018-12-07 中国移动通信集团山东有限公司 一种网络链路质量的监控方法及装置
CN107371180A (zh) * 2016-05-13 2017-11-21 北京信威通信技术股份有限公司 无线自组网链接检测方法及系统
CN108074587B (zh) * 2016-11-16 2021-08-24 卢宇逍 检测通话断续的方法和装置
CN108199916A (zh) * 2017-12-27 2018-06-22 中国移动通信集团山东有限公司 一种VoLTE语音质量监测方法及系统
CN112491635A (zh) * 2019-08-20 2021-03-12 中兴通讯股份有限公司 一种链路质量检测的方法、系统、实现设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060252376A1 (en) * 2005-04-21 2006-11-09 Kenny Fok Methods and apparatus for monitoring voice quality on a wireless communication device
CN101141768A (zh) * 2007-10-12 2008-03-12 中兴通讯股份有限公司 一种模拟网络特性引起语音质量变化的测试方法及装置
CN102571421A (zh) * 2011-12-22 2012-07-11 中兴通讯股份有限公司 Ip接入网服务质量检测的方法及装置
CN102710539A (zh) * 2012-05-02 2012-10-03 中兴通讯股份有限公司 语音信息传送方法及装置
CN102932181A (zh) * 2012-11-01 2013-02-13 华为技术有限公司 一种检测网络故障的方法、节点及监控中心

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741569B1 (en) * 2000-04-18 2004-05-25 Telchemy, Incorporated Quality of service monitor for multimedia communications system
US20060221942A1 (en) * 2005-03-31 2006-10-05 Frank Fruth Intelligent voice network monitoring
WO2006136900A1 (en) * 2005-06-15 2006-12-28 Nortel Networks Limited Method and apparatus for non-intrusive single-ended voice quality assessment in voip
US7974212B2 (en) * 2008-03-19 2011-07-05 Microsoft Corporation Determining quality monitoring alerts in unified communication systems
CN102137282B (zh) * 2010-12-15 2014-02-19 华为技术有限公司 一种检测故障链路的方法、装置、节点和系统
KR101746178B1 (ko) * 2010-12-23 2017-06-27 한국전자통신연구원 광대역 음성 코덱을 사용하는 인터넷 프로토콜 기반 음성 전화 단말의 품질 측정 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060252376A1 (en) * 2005-04-21 2006-11-09 Kenny Fok Methods and apparatus for monitoring voice quality on a wireless communication device
CN101141768A (zh) * 2007-10-12 2008-03-12 中兴通讯股份有限公司 一种模拟网络特性引起语音质量变化的测试方法及装置
CN102571421A (zh) * 2011-12-22 2012-07-11 中兴通讯股份有限公司 Ip接入网服务质量检测的方法及装置
CN102710539A (zh) * 2012-05-02 2012-10-03 中兴通讯股份有限公司 语音信息传送方法及装置
CN102932181A (zh) * 2012-11-01 2013-02-13 华为技术有限公司 一种检测网络故障的方法、节点及监控中心

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583642A (zh) * 2020-12-10 2021-03-30 广州虎牙科技有限公司 异常检测方法、模型、电子设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN102932181A (zh) 2013-02-13
EP2741439A4 (en) 2014-08-27
EP2741439B1 (en) 2018-08-22
CN102932181B (zh) 2016-06-22
EP2741439A1 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2014067283A1 (zh) 一种检测网络故障的方法、节点及监控中心
CN106850337B (zh) 一种网络质量检测方法及装置
US7711751B2 (en) Real-time network performance monitoring system and related methods
EP2008114B1 (en) Method and system for alert throttling in media quality monitoring
EP2915303B1 (en) Detection of periodic impairments in media streams
US6850525B2 (en) Voice over internet protocol (VoIP) network performance monitor
US20040193709A1 (en) Methods, systems and computer program products for evaluating network performance using diagnostic rules
JP2008536346A (ja) パケットベースのネットワークにわたって動作するリアルタイムアプリケーションのサービス品質を評価するための方法および装置
US9577873B2 (en) Method and a system for providing a flexible secondary data path
US8248953B2 (en) Detecting and isolating domain specific faults
US11102273B2 (en) Uplink performance management
US20100265832A1 (en) Method and apparatus for managing a slow response on a network
KR102126362B1 (ko) 비디오 품질을 결정하기 위한 방법과 장치, 및 네트워크 결함의 위치를 찾아내기 위한 방법과 장치
EP3745732A1 (en) Data processing method, server, and data collection device
US9635569B2 (en) Method and apparatus for measuring end-to-end service level agreement in service provider network
WO2018024497A1 (en) Estimation of losses in a video stream
US20130250796A1 (en) Method for determining an aggregation scheme in a wireless network
US9419866B2 (en) Method, node, and monitoring center detecting network fault
US20140086091A1 (en) Method, apparatus, and system for analyzing network transmission characteristic
CN111629281B (zh) 一种视频传输中基于网络丢包率分布的在线连续检验方法
JP2005110038A (ja) 輻輳検知装置、tcpトラヒックの輻輳検知方法およびプログラム
CN111049704A (zh) 一种通过rfc2544计算在保护环境下倒换、回切时间的方法
RU2687040C1 (ru) Способ и устройство для контроля опорной сети
TWI298230B (en) An xdsl modem and method for stabilizing xdsl operation thereof
US10162733B2 (en) Debugging failure of a service validation test

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13786143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE