WO2014065314A1 - Organic solvent dispersoid for conductive polymer/polyanion complex, conductive composition containing said dispersoid, and conductive film obtained from said composition - Google Patents

Organic solvent dispersoid for conductive polymer/polyanion complex, conductive composition containing said dispersoid, and conductive film obtained from said composition Download PDF

Info

Publication number
WO2014065314A1
WO2014065314A1 PCT/JP2013/078683 JP2013078683W WO2014065314A1 WO 2014065314 A1 WO2014065314 A1 WO 2014065314A1 JP 2013078683 W JP2013078683 W JP 2013078683W WO 2014065314 A1 WO2014065314 A1 WO 2014065314A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
meth
poly
conductive composition
Prior art date
Application number
PCT/JP2013/078683
Other languages
French (fr)
Japanese (ja)
Inventor
実 村田
澤田 浩
Original Assignee
荒川化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荒川化学工業株式会社 filed Critical 荒川化学工業株式会社
Priority to CN201380055545.6A priority Critical patent/CN104755556B/en
Priority to KR1020157013172A priority patent/KR20150080524A/en
Priority to JP2014543319A priority patent/JP6131960B2/en
Publication of WO2014065314A1 publication Critical patent/WO2014065314A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds

Definitions

  • the present invention relates to an organic solvent dispersion obtained by dispersing or dissolving a conductive polymer / polyanion complex comprising polythiophene and a sulfoanion group-containing polymer in an organic solvent, and a conductive composition comprising the organic solvent dispersion and a binder component. And a conductive film obtained from the conductive composition.
  • Polythiophene a kind of ⁇ -conjugated conductive polymer, exhibits good electrical conductivity when doped with various anionic substances, so it can be applied to various industrial products (touch panels, capacitors, solar cells, etc.) as a conductive agent.
  • a conductive polymer / polyanion complex obtained by doping poly (3,4-ethylenedioxythiophene) with a polymer containing a sulfoanion group such as polystyrene sulfonic acid has relatively stable conductivity, Therefore, it is also used as an additive for various antistatic coating agents and conductive coating agents.
  • such a conductive polymer / polyanion complex is often distributed as an aqueous dispersion or an aqueous solution.
  • the solvent since most of the solvent is water, it is difficult to spread on a plastic substrate.
  • the coating agent contained as an agent is generally difficult to apply to plastic substrates.
  • an organic solvent dispersion liquid of a conductive polymer / polyanion complex for example, in Japanese Patent Application Laid-Open No. 2004-86400, the applicant of the present invention describes a conductive polymer / polyanion complex in an organic solvent in the presence of polyoxyalkyleneamine. It has been proposed that an organic solvent dispersion can be obtained by dispersing in an organic solvent, which provides a film having good storage stability and excellent conductivity and antistatic properties. However, depending on the coating agent in which the dispersion is blended as an antistatic agent, it may be difficult to obtain a film having a small decrease in conductivity over time.
  • a hydroxy group-containing compound such as alkyl gallate is added as a conductivity improver ( Patent Documents 2 and 3)
  • antioxidants such as bisphenol antioxidants and phosphorus antioxidants are used (see Patent Document 4)
  • ultraviolet absorbers such as benzophenone compounds are used.
  • the effect was not sufficient.
  • the present invention makes it possible to form a coating film on various substrates that is excellent in electrical conductivity and has a small decrease with time.
  • the main object is to provide a polymer / polyanion complex organic solvent dispersion.
  • Another object of the present invention is to provide a novel conductive composition that is capable of forming a film having excellent conductivity on a variety of substrates and having a small decrease with time.
  • Another object of the present invention is to provide a film that is excellent in conductivity and has a small decrease with time.
  • an organic solvent dispersion obtained by dispersing or dissolving a conductive polymer / polyanion complex comprising a polythiophene and a sulfoanion group-containing polymer in an organic solvent in the presence of a predetermined amine compound. It has been found that an organic solvent dispersion capable of solving the above problems can be obtained by further adding a predetermined polycyclic compound.
  • a conductive composition capable of solving the above-mentioned problems can be obtained by combining a predetermined binder component with the organic solvent dispersion.
  • the present inventor has found that a conductive film capable of solving the above problems can be obtained by the conductive composition.
  • the present invention relates to the following organic solvent dispersion, conductive composition and conductive film.
  • Conductive polymer / polyanion complex comprising polythiophene (a1) and sulfoanion group-containing polymer (a2) having a structure represented by the following general formula (1), amine represented by the following general formula (2)
  • A represents an alkylene group having 1 to 12 carbon atoms.
  • X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms.
  • Y represents oxyethylene, respectively. And any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.
  • the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond.
  • X 1 to X 7 are all selected from the group consisting of hydrogen, a hydroxyl group and an alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.)
  • Y represents a methylene group or a carbonyl group.
  • a broken line part represents a carbon-carbon single bond or a carbon-carbon double bond
  • X 1 represents a hydroxyl group or an alkoxy group
  • any one of X 3 , X 4 and X 5 represents (One is a hydroxyl group, and the other two are hydrogen or a hydroxyl group, respectively
  • Y represents a methylene group or a carbonyl group.
  • Conductive polymer / polyanion complex (A) comprising polythiophene (a1) and sulfoanion group-containing polymer (a2) having a structure represented by the following general formula (1), amine represented by the following general formula (2) Among the compounds represented by the compound (B) and the following general formula (3), an alcohol-soluble compound (C), an organic solvent (D) containing an alcohol (d1), an active energy ray radical polymerization compound ( ⁇ ), an epoxy resin ( ⁇ ), and one binder component selected from the group consisting of an inactive energy ray radical polymerization acrylic copolymer ( ⁇ ), and a conductive composition
  • A represents an alkylene group having 1 to 12 carbon atoms.
  • X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms.
  • Y represents oxyethylene, respectively. And any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.
  • the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond.
  • X 1 to X 7 are all selected from the group consisting of hydrogen, a hydroxyl group and an alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.)
  • Y represents a methylene group or a carbonyl group.
  • a broken line part represents a carbon-carbon single bond or a carbon-carbon double bond
  • X 1 represents a hydroxyl group or an alkoxy group
  • any one of X 3 , X 4 and X 5 represents (One is a hydroxyl group, and the other two are hydrogen or a hydroxyl group, respectively
  • Y represents a methylene group or a carbonyl group.
  • component ( ⁇ ) is a bifunctional to hexafunctional (meth) acrylate compound ( ⁇ 1) and / or a (meth) acrylic polymer ( ⁇ 2) having a free (meth) acryloyl group in the molecule. 3 or 4 conductive compositions.
  • Item 6 The conductive composition according to any one of Items 3 to 5, further comprising a photopolymerization initiator.
  • a conductive film obtained by coating the conductive composition according to any one of items 3 to 6 on a substrate and irradiating with active energy rays.
  • Item 9 The conductive composition according to any one of Items 3, 4, and 8, wherein the alicyclic epoxy resin is an epoxy resin and / or a hydrogenated epoxy resin obtained by epoxidizing an alicyclic olefin.
  • Item 11 The conductive composition according to any one of Items 3, 4, and 8 to 10, further comprising a neutralizing agent.
  • the ( ⁇ ) component is obtained by reacting an ⁇ , ⁇ unsaturated carboxylic acid ( ⁇ 1), a (meth) acrylic acid alkyl ester ( ⁇ 2) and, if necessary, a (meth) acrylic acid hydroxyalkyl ester ( ⁇ 3).
  • Item 5 The conductive composition according to Item 3 or 4, which is an acrylic copolymer.
  • Item 18 A conductive film obtained by applying the conductive composition according to any one of Items 3, 4, 15 to 17 to a substrate.
  • the organic solvent dispersion of the present invention is excellent in storage stability, and by combining with various binder components, a conductive composition capable of forming a conductive film that is excellent in conductivity and has a small decrease with time. Can be provided.
  • the conductive composition of the present invention is excellent in storage stability, and is cured with active energy rays such as ultraviolet rays and electron beams, or heat, so that the conductivity is excellent, and the decrease width with time. Can be obtained. Therefore, the conductive composition is used as various conductive coating agents for various plastic films, electronic component carrier tapes, magnetic cards, magnetic tapes, magnetic disks, release film IC trays, organic EL, solar cells, and the like. Can do.
  • the conductive coating of the present invention is excellent in conductivity and has a small decrease with time. Therefore, the conductive coating is useful as a material for various plastic films, electronic component carrier tapes, magnetic cards, magnetic tapes, magnetic disks, release film IC trays, organic EL, solar cells, and the like.
  • the organic solvent dispersion of the present invention comprises a predetermined conductive polymer / polyanion complex (A) (hereinafter referred to as component (A)), a predetermined amine compound (B) (hereinafter referred to as component (B)), Among the compounds represented by the following general formula (3), alcohol-soluble compounds (C) (hereinafter referred to as (C) component) include alcohols (d1) (hereinafter referred to as (d1) component). It is a composition containing an organic solvent (D) (hereinafter referred to as component (D)), and takes a form in which component (A) is dispersed in component (D).
  • Component (A) is a substance that imparts conductivity to the conductive composition of the present invention.
  • Polythiophene (a1) (hereinafter referred to as component (a1)) that is a conductive polymer and sulfoanion that is a dopant.
  • Group-containing polymer (a2) (hereinafter referred to as component (a2)).
  • the component (a1) is a ⁇ -conjugated conductive polymer having a structure represented by the following general formula (1).
  • A represents an alkylene group having 1 to 12 carbon atoms.
  • component (a1) examples include poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxythiophene), poly (3,4-butenedioxythiophene) and the like. It is done. Among these, poly (3,4-ethylenedioxythiophene) (hereinafter referred to as PEDOT) is particularly preferable from the viewpoint of conductivity.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • the conductive polymer other than the component (a1) for example, polythiophenes other than the component (a1), polythiophene vinylenes, polypyrroles, polyfurans, polyanilines, and other ⁇ -conjugated systems
  • a conductive polymer can be used in combination.
  • polythiophene other than the component (a1) examples include poly (thiophene), alkoxy group-substituted poly (thiophene) s [poly (3-methoxythiophene), poly (3-ethoxythiophene), poly (3-butoxythiophene) , Poly (3-hexyloxythiophene), poly (3-heptyloxythiophene), poly (3-octyloxythiophene), poly (3-decyloxythiophene), poly (3-dodecyloxythiophene), poly (3- Octadecyloxythiophene), poly (3,4-dimethoxythiophene), poly (3,4-diethoxythiophene), poly (3,4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly ( 3,4-dihexyloxythiophene), poly (3,4-diheptyloxy) Offene), poly (3,4-
  • polythiophene vinylenes examples include poly (thiophene vinylene), alkylenedioxy group-substituted poly (thiophene) [poly (3,4-ethylenedioxythiophene vinylene), poly (3,4-propylene dioxythiophene vinylene) , Poly (3,4-butenedioxythiophene vinylene)], alkoxy group-substituted poly (thiophene vinylene) s [poly (3-methoxythiophene vinylene), poly (3-ethoxythiophene vinylene), poly (3-butoxythiophene] Vinylene), poly (3-hexyloxythiophene vinylene), poly (3-heptyloxythiophene vinylene), poly (3-octyloxythiophene vinylene), poly (3-decyloxythiophene vinylene), poly (3-dodecyloxythiophene) Vinyle ), Poly (3-oct
  • polypyrrole examples include poly (pyrrole), alkoxy group-substituted poly (pyrrole) [poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyl).
  • poly (furan) examples include poly (furan), alkoxy group-substituted poly (furan) [poly (3-methoxyfuran), poly (3-ethoxyfuran), poly (3-butoxyfuran), poly (3 -Hexyloxyfuran), poly (3-methyl-4-hexyloxyfuran), poly (3-methyl-4-hexyloxyfuran) and the like], alkyl group-substituted poly (furan) s [poly (3-methylfuran) Poly (3-ethylfuran), poly (3-n-propylfuran), poly (3-butylfuran), poly (3-octylfuran), poly (3-decylfuran), poly (3-dodecylfuran), Poly (3,4-dimethylfuran), poly (3,4-dibutylfuran, etc.)], carboxyl group-substituted poly (furan) s [poly (3-carboxyfuran), poly (3- Til-4-carbox
  • polyanilines examples include poly (aniline), poly (2-methylaniline), poly (3-isobutylaniline), poly (2-aniline sulfonic acid), poly (3-aniline sulfonic acid), and the like.
  • the component (a1) and other ⁇ -conjugated conductive polymers can be obtained by a known chemical oxidative polymerization method or electrolytic polymerization method.
  • a method of synthesizing a conductive polymer in a solution containing a precursor monomer, a dopant and an oxidizing agent is mentioned.
  • a supporting electrode is included in the electrolytic solution containing the precursor monomer and the dopant.
  • a method of forming a conductive polymer thereon In the polymerization, water or a component (D) described later may be used as a solvent.
  • metal salt oxidizing agents (ferric chloride, ferric sulfate, ferric nitrate, cupric chloride, aluminum chloride, etc.), non-metal salt oxidizing agents (ammonium peroxodisulfate, peroxo) Sodium disulfate, potassium peroxodisulfate, boron trifluoride, ozone, benzoyl peroxide, oxygen, etc.).
  • the sulfoan anion group-containing polymer as the component (a2) is a doping component for the component (a1), and specifically, a homopolymer of a sulfonic acid polymerizable monomer, a sulfonic acid polymerizable monomer and a sulfo anion group.
  • Various known materials such as a copolymer with a polymerizable monomer having no benzene can be used without particular limitation.
  • the “sulfoanion group” means a sulfo group or a monosubstituted sulfoester group which is an anionic functional group.
  • the “monosubstituted sulfoester group” refers to a group in which hydrogen on a hydroxyl group in the sulfoester group is substituted with an alkyl group (having about 1 to 20 carbon atoms).
  • sulfonic acid-based polymerizable monomers examples include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, ⁇ -methyl styrene sulfonic acid, methallyloxybenzene sulfonic acid, allyloxybenzene sulfonic acid, 1,3-butadiene- 1-sulfonic acid, 1-methyl-1,3-butadiene-2-sulfonic acid, 1-methyl-1,3-butadiene-4-sulfonic acid, isoprenesulfonic acid, ethyl (meth) acrylate sulfonic acid (CH 2 ⁇ C (CH 3 ) —COO— (CH 2 ) 2 —SO 3 H), (meth) acrylic acid propylsulfonic acid (CH 2 ⁇ C (CH 3 ) —COO— (CH 2 ) 3 —SO 3 H) (Meth) acrylic acid-t-
  • polymerizable monomer having no sulfoanionic group examples include aromatic monomers [styrene, p-methylstyrene, p-ethylstyrene, p-butylstyrene, 2,4,6-trimethylstyrene, p-methoxystyrene, ⁇ -methylstyrene, vinylphenol, 2-vinylnaphthalene, 6-methyl-2-vinylnaphthalene, etc.], non-alicyclic dienes [1,3-butadiene, 1-methyl-1,3-butadiene, 2-methyl- 1,3-butadiene, 1,4-dimethyl-1,3-butadiene, 1,2-dimethyl-1,3-butadiene, 1,3-dimethyl-1,3-butadiene, 1-octyl-1,3- Butadiene, 2-octyl-1,3-butadiene, 1-phenyl-1,3-butadiene, 2-pheny
  • polystyrene sulfonic acid polyvinyl sulfonic acid, polyallyl sulfonic acid, and polyacrylic are preferable because they have good doping performance and contribute to the stability of the organic solvent dispersion of the component (A) described later.
  • At least one selected from the group consisting of carboxylic acid, poly-2-acrylamido-2-methylpropanecarboxylic acid, polyisoprene carboxylic acid, polyacrylic acid, and salts thereof, in particular polystyrene sulfonic acid and / or its salt (Especially Nat Umushio) (hereinafter sometimes collectively referred to as PSS.) are preferred.
  • the method of doping the component (a1) with the component (a2) is not particularly limited.
  • the component (a2) is added to the component (a1) and mixed by stirring by various known means, or the production of the component (a1) And a method of coexisting the component (a2) in the reaction system.
  • the amount of component (a1) and component (a2) used is not particularly limited, but is usually about 0.5 to 5 parts by weight of component (a2) with respect to 1 part by weight of component (a1).
  • the component (A) When the component (A) is prepared as an aqueous solution or aqueous dispersion, various known methods (Japanese Patent Application Laid-Open Nos. 2008-045116, 2008-156442, 2008-222850, and 2011) are used. -2081616 etc.) to obtain an organic solvent dispersion. Specifically, for example, when an aqueous solution or aqueous dispersion of PEDOT / PSS is used as the component (A), the PEDOT / PSS blue color is obtained by drying it with various known drying means (spray dryer or the like). A solid can be obtained and can be used as component (A).
  • PEDOT and PSS are particularly preferable from the viewpoints of chemical stability as a conductive polymer / dopant complex, conductivity, and hue and transparency of a film made of the conductive composition of the present invention.
  • a complex consisting of (hereinafter referred to as PEDOT / PSS) is preferred.
  • PEDOT / PSS for example, commercially available products such as “Clevios P” (trade name; manufactured by Heraeus) and “Orgacon” (trade name; manufactured by Agfa Gebalto, Japan) can be used.
  • the component (B) is a compound represented by the following general formula (2) and acts as a dispersant for the component (A).
  • the storage stability of the organic solvent dispersion of the present invention is improved, and the storage stability is improved without impairing the conductivity of the conductive composition containing the component. You can also.
  • X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms.
  • Y represents oxyethylene, respectively. And any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.
  • Examples of the compound represented by the general formula (2) include N, N-poly (oxyethylene) -hexylamine, N, N-poly (oxypropylene) -hexylamine, N, N-poly (oxyethylene Oxypropylene) -hexylamine, N, N-poly (oxyethylene) -decylamine, N, N-poly (oxypropylene) -decylamine, N, N-poly (oxyethylene oxypropylene) -decylamine, N, N- Poly (oxyethylene) -decylamine, N, N-poly (oxypropylene) -decylamine, N, N-poly (oxyethylene oxypropylene) -decylamine, N, N-poly (oxyethylene oxypropylene) -decylamine, N, N-poly (oxyethylene) -pentadecylamine, N , N-poly (oxypropylene) -pent
  • amine-based dispersants other than component (B) such as secondary polyoxyalkyleneamines such as polyoxyethylene stearylamine and polyoxyethylene laurylamine, polyoxyethylene alkyl ether, polyoxyethylene styrylphenyl
  • Non-amine nonionic surfactants such as ether and polyoxyethylene sorbitan fatty acid ester can be used in combination, and these may be used in combination of two or more.
  • Component (C) is an alcohol-soluble compound represented by the following general formula (3). Due to the action of the component (C), the conductivity of the film obtained from the conductive composition of the present invention is improved, and the decrease width with time is reduced.
  • the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond.
  • X 1 to X 7 are all selected from the group consisting of hydrogen, a hydroxyl group and an alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.)
  • Y represents a methylene group or a carbonyl group.
  • examples of the alkoxy group in the formula (3) include those having an alkyl group such as a methoxy group, an ethoxy group, and a propoxy group having about 1 to 5 carbon atoms (the same applies hereinafter).
  • component (C) from the viewpoint of the conductivity of the conductive film of the present invention, those in which 3 to 5 of X 1 to X 7 are hydroxyl groups are more preferable, and in particular, the following general formula (3-1) ) Is preferred.
  • the latter compound is considered to capture transition metal ions (iron, copper, magnesium, etc.) derived from the component (A) in the organic solvent dispersion of the present invention, and as a result, the organic solvent dispersion was used. The temporal decrease in the conductivity of the film obtained from the conductive composition is reduced.
  • the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond.
  • X 1 represents a hydroxyl group or an alkoxy group.
  • X 3 , X 4 and X 5 (One of them is a hydroxyl group, and the remaining two are hydrogen or a hydroxyl group, respectively, and Y represents a methylene group or a carbonyl group.)
  • the compounds represented by the formula (3-1) are used.
  • the compounds represented by the following formulas (3-2) to (3-4), particularly those represented by the following formula (3-2) are used.
  • the conductive coating film according to the present invention is preferable because the decrease in conductivity over time is further reduced.
  • X 1 represents a hydroxyl group or an alkoxy group.
  • X 1 represents a hydroxyl group or an alkoxy group.
  • X 1 represents a hydroxyl group or an alkoxy group.
  • an alcohol-soluble compound was used as the component (C) because the organic solvent dispersion of the present invention contains an alcohol ((d1) component) ((D This is because component) is used as a dispersion medium. Therefore, even if it is a compound represented by Formula (3) or a compound structurally similar to this, what is not alcohol-soluble is not included in (C) component.
  • any one or two or more of X 1 to X 7 in the formula (3) is a glycoside group (for example, —ORha (Rha represents a rhamnosyl residue), —ORu (Ru Is a group represented by a rutinosyl ( ⁇ -lutinose) residue), but this has a strong hydrophilicity at the glycoside group and is difficult to dissolve in the component (D). It is difficult to achieve the desired effect.
  • —ORha represents a rhamnosyl residue
  • ORu Ru Is a group represented by a rutinosyl ( ⁇ -lutinose) residue
  • alcohol-soluble means that the alcohol is soluble in an alcohol solvent (particularly ethanol) at room temperature, but is hardly soluble or insoluble in water.
  • the solution exhibits a transparent appearance without turbidity.
  • Examples of the component (d1) constituting the component (D) include non-ether monoalcohol [methanol, ethanol, propanol, butanol, isopropyl alcohol, etc.], non-ether diol [ethylene glycol, neopentyl glycol, propylene glycol, 1 , 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol and dipropylene glycol, etc.], ether alcohols (dioxane, diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, propylene glycol monomethyl) Ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), and the like.
  • non-ether monoalcohol methanol, ethanol, propanol, butanol, isopropyl alcohol, etc.
  • non-ether diol ethylene glycol,
  • the amount of the component (d1) in the component (D) is not particularly limited, but is usually about 95 to 99.5% by weight, preferably about 97 to 100% by weight, and more preferably 100% by weight.
  • the component (D) examples include solvents other than the component (d1) (hereinafter referred to as the component (d2)) such as ketones, alicyclic hydrocarbons, nitrogen-containing compound solvents, sulfur-containing compound solvents, and the like. Can be included. Specifically, acetone, methyl ethyl ketone, etc. as the ketones, benzene, toluene, xylene, etc. as the aromatic hydrocarbons, cyclohexane, methylcyclohexane, etc.
  • the ester Examples include ethyl formate and ethyl acetate
  • nitriles include acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, and the like
  • nitrogen-containing compounds include N-methyl-2-pyrrolidone and 3 -Methyl-2-oxazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide and the like
  • examples of the sulfur-containing compound solvent include dimethyl sulfoxide, hexamethylene phosphortriamide, and the like. May be combined.
  • the organic solvent dispersion of the present invention is obtained by blending (A) component, (B) component and (C) component with (D) component, and dispersing and mixing them by various known means.
  • the addition order of each component is not specifically limited.
  • various known dispersing devices emulsification dispersing device, ultrasonic dispersing device, etc.
  • the content of the component (A), the component (B), the component (C) and the component (D) in the organic solvent dispersion of the present invention is not particularly limited, but the storage stability of the organic solvent dispersion, In consideration of the storage stability of the conductive composition obtained using the organic solvent dispersion, the conductivity of the film obtained from the conductive composition and its stability over time, etc., the following is usually as follows: .
  • the solid content concentration of the organic solvent dispersion of the present invention is not particularly limited, and may be appropriately determined according to its use. Usually, it is about 0.5 to 10% by weight, preferably about 3 to 8% by weight. is there.
  • the organic solvent dispersion is a non-aqueous composition using the organic solvent as a solvent.
  • the component (A) water derived from this may be inevitably mixed.
  • the water content in the organic solvent dispersion is usually in the range of 5% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less, and substantially 0% by weight. %.
  • the particle size of the component (A) in the organic solvent dispersion is not particularly limited, but usually the average primary particle size is about 10 to 500 nm, and considering the storage stability of the organic solvent dispersion,
  • the thickness is preferably about 10 to 50 nm.
  • the conductive composition of the present invention comprises the component (A), the component (B), the component (C), the component (D), the active energy ray radical polymerization compound ( ⁇ ) (hereinafter referred to as the component ( ⁇ ). 1) selected from the group consisting of epoxy resin ( ⁇ ) (hereinafter referred to as ( ⁇ ) component) and inactive energy ray radical polymerization type acrylic copolymer ( ⁇ ) (hereinafter referred to as ( ⁇ ) component). It is a composition containing a seed binder component.
  • A represents an alkylene group having 1 to 12 carbon atoms.
  • X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms.
  • Y represents oxyethylene, respectively. Represents any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.
  • the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond.
  • X 1 to X 7 are all selected from the group consisting of hydrogen, hydroxyl group and alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.)
  • Y represents a methylene group or a carbonyl group.
  • the conductive composition according to the first aspect of the present invention uses the component ( ⁇ ) as a binder component.
  • the (A) component, (B) component, and (C) component (D) component which are contained in the said composition are respectively the same as what was mentioned above.
  • the ( ⁇ ) component various known compounds can be used without particular limitation as long as they are radically polymerized by active energy rays such as ultraviolet rays and electron beams to form a cured film.
  • active energy rays such as ultraviolet rays and electron beams
  • a bifunctional to hexafunctional (meth) acrylate compound ( ⁇ 1) hereinafter referred to as ( ⁇ 1) component
  • ⁇ 1 component a bifunctional to hexafunctional (meth) acrylate compound
  • ⁇ 2 hereinafter referred to as the ( ⁇ 2) component
  • the product ( ⁇ 2) (hereinafter referred to as the ( ⁇ 2) component) is preferable.
  • Examples of the ( ⁇ 1) component include bifunctional (meth) acrylate compounds [hexamethylene glycol diacrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol] Di (meth) acrylate, hexaethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl Glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-f Sundiol di (meth) acrylate, 2,2′-bis (4-acryloxydiethoxyphenyl) propane, 1,9-
  • modified polyfunctional (meth) acrylate compounds such as polyurethane polyacrylate, polyester polyacrylate, epoxy polyacrylate, and the like can be used.
  • polyurethane acrylate an isocyanate group-terminated prepolymer obtained by urethanation reaction of various known polyols and polyisocyanates, and further an acrylate oligomer obtained by urethanation of a hydroxyl group-containing (meth) acrylate, a polyol
  • examples include acrylate oligomers obtained by reacting isocyanate group-terminated prepolymers.
  • polyols examples include high molecular weight polyols such as polyester polyol, polyalkylene glycol, and polycarbonate polyol, and these may be used in combination of two or more.
  • polyester polyol examples include polycondensates (polyester diols) of various known dicarboxylic acids and low molecular diols.
  • dicarboxylic acids include succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, and itacone.
  • examples include acids, mesaconic acid, citraconic acid, muconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, and acid anhydrides thereof.
  • low-molecular diol examples include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, , 5-pentanediol, 1,6-hexanediol, neopentyl glycol, cyclohexane-1,4-dimethanol, 1,2- and 1,4-cyclohexanediol, 2-ethyl-2-butylpropanediol, etc. It is done. Two or more of these may be combined.
  • polyester polyol examples include polyaddition products (polyester diol) obtained by ring-opening reaction of various known lactones using the low molecular diol as an initiator.
  • lactones examples include ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -caprolactone. Two or more of these may be combined.
  • polyalkylene glycol examples include polyalkylene diols such as various known polyethylene glycols, polypropylene glycols, and poly (ethylene / propylene) glycols, and these may be used in combination of two or more.
  • polycarbonate polyol examples include a condensation reaction product of one low molecular weight carbonate compound selected from the group consisting of dimethyl carbonate, diphenyl carbonate, ethylene carbonate and the like and the low molecular diol.
  • polyisocyanate examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylene diisocyanate, diphenylmethane-4,4-diisocyanate, 3-methyl-diphenylmethane diisocyanate, or 1,5-naphthalene diisocyanate.
  • Aromatic diisocyanate compounds such as dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate and the like; and dimers and hexamers thereof. These may be used in combination of two or more.
  • Examples of the hydroxyl group-containing mono (meth) acrylate compound include 1-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxy (meth) acrylate. Butyl, 4-hydroxybutyl (meth) acrylate, hydroxycyclohexyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl 2-hydroxypropionate, (meta ) Hydroxyphenyl acrylate and the like, and two or more of these may be combined.
  • isocyanate group-containing mono (meth) acrylate compound examples include 2-isocyanatoethyl (meth) acrylate, 1,1- (bisacryloyloxymethyl) ethyl isocyanate, and these may be used in combination of two or more. .
  • polyester polyacrylate a hydroxyl-terminated polyester obtained by esterifying the dicarboxylic acid and a low molecular diol, and an acrylate oligomer obtained by esterifying a carboxyl group-containing mono (meth) acrylate compound
  • examples include acrylate oligomers obtained by esterifying the hydroxyl group-containing mono (meth) acrylate compound with a carboxyl group-terminated polyester obtained by reacting the dicarboxylic acid with a diol compound.
  • carboxyl group-containing mono (meth) acrylate compound examples include acrylic acid, methacrylic acid, itaconic acid, (anhydrous) maleic acid, fumaric acid, and crotonic acid. These may be used in combination of two or more. .
  • Examples of the epoxy polyacrylate include acrylate oligomers obtained by addition reaction of the carboxyl group-containing mono (meth) acrylate compound to an epoxy resin (compound) having at least two epoxy groups in one molecule.
  • Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type novolac type epoxy resin, and naphthalenediol.
  • Type epoxy resin phenol dicyclopentadiene novolak type epoxy resin and hydrides thereof; 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 1,2-epoxy-vinylcyclohexene, bis (3 4-epoxycyclohexylmethyl) adipate, 1-epoxyethyl-3,4-epoxycyclohexane, 1,2: 8,9 diepoxy limonene, 3,4-epoxycyclohexylme 1,2-epoxy-4- (2-oxiranyl) cyclosexane adduct of diol, dicyclopentadiene diepoxide, 2,2-bis (hydroxymethyl) -1-butanol (manufactured by Daicel Chemical Industries, Ltd., trade name) And an alicyclic epoxy resin such as “EHPE-3150”), which may be used in combination of two or more.
  • EHPE-3150
  • those of the oligomer type include, for example, epoxidized butanetetracarboxylic acid tetrakis- (3-cyclohexenylmethyl) modified ⁇ -caprolactone (for example, trade name “manufactured by Daicel Chemical Industries, Ltd.”)
  • examples include epoxy resins obtained by epoxidizing alicyclic olefins such as Epolide GT401 ").
  • the ( ⁇ 2) component is not particularly limited as long as it is a (meth) acrylic polymer having a free (meth) acryloyl group in the molecule (hereinafter referred to as a (meth) acrylic polymer). Can be used.
  • the “(meth) acrylic polymer” means a (meth) acrylic homopolymer and / or a (meth) acrylic copolymer.
  • Specific examples of the component ( ⁇ 2) include at least one selected from the group consisting of the following components ( ⁇ 2-1) to ( ⁇ 2-4).
  • ( ⁇ 2-1) component (meth) acrylic polymer having an alkyl ester group and an epoxy group in the side chain and / or (meth) acrylic polymer having an epoxy group in the side chain and no alkyl ester group (Hereinafter referred to as ( ⁇ 2-1 ′) component) and the above-mentioned carboxyl group-containing mono (meth) acrylate compound, an acrylic polymer having a free (meth) acryloyl group and a hydroxyl group in the molecule .
  • ( ⁇ 2-2) component (meth) acrylic polymer having an alkyl ester group and a carboxyl group in the side chain and / or (meth) acrylic polymer having a carboxyl group in the side chain and no alkyl ester group (Hereinafter referred to as the ( ⁇ 2-2 ′) component) and the epoxy group-containing mono (meth) acrylate compound, which is an esterification reaction product, an acrylic polymerization having a free (meth) acryloyl group and a hydroxyl group in the molecule object.
  • ( ⁇ 2-3) component (meth) acrylic polymer having an alkyl ester group and an isocyanate group in the side chain and / or (meth) acrylic polymer having an isocyanate group in the side chain and no alkyl ester group (Meth) acrylic having a urethane bond and a free (meth) acryloyl group in the molecule, which is a urethanization reaction product of the hydroxyl group-containing mono (meth) acrylate (hereinafter referred to as ( ⁇ 2-3 ′) component) Polymer.
  • ( ⁇ 2-4) component (meth) acrylic polymer having an alkyl ester group and a hydroxyl group and a carboxyl group in the side chain, and / or (meth) acrylic having a hydroxyl group in the side chain and no alkyl ester group
  • This is a urethanization reaction product of a polymer (hereinafter referred to as ( ⁇ 2-4 ′) component) and the above-mentioned isocyanate group-containing mono (meth) acrylate, and has a urethane bond and a free (meth) acryloyl group in the molecule.
  • (Meth) acrylic polymer (Meth) acrylic polymer.
  • Examples of the ( ⁇ 2-1 ′) component that is a precursor polymer of the ( ⁇ 2-1) component include, for example, a homopolymer obtained only from the epoxy group-containing mono (meth) acrylate compound, and the epoxy group-containing mono ( A binary copolymer obtained from a (meth) acrylate compound and an alkyl ester group-containing mono (meth) acrylate compound, a ternary copolymer further comprising another monomer in the homopolymer or binary copolymer Etc.
  • alkyl ester group-containing mono (meth) acrylate compound examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylic.
  • a rate, isobonyl (meth) acrylate, etc. are mentioned, These may combine 2 or more types.
  • Examples of the other monomers include the hydroxyl group-containing mono (meth) acrylate compounds, amide monomers [(meth) acrylamide, N-methylol (meth) acrylamide, N, N′-dimethyl (meth) acrylamide, N-vinyl].
  • succinimide monomers [N- (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, N- (meth) acryloyl-8-oxyoctamethylene succinimide], ultraviolet absorption unit Containing mono (meth) acrylate [2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-methacrylic) Roxyethylfe ) -2H-benzotriazole, 2- [2 ′-(meth) acryloyloxy-5′-methylphenyl] benzotriazole, 2- [2 ′-(meth) acryloyloxy-5′-methylphenyl] benzotriazole, 2- [2 ′-(meth) acryloyloxy-5′-t-octy
  • the weight ratio of the alkyl ester group-containing mono (meth) acrylate compound and the epoxy group-containing mono (meth) acrylate compound, or the weight weight of the epoxy group-containing mono (meth) acrylate compound and other monomers is not particularly limited, but is usually in the range of about 1:99 to 95: 5 in order.
  • the amount of the other monomer used is usually 1 to the total weight of the alkyl ester group-containing mono (meth) acrylate compound and the epoxy group-containing mono (meth) acrylate compound. The range is about 95%.
  • the production conditions for the ( ⁇ 2-1 ′) component are not particularly limited, and various known polymerization reactions can be employed. Specifically, it can be obtained, for example, by subjecting the raw material monomer to a (co) polymerization reaction at a temperature of usually about 40 to 150 ° C. for about 2 to 12 hours in the presence of various known radical polymerization initiators.
  • hydrogen peroxide ammonium persulfate, potassium persulfate, benzoyl peroxide, dicumyl peroxide, lauryl peroxide 2,2′-azobisisobutyronitrile, dimethyl-2,2′-azo Radical polymerization initiators such as bisisobutyrate, chain transfer agents such as lauryl mercaptan, dodecyl mercaptan, 2-mercaptobenzothiazole, bromotrichloromethane, and the component (D) (organic solvent) can be used.
  • D organic solvent
  • the addition reaction between the obtained ( ⁇ 2-1 ′) component and the carboxyl group-containing mono (meth) acrylate compound is usually performed at a temperature of about 80 to 120 ° C. in the absence of a solvent or in the presence of an organic solvent that does not react with both components. Just do it.
  • the amount of both components used is not particularly limited, but usually the amount of the carboxyl group-containing mono (meth) acrylate compound used is 1.0 to 1.1 mol per mol of the epoxy group in the ( ⁇ 2-1 ′) component. It is a range which becomes a grade.
  • a polymerization inhibitor such as methoquinone, hydroquinone, trimethylhydroquinone, N-nitrosophenylhydroxylamine or the like can be used in the addition reaction, or the reaction system can be bubbled with air.
  • the physical properties of the ( ⁇ 2-1) component thus obtained are not particularly limited, but the weight average molecular weight (referred to polystyrene conversion by gel permeation chromatography, hereinafter the same) is usually about 3,000 to 50,000. .
  • Examples of the ( ⁇ 2-2 ′) component which is a precursor polymer of the ( ⁇ 2-2) component include, for example, a homopolymer obtained only from the carboxyl group-containing mono (meth) acrylate compound, and the carboxyl group-containing mono ( A ternary copolymer obtained from a (meth) acrylate compound and the above-mentioned mono (meth) acrylate compound containing an alkyl ester group, a ternary having the other monomer as a further constituent component in the homopolymer or binary copolymer A copolymer etc. are mentioned.
  • the weight ratio of the alkyl ester group-containing mono (meth) acrylate compound to the carboxyl group-containing mono (meth) acrylate compound, or the use of the carboxyl group-containing mono (meth) acrylate compound and other monomers is not particularly limited, but is usually in the range of about 1:99 to 95: 5 in order.
  • the amount of the other monomer used is usually 1 to the total weight of the alkyl ester group-containing mono (meth) acrylate compound and the carboxyl group-containing mono (meth) acrylate compound. The range is about 95%.
  • the production conditions of the ( ⁇ 2-2 ′) component are not particularly limited, and may be the same as those of the ( ⁇ 2-1 ′) component.
  • the conditions for the addition reaction of the obtained ( ⁇ 2-2 ′) component and the epoxy group-containing mono (meth) acrylate compound were the reaction of the aforementioned ( ⁇ 2-1 ′) component and the carboxyl group-containing mono (meth) acrylate compound. It is the same as conditions.
  • the amount of the epoxy group-containing mono (meth) acrylate compound used per mole of the carboxyl group in the component ( ⁇ 2-2 ′) is not particularly limited, but is usually in the range of about 0.9 to 1.0 mole.
  • the physical properties of the ( ⁇ 2-2) component thus obtained are not particularly limited, and the weight average molecular weight is usually about 3,000 to 50,000.
  • Examples of the ( ⁇ 2-3 ′) component which is a precursor polymer of the ( ⁇ 2-3) component, include homopolymers obtained only from the isocyanate group-containing mono (meth) acrylate compound, and the isocyanate group-containing mono ( Binary copolymers obtained from a meth) acrylate compound and an alkyl ester group-containing mono (meth) acrylate compound, and other monomers in the homopolymer or binary copolymer (provided that the hydroxyl group-containing mono (meth) acrylate) And terpolymers, etc., whose constituents are excluded.
  • the weight ratio of the alkyl ester group-containing mono (meth) acrylate compound and the isocyanate group-containing mono (meth) acrylate compound, or the weight of the isocyanate group-containing mono (meth) acrylate compound and other monomers is not particularly limited, but is usually in the range of about 1:99 to 95: 5 in order.
  • the amount of the other monomer used is usually 1 to the total weight of the alkyl ester group-containing mono (meth) acrylate compound and the isocyanate group-containing mono (meth) acrylate compound. The range is about 95%.
  • the reaction (urethane reaction) of the ( ⁇ 2-3 ′) component and the hydroxyl group-containing mono (meth) acrylate is usually carried out at about 60 to 120 ° C. in the absence of a solvent or in the presence of an organic solvent that does not react with both components. do it.
  • the amount of both components used is not particularly limited, but the amount of the hydroxyl group-containing mono (meth) acrylate compound is usually about 1.0 to 1.1 moles per mole of the isocyanate group in the ( ⁇ 2-3 ′) component. This is the range.
  • urethanization catalysts such as organometallic catalysts such as dibutyltin dilaurate, dioctyltin dilaurate, and bismuth octylate, and amine catalysts such as organic amines such as triethylamine and triethylenediamine and their salts, etc. Can be used together.
  • the physical properties of the ( ⁇ 2-3) component thus obtained are not particularly limited, but the weight average molecular weight is usually about 3,000 to 50,000.
  • Examples of the ( ⁇ 2-4 ′) component which is a precursor polymer of the ( ⁇ 2-4) component include, for example, a homopolymer obtained only from the hydroxyl group-containing mono (meth) acrylate compound, and the hydroxyl group-containing mono (meth) A binary copolymer obtained from an acrylate compound and an alkyl ester group-containing mono (meth) acrylate compound, a homopolymer or a binary copolymer, and other monomers (however, the isocyanate group-containing mono (meth) acrylate compound) And the like, and terpolymers having the above-mentioned carboxyl group-containing mono (meth) acrylate compound and epoxy group-containing mono (meth) acrylate compound) as constituent components.
  • the weight ratio of the alkyl ester group-containing mono (meth) acrylate compound and the hydroxyl group-containing mono (meth) acrylate compound, or the weight ratio of the hydroxyl group-containing mono (meth) acrylate compound and the other monomer is although not particularly limited, it is usually in the range of about 1:99 to 90:10 in order.
  • the amount of the other monomer used is usually 1 with respect to a total of 100 mol% of the alkyl ester group-containing mono (meth) acrylate compound and the hydroxyl group-containing mono (meth) acrylate compound. It is in the range of about ⁇ 95 mol%.
  • the reaction (urethanization reaction) between the ( ⁇ 2-4 ′) component and the isocyanate-containing mono (meth) acrylate is the same as the reaction between the ( ⁇ 2-3 ′) component and the hydroxyl group-containing mono (meth) acrylate.
  • the amount of the epoxy group-containing mono (meth) acrylate compound used per 1 mol of the hydroxyl group in the ( ⁇ 2-4 ′) component is not particularly limited, but is usually in the range of about 0.9 to 1.0 mol.
  • the physical properties of the ( ⁇ 2-4) component thus obtained are not particularly limited, but the weight average molecular weight is usually about 3,000 to 50,000.
  • the conductive composition of the present invention containing the component ( ⁇ ) can further contain a photopolymerization initiator.
  • a photopolymerization initiator for example, 1-hydroxy-cyclohexyl-phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-cyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl -Propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1- [4- (methylthio) Phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, bis (2,4,6-trimethylbenzoyl) -phenylphos Fin oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 4-methylbenzophenone,
  • the method for preparing the conductive composition of the first aspect is not particularly limited, and the organic solvent dispersion of the present invention and the component ( ⁇ ) may be dispersed and mixed by various known means.
  • the component (A), the component (B), the component (C) and the component ( ⁇ ) and the photopolymerization initiator used as necessary are blended in the component (D), and dispersed and mixed by various known means. It may be made. In the latter case, the order of adding the solute components is not particularly limited.
  • the electroconductive composition obtained by the latter method contains the organic-solvent dispersion of this invention as a result.
  • the content of the component (A), the component (B), the component (C), the component ( ⁇ ) and the photopolymerization initiator in the conductive composition is not particularly limited, and may be set as appropriate according to the application. Usually it is as follows. (However, the total of all components does not exceed 100% by weight. In addition, components other than the component (D) are in terms of solid content.))
  • Component (A) about 0.01 to 2% by weight, preferably 0.02 to 1.5% by weight
  • Component (B) about 0.01 to 2% by weight, preferably 0.02 to 1.5% by weight
  • Component (C) about 0.01 to 10% by weight, preferably 0.01 to 5% by weight
  • Component (D) about 70 to 99.95% by weight, preferably 80 to 99.5% by weight
  • Component ( ⁇ ) about 0.01 to 29.95% by weight, preferably 0.02 to 29% by weight
  • Photopolymerization initiator about 0.01 to 3% by weight, preferably 0.02 to 2% by weight
  • the conductive composition according to the second aspect of the present invention uses the ( ⁇ ) component as a binder component.
  • the (A) component, (B) component, and (C) component (D) component which are contained in the said composition are respectively the same as what was mentioned above.
  • the ( ⁇ ) component various known ones can be used without particular limitation as long as they are epoxy resins (compounds) having at least two epoxy groups in the molecule. Specific examples include at least one selected from the group consisting of an aromatic epoxy resin, an alicyclic epoxy resin, and an aliphatic epoxy resin. Among these, alicyclic epoxy resins are preferable because they are excellent in both hardness and transparency of the cured film.
  • aromatic epoxy resin examples include bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, novolak type epoxy resins such as phenol novolak type epoxy resin and cresol novolak type epoxy resin; Triphenolalkane type epoxy resins such as epoxy resins and triphenolpropane type epoxy resins; phenol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins, stilbene type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, cyclopentadiene type epoxy resins Etc., and two or more of them may be combined.
  • bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin
  • novolak type epoxy resins such as phenol novolak type epoxy resin and cresol novolak type epoxy resin
  • Triphenolalkane type epoxy resins such as epoxy resins and triphenolpropane type epoxy resins
  • phenol aralkyl type epoxy resins biphenyl aral
  • an epoxy resin and / or a hydrogenated epoxy resin obtained by epoxidizing an alicyclic olefin is preferable.
  • the former include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 1,2-epoxy-vinylcyclohexene, bis (3,4-epoxycyclohexylmethyl) adipate, 1-epoxyethyl 1,3,4 of 1,4-epoxycyclohexane, 1,2: 8,9 diepoxy limonene, 3,4-epoxycyclohexyl methanol, dicyclopentadiene diepoxide, 2,2-bis (hydroxymethyl) -1-butanol -Epoxy-4- (2-oxiranyl) cyclosexane adduct (for example, “EHPE-3150” manufactured by Daicel Chemical Industries, Ltd.), oligo
  • Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols.
  • the polyhydric alcohols include 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, cyclohexane.
  • Examples include dimethanol, hydrogenated bisphenol, and polyalkylene glycols having an alkylene glycol structure.
  • Examples of the polyalkylene glycols include polyethylene glycol, polypropylene glycol, polybutylene glycol and the like.
  • aliphatic epoxy resins include polybutadiene diglycidyl ether, epoxidized oil (for example, “Adeka Sizer O-130P” (epoxidized soybean oil), “Adeka Sizer O-180A” (epoxidized linseed oil) ), Dimer acid glycidyl ester (“Epototo YD-171”, “Epototo YD-172”, both manufactured by Toto Kasei Co., Ltd.) and the like.
  • epoxidized oil for example, “Adeka Sizer O-130P” (epoxidized soybean oil), “Adeka Sizer O-180A” (epoxidized linseed oil)
  • Dimer acid glycidyl ester (“Epototo YD-171”, “Epototo YD-172”, both manufactured by Toto Kasei Co., Ltd.) and the like.
  • the conductive composition of the second aspect may further contain an epoxy group reactive crosslinking agent.
  • This is a component used for imparting hardness to the resulting conductive film when the conductive composition is thermally cured, and various known ones as long as it is a crosslinking agent that easily reacts with an epoxy group, for example, Examples of the acid anhydride crosslinking agent, imidazole crosslinking agent, amine crosslinking agent, and polymercaptan crosslinking agent.
  • the acid anhydride crosslinking agent is not particularly limited as long as it is an anhydride of a carboxylic acid having at least two carboxyl groups in one molecule, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride Aromatic carboxylic anhydrides such as, maleic anhydride, aliphatic carboxylic anhydrides such as glutaric anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride Examples thereof include alicyclic carboxylic acid anhydrides such as methyl nadic acid and anhydrous nadic acid. Moreover, you may combine these 2 or more types. Of these, hexahydrophthalic anhydride and / or methylhexahydrophthalic anhydride are preferred because the cured coating is unlikely to turn yellow.
  • imidazole-based crosslinking agent examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, epoxy imidazole adduct, and the like. Can be combined.
  • amine-based crosslinking agent examples include polyamines such as diethyleneamine, triethylenetetramine, dipropylenediamine, diethylaminopropylamine, N-aminoethylpiverazine, metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone. Two or more types can be combined.
  • the conductive composition may further contain a neutralizing agent.
  • the neutralizing agent include ammonia, primary alkyl monoamines [methylamine, ethylamine, propylamine, butylamine, oleylamine, cyclohexylamine, etc.], secondary alkyl monoamines [dimethylamine, Diethylamine, dipropylamine, dibutylamine, dicyclohexylamine, etc.), tertiary alkyl monoamines [trimethylamine, triethylamine, tripropylamine, tributylamine, tricyclohexylamine, etc.] and the like. Also good. Among these, tertiary alkyl monoamines and / or ammonia are preferable.
  • a cationic polymerization catalyst may be further included.
  • diphenyliodonium hexafluorophosphate, triphenylsulfonium hexafluorophosphate, iodonium tetrakis (pentafluorophenyl) borate, boron tetrafluoride phenyldiazonium salt, arsenic hexafluoride tri- Examples include 4-methylphenylsulfonium salt, antimony tetrafluoride tri-4-methylphenylsulfonium salt, diphenyliodonium salt of phosphorus hexafluoride, and antimony diphenyliodonium salt of hexafluoride. it can.
  • the method for preparing the conductive composition is not particularly limited, and examples thereof include a method of mixing and dispersing the organic solvent dispersion of the present invention and the component ( ⁇ ) by various known means.
  • the (A) component, the (B) component, the (C) component, the ( ⁇ ) component, and the optional components (crosslinking agent, neutralizing agent, cationic polymerization catalyst) are used as the (D) component in various known means.
  • the order of adding each solute component is not particularly limited.
  • the electroconductive composition obtained by the latter method contains the organic-solvent dispersion of this invention as a result.
  • each component in the conductive composition of the present invention is not particularly limited, and may be appropriately set according to the use, but is usually as follows. (However, the total of all components does not exceed 100% by weight. In addition, components other than the component (D) are converted to solid content.)
  • thermosetting the conductive composition > Component (A): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight Component (B): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight Component (C): about 0.01 to 5% by weight, preferably 0.01 to 1% by weight Component (D): about 95 to 99.5% by weight, preferably 97 to 99.95% by weight ( ⁇ ) component: about 0.01 to 2% by weight, preferably 0.05 to 0.5% by weight
  • Epoxy group-reactive crosslinking agent about 0 to 2% by weight, preferably 0.01 to 1.0% by weight
  • Neutralizing agent 0 to 0.1% by weight, preferably 0.005 to 0.03% by weight
  • the conductive composition according to the third aspect of the present invention uses the ( ⁇ ) component as a binder component.
  • the (A) component, (B) component, and (C) component (D) component which are contained in the said composition are respectively the same as what was mentioned above.
  • the ( ⁇ ) component is called ⁇ , ⁇ unsaturated carboxylic acid ( ⁇ 1) (hereinafter referred to as ( ⁇ 1) component) and (meth) acrylic acid alkyl ester ( ⁇ 2) (hereinafter referred to as ( ⁇ 2) component, ( ⁇ 3) And a copolymer obtained by reacting (meth) acrylic acid hydroxyalkyl ester ( ⁇ 3) (hereinafter referred to as ( ⁇ 3) component), if necessary ( ⁇ )
  • the component (A) improves the dispersibility of the component (A) in the conductive composition, and a film having excellent smoothness can be obtained.
  • the component ( ⁇ 1) examples include ⁇ , ⁇ unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and ⁇ , ⁇ -unsaturated materials such as maleic acid, maleic anhydride, fumaric acid, and itaconic acid.
  • a dicarboxylic acid is mentioned, These may combine 2 or more types. Of these, ⁇ and ⁇ unsaturated monocarboxylic acids are preferable from the viewpoint of reactivity, and acrylic acid and / or methacrylic acid are particularly preferable.
  • component ( ⁇ 2) examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and acrylic acid.
  • ( ⁇ 3) component includes 1-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) 4-hydroxybutyl acrylate, hydroxycyclohexyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl 2-hydroxypropionate, hydroxyphenyl (meth) acrylate Etc., and two or more of these may be combined.
  • the ( ⁇ ) component can be obtained by various known methods. Specifically, for example, the ( ⁇ 1) component and the ( ⁇ 2) component and, if necessary, the ( ⁇ 3) component are usually subjected to radical polymerization reaction (aqueous solution polymerization, solution at about 60 to 180 ° C. for about 1 to 20 hours. Polymerization, bulk polymerization, etc.).
  • the amount of the ( ⁇ 1) component, the ( ⁇ 2) component, and the ( ⁇ 3) component is not particularly limited, but is usually about 5 to 90% by weight, about 10 to 90% by weight, and about 0 to 50% by weight. They are preferably about 10 to 70% by weight, about 10 to 70% by weight, and about 0 to 30% by weight.
  • the reaction solvent water such as deionized water or the component (D) (propylene glycol monomethyl ether or the like) can be used.
  • inorganic peroxides such as hydrogen peroxide, ammonium persulfate and potassium persulfate, and organic peroxides such as t-butyl peroxybenzoate, dicumyl peroxide, and lauryl peroxide are used.
  • Oxides, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, azo compounds such as dimethyl-2,2′-azobisisobutyrate are used it can.
  • the amount used is not particularly limited, but is usually about 0.01 to 10% by weight when the total of the ( ⁇ 1) component, ( ⁇ 2) component and ( ⁇ 3) component is 100% by weight.
  • a chain transfer agent such as dodecyl mercaptan, 2-mercaptobenzothiazole or bromotrichloromethane can be used for the purpose of adjusting the molecular weight of the component ( ⁇ ).
  • the amount used is not particularly limited, but is usually about 0.01 to 10% by weight when the total of the ( ⁇ 1), ( ⁇ 2) and ( ⁇ 3) components is 100% by weight.
  • the physical properties of the component ( ⁇ ) thus obtained are not particularly limited.
  • the glass transition temperature (JIS-K-7121-1987) is about 20 to 300 ° C. (preferably about 40 to 250 ° C.)
  • the acid value (JIS- K2501-2003) is about 1 to 150 mgKOH / g (preferably 5 to 120 mgKOH / g)
  • the number average molecular weight (polystyrene conversion value by gel permeation chromatography) is about 1,000 to 500,000 (preferably 3,000). ⁇ About 25,000).
  • a carboxyl group-reactive crosslinking agent can be included in the conductive composition of the third aspect as necessary for the purpose of increasing the hardness of the film obtained from the composition.
  • a carboxyl group-reactive crosslinking agent for example, an oxazoline crosslinking agent, an aziridine crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, an isocyanate crosslinking agent, and the like can be given.
  • oxazoline-based crosslinking agent examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, A component containing a vinyl monomer containing an oxazoline group such as 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline alone, or a vinyl monomer containing an oxazoline group and others And vinyl resins or acrylic resins copolymerized with these monomers.
  • EPOCROSS WS-300, WS-500, WS-700, EPOCROSS K-2010, K-2020, K-2030 and the like manufactured by Nippon Shokubai Co., Ltd. can be used.
  • aziridine-based crosslinking agent examples include glycerol-tris (1-aziridinylpropionate), glycerol-tris [2-methyl- (1-aziridinyl)] propionate, glycerol-tris [2-ethyl- ( 1-aziridinyl)] propionate, glycerol-tris [2-butyl- (1-aziridinyl)] propionate), glycerol-tris [2-propyl- (1-aziridinyl)] propionate, glycerol-tris [ 2-pentyl- (1-aziridinyl)] propionate, glycerol-tris [2-hexyl- (1-aziridinyl)] propionate, glycerol-tris [2,3-dimethyl- (1-aziridinyl)] propionate Glycerol-Tris [2,3-diethyl- (1-aziridinini
  • epoxy resins compounds having at least two epoxy groups in the molecule
  • examples thereof include the same as the component ( ⁇ ).
  • aromatic epoxy compounds such as bisphenol A type epoxy compounds, bisphenol S type epoxy resins, bisphenol F type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds; Hydrogenated epoxy compounds in which an aromatic ring is hydrogenated to have an alicyclic structure, vinylcyclohexene dioxide, dicyclopentadiene oxide, 3,4-epoxy-1- [8,9-epoxy-2,4-dioxaspiro [5 .5] Epoxy- [epoxy-oxaspiro C8-15 alkyl] -cyclo-12alkane, 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate such as undecan-3-yl] -cyclohe
  • a methylol melamine derivative obtained by condensing melamine and formaldehyde and a compound obtained by etherification by reacting methyl alcohol, ethyl alcohol, isopropyl alcohol or the like as a lower alcohol are preferable.
  • the methylol melamine derivative include monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine, and melamine compounds described in JP2012-97132A.
  • aromatic diisocyanates aliphatic diisocyanates, and alicyclic diisocyanates and these Examples thereof include nurate or adduct bodies of diisocyanate compounds, and block bodies thereof.
  • aromatic diisocyanate include tolylene diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, and the like.
  • aliphatic diisocyanate examples include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and lysine diisocyanate.
  • alicyclic diisocyanates include dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,4-cyclohexane diisocyanate, hydrogenated xylene diisocyanate (HYDI), and hydrogenated tolylene diisocyanate.
  • the conductive composition of the third aspect can include the neutralizing agent in consideration of the possibility that the carboxyl group-reactive crosslinking agent is consumed by the component (a2) which is a strong acid substance.
  • the neutralizing agent tertiary alkylamines and / or ammonia are particularly preferable.
  • the method for preparing the conductive composition is not particularly limited, and examples thereof include a method of mixing and dispersing the organic solvent dispersion of the present invention and the ( ⁇ ) component by various known methods.
  • a method of mixing and dispersing the component (A), the component (B), the component (C) and the optional component (carboxyl group-reactive crosslinking agent, neutralizing agent) in the component (D) can be mentioned.
  • the order of adding the solute components is not particularly limited.
  • the electroconductive composition obtained by the latter method contains the organic-solvent dispersion of this invention as a result.
  • each component in the conductive composition is not particularly limited, and may be appropriately set according to the use, but is usually as follows. (However, the total of all components does not exceed 100% by weight. In addition, components other than the component (D) are converted to solid content.)
  • the conductive compositions of the first aspect, the second aspect, and the third aspect include various pigments, colorants, photosensitizers, antioxidants other than the component (C), light stabilizers, leveling agents, and conductive materials.
  • Additives such as property-improving substances (such as dimethyl sulfoxide) may be included.
  • the polyisocyanate compound or other isocyanate is used for the purpose of crosslinking reaction with the hydroxyl group.
  • a system cross-linking agent can also be blended.
  • the conductive film of the present invention is obtained by applying the conductive composition of the first aspect, the second aspect, or the third aspect of the present invention to a substrate and performing various curing treatments.
  • the target conductive film can be obtained by applying the conductive composition to a substrate and irradiating active energy rays.
  • Examples of the active energy rays include ultraviolet rays and electron beams.
  • Examples of the ultraviolet light source include a high-pressure mercury lamp and a metal halide lamp, and the irradiation amount is usually about 100 to 2,000 mJ / cm 2 .
  • Examples of the electron beam supply method include scanning electron beam irradiation and curtain electron beam irradiation method, and the irradiation energy is usually about 10 to 200 kGy.
  • the target conductive film is applied depending on whether the conductive composition is applied to a substrate and cured by heating or by irradiation with active energy rays. Is obtained. In addition, you may provide the drying process which evaporates (D) component prior to these hardening processes.
  • thermosetting is not particularly limited and may be appropriately set depending on the type of the substrate, but is usually room temperature or higher, and when the epoxy group-reactive crosslinking agent is used, the crosslinking reaction proceeds under heating. Since it is necessary, the temperature of thermosetting is usually about 40 to 180 ° C. On the other hand, the conditions for curing by irradiation with active energy rays are the same as in the case of the conductive composition of the first embodiment.
  • the conductive composition of the third aspect it is obtained by applying the conductive composition to a substrate and evaporating the component (D).
  • the temperature at which component (D) is evaporated may be appropriately set depending on the type of substrate, and is usually room temperature or higher.
  • the crosslinking reaction is performed under heating. Since it is necessary to proceed, it is usually about 40 to 180 ° C.
  • the substrate is not particularly limited, and examples thereof include triacetyl cellulose resin, polyester resin, polyolefin resin, polycarbonate resin, polymethyl methacrylate resin, polystyrene resin, epoxy resin, melamine resin, ABS resin, AS resin, and norbornene resin. It is done. Further, the form of the substrate is not particularly limited, and may be a structure or a film. Examples of the film include triacetyl cellulose film, polyester film, polyolefin film, polycarbonate film, polymethyl methacrylate film, polystyrene film, epoxy film, melamine film, ABS film, AS film, norbornene resin film, etc., optical characteristics From the viewpoint of the above, a triacetyl cellulose film is particularly preferable.
  • the coating method is not particularly limited, and examples thereof include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, and screen printing.
  • Preparation of component (A)> Preparation Example 1 1000 g of a commercially available aqueous dispersion of PEDOT / PSS (trade name “Orgacon”, solid content concentration 1.2% by weight) using a spray dryer (product name “GA-32”, manufactured by Yamato Scientific Co., Ltd.) Processing (spray pressure 0.6 MPa, drying temperature (intake) 150 ° C.) gave 9.0 g of a blue solid. Further, the same operation was repeated to prepare an amount of blue solid necessary for the preparation of the conductive composition.
  • the nitrogen introduction tube was replaced with an air introduction tube, 76 g of acrylic acid, 0.6 g of methoquinone and 1.5 g of triphenylphosphine were added and mixed, and then under air bubbling, The temperature was raised to 110 ° C. After incubating at the same temperature for 8 hours, the mixture was cooled and methyl isobutyl ketone was added so that the solid content was 56% to obtain a polymer solution.
  • the copolymer had a hydroxyl value of 76 mgKOH / g (solution) and a weight average molecular weight of 17,600.
  • the weight average molecular weight was measured using a commercially available GPC apparatus (product name “HLC-8220”, manufactured by Tosoh Corporation) and a commercially available column (trade name “TSK-GEL SUPERHZM-M”, manufactured by Tosoh Corporation). It is the measured value obtained.
  • Example 1 In a beaker, 7.87 g of the solid component (A) obtained in Preparation Example 1 (hereinafter abbreviated as P / P) and 733.97 g of ethanol were placed, and as the component (B), an amine alkylene oxide adduct (trade name) : Esopropomin C18 / 18, manufactured by Lion Akzo Co., Ltd. (hereinafter abbreviated as EPA) 7.87 g was added, and then an emulsifying disperser (product name: Claremix, manufactured by M Technique Co., Ltd., the same applies hereinafter).
  • EPA amine alkylene oxide adduct
  • Claremix manufactured by M Technique Co., Ltd., the same applies hereinafter.
  • Example 2 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 4.92 g of QT, 24.63 g of ethanol, 25 g of ethylene glycol, 9.84 g of Irgacure 184, 141.35 g of M400, and 44.54 g of the above ( ⁇ 2) component were added to the composition. By stirring, a conductive composition (solid content concentration of about 19.7% by weight) was obtained. In addition, content of QT in the said composition was 2.5 weight% (solid content conversion).
  • Example 3 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 9.84 g of QT, 25.21 g of ethanol, 25.00 g of ethylene glycol, 131.17 g of M400, 43.23 g of the ( ⁇ 2) component and 9.84 g of Irgacure 184 were added to the composition, By thoroughly stirring, a conductive composition (solid content concentration of about 19.7% by weight) was obtained.
  • Example 4 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, instead of QT, the composition was replaced with (2R, 3S) -2- (3,4-dihydroxyphenyl) chroman-3,5,7-triol (hereinafter referred to as CQ) 4.92 g and ethanol.
  • CQ (2R, 3S) -2- (3,4-dihydroxyphenyl) chroman-3,5,7-triol
  • Comparative Example 1 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained.
  • Comparative Example 2 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, in place of QT, benzophenone-based ultraviolet absorber (trade name “3HBR”, manufactured by Iwate Chemical Co., Ltd.) was used instead of QT, 4.92 g, ethanol was 24.64 g, and ethylene glycol was 25.00 g, Irgacure. 9.84 g of 184, 141.35 g of M400, and 44.54 g of the component ( ⁇ 2) were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7% by weight).
  • benzophenone-based ultraviolet absorber trade name “3HBR”, manufactured by Iwate Chemical Co., Ltd.
  • Comparative Example 3 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, in place of QT, propyl gallate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the composition, 4.92 g, ethanol 24.64 g, ethylene glycol 25.00 g, Irgacure 184 9.84 g, and M400. 141.35 g and 44.54 g of the component ( ⁇ 2) were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7% by weight).
  • propyl gallate manufactured by Tokyo Chemical Industry Co., Ltd.
  • Comparative Example 4 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, instead of QT, the composition was changed to 4.92 g of dodecyl gallate (manufactured by Tokyo Chemical Industry Co., Ltd.), 24.64 g of ethanol, 25.00 g of ethylene glycol, 141.35 g of M400, and the ( ⁇ 2) component. And 4.84 g of Irgacure 184 were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7% by weight).
  • Comparative Example 5 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 24.05 g of ethanol, 25.00 g of ethylene glycol, 9.84 g of Irgacure 184, 145.53 g of M400, and 45.86 g of the above ( ⁇ 2) component were added to the composition and stirred well. An electrically conductive composition containing no antioxidant (solid content concentration of about 19.7% by weight) was obtained.
  • Comparative Example 6 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 0.98 g of a commercially available aminocarboxylic acid chelating agent (trade name “Kyrest EA”, manufactured by Kirest Co., Ltd.) instead of QT, 24.05 g of ethanol, and 25. of ethylene glycol were added to the composition.
  • a commercially available aminocarboxylic acid chelating agent trade name “Kyrest EA”, manufactured by Kirest Co., Ltd.
  • Comparative Example 7 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 0.98 g of a commercially available carboxylic acid chelating agent (trade name “Kyrest MZ-8”, manufactured by Kirest Co., Ltd.) instead of QT, 24.05 g of ethanol, and 25.00 g of ethylene glycol were added to the composition.
  • a commercially available carboxylic acid chelating agent trade name “Kyrest MZ-8”, manufactured by Kirest Co., Ltd.
  • Irgacure 184 (9.84 g), M400 (145.53 g), and ( ⁇ 2) component (45.86 g) were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7 wt%). It was.
  • Comparative Example 8 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 0.98 g of a commercially available carboxylic acid chelating agent (trade name “Kyrest MZ-2”, manufactured by Kirest Co., Ltd.) instead of QT, 24.05 g of ethanol, and 25.00 g of ethylene glycol were added to the composition.
  • a commercially available carboxylic acid chelating agent trade name “Kyrest MZ-2”, manufactured by Kirest Co., Ltd.
  • Irgacure 184 (9.84 g), M400 (145.53 g), and ( ⁇ 2) component (45.86 g) were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7 wt%). It was.
  • Comparative Example 9 In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 0.98 g of a commercially available hindered phenol light stabilizer (trade name “ADEKA LA-81”, manufactured by ADEKA Corporation) instead of QT, 24.05 g of ethanol, and 25 of ethylene glycol were added to the composition.
  • ADEKA LA-81 commercially available hindered phenol light stabilizer
  • Example 1 ⁇ Preparation of conductive film>
  • the conductive composition of Example 1 was applied onto a triacetyl cellulose film using a # 4 bar coater (calculated value: film thickness: 1.0 ⁇ m) and dried at 80 ° C. for 1 minute. Next, this was passed through an ultraviolet irradiation device (manufactured by Multiply Co., Ltd., light quantity: 300 mJ / cm 2 , distance from the coating to the light source: 10 cm, pass speed: 6.1 m / min) to produce a conductive coating.
  • an ultraviolet irradiation device manufactured by Multiply Co., Ltd., light quantity: 300 mJ / cm 2 , distance from the coating to the light source: 10 cm, pass speed: 6.1 m / min
  • Example 5 ⁇ Preparation of conductive composition of second aspect> Example 5
  • 4.2 g of P / P obtained in Preparation Example 1 and 458.27 g of ethanol were added, and 4.2 g of EPA was added.
  • the emulsion was dispersed for 10 minutes at 18,000 rpm using the above emulsifying disperser.
  • a composition having a solid content concentration of 1.8% by weight was obtained by carrying out treatment for 10 minutes at an output of 400 W using an ultrasonic disperser.
  • Example 6 In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.36 g of QT, 129.54 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.24 g of celoxide 2021P, and 0.19 g of TEA are added to the composition, and stirred well. As a result, a conductive composition (solid content concentration of about 1.2% by weight) was obtained.
  • Example 7 In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added, and then the mixture was treated with an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 5 to obtain a solid. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.6 g of QT, 129.73 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and 3.0 g of celoxide 2021P are added to the composition, and the conductive composition is stirred well. (Solid content concentration of about 1.2% by weight) was obtained.
  • Example 8 In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added, and then the mixture was treated with an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 5 to obtain a solid. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.6 g of QT, 129.54 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.0 g of celoxide 2021P, and 0.19 g of TEA were added to the composition and stirred well. As a result, a conductive composition (solid content concentration of about 1.2% by weight) was obtained.
  • Comparative Example 10 In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added, and then the mixture was treated with an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 5 to obtain a solid. A composition having a partial concentration of 1.8% by weight was obtained. Next, 129.73 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and 3.6 g of celoxide 2021P were added to the composition, and the mixture was thoroughly stirred to obtain a conductive composition containing no QT (solid A partial concentration of about 1.2% by weight).
  • Comparative Example 11 In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added, and then the mixture was treated with an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 5 to obtain a solid. A composition having a partial concentration of 1.8% by weight was obtained. Next, 129.54 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.6 g of ceroxide 2021P, and 0.19 g of TEA were added to the composition, and the mixture was thoroughly stirred to contain QT. A conductive composition (solid content concentration of about 1.2% by weight) was obtained.
  • ⁇ Preparation of conductive film> The conductive composition according to Example 5 was applied on a PET film using a # 20 bar coater (calculated value: film thickness: 0.25 ⁇ m) and dried at 120 ° C. for 5 minutes to form a conductive film. A prepared test film was obtained. In addition, test films were obtained in the same manner for the conductive compositions according to Examples 6 to 8 and Comparative Examples 10 to 11.
  • Synthesis example 3 In a reaction vessel similar to Synthesis Example 2, AA 50.0 g, MMA 24.5 g, BA 25.0 g, 2-hydroxyethyl methacrylate (hereinafter abbreviated as HEMA) 0.5 g, and 2, By adding 5.0 g of 2′-azobis (2-methylbutyronitrile) and 420.0 g of propylene glycol monomethyl ether, and maintaining at 85 ° C. for 5 hours under a nitrogen gas stream, the solid content concentration is 20% by weight. A solution of the acrylic copolymer (C2) was obtained. Table 3 shows the glass transition temperature (Tg), acid value (AV), and weight average molecular weight (Mw) of the acrylic copolymer.
  • Tg glass transition temperature
  • AV acid value
  • Mw weight average molecular weight
  • the glass transition temperature is a measured value obtained with a commercially available measuring device (product name “DSC6200”, manufactured by Seiko Instruments Inc.).
  • the acid value is a measured value obtained according to the method of JIS-K2501-2003.
  • Mw was obtained using a commercially available GPC device (product name “HLC-8220”, manufactured by Tosoh Corporation) and a commercially available column (trade name “TSK-GEL SUPERHZM-M”, manufactured by Tosoh Corporation). It is a measured value.
  • Example 9 In a beaker, 2.1 g of P / P obtained in Preparation Example 1 and 229.13 g of ethanol were added, and 2.1 g of EPA was added. Then, using the above emulsifying disperser, the mixture was processed at 18,000 rpm for 10 minutes, A composition having a solid content concentration of 1.8% by weight was obtained by performing a treatment for 10 minutes at an output of 400 W using the ultrasonic disperser.
  • Comparative Example 12 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available phosphorous antioxidant (trade name “SIPOME PAM 4000”, manufactured by Rhodia Nikka Co., Ltd., hereinafter referred to as PAM 4000) is added to the composition, 164.87 g of ethanol, and propylene glycol.
  • a commercially available phosphorous antioxidant trade name “SIPOME PAM 4000”, manufactured by Rhodia Nikka Co., Ltd., hereinafter referred to as PAM 4000
  • Comparative Example 13 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained.
  • Comparative Example 14 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained.
  • Comparative Example 15 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained.
  • Comparative Example 16 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained.
  • Comparative Example 17 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available benzophenone ultraviolet absorber (trade name “DAINSORB P-6”, manufactured by Daiwa Kasei Co., Ltd., hereinafter referred to as P-6), 164.87 g of ethanol and propylene were added to the composition.
  • DAINSORB P-6 a commercially available benzophenone ultraviolet absorber
  • Comparative Example 18 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available benzotriazole-based ultraviolet absorber (trade name “DAINSORB T-0”, manufactured by Daiwa Kasei Co., Ltd., hereinafter referred to as T-0) and 164.87 g of ethanol were added to the composition.
  • DAINSORB T-0 commercially available benzotriazole-based ultraviolet absorber
  • Comparative Example 19 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 164.87 g of ethanol, 495.28 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.75 g of the acrylic copolymer aqueous solution obtained in Synthesis Example 2 and 2.67 g of OXZ were added to the composition. And 0.095 g of TEA were added and stirred well to obtain a conductive composition containing no antioxidant (solid content concentration: about 0.6% by weight).
  • ⁇ Preparation of conductive film> The conductive composition according to Example 9 was applied on a PET film using a # 20 bar coater (calculated value: film thickness 0.2 ⁇ m) and dried at 120 ° C. for 5 minutes to form a conductive film. A prepared test film was obtained. In addition, test films were obtained in the same manner for the conductive compositions according to Comparative Examples 12 to 19.
  • Example 10 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of QT, 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and 3.38 g of the acrylic copolymer solution obtained in Synthesis Example 3 were added to the composition. Then, 2.40 g of OXZ and 0.095 g of TEA were added and stirred well to obtain a conductive composition (solid content concentration of about 0.6% by weight).
  • Example 11 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of CQ, 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and the acrylic copolymer obtained in Synthesis Example 3 as the component (C) in the composition.
  • Comparative Example 20 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of AO-80, 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and 3% of the acrylic copolymer solution obtained in Synthesis Example 3 were added to the composition. .38 g, 2.4 g of OXZ and 0.095 g of TEA were added and stirred well to obtain a conductive composition (solid content concentration of about 0.6% by weight).
  • Comparative Example 21 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Then, the composition was ethanol (164.87 g), propylene glycol monomethyl ether (495.28 g), ethylene glycol (100.00 g), the acrylic copolymer solution obtained in Synthesis Example 3 (3.75 g), and OXZ (2.67 g). Then, 0.095 g of TEA and TEA were added and stirred well to obtain a conductive composition containing no antioxidant (solid content concentration: about 0.6% by weight).
  • Comparative Example 22 In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a compound (hereinafter referred to as QT-Ru) in which a ⁇ -lutinose residue is bonded to the 7th position of QT and a methoxy group is bonded to the 3rd position (hereinafter referred to as QT-Ru) as component (C) is added to the composition.
  • QT-Ru a compound in which a ⁇ -lutinose residue is bonded to the 7th position of QT and a methoxy group is bonded to the 3rd position
  • test films were prepared in the same manner as described above, and the conductivity of the coating was evaluated. The results are shown in Table 5.

Abstract

The purpose of the present invention is to provide a novel organic solvent dispersoid for a conductive polymer/polyanion complex with which a film having exceptional conductivity and minimal decline thereof over time can be formed on a variety of substrates when the dispersoid is used as an additive to a variety of coating agents. The invention comprises using an organic solvent dispersoid containing a conductive polymer/polyanion complex that comprises a polythiophene and a sulfoanion-group-containing polymer and has a prescribed structure, an amine compound having a prescribed structure, an alcohol-soluble compound having a prescribed structure, and an alcohol-containing organic solvent.

Description

導電性高分子/ポリアニオン錯体の有機溶媒分散体、当該有機溶媒分散体を含む導電性組成物および当該導電性組成物より得られる導電性被膜Conductive polymer / polyanion complex organic solvent dispersion, conductive composition containing the organic solvent dispersion, and conductive film obtained from the conductive composition
 本発明は、ポリチオフェンとスルホアニオン基含有ポリマーからなる導電性高分子/ポリアニオン錯体を有機溶剤に分散ないし溶解させてなる有機溶媒分散体、当該有機溶媒分散体とバインダー成分とを含む導電性組成物、ならびに当該導電性組成物より得られる導電性被膜に関する。 The present invention relates to an organic solvent dispersion obtained by dispersing or dissolving a conductive polymer / polyanion complex comprising polythiophene and a sulfoanion group-containing polymer in an organic solvent, and a conductive composition comprising the organic solvent dispersion and a binder component. And a conductive film obtained from the conductive composition.
 π共役系導電性高分子の一種であるポリチオフェンは、各種アニオン物質でドーピングすることにより良好な電気伝導性を発揮するため、導電剤として種々の工業製品(タッチパネル、コンデンサ、太陽電池等)に応用されている。特にポリ(3,4-エチレンジオキシチオフェン)をポリスチレンスルホン酸等のスルホアニオン基含有ポリマーでドーピングして得られる導電性高分子/ポリアニオン錯体は、導電性が比較的安定しており、薄膜とした場合の透明性も良好であるため、各種帯電防止コーティング剤や導電性コーティング剤の添加剤としても賞用されている。 Polythiophene, a kind of π-conjugated conductive polymer, exhibits good electrical conductivity when doped with various anionic substances, so it can be applied to various industrial products (touch panels, capacitors, solar cells, etc.) as a conductive agent. Has been. In particular, a conductive polymer / polyanion complex obtained by doping poly (3,4-ethylenedioxythiophene) with a polymer containing a sulfoanion group such as polystyrene sulfonic acid has relatively stable conductivity, Therefore, it is also used as an additive for various antistatic coating agents and conductive coating agents.
 ところで、そうした導電性高分子/ポリアニオン錯体は水分散体ないし水溶液として流通していることが多いがそれらは溶媒の大部分が水であるため、プラスチック基材上で濡れ広がり難いため、それらを添加剤として含むコーティング剤は、一般的にプラスチック基材に適用し難い。 By the way, such a conductive polymer / polyanion complex is often distributed as an aqueous dispersion or an aqueous solution. However, since most of the solvent is water, it is difficult to spread on a plastic substrate. The coating agent contained as an agent is generally difficult to apply to plastic substrates.
 そこで斯界では導電性高分子/ポリアニオン錯体の有機溶剤分散液が要請されており、本出願人は例えば特許文献1で、導電性高分子/ポリアニオン錯体をポリオキシアルキレンアミンの存在下で有機溶剤中に分散させることにより、貯蔵安定性が良好であり、導電性や帯電防止性に優れた被膜を与える有機溶媒分散体が得られることを提案した。しかし、当該分散液を帯電防止剤として配合したコーティング剤によっては、導電性の経時的な低下幅が小さな被膜を得難い場合があった。 Therefore, in this field, there is a demand for an organic solvent dispersion liquid of a conductive polymer / polyanion complex. For example, in Japanese Patent Application Laid-Open No. 2004-86400, the applicant of the present invention describes a conductive polymer / polyanion complex in an organic solvent in the presence of polyoxyalkyleneamine. It has been proposed that an organic solvent dispersion can be obtained by dispersing in an organic solvent, which provides a film having good storage stability and excellent conductivity and antistatic properties. However, depending on the coating agent in which the dispersion is blended as an antistatic agent, it may be difficult to obtain a film having a small decrease in conductivity over time.
 導電性高分子/ポリアニオン錯体を含むコーティング被膜の導電性や帯電防止性を経時的に安定させる方法としては、例えば導電性向上剤として没食子酸アルキルエステルのようなヒドロキシ基含有化合物を添加したり(特許文献2、3を参照)、ビスフェノール系酸化防止剤やリン系酸化防止剤等の酸化防止剤を使用したり(特許文献4を参照)、ベンゾフェノン系化合物のような紫外線吸収剤を用いたりすることが考えられるが、効果は十分でなかった。 As a method for stabilizing the conductivity and antistatic property of the coating film containing the conductive polymer / polyanion complex over time, for example, a hydroxy group-containing compound such as alkyl gallate is added as a conductivity improver ( Patent Documents 2 and 3), antioxidants such as bisphenol antioxidants and phosphorus antioxidants are used (see Patent Document 4), and ultraviolet absorbers such as benzophenone compounds are used. However, the effect was not sufficient.
特開2008-45116号公報JP 2008-45116 A 特開2006-169494号公報JP 2006-169494 A 特開2006-131873号公報JP 2006-131873 A 特開2008-45116号公報JP 2008-45116 A
 本発明は、各種コーティング剤の添加剤として用いたときに、導電性に優れ、かつその経時的な低下幅が小さい被膜を各種基材の上に形成することを可能とする、新規な導電性高分子/ポリアニオン錯体有機溶媒分散体を提供することを主たる課題とする。 When used as an additive for various coating agents, the present invention makes it possible to form a coating film on various substrates that is excellent in electrical conductivity and has a small decrease with time. The main object is to provide a polymer / polyanion complex organic solvent dispersion.
 また本発明は、各種基材の上に導電性に優れ、かつその経時的な低下幅が小さい被膜を形成可能な新規な導電性組成物を提供することを更なる課題とする。 Another object of the present invention is to provide a novel conductive composition that is capable of forming a film having excellent conductivity on a variety of substrates and having a small decrease with time.
 また本発明は、導電性に優れ、かつその経時的な低下幅が小さい被膜を提供することを更なる課題とする。 Another object of the present invention is to provide a film that is excellent in conductivity and has a small decrease with time.
 本発明者は鋭意検討の結果、ポリチオフェンおよびスルホアニオン基含有ポリマーからなる導電性高分子/ポリアニオン錯体を所定のアミン化合物の存在下で有機溶剤中に分散ないし溶解させてなる有機溶媒分散体に、所定の多環化合物を更に加えることにより、前記課題を解決可能な有機溶媒分散体が得られることを見出した。 As a result of diligent study, the present inventor has obtained an organic solvent dispersion obtained by dispersing or dissolving a conductive polymer / polyanion complex comprising a polythiophene and a sulfoanion group-containing polymer in an organic solvent in the presence of a predetermined amine compound. It has been found that an organic solvent dispersion capable of solving the above problems can be obtained by further adding a predetermined polycyclic compound.
 また本発明者は、当該有機溶媒分散体に所定のバインダー成分を組み合わせることにより、前記課題を解決可能な導電性組成物が得られることを見出した。 Further, the present inventor has found that a conductive composition capable of solving the above-mentioned problems can be obtained by combining a predetermined binder component with the organic solvent dispersion.
 また本発明者は、当該導電性組成物により前記課題を解決可能な導電性被膜が得られることを見出した。 Further, the present inventor has found that a conductive film capable of solving the above problems can be obtained by the conductive composition.
 すなわち本発明は、以下の有機溶媒分散体、導電性組成物および導電性被膜に関する。 That is, the present invention relates to the following organic solvent dispersion, conductive composition and conductive film.
1.下記一般式(1)で表される構造を有するポリチオフェン(a1)およびスルホアニオン基含有ポリマー(a2)からなる導電性高分子/ポリアニオン錯体(A)、下記一般式(2)で表されるアミン化合物(B)、下記一般式(3)で表される化合物のうちアルコール可溶性のもの(C)、ならびにアルコール類(d1)を含む有機溶剤(D)を含有する、有機溶媒分散体。 1. Conductive polymer / polyanion complex (A) comprising polythiophene (a1) and sulfoanion group-containing polymer (a2) having a structure represented by the following general formula (1), amine represented by the following general formula (2) An organic solvent dispersion containing the compound (B), an alcohol-soluble compound (C) among the compounds represented by the following general formula (3), and an organic solvent (D) containing the alcohol (d1).
Figure JPOXMLDOC01-appb-C000009



(式(1)中、Aは炭素数1~12のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000009



(In the formula (1), A represents an alkylene group having 1 to 12 carbon atoms.)
Figure JPOXMLDOC01-appb-C000010



(式(2)中、Xは炭素数1~40のアルキル基、炭素数3~40のアルケニル基、および炭素数3~40のアラルキル基のいずれかを表す。またYはそれぞれ、オキシエチレン基、オキシプロピレン基、およびオキシエチレン-オキシプロピレン基のいずれかを表す。またmはいずれも1~20の整数を表す。)
Figure JPOXMLDOC01-appb-C000010



(In Formula (2), X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms. Y represents oxyethylene, respectively. And any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.)
Figure JPOXMLDOC01-appb-C000011



(式(3)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を示す。また、X~Xはいずれも水素、水酸基およびアルコキシ基からなる群より選ばれる1種を表す(但し、X~Xのうち少なくとも二つは水酸基である。)。また、Yはメチレン基またはカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000011



(In formula (3), the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond. X 1 to X 7 are all selected from the group consisting of hydrogen, a hydroxyl group and an alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.) Y represents a methylene group or a carbonyl group.)
2.(C)成分が下記一般式(3-1)で表される化合物である、前記項1の有機溶媒分散体。 2. (C) The organic solvent dispersion according to item 1, wherein the component is a compound represented by the following general formula (3-1).
Figure JPOXMLDOC01-appb-C000012



(式(3-1)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を、Xは水酸基またはアルコキシ基を表す。また、X、XおよびXのうちいずれか一つが水酸基であり、残りの二つはそれぞれ水素又は水酸基である。また、Yはメチレン基またはカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000012



(In the formula (3-1), a broken line part represents a carbon-carbon single bond or a carbon-carbon double bond, X 1 represents a hydroxyl group or an alkoxy group, and any one of X 3 , X 4 and X 5 represents (One is a hydroxyl group, and the other two are hydrogen or a hydroxyl group, respectively, and Y represents a methylene group or a carbonyl group.)
3.下記一般式(1)で表される構造を有するポリチオフェン(a1)およびスルホアニオン基含有ポリマー(a2)からなる導電性高分子/ポリアニオン錯体(A)、下記一般式(2)で表されるアミン化合物(B)、ならびに下記一般式(3)で表される化合物のうちアルコール可溶性のもの(C)と、アルコール類(d1)を含む有機溶剤(D)と、活性エネルギー線ラジカル重合型化合物(α)、エポキシ樹脂(β)および非活性エネルギー線ラジカル重合型アクリル共重合体(γ)からなる群より選ばれる1種のバインダー成分とを含む、導電性組成物 3. Conductive polymer / polyanion complex (A) comprising polythiophene (a1) and sulfoanion group-containing polymer (a2) having a structure represented by the following general formula (1), amine represented by the following general formula (2) Among the compounds represented by the compound (B) and the following general formula (3), an alcohol-soluble compound (C), an organic solvent (D) containing an alcohol (d1), an active energy ray radical polymerization compound ( α), an epoxy resin (β), and one binder component selected from the group consisting of an inactive energy ray radical polymerization acrylic copolymer (γ), and a conductive composition
Figure JPOXMLDOC01-appb-C000013



(式(1)中、Aは炭素数1~12のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000013



(In the formula (1), A represents an alkylene group having 1 to 12 carbon atoms.)
Figure JPOXMLDOC01-appb-C000014



(式(2)中、Xは炭素数1~40のアルキル基、炭素数3~40のアルケニル基、および炭素数3~40のアラルキル基のいずれかを表す。またYはそれぞれ、オキシエチレン基、オキシプロピレン基、およびオキシエチレン-オキシプロピレン基のいずれかを表す。またmはいずれも1~20の整数を表す。)
Figure JPOXMLDOC01-appb-C000014



(In Formula (2), X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms. Y represents oxyethylene, respectively. And any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.)
Figure JPOXMLDOC01-appb-C000015



(式(3)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を示す。また、X~Xはいずれも水素、水酸基およびアルコキシ基からなる群より選ばれる1種を表す(但し、X~Xのうち少なくとも二つは水酸基である。)。また、Yはメチレン基またはカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000015



(In formula (3), the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond. X 1 to X 7 are all selected from the group consisting of hydrogen, a hydroxyl group and an alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.) Y represents a methylene group or a carbonyl group.)
4.(C)成分が下記一般式(3-1)で表される化合物である、前記項3の導電性組成物。 4). (C) The conductive composition according to item 3, wherein the component is a compound represented by the following general formula (3-1).
Figure JPOXMLDOC01-appb-C000016



(式(3-1)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を、Xは水酸基またはアルコキシ基を表す。また、X、XおよびXのうちいずれか一つが水酸基であり、残りの二つはそれぞれ水素又は水酸基である。また、Yはメチレン基またはカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000016



(In the formula (3-1), a broken line part represents a carbon-carbon single bond or a carbon-carbon double bond, X 1 represents a hydroxyl group or an alkoxy group, and any one of X 3 , X 4 and X 5 represents (One is a hydroxyl group, and the other two are hydrogen or a hydroxyl group, respectively, and Y represents a methylene group or a carbonyl group.)
5.(α)成分が、2官能~6官能の(メタ)アクリレート化合物(α1)および/または分子内に遊離の(メタ)アクリロイル基を有する(メタ)アクリル系重合物(α2)である、前記項3または4の導電性組成物。 5. The above-mentioned item, wherein the component (α) is a bifunctional to hexafunctional (meth) acrylate compound (α1) and / or a (meth) acrylic polymer (α2) having a free (meth) acryloyl group in the molecule. 3 or 4 conductive compositions.
6.さらに光重合開始剤を含有する前記項3~5のいずれかに記載の導電性組成物。 6). Item 6. The conductive composition according to any one of Items 3 to 5, further comprising a photopolymerization initiator.
7.前記項3~6のいずれかに記載の導電性組成物を基材に塗工し、活性エネルギー線を照射することにより得られる導電性被膜。 7). 7. A conductive film obtained by coating the conductive composition according to any one of items 3 to 6 on a substrate and irradiating with active energy rays.
8.(β)成分が、芳香族系エポキシ樹脂、脂環式エポキシ樹脂および脂肪族系エポキシ樹脂からなる群より選ばれる少なくとも1種である、前記項3または4の導電性組成物。 8). (Β) The conductive composition according to item 3 or 4, wherein the component is at least one selected from the group consisting of an aromatic epoxy resin, an alicyclic epoxy resin, and an aliphatic epoxy resin.
9.前記脂環式エポキシ樹脂が、脂環オレフィンをエポキシ化して得られるエポキシ樹脂および/または水素化エポキシ樹脂である、前記項3、4、8のいずれかに記載の導電性組成物。 9. Item 9. The conductive composition according to any one of Items 3, 4, and 8, wherein the alicyclic epoxy resin is an epoxy resin and / or a hydrogenated epoxy resin obtained by epoxidizing an alicyclic olefin.
10.さらにエポキシ基反応性架橋剤を含有する前記項3、4、8、9のいずれかに記載の導電性組成物。 10. Furthermore, the electroconductive composition in any one of said claim | item 3, 4, 8, 9 containing an epoxy-group reactive crosslinking agent.
11.さらに中和剤を含有する前記項3、4、8~10のいずれかに記載の導電性組成物。 11. Item 11. The conductive composition according to any one of Items 3, 4, and 8 to 10, further comprising a neutralizing agent.
12.さらに、カチオン重合触媒を含有する前記項3、4、8~11のいずれかに記載の導電性組成物。 12 Item 12. The conductive composition according to any one of Items 3, 4, and 8 to 11, further comprising a cationic polymerization catalyst.
13.前記項3、4、8~12のいずれかに記載の導電性組成物を基材に塗工し、加熱硬化させることにより得られる導電性被膜。 13. 13. A conductive film obtained by applying the conductive composition according to any one of items 3, 4, and 8 to 12 to a base material and curing it by heating.
14.前記項3、4、8~12のいずれかに記載の導電性組成物を基材に塗工し、活性エネルギー線を照射し硬化させることにより得られる導電性被膜。 14 13. A conductive film obtained by applying the conductive composition according to any one of items 3, 4, and 8 to 12 to a substrate, and irradiating and curing the active energy ray.
15.(γ)成分が、α,β不飽和カルボン酸類(γ1)、(メタ)アクリル酸アルキルエステル類(γ2)および必要に応じて(メタ)アクリル酸ヒドロキシアルキルエステル類(γ3)を反応させて得られるアクリル共重合体である、前記項3または4の導電性組成物。 15. The (γ) component is obtained by reacting an α, β unsaturated carboxylic acid (γ1), a (meth) acrylic acid alkyl ester (γ2) and, if necessary, a (meth) acrylic acid hydroxyalkyl ester (γ3). Item 5. The conductive composition according to Item 3 or 4, which is an acrylic copolymer.
16.さらにカルボキシル基反応性架橋剤を含有する、前記項3、4、15のいずれかに記載の導電性組成物。 16. Furthermore, the electroconductive composition in any one of said claim | item 3, 4, 15 containing a carboxyl group reactive crosslinking agent.
17.さらに中和剤を含有する、前記項3、4、15、16のいずれかに記載の導電性組成物。 17. Furthermore, the electrically conductive composition in any one of said claim | item 3, 4, 15, 16 containing a neutralizing agent.
18.前記項3、4、15~17のいずれかに記載の導電性組成物を基材に塗工することにより得られる導電性被膜。 18. Item 18. A conductive film obtained by applying the conductive composition according to any one of Items 3, 4, 15 to 17 to a substrate.
 本発明の有機溶媒分散体は貯蔵安定性に優れており、各種バインダー成分と組み合わせることにより、導電性に優れ、かつその経時的な低下幅が小さい導電性被膜を形成可能な導電性組成物を提供できる。 The organic solvent dispersion of the present invention is excellent in storage stability, and by combining with various binder components, a conductive composition capable of forming a conductive film that is excellent in conductivity and has a small decrease with time. Can be provided.
 また、本発明の導電性組成物は貯蔵安定性に優れており、これを紫外線や電子線等の活性エネルギー線、あるいは熱で硬化させることによって、導電性に優れ、かつその経時的な低下幅が小さい導電性被膜を得ることができる。よって当該導電性組成物は、各種導電性コーティング剤として、各種プラスチックフィルム、電子部品キャリアテープ、磁気カード、磁気テープ、磁気ディスク、離形フィルムICトレイ、有機ELおよび太陽電池等の用途に供することができる。 In addition, the conductive composition of the present invention is excellent in storage stability, and is cured with active energy rays such as ultraviolet rays and electron beams, or heat, so that the conductivity is excellent, and the decrease width with time. Can be obtained. Therefore, the conductive composition is used as various conductive coating agents for various plastic films, electronic component carrier tapes, magnetic cards, magnetic tapes, magnetic disks, release film IC trays, organic EL, solar cells, and the like. Can do.
 また、本発明の導電性被膜は導電性に優れ、かつその経時的な低下幅が小さい。よって当該導電性被膜は、各種プラスチックフィルム、電子部品キャリアテープ、磁気カード、磁気テープ、磁気ディスク、離形フィルムICトレイ、有機ELおよび太陽電池等の素材として有用である。 The conductive coating of the present invention is excellent in conductivity and has a small decrease with time. Therefore, the conductive coating is useful as a material for various plastic films, electronic component carrier tapes, magnetic cards, magnetic tapes, magnetic disks, release film IC trays, organic EL, solar cells, and the like.
<有機溶媒分散体について> <About organic solvent dispersion>
 本発明の有機溶媒分散体は、所定の導電性高分子/ポリアニオン錯体(A)(以下、(A)成分という。)、所定のアミン化合物(B)(以下、(B)成分という。)、および下記一般式(3)で表される化合物のうちアルコール可溶性のもの(C)(以下、(C)成分という。)を、アルコール類(d1)(以下、(d1)成分という。)を含む有機溶剤(D)(以下、(D)成分という。)を含有する組成物であり、該(D)成分中で(A)成分が分散する形態をとる。 The organic solvent dispersion of the present invention comprises a predetermined conductive polymer / polyanion complex (A) (hereinafter referred to as component (A)), a predetermined amine compound (B) (hereinafter referred to as component (B)), Among the compounds represented by the following general formula (3), alcohol-soluble compounds (C) (hereinafter referred to as (C) component) include alcohols (d1) (hereinafter referred to as (d1) component). It is a composition containing an organic solvent (D) (hereinafter referred to as component (D)), and takes a form in which component (A) is dispersed in component (D).
 (A)成分は、本発明の導電性組成物に導電性を付与する物質であり、導電性高分子であるポリチオフェン(a1)(以下、(a1)成分という。)と、ドーパントであるスルホアニオン基含有ポリマー(a2)(以下、(a2)成分という。)とから構成される。 Component (A) is a substance that imparts conductivity to the conductive composition of the present invention. Polythiophene (a1) (hereinafter referred to as component (a1)) that is a conductive polymer and sulfoanion that is a dopant. Group-containing polymer (a2) (hereinafter referred to as component (a2)).
 (a1)成分は、下記一般式(1)で表される構造を有するπ共役系導電性高分子である。 The component (a1) is a π-conjugated conductive polymer having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000017



(式(1)中、Aは炭素数1~12のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000017



(In the formula (1), A represents an alkylene group having 1 to 12 carbon atoms.)
 (a1)成分の具体例としては、例えば、ポリ(3,4-エチレンジオキシチオフェン)やポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)などが挙げられる。これらの中でも導電性の点で特にポリ(3,4-エチレンジオキシチオフェン)(以下、PEDOTという。)が好ましい。 Specific examples of the component (a1) include poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxythiophene), poly (3,4-butenedioxythiophene) and the like. It is done. Among these, poly (3,4-ethylenedioxythiophene) (hereinafter referred to as PEDOT) is particularly preferable from the viewpoint of conductivity.
 なお、本発明では必要に応じ、(a1)成分以外の導電性高分子として、例えば(a1)成分以外のポリチオフェン類や、ポリチオフェンビニレン類、ポリピロール類、ポリフラン類、ポリアニリン類等その他のπ共役系導電性高分子を併用できる。 In the present invention, as necessary, as the conductive polymer other than the component (a1), for example, polythiophenes other than the component (a1), polythiophene vinylenes, polypyrroles, polyfurans, polyanilines, and other π-conjugated systems A conductive polymer can be used in combination.
 (a1)成分以外のポリチオフェン類としては、例えば、ポリ(チオフェン)、アルコキシ基置換ポリ(チオフェン)類〔ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)等〕、アルキル基置換ポリ(チオフェン)類〔ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)等〕、カルボキシル基置換ポリ(チオフェン)類〔ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)等〕、ヒドロキシ基置換ポリ(チオフェン)類〔ポリ(3-ヒドロキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)等〕、フェニル基置換ポリ(チオフェン)類〔ポリ(3-フェニルチオフェン)等〕、シアノ基置換ポリ(チオフェン)類〔ポリ(3-シアノチオフェン)等〕、ハロゲン置換ポリ(チオフェン)類〔ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)等〕などが挙げられる。 Examples of the polythiophene other than the component (a1) include poly (thiophene), alkoxy group-substituted poly (thiophene) s [poly (3-methoxythiophene), poly (3-ethoxythiophene), poly (3-butoxythiophene) , Poly (3-hexyloxythiophene), poly (3-heptyloxythiophene), poly (3-octyloxythiophene), poly (3-decyloxythiophene), poly (3-dodecyloxythiophene), poly (3- Octadecyloxythiophene), poly (3,4-dimethoxythiophene), poly (3,4-diethoxythiophene), poly (3,4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly ( 3,4-dihexyloxythiophene), poly (3,4-diheptyloxy) Offene), poly (3,4-dioctyloxythiophene), poly (3,4-didecyloxythiophene), poly (3,4-didodecyloxythiophene), poly (3-methyl-4-methoxythiophene), Poly (3-methyl-4-ethoxythiophene) and the like], alkyl group-substituted poly (thiophene) s [poly (3-methylthiophene), poly (3-ethylthiophene), poly (3-propylthiophene), poly (3 -Butylthiophene), poly (3-hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), poly (3-octadecyl) Thiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthiophene), etc.] Boxyl group-substituted poly (thiophene) s [poly (3-carboxythiophene), poly (3-methyl-4-carboxythiophene), poly (3-methyl-4-carboxyethylthiophene), poly (3-methyl-4- Carboxybutylthiophene)], hydroxy group-substituted poly (thiophene) s [poly (3-hydroxythiophene), poly (3,4-dihydroxythiophene), etc.], phenyl group-substituted poly (thiophene) s [poly (3-phenyl) Thiophene), etc.], cyano group-substituted poly (thiophene) s [poly (3-cyanothiophene), etc.], halogen-substituted poly (thiophene) s [poly (3-bromothiophene), poly (3-chlorothiophene), poly ( 3-iodothiophene) and the like.
 ポリチオフェンビニレン類としては、例えば、ポリ(チオフェンビニレン)、アルキレンジオキシ基置換ポリ(チオフェン)類〔ポリ(3,4-エチレンジオキシチオフェンビニレン)、ポリ(3,4-プロピレンジオキシチオフェンビニレン)、ポリ(3,4-ブテンジオキシチオフェンビニレン)等〕、アルコキシ基置換ポリ(チオフェンビニレン)類〔ポリ(3-メトキシチオフェンビニレン)、ポリ(3-エトキシチオフェンビニレン)、ポリ(3-ブトキシチオフェンビニレン)、ポリ(3-ヘキシルオキシチオフェンビニレン)、ポリ(3-ヘプチルオキシチオフェンビニレン)、ポリ(3-オクチルオキシチオフェンビニレン)、ポリ(3-デシルオキシチオフェンビニレン)、ポリ(3-ドデシルオキシチオフェンビニレン)、ポリ(3-オクタデシルオキシチオフェンビニレン)、ポリ(3,4-ジメトキシチオフェンビニレン)、ポリ(3,4-ジエトキシチオフェンビニレン)、ポリ(3,4-ジプロポキシチオフェンビニレン)、ポリ(3,4-ジブトキシチオフェンビニレン)、ポリ(3,4-ジヘキシルオキシチオフェンビニレン)、ポリ(3,4-ジヘプチルオキシチオフェンビニレン)、ポリ(3,4-ジオクチルオキシチオフェンビニレン)、ポリ(3,4-ジデシルオキシチオフェンビニレン)、ポリ(3,4-ジドデシルオキシチオフェンビニレン)、ポリ(3-メチル-4-メトキシチオフェンビニレン)、ポリ(3-メチル-4-エトキシチオフェンビニレン)等〕、アルキル基置換ポリ(チオフェンビニレン)類〔ポリ(3-メチルチオフェンビニレン)、ポリ(3-エチルチオフェンビニレン)、ポリ(3-プロピルチオフェンビニレン)、ポリ(3-ブチルチオフェンビニレン)、ポリ(3-ヘキシルチオフェンビニレン)、ポリ(3-ヘプチルチオフェンビニレン)、ポリ(3-オクチルチオフェンビニレン)、ポリ(3-デシルチオフェンビニレン)、ポリ(3-ドデシルチオフェンビニレン)、ポリ(3-オクタデシルチオフェンビニレン)、ポリ(3,4-ジメチルチオフェンビニレン)、ポリ(3,4-ジブチルチオフェンビニレン)等〕、カルボキシル基置換ポリ(チオフェンビニレン)類〔ポリ(3-カルボキシチオフェンビニレン)、ポリ(3-メチル-4-カルボキシチオフェンビニレン)、ポリ(3-メチル-4-カルボキシエチルチオフェンビニレン)、ポリ(3-メチル-4-カルボキシブチルチオフェンビニレン)等〕、ヒドロキシ基置換ポリ(チオフェンビニレン)類〔ポリ(3-ヒドロキシチオフェンビニレン)、ポリ(3,4-ジヒドロキシチオフェンビニレン)等〕、フェニル基置換ポリ(チオフェン)類〔ポリ(3-フェニルチオフェンビニレン)等〕、シアノ基置換ポリ(チオフェン)類〔ポリ(3-シアノチオフェンビニレン)等〕、ハロゲン置換ポリ(チオフェン)類〔ポリ(3-ブロモチオフェンビニレン)、ポリ(3-クロロチオフェンビニレン)、ポリ(3-ヨードチオフェンビニレン)等〕などが挙げられる。 Examples of polythiophene vinylenes include poly (thiophene vinylene), alkylenedioxy group-substituted poly (thiophene) [poly (3,4-ethylenedioxythiophene vinylene), poly (3,4-propylene dioxythiophene vinylene) , Poly (3,4-butenedioxythiophene vinylene)], alkoxy group-substituted poly (thiophene vinylene) s [poly (3-methoxythiophene vinylene), poly (3-ethoxythiophene vinylene), poly (3-butoxythiophene] Vinylene), poly (3-hexyloxythiophene vinylene), poly (3-heptyloxythiophene vinylene), poly (3-octyloxythiophene vinylene), poly (3-decyloxythiophene vinylene), poly (3-dodecyloxythiophene) Vinyle ), Poly (3-octadecyloxythiophene vinylene), poly (3,4-dimethoxythiophene vinylene), poly (3,4-diethoxythiophene vinylene), poly (3,4-dipropoxythiophene vinylene), poly (3 , 4-dibutoxythiophene vinylene), poly (3,4-dihexyloxythiophene vinylene), poly (3,4-diheptyloxythiophene vinylene), poly (3,4-dioctyloxythiophene vinylene), poly (3,4 4-didecyloxythiophene vinylene), poly (3,4-didodecyloxythiophene vinylene), poly (3-methyl-4-methoxythiophene vinylene), poly (3-methyl-4-ethoxythiophene vinylene), etc.] Alkyl group-substituted poly (thiophene vinylene) s [poly (3-methyl Thiophene vinylene), poly (3-ethylthiophene vinylene), poly (3-propylthiophene vinylene), poly (3-butyl thiophene vinylene), poly (3-hexylthiophene vinylene), poly (3-heptylthiophene vinylene), poly (3-octylthiophene vinylene), poly (3-decylthiophene vinylene), poly (3-dodecylthiophene vinylene), poly (3-octadecylthiophene vinylene), poly (3,4-dimethylthiophene vinylene), poly (3 4-dibutylthiophene vinylene)], carboxyl group-substituted poly (thiophene vinylenes) [poly (3-carboxythiophene vinylene), poly (3-methyl-4-carboxythiophene vinylene), poly (3-methyl-4-carboxy) Ethylthiophene Nylene), poly (3-methyl-4-carboxybutylthiophenevinylene)], hydroxy group-substituted poly (thiophenevinylene) s [poly (3-hydroxythiophenevinylene), poly (3,4-dihydroxythiophenevinylene), etc.] , Phenyl group-substituted poly (thiophene) [poly (3-phenylthiophenvinylene), etc.], cyano group-substituted poly (thiophene) [poly (3-cyanothiophenevinylene), etc.], halogen-substituted poly (thiophene) [poly (3-bromothiophene vinylene), poly (3-chlorothiophene vinylene), poly (3-iodothiophene vinylene) and the like.
 ポリピロール類としては、例えば、ポリ(ピロール)、アルコキシ基置換ポリ(ピロール)類〔ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)等〕、アルキル基置換ポリ(ピロール)類〔ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)等〕、カルボキシル基置換ポリ(ピロール)類〔ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)等〕、ヒドロキシ基置換ポリ(ピロール)類〔ポリ(3-ヒドロキシピロール)等〕などが挙げられる。 Examples of the polypyrrole include poly (pyrrole), alkoxy group-substituted poly (pyrrole) [poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyl). Oxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), etc.], alkyl group-substituted poly (pyrrole) s [poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole, etc.), carboxyl group-substituted poly (pyrrole) s (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), etc.], hydroxy group substitution And poly (pyrrole) [poly (3-hydroxypyrrole) and the like].
 ポリ(フラン)類としては例えば、ポリ(フラン)、アルコキシ基置換ポリ(フラン)類〔ポリ(3-メトキシフラン)、ポリ(3-エトキシフラン)、ポリ(3-ブトキシフラン)、ポリ(3-ヘキシルオキシフラン)、ポリ(3-メチル-4-ヘキシルオキシフラン)、ポリ(3-メチル-4-ヘキシルオキシフラン)等〕、アルキル基置換ポリ(フラン)類〔ポリ(3-メチルフラン)、ポリ(3-エチルフラン)、ポリ(3-n-プロピルフラン)、ポリ(3-ブチルフラン)、ポリ(3-オクチルフラン)、ポリ(3-デシルフラン)、ポリ(3-ドデシルフラン)、ポリ(3,4-ジメチルフラン)、ポリ(3,4-ジブチルフラン)等〕、カルボキシル基置換ポリ(フラン)類〔ポリ(3-カルボキシフラン)、ポリ(3-メチル-4-カルボキシフラン)、ポリ(3-メチル-4-カルボキシエチルフラン)、ポリ(3-メチル-4-カルボキシブチルフラン)等〕、ヒドロキシ基置換ポリ(フラン)類〔ポリ(3-ヒドロキシフラン)等〕などが挙げられる。 Examples of the poly (furan) include poly (furan), alkoxy group-substituted poly (furan) [poly (3-methoxyfuran), poly (3-ethoxyfuran), poly (3-butoxyfuran), poly (3 -Hexyloxyfuran), poly (3-methyl-4-hexyloxyfuran), poly (3-methyl-4-hexyloxyfuran) and the like], alkyl group-substituted poly (furan) s [poly (3-methylfuran) Poly (3-ethylfuran), poly (3-n-propylfuran), poly (3-butylfuran), poly (3-octylfuran), poly (3-decylfuran), poly (3-dodecylfuran), Poly (3,4-dimethylfuran), poly (3,4-dibutylfuran, etc.)], carboxyl group-substituted poly (furan) s [poly (3-carboxyfuran), poly (3- Til-4-carboxyfuran), poly (3-methyl-4-carboxyethylfuran), poly (3-methyl-4-carboxybutylfuran), etc.], hydroxy-substituted poly (furan) s [poly (3-hydroxy Franc) etc.].
 ポリアニリン類としては、例えば、ポリ(アニリン)、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)などが挙げられる。 Examples of polyanilines include poly (aniline), poly (2-methylaniline), poly (3-isobutylaniline), poly (2-aniline sulfonic acid), poly (3-aniline sulfonic acid), and the like.
 (a1)成分およびその他のπ共役系導電性高分子は、公知の化学的酸化重合法や電解重合法により得られる。前者の場合には、前駆体モノマー、ドーパントおよび酸化剤を含む溶液中で導電性高分子を合成する方法が挙げられ、後者の場合には、前駆体モノマーおよびドーパントを含む電解溶液中に支持電極を浸漬し、その上に導電性高分子を形成させる方法が挙げられる。なお、重合の際には溶媒として水や、後述する(D)成分を使用してもよい。 The component (a1) and other π-conjugated conductive polymers can be obtained by a known chemical oxidative polymerization method or electrolytic polymerization method. In the former case, a method of synthesizing a conductive polymer in a solution containing a precursor monomer, a dopant and an oxidizing agent is mentioned. In the latter case, a supporting electrode is included in the electrolytic solution containing the precursor monomer and the dopant. And a method of forming a conductive polymer thereon. In the polymerization, water or a component (D) described later may be used as a solvent.
 酸化剤としては、金属塩系酸化剤〔塩化第二鉄、硫酸第二鉄、硝酸第二鉄、塩化第二銅、塩化アルミニウム等〕、非金属塩系酸化剤〔ぺルオキソ二硫酸アンモニウム、ぺルオキソ二硫酸ナトリウム、ぺルオキソ二硫酸カリウム、三フッ化ホウ素、オゾン、過酸化ベンゾイル、酸素等〕などが挙げられる。 As oxidizing agents, metal salt oxidizing agents (ferric chloride, ferric sulfate, ferric nitrate, cupric chloride, aluminum chloride, etc.), non-metal salt oxidizing agents (ammonium peroxodisulfate, peroxo) Sodium disulfate, potassium peroxodisulfate, boron trifluoride, ozone, benzoyl peroxide, oxygen, etc.).
 (a2)成分であるスルホアニオン基含有ポリマーは、(a1)成分に対するドーピング成分であり、具体的には、スルホン酸系重合性モノマーの単独重合物や、スルホン酸系重合性モノマーとスルホアニオン基を有しない重合性モノマーとの共重合物等、各種公知のものを特に制限なく用いることができる。なお、「スルホアニオン基」とは、アニオン性官能基であるスルホ基または一置換スルホエステル基を意味する。また、当該「一置換スルホエステル基」とは、スルホエステル基における水酸基上の水素がアルキル基(炭素数1~20程度)で置換されたものをいう。 The sulfoan anion group-containing polymer as the component (a2) is a doping component for the component (a1), and specifically, a homopolymer of a sulfonic acid polymerizable monomer, a sulfonic acid polymerizable monomer and a sulfo anion group. Various known materials such as a copolymer with a polymerizable monomer having no benzene can be used without particular limitation. The “sulfoanion group” means a sulfo group or a monosubstituted sulfoester group which is an anionic functional group. The “monosubstituted sulfoester group” refers to a group in which hydrogen on a hydroxyl group in the sulfoester group is substituted with an alkyl group (having about 1 to 20 carbon atoms).
 スルホン酸系重合性モノマーとしては、ビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、α-メチルスチレンスルホン酸、メタリルオキシベンゼンスルホン酸、アリルオキシベンゼンスルホン酸、1,3-ブタジエン-1-スルホン酸、1-メチル-1,3-ブタジエン-2-スルホン酸、1-メチル-1,3-ブタジエン-4-スルホン酸、イソプレンスルホン酸、(メタ)アクリル酸エチルスルホン酸(CH=C(CH)-COO-(CH-SOH)、(メタ)アクリル酸プロピルスルホン酸(CH=C(CH)-COO-(CH-SOH)、(メタ)アクリル酸-t-ブチルスルホン酸(CH=C(CH)-COO-C(CHCH-SOH)、(メタ)アクリル酸-n-ブチルスルホン酸(CH=C(CH)-COO-(CH-SOH)、(メタ)アクリル酸フェニレンスルホン酸(CH=C(CH)-COO-C-SOH)、(メタ)アクリル酸ナフタレンスルホン酸(CH=C(CH)-COO-C10-SOH)、アリル酸エチルスルホン酸(CH=CHCH-COO-(CH-SOH)、アリル酸-t-ブチルスルホン酸(CH=CHCH-COO-C(CHCH-SOH)、4-ペンテン酸エチルスルホン酸(CH=CH(CH-COO-(CH-SOH)、4-ペンテン酸プロピルスルホン酸(CH=CH(CH-COO-(CH-SOH)、4-ペンテン酸-n-ブチルスルホン酸(CH=CH(CH-COO-(CH-SOH)、4-ペンテン酸-t-ブチルスルホン酸(CH=CH(CH-COO-C(CHCH-SOH)、4-ペンテン酸フェニレンスルホン酸(CH=CH(CH-COO-C-SOH)、4-ペンテン酸ナフタレンスルホン酸(CH=CH(CH-COO-C10-SOH)、アクリルアミド-t-ブチルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、シクロブテン-3-スルホン酸、それらの塩類(ナトリウム塩等)が挙げられる。 Examples of sulfonic acid-based polymerizable monomers include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, α-methyl styrene sulfonic acid, methallyloxybenzene sulfonic acid, allyloxybenzene sulfonic acid, 1,3-butadiene- 1-sulfonic acid, 1-methyl-1,3-butadiene-2-sulfonic acid, 1-methyl-1,3-butadiene-4-sulfonic acid, isoprenesulfonic acid, ethyl (meth) acrylate sulfonic acid (CH 2 ═C (CH 3 ) —COO— (CH 2 ) 2 —SO 3 H), (meth) acrylic acid propylsulfonic acid (CH 2 ═C (CH 3 ) —COO— (CH 2 ) 3 —SO 3 H) (Meth) acrylic acid-t-butylsulfonic acid (CH 2 ═C (CH 3 ) —COO—C (CH 3 ) 2 CH 2 —SO 3 H), A) Acrylic acid-n-butylsulfonic acid (CH 2 ═C (CH 3 ) —COO— (CH 2 ) 4 —SO 3 H), (meth) acrylic acid phenylene sulfonic acid (CH 2 ═C (CH 3 )) —COO—C 6 H 4 —SO 3 H), (meth) acrylic acid naphthalenesulfonic acid (CH 2 ═C (CH 3 ) —COO—C 10 H 8 —SO 3 H), ethyl allyl sulfonic acid (CH 2 = CHCH 2 —COO— (CH 2 ) 2 —SO 3 H), allyl acid-t-butylsulfonic acid (CH 2 ═CHCH 2 —COO—C (CH 3 ) 2 CH 2 —SO 3 H), 4 -Pentenoic acid ethylsulfonic acid (CH 2 ═CH (CH 2 ) 2 —COO— (CH 2 ) 2 —SO 3 H), 4-pentenoic acid propyl sulfonic acid (CH 2 ═CH (CH 2 ) 2 —COO— (CH 2 ) 3- SO 3 H), 4-pentenoic acid-n-butylsulfonic acid (CH 2 ═CH (CH 2 ) 2 —COO— (CH 2 ) 4 —SO 3 H), 4-pentenoic acid-t— Butylsulfonic acid (CH 2 ═CH (CH 2 ) 2 —COO—C (CH 3 ) 2 CH 2 —SO 3 H), 4-pentenoic acid phenylene sulfonic acid (CH 2 ═CH (CH 2 ) 2 —COO— C 6 H 4 —SO 3 H), 4-pentenoic acid naphthalenesulfonic acid (CH 2 ═CH (CH 2 ) 2 —COO—C 10 H 8 —SO 3 H), acrylamide-t-butylsulfonic acid, 2- Examples include acrylamide-2-methylpropanesulfonic acid, cyclobutene-3-sulfonic acid, and salts thereof (sodium salt and the like).
 スルホアニオン基を有しない重合性モノマーとしては、例えば、芳香族系モノマー〔スチレン、p-メチルスチレン、p-エチルスチレン、p-ブチルスチレン、2,4,6-トリメチルスチレン、p-メトキシスチレン、α-メチルスチレン、ビニルフェノール、2-ビニルナフタレン、6-メチル-2-ビニルナフタレン等〕、非脂環式ジエン〔1,3-ブタジエン、1-メチル-1,3-ブタジエン、2-メチル-1,3-ブタジエン、1,4-ジメチル-1,3-ブタジエン、1,2-ジメチル-1,3-ブタジエン、1,3-ジメチル-1,3-ブタジエン、1-オクチル-1,3-ブタジエン、2-オクチル-1,3-ブタジエン、1-フェニル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1-ヒドロキシ-1,3-ブタジエン等〕、非脂環式モノエン〔2-ヒドロキシ-1,3-ブタジエン、エチレン、プロぺン、1-ブテン、2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン等〕、脂環式モノエン〔シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、2-メチルシクロヘキセン等〕、イミダゾール系モノマー〔1-ビニルイミダゾール、2-ビニルピリジン、3-ビニルピリジン、4-ビニルピリジン、N-ビニル-2-ピロリドン、N-ビニルアセトアミド、N-ビニルホルムアミド、N-ビニルイミダゾ-ル等〕、アクリルアミド類〔(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、Nビニルホルムアミド、3-アクリルアミドフェニルボロン酸等〕、アミン系モノマー〔アクリロイルモルホリン、ビニルアミン、N,N-ジメチルビニルアミン、N,N-ジエチルビニルアミン、N,N-ジブチルビニルアミン、N,N-ジ-t-ブチルビニルアミン、N,N-ジフェニルビニルアミン、N-ビニルカルバゾール等〕、その他のモノマー〔ビニルアセテート、アクロレイン、メタクロレイン、アクリロニトリル、ビニルアルコール、塩化ビニル、フッ化ビニル、メチルビニルエーテル、エチルビニルエーテル等〕などが挙げられる。 Examples of the polymerizable monomer having no sulfoanionic group include aromatic monomers [styrene, p-methylstyrene, p-ethylstyrene, p-butylstyrene, 2,4,6-trimethylstyrene, p-methoxystyrene, α-methylstyrene, vinylphenol, 2-vinylnaphthalene, 6-methyl-2-vinylnaphthalene, etc.], non-alicyclic dienes [1,3-butadiene, 1-methyl-1,3-butadiene, 2-methyl- 1,3-butadiene, 1,4-dimethyl-1,3-butadiene, 1,2-dimethyl-1,3-butadiene, 1,3-dimethyl-1,3-butadiene, 1-octyl-1,3- Butadiene, 2-octyl-1,3-butadiene, 1-phenyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1-hydroxy- , 3-butadiene, etc.], non-alicyclic monoenes [2-hydroxy-1,3-butadiene, ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2 -Hexene, etc.], alicyclic monoenes (cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, 2-methylcyclohexene, etc.), imidazole monomers (1-vinylimidazole, 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, N-vinyl-2-pyrrolidone, N-vinylacetamide, N-vinylformamide, N-vinylimidazole, etc.], acrylamides ((meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N vinylform Muamide, 3-acrylamidophenylboronic acid, etc.], amine monomers [acryloylmorpholine, vinylamine, N, N-dimethylvinylamine, N, N-diethylvinylamine, N, N-dibutylvinylamine, N, N-di- t-butyl vinylamine, N, N-diphenylvinylamine, N-vinylcarbazole, etc.], other monomers [vinyl acetate, acrolein, methacrolein, acrylonitrile, vinyl alcohol, vinyl chloride, vinyl fluoride, methyl vinyl ether, ethyl vinyl ether Etc.].
 (a2)成分としては、ドーピング性能が良好であり、かつ後述する(A)成分の有機溶剤分散体の安定性に寄与する点で、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、およびポリイソプレンカルボン酸、ポリアクリル酸、ならびにそれらの塩類からなる群より選ばれる少なくとも1種が、特にポリスチレンスルホン酸および/またはその塩(特にナトリウム塩)(以下、PSSと総称することがある。)が好ましい。 As the component (a2), polystyrene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, and polyacrylic are preferable because they have good doping performance and contribute to the stability of the organic solvent dispersion of the component (A) described later. Acid ethyl sulfonic acid, polybutyl acrylate, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacrylic acid At least one selected from the group consisting of carboxylic acid, poly-2-acrylamido-2-methylpropanecarboxylic acid, polyisoprene carboxylic acid, polyacrylic acid, and salts thereof, in particular polystyrene sulfonic acid and / or its salt (Especially Nat Umushio) (hereinafter sometimes collectively referred to as PSS.) Are preferred.
 (a1)成分を(a2)成分によりドープする方法は特に限定されず、例えば、(a1)成分に(a2)成分を添加して各種公知の手段で撹拌混合したり、(a1)成分の製造時(前駆体モノマーの重合時)、反応系に(a2)成分を共存させたりする方法などが挙げられる。また、(a1)成分および(a2)成分の使用量は特に限定されないが、通常(a1)成分1重量部に対し、(a2)成分が0.5~5重量部程度である。 The method of doping the component (a1) with the component (a2) is not particularly limited. For example, the component (a2) is added to the component (a1) and mixed by stirring by various known means, or the production of the component (a1) And a method of coexisting the component (a2) in the reaction system. The amount of component (a1) and component (a2) used is not particularly limited, but is usually about 0.5 to 5 parts by weight of component (a2) with respect to 1 part by weight of component (a1).
 (A)成分が水溶液ないし水分散液として用意される場合には、各種公知の方法(特開2008-045116号公報、特開2008-156452号公報、特開2008-222850号公報、特開2011-208016号公報等)に従い有機溶媒分散体となすことができる。具体的には、例えば、(A)成分としてPEDOT/PSSの水溶液ないし水分散液を用いる場合には、これを各種公知の乾燥手段(スプレードライヤー等)で乾燥させることにより、PEDOT/PSSの青色固体を得ることができ、これを(A)成分として使用できる。 When the component (A) is prepared as an aqueous solution or aqueous dispersion, various known methods (Japanese Patent Application Laid-Open Nos. 2008-045116, 2008-156442, 2008-222850, and 2011) are used. -2081616 etc.) to obtain an organic solvent dispersion. Specifically, for example, when an aqueous solution or aqueous dispersion of PEDOT / PSS is used as the component (A), the PEDOT / PSS blue color is obtained by drying it with various known drying means (spray dryer or the like). A solid can be obtained and can be used as component (A).
 (A)成分としては、導電性高分子/ドーパント錯体としての化学的な安定性や、導電性、本発明の導電性組成物からなる被膜の色相・透明性等の点より、特にPEDOTとPSSからなる錯体(以下、PEDOT/PSSという。)が好ましい。PEDOT/PSSは、例えば「Clevios P」(商品名;Heraeus社製)、「Orgacon」(商品名;日本アグファ・ゲバルト(株)製)等の市販品を使用できる。 As component (A), PEDOT and PSS are particularly preferable from the viewpoints of chemical stability as a conductive polymer / dopant complex, conductivity, and hue and transparency of a film made of the conductive composition of the present invention. A complex consisting of (hereinafter referred to as PEDOT / PSS) is preferred. As PEDOT / PSS, for example, commercially available products such as “Clevios P” (trade name; manufactured by Heraeus) and “Orgacon” (trade name; manufactured by Agfa Gebalto, Japan) can be used.
 (B)成分は、下記一般式(2)で表される化合物であり、(A)成分の分散剤として作用する。そして、(B)成分を用いることにより、本発明の有機溶媒分散体の貯蔵安定性が改善される他、これを含む導電性組成物の導電性を損なうことなく、その貯蔵安定性を向上させることもできる。 The component (B) is a compound represented by the following general formula (2) and acts as a dispersant for the component (A). By using the component (B), the storage stability of the organic solvent dispersion of the present invention is improved, and the storage stability is improved without impairing the conductivity of the conductive composition containing the component. You can also.
Figure JPOXMLDOC01-appb-C000018



 (式(2)中、Xは炭素数1~40のアルキル基、炭素数3~40のアルケニル基、および炭素数3~40のアラルキル基のいずれかを表す。またYはそれぞれ、オキシエチレン基、オキシプロピレン基、およびオキシエチレン-オキシプロピレン基のいずれかを表す。またmはいずれも1~20の整数を表す。)
Figure JPOXMLDOC01-appb-C000018



(In Formula (2), X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms. Y represents oxyethylene, respectively. And any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.)
 一般式(2)で表される化合物としては、例えば、N,N-ポリ(オキシエチレン)-ヘキシルアミン、N,N-ポリ(オキシプロピレン)-ヘキシルアミン、N,N-ポリ(オキシエチレン・オキシプロピレン)-ヘキシルアミン、N,N-ポリ(オキシエチレン)-デシルアミン、N,N-ポリ(オキシプロピレン)-デシルアミン、N,N-ポリ(オキシエチレン・オキシプロピレン)-デシルアミン、N,N-ポリ(オキシエチレン)-デシルアミン、N,N-ポリ(オキシプロピレン)-デシルアミン、N,N-ポリ(オキシエチレン・オキシプロピレン)-デシルアミン、N,N-ポリ(オキシエチレン)-ペンタデシルアミン、N,N-ポリ(オキシプロピレン)-ペンタデシルアミン、N,N-ポリ(オキシエチレン・オキシプロピレン)-ペンタデシルアミン、N,N-ポリ(オキシエチレン)-イコシルアミン、N,N-ポリ(オキシプロピレン)-イコシルアミン、N,N-ポリ(オキシエチレン・オキシプロピレン)-イコシルアミン、N,N-ポリ(オキシエチレン)-ヘキサコシルアミン、N,N-ポリ(オキシプロピレン)-ヘキサコシルアミン、N,N-ポリ(オキシエチレン・オキシプロピレン)-ヘキサコシルアミン、N,N-ポリ(オキシエチレン)-トリアコンチルアミン、N,N-ポリ(オキシプロピレン)-トリアコンチルアミン、N,N-ポリ(オキシエチレン・オキシプロピレン)-トリアコンチルアミン等のN,N-ポリ(オキシアルキレン)-アルキルアミン類が挙げられ、これらは2種以上を組み合わせてもよい。 Examples of the compound represented by the general formula (2) include N, N-poly (oxyethylene) -hexylamine, N, N-poly (oxypropylene) -hexylamine, N, N-poly (oxyethylene Oxypropylene) -hexylamine, N, N-poly (oxyethylene) -decylamine, N, N-poly (oxypropylene) -decylamine, N, N-poly (oxyethylene oxypropylene) -decylamine, N, N- Poly (oxyethylene) -decylamine, N, N-poly (oxypropylene) -decylamine, N, N-poly (oxyethylene oxypropylene) -decylamine, N, N-poly (oxyethylene) -pentadecylamine, N , N-poly (oxypropylene) -pentadecylamine, N, N-poly (oxyethylene o Cypropylene) -pentadecylamine, N, N-poly (oxyethylene) -icosylamine, N, N-poly (oxypropylene) -icosylamine, N, N-poly (oxyethylene oxypropylene) -icosylamine, N, N -Poly (oxyethylene) -hexacosylamine, N, N-poly (oxypropylene) -hexacosylamine, N, N-poly (oxyethylene oxypropylene) -hexacosylamine, N, N-poly (oxyethylene) N, N-poly (oxyalkylene) -alkylamines such as N) N-poly (oxypropylene) -triacontylamine, N, N-poly (oxyethylene oxypropylene) -triacontylamine These may include two or more of them.
 なお、必要に応じ、ポリオキシエチレンステアリルアミン、ポリオキシエチレンラウリルアミン等の2級ポリオキアルキレンアミン類といった(B)成分以外のアミン系分散剤や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル等の非アミン系ノニオン性界面活性剤を併用でき、これらは2種以上を組み合わせてもよい。 If necessary, amine-based dispersants other than component (B) such as secondary polyoxyalkyleneamines such as polyoxyethylene stearylamine and polyoxyethylene laurylamine, polyoxyethylene alkyl ether, polyoxyethylene styrylphenyl Non-amine nonionic surfactants such as ether and polyoxyethylene sorbitan fatty acid ester can be used in combination, and these may be used in combination of two or more.
 (C)成分は下記一般式(3)で表される化合物のうちアルコール可溶性のものである。この(C)成分の作用により、本発明の導電性組成物より得られる被膜の導電性が良好になり、かつその経時的な低下幅が小さくなる。 Component (C) is an alcohol-soluble compound represented by the following general formula (3). Due to the action of the component (C), the conductivity of the film obtained from the conductive composition of the present invention is improved, and the decrease width with time is reduced.
Figure JPOXMLDOC01-appb-C000019



(式(3)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を示す。また、X~Xはいずれも水素、水酸基およびアルコキシ基からなる群より選ばれる1種を表す(但し、X~Xのうち少なくとも二つは水酸基である。)。また、Yはメチレン基またはカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000019



(In formula (3), the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond. X 1 to X 7 are all selected from the group consisting of hydrogen, a hydroxyl group and an alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.) Y represents a methylene group or a carbonyl group.)
 また、式(3)中のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基等のアルキル基の炭素数が1~5程度のものが挙げられる(以下、同様。)。 In addition, examples of the alkoxy group in the formula (3) include those having an alkyl group such as a methoxy group, an ethoxy group, and a propoxy group having about 1 to 5 carbon atoms (the same applies hereinafter).
 また、(C)成分としては、本発明の導電性被膜の導電性の観点より、X~Xのうち三~五個が水酸基であるものがより好ましく、特に下記一般式(3-1)で表される化合物が好ましい。後者化合物は、本発明の有機溶媒分散体中で、前記(A)成分に由来する遷移金属イオン(鉄、銅、マグネシウム等)を捕捉すると考えられ、その結果、当該有機溶媒分散体を用いた導電性組成物より得られる被膜の導電性の経時的な低下幅が小さくなる。 Further, as the component (C), from the viewpoint of the conductivity of the conductive film of the present invention, those in which 3 to 5 of X 1 to X 7 are hydroxyl groups are more preferable, and in particular, the following general formula (3-1) ) Is preferred. The latter compound is considered to capture transition metal ions (iron, copper, magnesium, etc.) derived from the component (A) in the organic solvent dispersion of the present invention, and as a result, the organic solvent dispersion was used. The temporal decrease in the conductivity of the film obtained from the conductive composition is reduced.
Figure JPOXMLDOC01-appb-C000020



(式(3-1)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を示す。また、Xは水酸基またはアルコキシ基を表す。また、X、XおよびXのうちいずれか一つが水酸基であり、残りの二つはそれぞれ水素又は水酸基である。また、Yはメチレン基またはカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000020



(In the formula (3-1), the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond. X 1 represents a hydroxyl group or an alkoxy group. Further, X 3 , X 4 and X 5 (One of them is a hydroxyl group, and the remaining two are hydrogen or a hydroxyl group, respectively, and Y represents a methylene group or a carbonyl group.)
 また、前記式(3-1)で表される化合物の中でも、下記式(3-2)~式(3-4)で示される化合物、とりわけ下記式(3-2)で示される化合物によれば、本発明に係る導電性被膜の導電性の経時的な低下幅がいっそう小さくなるため好ましい。 Further, among the compounds represented by the formula (3-1), the compounds represented by the following formulas (3-2) to (3-4), particularly those represented by the following formula (3-2) are used. For example, the conductive coating film according to the present invention is preferable because the decrease in conductivity over time is further reduced.
Figure JPOXMLDOC01-appb-C000021



(式(3-2)中、Xは水酸基またはアルコキシ基を表す。)
Figure JPOXMLDOC01-appb-C000021



(In formula (3-2), X 1 represents a hydroxyl group or an alkoxy group.)
Figure JPOXMLDOC01-appb-C000022



(式(3-3)中、Xは水酸基またはアルコキシ基を表す。)
Figure JPOXMLDOC01-appb-C000022



(In formula (3-3), X 1 represents a hydroxyl group or an alkoxy group.)
Figure JPOXMLDOC01-appb-C000023


(式(3-4)中、Xは水酸基またはアルコキシ基を表す。)
Figure JPOXMLDOC01-appb-C000023


(In the formula (3-4), X 1 represents a hydroxyl group or an alkoxy group.)
なお、式(3)で表される化合物のうちアルコール可溶性のものを(C)成分としたのは、本発明の有機溶剤分散体がアルコール類((d1)成分)を含む有機溶剤((D)成分)を分散媒とするからである。よって、式(3)で表される化合物またはこれに構造上類似する化合物であっても、アルコール可溶性でないものは(C)成分に含めない。そのようなものとしては、例えば式(3)のX~Xのいずれか一つまたは二つ以上がグリコシド基(例えば-ORha(Rhaはラムノシル残基を示す。)や、-ORu(Ruはルチノシル(β-ルチノース)残基)で表される基)であるものが挙げられるが、このものはグリコシド基部位の親水性が強く、(D)成分に溶解し難いことから、本発明の所期の効果を奏し難い。 In addition, among the compounds represented by the formula (3), an alcohol-soluble compound was used as the component (C) because the organic solvent dispersion of the present invention contains an alcohol ((d1) component) ((D This is because component) is used as a dispersion medium. Therefore, even if it is a compound represented by Formula (3) or a compound structurally similar to this, what is not alcohol-soluble is not included in (C) component. As such, for example, any one or two or more of X 1 to X 7 in the formula (3) is a glycoside group (for example, —ORha (Rha represents a rhamnosyl residue), —ORu (Ru Is a group represented by a rutinosyl (β-lutinose) residue), but this has a strong hydrophilicity at the glycoside group and is difficult to dissolve in the component (D). It is difficult to achieve the desired effect.
 また、本明細書において「アルコール可溶性」とは、当該が常温においてアルコール溶媒(特にエタノール)に溶解する一方、水には難溶又は不溶であることをいう。具体的には、当該化合物を、エタノール/水=9/1(重量比)となる混合溶媒の1%溶液(25℃)としたときに当該溶液が濁りのない透明な外観を呈するが、エタノール/水=8/2(重量比)となる混合溶媒の1%溶液(25℃)としたときには当該溶液に不溶物が生じたり、濁りが生じたりすることをいう。 In the present specification, “alcohol-soluble” means that the alcohol is soluble in an alcohol solvent (particularly ethanol) at room temperature, but is hardly soluble or insoluble in water. Specifically, when the compound is a 1% solution (25 ° C.) of a mixed solvent in which ethanol / water = 9/1 (weight ratio), the solution exhibits a transparent appearance without turbidity. When a 1% solution (25 ° C.) of a mixed solvent in which / water = 8/2 (weight ratio) is used, it means that insoluble matter or turbidity occurs in the solution.
 (D)成分を構成する(d1)成分としては、例えば非エーテル系モノアルコール〔メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール等〕、非エーテル系ジオール〔エチレングリコール、ネオペンチルグリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコールおよびジプロピレングリコール等〕、エーテル系アルコール〔ジオキサン、ジエチルエーテル、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、プロピレングリコールモノメチルエーテル、ポリエチレングリコールジアルキルエーテルおよびポリプロピレングリコールジアルキルエーテル等〕等が挙げられ、これらは2種以上を組み合わせてもよい。これらの中でも非エーテル系ジオール、特にエチレングリコールを用いると、本発明の導電性被膜の導電性が向上する。また、(D)成分に占める(d1)成分の量は特に制限されないが、通常95~99.5重量%程度、好ましくは97~100重量%程度、いっそう好ましくは100重量%である。 Examples of the component (d1) constituting the component (D) include non-ether monoalcohol [methanol, ethanol, propanol, butanol, isopropyl alcohol, etc.], non-ether diol [ethylene glycol, neopentyl glycol, propylene glycol, 1 , 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol and dipropylene glycol, etc.], ether alcohols (dioxane, diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, propylene glycol monomethyl) Ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), and the like. It may be combined. Among these, when a non-ether diol, particularly ethylene glycol is used, the conductivity of the conductive coating of the present invention is improved. The amount of the component (d1) in the component (D) is not particularly limited, but is usually about 95 to 99.5% by weight, preferably about 97 to 100% by weight, and more preferably 100% by weight.
 (D)成分には(d1)成分以外の溶剤(以下、(d2)成分という。)として、例えば、ケトン類、脂環族炭化水素類、含窒素化合物系溶剤、含硫黄化合物系溶剤等を含めることができる。具体的には、該ケトン類としてはアセトンやメチルエチルケトン等が、該芳香族炭化水素類としてはベンゼン、トルエン、キシレン等が、該脂環族炭化水素類としてはシクロヘキサンやメチルシクロヘキサン等が、該エステル類としてはギ酸エチル、酢酸エチル等が、ニトリル類としてはアセトニトリルやグルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等が、該含窒素化合物系溶剤としてはN-メチル-2-ピロリドンや3-メチル-2-オキサゾリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が、該含硫黄化合物系溶剤としてはジメチルスルホキシドやヘキサメチレンホスホルトリアミド等などが挙げられ、これらは2種以上を組み合わせてもよい。 Examples of the component (D) include solvents other than the component (d1) (hereinafter referred to as the component (d2)) such as ketones, alicyclic hydrocarbons, nitrogen-containing compound solvents, sulfur-containing compound solvents, and the like. Can be included. Specifically, acetone, methyl ethyl ketone, etc. as the ketones, benzene, toluene, xylene, etc. as the aromatic hydrocarbons, cyclohexane, methylcyclohexane, etc. as the alicyclic hydrocarbons, the ester Examples include ethyl formate and ethyl acetate, nitriles include acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, and the like, and nitrogen-containing compounds include N-methyl-2-pyrrolidone and 3 -Methyl-2-oxazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide and the like, and examples of the sulfur-containing compound solvent include dimethyl sulfoxide, hexamethylene phosphortriamide, and the like. May be combined.
 本発明の有機溶媒分散体は、(A)成分、(B)成分および(C)成分を(D)成分に配合し、各種公知の手段により分散・混合したものである。なお、各成分の添加順序は特に限定されない。また、分散・混合手段としては、各種公知の分散装置(乳化分散機、超音波分散装置等)を用いることができる。 The organic solvent dispersion of the present invention is obtained by blending (A) component, (B) component and (C) component with (D) component, and dispersing and mixing them by various known means. In addition, the addition order of each component is not specifically limited. As the dispersing / mixing means, various known dispersing devices (emulsification dispersing device, ultrasonic dispersing device, etc.) can be used.
 また、本発明の有機溶媒分散体における(A)成分、(B)成分、(C)成分および(D)成分の含有量も特に限定されないが、当該有機溶媒分散体の貯蔵安定性や、該有機溶媒分散体を用いて得られる導電性組成物の貯蔵安定性、ならびに該導電性組成物より得られる被膜の導電性およびその経時的な安定性等を考慮すると、通常は以下の通りである。(但し、(D)成分以外の成分は固形分換算である。)
(A)成分:0.01~2重量%程度、好ましくは0.02~1重量%
(B)成分:0.01~2重量%程度、好ましくは0.02~1重量%
(C)成分:0.01~5重量%程度、好ましくは0.01~1重量%
(D)成分:95~99.5重量%程度、好ましくは97~99.95重量%
Further, the content of the component (A), the component (B), the component (C) and the component (D) in the organic solvent dispersion of the present invention is not particularly limited, but the storage stability of the organic solvent dispersion, In consideration of the storage stability of the conductive composition obtained using the organic solvent dispersion, the conductivity of the film obtained from the conductive composition and its stability over time, etc., the following is usually as follows: . (However, components other than the component (D) are in terms of solid content.)
Component (A): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight
Component (B): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight
Component (C): about 0.01 to 5% by weight, preferably 0.01 to 1% by weight
Component (D): about 95 to 99.5% by weight, preferably 97 to 99.95% by weight
本発明の有機溶媒分散体の固形分濃度は特に限定されず、その用途に応じて適宜決定すればよいが、通常は、0.5~10重量%程度、好ましくは3~8重量%程度である。 The solid content concentration of the organic solvent dispersion of the present invention is not particularly limited, and may be appropriately determined according to its use. Usually, it is about 0.5 to 10% by weight, preferably about 3 to 8% by weight. is there.
 また、当該有機溶媒分散体は、前記有機溶剤を溶媒とする非水系の組成物である。但し、例えば(A)成分として市販のPEDOT/PSS水溶液ないし水分散液を使用する場合には、このものに由来する水が不可避的に混入することがある。この場合、当該有機溶媒分散体における水の含有量は通常5重量%以下の範囲であり、好ましくは3重量%以下であり、いっそう好ましくは1重量%以下であり、さらには実質的に0重量%であってよい。 The organic solvent dispersion is a non-aqueous composition using the organic solvent as a solvent. However, for example, when a commercially available PEDOT / PSS aqueous solution or aqueous dispersion is used as the component (A), water derived from this may be inevitably mixed. In this case, the water content in the organic solvent dispersion is usually in the range of 5% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less, and substantially 0% by weight. %.
 また、当該有機溶媒分散体における(A)成分の粒径は特に限定されないが、通常、その平均一次粒子径が10~500nm程度であり、該有機溶媒分散体の貯蔵安定性等を考慮すると、好ましくは10~50nm程度である。 Further, the particle size of the component (A) in the organic solvent dispersion is not particularly limited, but usually the average primary particle size is about 10 to 500 nm, and considering the storage stability of the organic solvent dispersion, The thickness is preferably about 10 to 50 nm.
<導電性組成物について> <About conductive composition>
 本発明の導電性組成物は、前記(A)成分、(B)成分および(C)成分並びに前記(D)成分と、活性エネルギー線ラジカル重合型化合物(α)(以下、(α)成分という。)、エポキシ樹脂(β)(以下、(β)成分という。)および非活性エネルギー線ラジカル重合型アクリル共重合体(γ)(以下、(γ)成分という。)からなる群より選ばれる1種のバインダー成分とを含む組成物である。 The conductive composition of the present invention comprises the component (A), the component (B), the component (C), the component (D), the active energy ray radical polymerization compound (α) (hereinafter referred to as the component (α). 1) selected from the group consisting of epoxy resin (β) (hereinafter referred to as (β) component) and inactive energy ray radical polymerization type acrylic copolymer (γ) (hereinafter referred to as (γ) component). It is a composition containing a seed binder component.
Figure JPOXMLDOC01-appb-C000024



(式(1)中、Aは炭素数1~12のアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000024



(In the formula (1), A represents an alkylene group having 1 to 12 carbon atoms.)
Figure JPOXMLDOC01-appb-C000025



(式(2)中、Xは炭素数1~40のアルキル基、炭素数3~40のアルケニル基、および炭素数3~40のアラルキル基のいずれかを表す。またYはそれぞれ、オキシエチレン基、オキシプロピレン基、およびオキシエチレン-オキシプロピレン基のいずれかを表す。またmはいずれも1~20の整数を表す。)
Figure JPOXMLDOC01-appb-C000025



(In Formula (2), X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms. Y represents oxyethylene, respectively. Represents any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.)
Figure JPOXMLDOC01-appb-C000026



(式(3)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を示す。また、X~Xはいずれも水素、水酸基、アルコキシ基からなる群より選ばれる1種を表す(但し、X~Xのうち少なくとも二つは水酸基である。)。また、Yはメチレン基またはカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000026



(In the formula (3), the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond. X 1 to X 7 are all selected from the group consisting of hydrogen, hydroxyl group and alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.) Y represents a methylene group or a carbonyl group.)
 本発明の第一の態様の導電性組成物は、バインダー成分として(α)成分を用いたものである。なお、当該組成物に含まれる(A)成分、(B)成分および(C)成分(D)成分はそれぞれ前記したものと同様である。 The conductive composition according to the first aspect of the present invention uses the component (α) as a binder component. In addition, the (A) component, (B) component, and (C) component (D) component which are contained in the said composition are respectively the same as what was mentioned above.
 (α)成分としては、紫外線や電子線等の活性エネルギー線によってラジカル重合し、硬化被膜を形成するような化合物であれば各種公知のものを特に制限なく使用できる。具体的には、2官能~6官能の(メタ)アクリレート化合物(α1)(以下、(α1)成分という。)および/または分子内に遊離の(メタ)アクリロイル基を有する(メタ)アクリル系重合物(α2)(以下、(α2)成分という。)が好ましい。 As the (α) component, various known compounds can be used without particular limitation as long as they are radically polymerized by active energy rays such as ultraviolet rays and electron beams to form a cured film. Specifically, a bifunctional to hexafunctional (meth) acrylate compound (α1) (hereinafter referred to as (α1) component) and / or (meth) acrylic polymerization having a free (meth) acryloyl group in the molecule. The product (α2) (hereinafter referred to as the (α2) component) is preferable.
 (α1)成分としては、例えば、2官能(メタ)アクリレート化合物〔ヘキサメチレングリコールジアクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヘキサエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4ーブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2,2’-ビス(4-アクリロキシジエトキシフェニル)プロパン、1,9-ノナンジオールジ(メタ)アクリレート、ビスフェノールAテトラエチレングリコールジアクリレート等〕、3官能(メタ)アクリレート化合物〔トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、エチレンオキシド変性グリセロールトリアクリレート、プロピレンオキシド変性グリセロールトリアクリレート、εカプロラクトン変性トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート等〕、4官能(メタ)アクリレート化合物〔ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、ペンタエリスリトールテトラアクリレート〕、5官能以上の(メタ)アクリレート化合物〔ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ポリペンタエリスリトールポリアクリレート等〕などが挙げられ、これらは1種を単独で、或いは2種以上を組み合わせて用いることができる。    Examples of the (α1) component include bifunctional (meth) acrylate compounds [hexamethylene glycol diacrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol] Di (meth) acrylate, hexaethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl Glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-f Sundiol di (meth) acrylate, 2,2′-bis (4-acryloxydiethoxyphenyl) propane, 1,9-nonanediol di (meth) acrylate, bisphenol A tetraethylene glycol diacrylate, etc.], trifunctional (meth) Acrylate compounds (trimethylolpropane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, ethylene oxide modified glycerol triacrylate, propylene oxide modified glycerol triacrylate, epsilon caprolactone modified trimethylolpropane triacrylate, pentaerythritol triacrylate, etc.), Tetrafunctional (meth) acrylate compounds [ditrimethylolpropane tetraacrylate, pentaerythritol ethoxytetraacrylate, Taerythritol tetraacrylate], (meth) acrylate compounds having five or more functional groups (dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, polypentaerythritol polyacrylate, etc.) and the like. These may be used alone or in combination. A combination of more than one species can be used. *
 また、(α1)成分としては他にも、各種変性型多官能(メタ)アクリレート化合物、例えばポリウレタンポリアクリレート、ポリエステルポリアクリレート、エポキシポリアクリレート等を使用することができる。 In addition, as the (α1) component, various modified polyfunctional (meth) acrylate compounds such as polyurethane polyacrylate, polyester polyacrylate, epoxy polyacrylate, and the like can be used.
 前記ポリウレタンアクリレートとしては、各種公知のポリオールとポリイソシアネートをウレタン化反応させて得られるイソシアネート基末端プレポリマーに、更に水酸基含有(メタ)アクリレートをウレタン化反応させることにより得られるアクリレートオリゴマーや、ポリオールとイソシアネート基末端プレポリマーを反応させて得られるアクリレートオリゴマー等が挙げられる。 As the polyurethane acrylate, an isocyanate group-terminated prepolymer obtained by urethanation reaction of various known polyols and polyisocyanates, and further an acrylate oligomer obtained by urethanation of a hydroxyl group-containing (meth) acrylate, a polyol, Examples include acrylate oligomers obtained by reacting isocyanate group-terminated prepolymers.
 該ポリオールとしては、例えば、ポリエステルポリオール、ポリアルキレングリコール、ポリカーボネートポリオール等の高分子量ポリオールが挙げられ、これらは2種以上を組み合わせてもよい。 Examples of the polyol include high molecular weight polyols such as polyester polyol, polyalkylene glycol, and polycarbonate polyol, and these may be used in combination of two or more.
 前記ポリエステルポリオールは、例えば各種公知のジカルボン酸と低分子ジオールの重縮合物(ポリエステルジオール)が挙げられ、該ジカルボン酸としては、例えばコハク酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、イタコン酸、メサコン酸、シトラコン酸、ムコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、およびこれらの酸無水物等が挙げられる。また、該低分子ジオールとしては、例えば、エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、シクロヘキサン-1,4-ジメタノール、1,2-および1,4-シクロヘキサンジオール、2-エチル-2-ブチルプロパンジオール等が挙げられる。これらは2種以上を組み合わせてもよい。 Examples of the polyester polyol include polycondensates (polyester diols) of various known dicarboxylic acids and low molecular diols. Examples of the dicarboxylic acids include succinic acid, adipic acid, sebacic acid, fumaric acid, maleic acid, and itacone. Examples include acids, mesaconic acid, citraconic acid, muconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, and acid anhydrides thereof. Examples of the low-molecular diol include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, , 5-pentanediol, 1,6-hexanediol, neopentyl glycol, cyclohexane-1,4-dimethanol, 1,2- and 1,4-cyclohexanediol, 2-ethyl-2-butylpropanediol, etc. It is done. Two or more of these may be combined.
 また、前記ポリエステルポリオールとしては、他にも、前記低分子ジオールを開始剤として各種公知のラクトン類を開環反応させることにより得られる重付加物(ポリエステルジオール)等が挙げられる。該ラクトン類としては、例えば、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトンなどが挙げられる。これらは2種以上を組み合わせてもよい。 In addition, examples of the polyester polyol include polyaddition products (polyester diol) obtained by ring-opening reaction of various known lactones using the low molecular diol as an initiator. Examples of the lactones include γ-butyrolactone, δ-valerolactone, and ε-caprolactone. Two or more of these may be combined.
 前記ポリアルキレングリコールとしては、例えば、各種公知のポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレン・プロピレン)グリコール等のポリアルキレンジオールなどが挙げられ、これらは2種以上を組み合わせてもよい。 Examples of the polyalkylene glycol include polyalkylene diols such as various known polyethylene glycols, polypropylene glycols, and poly (ethylene / propylene) glycols, and these may be used in combination of two or more.
 前記ポリカーボネートポリオールとしては、例えば、ジメチルカーボネート、ジフェニルカーボネートおよびエチレンカーボネート等からなる群より選ばれる1種の低分子量カーボネート化合物と前記低分子ジオールとの縮合反応物などが挙げられる。 Examples of the polycarbonate polyol include a condensation reaction product of one low molecular weight carbonate compound selected from the group consisting of dimethyl carbonate, diphenyl carbonate, ethylene carbonate and the like and the low molecular diol.
 前記ポリイソシアネートとしては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシレンジイソシアネート、ジフェニルメタン-4,4-ジイソシアネート、3-メチル-ジフェニルメタンジイソシアネートもしくは1,5-ナフタレンジイソシアネート等の芳香族ジイソシアネート化合物;ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;これらの2~6量体等が挙げられ、これらは2種以上を組み合わせてもよい。 Examples of the polyisocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylene diisocyanate, diphenylmethane-4,4-diisocyanate, 3-methyl-diphenylmethane diisocyanate, or 1,5-naphthalene diisocyanate. Aromatic diisocyanate compounds such as dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate and the like; and dimers and hexamers thereof. These may be used in combination of two or more.
 前記水酸基含有モノ(メタ)アクリレート化合物としては、(メタ)アクリル酸1-ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸ヒドロキシシクロヘキシル、(メタ)アクリル酸4-(ヒドロキシメチル)シクロヘキシルメチル、2-ヒドロキシプロピオン酸4-(ヒドロキシメチル)シクロヘキシルメチル、(メタ)アクリル酸ヒドロキシフェニル等が挙げられ、これらは2種以上を組み合わせてもよい。 Examples of the hydroxyl group-containing mono (meth) acrylate compound include 1-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxy (meth) acrylate. Butyl, 4-hydroxybutyl (meth) acrylate, hydroxycyclohexyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl 2-hydroxypropionate, (meta ) Hydroxyphenyl acrylate and the like, and two or more of these may be combined.
 前記イソシアネート基含有モノ(メタ)アクリレート化合物としては、2-イソシアナトエチル(メタ)アクリレート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート等が挙げられ、これらは2種以上を組み合わせてもよい。 Examples of the isocyanate group-containing mono (meth) acrylate compound include 2-isocyanatoethyl (meth) acrylate, 1,1- (bisacryloyloxymethyl) ethyl isocyanate, and these may be used in combination of two or more. .
 前記ポリエステルポリアクリレートとしては、前記ジカルボン酸と低分子ジオールとをエステル化反応させて得られる水酸基末端ポリエステルに、更にカルボキシル基含有モノ(メタ)アクリレート化合物をエステル化反応させて得られるアクリレートオリゴマーや、前記ジカルボン酸とジオール化合物とを反応させて得られるカルボキシル基末端ポリエステルに、更に前記水酸基含有モノ(メタ)アクリレート化合物をエステル化反応させて得られるアクリレートオリゴマー等が挙げられる。 As the polyester polyacrylate, a hydroxyl-terminated polyester obtained by esterifying the dicarboxylic acid and a low molecular diol, and an acrylate oligomer obtained by esterifying a carboxyl group-containing mono (meth) acrylate compound, Examples include acrylate oligomers obtained by esterifying the hydroxyl group-containing mono (meth) acrylate compound with a carboxyl group-terminated polyester obtained by reacting the dicarboxylic acid with a diol compound.
 前記カルボキシル基含有モノ(メタ)アクリレート化合物としては、例えば、アクリル酸、メタクリル酸、イタコン酸、(無水)マレイン酸、フマル酸、クロトン酸等が挙げられ、これらは2種以上を組み合わせてもよい。 Examples of the carboxyl group-containing mono (meth) acrylate compound include acrylic acid, methacrylic acid, itaconic acid, (anhydrous) maleic acid, fumaric acid, and crotonic acid. These may be used in combination of two or more. .
 前記エポキシポリアクリレートとしては、例えば、一分子中にエポキシ基を少なくとも2個有するエポキシ樹脂(化合物)に、前記カルボキシル基含有モノ(メタ)アクリレート化合物を付加反応させて得られるアクリレートオリゴマーが挙げられる。 Examples of the epoxy polyacrylate include acrylate oligomers obtained by addition reaction of the carboxyl group-containing mono (meth) acrylate compound to an epoxy resin (compound) having at least two epoxy groups in one molecule.
 前記エポキシ樹脂(化合物)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型ノボラック型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、フェノールジシクロペンタジエンノボラック型エポキシ樹脂やそれらの水素化物;3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-ビニルシクロヘキセン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、1-エポキシエチル-3,4-エポキシシクロヘキサン、1,2:8,9ジエポキシリモネン、3,4-エポキシシクロヘキシルメタノール、ジシクロペンタジエンジエポキシド、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロセキサン付加物(ダイセル化学工業(株)製、商品名「EHPE-3150」)などの脂環式エポキシ樹脂が挙げられ、これらは2種以上を組み合わせてもよい。なお、脂環式エポキシ樹脂のうちオリゴマータイプのものとしては、例えばエポキシ化ブタンテトラカルボン酸テトラキス-(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(例えば、ダイセル化学工業(株)製、商品名「エポリードGT401」)等の脂環オレフィンをエポキシ化して得られるエポキシ樹脂等が挙げられる。 Examples of the epoxy resin (compound) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type novolac type epoxy resin, and naphthalenediol. Type epoxy resin, phenol dicyclopentadiene novolak type epoxy resin and hydrides thereof; 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 1,2-epoxy-vinylcyclohexene, bis (3 4-epoxycyclohexylmethyl) adipate, 1-epoxyethyl-3,4-epoxycyclohexane, 1,2: 8,9 diepoxy limonene, 3,4-epoxycyclohexylme 1,2-epoxy-4- (2-oxiranyl) cyclosexane adduct of diol, dicyclopentadiene diepoxide, 2,2-bis (hydroxymethyl) -1-butanol (manufactured by Daicel Chemical Industries, Ltd., trade name) And an alicyclic epoxy resin such as “EHPE-3150”), which may be used in combination of two or more. Among the alicyclic epoxy resins, those of the oligomer type include, for example, epoxidized butanetetracarboxylic acid tetrakis- (3-cyclohexenylmethyl) modified ε-caprolactone (for example, trade name “manufactured by Daicel Chemical Industries, Ltd.”) Examples include epoxy resins obtained by epoxidizing alicyclic olefins such as Epolide GT401 ").
 (α2)成分としては、分子内に遊離の(メタ)アクリロイル基を有する(メタ)アクリル系重合物(以下、(メタ)アクリル系重合物という。)であれば各種公知のものを特に制限なく使用することができる。なお、「(メタ)アクリル系重合物」とは、(メタ)アクリル系単独重合体および/または(メタ)アクリル系共重合体を意味する。(α2)成分としては、具体的には、例えば以下の(α2-1)成分~(α2-4)成分からなる群より選ばれる少なくとも1種が挙げられる。 The (α2) component is not particularly limited as long as it is a (meth) acrylic polymer having a free (meth) acryloyl group in the molecule (hereinafter referred to as a (meth) acrylic polymer). Can be used. The “(meth) acrylic polymer” means a (meth) acrylic homopolymer and / or a (meth) acrylic copolymer. Specific examples of the component (α2) include at least one selected from the group consisting of the following components (α2-1) to (α2-4).
 (α2-1)成分:側鎖にアルキルエステル基およびエポキシ基を有する(メタ)アクリル系重合物ならびに/または側鎖にエポキシ基を有しアルキルエステル基は有さない(メタ)アクリル系重合物(以下、(α2-1’)成分という。)と前記カルボキシル基含有モノ(メタ)アクリレート化合物との付加反応物である、分子内に遊離の(メタ)アクリロイル基と水酸基を有するアクリル系重合物。 (Α2-1) component: (meth) acrylic polymer having an alkyl ester group and an epoxy group in the side chain and / or (meth) acrylic polymer having an epoxy group in the side chain and no alkyl ester group (Hereinafter referred to as (α2-1 ′) component) and the above-mentioned carboxyl group-containing mono (meth) acrylate compound, an acrylic polymer having a free (meth) acryloyl group and a hydroxyl group in the molecule .
 (α2-2)成分:側鎖にアルキルエステル基およびカルボキシル基を有する(メタ)アクリル系重合物ならびに/または側鎖にカルボキシル基を有しアルキルエステル基を有さない(メタ)アクリル系重合物(以下、(α2-2’)成分という。)と前記エポキシ基含有モノ(メタ)アクリレート化合物とのエステル化反応物である、分子内に遊離の(メタ)アクリロイル基と水酸基を有するアクリル系重合物。 (Α2-2) component: (meth) acrylic polymer having an alkyl ester group and a carboxyl group in the side chain and / or (meth) acrylic polymer having a carboxyl group in the side chain and no alkyl ester group (Hereinafter referred to as the (α2-2 ′) component) and the epoxy group-containing mono (meth) acrylate compound, which is an esterification reaction product, an acrylic polymerization having a free (meth) acryloyl group and a hydroxyl group in the molecule object.
 (α2-3)成分:側鎖にアルキルエステル基およびイソシアネート基を有する(メタ)アクリル系重合物ならびに/または側鎖にイソシアネート基を有しアルキルエステル基を有さない(メタ)アクリル系重合物(以下、(α2-3’)成分という。)と前記水酸基含有モノ(メタ)アクリレートとのウレタン化反応物である、分子内にウレタン結合と遊離の(メタ)アクリロイル基を有する(メタ)アクリル系重合物。 (Α2-3) component: (meth) acrylic polymer having an alkyl ester group and an isocyanate group in the side chain and / or (meth) acrylic polymer having an isocyanate group in the side chain and no alkyl ester group (Meth) acrylic having a urethane bond and a free (meth) acryloyl group in the molecule, which is a urethanization reaction product of the hydroxyl group-containing mono (meth) acrylate (hereinafter referred to as (α2-3 ′) component) Polymer.
 (α2-4)成分:側鎖にアルキルエステル基ならびに水酸基およびカルボキシル基を有する(メタ)アクリル系重合物や、ならびに/または側鎖に水酸基を有しアルキルエステル基を有さない(メタ)アクリル系重合物(以下、(α2-4’)成分という。)と前記イソシアネート基含有モノ(メタ)アクリレートとのウレタン化反応物である、分子内にウレタン結合と遊離の(メタ)アクリロイル基を有する(メタ)アクリル系重合物。 (Α2-4) component: (meth) acrylic polymer having an alkyl ester group and a hydroxyl group and a carboxyl group in the side chain, and / or (meth) acrylic having a hydroxyl group in the side chain and no alkyl ester group This is a urethanization reaction product of a polymer (hereinafter referred to as (α2-4 ′) component) and the above-mentioned isocyanate group-containing mono (meth) acrylate, and has a urethane bond and a free (meth) acryloyl group in the molecule. (Meth) acrylic polymer.
 (α2-1)成分の前駆体ポリマーである(α2-1’)成分としては、例えば、前記エポキシ基含有モノ(メタ)アクリレート化合物のみから得られる単独共重合物や、前記エポキシ基含有モノ(メタ)アクリレート化合物およびアルキルエステル基含有モノ(メタ)アクリレート化合物から得られる二元共重合体、当該単独共重合体または二元共重合体において更にその他のモノマーを構成成分とする三元共重合体等が挙げられる。 Examples of the (α2-1 ′) component that is a precursor polymer of the (α2-1) component include, for example, a homopolymer obtained only from the epoxy group-containing mono (meth) acrylate compound, and the epoxy group-containing mono ( A binary copolymer obtained from a (meth) acrylate compound and an alkyl ester group-containing mono (meth) acrylate compound, a ternary copolymer further comprising another monomer in the homopolymer or binary copolymer Etc.
 該アルキルエステル基含有モノ(メタ)アクリレート化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリルレート、イソボニル(メタ)アクリレート等が挙げられ、これらは2種以上を組み合わせてもよい。 Examples of the alkyl ester group-containing mono (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, ethylhexyl (meth) acrylate, and cyclohexyl (meth) acrylic. A rate, isobonyl (meth) acrylate, etc. are mentioned, These may combine 2 or more types.
 該その他のモノマーとしては、例えば、前記水酸基含有モノ(メタ)アクリレート化合物、アミド系モノマー〔(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N-ビニルホルムアミド等〕、スクシンイミド系モノマー〔N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド〕、紫外線吸収ユニット含有モノ(メタ)アクリレート〔2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール、2-〔2’-(メタ)アクリロイルオキシ-5’-メチルフェニル〕ベンゾトリアゾール、2-〔2’-(メタ)アクリロイルオキシ-5’-t-オクチルフェニル〕ベンゾトリアゾール、2-〔2’-(メタ)アクリロイルオキシ-3’,5’-ジ-t-ブチルフェニル〕ベンゾトリアゾール、2-ヒドロキシ-4-(メタクリロイルオキシエトキシ)ベンゾフェノン、2-ヒドロキシ-4-(アクリロイルオキシエトキシ)ベンゾフェノン、2-ヒドロキシ-4-メタクリロイルオキシメチルアミノベンゾフェノン、2-ヒドロキシ-4-(メタクリロイルオキシメトキシ)ベンゾフェノン、2-ヒドロキシ-4-メタクリロイルオキシメチルチオベンゾフェノン、2-(メタ)アクリロイルオキシ-4-メトキシベンゾフェノン、2-(メタ)アクリロイルオキシ-2’-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジ(メタ)アクリロイルオキシ-4-メトキシベンゾフェノン、2,2’-ジ(メタ)アクリロイルオキシ-4,4’-ジメトキシベンゾフェノン、2-(メタ)アクリロイルオキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕ベンゾフェノン、2,2’-ジヒドロキシ-4-〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕ベンゾフェノンなどのベンゾフェノン化合物;2-(4,6-ジフェニル-1,2,5-トリアジン-2-イル)-5-(メタクリロイルオキシエトキシ)-フェノール等〕、酢酸ビニル、N-ビニルピロリドン、N-ビニルカルボン酸アミド類、スチレン、N-ビニルカプロラクタム、(メタ)アクリロニトリル等が挙げられる。 Examples of the other monomers include the hydroxyl group-containing mono (meth) acrylate compounds, amide monomers [(meth) acrylamide, N-methylol (meth) acrylamide, N, N′-dimethyl (meth) acrylamide, N-vinyl]. Formamide, etc.], succinimide monomers [N- (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, N- (meth) acryloyl-8-oxyoctamethylene succinimide], ultraviolet absorption unit Containing mono (meth) acrylate [2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-methacrylic) Roxyethylfe ) -2H-benzotriazole, 2- [2 ′-(meth) acryloyloxy-5′-methylphenyl] benzotriazole, 2- [2 ′-(meth) acryloyloxy-5′-t-octylphenyl] benzo Triazole, 2- [2 ′-(meth) acryloyloxy-3 ′, 5′-di-t-butylphenyl] benzotriazole, 2-hydroxy-4- (methacryloyloxyethoxy) benzophenone, 2-hydroxy-4- ( Acryloyloxyethoxy) benzophenone, 2-hydroxy-4-methacryloyloxymethylaminobenzophenone, 2-hydroxy-4- (methacryloyloxymethoxy) benzophenone, 2-hydroxy-4-methacryloyloxymethylthiobenzophenone, 2- (meth) acryloyloxy 4-methoxybenzophenone, 2- (meth) acryloyloxy-2'-hydroxy-4-methoxybenzophenone, 2,2'-di (meth) acryloyloxy-4-methoxybenzophenone, 2,2'-di (meth) acryloyl Oxy-4,4′-dimethoxybenzophenone, 2- (meth) acryloyloxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4- [3- (meth) acryloyloxy-2-hydroxypropoxy] benzophenone, Benzophenone compounds such as 2,2′-dihydroxy-4- [3- (meth) acryloyloxy-2-hydroxypropoxy] benzophenone; 2- (4,6-diphenyl-1,2,5-triazin-2-yl) -5- (methacryloyloxyethoxy) -phenol, etc. ], Vinyl acetate, N-vinylpyrrolidone, N-vinylcarboxylic amides, styrene, N-vinylcaprolactam, (meth) acrylonitrile and the like.
 前記二元共重合体において、アルキルエステル基含有モノ(メタ)アクリレート化合物とエポキシ基含有モノ(メタ)アクリレート化合物の使用重量比、またはエポキシ基含有モノ(メタ)アクリレート化合物とその他のモノマーの使用重量比は特に限定されないが、通常は順に1:99~95:5程度となる範囲である。また、前記三元共重合体の場合、前記その他のモノマーの使用量は、前記アルキルエステル基含有モノ(メタ)アクリレート化合物およびエポキシ基含有モノ(メタ)アクリレート化合物の合計重量に対して通常1~95%程度となる範囲である。 In the binary copolymer, the weight ratio of the alkyl ester group-containing mono (meth) acrylate compound and the epoxy group-containing mono (meth) acrylate compound, or the weight weight of the epoxy group-containing mono (meth) acrylate compound and other monomers The ratio is not particularly limited, but is usually in the range of about 1:99 to 95: 5 in order. In the case of the terpolymer, the amount of the other monomer used is usually 1 to the total weight of the alkyl ester group-containing mono (meth) acrylate compound and the epoxy group-containing mono (meth) acrylate compound. The range is about 95%.
 (α2-1’)成分の製造条件は特に限定されず、各種公知の重合反応を採用することができる。具体的には、例えば、各種公知のラジカル重合開始剤の存在下、原料モノマーを通常40~150℃程度の温度で2~12時間程度(共)重合反応させることにより得ることができる。また、重合反応の際、過酸化水素、過硫酸アンモニウム、過硫酸カリウム、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ラウリルパーオキサイド2,2’-アゾビスイソブチロニトリル、ジメチル-2,2’-アゾビスイソブチレート等のラジカル重合開始剤や、ラウリルメルカプタン、ドデシルメルカプタン、2-メルカプトベンゾチアゾール、ブロムトリクロルメタン等の連鎖移動剤、前記(D)成分(有機溶剤)を使用することができる。 The production conditions for the (α2-1 ′) component are not particularly limited, and various known polymerization reactions can be employed. Specifically, it can be obtained, for example, by subjecting the raw material monomer to a (co) polymerization reaction at a temperature of usually about 40 to 150 ° C. for about 2 to 12 hours in the presence of various known radical polymerization initiators. In the polymerization reaction, hydrogen peroxide, ammonium persulfate, potassium persulfate, benzoyl peroxide, dicumyl peroxide, lauryl peroxide 2,2′-azobisisobutyronitrile, dimethyl-2,2′-azo Radical polymerization initiators such as bisisobutyrate, chain transfer agents such as lauryl mercaptan, dodecyl mercaptan, 2-mercaptobenzothiazole, bromotrichloromethane, and the component (D) (organic solvent) can be used.
 得られた(α2-1’)成分とカルボキシル基含有モノ(メタ)アクリレート化合物との付加反応は通常、無溶剤下または両成分と反応しない有機溶剤の存在下、80~120℃程度の温度で実施すればよい。また、両成分の使用量も特に限定されないが、通常は(α2-1’)成分中のエポキシ基1モルに対するカルボキシル基含有モノ(メタ)アクリレート化合物の使用量が1.0~1.1モル程度となる範囲である。また、付加反応時には、メトキノン、ハイドロキノン、トリメチルハイドロキノン、N‐ニトロソフェニルヒドロキシルアミン等の重合禁止剤を用いたり、反応系を空気でバブリングしたりできる。 The addition reaction between the obtained (α2-1 ′) component and the carboxyl group-containing mono (meth) acrylate compound is usually performed at a temperature of about 80 to 120 ° C. in the absence of a solvent or in the presence of an organic solvent that does not react with both components. Just do it. The amount of both components used is not particularly limited, but usually the amount of the carboxyl group-containing mono (meth) acrylate compound used is 1.0 to 1.1 mol per mol of the epoxy group in the (α2-1 ′) component. It is a range which becomes a grade. In addition, a polymerization inhibitor such as methoquinone, hydroquinone, trimethylhydroquinone, N-nitrosophenylhydroxylamine or the like can be used in the addition reaction, or the reaction system can be bubbled with air.
 こうして得られる(α2-1)成分の物性は特に限定されないが、重量平均分子量(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算値をいう。以下、同様。)が通常3,000~50,000程度である。 The physical properties of the (α2-1) component thus obtained are not particularly limited, but the weight average molecular weight (referred to polystyrene conversion by gel permeation chromatography, hereinafter the same) is usually about 3,000 to 50,000. .
 (α2-2)成分の前駆体ポリマーである(α2-2’)成分としては、例えば、前記カルボキシル基含有モノ(メタ)アクリレート化合物のみから得られる単独共重合物や、前記カルボキシル基含有モノ(メタ)アクリレート化合物および前記アルキルエステル基含有モノ(メタ)アクリレート化合物から得られる二元共重合体、当該単独共重合体または二元共重合体において前記他のモノマーを更なる構成成分とする三元共重合体等が挙げられる。 Examples of the (α2-2 ′) component which is a precursor polymer of the (α2-2) component include, for example, a homopolymer obtained only from the carboxyl group-containing mono (meth) acrylate compound, and the carboxyl group-containing mono ( A ternary copolymer obtained from a (meth) acrylate compound and the above-mentioned mono (meth) acrylate compound containing an alkyl ester group, a ternary having the other monomer as a further constituent component in the homopolymer or binary copolymer A copolymer etc. are mentioned.
 該二元共重合体において、アルキルエステル基含有モノ(メタ)アクリレート化合物とカルボキシル基含有モノ(メタ)アクリレート化合物の使用重量比、または前記カルボキシル基含有モノ(メタ)アクリレート化合物とその他のモノマーの使用重量比は特に限定されないが、通常は順に1:99~95:5程度となる範囲である。また、前記三元共重合体の場合、前記その他のモノマーの使用量は、前記アルキルエステル基含有モノ(メタ)アクリレート化合物およびカルボキシル基含有モノ(メタ)アクリレート化合物の合計重量に対して通常1~95%程度となる範囲である。 In the binary copolymer, the weight ratio of the alkyl ester group-containing mono (meth) acrylate compound to the carboxyl group-containing mono (meth) acrylate compound, or the use of the carboxyl group-containing mono (meth) acrylate compound and other monomers. The weight ratio is not particularly limited, but is usually in the range of about 1:99 to 95: 5 in order. In the case of the terpolymer, the amount of the other monomer used is usually 1 to the total weight of the alkyl ester group-containing mono (meth) acrylate compound and the carboxyl group-containing mono (meth) acrylate compound. The range is about 95%.
 (α2-2’)成分の製造条件も特に限定されず、前記(α2-1’)成分のそれと同様であってよい。また、得られた(α2-2’)成分とエポキシ基含有モノ(メタ)アクリレート化合物の付加反応の条件は、前記した(α2-1’)成分とカルボキシル基含有モノ(メタ)アクリレート化合物の反応条件と同様である。また、(α2-2’)成分中のカルボキシル基1モルに対するエポキシ基含有モノ(メタ)アクリレート化合物の使用量も特に限定されないが、通常0.9~1.0モル程度となる範囲である。こうして得られる(α2-2)成分の物性も特に限定されず、重量平均分子量が通常3,000~50,000程度である。 The production conditions of the (α2-2 ′) component are not particularly limited, and may be the same as those of the (α2-1 ′) component. The conditions for the addition reaction of the obtained (α2-2 ′) component and the epoxy group-containing mono (meth) acrylate compound were the reaction of the aforementioned (α2-1 ′) component and the carboxyl group-containing mono (meth) acrylate compound. It is the same as conditions. Further, the amount of the epoxy group-containing mono (meth) acrylate compound used per mole of the carboxyl group in the component (α2-2 ′) is not particularly limited, but is usually in the range of about 0.9 to 1.0 mole. The physical properties of the (α2-2) component thus obtained are not particularly limited, and the weight average molecular weight is usually about 3,000 to 50,000.
 (α2-3)成分の前駆体ポリマーである(α2-3’)成分としては、例えば、前記イソシアネート基含有モノ(メタ)アクリレート化合物のみから得られる単独共重合物や、前記イソシアネート基含有モノ(メタ)アクリレート化合物およびアルキルエステル基含有モノ(メタ)アクリレート化合物から得られる二元共重合体、当該単独共重合体または二元共重合体において更にその他のモノマー(但し前記水酸基含有モノ(メタ)アクリレート化合物は除く。)を構成成分とする三元共重合体等が挙げられる。 Examples of the (α2-3 ′) component, which is a precursor polymer of the (α2-3) component, include homopolymers obtained only from the isocyanate group-containing mono (meth) acrylate compound, and the isocyanate group-containing mono ( Binary copolymers obtained from a meth) acrylate compound and an alkyl ester group-containing mono (meth) acrylate compound, and other monomers in the homopolymer or binary copolymer (provided that the hydroxyl group-containing mono (meth) acrylate) And terpolymers, etc., whose constituents are excluded.
 該二元共重合体において、アルキルエステル基含有モノ(メタ)アクリレート化合物とイソシアネート基含有モノ(メタ)アクリレート化合物の使用重量比、またはイソシアネート基含有モノ(メタ)アクリレート化合物とその他のモノマーの使用重量比は特に限定されないが、通常は順に1:99~95:5程度となる範囲である。また、前記三元共重合体の場合、前記その他のモノマーの使用量は、前記アルキルエステル基含有モノ(メタ)アクリレート化合物およびイソシアネート基含有モノ(メタ)アクリレート化合物の合計重量に対して通常1~95%程度となる範囲である。 In the binary copolymer, the weight ratio of the alkyl ester group-containing mono (meth) acrylate compound and the isocyanate group-containing mono (meth) acrylate compound, or the weight of the isocyanate group-containing mono (meth) acrylate compound and other monomers. The ratio is not particularly limited, but is usually in the range of about 1:99 to 95: 5 in order. In the case of the terpolymer, the amount of the other monomer used is usually 1 to the total weight of the alkyl ester group-containing mono (meth) acrylate compound and the isocyanate group-containing mono (meth) acrylate compound. The range is about 95%.
 (α2-3’)成分と水酸基含有モノ(メタ)アクリレートの反応(ウレタン化反応)は通常、無溶剤下または両成分の双方と反応しない有機溶剤の存在下、通常60~120℃程度において実施すればよい。また、両成分の使用量も特に限定されないが、通常は(α2-3’)成分中のイソシアネート基1モルに対する水酸基含有モノ(メタ)アクリレート化合物の使用量が1.0~1.1モル程度となる範囲である。また、ウレタン化反応の際にはジブチル錫ジラウレートやジオクチル錫ジラウレート、オクチル酸ビスマス等の有機金属触媒や、トリエチルアミンやトリエチレンジアミンなどの有機アミンやその塩等のアミン触媒等の各種公知のウレタン化触媒を併用できる。 The reaction (urethane reaction) of the (α2-3 ′) component and the hydroxyl group-containing mono (meth) acrylate is usually carried out at about 60 to 120 ° C. in the absence of a solvent or in the presence of an organic solvent that does not react with both components. do it. Also, the amount of both components used is not particularly limited, but the amount of the hydroxyl group-containing mono (meth) acrylate compound is usually about 1.0 to 1.1 moles per mole of the isocyanate group in the (α2-3 ′) component. This is the range. In the urethanization reaction, various well-known urethanization catalysts such as organometallic catalysts such as dibutyltin dilaurate, dioctyltin dilaurate, and bismuth octylate, and amine catalysts such as organic amines such as triethylamine and triethylenediamine and their salts, etc. Can be used together.
 こうして得られる(α2-3)成分の物性は特に限定されないが、重量平均分子量が通常3,000~50,000程度である。 The physical properties of the (α2-3) component thus obtained are not particularly limited, but the weight average molecular weight is usually about 3,000 to 50,000.
 (α2-4)成分の前駆体ポリマーである(α2-4’)成分としては、例えば、前記水酸基含有モノ(メタ)アクリレート化合物のみから得られる単独共重合物や、前記水酸基含有モノ(メタ)アクリレート化合物およびアルキルエステル基含有モノ(メタ)アクリレート化合物から得られる二元共重合体、当該単独共重合体または二元共重合体において更にその他のモノマー(但し前記イソシアネート基含有モノ(メタ)アクリレート化合物は除き、前記カルボキシル基含有モノ(メタ)アクリレート化合物およびエポキシ基含有モノ(メタ)アクリレート化合物を含める。)を構成成分とする三元共重合体等が挙げられる。 Examples of the (α2-4 ′) component which is a precursor polymer of the (α2-4) component include, for example, a homopolymer obtained only from the hydroxyl group-containing mono (meth) acrylate compound, and the hydroxyl group-containing mono (meth) A binary copolymer obtained from an acrylate compound and an alkyl ester group-containing mono (meth) acrylate compound, a homopolymer or a binary copolymer, and other monomers (however, the isocyanate group-containing mono (meth) acrylate compound) And the like, and terpolymers having the above-mentioned carboxyl group-containing mono (meth) acrylate compound and epoxy group-containing mono (meth) acrylate compound) as constituent components.
 該二元共重合体において、アルキルエステル基含有モノ(メタ)アクリレート化合物と水酸基含有モノ(メタ)アクリレート化合物の使用重量比、または水酸基含有モノ(メタ)アクリレート化合物とその他のモノマーの使用重量比は特に限定されないが、通常は順に1:99~90:10程度となる範囲である。また、前記三元共重合体の場合、前記その他のモノマーの使用量は、前記アルキルエステル基含有モノ(メタ)アクリレート化合物および水酸基含有モノ(メタ)アクリレート化合物の合計100モル%に対して通常1~95モル%程度となる範囲である。 In the binary copolymer, the weight ratio of the alkyl ester group-containing mono (meth) acrylate compound and the hydroxyl group-containing mono (meth) acrylate compound, or the weight ratio of the hydroxyl group-containing mono (meth) acrylate compound and the other monomer is Although not particularly limited, it is usually in the range of about 1:99 to 90:10 in order. In the case of the terpolymer, the amount of the other monomer used is usually 1 with respect to a total of 100 mol% of the alkyl ester group-containing mono (meth) acrylate compound and the hydroxyl group-containing mono (meth) acrylate compound. It is in the range of about ~ 95 mol%.
 (α2-4’)成分とイソシアネート含有モノ(メタ)アクリレートの反応(ウレタン化反応)は、前記した(α2-3’)成分と水酸基含有モノ(メタ)アクリレートの反応の場合と同様である。また、(α2-4’)成分中の水酸基1モルに対するエポキシ基含有モノ(メタ)アクリレート化合物の使用量も特に限定されないが、通常0.9~1.0モル程度となる範囲である。こうして得られる(α2-4)成分の物性も特に限定されないが、重量平均分子量が通常3,000~50,000程度である。 The reaction (urethanization reaction) between the (α2-4 ′) component and the isocyanate-containing mono (meth) acrylate is the same as the reaction between the (α2-3 ′) component and the hydroxyl group-containing mono (meth) acrylate. Further, the amount of the epoxy group-containing mono (meth) acrylate compound used per 1 mol of the hydroxyl group in the (α2-4 ′) component is not particularly limited, but is usually in the range of about 0.9 to 1.0 mol. The physical properties of the (α2-4) component thus obtained are not particularly limited, but the weight average molecular weight is usually about 3,000 to 50,000.
 なお、(α)成分を含む本発明の導電性組成物には、さらに光重合開始剤を含めることができる。具体的には、例えば、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、4-メチルベンゾフェノン等が挙げられ、これらは1種を単独で、または2種以上を組み合わせて用いることができる。 Note that the conductive composition of the present invention containing the component (α) can further contain a photopolymerization initiator. Specifically, for example, 1-hydroxy-cyclohexyl-phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-cyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl -Propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1- [4- (methylthio) Phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, bis (2,4,6-trimethylbenzoyl) -phenylphos Fin oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 4-methylbenzophenone, etc. These may be used alone or in combination of two or more, of them.
 第一態様の導電性組成物の調製方法は特に限定されず、本発明の有機溶媒分散体と(α)成分とを各種公知の手段で分散・混合させたものであってよい。また、前記(A)成分、(B)成分、(C)成分および(α)成分ならびに必要に応じて用いる前記光重合開始剤を(D)成分に配合し、各種公知の手段で分散・混合させたものであってもよい。なお、後者の場合、溶質成分の添加順序は特に限定されない。また、後者方法で得られる導電性組成物は、結果的に本願発明の有機溶媒分散体を含むものといえる。 The method for preparing the conductive composition of the first aspect is not particularly limited, and the organic solvent dispersion of the present invention and the component (α) may be dispersed and mixed by various known means. In addition, the component (A), the component (B), the component (C) and the component (α) and the photopolymerization initiator used as necessary are blended in the component (D), and dispersed and mixed by various known means. It may be made. In the latter case, the order of adding the solute components is not particularly limited. Moreover, it can be said that the electroconductive composition obtained by the latter method contains the organic-solvent dispersion of this invention as a result.
 当該導電性組成物における(A)成分、(B)成分、(C)成分、(α)成分および光重合開始剤の含有量は特に限定されず、用途に応じて適宜設定すればよいが、通常は以下の通りである。(但し全成分の合計が100重量%を超える場合はない。また、(D)成分以外の成分は固形分換算である。)) The content of the component (A), the component (B), the component (C), the component (α) and the photopolymerization initiator in the conductive composition is not particularly limited, and may be set as appropriate according to the application. Usually it is as follows. (However, the total of all components does not exceed 100% by weight. In addition, components other than the component (D) are in terms of solid content.))
(A)成分:0.01~2重量%程度、好ましくは0.02~1.5重量%
(B)成分:0.01~2重量%程度、好ましくは0.02~1.5重量%
(C)成分:0.01~10重量%程度、好ましくは0.01~5重量%
(D)成分:70~99.95重量%程度、好ましくは80~99.5重量%
(α)成分:0.01~29.95重量%程度、好ましくは0.02~29重量%
光重合開始剤:0.01~3重量%程度、好ましくは0.02~2重量%
Component (A): about 0.01 to 2% by weight, preferably 0.02 to 1.5% by weight
Component (B): about 0.01 to 2% by weight, preferably 0.02 to 1.5% by weight
Component (C): about 0.01 to 10% by weight, preferably 0.01 to 5% by weight
Component (D): about 70 to 99.95% by weight, preferably 80 to 99.5% by weight
Component (α): about 0.01 to 29.95% by weight, preferably 0.02 to 29% by weight
Photopolymerization initiator: about 0.01 to 3% by weight, preferably 0.02 to 2% by weight
 本発明の第二の態様の導電性組成物は、バインダー成分として(β)成分を用いたものである。なお、当該組成物に含まれる(A)成分、(B)成分および(C)成分(D)成分はそれぞれ前記したものと同様である。 The conductive composition according to the second aspect of the present invention uses the (β) component as a binder component. In addition, the (A) component, (B) component, and (C) component (D) component which are contained in the said composition are respectively the same as what was mentioned above.
 (β)成分としては、分子内に少なくとも二つのエポキシ基を有するエポキシ樹脂(化合物)であれば各種公知のものを特に制限なく使用することができる。具体的には、例えば、芳香族系エポキシ樹脂、脂環式エポキシ樹脂および脂肪族系エポキシ樹脂からなる群より選ばれる少なくとも1種が挙げられる。これらの中でも、硬化被膜の硬度および透明性の双方に優れる点で脂環式エポキシ樹脂が好ましい。 As the (β) component, various known ones can be used without particular limitation as long as they are epoxy resins (compounds) having at least two epoxy groups in the molecule. Specific examples include at least one selected from the group consisting of an aromatic epoxy resin, an alicyclic epoxy resin, and an aliphatic epoxy resin. Among these, alicyclic epoxy resins are preferable because they are excellent in both hardness and transparency of the cured film.
 前記芳香族系エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂等のトリフェノールアルカン型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、スチルベン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂等が挙げられ、2種以上を組み合わせてもよい。 Examples of the aromatic epoxy resin include bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, novolak type epoxy resins such as phenol novolak type epoxy resin and cresol novolak type epoxy resin; Triphenolalkane type epoxy resins such as epoxy resins and triphenolpropane type epoxy resins; phenol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins, stilbene type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, cyclopentadiene type epoxy resins Etc., and two or more of them may be combined.
 前記脂環式エポキシ樹脂としては、具体的には、例えば、脂環オレフィンをエポキシ化して得られるエポキシ樹脂および/または水素化エポキシ樹脂が好ましい。前者としては、例えば、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-ビニルシクロヘキセン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、1-エポキシエチル-3,4-エポキシシクロヘキサン、1,2:8,9ジエポキシリモネン、3,4-エポキシシクロヘキシルメタノール、ジシクロペンタジエンジエポキシド、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロセキサン付加物(例えばダイセル化学工業(株)製、商品名「EHPE-3150」)、オリゴマー型脂環式エポキシ樹脂(エポキシ化ブタンテトラカルボン酸テトラキス-(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(例えばダイセル化学工業(株)製、商品名「エポリードGT401」)等が挙げられ、2種以上を組み合わせてもよい。また、水素化エポキシ樹脂としては前記芳香族系エポキシ樹脂を水素化処理したものが挙げられ、同じく2種以上を組み合わせてもよい。 As the alicyclic epoxy resin, specifically, for example, an epoxy resin and / or a hydrogenated epoxy resin obtained by epoxidizing an alicyclic olefin is preferable. Examples of the former include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 1,2-epoxy-vinylcyclohexene, bis (3,4-epoxycyclohexylmethyl) adipate, 1-epoxyethyl 1,3,4 of 1,4-epoxycyclohexane, 1,2: 8,9 diepoxy limonene, 3,4-epoxycyclohexyl methanol, dicyclopentadiene diepoxide, 2,2-bis (hydroxymethyl) -1-butanol -Epoxy-4- (2-oxiranyl) cyclosexane adduct (for example, “EHPE-3150” manufactured by Daicel Chemical Industries, Ltd.), oligomeric alicyclic epoxy resin (epoxidized butanetetracarboxylic acid tetrakis- ( 3-cyclohexenylmethyl) -modified ε-cap Lactone (for example, trade name “Epolide GT401” manufactured by Daicel Chemical Industries, Ltd.) may be used, or a combination of two or more types may be used, and as the hydrogenated epoxy resin, the aromatic epoxy resin may be hydrotreated. Similarly, two or more of them may be combined.
前記脂肪族系エポキシ樹脂としては、例えば、多価アルコールのグリシジルエーテル類が挙げられ、該多価アルコールとしては、例えば、1,4-ブタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、シクロヘキサンジメタノール、水添ビスフェノールやアルキレングリコール構造を有するポリアルキレングリコール類などが挙げられる。また、該ポリアルキレングリコール類としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等が挙げられる。また、脂肪族系エポキシ樹脂としては、他にもポリブタジエンジグリシジルエーテル、エポキシ化油(例えば、「アデカサイザーO-130P」(エポキシ化大豆油)、「アデカサイザーO-180A」(エポキシ化亜麻仁油)、ともに(株)ADEKA製)等)、ダイマー酸グリシジルエステル(「エポトートYD-171」、「エポトートYD-172」、共に東都化成(株)製)等が挙げられる。 Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols. Examples of the polyhydric alcohols include 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, cyclohexane. Examples include dimethanol, hydrogenated bisphenol, and polyalkylene glycols having an alkylene glycol structure. Examples of the polyalkylene glycols include polyethylene glycol, polypropylene glycol, polybutylene glycol and the like. Other aliphatic epoxy resins include polybutadiene diglycidyl ether, epoxidized oil (for example, “Adeka Sizer O-130P” (epoxidized soybean oil), “Adeka Sizer O-180A” (epoxidized linseed oil) ), Dimer acid glycidyl ester (“Epototo YD-171”, “Epototo YD-172”, both manufactured by Toto Kasei Co., Ltd.) and the like.
 第二態様の導電性組成物には、さらにエポキシ基反応性架橋剤を含めてよい。このものは、当該導電性組成物を熱硬化させる場合において、得られる導電性被膜に硬度を与えるために用いる成分であり、エポキシ基と容易に反応する架橋剤であれば各種公知のもの、例えば酸無水物系架橋剤、イミダゾール系架橋剤、アミン系架橋剤およびポリメルカプタン系架橋剤等が挙げられる。 The conductive composition of the second aspect may further contain an epoxy group reactive crosslinking agent. This is a component used for imparting hardness to the resulting conductive film when the conductive composition is thermally cured, and various known ones as long as it is a crosslinking agent that easily reacts with an epoxy group, for example, Examples of the acid anhydride crosslinking agent, imidazole crosslinking agent, amine crosslinking agent, and polymercaptan crosslinking agent.
 酸無水物系架橋剤としては、例えば、1分子中に少なくとも2つのカルボキシル基を有するカルボン酸の無水物であれば特に限定されず、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸等の芳香族系カルボン酸無水物、無水マレイン酸、無水グルタル酸等の脂肪族系カルボン酸無水物、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸無水メチルナジック酸、無水ナジック酸等の脂環族系カルボン酸無水物等が挙げられる。また、これらは2種以上組み合わせてもよい。これらのなかでもヘキサヒドロ無水フタル酸および/またはメチルヘキサヒドロ無水フタル酸によれば、硬化被膜が黄変し難くなるため好ましい。 The acid anhydride crosslinking agent is not particularly limited as long as it is an anhydride of a carboxylic acid having at least two carboxyl groups in one molecule, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride Aromatic carboxylic anhydrides such as, maleic anhydride, aliphatic carboxylic anhydrides such as glutaric anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride Examples thereof include alicyclic carboxylic acid anhydrides such as methyl nadic acid and anhydrous nadic acid. Moreover, you may combine these 2 or more types. Of these, hexahydrophthalic anhydride and / or methylhexahydrophthalic anhydride are preferred because the cured coating is unlikely to turn yellow.
 イミダゾール系架橋剤としては、例えば、2-メチルイミダゾール、2-エチル―4―メチルイミダゾール、1-シアノエチル―2―ウンデシルイミダリイウム・トリメリテート、エポキシ・イミダゾールアダクトなどが挙げられ、2種以上を組み合わせることができる。 Examples of the imidazole-based crosslinking agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, epoxy imidazole adduct, and the like. Can be combined.
 アミン系架橋剤としては、例えば、ジエチレンアミン、トリエチレンテトラミン、ジプロプレンジアミン、ジエチルアミノプロピルアミン、N-アミノエチルピベラジン、メタフェニレンジアミン、ジアミノジフェニルメタン、およびジアミノジフェニルスルフォン等のポリアミンが挙げられ、2種以上を組み合わせることができる。 Examples of the amine-based crosslinking agent include polyamines such as diethyleneamine, triethylenetetramine, dipropylenediamine, diethylaminopropylamine, N-aminoethylpiverazine, metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone. Two or more types can be combined.
 なお、当該導電性組成物には、さらに中和剤を含めてよい。中和剤を含めることで、前記架橋剤が強酸物質である(a2)成分により消費され難くなり、高硬度の被膜が得られるようになる。該中和剤としては、具体的には、例えばアンモニアや、第1級アルキルモノアミン類〔メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、オレイルアミン、シクロヘキシルアミン等〕、第2級アルキルモノアミン類〔ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジシクロヘキシルアミン等〕、第3級アルキルモノアミン類〔トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリシクロヘキシルアミン等〕等が挙げられ、これらは2種以上を組み合わせてもよい。これらの中でも第3級アルキルモノアミン類および/またはアンモニアが好ましい。 The conductive composition may further contain a neutralizing agent. By including the neutralizing agent, the cross-linking agent is hardly consumed by the component (a2) which is a strong acid substance, and a high-hardness film can be obtained. Specific examples of the neutralizing agent include ammonia, primary alkyl monoamines [methylamine, ethylamine, propylamine, butylamine, oleylamine, cyclohexylamine, etc.], secondary alkyl monoamines [dimethylamine, Diethylamine, dipropylamine, dibutylamine, dicyclohexylamine, etc.), tertiary alkyl monoamines [trimethylamine, triethylamine, tripropylamine, tributylamine, tricyclohexylamine, etc.] and the like. Also good. Among these, tertiary alkyl monoamines and / or ammonia are preferable.
 また、当該導電性組成物を活性エネルギー線で硬化させる場合には、さらにカチオン重合触媒を含めてよい。具体的には、例えば、具体的には、例えば、ジフェニルヨードニウムヘキサフロロホスフェート、トリフェニルスルホニウムヘキサフロロホスフェート、ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、四フッ化ホウ素フェニルジアゾニウム塩、六フッ化ヒ素トリ-4-メチルフェニルスルホニウム塩、四フッ化アンチモントリ-4-メチルフェニルスルホニウム塩、六フッ化リンのジフェニルヨウドニウム塩、六フッ化アンチモンジフェニルヨウドニウム塩等が挙げられ、2種以上を組み合わせることができる。 In addition, when the conductive composition is cured with active energy rays, a cationic polymerization catalyst may be further included. Specifically, for example, specifically, for example, diphenyliodonium hexafluorophosphate, triphenylsulfonium hexafluorophosphate, iodonium tetrakis (pentafluorophenyl) borate, boron tetrafluoride phenyldiazonium salt, arsenic hexafluoride tri- Examples include 4-methylphenylsulfonium salt, antimony tetrafluoride tri-4-methylphenylsulfonium salt, diphenyliodonium salt of phosphorus hexafluoride, and antimony diphenyliodonium salt of hexafluoride. it can.
 当該導電性組成物の調製方法は特に限定されず、例えば、本発明の有機溶媒分散体と前記(β)成分とを各種公知の手段で混合・分散させる方法が挙げられる。また、前記(A)成分、(B)成分、(C)成分および(β)成分ならびに前記任意成分(架橋剤、中和剤、カチオン性重合触媒)を前記(D)成分に各種公知の手段で混合・分散させる方法が挙げられる。なお、各溶質成分の添加順序は特に限定されない。また、後者方法で得られる導電性組成物は、結果的に本願発明の有機溶媒分散体を含むものといえる。 The method for preparing the conductive composition is not particularly limited, and examples thereof include a method of mixing and dispersing the organic solvent dispersion of the present invention and the component (β) by various known means. In addition, the (A) component, the (B) component, the (C) component, the (β) component, and the optional components (crosslinking agent, neutralizing agent, cationic polymerization catalyst) are used as the (D) component in various known means. Can be mixed and dispersed. The order of adding each solute component is not particularly limited. Moreover, it can be said that the electroconductive composition obtained by the latter method contains the organic-solvent dispersion of this invention as a result.
 本発明の導電性組成物における各成分の含有量は特に限定されず、用途に応じて適宜設定すればよいが、通常は以下の通りである。(但し、全成分の合計が100重量%を超える場合はない。また、(D)成分以外の成分は固形分換算である。) The content of each component in the conductive composition of the present invention is not particularly limited, and may be appropriately set according to the use, but is usually as follows. (However, the total of all components does not exceed 100% by weight. In addition, components other than the component (D) are converted to solid content.)
<該導電性組成物を熱硬化させる場合>
(A)成分:0.01~2重量%程度、好ましくは0.02~1重量%
(B)成分:0.01~2重量%程度、好ましくは0.02~1重量%
(C)成分:0.01~5重量%程度、好ましくは0.01~1重量%
(D)成分:95~99.5重量%程度、好ましくは97~99.95重量%
(β)成分:0.01~2重量%程度、好ましくは0.05~0.5重量%
エポキシ基反応性架橋剤:0~2重量%程度、好ましくは0.01~1.0重量%
中和剤:0~0.1重量%程度、好ましくは0.005~0.03重量%
<When thermosetting the conductive composition>
Component (A): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight
Component (B): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight
Component (C): about 0.01 to 5% by weight, preferably 0.01 to 1% by weight
Component (D): about 95 to 99.5% by weight, preferably 97 to 99.95% by weight
(Β) component: about 0.01 to 2% by weight, preferably 0.05 to 0.5% by weight
Epoxy group-reactive crosslinking agent: about 0 to 2% by weight, preferably 0.01 to 1.0% by weight
Neutralizing agent: 0 to 0.1% by weight, preferably 0.005 to 0.03% by weight
<該導電性組成物を活性エネルギー線で硬化させる場合>
(A)成分:0.01~2重量%程度、好ましくは0.02~1重量%
(B)成分:0.01~2重量%程度、好ましくは0.02~1重量%
(C)成分:0.01~5重量%程度、好ましくは0.01~1重量%
(D)成分:95~99.5重量%程度、好ましくは97~99.95重量%
(β)成分:0.01~2重量%程度、好ましくは0.05~0.5重量%
中和剤:0~0.1重量%程度、好ましくは0.005~0.03重量%
カチオン重合触媒:0.005~0.25重量%程度、好ましくは0.05~0.2重量%
<When curing the conductive composition with active energy rays>
Component (A): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight
Component (B): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight
Component (C): about 0.01 to 5% by weight, preferably 0.01 to 1% by weight
Component (D): about 95 to 99.5% by weight, preferably 97 to 99.95% by weight
(Β) component: about 0.01 to 2% by weight, preferably 0.05 to 0.5% by weight
Neutralizing agent: 0 to 0.1% by weight, preferably 0.005 to 0.03% by weight
Cationic polymerization catalyst: about 0.005 to 0.25% by weight, preferably 0.05 to 0.2% by weight
 本発明の第三の態様の導電性組成物は、バインダー成分として(γ)成分を用いたものである。なお、当該組成物に含まれる(A)成分、(B)成分および(C)成分(D)成分はそれぞれ前記したものと同様である。 The conductive composition according to the third aspect of the present invention uses the (γ) component as a binder component. In addition, the (A) component, (B) component, and (C) component (D) component which are contained in the said composition are respectively the same as what was mentioned above.
 (γ)成分は、α,β不飽和カルボン酸類(γ1)(以下、(γ1)成分という。)および(メタ)アクリル酸アルキルエステル類(γ2)(以下、(γ2)成分といい、(γ3)成分に該当するものを除く。)ならびに必要に応じて(メタ)アクリル酸ヒドロキシアルキルエステル類(γ3)(以下、(γ3)成分という。)を反応させてなる共重合体であり、(γ)成分により当該導電性組成物における(A)成分の分散性が向上し、また、平滑性に優れた被膜が得られるようになる。 The (γ) component is called α, β unsaturated carboxylic acid (γ1) (hereinafter referred to as (γ1) component) and (meth) acrylic acid alkyl ester (γ2) (hereinafter referred to as (γ2) component, (γ3) And a copolymer obtained by reacting (meth) acrylic acid hydroxyalkyl ester (γ3) (hereinafter referred to as (γ3) component), if necessary (γ) The component (A) improves the dispersibility of the component (A) in the conductive composition, and a film having excellent smoothness can be obtained.
 (γ1)成分としては、例えば、アクリル酸、メタアクリル酸、クロトン酸等のα,β不飽和モノカルボン酸や、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等のα,β-不飽和ジカルボン酸が挙げられ、これらは2種以上を組み合わせてもよい。これらの中でも反応性の点よりα,β不飽和モノカルボン酸が、特にアクリル酸および/またはメタアクリル酸が好ましい。  Examples of the component (γ1) include α, β unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and α, β-unsaturated materials such as maleic acid, maleic anhydride, fumaric acid, and itaconic acid. A dicarboxylic acid is mentioned, These may combine 2 or more types. Of these, α and β unsaturated monocarboxylic acids are preferable from the viewpoint of reactivity, and acrylic acid and / or methacrylic acid are particularly preferable. *
 (γ2)成分としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、アクリル酸t-ブチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸イソノニルブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸アリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸エチルカルビトール、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシブチルが挙げられ、これらは2種以上を組み合わせてもよい。また、(γ2)成分としては、炭素数が1~20程度のアルキル基(但し水酸基を含まない)を有するものが特に好ましい。 Examples of the component (γ2) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and acrylic acid. t-butyl, isooctyl (meth) acrylate, isononylbutyl (meth) acrylate, lauryl (meth) acrylate, allyl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, (meth ) Cyclohexyl acrylate, benzyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate, hydroxyethyl (meth) acrylate, methoxyethyl (meth) acrylate, (meth) acrylic acid Ethoxyethyl, methoxybutyl (meth) acrylate, and these It may be a combination of two or more. Further, as the (γ2) component, those having an alkyl group having about 1 to 20 carbon atoms (but not including a hydroxyl group) are particularly preferred.
 (γ3)成分としては、(メタ)アクリル酸1-ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸ヒドロキシシクロヘキシル、(メタ)アクリル酸4-(ヒドロキシメチル)シクロヘキシルメチル、2-ヒドロキシプロピオン酸4-(ヒドロキシメチル)シクロヘキシルメチル、(メタ)アクリル酸ヒドロキシフェニル等が挙げられ、これらは2種以上を組み合わせてもよい。 (Γ3) component includes 1-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) 4-hydroxybutyl acrylate, hydroxycyclohexyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl 2-hydroxypropionate, hydroxyphenyl (meth) acrylate Etc., and two or more of these may be combined.
 (γ)成分は、各種公知の方法で得ることができる。具体的には、例えば、前記(γ1)成分および(γ2)成分ならびに必要に応じて(γ3)成分を、通常60~180℃程度において、1~20時間程度、ラジカル重合反応(水溶液重合、溶液重合、塊状重合等)させる方法が挙げられる。なお、(γ1)成分、(γ2)成分および(γ3)成分の使用量は特に限定されないが、通常、順に5~90重量%程度、10~90重量%程度および0~50重量%程度であり、好ましくは10~70重量%程度、10~70重量%程度および0~30重量%程度である。また、反応溶媒としては脱イオン水等の水や、前記(D)成分(プロピレングリコールモノメチルエーテル等)を用いることができる。 The (γ) component can be obtained by various known methods. Specifically, for example, the (γ1) component and the (γ2) component and, if necessary, the (γ3) component are usually subjected to radical polymerization reaction (aqueous solution polymerization, solution at about 60 to 180 ° C. for about 1 to 20 hours. Polymerization, bulk polymerization, etc.). The amount of the (γ1) component, the (γ2) component, and the (γ3) component is not particularly limited, but is usually about 5 to 90% by weight, about 10 to 90% by weight, and about 0 to 50% by weight. They are preferably about 10 to 70% by weight, about 10 to 70% by weight, and about 0 to 30% by weight. As the reaction solvent, water such as deionized water or the component (D) (propylene glycol monomethyl ether or the like) can be used.
 なお、ラジカル重合の際には開始剤として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等の無機過酸化物類や、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、ラウリルパーオキサイド等の有機過酸化物類、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、ジメチル-2,2’-アゾビスイソブチレート等のアゾ化合物類を使用できる。なお、その使用量は特に限定されないが、(γ1)成分、(γ2)成分および(γ3)成分の合計を100重量%とした場合において、通常0.01~10重量%程度である In the radical polymerization, as an initiator, inorganic peroxides such as hydrogen peroxide, ammonium persulfate and potassium persulfate, and organic peroxides such as t-butyl peroxybenzoate, dicumyl peroxide, and lauryl peroxide are used. Oxides, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobisisobutyronitrile, azo compounds such as dimethyl-2,2′-azobisisobutyrate are used it can. The amount used is not particularly limited, but is usually about 0.01 to 10% by weight when the total of the (γ1) component, (γ2) component and (γ3) component is 100% by weight.
 また、(γ)成分の分子量を調整する目的で、ドデシルメルカプタン、2-メルカプトベンゾチアゾール、ブロムトリクロルメタン等の連鎖移動剤を用いることができる。なお、その使用量は特に限定されないが、(γ1)成分、(γ2)成分および(γ3)成分の合計を100重量%とした場合において、通常0.01~10重量%程度である。 Also, a chain transfer agent such as dodecyl mercaptan, 2-mercaptobenzothiazole or bromotrichloromethane can be used for the purpose of adjusting the molecular weight of the component (γ). The amount used is not particularly limited, but is usually about 0.01 to 10% by weight when the total of the (γ1), (γ2) and (γ3) components is 100% by weight.
 こうして得られる(γ)成分の物性は特に限定されないが、通常、ガラス転移温度(JIS-K-7121-1987)が20~300℃程度(好ましくは40~250℃程度)、酸価(JIS-K2501-2003)が1~150mgKOH/g程度(好ましくは5~120mgKOH/g)、数平均分子量(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算値)が1,000~500,000程度(好ましくは3,000~25,000程度)である。 The physical properties of the component (γ) thus obtained are not particularly limited. Usually, the glass transition temperature (JIS-K-7121-1987) is about 20 to 300 ° C. (preferably about 40 to 250 ° C.), and the acid value (JIS- K2501-2003) is about 1 to 150 mgKOH / g (preferably 5 to 120 mgKOH / g), and the number average molecular weight (polystyrene conversion value by gel permeation chromatography) is about 1,000 to 500,000 (preferably 3,000). ~ About 25,000).
 なお、第三態様の導電性組成物には、当該組成物より得られる被膜の硬度を高める目的で、必要に応じてカルボキシル基反応性架橋剤を含めることができる。具体的には、例えば、オキサゾリン系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤等が挙げられる。 In addition, a carboxyl group-reactive crosslinking agent can be included in the conductive composition of the third aspect as necessary for the purpose of increasing the hardness of the film obtained from the composition. Specifically, for example, an oxazoline crosslinking agent, an aziridine crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, an isocyanate crosslinking agent, and the like can be given.
 オキサゾリン系架橋剤としては、例えば、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリンなどのオキサゾリン基を含むビニル系モノマーを含有する成分単独、またはオキサゾリン基を含むビニル系モノマーと他のモノマーとを共重合したビニル樹脂あるいはアクリル樹脂などが挙げられる。市販品としては、(株)日本触媒製のエポクロスWS-300、WS-500、WS-700、エポクロスK-2010、K-2020、K-2030などが使用できる。 Examples of the oxazoline-based crosslinking agent include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, A component containing a vinyl monomer containing an oxazoline group such as 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline alone, or a vinyl monomer containing an oxazoline group and others And vinyl resins or acrylic resins copolymerized with these monomers. As commercially available products, EPOCROSS WS-300, WS-500, WS-700, EPOCROSS K-2010, K-2020, K-2030 and the like manufactured by Nippon Shokubai Co., Ltd. can be used.
 アジリジン系架橋剤としては、例えばグリセロール-トリス(1-アジリジニルプロピオネ-ト)、グリセロール-トリス[2-メチル-(1-アジリジニル)]プロピオネ-ト、グリセロール-トリス[2-エチル-(1-アジリジニル)]プロピオネ-ト、グリセロール-トリス[2-ブチル-(1-アジリジニル)]プロピオネ-ト)、グリセロール-トリス[2-プロピル-(1-アジリジニル)]プロピオネ-ト、グリセロール-トリス[2-ペンチル-(1-アジリジニル)]プロピオネ-ト、グリセロール-トリス[2-ヘキシル-(1-アジリジニル)]プロピオネ-ト、グリセロール-トリス[2,3-ジメチル-(1-アジリジニル)]プロピオネ-ト、グリセロール-トリス[2,3-ジエチル-(1-アジリジニル)]プロピオネ-ト、グリセロール-トリス[2,3-ジブチル-(1-アジリジニル)]プロピオネ-ト)、グリセロール-トリス[2,3-ジプロピル-(1-アジリジニル)]プロピオネ-ト、グリセロール-トリス[2,3-ジペンチル-(1-アジリジニル)]プロピオネ-ト、グリセロール-トリス[2,3-ジヘキシル-(1-アジリジニル)]プロピオネ-ト、 トリメチロールプロパン-トリス(1-アジリジニルプロピオネ-ト)、トリメチロールプロパン-トリス[2-メチル-(1-アジリジニル)]プロピオネ-ト、トリメチロールプロパン-トリス[2-エチル-(1-アジリジニル)]プロピオネ-ト、トリメチロールプロパン-トリス[2-ブチル-(1-アジリジニル)]プロピオネ-ト)、トリメチロールプロパン-トリス[2-プロピル-(1-アジリジニル)]プロピオネ-ト、トリメチロールプロパン-トリス[2-ペンチル-(1-アジリジニル)]プロピオネ-ト、トリメチロールプロパン-トリス[2-ヘキシル-(1-アジリジニル)]プロピオネ-ト、トリメチロールプロパン-トリス[2,3-ジメチル-(1-アジリジニル)]プロピオネ-ト、トリメチロールプロパン-トリス[2,3-ジエチル-(1-アジリジニル)]プロピオネ-ト、トリメチロールプロパン-トリス[2,3-ジブチル-(1-アジリジニル)]プロピオネ-ト)、トリメチロールプロパン-トリス[2,3-ジプロピル-(1-アジリジニル)]プロピオネ-ト、トリメチロールプロパン-トリス[2,3-ジペンチル-(1-アジリジニル)]プロピオネ-ト、トリメチロールプロパン-トリス[2,3-ジヘキシル-(1-アジリジニル)]プロピオネ-トテトラメチロールメタン-トリス(1-アジリジニルプロピオネ-ト)、テトラメチロールメタン-トリス[2-メチル-(1-アジリジニル)]プロピオネ-ト、テトラメチロールメタン-トリス[2-エチル-(1-アジリジニル)]プロピオネ-ト、テトラメチロールメタン-トリス[2-ブチル-(1-アジリジニル)]プロピオネ-ト)、テトラメチロールメタン-トリス[2-プロピル-(1-アジリジニル)]プロピオネ-ト、テトラメチロールメタン-トリス[2-ペンチル-(1-アジリジニル)]プロピオネ-ト、テトラメチロールメタン-トリス[2-ヘキシル-(1-アジリジニル)]プロピオネ-ト、テトラメチロールメタン-トリス[2,3-ジメチル-(1-アジリジニル)]プロピオネ-ト、テトラメチロールメタン-トリス[2,3-ジエチル-(1-アジリジニル)]プロピオネ-ト、テトラメチロールメタン-トリス[2,3-ジブチル-(1-アジリジニル)]プロピオネ-ト)、テトラメチロールメタン-トリス[2,3-ジプロピル-(1-アジリジニル)]プロピオネ-ト、テトラメチロールメタン-トリス[2,3-ジペンチル-(1-アジリジニル)]プロピオネ-ト、テトラメチロールメタン-トリス[2,3-ジヘキシル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ(1-アジリジニルプロピオネ-ト)、ペンタエリスリトール-テトラ[2-メチル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ[2-エチル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ[2-ブチル-(1-アジリジニル)]プロピオネ-ト)、ペンタエリスリトール-テトラ[2-プロピル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ[2-ペンチル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ[2-ヘキシル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ[2,3-ジメチル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ[2,3-ジエチル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ[2,3-ジブチル-(1-アジリジニル)]プロピオネ-ト)、ペンタエリスリトール-テトラ[2,3-ジプロピル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ[2,3-ジペンチル-(1-アジリジニル)]プロピオネ-ト、ペンタエリスリトール-テトラ[2,3-ジヘキシル-(1-アジリジニル)]プロピオネ-ト、テトラアジリジニルメタキシレンジアミン、テトラアジリジニルメチルパラキシレンジアミン、テトラメチルプロパンテトラアジリジニルプロピオネ-ト、ネオペンチルグリコールジ(β-アジリジニルプロピオネ-ト)、4,4’-イソプロピリデンジフェノールジ(β-アジリジニルプロピオネ-ト)、4,4’-メチレンジフェノールジ(β-アジリジニルプロピオネ-ト)、4,4’-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン、特開2003-104970号に記載された化合物等が挙げられる。 Examples of the aziridine-based crosslinking agent include glycerol-tris (1-aziridinylpropionate), glycerol-tris [2-methyl- (1-aziridinyl)] propionate, glycerol-tris [2-ethyl- ( 1-aziridinyl)] propionate, glycerol-tris [2-butyl- (1-aziridinyl)] propionate), glycerol-tris [2-propyl- (1-aziridinyl)] propionate, glycerol-tris [ 2-pentyl- (1-aziridinyl)] propionate, glycerol-tris [2-hexyl- (1-aziridinyl)] propionate, glycerol-tris [2,3-dimethyl- (1-aziridinyl)] propionate Glycerol-Tris [2,3-diethyl- (1-aziridinini )] Propionate, glycerol-tris [2,3-dibutyl- (1-aziridinyl)] propionate), glycerol-tris [2,3-dipropyl- (1-aziridinyl)] propionate, glycerol-tris [2,3-dipentyl- (1-aziridinyl)] propionate, glycerol-tris [2,3-dihexyl- (1-aziridinyl)] propionate, trimethylolpropane-tris (1-aziridinylpropionate) -To), trimethylolpropane-tris [2-methyl- (1-aziridinyl)] propionate, trimethylolpropane-tris [2-ethyl- (1-aziridinyl)] propionate, trimethylolpropane-tris [ 2-butyl- (1-aziridinyl)] propionate), trimethy Propane-tris [2-propyl- (1-aziridinyl)] propionate, trimethylolpropane-tris [2-pentyl- (1-aziridinyl)] propionate, trimethylolpropane-tris [2-hexyl- (1 -Aziridinyl)] propionate, trimethylolpropane-tris [2,3-dimethyl- (1-aziridinyl)] propionate, trimethylolpropane-tris [2,3-diethyl- (1-aziridinyl)] propionone Trimethylolpropane-tris [2,3-dibutyl- (1-aziridinyl)] propionate), trimethylolpropane-tris [2,3-dipropyl- (1-aziridinyl)] propionate, trimethylolpropane Tris [2,3-dipentyl- (1-aziridinini Propionate, trimethylolpropane-tris [2,3-dihexyl- (1-aziridinyl)] propionate tetramethylolmethane-tris (1-aziridinylpropionate), tetramethylolmethane-tris [2-Methyl- (1-aziridinyl)] propionate, tetramethylolmethane-tris [2-ethyl- (1-aziridinyl)] propionate, tetramethylolmethane-tris [2-butyl- (1-aziridinyl) ] Propionate), tetramethylolmethane-tris [2-propyl- (1-aziridinyl)] propionate, tetramethylolmethane-tris [2-pentyl- (1-aziridinyl)] propionate, tetramethylolmethane- Tris [2-hexyl- (1-aziridinyl)] propi Neato, tetramethylolmethane-tris [2,3-dimethyl- (1-aziridinyl)] propionate, tetramethylolmethane-tris [2,3-diethyl- (1-aziridinyl)] propionate, tetramethylol Methane-tris [2,3-dibutyl- (1-aziridinyl)] propionate), tetramethylolmethane-tris [2,3-dipropyl- (1-aziridinyl)] propionate, tetramethylolmethane-tris [2 , 3-dipentyl- (1-aziridinyl)] propionate, tetramethylolmethane-tris [2,3-dihexyl- (1-aziridinyl)] propionate, pentaerythritol-tetra (1-aziridinylpropionate) G), pentaerythritol-tetra [2-methyl- (1-aziridy) )] Propionate, pentaerythritol-tetra [2-ethyl- (1-aziridinyl)] propionate, pentaerythritol-tetra [2-butyl- (1-aziridinyl)] propionate), pentaerythritol-tetra [2-propyl- (1-aziridinyl)] propionate, pentaerythritol-tetra [2-pentyl- (1-aziridinyl)] propionate, pentaerythritol-tetra [2-hexyl- (1-aziridinyl)] propione -Pentaerythritol-tetra [2,3-dimethyl- (1-aziridinyl)] propionate, pentaerythritol-tetra [2,3-diethyl- (1-aziridinyl)] propionate, pentaerythritol-tetra [ 2,3-dibutyl- (1-aziridinyl )] Propionate), pentaerythritol-tetra [2,3-dipropyl- (1-aziridinyl)] propionate, pentaerythritol-tetra [2,3-dipentyl- (1-aziridinyl)] propionate, Pentaerythritol-tetra [2,3-dihexyl- (1-aziridinyl)] propionate, tetraaziridinylmetaxylenediamine, tetraaziridinylmethylparaxylenediamine, tetramethylpropanetetraaziridinylpropionate, Neopentyl glycol di (β-aziridinylpropionate), 4,4′-isopropylidenediphenol di (β-aziridinylpropionate), 4,4′-methylenediphenoldi (β- Aziridinylpropionate), 4,4'-bis (ethyleneiminocarbo Arylamino) diphenylmethane, compounds and the like described in JP 2003-104970.
 エポキシ系架橋剤としては、分子内に少なくとも二つのエポキシ基を有するエポキシ樹脂(化合物)であれば各種公知のものを特に制限なく使用でき、前記(β)成分と同様のものが挙げられる。具体的には、特に、ビスフェノールA型エポキシ化合物、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物等の芳香族型エポキシ化合物;芳香族型エポキシ化合物の芳香環を水素化して脂環式構造とした水添エポキシ化合物や、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、3,4-エポキシ-1-[8,9-エポキシ-2,4-ジオキサスピロ[5.5]ウンデカン-3-イル]-シクロヘキサンなどのエポキシ-[エポキシ-オキサスピロC8-15アルキル]-シクロ-12アルカン、3,4-エポキシシクロヘキシルメチル-3′,4′-エポキシシクロヘキサンカルボキシレートや4,5-エポキシシクロオクチルメチル-4′,5′-エポキシシクロオクタンカルボキシレートなどのエポキシC5-12シクロアルキルC1-3アルキル-エポキシC5-12シクロアルカンカルボキシレート、ビス(2-メチル-3,4-エポキシシクロヘキシルメチル)アジペート等の脂環式エポキシ化合物;ヒダントインエポキシ樹脂等の含窒素環エポキシ樹脂;脂肪族系エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂等;が好ましく、これらは1種を単独で、または2種以上を組み合わせて用いることができる。    As the epoxy-based cross-linking agent, various known ones can be used without particular limitation as long as they are epoxy resins (compounds) having at least two epoxy groups in the molecule, and examples thereof include the same as the component (β). Specifically, aromatic epoxy compounds such as bisphenol A type epoxy compounds, bisphenol S type epoxy resins, bisphenol F type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds; Hydrogenated epoxy compounds in which an aromatic ring is hydrogenated to have an alicyclic structure, vinylcyclohexene dioxide, dicyclopentadiene oxide, 3,4-epoxy-1- [8,9-epoxy-2,4-dioxaspiro [5 .5] Epoxy- [epoxy-oxaspiro C8-15 alkyl] -cyclo-12alkane, 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate such as undecan-3-yl] -cyclohexane , 5-epoxy Epoxy C5-12 cycloalkyl C1-3 alkyl-epoxy C5-12 cycloalkane carboxylate such as looctylmethyl-4 ', 5'-epoxycyclooctanecarboxylate, bis (2-methyl-3,4-epoxycyclohexylmethyl) ) An alicyclic epoxy compound such as adipate; a nitrogen-containing ring epoxy resin such as a hydantoin epoxy resin; an aliphatic epoxy resin, a glycidyl ether type epoxy resin, a biphenyl type epoxy resin, a naphthalene type epoxy resin, etc .; One species can be used alone, or two or more species can be used in combination. *
 メラミン系架橋剤としては、例えば、メラミンとホルムアルデヒドを縮合して得られるメチロールメラミン誘導体に低級アルコールとしてメチルアルコール、エチルアルコール、イソプロピルアルコール等を反応させてエーテル化した化合物およびそれらの混合物が好ましい。メチロールメラミン誘導体としては、例えば、モノメチロールメラミン、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミン、特開2012-97132号に記載のメラミン化合物等が挙げられる。 As the melamine-based crosslinking agent, for example, a methylol melamine derivative obtained by condensing melamine and formaldehyde and a compound obtained by etherification by reacting methyl alcohol, ethyl alcohol, isopropyl alcohol or the like as a lower alcohol are preferable. Examples of the methylol melamine derivative include monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine, and melamine compounds described in JP2012-97132A.
 イソシアネート系架橋剤として、(γ)成分の構成単量体として(γ3)成分(水酸基含有モノマー)を使用する場合に使用でき、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、および脂環式ジイソシアネートならびにこれらジイソシアネート化合物のヌレート体またはアダクト体、ならびにそれらのブロック体が挙げられる。芳香族ジイソシアネートとしては、トリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネートなどが挙げられる。また、脂肪族ジイソシアネートとしては、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネートなどが挙げられる。また、脂環式ジイソシアネートとしてはジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、水添キシレンジイソシアネート(HYDI)、水添トリレンジイソシアネート等が挙げられる。 It can be used when the (γ3) component (hydroxyl group-containing monomer) is used as the constituent monomer of the (γ) component as the isocyanate-based crosslinking agent. For example, aromatic diisocyanates, aliphatic diisocyanates, and alicyclic diisocyanates and these Examples thereof include nurate or adduct bodies of diisocyanate compounds, and block bodies thereof. Examples of the aromatic diisocyanate include tolylene diisocyanate, α, α, α ′, α′-tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, and the like. Examples of the aliphatic diisocyanate include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and lysine diisocyanate. Examples of alicyclic diisocyanates include dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1,4-cyclohexane diisocyanate, hydrogenated xylene diisocyanate (HYDI), and hydrogenated tolylene diisocyanate.
 また、第三態様の導電性組成物には、前記カルボキシル基反応性架橋剤が強酸物質である(a2)成分により消費される可能性を考慮して、前記中和剤を含めることができる。該中和剤としては、特に第3級アルキルアミン類および/またはアンモニアが好ましい。 In addition, the conductive composition of the third aspect can include the neutralizing agent in consideration of the possibility that the carboxyl group-reactive crosslinking agent is consumed by the component (a2) which is a strong acid substance. As the neutralizing agent, tertiary alkylamines and / or ammonia are particularly preferable.
 当該導電性組成物の調製方法は特に限定されず、本発明の有機溶媒分散体と(γ)成分とを各種公知の方法で混合・分散させる方法が挙げられる。また、前記(A)成分、(B)成分および(C)成分並びに前記任意成分(カルボキシル基反応性架橋剤、中和剤)を(D)成分中で混合・分散させたりする方法が挙げられる。なお、後者の場合において、溶質成分の添加順序は特に限定されない。また、後者方法で得られる導電性組成物は、結果的に本願発明の有機溶媒分散体を含むものといえる。 The method for preparing the conductive composition is not particularly limited, and examples thereof include a method of mixing and dispersing the organic solvent dispersion of the present invention and the (γ) component by various known methods. In addition, a method of mixing and dispersing the component (A), the component (B), the component (C) and the optional component (carboxyl group-reactive crosslinking agent, neutralizing agent) in the component (D) can be mentioned. . In the latter case, the order of adding the solute components is not particularly limited. Moreover, it can be said that the electroconductive composition obtained by the latter method contains the organic-solvent dispersion of this invention as a result.
 当該導電性組成物における各成分の含有量は特に限定されず、用途に応じて適宜設定すればよいが、通常は以下の通りである。(但し、全成分の合計が100重量%を超える場合はない。また、(D)成分以外の成分は固形分換算である。) The content of each component in the conductive composition is not particularly limited, and may be appropriately set according to the use, but is usually as follows. (However, the total of all components does not exceed 100% by weight. In addition, components other than the component (D) are converted to solid content.)
(A)成分:0.01~2重量%程度、好ましくは0.02~1重量%
(B)成分:0.01~2重量%程度、好ましくは0.02~1重量%
(C)成分:0.01~5重量%程度、好ましくは0.01~1重量%
(D)成分:95~99.5重量%程度、好ましくは97~99.95重量%
(γ)成分:0.01~2重量%程度、好ましくは0.05~0.5重量%
カルボキシル基反応性架橋剤:0~2重量%程度、好ましくは0.01~0.5重量%
中和剤:0~0.1重量%程度、好ましくは0.005~0.02重量%
Component (A): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight
Component (B): about 0.01 to 2% by weight, preferably 0.02 to 1% by weight
Component (C): about 0.01 to 5% by weight, preferably 0.01 to 1% by weight
Component (D): about 95 to 99.5% by weight, preferably 97 to 99.95% by weight
Component (γ): about 0.01 to 2% by weight, preferably 0.05 to 0.5% by weight
Carboxyl group-reactive crosslinking agent: about 0 to 2% by weight, preferably 0.01 to 0.5% by weight
Neutralizing agent: 0 to 0.1% by weight, preferably 0.005 to 0.02% by weight
 なお、第一態様、第二態様および第三態様の導電性組成物には、各種顔料、着色剤、光増感剤、(C)成分以外の酸化防止剤、光安定剤、レベリング剤、導電性向上物質(ジメチルスルホオキシド等)等の添加剤を含めてもよい。また、必要に応じ、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、アクリル樹脂、ポリプロピレン樹脂等の各種公知の非活性エネルギー線硬化型樹脂を配合してもよい。また、(α)成分として分子内に水酸基を有する(α2-1)成分および/または(α2-2)成分を使用した場合には、当該水酸基と架橋反応させる目的で前記ポリイソシアネート化合物やその他イソシアネート系架橋剤を配合することもできる。 The conductive compositions of the first aspect, the second aspect, and the third aspect include various pigments, colorants, photosensitizers, antioxidants other than the component (C), light stabilizers, leveling agents, and conductive materials. Additives such as property-improving substances (such as dimethyl sulfoxide) may be included. Moreover, you may mix | blend various well-known inactive energy ray hardening-type resins, such as a polyurethane resin, a polyester resin, an epoxy resin, an acrylic resin, a polypropylene resin, as needed. In addition, when the (α2-1) component and / or the (α2-2) component having a hydroxyl group in the molecule is used as the (α) component, the polyisocyanate compound or other isocyanate is used for the purpose of crosslinking reaction with the hydroxyl group. A system cross-linking agent can also be blended.
<導電性被膜について>
 本発明の導電性被膜は、本発明の第一態様、第二態様、または第三態様の導電性組成物を基材に塗工し、各種の硬化処理を行うことにより得られる。
<About conductive film>
The conductive film of the present invention is obtained by applying the conductive composition of the first aspect, the second aspect, or the third aspect of the present invention to a substrate and performing various curing treatments.
 第一態様の導電性組成物の場合には、当該導電性組成物を基材に塗工し、活性エネルギー線を照射することにより、目的とする導電性被膜が得られる。なお、活性エネルギー線を照射する前に(D)成分を蒸発させる乾燥工程を設けても良い。 In the case of the conductive composition of the first aspect, the target conductive film can be obtained by applying the conductive composition to a substrate and irradiating active energy rays. In addition, you may provide the drying process which evaporates (D) component before irradiating an active energy ray.
 活性エネルギー線としては、紫外線や電子線が挙げられる。紫外線の供給源としては例えば高圧水銀灯やメタルハライドランプ等が挙げられ、照射量は通常100~2,000mJ/cm程度である。また、電子線の供給方式としては例えばスキャン式電子線照射、カーテン式電子線照射法等が挙げられ、照射エネルギーは通常10~200kGy程度である。 Examples of the active energy rays include ultraviolet rays and electron beams. Examples of the ultraviolet light source include a high-pressure mercury lamp and a metal halide lamp, and the irradiation amount is usually about 100 to 2,000 mJ / cm 2 . Examples of the electron beam supply method include scanning electron beam irradiation and curtain electron beam irradiation method, and the irradiation energy is usually about 10 to 200 kGy.
 第二態様の導電性組成物の場合には、 当該導電性組成物を基材に塗工し、加熱により硬化させるか、活性エネルギー線を照射して硬化させるかにより、目的とする導電性被膜が得られる。なお、これら硬化処理に先立ち、(D)成分を蒸発させる乾燥工程を設けても良い。 In the case of the conductive composition of the second embodiment, the target conductive film is applied depending on whether the conductive composition is applied to a substrate and cured by heating or by irradiation with active energy rays. Is obtained. In addition, you may provide the drying process which evaporates (D) component prior to these hardening processes.
熱硬化の温度は特に限定されず、基材の種類によって適宜設定すればよいが、通常室温以上であり、前記エポキシ基反応性架橋剤を使用する場合には、加熱下に架橋反応を進行させる必要があるため、熱硬化の温度は通常40~180℃程度である。一方、活性エネルギー線の照射による硬化の条件は、第一態様の導電性組成物の場合と同様である。 The temperature of thermosetting is not particularly limited and may be appropriately set depending on the type of the substrate, but is usually room temperature or higher, and when the epoxy group-reactive crosslinking agent is used, the crosslinking reaction proceeds under heating. Since it is necessary, the temperature of thermosetting is usually about 40 to 180 ° C. On the other hand, the conditions for curing by irradiation with active energy rays are the same as in the case of the conductive composition of the first embodiment.
 第三態様の導電性組成物の場合には、当該導電性組成物を基材に塗工し、(D)成分を蒸発させることにより得られる。また、(D)成分を蒸発させる際の温度は基材の種類によって適宜設定すればよく、通常室温以上であるが、カルボキシル基反応性架橋剤を使用する場合には、加熱下に架橋反応を進行させる必要があるため、通常40~180℃程度である。 In the case of the conductive composition of the third aspect, it is obtained by applying the conductive composition to a substrate and evaporating the component (D). In addition, the temperature at which component (D) is evaporated may be appropriately set depending on the type of substrate, and is usually room temperature or higher. However, when a carboxyl group-reactive crosslinking agent is used, the crosslinking reaction is performed under heating. Since it is necessary to proceed, it is usually about 40 to 180 ° C.
 基材は特に限定されないが、例えば、トリアセチルセルロース樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂、ポリスチレン樹脂、エポキシ樹脂、メラミン樹脂、ABS樹脂、AS樹脂、ノルボルネン系樹脂などが挙げられる。また、基材の形態も特に限定されず、構造体状或いはフィルム状であってよい。フィルムとしては、トリアセチルセルロースフィルム、ポリエステルフィルム、ポリオレフィンフィルム、ポリカーボネートフィルム、ポリメチルメタクリレートフィルム、ポリスチレンフィルム、エポキシフィルム、メラミンフィルム、ABSフィルム、ASフィルム、ノルボルネン樹脂系フィルムなどが挙げられ、光学的特性の観点より特にトリアセチルセルロースフィルムが好ましい。 The substrate is not particularly limited, and examples thereof include triacetyl cellulose resin, polyester resin, polyolefin resin, polycarbonate resin, polymethyl methacrylate resin, polystyrene resin, epoxy resin, melamine resin, ABS resin, AS resin, and norbornene resin. It is done. Further, the form of the substrate is not particularly limited, and may be a structure or a film. Examples of the film include triacetyl cellulose film, polyester film, polyolefin film, polycarbonate film, polymethyl methacrylate film, polystyrene film, epoxy film, melamine film, ABS film, AS film, norbornene resin film, etc., optical characteristics From the viewpoint of the above, a triacetyl cellulose film is particularly preferable.
 塗工方法は特に限定されないが、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷法などが挙げられる。 The coating method is not particularly limited, and examples thereof include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, and screen printing.
 以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
<(A)成分の調製>
調製例1
 市販のPEDOT/PSS水分散液(商品名「Orgacon」、固形分濃度1.2重量%。)1000gを、噴霧乾燥機(製品名「GA-32」、ヤマト科学(株)製)を用いて処理し(噴霧圧力0.6MPa、乾燥温度(取入口)150℃)、青色固体9.0gを得た。また、同じ操作を繰り返し、導電性組成物の調製に必要な量の青色固体を用意した。
<Preparation of component (A)>
Preparation Example 1
1000 g of a commercially available aqueous dispersion of PEDOT / PSS (trade name “Orgacon”, solid content concentration 1.2% by weight) using a spray dryer (product name “GA-32”, manufactured by Yamato Scientific Co., Ltd.) Processing (spray pressure 0.6 MPa, drying temperature (intake) 150 ° C.) gave 9.0 g of a blue solid. Further, the same operation was repeated to prepare an amount of blue solid necessary for the preparation of the conductive composition.
 <(α2)成分の合成>
合成例1
 撹拌装置、冷却管、滴下ロートおよび窒素導入管を備えた反応装置に、グリシジルメタアクリレート37.5g、メタクリル酸メチル37.5g、メチルイソブチルケトン247.5gおよび2,2´-アゾビスイソブチロニトリル3gを仕込んだ後、窒素気流下に約1時間かけて系内温度が約85℃になるまで昇温し、1時間保温した。次いで、グリシジルメタアクリレート112.5g、メタクリル酸メチル112.5gおよび2,2´-アゾビスイソブチロニトリル9gからなる混合液をあらかじめ仕込んだ滴下ロートより、当該混合液を窒素気流下に約2時間を要して系内に滴下し、3時間同温度に保温した後、2,2´-アゾビスイソブチロニトリル3gを入れ、1時間保温した。その後、115℃に昇温し、2時間保温した。次いで、反応系を60℃に冷却した後、窒素導入管を空気導入管につけ替え、アクリル酸76g、メトキノン0.6gおよびトリフェニルフォスフィン1.5gを入れ混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、冷却して、固形分が56%となるようメチルイソブチルケトンを加え、ポリマーの溶液を得た。当該共重合物は、水酸基価が76mgKOH/g(溶液)、重量平均分子量が17,600であった。なお、重量平均分子量は市販のGPC装置(製品名「HLC-8220」、東ソー(株)製)と市販のカラム(商品名「TSK-GEL SUPERHZM-M 」、東ソー(株)製)を用いて得た測定値である。
<Synthesis of (α2) component>
Synthesis example 1
In a reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introducing tube, 37.5 g of glycidyl methacrylate, 37.5 g of methyl methacrylate, 247.5 g of methyl isobutyl ketone and 2,2′-azobisisobutyro After charging 3 g of nitrile, the temperature in the system was increased to about 85 ° C. over about 1 hour under a nitrogen stream, and the temperature was kept for 1 hour. Next, from a dropping funnel previously charged with a mixed liquid consisting of 112.5 g of glycidyl methacrylate, 112.5 g of methyl methacrylate and 9 g of 2,2′-azobisisobutyronitrile, the mixed liquid was subjected to about 2 in a nitrogen stream. It took time to drop into the system and kept at the same temperature for 3 hours. Then, 3 g of 2,2′-azobisisobutyronitrile was added and kept for 1 hour. Then, it heated up to 115 degreeC and heat-retained for 2 hours. Next, after cooling the reaction system to 60 ° C., the nitrogen introduction tube was replaced with an air introduction tube, 76 g of acrylic acid, 0.6 g of methoquinone and 1.5 g of triphenylphosphine were added and mixed, and then under air bubbling, The temperature was raised to 110 ° C. After incubating at the same temperature for 8 hours, the mixture was cooled and methyl isobutyl ketone was added so that the solid content was 56% to obtain a polymer solution. The copolymer had a hydroxyl value of 76 mgKOH / g (solution) and a weight average molecular weight of 17,600. The weight average molecular weight was measured using a commercially available GPC apparatus (product name “HLC-8220”, manufactured by Tosoh Corporation) and a commercially available column (trade name “TSK-GEL SUPERHZM-M”, manufactured by Tosoh Corporation). It is the measured value obtained.
<第一態様の導電性組成物の調製>
実施例1 
 ビーカーに、調製例1で得た固形状の(A)成分(以下、P/Pと略す。)7.87gおよびエタノール733.97gを入れ、(B)成分としてアミンアルキレンオキサイド付加物(商品名:エソプロポミンC18/18、ライオンアクゾ(株)製。以下、EPAと略す。)7.87gを添加した後、乳化分散機(製品名:クレアミックス、エム・テクニック(株)製。以下、同様。)を用い、回転数18000rpmで10分処理したのち、超音波分散機(19.6kHz、(株)ギンセン製。以下、同様。)を用いて、出力400Wで10分間処理を行うことにより、固形分濃度2.1重量%の組成物を得た。次いで、当該組成物に、(C)成分として3,4’,5,5’,7-ペンタヒドロキシフラボン(以下、QTと略す。)を1.97g、ならびに(D)成分としてエタノールを24.28gおよびエチレングリコール25.00g、ならびに(α1)成分としてジペンタエリスリトールペンタアクリレートおよびジペンタエリスリトールヘキサアクリレートの混合物(商品名「M400」、東亞合成(株)製)を143.86g、ならびに前記(α2)成分を45.33g、ならびに市販の光重合開始剤(製品名「イルガキュアー184」、チバジャパン(株)製)を9.84g加え、よく撹拌することにより導電性組成物(固形分濃度約19.7重量%)を得た。なお、QTは水に不溶であることが知られており、エタノール/水=9/1の混合溶媒を用いた1%溶液(25℃)は濁りのない透明な外観を呈するが、エタノール/水=8/2の混合溶媒を用いた1%溶液(25℃)は濁りを呈する。
<Preparation of conductive composition of first aspect>
Example 1
In a beaker, 7.87 g of the solid component (A) obtained in Preparation Example 1 (hereinafter abbreviated as P / P) and 733.97 g of ethanol were placed, and as the component (B), an amine alkylene oxide adduct (trade name) : Esopropomin C18 / 18, manufactured by Lion Akzo Co., Ltd. (hereinafter abbreviated as EPA) 7.87 g was added, and then an emulsifying disperser (product name: Claremix, manufactured by M Technique Co., Ltd., the same applies hereinafter). ) Using a ultrasonic disperser (19.6 kHz, manufactured by Ginsen Co., Ltd., the same shall apply hereinafter) for 10 minutes at an output of 400 W for 10 minutes. A composition having a partial concentration of 2.1% by weight was obtained. Next, 1.97 g of 3,4 ′, 5,5 ′, 7-pentahydroxyflavone (hereinafter abbreviated as QT) is used as the component (C), and 24. 143.86 g of 28 g and 25.00 g of ethylene glycol, and a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (trade name “M400”, manufactured by Toagosei Co., Ltd.) as the (α1) component, and the above (α2 ) Component (45.33 g) and a commercially available photopolymerization initiator (product name “Irgacure 184”, manufactured by Ciba Japan Co., Ltd.) 9.84 g are added and the mixture is stirred well to obtain a conductive composition (solid content concentration of about 19.7% by weight). QT is known to be insoluble in water, and a 1% solution (25 ° C.) using a mixed solvent of ethanol / water = 9/1 shows a transparent appearance without turbidity, but ethanol / water A 1% solution (25 ° C.) using a mixed solvent of 8/2 exhibits turbidity.
Figure JPOXMLDOC01-appb-C000027



(QTの構造式)
Figure JPOXMLDOC01-appb-C000027



(Structural formula of QT)
実施例2
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで、当該組成物にQTを4.92g、エタノールを24.63g、エチレングリコールを25g、イルガキュアー184を9.84g、M400を141.35g、および前記(α2)成分を44.54g加え、よく撹拌することにより導電性組成物(固形分濃度約19.7重量%)を得た。なお、当該組成物中のQTの含有量は2.5重量%(固形分換算)であった。
Example 2
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 4.92 g of QT, 24.63 g of ethanol, 25 g of ethylene glycol, 9.84 g of Irgacure 184, 141.35 g of M400, and 44.54 g of the above (α2) component were added to the composition. By stirring, a conductive composition (solid content concentration of about 19.7% by weight) was obtained. In addition, content of QT in the said composition was 2.5 weight% (solid content conversion).
実施例3
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで、当該組成物にQTを9.84g、エタノールを25.21g、エチレングリコールを25.00g、M400を131.17g、前記(α2)成分を43.23gおよびイルガキュアー184を9.84g加え、よく撹拌することにより導電性組成物(固形分濃度約19.7重量%)を得た。
Example 3
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 9.84 g of QT, 25.21 g of ethanol, 25.00 g of ethylene glycol, 131.17 g of M400, 43.23 g of the (α2) component and 9.84 g of Irgacure 184 were added to the composition, By thoroughly stirring, a conductive composition (solid content concentration of about 19.7% by weight) was obtained.
実施例4
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで、当該組成物に、QTに代えて(2R,3S)-2-(3,4-ジヒドロキシフェニル)クロマン-3,5,7-トリオール(以下、CQという。)を4.92g、エタノールを24.63g、エチレングリコールを25.00g、M400を131.17g、前記(α2)成分を43.23gおよびイルガキュアー184を9.84g加え、よく撹拌することにより導電性組成物(固形分濃度約19.7重量%)を得た。
Example 4
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, instead of QT, the composition was replaced with (2R, 3S) -2- (3,4-dihydroxyphenyl) chroman-3,5,7-triol (hereinafter referred to as CQ) 4.92 g and ethanol. 24.63 g, ethylene glycol 25.00 g, M400 131.17 g, the above (α2) component 43.23 g and Irgacure 184 9.84 g were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7% by weight).
Figure JPOXMLDOC01-appb-C000028



(CQの構造)
Figure JPOXMLDOC01-appb-C000028



(CQ structure)
比較例1
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで当該組成物に、QTに代えて没食子酸オクチル(東京化成工業(株)製)を4.92g、エタノールを24.64g、エチレングリコールを25g、M400を141.35g、前記(α2)成分を44.54g、およびイルガキュアー184を9.84g加え、よく撹拌することにより導電性組成物(固形分濃度約19.7重量%)を得た。
Comparative Example 1
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, instead of QT, octyl gallate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the composition, 4.92 g, ethanol 24.64 g, ethylene glycol 25 g, M400 141.35 g, and the component (α2) 44.54 g and 9.84 g of Irgacure 184 were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7% by weight).
比較例2
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで当該組成物に、QTに代えてベンゾフェノン系紫外線吸収剤(商品名「3HBR」、岩手ケミカル(株)製)を4.92g、エタノールを24.64g、およびエチレングリコールを25.00g、イルガキュアー184を9.84g、M400を141.35g、および前記(α2)成分を44.54g加え、よく撹拌することにより導電性組成物(固形分濃度約19.7重量%)を得た。
Comparative Example 2
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, in place of QT, benzophenone-based ultraviolet absorber (trade name “3HBR”, manufactured by Iwate Chemical Co., Ltd.) was used instead of QT, 4.92 g, ethanol was 24.64 g, and ethylene glycol was 25.00 g, Irgacure. 9.84 g of 184, 141.35 g of M400, and 44.54 g of the component (α2) were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7% by weight).
比較例3
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで当該組成物に、QTに代えて没食子酸プロピル(東京化成工業(株)製)を4.92g、エタノールを24.64g、エチレングリコールを25.00g、イルガキュアー184を9.84g、M400を141.35g、および前記(α2)成分を44.54g加え、よく撹拌することにより導電性組成物(固形分濃度約19.7重量%)を得た。
Comparative Example 3
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, in place of QT, propyl gallate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the composition, 4.92 g, ethanol 24.64 g, ethylene glycol 25.00 g, Irgacure 184 9.84 g, and M400. 141.35 g and 44.54 g of the component (α2) were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7% by weight).
比較例4
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで当該組成物に、QTに代えて没食子酸ドデシル(東京化成工業(株)製)を4.92g、エタノールを24.64g、エチレングリコール25.00g、M400を141.35g、前記(α2)成分を44.54gおよびイルガキュアー184を9.84g加え、よく撹拌することにより導電性組成物(固形分濃度約19.7重量%)を得た。
Comparative Example 4
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, instead of QT, the composition was changed to 4.92 g of dodecyl gallate (manufactured by Tokyo Chemical Industry Co., Ltd.), 24.64 g of ethanol, 25.00 g of ethylene glycol, 141.35 g of M400, and the (α2) component. And 4.84 g of Irgacure 184 were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7% by weight).
比較例5
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで当該組成物に、エタノールを24.05g、エチレングリコールを25.00g、イルガキュアー184を9.84g、M400を145.53g、および前記(α2)成分を45.86g加え、よく撹拌することにより、酸化防止剤を含まない導電性組成物(固形分濃度約19.7重量%)を得た。
Comparative Example 5
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 24.05 g of ethanol, 25.00 g of ethylene glycol, 9.84 g of Irgacure 184, 145.53 g of M400, and 45.86 g of the above (α2) component were added to the composition and stirred well. An electrically conductive composition containing no antioxidant (solid content concentration of about 19.7% by weight) was obtained.
比較例6
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで当該組成物に、QTに代えて市販のアミノカルボン酸系キレート剤(商品名「キレストE-A」、キレスト(株)製)を0.98g、エタノールを24.05g、エチレングリコールを25.00g、イルガキュアー184を9.84g、M400を145.53g、および前記(α2)成分を45.86g加え、よく撹拌することにより、導電性組成物(固形分濃度約19.7重量%)を得た。
Comparative Example 6
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 0.98 g of a commercially available aminocarboxylic acid chelating agent (trade name “Kyrest EA”, manufactured by Kirest Co., Ltd.) instead of QT, 24.05 g of ethanol, and 25. of ethylene glycol were added to the composition. 00 g, Irgacure 184 9.84 g, M400 145.53 g, and 45.86 g of the component (α2) were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7 wt%). Obtained.
比較例7
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで当該組成物に、QTに代えて市販のカルボン酸系キレート剤(商品名「キレストMZ-8」、キレスト(株)製)を0.98g、エタノールを24.05g、エチレングリコールを25.00g、イルガキュアー184を9.84g、M400を145.53g、および前記(α2)成分を45.86g加え、よく撹拌することにより、導電性組成物(固形分濃度約19.7重量%)を得た。
Comparative Example 7
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 0.98 g of a commercially available carboxylic acid chelating agent (trade name “Kyrest MZ-8”, manufactured by Kirest Co., Ltd.) instead of QT, 24.05 g of ethanol, and 25.00 g of ethylene glycol were added to the composition. , Irgacure 184 (9.84 g), M400 (145.53 g), and (α2) component (45.86 g) were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7 wt%). It was.
比較例8
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで当該組成物に、QTに代えて市販のカルボン酸系キレート剤(商品名「キレストMZ-2」、キレスト(株)製)を0.98g、エタノールを24.05g、エチレングリコールを25.00g、イルガキュアー184を9.84g、M400を145.53g、および前記(α2)成分を45.86g加え、よく撹拌することにより、導電性組成物(固形分濃度約19.7重量%)を得た。
Comparative Example 8
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 0.98 g of a commercially available carboxylic acid chelating agent (trade name “Kyrest MZ-2”, manufactured by Kirest Co., Ltd.) instead of QT, 24.05 g of ethanol, and 25.00 g of ethylene glycol were added to the composition. , Irgacure 184 (9.84 g), M400 (145.53 g), and (α2) component (45.86 g) were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7 wt%). It was.
比較例9
 ビーカーに、P/P7.87gおよびエタノール733.97gを入れ、EPAを7.87g添加した後、実施例1と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度2.1重量%の組成物を得た。次いで当該組成物に、QTに代えて市販のヒンダードフェノール系光安定剤(商品名「アデカLA-81」、(株)ADEKA製)を0.98g、エタノールを24.05g、エチレングリコールを25.00g、イルガキュアー184を9.84g、M400を145.53g、および前記(α2)成分を45.86g加え、よく撹拌することにより、導電性組成物(固形分濃度約19.7重量%)を得た。
Comparative Example 9
In a beaker, 7.87 g of P / P and 733.97 g of ethanol were added, and 7.87 g of EPA was added, and then treated by using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 1. A composition having a partial concentration of 2.1% by weight was obtained. Next, 0.98 g of a commercially available hindered phenol light stabilizer (trade name “ADEKA LA-81”, manufactured by ADEKA Corporation) instead of QT, 24.05 g of ethanol, and 25 of ethylene glycol were added to the composition. 0.000 g, Irgacure 184 9.84 g, M400 145.53 g, and the above (α2) component 45.86 g were added and stirred well to obtain a conductive composition (solid content concentration of about 19.7 wt%). Got.
<導電性被膜の作製>
 実施例1の導電性組成物を、トリアセチルセルロースフィルム上に、#4バーコーターを用いて塗布し(計算値:膜厚1.0μm)、80℃で1分乾燥させた。次いで、これを紫外線照射装置((株)マルチプライ製、光量300mJ/cm、被膜から光源までの距離10cm、パス速度6.1m/min)に通し、導電性被膜を作製した。実施例2~4および比較例1~9に係る導電性組成物についても同様にした。
<Preparation of conductive film>
The conductive composition of Example 1 was applied onto a triacetyl cellulose film using a # 4 bar coater (calculated value: film thickness: 1.0 μm) and dried at 80 ° C. for 1 minute. Next, this was passed through an ultraviolet irradiation device (manufactured by Multiply Co., Ltd., light quantity: 300 mJ / cm 2 , distance from the coating to the light source: 10 cm, pass speed: 6.1 m / min) to produce a conductive coating. The same applies to the conductive compositions according to Examples 2 to 4 and Comparative Examples 1 to 9.
<導電性の評価:初期表面抵抗率>
 実施例1に係る試験フィルムについて、作製直後の導電性被膜の表面抵抗率(Ω/□)を、市販の表面抵抗率計(製品名「ロレスタEP MCP-T360」、三菱化学(株)製)を用い、常温で測定した。また、実施例2~4および比較例1~9の試験用フィルムについても同様にして初期表面抵抗率を測定した。結果を表1に示す。
<Evaluation of conductivity: initial surface resistivity>
For the test film according to Example 1, the surface resistivity (Ω / □) of the conductive film immediately after the production was measured using a commercially available surface resistivity meter (product name “Loresta EP MCP-T360”, manufactured by Mitsubishi Chemical Corporation). And measured at room temperature. The initial surface resistivity was also measured in the same manner for the test films of Examples 2 to 4 and Comparative Examples 1 to 9. The results are shown in Table 1.
<導電性の評価:経時表面抵抗率(紫外線照射試験)>
 実施例1に係る試験フィルムを、超促進耐候性試験機(製品名「U48AU」、スガ試験機(株)製)で試験(放射照度500W/m 紫外線波長388nm付近×96時間)した後、表面抵抗率を常温で測定し、上昇率(=紫外線照射試験後の表面抵抗率/初期表面抵抗率×100)を求めた。また、実施例2~4および比較例1~9の試験用フィルムについても同様にして初期表面抵抗率を測定した。結果を表1に示す。
<Evaluation of conductivity: surface resistivity over time (ultraviolet irradiation test)>
After testing the test film according to Example 1 with a super accelerated weathering tester (product name “U48AU”, manufactured by Suga Test Instruments Co., Ltd.) (irradiance 500 W / m 2 near ultraviolet wavelength 388 nm × 96 hours), The surface resistivity was measured at room temperature, and the rate of increase (= surface resistivity after UV irradiation test / initial surface resistivity × 100) was determined. The initial surface resistivity was also measured in the same manner for the test films of Examples 2 to 4 and Comparative Examples 1 to 9. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029


<第二態様の導電性組成物の調製>
実施例5
 ビーカーに、調製例1で得たP/Pを4.2gおよびエタノールを458.27g入れ、EPA4.2gを添加した後、前記乳化分散機を用い、回転数18000rpmで10分処理したのち、前記超音波分散機を用いて、出力400Wで10分間処理を行うことにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にQTを0.36g、エタノールを129.73g、プロピレングリコールモノメチルエーテルを300g、エチレングリコールを100.00g、および(β)成分として3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2021P」、(株)ダイセル化学工業製)を3.24g加え、よく撹拌することにより導電性組成物(固形分濃度約1.2重量%)を得た。
<Preparation of conductive composition of second aspect>
Example 5
In a beaker, 4.2 g of P / P obtained in Preparation Example 1 and 458.27 g of ethanol were added, and 4.2 g of EPA was added. Then, the emulsion was dispersed for 10 minutes at 18,000 rpm using the above emulsifying disperser. A composition having a solid content concentration of 1.8% by weight was obtained by carrying out treatment for 10 minutes at an output of 400 W using an ultrasonic disperser. Next, 0.36 g of QT, 129.73 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and 3,4-epoxycyclohexylmethyl-3 ′, 4 as (β) component were added to the composition. Add 3.24 g of '-epoxycyclohexanecarboxylate (trade name “Celoxide 2021P”, manufactured by Daicel Chemical Industries, Ltd.) and stir well to obtain a conductive composition (solid content concentration of about 1.2% by weight). It was.
実施例6
 ビーカーに、P/P4.2gおよびエタノール458.27gを入れ、EPAを4.2g添加した後、実施例5と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にQTを0.36g、エタノールを129.54g、プロピレングリコールモノメチルエーテルを300g、エチレングリコールを100.00g、セロキサイド2021Pを3.24g、およびTEAを0.19g加え、よく撹拌することにより導電性組成物(固形分濃度約1.2重量%)を得た。
Example 6
In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.36 g of QT, 129.54 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.24 g of celoxide 2021P, and 0.19 g of TEA are added to the composition, and stirred well. As a result, a conductive composition (solid content concentration of about 1.2% by weight) was obtained.
実施例7
 ビーカーに、P/P4.2gおよびエタノール458.27gを入れ、EPAを4.2g添加した後、実施例5と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にQTを0.6g、エタノールを129.73g、プロピレングリコールモノメチルエーテルを300g、エチレングリコールを100.00g、およびセロキサイド2021Pを3.0g加え、よく撹拌することにより導電性組成物(固形分濃度約1.2重量%)を得た。
Example 7
In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added, and then the mixture was treated with an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 5 to obtain a solid. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.6 g of QT, 129.73 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and 3.0 g of celoxide 2021P are added to the composition, and the conductive composition is stirred well. (Solid content concentration of about 1.2% by weight) was obtained.
実施例8
 ビーカーに、P/P4.2gおよびエタノール458.27gを入れ、EPAを4.2g添加した後、実施例5と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にQTを0.6g、エタノールを129.54g、プロピレングリコールモノメチルエーテルを300g、エチレングリコールを100.00g、セロキサイド2021Pを3.0g、TEAを0.19g、を加え、よく撹拌することにより導電性組成物(固形分濃度約1.2重量%)を得た。
Example 8
In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added, and then the mixture was treated with an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 5 to obtain a solid. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.6 g of QT, 129.54 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.0 g of celoxide 2021P, and 0.19 g of TEA were added to the composition and stirred well. As a result, a conductive composition (solid content concentration of about 1.2% by weight) was obtained.
比較例10
 ビーカーに、P/P4.2gおよびエタノール458.27gを入れ、EPAを4.2g添加した後、実施例5と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にエタノールを129.73g、プロピレングリコールモノメチルエーテルを300g、エチレングリコールを100.00gおよびセロキサイド2021Pを3.6g加え、よく撹拌することにより、QTを含まない導電性組成物(固形分濃度約1.2重量%)を得た。
Comparative Example 10
In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added, and then the mixture was treated with an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 5 to obtain a solid. A composition having a partial concentration of 1.8% by weight was obtained. Next, 129.73 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and 3.6 g of celoxide 2021P were added to the composition, and the mixture was thoroughly stirred to obtain a conductive composition containing no QT (solid A partial concentration of about 1.2% by weight).
比較例11
 ビーカーに、P/P4.2gおよびエタノール458.27gを入れ、EPAを4.2g添加した後、実施例5と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にエタノールを129.54g、プロピレングリコールモノメチルエーテルを300g、エチレングリコールを100.00g、セロキサイド2021Pを3.6g、およびTEAを0.19g加え、よく撹拌することにより、QTを含まない導電性組成物(固形分濃度約1.2重量%)を得た。
Comparative Example 11
In a beaker, 4.2 g of P / P and 458.27 g of ethanol were added, and 4.2 g of EPA was added, and then the mixture was treated with an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 5 to obtain a solid. A composition having a partial concentration of 1.8% by weight was obtained. Next, 129.54 g of ethanol, 300 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.6 g of ceroxide 2021P, and 0.19 g of TEA were added to the composition, and the mixture was thoroughly stirred to contain QT. A conductive composition (solid content concentration of about 1.2% by weight) was obtained.
<導電性被膜の作製>
 実施例5に係る導電性組成物を、PETフィルム上に、#20バーコーターを用いて塗布し(計算値:膜厚0.25μm)、120℃で5分乾燥させることにより、導電性被膜を備えた試験フィルムを得た。また、実施例6~8および比較例10~11に係る導電性組成物についても同様にして試験フィルムを得た。
<Preparation of conductive film>
The conductive composition according to Example 5 was applied on a PET film using a # 20 bar coater (calculated value: film thickness: 0.25 μm) and dried at 120 ° C. for 5 minutes to form a conductive film. A prepared test film was obtained. In addition, test films were obtained in the same manner for the conductive compositions according to Examples 6 to 8 and Comparative Examples 10 to 11.
<導電性の評価:初期表面抵抗率>
 実施例5に係る試験フィルムについて、作製直後の導電性被膜の表面抵抗率(Ω/□)を、市販の表面抵抗率計(製品名「ロレスタEP MCP-T360」、三菱化学(株)製)を用い、常温で測定した。また、実施例6~8および比較例10~11の試験フィルムについても同様にして表面抵抗率を測定した。結果を表2に示す。
<Evaluation of conductivity: initial surface resistivity>
For the test film according to Example 5, the surface resistivity (Ω / □) of the conductive film immediately after the production was measured using a commercially available surface resistivity meter (product name “Loresta EP MCP-T360”, manufactured by Mitsubishi Chemical Corporation). And measured at room temperature. The surface resistivity of the test films of Examples 6 to 8 and Comparative Examples 10 to 11 was measured in the same manner. The results are shown in Table 2.
<導電性の評価:経時表面抵抗率(紫外線照射試験)>
 実施例5に係る試験フィルムを、超促進耐候性試験機(製品名「U48AU」、スガ試験機(株)製)で試験(放射照度500W/m 紫外線波長388nm付近×96時間)した後、表面抵抗率を常温で測定し、上昇率(=紫外線照射試験後の表面抵抗率/初期表面抵抗率×100)を求めた。また、実施例6~8および比較例10~11の試験フィルムについても同様にして上昇率(単位は%)を求めた。結果を表2に示す。
<Evaluation of conductivity: surface resistivity over time (ultraviolet irradiation test)>
After testing the test film according to Example 5 with a super accelerated weathering tester (product name “U48AU”, manufactured by Suga Test Instruments Co., Ltd.) (irradiance 500 W / m 2 near ultraviolet wavelength 388 nm × 96 hours), The surface resistivity was measured at room temperature, and the rate of increase (= surface resistivity after UV irradiation test / initial surface resistivity × 100) was determined. The rate of increase (unit:%) was similarly determined for the test films of Examples 6 to 8 and Comparative Examples 10 to 11. The results are shown in Table 2.
<導電性の評価:経時表面抵抗率(加熱試験)>
 実施例5に係る試験フィルムを80℃の恒温器に入れ、96時間放置した後の表面抵抗率を常温で測定し、上昇率(=加熱試験後の表面抵抗率/初期表面抵抗率×100)を求めた。また、また、実施例6~8および比較例10~11の試験フィルムについても同様にして上昇率(単位は%)を求めた。結果を表2に示す。
<Evaluation of conductivity: surface resistivity over time (heating test)>
The test film according to Example 5 was put in an incubator at 80 ° C., and the surface resistivity after being allowed to stand for 96 hours was measured at room temperature, and the rate of increase (= surface resistivity after heating test / initial surface resistivity × 100). Asked. Further, the rate of increase (unit:%) was similarly determined for the test films of Examples 6 to 8 and Comparative Examples 10 to 11. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030


 <(γ)成分の合成>
合成例2
 撹拌装置、温度計、還流冷却管、滴下ロートおよび窒素導入管を備えた反応容器に、アクリル酸(以下、AAと略す。)を50.0g、メタクリル酸メチル(以下、MMAと略す。)を49.5gおよびアクリル酸ノルマルブチル(以下、BAと略す。)を0.5g、2,2’-アゾビス(2-メチルブチロニトリル)を5.0g、プロピレングリコールモノメチルエーテルを420.0g入れ、窒素ガス気流下にて85℃で5時間保持した。こうして、固形分濃度20重量%のアクリル共重合体溶液を得た。表3に当該アクリル共重合体のガラス転移温度(Tg)、酸価(AV)および重量平均分子量(Mw)を示す。
<Synthesis of (γ) component>
Synthesis example 2
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen introduction tube, 50.0 g of acrylic acid (hereinafter abbreviated as AA) and methyl methacrylate (hereinafter abbreviated as MMA) were added. 49.5 g, 0.5 g of normal butyl acrylate (hereinafter abbreviated as BA), 5.0 g of 2,2′-azobis (2-methylbutyronitrile), and 40.0 g of propylene glycol monomethyl ether were added. It hold | maintained at 85 degreeC under nitrogen gas stream for 5 hours. Thus, an acrylic copolymer solution having a solid concentration of 20% by weight was obtained. Table 3 shows the glass transition temperature (Tg), acid value (AV), and weight average molecular weight (Mw) of the acrylic copolymer.
合成例3 
 合成例2と同様の反応容器に、AAを50.0g、MMAを24.5g、BAを25.0g、メタクリル酸2-ヒドロキシエチル(以下、HEMAと略す。)を0.5g、および2,2’-アゾビス(2-メチルブチロニトリル)を5.0g、ならびにプロピレングリコールモノメチルエーテルを420.0g入れ、窒素ガス気流下にて85℃で5時間保持することによって、固形分濃度20重量%のアクリル共重合体(C2)の溶液を得た。表3に当該アクリル共重合体のガラス転移温度(Tg)、酸価(AV)および重量平均分子量(Mw)を示す。
Synthesis example 3
In a reaction vessel similar to Synthesis Example 2, AA 50.0 g, MMA 24.5 g, BA 25.0 g, 2-hydroxyethyl methacrylate (hereinafter abbreviated as HEMA) 0.5 g, and 2, By adding 5.0 g of 2′-azobis (2-methylbutyronitrile) and 420.0 g of propylene glycol monomethyl ether, and maintaining at 85 ° C. for 5 hours under a nitrogen gas stream, the solid content concentration is 20% by weight. A solution of the acrylic copolymer (C2) was obtained. Table 3 shows the glass transition temperature (Tg), acid value (AV), and weight average molecular weight (Mw) of the acrylic copolymer.
 なお、ガラス転移温度は市販の測定装置(製品名「DSC6200」、セイコーインスツル(株)製)によって得た測定値である。また、酸価はJIS-K2501-2003の方法に準拠して得た測定値である。また、Mwは市販のGPC装置(製品名「HLC-8220」、東ソー(株)製)と市販のカラム(商品名「TSK-GEL SUPERHZM-M 」、東ソー(株)製)を用いて得た測定値である。 The glass transition temperature is a measured value obtained with a commercially available measuring device (product name “DSC6200”, manufactured by Seiko Instruments Inc.). The acid value is a measured value obtained according to the method of JIS-K2501-2003. Mw was obtained using a commercially available GPC device (product name “HLC-8220”, manufactured by Tosoh Corporation) and a commercially available column (trade name “TSK-GEL SUPERHZM-M”, manufactured by Tosoh Corporation). It is a measured value.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031


<第三態様の導電性組成物の調製>
実施例9
 ビーカーに、調製例1で得たP/Pを2.1gおよびエタノールを229.13g入れ、EPAを2.1g添加した後、前記乳化分散機を用い、回転数18000rpmで10分処理したのち、前記超音波分散機を用いて、出力400Wで10分間処理を行うことにより、固形分濃度1.8重量%の組成物を得た。次いで、QTを0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例2で得たアクリル共重合体溶液を3.38g、オキサゾリン系架橋剤(商品名「エポクロス WS‐500」、日本触媒(株)製、固形分濃度39.3%。以下、「OXZ」と略す。)を2.4g、およびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。
<Preparation of conductive composition of third aspect>
Example 9
In a beaker, 2.1 g of P / P obtained in Preparation Example 1 and 229.13 g of ethanol were added, and 2.1 g of EPA was added. Then, using the above emulsifying disperser, the mixture was processed at 18,000 rpm for 10 minutes, A composition having a solid content concentration of 1.8% by weight was obtained by performing a treatment for 10 minutes at an output of 400 W using the ultrasonic disperser. Next, 0.18 g of QT, 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.38 g of the acrylic copolymer solution obtained in Synthesis Example 2, and oxazoline-based cross-linking 2.4 g of the agent (trade name “Epocross WS-500”, manufactured by Nippon Shokubai Co., Ltd., solid content concentration: 39.3%, hereinafter abbreviated as “OXZ”) and 0.095 g of TEA were added and stirred well. As a result, a conductive composition (solid content concentration of about 0.6% by weight) was obtained.
比較例12
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物に市販のリン系酸化防止剤(商品名「SIPOMER PAM 4000」、ローディア日華(株)製。以下、PAM 4000という。)を0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例2で得たアクリル共重合体溶液を3.38g、OXZを2.4g、およびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。
Comparative Example 12
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available phosphorous antioxidant (trade name “SIPOME PAM 4000”, manufactured by Rhodia Nikka Co., Ltd., hereinafter referred to as PAM 4000) is added to the composition, 164.87 g of ethanol, and propylene glycol. By adding 495.75 g of monomethyl ether, 100.00 g of ethylene glycol, 3.38 g of the acrylic copolymer solution obtained in Synthesis Example 2 above, 2.4 g of OXZ, and 0.095 g of TEA, and stirring well A conductive composition (solid content concentration of about 0.6% by weight) was obtained.
比較例13
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、市販のリン系酸化防止剤(商品名「アデカC」、ADEKA(株)製)を0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例2で得たアクリル共重合体水溶液を3.38g、OXZを2.4g、およびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。
Comparative Example 13
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available phosphorus-based antioxidant (trade name “ADEKA C”, manufactured by ADEKA Corporation), 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.38 g of the acrylic copolymer aqueous solution obtained in Synthesis Example 2 above, 2.4 g of OXZ, and 0.095 g of TEA were added, and the mixture was stirred well to obtain a conductive composition (solid content concentration of about 0.6% by weight). )
比較例14
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、市販のリン系酸化防止剤(商品名「アデカ3010」、ADEKA(株)製。)を0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例2で得たアクリル共重合体水溶液を3.38g、OXZを2.4gおよびTEAを0.095g仕込み、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。
Comparative Example 14
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available phosphorous antioxidant (trade name “ADEKA 3010”, manufactured by ADEKA Corporation), ethanol of 164.87 g, propylene glycol monomethyl ether of 495.75 g, and ethylene glycol of 100.00 g Then, 3.38 g of the acrylic copolymer aqueous solution obtained in Synthesis Example 2 above, 2.4 g of OXZ and 0.095 g of TEA were charged and stirred well to obtain a conductive composition (solid content concentration of about 0.6% by weight) )
比較例15
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物に市販のフェノール系酸化防止剤(商品名「AO-80」、ADEKA(株)製。)を0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例2で得たアクリル共重合体水溶液を3.38g、OXZを2.4g、およびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。
Comparative Example 15
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available phenolic antioxidant (trade name “AO-80”, manufactured by ADEKA Corporation), 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, ethylene Add 100.00 g of glycol, 3.38 g of the acrylic copolymer aqueous solution obtained in Synthesis Example 2 above, 2.4 g of OXZ, and 0.095 g of TEA, and stir well to obtain a conductive composition (solid content concentration). About 0.6% by weight).
比較例16
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物に市販の硫黄系酸化防止剤(商品名「AO-503」、ADEKA(株)製。)を0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例2で得たアクリル共重合体水溶液を3.38g、OXZを2.4g、およびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。 
Comparative Example 16
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available sulfur-based antioxidant (trade name “AO-503”, manufactured by ADEKA Corporation), 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, ethylene Add 100.00 g of glycol, 3.38 g of the acrylic copolymer aqueous solution obtained in Synthesis Example 2 above, 2.4 g of OXZ, and 0.095 g of TEA, and stir well to obtain a conductive composition (solid content concentration). About 0.6% by weight).
比較例17
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物に市販のベンソフェノン系紫外線吸収剤(商品名「DAINSORB P-6」、大和化成(株)製。以下、P-6という。)を0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例2で得たアクリル共重合体水溶液を3.38g、OXZを2.4gおよびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。
Comparative Example 17
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available benzophenone ultraviolet absorber (trade name “DAINSORB P-6”, manufactured by Daiwa Kasei Co., Ltd., hereinafter referred to as P-6), 164.87 g of ethanol and propylene were added to the composition. By adding 495.75 g of glycol monomethyl ether, 100.00 g of ethylene glycol, 3.38 g of the acrylic copolymer aqueous solution obtained in Synthesis Example 2 above, 2.4 g of OXZ and 0.095 g of TEA, and stirring well A conductive composition (solid content concentration of about 0.6% by weight) was obtained.
比較例18
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物に市販のベンゾトリアゾール系紫外線吸収剤(商品名「DAINSORB T-0」、大和化成(株)製。以下、T-0という。)を0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例2で得たアクリル共重合体水溶液を3.38g、OXZを2.4gおよびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。
Comparative Example 18
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a commercially available benzotriazole-based ultraviolet absorber (trade name “DAINSORB T-0”, manufactured by Daiwa Kasei Co., Ltd., hereinafter referred to as T-0) and 164.87 g of ethanol were added to the composition. Add 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.38 g of the acrylic copolymer aqueous solution obtained in Synthesis Example 2, 2.4 g of OXZ and 0.095 g of TEA, and stir well. As a result, a conductive composition (solid content concentration of about 0.6% by weight) was obtained.
比較例19
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にエタノールを164.87g、プロピレングリコールモノメチルエーテルを495.28g、エチレングリコールを100.00g、前記合成例2で得たアクリル共重合体水溶液を3.75g、OXZを2.67g、およびTEAを0.095g加え、よく撹拌することにより、酸化防止剤を含まない導電性組成物(固形分濃度約0.6重量%)を得た。
Comparative Example 19
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 164.87 g of ethanol, 495.28 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.75 g of the acrylic copolymer aqueous solution obtained in Synthesis Example 2 and 2.67 g of OXZ were added to the composition. And 0.095 g of TEA were added and stirred well to obtain a conductive composition containing no antioxidant (solid content concentration: about 0.6% by weight).
<導電性被膜の作製>
 実施例9に係る導電性組成物を、PETフィルム上に、#20バーコーターを用いて塗布し(計算値:膜厚0.2μm)、120℃で5分乾燥させることにより、導電性被膜を備えた試験フィルムを得た。また、比較例12~19に係る導電性組成物についても同様にして試験フィルムを得た。
<Preparation of conductive film>
The conductive composition according to Example 9 was applied on a PET film using a # 20 bar coater (calculated value: film thickness 0.2 μm) and dried at 120 ° C. for 5 minutes to form a conductive film. A prepared test film was obtained. In addition, test films were obtained in the same manner for the conductive compositions according to Comparative Examples 12 to 19.
<導電性の評価:初期表面抵抗率>
 実施例9に係る試験フィルムについて、作製直後の導電性被膜の表面抵抗率(Ω/□)を、市販の表面抵抗率計(製品名「ロレスタEP MCP-T360」、三菱化学(株)製)を用い、常温で測定した。また、比較例12~19に係る試験フィルムについても同様にして表面抵抗率を測定した。結果を表4に示す。
<Evaluation of conductivity: initial surface resistivity>
For the test film according to Example 9, the surface resistivity (Ω / □) of the conductive film immediately after production was measured using a commercially available surface resistivity meter (product name “Loresta EP MCP-T360”, manufactured by Mitsubishi Chemical Corporation). And measured at room temperature. Further, the surface resistivity of the test films according to Comparative Examples 12 to 19 was measured in the same manner. The results are shown in Table 4.
<導電性の評価:経時表面抵抗率(紫外線照射試験)>
 実施例9に係る試験フィルムを、超促進耐候性試験機(製品名「U48AU」、スガ試験機(株)製)で試験(放射照度500W/m 紫外線波長388nm付近×96時間)した後、表面抵抗率を常温で測定し、上昇率(=紫外線照射試験後の表面抵抗率/初期表面抵抗率×100)を求めた。また、比較例12~19の試験フィルムについても同様にして上昇率(単位は%)を求めた。結果を表4に示す。
<Evaluation of conductivity: surface resistivity over time (ultraviolet irradiation test)>
After testing the test film according to Example 9 with a super accelerated weathering tester (product name “U48AU”, manufactured by Suga Test Instruments Co., Ltd.) (irradiance 500 W / m 2 near ultraviolet wavelength 388 nm × 96 hours), The surface resistivity was measured at room temperature, and the rate of increase (= surface resistivity after UV irradiation test / initial surface resistivity × 100) was determined. The rate of increase (unit:%) was similarly determined for the test films of Comparative Examples 12-19. The results are shown in Table 4.
<導電性の評価:経時表面抵抗率(加熱試験)>
 実施例9に係る試験フィルムを80℃の恒温器に入れ、96時間放置した後の表面抵抗率を常温で測定し、上昇率(=加熱試験後の表面抵抗率/初期表面抵抗率×100)を求めた。また、また、比較例12~19に係る試験フィルムについても同様にして上昇率(単位は%)を求めた。結果を表4に示す。
<Evaluation of conductivity: surface resistivity over time (heating test)>
The test film according to Example 9 was put in a thermostat at 80 ° C., and the surface resistivity after being allowed to stand for 96 hours was measured at room temperature, and the rate of increase (= surface resistivity after heating test / initial surface resistivity × 100). Asked. Further, the rate of increase (unit:%) was similarly obtained for the test films according to Comparative Examples 12 to 19. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032


実施例10
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にQTを0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例3で得たアクリル共重合体溶液を3.38g、OXZを2.40g、およびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。
Example 10
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of QT, 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and 3.38 g of the acrylic copolymer solution obtained in Synthesis Example 3 were added to the composition. Then, 2.40 g of OXZ and 0.095 g of TEA were added and stirred well to obtain a conductive composition (solid content concentration of about 0.6% by weight).
実施例11
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物に(C)成分としてCQを0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例3で得たアクリル共重合体溶液を3.38g、OXZを2.40g、およびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。なお、CQは水、エタノールに難溶であることが知られている。
Example 11
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of CQ, 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and the acrylic copolymer obtained in Synthesis Example 3 as the component (C) in the composition. 3.38 g of the solution, 2.40 g of OXZ, and 0.095 g of TEA were added and stirred well to obtain a conductive composition (solid content concentration of about 0.6% by weight). CQ is known to be hardly soluble in water and ethanol.
比較例20
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にAO-80を0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例3で得たアクリル共重合体溶液を3.38g、OXZを2.4gおよびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。
Comparative Example 20
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of AO-80, 164.87 g of ethanol, 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, and 3% of the acrylic copolymer solution obtained in Synthesis Example 3 were added to the composition. .38 g, 2.4 g of OXZ and 0.095 g of TEA were added and stirred well to obtain a conductive composition (solid content concentration of about 0.6% by weight).
比較例21
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物にエタノールを164.87g、プロピレングリコールモノメチルエーテルを495.28g、エチレングリコールを100.00g、前記合成例3で得たアクリル共重合体溶液を3.75g、OXZを2.67gおよびTEAを0.095g加え、よく撹拌することにより、酸化防止剤を含まない導電性組成物(固形分濃度約0.6重量%)を得た。
Comparative Example 21
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Then, the composition was ethanol (164.87 g), propylene glycol monomethyl ether (495.28 g), ethylene glycol (100.00 g), the acrylic copolymer solution obtained in Synthesis Example 3 (3.75 g), and OXZ (2.67 g). Then, 0.095 g of TEA and TEA were added and stirred well to obtain a conductive composition containing no antioxidant (solid content concentration: about 0.6% by weight).
比較例22
 ビーカーに、P/P2.1gおよびエタノール229.13gを入れ、EPAを2.1g添加した後、実施例9と同様の条件で乳化分散機および超音波分散機を用いて処理することにより、固形分濃度1.8重量%の組成物を得た。次いで、当該組成物に(C)成分としてQTの7位にβ-ルチノース残基が、および3位にメトキシ基が結合した化合物(以下、QT-Ruという。)を0.18g、エタノールを164.87g、プロピレングリコールモノメチルエーテルを495.75g、エチレングリコールを100.00g、前記合成例3で得たアクリル共重合体溶液を3.38g、OXZを2.40g、およびTEAを0.095g加え、よく撹拌することにより導電性組成物(固形分濃度約0.6重量%)を得た。なお、QT-Ruは水、エタノールともに難溶であることが知られている。
Comparative Example 22
In a beaker, 2.1 g of P / P and 229.13 g of ethanol were added, and 2.1 g of EPA was added, followed by treatment using an emulsifying disperser and an ultrasonic disperser under the same conditions as in Example 9. A composition having a partial concentration of 1.8% by weight was obtained. Next, 0.18 g of a compound (hereinafter referred to as QT-Ru) in which a β-lutinose residue is bonded to the 7th position of QT and a methoxy group is bonded to the 3rd position (hereinafter referred to as QT-Ru) as component (C) is added to the composition. .87 g, 495.75 g of propylene glycol monomethyl ether, 100.00 g of ethylene glycol, 3.38 g of the acrylic copolymer solution obtained in Synthesis Example 3 above, 2.40 g of OXZ, and 0.095 g of TEA were added, By thoroughly stirring, a conductive composition (solid content concentration of about 0.6% by weight) was obtained. QT-Ru is known to be hardly soluble in both water and ethanol.
Figure JPOXMLDOC01-appb-C000033



(QT-Ruの構造)
Figure JPOXMLDOC01-appb-C000033



(Structure of QT-Ru)
 実施例10~11および比較例20~22の各導電性組成物を用い、前記同様の方法で試験フィルムを作製し、被膜の導電性を評価した。結果を表5に示す。 Using each conductive composition of Examples 10 to 11 and Comparative Examples 20 to 22, test films were prepared in the same manner as described above, and the conductivity of the coating was evaluated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034

Claims (18)

  1. 下記一般式(1)で表される構造を有するポリチオフェン(a1)およびスルホアニオン基含有ポリマー(a2)からなる導電性高分子/ポリアニオン錯体(A)、下記一般式(2)で表されるアミン化合物(B)、下記一般式(3)で表される化合物のうちアルコール可溶性のもの(C)、ならびにアルコール類(d1)を含む有機溶剤(D)を含有する、有機溶媒分散体。
    Figure JPOXMLDOC01-appb-C000001



    (式(1)中、Aは炭素数1~12のアルキレン基を表す。)
    Figure JPOXMLDOC01-appb-C000002



    (式(2)中、Xは炭素数1~40のアルキル基、炭素数3~40のアルケニル基、および炭素数3~40のアラルキル基のいずれかを表す。またYはそれぞれ、オキシエチレン基、オキシプロピレン基、およびオキシエチレン-オキシプロピレン基のいずれかを表す。またmはいずれも1~20の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003



    (式(3)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を示す。また、X~Xはいずれも水素、水酸基およびアルコキシ基からなる群より選ばれる1種を表す(但し、X~Xのうち少なくとも二つは水酸基である。)。また、Yはメチレン基またはカルボニル基を表す。)
    Conductive polymer / polyanion complex (A) comprising polythiophene (a1) and sulfoanion group-containing polymer (a2) having a structure represented by the following general formula (1), amine represented by the following general formula (2) An organic solvent dispersion containing the compound (B), an alcohol-soluble compound (C) among the compounds represented by the following general formula (3), and an organic solvent (D) containing the alcohol (d1).
    Figure JPOXMLDOC01-appb-C000001



    (In the formula (1), A represents an alkylene group having 1 to 12 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002



    (In Formula (2), X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms. Y represents oxyethylene, respectively. Represents any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.)
    Figure JPOXMLDOC01-appb-C000003



    (In formula (3), the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond. X 1 to X 7 are all selected from the group consisting of hydrogen, a hydroxyl group and an alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.) Y represents a methylene group or a carbonyl group.)
  2. (C)成分が下記一般式(3-1)で表される化合物である、請求項1の有機溶媒分散体。
    Figure JPOXMLDOC01-appb-C000004



    (式(3-1)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を、Xは水酸基またはアルコキシ基を表す。また、X、XおよびXのうちいずれか一つが水酸基であり、残りの二つはそれぞれ水素又は水酸基である。また、Yはメチレン基またはカルボニル基を表す。)
    The organic solvent dispersion according to claim 1, wherein the component (C) is a compound represented by the following general formula (3-1).
    Figure JPOXMLDOC01-appb-C000004



    (In the formula (3-1), a broken line part represents a carbon-carbon single bond or a carbon-carbon double bond, X 1 represents a hydroxyl group or an alkoxy group, and any one of X 3 , X 4 and X 5 represents (One is a hydroxyl group, and the other two are hydrogen or a hydroxyl group, respectively, and Y represents a methylene group or a carbonyl group.)
  3. 下記一般式(1)で表される構造を有するポリチオフェン(a1)およびスルホアニオン基含有ポリマー(a2)からなる導電性高分子/ポリアニオン錯体(A)、下記一般式(2)で表されるアミン化合物(B)、ならびに下記一般式(3)で表される化合物のうちアルコール可溶性のもの(C)と、
    アルコール類(d1)を含む有機溶剤(D)と、
    活性エネルギー線ラジカル重合型化合物(α)、エポキシ樹脂(β)および非活性エネルギー線ラジカル重合型アクリル共重合体(γ)からなる群より選ばれる1種のバインダー成分とを含む、
    導電性組成物。
    Figure JPOXMLDOC01-appb-C000005



    (式(1)中、Aは炭素数1~12のアルキレン基を表す。)
    Figure JPOXMLDOC01-appb-C000006



    (式(2)中、Xは炭素数1~40のアルキル基、炭素数3~40のアルケニル基、および炭素数3~40のアラルキル基のいずれかを表す。またYはそれぞれ、オキシエチレン基、オキシプロピレン基、およびオキシエチレン-オキシプロピレン基のいずれかを表す。またmはいずれも1~20の整数を表す。)
    Figure JPOXMLDOC01-appb-C000007



    (式(3)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を示す。また、X~Xはいずれも水素、水酸基およびアルコキシ基からなる群より選ばれる1種を表す(但し、X~Xのうち少なくとも二つは水酸基である。)。また、Yはメチレン基またはカルボニル基を表す。)
    Conductive polymer / polyanion complex (A) comprising polythiophene (a1) and sulfoanion group-containing polymer (a2) having a structure represented by the following general formula (1), amine represented by the following general formula (2) Compound (B), and an alcohol-soluble compound (C) among the compounds represented by the following general formula (3),
    An organic solvent (D) containing an alcohol (d1);
    An active energy ray radical polymerization type compound (α), an epoxy resin (β) and a binder component selected from the group consisting of an inactive energy ray radical polymerization type acrylic copolymer (γ),
    Conductive composition.
    Figure JPOXMLDOC01-appb-C000005



    (In the formula (1), A represents an alkylene group having 1 to 12 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000006



    (In Formula (2), X 1 represents any of an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 3 to 40 carbon atoms, and an aralkyl group having 3 to 40 carbon atoms. Y represents oxyethylene, respectively. Represents any one of a group, an oxypropylene group, and an oxyethylene-oxypropylene group, and m represents an integer of 1 to 20.)
    Figure JPOXMLDOC01-appb-C000007



    (In formula (3), the broken line portion represents a carbon-carbon single bond or a carbon-carbon double bond. X 1 to X 7 are all selected from the group consisting of hydrogen, a hydroxyl group and an alkoxy group. (However, at least two of X 1 to X 7 are hydroxyl groups.) Y represents a methylene group or a carbonyl group.)
  4. (C)成分が下記一般式(3-1)で表される化合物である、請求項3の導電性組成物。
    Figure JPOXMLDOC01-appb-C000008



    (式(3-1)中、破線部は炭素-炭素単結合または炭素-炭素二重結合を、Xは水酸基またはアルコキシ基を表す。また、X、XおよびXのうちいずれか一つが水酸基であり、残りの二つはそれぞれ水素又は水酸基である。また、Yはメチレン基またはカルボニル基を表す。)
    The conductive composition according to claim 3, wherein the component (C) is a compound represented by the following general formula (3-1).
    Figure JPOXMLDOC01-appb-C000008



    (In the formula (3-1), a broken line part represents a carbon-carbon single bond or a carbon-carbon double bond, X 1 represents a hydroxyl group or an alkoxy group, and any one of X 3 , X 4 and X 5 represents One is a hydroxyl group and the remaining two are hydrogen or a hydroxyl group, respectively, and Y represents a methylene group or a carbonyl group.)
  5. (α)成分が、2官能~6官能の(メタ)アクリレート化合物(α1)および/または分子内に遊離の(メタ)アクリロイル基を有する(メタ)アクリル系重合物(α2)である、請求項3または4の導電性組成物。 The (α) component is a bifunctional to hexafunctional (meth) acrylate compound (α1) and / or a (meth) acrylic polymer (α2) having a free (meth) acryloyl group in the molecule. 3 or 4 conductive compositions.
  6. さらに光重合開始剤を含有する請求項3~5いずれか1項に記載の導電性組成物。 The conductive composition according to any one of claims 3 to 5, further comprising a photopolymerization initiator.
  7. 請求項3~6いずれか1項に記載の導電性組成物を基材に塗工し、活性エネルギー線を照射することにより得られる導電性被膜。 A conductive film obtained by applying the conductive composition according to any one of claims 3 to 6 to a substrate and irradiating with active energy rays.
  8. (β)成分が、芳香族系エポキシ樹脂、脂環式エポキシ樹脂および脂肪族系エポキシ樹脂からなる群より選ばれる少なくとも1種である、請求項3または4の導電性組成物。 The conductive composition according to claim 3 or 4, wherein the component (β) is at least one selected from the group consisting of an aromatic epoxy resin, an alicyclic epoxy resin, and an aliphatic epoxy resin.
  9. 前記脂環式エポキシ樹脂が、脂環オレフィンをエポキシ化して得られるエポキシ樹脂および/または水素化エポキシ樹脂である、請求項3、4、8いずれか1項に記載の導電性組成物。 The conductive composition according to any one of claims 3, 4, and 8, wherein the alicyclic epoxy resin is an epoxy resin and / or a hydrogenated epoxy resin obtained by epoxidizing an alicyclic olefin.
  10. さらにエポキシ基反応性架橋剤を含有する請求項3、4、8、9いずれか1項に記載の導電性組成物。 Furthermore, the electrically conductive composition of any one of Claim 3, 4, 8, 9 containing an epoxy-group reactive crosslinking agent.
  11. さらに中和剤を含有する請求項3、4、8~10いずれか1項に記載の導電性組成物。 The conductive composition according to any one of claims 3, 4, 8 to 10, further comprising a neutralizing agent.
  12. さらに、カチオン重合触媒を含有する請求項3、4、8~11いずれか1項に記載の導電性組成物。 The conductive composition according to claim 3, further comprising a cationic polymerization catalyst.
  13. 請求項3、4、8~12いずれか1項に記載の導電性組成物を基材に塗工し、加熱硬化させることにより得られる導電性被膜。 A conductive film obtained by applying the conductive composition according to any one of claims 3, 4, and 8 to 12 to a base material and curing it by heating.
  14. 請求項3、4、8~13いずれか1項に記載の導電性組成物を基材に塗工し、活性エネルギー線を照射し硬化させることにより得られる導電性被膜。 A conductive film obtained by applying the conductive composition according to any one of claims 3, 4, and 8 to 13 to a substrate and irradiating and curing the active energy ray.
  15. (γ)成分が、α,β不飽和カルボン酸類(γ1)、(メタ)アクリル酸アルキルエステル類(γ2)および必要に応じて(メタ)アクリル酸ヒドロキシアルキルエステル類(γ3)を反応させて得られるアクリル共重合体である、請求項3または4の導電性組成物。 The (γ) component is obtained by reacting an α, β unsaturated carboxylic acid (γ1), a (meth) acrylic acid alkyl ester (γ2) and, if necessary, a (meth) acrylic acid hydroxyalkyl ester (γ3). The conductive composition according to claim 3 or 4, which is an acrylic copolymer.
  16. さらにカルボキシル基反応性架橋剤を含有する、請求項3、4、15いずれか1項に記載の導電性組成物。 Furthermore, the electrically conductive composition of any one of Claim 3, 4, 15 containing a carboxyl group reactive crosslinking agent.
  17. さらに中和剤を含有する、請求項3、4、15、16いずれか1項に記載の導電性組成物。 Furthermore, the electrically conductive composition of any one of Claim 3, 4, 15, 16 containing a neutralizing agent.
  18. 請求項3、4、15~17いずれか1項に記載の導電性組成物を基材に塗工することにより得られる導電性被膜。 A conductive film obtained by applying the conductive composition according to any one of claims 3, 4, 15 to 17 to a substrate.
PCT/JP2013/078683 2012-10-23 2013-10-23 Organic solvent dispersoid for conductive polymer/polyanion complex, conductive composition containing said dispersoid, and conductive film obtained from said composition WO2014065314A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380055545.6A CN104755556B (en) 2012-10-23 2013-10-23 Electroconductive polymer/polyanionic complexes organic solvent dispersion, the conductive composition containing the organic solvent dispersion and the conductive film covering as made from the conductive composition
KR1020157013172A KR20150080524A (en) 2012-10-23 2013-10-23 Organic solvent dispersoid for conductive polymer/polyanion complex, conductive composition containing said dispersoid, and conductive film obtained from said composition
JP2014543319A JP6131960B2 (en) 2012-10-23 2013-10-23 Conductive polymer / polyanion complex organic solvent dispersion, conductive composition containing the organic solvent dispersion, and conductive film obtained from the conductive composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-233490 2012-10-23
JP2012233490 2012-10-23
JP2012233491 2012-10-23
JP2012-233491 2012-10-23

Publications (1)

Publication Number Publication Date
WO2014065314A1 true WO2014065314A1 (en) 2014-05-01

Family

ID=50544690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078683 WO2014065314A1 (en) 2012-10-23 2013-10-23 Organic solvent dispersoid for conductive polymer/polyanion complex, conductive composition containing said dispersoid, and conductive film obtained from said composition

Country Status (5)

Country Link
JP (1) JP6131960B2 (en)
KR (1) KR20150080524A (en)
CN (1) CN104755556B (en)
TW (1) TWI636092B (en)
WO (1) WO2014065314A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602347A (en) * 2015-12-22 2016-05-25 江南大学 PEDOT [poly(3,4-ethylenedioxythiophene)] aqueous dispersion liquid capable of performing ultraviolet dimerization and preparation method thereof
JP2017025250A (en) * 2015-07-27 2017-02-02 信越ポリマー株式会社 Conductive polymer aqueous dispersion liquid and conductive coating film
JP2017052873A (en) * 2015-09-09 2017-03-16 信越ポリマー株式会社 Conductive polymer aqueous dispersion liquid and conductive coating film
JP2017057294A (en) * 2015-09-17 2017-03-23 信越ポリマー株式会社 Conductive polymer dispersion liquid and method for producing the same, conductive film and method for producing the same
JP2019178298A (en) * 2018-03-30 2019-10-17 三菱ケミカル株式会社 Thermosetting conductive composition
KR20200099077A (en) 2019-02-13 2020-08-21 아라까와 가가꾸 고교 가부시끼가이샤 Composition, cured product and goods
JP2020143202A (en) * 2019-03-05 2020-09-10 信越ポリマー株式会社 Conductive polymer-containing liquid and production method thereof, and conductive film and production method thereof
CN113174156A (en) * 2020-01-27 2021-07-27 长濑化成株式会社 Method for producing conductive composition
CN113717324A (en) * 2021-09-14 2021-11-30 中国科学院化学研究所 Photocurable 3D printing conductive ionic gel, special photosensitive resin thereof and preparation method
CN114196316A (en) * 2020-09-02 2022-03-18 荒川化学工业株式会社 Active energy ray-curable resin composition, cured film, and film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115607A1 (en) * 2015-12-28 2017-07-06 昭和電工株式会社 Process for producing dispersion containing electroconductive polymer
JP6941423B2 (en) * 2016-09-30 2021-09-29 信越ポリマー株式会社 A method for producing an amine adduct of a conductive composite, a method for producing an amine adduct liquid for a conductive composite, and a method for producing a conductive film.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045116A (en) * 2006-07-18 2008-02-28 Arakawa Chem Ind Co Ltd Electroconductive polymer/dopant complex organic solvent dispersion, manufacturing method thereof, and composition containing the electroconductive polymer/dopant complex organic solvent dispersion
JP2011208016A (en) * 2009-03-31 2011-10-20 Arakawa Chem Ind Co Ltd Electroconductive polymer/dopant dispersion, electroconductive composition and electroconductive film
WO2012105213A1 (en) * 2011-02-03 2012-08-09 ナガセケムテックス株式会社 Infrared-reflecting substrate
JP2012522079A (en) * 2009-03-30 2012-09-20 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー Polymer coating with improved UV and thermal stability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482812B (en) * 2009-03-31 2015-05-01 Arakawa Chem Ind Conductive polymer / dopant dispersion, conductive composition, and conductive film
KR20120080935A (en) * 2011-01-10 2012-07-18 삼성전기주식회사 Conductive polymer composition and conductive film prepared from the composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045116A (en) * 2006-07-18 2008-02-28 Arakawa Chem Ind Co Ltd Electroconductive polymer/dopant complex organic solvent dispersion, manufacturing method thereof, and composition containing the electroconductive polymer/dopant complex organic solvent dispersion
JP2012522079A (en) * 2009-03-30 2012-09-20 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー Polymer coating with improved UV and thermal stability
JP2011208016A (en) * 2009-03-31 2011-10-20 Arakawa Chem Ind Co Ltd Electroconductive polymer/dopant dispersion, electroconductive composition and electroconductive film
WO2012105213A1 (en) * 2011-02-03 2012-08-09 ナガセケムテックス株式会社 Infrared-reflecting substrate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025250A (en) * 2015-07-27 2017-02-02 信越ポリマー株式会社 Conductive polymer aqueous dispersion liquid and conductive coating film
JP2017052873A (en) * 2015-09-09 2017-03-16 信越ポリマー株式会社 Conductive polymer aqueous dispersion liquid and conductive coating film
JP2017057294A (en) * 2015-09-17 2017-03-23 信越ポリマー株式会社 Conductive polymer dispersion liquid and method for producing the same, conductive film and method for producing the same
CN105602347A (en) * 2015-12-22 2016-05-25 江南大学 PEDOT [poly(3,4-ethylenedioxythiophene)] aqueous dispersion liquid capable of performing ultraviolet dimerization and preparation method thereof
JP7135390B2 (en) 2018-03-30 2022-09-13 三菱ケミカル株式会社 Thermosetting conductive composition
JP2019178298A (en) * 2018-03-30 2019-10-17 三菱ケミカル株式会社 Thermosetting conductive composition
KR20200099077A (en) 2019-02-13 2020-08-21 아라까와 가가꾸 고교 가부시끼가이샤 Composition, cured product and goods
JP2020132660A (en) * 2019-02-13 2020-08-31 荒川化学工業株式会社 Composition, cured product and article
JP7225879B2 (en) 2019-02-13 2023-02-21 荒川化学工業株式会社 Compositions, cured products and articles
JP2020143202A (en) * 2019-03-05 2020-09-10 信越ポリマー株式会社 Conductive polymer-containing liquid and production method thereof, and conductive film and production method thereof
JP7178295B2 (en) 2019-03-05 2022-11-25 信越ポリマー株式会社 CONDUCTIVE POLYMER-CONTAINING LIQUID AND METHOD FOR MANUFACTURING THEREOF, AND CONDUCTIVE FILM AND METHOD FOR MANUFACTURING THE SAME
CN113174156A (en) * 2020-01-27 2021-07-27 长濑化成株式会社 Method for producing conductive composition
JP2021116370A (en) * 2020-01-27 2021-08-10 ナガセケムテックス株式会社 Method for producing conductive composition
CN113174156B (en) * 2020-01-27 2024-01-09 长濑化成株式会社 Method for producing conductive composition
CN114196316A (en) * 2020-09-02 2022-03-18 荒川化学工业株式会社 Active energy ray-curable resin composition, cured film, and film
CN113717324A (en) * 2021-09-14 2021-11-30 中国科学院化学研究所 Photocurable 3D printing conductive ionic gel, special photosensitive resin thereof and preparation method
CN113717324B (en) * 2021-09-14 2024-03-19 中国科学院化学研究所 Photo-curable 3D printing conductive ionic gel and special photosensitive resin thereof and preparation method

Also Published As

Publication number Publication date
KR20150080524A (en) 2015-07-09
CN104755556A (en) 2015-07-01
CN104755556B (en) 2018-12-14
JP6131960B2 (en) 2017-05-24
TW201420670A (en) 2014-06-01
JPWO2014065314A1 (en) 2016-09-08
TWI636092B (en) 2018-09-21

Similar Documents

Publication Publication Date Title
JP6131960B2 (en) Conductive polymer / polyanion complex organic solvent dispersion, conductive composition containing the organic solvent dispersion, and conductive film obtained from the conductive composition
KR102056658B1 (en) Transparent conductive substrate and its manufacturing method
JP5316000B2 (en) Conductive polymer / dopant organic solvent dispersion and composition containing the dispersion
US8414801B2 (en) Conductive polymer solution, antistatic coating material, antistatic hard coat layer, optical filter, conductive coating film, antistatic tacky adhesive, antistatic tacky adhesive layer, protective material, and method for producing the same
JP5402777B2 (en) Conductive polymer / dopant dispersion, conductive composition, and conductive film
US20150210808A1 (en) Triazine ring-containing polymer and film-forming composition containing same
TW201527413A (en) Conductive resin composition and transparent conductive laminate
US20150225589A1 (en) Composition for ink and transparent electrode
WO2012056906A1 (en) Composition for heat-curable conductive coatings, optical film and protective film
US20160196892A1 (en) Conductive resin composition and transparent conductive laminated body
KR20160135668A (en) Heat-curing antistatic agent, cured coating thereof and plastic film
US20190330493A1 (en) Composition for forming protective film for electroconductive pattern, protective film for electroconductive pattern, method for producing protective film, and method for producing transparent electroconductive film
CN105980496A (en) Composition for film formation
JP2010143980A (en) Polythiophene composition, electroconductive film using the same, and laminated product
JP2016221874A (en) Conductive laminate
JP2022092880A (en) Conductive polymer-containing liquid and method for producing the same, and conductive laminate and method for producing the same
KR102554238B1 (en) Resin composition and resin film
CN113817388A (en) Liquid containing conductive polymer, conductive film, conductive laminate, and method for producing same
JP7433133B2 (en) Conductive polymer-containing liquid and its manufacturing method, conductive film and its manufacturing method, and conductive laminate and its manufacturing method
JP6428031B2 (en) Optical material active energy ray polymerizable resin composition and laminate
JP7437681B2 (en) Conductive polymer composites, conductive compositions, and coatings
KR20120108730A (en) Composition of waterborne polyurethane, method of the composition and coating paint including the same
TWI754305B (en) Conductive polymer-containing liquid and method of manufacturing the same, conductive film and method of manufacturing the same, conductive layered product and method of manufacturing the same
JP2010247408A (en) Laminate with insulated resist layer
JP7049125B2 (en) Conductive polymer dispersion liquid and its manufacturing method, and a method for manufacturing a conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157013172

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13848791

Country of ref document: EP

Kind code of ref document: A1