WO2014065044A1 - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus Download PDF

Info

Publication number
WO2014065044A1
WO2014065044A1 PCT/JP2013/075073 JP2013075073W WO2014065044A1 WO 2014065044 A1 WO2014065044 A1 WO 2014065044A1 JP 2013075073 W JP2013075073 W JP 2013075073W WO 2014065044 A1 WO2014065044 A1 WO 2014065044A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield member
box
plasma
cvd apparatus
plasma cvd
Prior art date
Application number
PCT/JP2013/075073
Other languages
French (fr)
Japanese (ja)
Inventor
雅充 山下
敏行 陣田
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2014065044A1 publication Critical patent/WO2014065044A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields

Definitions

  • This relates to a replacement mechanism for a shield member used in a plasma CVD apparatus.
  • a plasma CVD apparatus is used to form a thin film such as a semiconductor compound or a silicon compound on the surface of a film formation target such as a glass substrate or a plastic film. Furthermore, a technique called remote plasma CVD is used to reduce plasma damage.
  • a shield member also called a mesh plate
  • a shield member is used to pass only radical components out of the reaction gas generated in the plasma generation chamber and contain other electrons and ions in the plasma chamber.
  • the film-forming substance is gradually accumulated on the surface of the shield member in the same manner as a thin film made of the film-forming substance is formed on the film-forming target.
  • the plasma CVD apparatus continues to operate for a long time and the thin film forming material continues to accumulate in the shield member, the opening area of the shield member decreases, the gas passage rate of the radical component decreases, and per predetermined time. The film thickness that can be formed is reduced.
  • an object of the present invention is to provide a plasma CVD apparatus that reduces the frequency of opening to the atmosphere for replacement of a shield member and increases the apparatus operating rate.
  • a plasma generation chamber A film forming chamber communicating with the plasma generating chamber; A shield member for plasma separation between the plasma generation chamber and the film formation chamber; A plasma generation source gas introduction section for supplying a plasma generation source gas to the plasma generation chamber; A film forming source gas introduction section for supplying a film forming source gas to the film forming chamber; A shield member supply unit that stores unused shield members in advance and supplies them as needed; A shield member collecting section for collecting and storing used shield members; This is a plasma CVD apparatus.
  • the shield member supply unit is disposed in the film formation chamber or the plasma generation chamber, It is a plasma CVD apparatus of Claim 1 with which the separator which covers the said shield member supply part is arrange
  • the invention according to claim 3 The shield member supply unit is disposed in the film formation chamber or the plasma generation chamber, A box that covers the shield member supply section; The box is provided with an opening through which an unused shield member passes, The plasma CVD apparatus according to claim 1.
  • the invention according to claim 4 The box covering the shield member supply unit is provided with a pressurized gas introduction unit, The pressure inside the box is set higher than the pressure outside the box, A plasma CVD apparatus according to claim 3.
  • the invention described in claim 5 A box that covers the shield member recovery part;
  • the box is provided with an opening through which the used shield member passes,
  • a cleaning gas introduction section for supplying a cleaning gas into the box;
  • a high frequency is applied to the discharge electrode with a discharge electrode at a position spaced apart from the used shield member in the box,
  • the box is provided with an exhaust port,
  • the pressure inside the box is set to be the same as the pressure outside the box or lower than the pressure outside the box,
  • a plasma CVD apparatus according to claim 3 or 4.
  • a discharge electrode is provided at a predetermined distance from the unused shield member, The discharge electrode is connected to the high-frequency application unit, Inside the box, an exhaust port is provided, The pressure inside the box is set to be the same as the pressure outside the box or lower than the pressure outside the box, A plasma CVD apparatus according to claim 5.
  • a partition having an opening is provided between the plasma generation chamber and the film forming chamber. Outside the opening, provided with a pair of transport rollers arranged at a position across the opening, The shield member is grounded by being pressed against the pair of transport rollers.
  • a plasma CVD apparatus according to any one of claims 1 to 6.
  • the invention according to claim 8 provides: The shield member is arranged in a plurality of rows of conductive materials, While paying out unused portions of the shield members arranged in the plurality of rows from the shield member supply unit, The used part of the shield members arranged in the plurality of rows is collected by the shield member collection unit, A plasma CVD apparatus according to any one of claims 1 to 7.
  • the invention according to claim 9 is:
  • the shield member is made of a mesh-like flat plate made of a conductive material,
  • the invention according to claim 10 is:
  • the shield member is configured by arranging a single wire several times, The unused portion of the one wire is drawn out from the shield member supply unit, and the used portion of the one wire is recovered in the shield member recovery unit,
  • a plasma CVD apparatus according to any one of claims 1 to 7.
  • the invention according to claim 11 The shield member is made of a lattice-like crossing wires, A plasma CVD apparatus according to claim 10.
  • the frequency of opening to the atmosphere for replacement of the shield member can be reduced, and the apparatus operating rate can be increased.
  • FIG. 1 is a side view showing an example of a form embodying the present invention.
  • a plasma CVD apparatus 1 according to the present invention includes a plasma generation chamber 2, a film formation processing chamber 3, a shield member 4, a plasma generation source gas introduction unit 21, a film formation source gas introduction unit 31, and a shield member.
  • a supply unit 41 and a shield member collection unit 45 are provided.
  • the plasma generation chamber 2 generates a gas G2 in a plasma state inside.
  • the inside of the plasma generation chamber 2 is in a reduced pressure state, a high frequency is applied to the inside, and a plasma generating raw material gas G1 is introduced from outside to generate a plasma state gas G2.
  • the plasma generation chamber 2 is constituted by a solid box 20, and an opening H is provided at the top of the box 20.
  • the plasma generation chamber 2 includes a plasma generation source gas introduction section 21 and a high frequency generation section 22.
  • the plasma generation source gas introduction unit 21 supplies the plasma generation source gas G1 into the box 20 of the plasma generation chamber 2.
  • the high frequency generator 22 generates plasma in the box 20 of the plasma generation chamber 2. For this reason, in the plasma generation chamber 2, for example, oxygen gas is introduced from the outside as the plasma generation source gas G ⁇ b> 1, so that the inside of the box 20 becomes a plasma state, oxygen molecules are activated, and radical components are generated. In addition, oxygen ions are generated and electrons are emitted.
  • the film formation chamber 3 reacts with a radical component gas G3, which will be described in detail later, among the gases generated in the plasma generation chamber 2 and a film formation source gas G4 to form a substrate K that becomes a film formation target.
  • Film formation A is performed.
  • the film forming chamber 3 is constituted by a robust box 30, and an opening H is provided at the lower part of the box 30.
  • the box body 30 of the film forming chamber 3 is provided with a film forming source gas introducing portion 31, a substrate holding table 32, a load lock gate 33, and a vacuum pump 35.
  • the film forming source gas introduction unit 31 supplies the film forming source gas into the box 30 of the film forming chamber 3.
  • the substrate holding table 32 holds the substrate K.
  • the load lock gate 33 opens and closes for loading and unloading the substrate K.
  • the substrate K moves in the direction indicated by the arrow 34 and is delivered.
  • the plasma generation chamber 2 and the film forming chamber 3 are in communication with each other, and a vacuum pump 35 is connected to the film forming chamber 3.
  • the vacuum pump 35 makes the inside of the film forming chamber 3 and the plasma generation chamber 2 in a reduced pressure state.
  • the shield member 4 is used for plasma separation, and prevents the gas G2 in the plasma state generated in the plasma generation chamber 2 from directly flowing out to the film forming chamber 3 side.
  • the shield member 4 is composed of a plurality of thin metal wires arranged in a line or a wire mesh, and is located between the plasma generation chamber 2 and the film forming treatment chamber 3 in communication, that is, in the vicinity of the opening H. Has been placed. Further, the shield member 4 is grounded through the unwinding roller 42 of the shield member supply unit 41 and the winding roller 46 of the shield member collecting unit 45. Therefore, the ionized gas and electrons cannot pass through the mesh, while the electrically neutral radical component gas G3 passes through the shield member 4 and flows into the film forming chamber 3.
  • the radical component gas G 3 reacts with the gas G 4 introduced from the film forming raw material gas inlet 31, and a desired film A is deposited on the substrate K.
  • the plasma generation source gas G1 is oxygen and the film formation source gas G4 is HMDS (hexamethyldisilazane), silicon oxide (SiO 2 ) is generated as the film formation A.
  • HMDS hexamethyldisilazane
  • the shield member 4 is supplied from the shield member supply unit 41 and collected by the shield member collection unit 45.
  • the shield member supply unit 41 accommodates unused shield members in advance and supplies them as necessary. Specifically, an unused shield member is wound around the unwinding roller 42 in advance, and the unused shield member is unwound and supplied as necessary.
  • the shield member collection unit 45 collects and stores used shield members. Specifically, the used shield member is wound around the winding roller 46 and accommodated, and the used shield member is taken up and collected as necessary.
  • the shield member 4, the shield member supply unit 41, and the shield member recovery unit 45 are illustrated as being disposed in the box body 30 of the film forming process chamber 3. 4 etc. may be arranged in the box 20 of the plasma generation chamber 2.
  • FIG. 2 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form.
  • 2 is an example in which the shield member supply unit 41 is disposed in the box 30 of the film forming process chamber 3 while being based on the plasma CVD apparatus 1 described above. Further, a separator plate that covers the shield member supply unit 41 is disposed between the shield member supply unit 41 and the substrate K. If it is this form, the separator 43 will prevent the deposit by the film-forming A adhering not only to the board
  • the shield member supply unit 41 and the shield member collection unit 45 may be arranged on the box 20 side of the plasma generation chamber 2.
  • the shield member supply unit 41 and the shield member collection unit 45 may be arranged on the box 20 side of the plasma generation chamber 2.
  • the shield member supply unit 41 is disposed in the box 30 of the film formation processing chamber 3 as shown in FIG.
  • the amount attached is small.
  • the film forming material gas G4 is small, it may pass through the shield member 4 and is not used even when the shield member supply unit 41 is disposed on the box body 20 side of the plasma generation chamber 2.
  • a separator that further covers the shield member supply unit 41. By doing so, it is possible to prevent the film formation A from adhering to the unused shield member 4.
  • FIG. 3 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form.
  • a plasma CVD apparatus 1c of the form shown in FIG. 3 is an example in which the shield member supply unit 41 is disposed in the box 30 of the film forming process chamber 3 while being based on the plasma CVD apparatus 1 described above. Further, a box body 44 that covers the shield member supply section 41 is provided, and the box body 44 is provided with an opening 44 h that allows an unused shield member to pass therethrough. If it is this form, since the box 44 covers the shield member supply part 4 entirely, the film-forming A adheres to an unused shield member by the wraparound of the radical component gas G3 and the film-forming source gas G4. To prevent that. Therefore, since the replacement frequency of the shield member 4 can be further reduced, the apparatus operating rate can be further increased.
  • the shape of the opening 44h of the box 44 is sufficient for an unused shield member to pass therethrough and is as narrow as possible, for example, an opening size corresponding to the width and thickness of the unused shield member. It is preferable. If it does so, it can also prevent that the film-forming A accumulates in the box 44 inside.
  • the transport roller 48a is disposed inside the box body 44 and the transport roller 48b is disposed on the winding roller 46 side so that the gap between the shield member 4 and the opening 44h can be regulated at a predetermined interval. May be. By doing so, there is no friction between the opening 44h and the unused shield member, and wear of the opening can be prevented. Therefore, it is possible to prevent the inflow of the radical component gas G3 and the film forming source gas G4 from the opening 44h and to prevent the film formation A from adhering to the unused shield member 4 for a long time.
  • the shield member supply unit 41, the box 44, the transport roller 48, and the shield member collection unit 45 may be arranged on the side of the box 20 of the plasma generation chamber 2.
  • FIG. 4 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form.
  • the plasma CVD apparatus 1d shown in FIG. 4 is based on the plasma CVD apparatus 1c described above, and includes a pressurized gas introduction section 24 in a box 44 that covers the shield member supply section 41. Further, the pressure inside the box 44 is set higher than the pressure outside the box 44 (in the case of FIG. 4, the pressure inside the film forming chamber 3).
  • the pressurized gas introduction unit 24 branches from the plasma generation source gas introduction unit 21 and supplies the plasma generation source gas G1. Only the opening 44 h is the outlet of the box 44, and the outside of the box 44 is decompressed by the vacuum pump 35. Therefore, the pressure in the box 44 can be set higher than the outside of the box 44. 2)
  • the pressurized gas introduction unit 24 is independent of the plasma generating raw material gas introduction unit 21 and introduces the pressure of the gas introduced into the box 44 higher than the outside of the box 44. .
  • the film deposition A is deposited inside the box 44. Can be prevented. Therefore, deposits can be prevented from adhering to unused shield members, and the replacement frequency of the shield members 4 can be further reduced, so that the apparatus operating rate can be further increased. If the gas introduced from the pressurized gas introduction section 24 into the box 44 is the plasma generating source gas G1 in an inactive state, the film forming source gas G4 is prevented from flowing into the box 44. However, it is preferable because the quality of the film formation A generated in the film formation processing chamber 3 is not affected.
  • FIG. 5 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form.
  • a plasma CVD apparatus 1e of the form shown in FIG. 5 includes a box body 51 that covers the shield member recovery unit 45 while being based on the plasma CVD apparatus 1c described above, and the box body 51 has an opening through which a used shield member passes. A part 51h is provided. Further, a cleaning gas introduction part 52 for supplying the cleaning gas G6 to the box 51 is provided, and a discharge electrode 53 is provided in the box 51 at a position spaced from the used shield member by a predetermined distance. A high frequency is applied to the electrode 53.
  • the discharge electrode 53 exemplifies one that generates a high-frequency capacitively coupled plasma (so-called CCP: Capacitive Coupled Plasma), but another plasma method may be used.
  • CCP Capacitive Coupled Plasma
  • the box body 51 is provided with an exhaust port 54. Deposits attached to the used shield member in the box body 51 are produced as a product generated by the reaction with the cleaning gas G6. The air is exhausted from the exhaust port 54 to the outside. Therefore, the used shield member can be returned to the unused state again.
  • a fluorine-based gas such as CF 4 , C 2 F 6 , or NF 3 as the cleaning gas G 6 .
  • the pressure in the box 51 is the same as the pressure outside the box 51 by adjusting the pressure and flow rate of the cleaning gas G6 to be introduced and the gas exhausted from the exhaust port 54 to the outside. It is set lower than the outside pressure. More specifically, the pressure inside the box 51 does not become higher than the pressure outside the box 51 even if there is pressure fluctuation inside the box 51 or inside the box 51. It is set so that the inside of the box 51 is maintained in a slightly lower state. By doing so, the radical component gas G3 and the film forming source gas G4 flow in to prevent the film formation A from depositing inside the box 51 and the shield member 4, and the cleaning gas G6 and the deposited deposition removed. An object can be prevented from flowing out into the film forming chamber 3.
  • the shield member once used is unwound and wound in the direction opposite to the arrow (that is, the shield member returned to the unused state from the shield member collecting portion 45 side shown in the figure).
  • the shield member 4 can be used again by supplying and collecting the used shield member on the shield member supply section 41 side.
  • FIG. 6 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form.
  • the plasma CVD apparatus 1f in the form shown in FIG. 6 includes a box 56 that covers the shield member supply unit 41 while being based on the plasma CVD apparatus 1e described above, and the box 56 has an opening through which an unused shield member passes. A portion 56h is provided. Further, a cleaning gas introducing portion 57 for supplying the cleaning gas G6 to the box 56 is provided, and a discharge electrode 58 is provided in the box 56 at a position spaced apart from an unused shield member. A high frequency is applied to 58. Further, the box 56 is provided with an exhaust port 59.
  • the pressure inside the box 56 is the same as the pressure outside the box 56 by adjusting the pressure and flow rate of the cleaning gas G6 to be introduced and the gas exhausted from the exhaust port 59 to the outside. Set lower than the outside pressure. More specifically, the pressure inside the box 56 does not become higher than the pressure outside the box 56 even if there is a pressure fluctuation outside the box 56 or inside the box 56. It is set so that the inside of the box 56 is maintained in a slightly lower state. By doing so, the radical component gas G3 and the film forming raw material gas G4 flow in, preventing the film formation A from depositing inside the box 56 and the shield member 4, and the cleaning gas G6 and the removed deposition. An object can be prevented from flowing out into the film forming chamber 3.
  • the used shield member can be returned to the unused state not only when it is collected on the shield member collection unit 41 side but also when it is collected on the shield member supply unit 41 side. By doing so, the frequency which replaces a shield member becomes very few, and an apparatus operation rate can be raised further.
  • the shield member 4 is A partition wall having an opening H is provided between the plasma generation chamber 2 and the film forming process chamber 3, and a pair of transport rollers 48 ( 48a, 48b), and the shield member 4 is preferably grounded by being pressed against the pair of transport rollers 48 (48a, 48b). By doing so, the grounding of the shield member 4 is more reliable than the grounding through the unwinding roller 42 and the winding roller 46.
  • FIG. 7 is a side view showing an example in which the shield member used in the present invention is embodied.
  • a stripe-shaped shield member 4a in which a plurality of wires W are arranged in parallel at a predetermined interval as shown in FIG. 7 can be exemplified.
  • the unwinding roller 42 of the shield member supply unit 41 and the winding roller 46 of the shield member collecting unit 45 are disposed at positions across the openings H on both sides of the opening H.
  • a striped shield member 4 a is wound around the unwinding roller 42 and the winding roller 46.
  • FIG. 8 is a side view showing another example of the shield member used in the present invention.
  • a mesh-like shield member 4b in which a plurality of wires W are arranged in a grid at predetermined intervals as shown in FIG. 8 can be exemplified.
  • the mesh-shaped shield member 4b can be exemplified by a plurality of wires knitted in a lattice shape like a so-called wire mesh.
  • the unwinding roller 42 of the shield member supplying unit 41 and the unwinding roller 46 of the shield member collecting unit 45 are disposed at a position across the opening H on both sides of the opening H, and the unwinding roller 42
  • the mesh-shaped shield member 4 b is wound around the winding roller 46.
  • FIG. 9 is a side view showing another example of the shield member used in the present invention.
  • a punched metal sheet 4c having a plurality of openings as shown in FIG. 9 can be exemplified.
  • the punched metal plate 4c having a plurality of openings can be exemplified by a so-called punching metal (also referred to as perforated sheets, perforated metal, etc.) in a foil shape.
  • the unwinding roller 42 of the shield member supplying unit 41 and the unwinding roller 46 of the shield member collecting unit 45 are disposed at a position across the opening H on both sides of the opening H, and the unwinding roller 42
  • the punching metal sheet 4c having a plurality of openings is wound around the winding roller 46.
  • FIG. 10 is a side view showing another example of the shield member used in the present invention.
  • a plurality of single wires Ws are folded back as shown in FIG. 10, and the wires Ws are arranged in stripes at predetermined intervals.
  • An example is a shield member 4d in which one wire is striped.
  • an unused wire is wound around the unwinding reel 61 in advance, and the unwound wire Ws is routed through a plurality of folding rollers 62. It functions as a shield member in a state of being wound around and wound around the take-up reel 63. When deposits accumulate on the wire surface, the used wire is collected by the take-up reel 63 while the unused wire is unwound from the take-out reel 61.
  • the folding roller 62 may be a free roller that freely rotates, or may be synchronized with the rotation of the unwinding reel 61 or the winding reel 63.
  • FIG. 11 is a side view showing another example of the shield member used in the present invention.
  • a plurality of single wires are folded back, the wires are crossed in two directions, and each wire is meshed at a predetermined interval.
  • a shield member 4e arranged in a line and having a single wire in a lattice shape can be exemplified.
  • an unused wire is wound around the unwinding reel 65 in advance, and the unwound wire is routed through a plurality of folding rollers 66 (66a, 66b). It functions as a shield member in a state in which the direction is changed by 90 degrees with the cross-turning roller 67, and is passed again through the plurality of turning rollers 68 (68a, 68b) and wound around the take-up reel 69. To do. When deposits accumulate on the wire surface, the used wire is collected by the take-up reel 69 while the unused wire is unwound from the take-up reel 65.
  • the folding rollers 66 and 68 and the cross-folding roller 67 may be free rollers that rotate freely, or may rotate in cooperation with the unwinding reel 65 and the winding reel 69. good.
  • the present invention in the plasma CVD apparatus according to the present invention, the form in which film formation is performed by replacing the substrate K, which is a film formation target, by a so-called single wafer method.
  • the present invention is not limited to this form.
  • the present invention can be applied to a continuous film formation form by a roll-to-roll method.

Abstract

Provided is a plasma CVD apparatus, which is not needed to be exposed to the air at the time of replacing a shield member, and which has an improved apparatus operation rate. Specifically, this plasma CVD apparatus is provided with: a plasma generating chamber; a film-forming processing chamber communicated with the plasma generating chamber; a shield member for plasma isolation, said shield member being disposed between the plasma generating chamber and the film-forming processing chamber; a plasma-generating starting material gas introducing section, through which the plasma generating chamber is supplied with a starting material gas for generating plasma; a film-forming starting material gas introducing section, through which the film-forming processing chamber is supplied with a starting material gas for forming a film; a shield member supply section, which previously stores an unused shield member, and which supplies the unused shield member as needed; and a shield member recovery section, which recovers and stores the used shield member.

Description

プラズマCVD装置Plasma CVD equipment
 プラズマCVD装置に用いられるシールド部材の交換機構に関するものである。 This relates to a replacement mechanism for a shield member used in a plasma CVD apparatus.
 ガラス基板やプラスチックフィルムなどの成膜対象物の表面に半導体化合物やシリコン化合物などの薄膜を形成するために、プラズマCVD装置が用いられている。さらに、プラズマダメージを低減するために、リモートプラズマCVDと呼ばれる技術が用いられている。リモートプラズマCVD装置では、プラズマ発生室で発生した反応ガスの内、ラジカル成分のみを通過させ、それ以外の電子やイオンをプラズマチャンバー内に封じ込めるために、シールド部材(メッシュプレートとも呼ぶ)が用いられている(例えば、特許文献1)。 A plasma CVD apparatus is used to form a thin film such as a semiconductor compound or a silicon compound on the surface of a film formation target such as a glass substrate or a plastic film. Furthermore, a technique called remote plasma CVD is used to reduce plasma damage. In the remote plasma CVD apparatus, a shield member (also called a mesh plate) is used to pass only radical components out of the reaction gas generated in the plasma generation chamber and contain other electrons and ions in the plasma chamber. (For example, Patent Document 1).
 また、チャンバ内壁全体をドライクリーニング可能にした、リモートプラズマCVD装置も提案されている(例えば、特許文献2)。 Also, a remote plasma CVD apparatus has been proposed that can dry clean the entire inner wall of the chamber (for example, Patent Document 2).
特開平621393号公報JP-A-621393 特開平11-162967号公報Japanese Patent Laid-Open No. 11-162967
 CVD装置では、成膜対象物に成膜物質による薄膜が形成されるのと同様に、シールド部材の表面にも成膜物質が徐々に蓄積される。そして、プラズマCVD装置を長時間稼働し続け、シールド部材に薄膜形成用材料が蓄積し続けると、シールド部材の開口部面積が減少し、ラジカル成分のガスの通過レートが低下し、所定時間当たりに成膜できる膜厚が薄くなる。 In the CVD apparatus, the film-forming substance is gradually accumulated on the surface of the shield member in the same manner as a thin film made of the film-forming substance is formed on the film-forming target. When the plasma CVD apparatus continues to operate for a long time and the thin film forming material continues to accumulate in the shield member, the opening area of the shield member decreases, the gas passage rate of the radical component decreases, and per predetermined time. The film thickness that can be formed is reduced.
 そのため、シールド部材を定期的に交換する必要があるが、シールド部材を交換する時は、チャンバーを大気開放し、成膜作業を中断しなければならず、シールド部材の交換頻度が多いことから、装置稼働率が上がらない要因となっていた。 Therefore, it is necessary to periodically replace the shield member, but when replacing the shield member, the chamber must be opened to the atmosphere, the film forming operation must be interrupted, and the shield member is frequently replaced. This was a factor that prevented the equipment operation rate from increasing.
 そこで本発明は、プラズマCVD装置において、シールド部材の交換のために大気開放する頻度を少なくし、装置稼働率を上げることを提供することを目的としている。 Therefore, an object of the present invention is to provide a plasma CVD apparatus that reduces the frequency of opening to the atmosphere for replacement of a shield member and increases the apparatus operating rate.
 以上の課題を解決するために、請求項1に記載の発明は、
プラズマ発生室と、
前記プラズマ発生室と連通する成膜処理室と、
前記プラズマ発生室と前記成膜処理室の間にプラズマ分離用のシールド部材と、
プラズマ発生室にプラズマ発生用原料ガスを供給するプラズマ発生用原料ガス導入部と、
成膜処理室に成膜用原料ガスを供給する成膜用原料ガス導入部とを備え、
未使用のシールド部材を予め収容し必要に応じて供給するシールド部材供給部と、
使用済みのシールド部材を回収して収容するシールド部材回収部とを備えた、
プラズマCVD装置である。
In order to solve the above problems, the invention described in claim 1
A plasma generation chamber;
A film forming chamber communicating with the plasma generating chamber;
A shield member for plasma separation between the plasma generation chamber and the film formation chamber;
A plasma generation source gas introduction section for supplying a plasma generation source gas to the plasma generation chamber;
A film forming source gas introduction section for supplying a film forming source gas to the film forming chamber;
A shield member supply unit that stores unused shield members in advance and supplies them as needed;
A shield member collecting section for collecting and storing used shield members;
This is a plasma CVD apparatus.
 請求項2に記載の発明は、
前記シールド部材供給部は前記成膜処理室内若しくはプラズマ生成室内に配置されており、
前記シールド部材供給部を覆う隔離板が配置されている
請求項1に記載のプラズマCVD装置である。
The invention described in claim 2
The shield member supply unit is disposed in the film formation chamber or the plasma generation chamber,
It is a plasma CVD apparatus of Claim 1 with which the separator which covers the said shield member supply part is arrange | positioned.
 請求項3に記載の発明は、
前記シールド部材供給部は前記成膜処理室内若しくはプラズマ生成室内に配置されており、
前記シールド部材供給部を覆う箱体を備え、
当該箱体には未使用のシールド部材を通過させる開口部が設けられている、
請求項1に記載のプラズマCVD装置である。
The invention according to claim 3
The shield member supply unit is disposed in the film formation chamber or the plasma generation chamber,
A box that covers the shield member supply section;
The box is provided with an opening through which an unused shield member passes,
The plasma CVD apparatus according to claim 1.
 請求項4に記載の発明は、
前記シールド部材供給部を覆う箱体には与圧ガス導入部が備えられ、
当該箱体内の圧力が当該箱体の外側の圧力よりも高く設定されている、
請求項3に記載のプラズマCVD装置である。
The invention according to claim 4
The box covering the shield member supply unit is provided with a pressurized gas introduction unit,
The pressure inside the box is set higher than the pressure outside the box,
A plasma CVD apparatus according to claim 3.
請求項5に記載の発明は、
前記シールド部材回収部を覆う箱体を備え、
当該箱体には使用済みのシールド部材を通過させる開口部が設けられ、
当該箱体内にクリーニング用ガスを供給するクリーニング用ガス導入部を備え、
当該箱体内に前記使用済みのシールド部材と所定の間隔を隔てた位置に放電用電極を備え
前記放電用電極には高周波が印加されており、
当該箱体には、排気用ポートが備えられ、
当該箱体内の圧力が、当該箱体の外側の圧力と同じ又は当該箱体の外側の圧力よりも低く設定されている、
請求項3又は請求項4に記載のプラズマCVD装置である。
The invention described in claim 5
A box that covers the shield member recovery part;
The box is provided with an opening through which the used shield member passes,
A cleaning gas introduction section for supplying a cleaning gas into the box;
A high frequency is applied to the discharge electrode with a discharge electrode at a position spaced apart from the used shield member in the box,
The box is provided with an exhaust port,
The pressure inside the box is set to be the same as the pressure outside the box or lower than the pressure outside the box,
A plasma CVD apparatus according to claim 3 or 4.
 請求項6に記載の発明は、
前記シールド部材供給部を覆う箱体にクリーニング用ガスを供給するクリーニング用ガス導入部を備え、
当該箱体内には、前記未使用のシールド部材と所定の間隔を隔てた位置に放電用電極を備え、
当該放電用電極が高周波印加部に接続されており、
当該箱体内部には、排気用ポートが備えられ、
当該箱体内の圧力が、当該箱体の外側の圧力と同じ又は当該箱体の外側の圧力よりも低く設定されている、
請求項5に記載のプラズマCVD装置である。
The invention described in claim 6
A cleaning gas introduction part for supplying a cleaning gas to a box covering the shield member supply part;
In the box, a discharge electrode is provided at a predetermined distance from the unused shield member,
The discharge electrode is connected to the high-frequency application unit,
Inside the box, an exhaust port is provided,
The pressure inside the box is set to be the same as the pressure outside the box or lower than the pressure outside the box,
A plasma CVD apparatus according to claim 5.
 請求項7に記載の発明は、
前記プラズマ発生室と前記成膜処理室との間には、開口部を有する隔壁が備えられ、
前記開口部の外側には、前記開口部を跨ぐ位置に一対で配置された搬送ローラを備え、
前記シールド部材は、前記一対の搬送ローラに押し当てられることでアース接地される、
請求項1~6のいずれかに記載のプラズマCVD装置である。
The invention described in claim 7
A partition having an opening is provided between the plasma generation chamber and the film forming chamber.
Outside the opening, provided with a pair of transport rollers arranged at a position across the opening,
The shield member is grounded by being pressed against the pair of transport rollers.
A plasma CVD apparatus according to any one of claims 1 to 6.
 請求項8に記載の発明は、
 前記シールド部材が、導電性材料を複数列に並べて配置されており、
前記複数列に並べられたシールド部材の未使用部分を前記シールド部材供給部から繰り出しながら、
前記複数列に並べられたシールド部材の使用済み部分を前記シールド部材回収部で回収する、
請求項1~7のいずれかに記載のプラズマCVD装置である。
The invention according to claim 8 provides:
The shield member is arranged in a plurality of rows of conductive materials,
While paying out unused portions of the shield members arranged in the plurality of rows from the shield member supply unit,
The used part of the shield members arranged in the plurality of rows is collected by the shield member collection unit,
A plasma CVD apparatus according to any one of claims 1 to 7.
 請求項9に記載の発明は、
 前記シールド部材が、導電性材料を網状の平板で構成されている、
請求項8に記載のプラズマCVD装置である。
The invention according to claim 9 is:
The shield member is made of a mesh-like flat plate made of a conductive material,
A plasma CVD apparatus according to claim 8.
 請求項10に記載の発明は、
 前記シールド部材が、1本のワイヤーを複数回、折り返し配置して構成されており、
前記シールド部材供給部からは前記1本のワイヤーの未使用部分が繰り出され、前記シールド部材回収部では前記1本のワイヤーの使用済み部分が回収される、
請求項1~7のいずれかに記載のプラズマCVD装置である。
The invention according to claim 10 is:
The shield member is configured by arranging a single wire several times,
The unused portion of the one wire is drawn out from the shield member supply unit, and the used portion of the one wire is recovered in the shield member recovery unit,
A plasma CVD apparatus according to any one of claims 1 to 7.
 請求項11に記載の発明は、
 前記シールド部材が、ワイヤーを交差させて格子状にしたもので構成されている、
請求項10に記載のプラズマCVD装置である。
The invention according to claim 11
The shield member is made of a lattice-like crossing wires,
A plasma CVD apparatus according to claim 10.
 プラズマCVD装置において、シールド部材の交換のために大気開放する頻度を少なくし、装置稼働率を上げることができる。 In the plasma CVD apparatus, the frequency of opening to the atmosphere for replacement of the shield member can be reduced, and the apparatus operating rate can be increased.
本発明を具現化する形態の一例を示す側面図である。It is a side view which shows an example of the form which embodies this invention. 本発明を具現化する形態の別の一例を示す側面図である。It is a side view which shows another example of the form which embodies this invention. 本発明を具現化する形態の別の一例を示す側面図である。It is a side view which shows another example of the form which embodies this invention. 本発明を具現化する形態の別の一例を示す側面図である。It is a side view which shows another example of the form which embodies this invention. 本発明を具現化する形態の別の一例を示す側面図である。It is a side view which shows another example of the form which embodies this invention. 本発明を具現化する形態の別の一例を示す側面図である。It is a side view which shows another example of the form which embodies this invention. 本発明に用いられるシールド部材を具現化する一例を示す平面図である。It is a top view which shows an example which embodies the shield member used for this invention. 本発明に用いられるシールド部材を具現化する別の一例を示す平面図である。It is a top view which shows another example which embodies the shield member used for this invention. 本発明に用いられるシールド部材を具現化する別の一例を示す平面図である。It is a top view which shows another example which embodies the shield member used for this invention. 本発明に用いられるシールド部材を具現化する別の一例を示す平面図である。It is a top view which shows another example which embodies the shield member used for this invention. 本発明に用いられるシールド部材を具現化する別の一例を示す平面図である。It is a top view which shows another example which embodies the shield member used for this invention.
 図1は、本発明を具現化する形態の一例を示す側面図である。
本発明にかかるプラズマCVD装置1は、プラズマ発生室2と、成膜処理室3と、シールド部材4と、プラズマ発生用原料ガス導入部21と、成膜用原料ガス導入部31と、シールド部材供給部41と、シールド部材回収部45とを備えている。
FIG. 1 is a side view showing an example of a form embodying the present invention.
A plasma CVD apparatus 1 according to the present invention includes a plasma generation chamber 2, a film formation processing chamber 3, a shield member 4, a plasma generation source gas introduction unit 21, a film formation source gas introduction unit 31, and a shield member. A supply unit 41 and a shield member collection unit 45 are provided.
 プラズマ発生室2は、内部にプラズマ状態のガスG2を発生させるものである。
プラズマ発生室2の内部を減圧状態にし、内部に高周波を印可し、外部からプラズマ発生用原料ガスG1を導入することで、内部にプラズマ状態のガスG2を発生させている。
具体的には、プラズマ発生室2は、堅牢な箱体20で構成され、箱体20の上部には開口部Hが設けられている。
The plasma generation chamber 2 generates a gas G2 in a plasma state inside.
The inside of the plasma generation chamber 2 is in a reduced pressure state, a high frequency is applied to the inside, and a plasma generating raw material gas G1 is introduced from outside to generate a plasma state gas G2.
Specifically, the plasma generation chamber 2 is constituted by a solid box 20, and an opening H is provided at the top of the box 20.
 さらに、プラズマ発生室2には、プラズマ発生用原料ガス導入部21と、高周波発生部22とを備えている。
プラズマ発生用原料ガス導入部21は、プラズマ発生室2の箱体20内にプラズマ発生用原料ガスG1を供給するものである。
Further, the plasma generation chamber 2 includes a plasma generation source gas introduction section 21 and a high frequency generation section 22.
The plasma generation source gas introduction unit 21 supplies the plasma generation source gas G1 into the box 20 of the plasma generation chamber 2.
 高周波発生部22は、プラズマ発生室2の箱体20内にプラズマを発生させるものである。このため、プラズマ発生室2では、プラズマ発生用原料ガスG1として、例えば酸素ガスを外部から導入することで、箱体20内部がプラズマ状態となり、酸素分子が活性化しラジカル成分が発生する。また、酸素イオンが発生すると共に、電子が放出される。 The high frequency generator 22 generates plasma in the box 20 of the plasma generation chamber 2. For this reason, in the plasma generation chamber 2, for example, oxygen gas is introduced from the outside as the plasma generation source gas G <b> 1, so that the inside of the box 20 becomes a plasma state, oxygen molecules are activated, and radical components are generated. In addition, oxygen ions are generated and electrons are emitted.
 成膜処理室3は、プラズマ発生室2で発生させたガスの内、詳細を後述するラジカル成分のガスG3と、成膜用原料ガスG4とを反応させて、成膜対象物となる基板Kに成膜Aを行うものである。
具体的には、成膜処理室3は、堅牢な箱体30で構成され、箱体30の下部には開口部Hが設けられている。さらに、成膜処理室3の箱体30には、成膜用原料ガス導入部31と、基板保持台32と、ロードロックゲート33と、真空ポンプ35とを備えている。
The film formation chamber 3 reacts with a radical component gas G3, which will be described in detail later, among the gases generated in the plasma generation chamber 2 and a film formation source gas G4 to form a substrate K that becomes a film formation target. Film formation A is performed.
Specifically, the film forming chamber 3 is constituted by a robust box 30, and an opening H is provided at the lower part of the box 30. Further, the box body 30 of the film forming chamber 3 is provided with a film forming source gas introducing portion 31, a substrate holding table 32, a load lock gate 33, and a vacuum pump 35.
 成膜用原料ガス導入部31は、成膜処理室3の箱体30内に成膜用原料ガスを供給するものである。
基板保持台32は、基板Kを保持するものである。
ロードロックゲート33は、基板Kの出し入れのために開閉を行うものである。矢印34に示す方向に基板Kが移動し、受け渡しされる。
The film forming source gas introduction unit 31 supplies the film forming source gas into the box 30 of the film forming chamber 3.
The substrate holding table 32 holds the substrate K.
The load lock gate 33 opens and closes for loading and unloading the substrate K. The substrate K moves in the direction indicated by the arrow 34 and is delivered.
 なお、プラズマ発生室2と成膜処理室3とは連通しており、成膜処理室3には真空ポンプ35が接続されている。真空ポンプ35は、成膜処理室3並びにプラズマ発生室2の内部を減圧状態にするものである。 The plasma generation chamber 2 and the film forming chamber 3 are in communication with each other, and a vacuum pump 35 is connected to the film forming chamber 3. The vacuum pump 35 makes the inside of the film forming chamber 3 and the plasma generation chamber 2 in a reduced pressure state.
 シールド部材4は、プラズマ分離用として用いられるものであり、プラズマ発生室2で発生したプラズマ状態のガスG2が、直接、成膜処理室3側に流出しないようにするものである。具体的には、シールド部材4は、細い金属ワイヤーが複数並べられたものや、金網状のもので構成され、連通するプラズマ発生室2と成膜処理室3の間、つまり開口部H付近に配置されている。さらに、シールド部材4は、シールド部材供給部41の巻出用ローラ42や、シールド部材回収部45の巻取用ローラ46を通じてアース接地されている。そのため、イオン化したガスや電子はメッシュを通り抜けることができず、一方、電気的に中性なラジカル成分のガスG3が、シールド部材4を通過し、成膜処理室3内に流入する。 The shield member 4 is used for plasma separation, and prevents the gas G2 in the plasma state generated in the plasma generation chamber 2 from directly flowing out to the film forming chamber 3 side. Specifically, the shield member 4 is composed of a plurality of thin metal wires arranged in a line or a wire mesh, and is located between the plasma generation chamber 2 and the film forming treatment chamber 3 in communication, that is, in the vicinity of the opening H. Has been placed. Further, the shield member 4 is grounded through the unwinding roller 42 of the shield member supply unit 41 and the winding roller 46 of the shield member collecting unit 45. Therefore, the ionized gas and electrons cannot pass through the mesh, while the electrically neutral radical component gas G3 passes through the shield member 4 and flows into the film forming chamber 3.
 成膜処理室3内では、ラジカル成分のガスG3と、成膜用原料ガス導入部31から導入されたガスG4とが反応し、所望の成膜Aが基板Kに堆積される。 In the film forming chamber 3, the radical component gas G 3 reacts with the gas G 4 introduced from the film forming raw material gas inlet 31, and a desired film A is deposited on the substrate K.
 このとき、プラズマ発生用原料ガスG1を酸素とし、成膜用原料ガスG4をHMDS(ヘキサメチルジシラザン)とすれば、成膜Aとして酸化シリコン(SiO)が生成される。 At this time, if the plasma generation source gas G1 is oxygen and the film formation source gas G4 is HMDS (hexamethyldisilazane), silicon oxide (SiO 2 ) is generated as the film formation A.
 [巻出・巻取機構]
 シールド部材4は、シールド部材供給部41から供給され、シールド部材回収部45にて回収される。
シールド部材供給部41は、未使用のシールド部材を予め収容し必要に応じて供給するものである。具体的には、巻出用ローラ42に予め未使用のシールド部材を巻き付けて収容し、必要に応じて未使用のシールド部材を巻き出して供給するようにしておく。
シールド部材回収部45は、使用済みのシールド部材を回収して収容するものである。
具体的には、巻取用ローラ46に使用済みのシールド部材を巻き付けて収容し、必要に応じて使用済みのシールド部材を巻き取って回収するようにしておく。
[Unwinding and winding mechanism]
The shield member 4 is supplied from the shield member supply unit 41 and collected by the shield member collection unit 45.
The shield member supply unit 41 accommodates unused shield members in advance and supplies them as necessary. Specifically, an unused shield member is wound around the unwinding roller 42 in advance, and the unused shield member is unwound and supplied as necessary.
The shield member collection unit 45 collects and stores used shield members.
Specifically, the used shield member is wound around the winding roller 46 and accommodated, and the used shield member is taken up and collected as necessary.
 なお、図1ではシールド部材4、シールド部材供給部41、シールド部材回収部45が成膜処理室3の箱体30内に配置されている形態を例示したが、上述の形態においては、シールド部材4等が、プラズマ発生室2の箱体20内に配置されていても良い。 In FIG. 1, the shield member 4, the shield member supply unit 41, and the shield member recovery unit 45 are illustrated as being disposed in the box body 30 of the film forming process chamber 3. 4 etc. may be arranged in the box 20 of the plasma generation chamber 2.
 [別の一例]
図2は、本発明を具現化する形態の別の一例を示す側面図であり、上述の形態とは異なる別の一例を示している。図2に示す形態のプラズマCVD装置1bは、上述したプラズマCVD装置1をベースとしつつ、シールド部材供給部41が成膜処理室3の箱体30内に配置されている例である。さらに、シールド部材供給部41を覆う隔離板が、シールド部材供給部41と基板Kとの間に配置されている。この形態あれば、隔離板43が、成膜Aによる堆積物が基板Kのみならず未使用のシールド部材にも付着することを防止する。そのため、シールド部材4の交換頻度を減らすことができるので、装置稼働率を上げることができる。
[Another example]
FIG. 2 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form. 2 is an example in which the shield member supply unit 41 is disposed in the box 30 of the film forming process chamber 3 while being based on the plasma CVD apparatus 1 described above. Further, a separator plate that covers the shield member supply unit 41 is disposed between the shield member supply unit 41 and the substrate K. If it is this form, the separator 43 will prevent the deposit by the film-forming A adhering not only to the board | substrate K but to an unused shield member. Therefore, since the replacement frequency of the shield member 4 can be reduced, the apparatus operating rate can be increased.
 なお、本発明を具現化するにあたって、シールド部材供給部41とシールド部材回収部45とをプラズマ発生室2の箱体20側に配置した形態としても良い。この形態の場合、図2に示した様な、シールド部材供給部41が成膜処理室3の箱体30内に配置されている例と比べて、未使用のシールド部材4に成膜Aが付着する量は少ない。しかし、成膜用原料ガスG4が僅かではあるが、シールド部材4を通過することもあり、シールド部材供給部41をプラズマ発生室2の箱体20側に配置した場合であっても、未使用のシールド部材4に成膜Aが付着する可能性がある。そのため、さらにシールド部材供給部41を覆う隔離板を配置しておくことが好ましい。そうすることで、未使用のシールド部材4に成膜Aが付着するのを防ぐことができる。 Note that when the present invention is embodied, the shield member supply unit 41 and the shield member collection unit 45 may be arranged on the box 20 side of the plasma generation chamber 2. In the case of this form, compared with the example in which the shield member supply unit 41 is disposed in the box 30 of the film formation processing chamber 3 as shown in FIG. The amount attached is small. However, although the film forming material gas G4 is small, it may pass through the shield member 4 and is not used even when the shield member supply unit 41 is disposed on the box body 20 side of the plasma generation chamber 2. There is a possibility that the film formation A adheres to the shield member 4. Therefore, it is preferable to arrange a separator that further covers the shield member supply unit 41. By doing so, it is possible to prevent the film formation A from adhering to the unused shield member 4.
 [別の一例]
図3は、本発明を具現化する形態の別の一例を示す側面図であり、上述の形態とは異なる別の一例を示している。図3に示す形態のプラズマCVD装置1cは、上述したプラズマCVD装置1をベースとしつつ、シールド部材供給部41が成膜処理室3の箱体30内に配置されている例である。さらに、シールド部材供給部41を覆う箱体44を備え、箱体44には、未使用のシールド部材を通過させる開口部44hが設けられている。この形態であれば、箱体44が、シールド部材供給部4を全体的に覆うため、ラジカル成分のガスG3と成膜用原料ガスG4の回り込みによって未使用のシールド部材に成膜Aが付着することを防止する。そのため、シールド部材4の交換頻度をさらに減らすことができるので、装置稼働率をさらに上げることができる。
[Another example]
FIG. 3 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form. A plasma CVD apparatus 1c of the form shown in FIG. 3 is an example in which the shield member supply unit 41 is disposed in the box 30 of the film forming process chamber 3 while being based on the plasma CVD apparatus 1 described above. Further, a box body 44 that covers the shield member supply section 41 is provided, and the box body 44 is provided with an opening 44 h that allows an unused shield member to pass therethrough. If it is this form, since the box 44 covers the shield member supply part 4 entirely, the film-forming A adheres to an unused shield member by the wraparound of the radical component gas G3 and the film-forming source gas G4. To prevent that. Therefore, since the replacement frequency of the shield member 4 can be further reduced, the apparatus operating rate can be further increased.
 なお、箱体44の開口部44hの形状は、未使用のシールド部材が通過するのに十分であって、極力狭いこと、例えば、未使用のシールド部材の幅と厚み分の開口部寸法であることが好ましい。そうすれば、箱体44内部に成膜Aが堆積するのを防ぐこともできる。さらに、この形態において、箱体44の内部に搬送ローラ48aを、巻取用ローラ46側に搬送ローラ48bを配置し、シールド部材4と、開口部44hとの隙間を所定間隔に規制できるようにしても良い。そうすれば、開口部44hと未使用のシールド部材との擦れがなく、開口部の摩耗を防ぐことができる。そのため、開口部44hからラジカル成分のガスG3と成膜用原料ガスG4の流入を防ぎ、未使用のシールド部材4に成膜Aが付着するのを防ぐ効果を長く維持することができる。 The shape of the opening 44h of the box 44 is sufficient for an unused shield member to pass therethrough and is as narrow as possible, for example, an opening size corresponding to the width and thickness of the unused shield member. It is preferable. If it does so, it can also prevent that the film-forming A accumulates in the box 44 inside. Further, in this embodiment, the transport roller 48a is disposed inside the box body 44 and the transport roller 48b is disposed on the winding roller 46 side so that the gap between the shield member 4 and the opening 44h can be regulated at a predetermined interval. May be. By doing so, there is no friction between the opening 44h and the unused shield member, and wear of the opening can be prevented. Therefore, it is possible to prevent the inflow of the radical component gas G3 and the film forming source gas G4 from the opening 44h and to prevent the film formation A from adhering to the unused shield member 4 for a long time.
 また、本発明を具現化するにあたって、シールド部材供給部41,箱体44,搬送ローラ48及びシールド部材回収部45をプラズマ発生室2の箱体20側に配置した形態としても良い。 Further, in embodying the present invention, the shield member supply unit 41, the box 44, the transport roller 48, and the shield member collection unit 45 may be arranged on the side of the box 20 of the plasma generation chamber 2.
 [別の一例]
図4は、本発明を具現化する形態の別の一例を示す側面図であり、上述の形態とは異なる別の一例を示している。図4に示す形態のプラズマCVD装置1dは、上述したプラズマCVD装置1cをベースとしつつ、シールド部材供給部41を覆う箱体44には、与圧ガス導入部24が備えられている。さらに箱体44内の圧力が、箱体44の外側の圧力(図4の形態であれば、成膜処理室3内の圧力)よりも高く設定されている。
[Another example]
FIG. 4 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form. The plasma CVD apparatus 1d shown in FIG. 4 is based on the plasma CVD apparatus 1c described above, and includes a pressurized gas introduction section 24 in a box 44 that covers the shield member supply section 41. Further, the pressure inside the box 44 is set higher than the pressure outside the box 44 (in the case of FIG. 4, the pressure inside the film forming chamber 3).
 なお、箱体44内の圧力を、箱体44の外側の圧力よりも高く設定する具体的手段として、下記が例示できる。
1)与圧ガス導入部24は、プラズマ発生用原料ガス導入部21から分岐させ、プラズマ発生用原料ガスG1を供給する。箱体44は開口部44hのみが出口であり、箱体44の外側は、真空ポンプ35で減圧されている。そのため、箱体44内の圧力は、箱体44の外側よりも高く設定できる。
2)与圧ガス導入部24は、プラズマ発生用原料ガス導入部21とは独立したものとし、箱体44内に導入するガスの圧力を、箱体44の外側よりも高く設定して導入する。
In addition, the following can be illustrated as a specific means to set the pressure in the box 44 higher than the pressure outside the box 44.
1) The pressurized gas introduction unit 24 branches from the plasma generation source gas introduction unit 21 and supplies the plasma generation source gas G1. Only the opening 44 h is the outlet of the box 44, and the outside of the box 44 is decompressed by the vacuum pump 35. Therefore, the pressure in the box 44 can be set higher than the outside of the box 44.
2) The pressurized gas introduction unit 24 is independent of the plasma generating raw material gas introduction unit 21 and introduces the pressure of the gas introduced into the box 44 higher than the outside of the box 44. .
 上述の形態であれば、シールド部材供給部41を覆う箱体44内部の圧力が、箱体44の外側よりも高く設定しておけば、箱体44内部に成膜Aが堆積するのことを防止できる。そのため、未使用のシールド部材に堆積物が付着することを防止し、シールド部材4の交換頻度をさらに減らすことができるので、装置稼働率をさらに上げることができる。なお、与圧ガス導入部24から箱体44内に導入するガスは、不活性状態のプラズマ発生用原料ガスG1とすれば、成膜用原料ガスG4が箱体44内に流入することを防止しつつ、成膜処理室3で生成される成膜Aの品質にも影響を及ぼさないので好ましい。 In the case of the above-described embodiment, if the pressure inside the box 44 covering the shield member supply unit 41 is set higher than the outside of the box 44, the film deposition A is deposited inside the box 44. Can be prevented. Therefore, deposits can be prevented from adhering to unused shield members, and the replacement frequency of the shield members 4 can be further reduced, so that the apparatus operating rate can be further increased. If the gas introduced from the pressurized gas introduction section 24 into the box 44 is the plasma generating source gas G1 in an inactive state, the film forming source gas G4 is prevented from flowing into the box 44. However, it is preferable because the quality of the film formation A generated in the film formation processing chamber 3 is not affected.
 [クリーニング機能]
図5は、本発明を具現化する形態の別の一例を示す側面図であり、上述の形態とは異なる別の一例を示している。図5に示す形態のプラズマCVD装置1eは、上述したプラズマCVD装置1cをベースとしつつ、シールド部材回収部45を覆う箱体51を備え、箱体51には使用済みのシールド部材を通過させる開口部51hが設けられている。さらに、箱体51にクリーニング用ガスG6を供給するクリーニング用ガス導入部52を備え、箱体51内に使用済みのシールド部材と所定の間隔を隔てた位置に放電用電極53を備え、放電用電極53には高周波が印加されている。放電用電極53は、高周波容量結合型プラズマ(いわゆるCCP:Capacitivery Coupled Plasma)を発生させるものを例示しているが、他のプラズマ方式を用いたものでも良い。
[Cleaning function]
FIG. 5 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form. A plasma CVD apparatus 1e of the form shown in FIG. 5 includes a box body 51 that covers the shield member recovery unit 45 while being based on the plasma CVD apparatus 1c described above, and the box body 51 has an opening through which a used shield member passes. A part 51h is provided. Further, a cleaning gas introduction part 52 for supplying the cleaning gas G6 to the box 51 is provided, and a discharge electrode 53 is provided in the box 51 at a position spaced from the used shield member by a predetermined distance. A high frequency is applied to the electrode 53. The discharge electrode 53 exemplifies one that generates a high-frequency capacitively coupled plasma (so-called CCP: Capacitive Coupled Plasma), but another plasma method may be used.
 さらに、箱体51には排気用ポート54が備えられており、箱体51内で使用済みシールド部材に付着した堆積物は、クリーニング用ガスG6との反応により生成された生成物として箱体51に漂い、排気ポート54から外部へ排気される。そのため、使用済みのシールド部材を、再び未使用状態に戻すことができる。 Further, the box body 51 is provided with an exhaust port 54. Deposits attached to the used shield member in the box body 51 are produced as a product generated by the reaction with the cleaning gas G6. The air is exhausted from the exhaust port 54 to the outside. Therefore, the used shield member can be returned to the unused state again.
 このとき、クリーニング用ガスG6としては、CF,C,NF等のフッ素系ガスを使用することが好ましい。そうすることで、堆積物が分解され、外部へ排気可能となる。 At this time, it is preferable to use a fluorine-based gas such as CF 4 , C 2 F 6 , or NF 3 as the cleaning gas G 6 . By doing so, the deposit is decomposed and can be exhausted to the outside.
 また、箱体51内の圧力は、導入するクリーニング用ガスG6と、排気ポート54から外部へ排気させるガスの圧力や流量を調節し、箱体51の外側の圧力と同じか、箱体51の外側の圧力よりも低く設定されている。より具体的には、箱体51の外側や箱体51内部の圧力変動があっても、箱体51内部の圧力は、箱体51の外側の圧力よりも高くならず、箱体51の外側と同じか、箱体51内部の方がやや低い状態で維持されるように、設定しておく。そうすることで、ラジカル成分のガスG3と成膜用原料ガスG4が流入して、箱体51内部やシールド部材4に成膜Aが堆積することを防ぎ、クリーニング用ガスG6や除去された堆積物が成膜処理室3へ流出することを防ぐことができる。 The pressure in the box 51 is the same as the pressure outside the box 51 by adjusting the pressure and flow rate of the cleaning gas G6 to be introduced and the gas exhausted from the exhaust port 54 to the outside. It is set lower than the outside pressure. More specifically, the pressure inside the box 51 does not become higher than the pressure outside the box 51 even if there is pressure fluctuation inside the box 51 or inside the box 51. It is set so that the inside of the box 51 is maintained in a slightly lower state. By doing so, the radical component gas G3 and the film forming source gas G4 flow in to prevent the film formation A from depositing inside the box 51 and the shield member 4, and the cleaning gas G6 and the deposited deposition removed. An object can be prevented from flowing out into the film forming chamber 3.
 このため、一度使用済みとなったシールド部材を、矢印とは逆の方向に巻出・巻取を行って(つまり、図示したシールド部材回収部45側から、未使用状態に戻したシールド部材を供給し、シールド部材供給部41側で使用済みのシールド部材を回収するようにして)、シールド部材4を再度使用することができる。 For this reason, the shield member once used is unwound and wound in the direction opposite to the arrow (that is, the shield member returned to the unused state from the shield member collecting portion 45 side shown in the figure). The shield member 4 can be used again by supplying and collecting the used shield member on the shield member supply section 41 side.
 [別の一例]
図6は、本発明を具現化する形態の別の一例を示す側面図であり、上述の形態とは異なる別の一例を示している。図6に示す形態のプラズマCVD装置1fは、上述したプラズマCVD装置1eをベースとしつつ、シールド部材供給部41を覆う箱体56を備え、箱体56には未使用のシールド部材を通過させる開口部56hが設けられている。さらに箱体56にクリーニング用ガスG6を供給するクリーニング用ガス導入部57を備え、箱体56内に未使用のシールド部材と所定の間隔を隔てた位置に放電用電極58を備え、放電用電極58には高周波が印加されている。さらに、箱体56には、排気用ポート59が備えられいる。また、箱体56内の圧力は、導入するクリーニング用ガスG6と、排気ポート59から外部へ排気させるガスの圧力や流量を調節し、箱体56の外側の圧力と同じか、箱体56の外側の圧力よりも低く設定しておく。より具体的には、箱体56の外側や箱体56内部の圧力変動があっても、箱体56内部の圧力は、箱体56の外側の圧力よりも高くならず、箱体56の外側と同じか、箱体56内部の方がやや低い状態で維持されるように、設定しておく。そうすることで、ラジカル成分のガスG3と成膜用原料ガスG4が流入して、箱体56内部やシールド部材4に成膜Aが堆積することを防ぎ、クリーニング用ガスG6や除去された堆積物が成膜処理室3へ流出することを防ぐことができる。
[Another example]
FIG. 6 is a side view showing another example of a form embodying the present invention, and shows another example different from the above-described form. The plasma CVD apparatus 1f in the form shown in FIG. 6 includes a box 56 that covers the shield member supply unit 41 while being based on the plasma CVD apparatus 1e described above, and the box 56 has an opening through which an unused shield member passes. A portion 56h is provided. Further, a cleaning gas introducing portion 57 for supplying the cleaning gas G6 to the box 56 is provided, and a discharge electrode 58 is provided in the box 56 at a position spaced apart from an unused shield member. A high frequency is applied to 58. Further, the box 56 is provided with an exhaust port 59. The pressure inside the box 56 is the same as the pressure outside the box 56 by adjusting the pressure and flow rate of the cleaning gas G6 to be introduced and the gas exhausted from the exhaust port 59 to the outside. Set lower than the outside pressure. More specifically, the pressure inside the box 56 does not become higher than the pressure outside the box 56 even if there is a pressure fluctuation outside the box 56 or inside the box 56. It is set so that the inside of the box 56 is maintained in a slightly lower state. By doing so, the radical component gas G3 and the film forming raw material gas G4 flow in, preventing the film formation A from depositing inside the box 56 and the shield member 4, and the cleaning gas G6 and the removed deposition. An object can be prevented from flowing out into the film forming chamber 3.
 そのため、使用済みのシールド部材を、シールド部材回収部41側に回収された場合だけでなく、シールド部材供給部41側に回収された場合でも、未使用状態に戻すことができる。そうすることで、シールド部材を交換する頻度が極めて少なくなり、装置稼働率をより一層上げることができる。 Therefore, the used shield member can be returned to the unused state not only when it is collected on the shield member collection unit 41 side but also when it is collected on the shield member supply unit 41 side. By doing so, the frequency which replaces a shield member becomes very few, and an apparatus operation rate can be raised further.
 [搬送ローラー・アース接地]
上述の各プラズマCVD装置1~1fにおいて、シールド部材4は、
プラズマ発生室2と成膜処理室3との間には、開口部Hを有する隔壁が備えられ、開口部Hの外側には、開口部Hを跨ぐ位置に一対で配置された搬送ローラ48(48a,48b)を備え、シールド部材4は、一対の搬送ローラ48(48a,48b)に押し当てられることでアース接地されることが好ましい。そうすることで、シールド部材4のアース接地が、巻出用ローラ42や巻取用ローラ46を通じてアース接地するよりも、確実となる。
[Conveying roller / grounding]
In each of the plasma CVD apparatuses 1 to 1f described above, the shield member 4 is
A partition wall having an opening H is provided between the plasma generation chamber 2 and the film forming process chamber 3, and a pair of transport rollers 48 ( 48a, 48b), and the shield member 4 is preferably grounded by being pressed against the pair of transport rollers 48 (48a, 48b). By doing so, the grounding of the shield member 4 is more reliable than the grounding through the unwinding roller 42 and the winding roller 46.
 [シールド部材]
図7は、本発明に用いられるシールド部材を具現化した一例を示す側面図である。
本発明に用いられるシールド部材4を具現化する一例として、図7に示すような、複数のワイヤWが所定の間隔で平行に並べられている、ストライプ状のシールド部材4aが例示できる。
[Shield member]
FIG. 7 is a side view showing an example in which the shield member used in the present invention is embodied.
As an example for embodying the shield member 4 used in the present invention, a stripe-shaped shield member 4a in which a plurality of wires W are arranged in parallel at a predetermined interval as shown in FIG. 7 can be exemplified.
 開口部Hの両側の開口部Hを跨ぐ位置に、シールド部材供給部41の巻出用ローラ42と、シールド部材回収部45の巻取用ローラ46が配置されている。巻出用ローラ42と、巻取用ローラ46には、ストライプ状のシールド部材4aが巻き付けられている。 The unwinding roller 42 of the shield member supply unit 41 and the winding roller 46 of the shield member collecting unit 45 are disposed at positions across the openings H on both sides of the opening H. A striped shield member 4 a is wound around the unwinding roller 42 and the winding roller 46.
 [別の一例]
図8は、本発明に用いられるシールド部材を具現化した別の一例を示す側面図である。
本発明に用いられるシールド部材4を具現化する別の一例として、図8に示すような、複数のワイヤWが所定の間隔で格子状に並べられている、メッシュ状のシールド部材4bが例示できる。メッシュ状のシールド部材4bは、いわゆる金網のように複数のワイヤーを格子状に編んだものが例示できる。
[Another example]
FIG. 8 is a side view showing another example of the shield member used in the present invention.
As another example for embodying the shield member 4 used in the present invention, a mesh-like shield member 4b in which a plurality of wires W are arranged in a grid at predetermined intervals as shown in FIG. 8 can be exemplified. . The mesh-shaped shield member 4b can be exemplified by a plurality of wires knitted in a lattice shape like a so-called wire mesh.
 開口部Hの両側の開口部Hを跨ぐ位置に、シールド部材供給部41の巻出用ローラ42と、シールド部材回収部45の巻取用ローラ46が配置されており、巻出用ローラ42と、巻取用ローラ46には、メッシュ状のシールド部材4bが巻き付けられている。 The unwinding roller 42 of the shield member supplying unit 41 and the unwinding roller 46 of the shield member collecting unit 45 are disposed at a position across the opening H on both sides of the opening H, and the unwinding roller 42 The mesh-shaped shield member 4 b is wound around the winding roller 46.
 [別の一例]
図9は、本発明に用いられるシールド部材を具現化した別の一例を示す側面図である。
本発明に用いられるシールド部材4を具現化する別の一例として、図9に示すような、複数の開口部を有する打ち抜きの金属シート4cが例示できる。複数の開口部を有する打ち抜きの金属板4cは、いわゆるパンチングメタル(Perforated sheets、Perforated metal等とも呼ばれるもの)を箔状にしたものが例示できる。
[Another example]
FIG. 9 is a side view showing another example of the shield member used in the present invention.
As another example of embodying the shield member 4 used in the present invention, a punched metal sheet 4c having a plurality of openings as shown in FIG. 9 can be exemplified. The punched metal plate 4c having a plurality of openings can be exemplified by a so-called punching metal (also referred to as perforated sheets, perforated metal, etc.) in a foil shape.
 開口部Hの両側の開口部Hを跨ぐ位置に、シールド部材供給部41の巻出用ローラ42と、シールド部材回収部45の巻取用ローラ46が配置されており、巻出用ローラ42と、巻取用ローラ46には、複数の開口部を有する打ち抜きの金属シート4cが巻き付けられている。 The unwinding roller 42 of the shield member supplying unit 41 and the unwinding roller 46 of the shield member collecting unit 45 are disposed at a position across the opening H on both sides of the opening H, and the unwinding roller 42 The punching metal sheet 4c having a plurality of openings is wound around the winding roller 46.
 [別の一例]
図10は、本発明に用いられるシールド部材を具現化した別の一例を示す側面図である。
本発明に用いられるシールド部材4を具現化する別の一例として、図10に示すような、1本のワイヤWsを複数折り返し、それぞれのワイヤWsが所定の間隔でストライプ状に並べられている、1本のワイヤをストライプ状にしたシールド部材4dが例示できる。
[Another example]
FIG. 10 is a side view showing another example of the shield member used in the present invention.
As another example for embodying the shield member 4 used in the present invention, a plurality of single wires Ws are folded back as shown in FIG. 10, and the wires Ws are arranged in stripes at predetermined intervals. An example is a shield member 4d in which one wire is striped.
 1本のワイヤWsをストライプ状にしたシールド部材4dは、巻出側リール61に予め未使用のワイヤを巻き付けておき、巻き出された1本のワイヤWsを複数の折返しローラ62を経由させて張り巡らせ、巻取側リール63に巻き付けた状態で、シールド部材として機能する。そして、ワイヤ表面に堆積物が溜まれば、巻出側リール61から未使用部分のワイヤーを巻出ながら、使用済み部分のワイヤーを巻取側リール63にて回収する。なお、折返しローラ62は、自由に回転する形態のフリーローラとしても良いし、巻出側リール61や巻取側リール63の回転と同調するようにしても良い。 In the shield member 4 d in which one wire Ws is formed in a stripe shape, an unused wire is wound around the unwinding reel 61 in advance, and the unwound wire Ws is routed through a plurality of folding rollers 62. It functions as a shield member in a state of being wound around and wound around the take-up reel 63. When deposits accumulate on the wire surface, the used wire is collected by the take-up reel 63 while the unused wire is unwound from the take-out reel 61. The folding roller 62 may be a free roller that freely rotates, or may be synchronized with the rotation of the unwinding reel 61 or the winding reel 63.
 [別の一例]
図11は、本発明に用いられるシールド部材を具現化した別の一例を示す側面図である。
本発明に用いられるシールド部材4を具現化する別の一例として、図11に示すような、1本のワイヤを複数折り返し、さらにワイヤーを2方向に交差し、それぞれのワイヤーが所定の間隔でメッシュ状に並べられ、1本のワイヤを格子状にしたシールド部材4eが例示できる。
[Another example]
FIG. 11 is a side view showing another example of the shield member used in the present invention.
As another example for embodying the shield member 4 used in the present invention, as shown in FIG. 11, a plurality of single wires are folded back, the wires are crossed in two directions, and each wire is meshed at a predetermined interval. A shield member 4e arranged in a line and having a single wire in a lattice shape can be exemplified.
 1本のワイヤWsを格子状にしたシールド部材4eは、巻出側リール65に予め未使用のワイヤーを巻き付けておき、巻き出されたワイヤーを複数の折返しローラ66(66a,66b)を経由させて張り巡らせ、交差折返し用ローラ67にて90度向きを変え、再び複数の折返しローラ68(68a,68b)を経由させて張り巡らせ、巻取側リール69に巻き付けた状態で、シールド部材として機能する。そして、ワイヤー表面に堆積物が溜まれば、巻出側リール65から未使用部分のワイヤーを巻出ながら、使用済み部分のワイヤーを巻取側リール69にて回収する。なお、折返しローラ66,68や、交差折返し用ローラ67は、自由に回転する形態のフリーローラとしても良いし、巻出側リール65や巻取側リール69と協調して回転するようにしても良い。 In the shield member 4e in which one wire Ws is formed in a lattice shape, an unused wire is wound around the unwinding reel 65 in advance, and the unwound wire is routed through a plurality of folding rollers 66 (66a, 66b). It functions as a shield member in a state in which the direction is changed by 90 degrees with the cross-turning roller 67, and is passed again through the plurality of turning rollers 68 (68a, 68b) and wound around the take-up reel 69. To do. When deposits accumulate on the wire surface, the used wire is collected by the take-up reel 69 while the unused wire is unwound from the take-up reel 65. The folding rollers 66 and 68 and the cross-folding roller 67 may be free rollers that rotate freely, or may rotate in cooperation with the unwinding reel 65 and the winding reel 69. good.
 [他の実施形態]
上述の説明では、本発明に係るプラズマCVD装置において、成膜対象物となる基板Kが、いわゆる枚葉方式で入れ替えて成膜を行う形態を図示した。しかし、この形態には限定されず、例えば、ロール・トゥ・ロール方式による連続成膜形態であっても、本発明を適用することができる。
[Other Embodiments]
In the above description, in the plasma CVD apparatus according to the present invention, the form in which film formation is performed by replacing the substrate K, which is a film formation target, by a so-called single wafer method. However, the present invention is not limited to this form. For example, the present invention can be applied to a continuous film formation form by a roll-to-roll method.
 1  プラズマCVD装置
 2  プラズマ発生室
 3  成膜処理室
 4  シールド部材
 4a ストライプ状のシールド部材
 4b メッシュ状のシールド部材
 4c 開口板のシールド部材
 4d 1本のワイヤをストライプ状にしたシールド部材
 4e 1本のワイヤを格子状にしたシールド部材
 20  箱体
 21  プラズマ発生用原料ガス導入部
 22  高周波発生部
 24  与圧ガス導入部
 30  箱体
 31  成膜用原料ガス導入部
 32  基板保持台
 33  ロードロックゲート
 34  矢印
 35  真空ポンプ
 41  シールド部材供給部
 42  巻出用ローラ
 43  隔離板
 44  箱体
 44h 開口部
 45  シールド部材回収部
 46  巻取用ローラ
 48a 搬送ローラ
 48b 搬送ローラ
 51  箱体
 51h 開口部
 52  クリーニングガス導入部
 53  放電用電極
 54  排気ポート
 56  箱体
 56h 開口部
 57  クリーニングガス導入部
 58  放電用電極
 59  排気ポート
 61  巻出側リール
 62  折返しローラ
 63  巻取側リール
 65  巻出側リール
 66  折返しローラ
 67  交差折返し用ローラ
 68  折返しローラ
 69  巻取側リール
 G1  プラズマ発生用原料ガス
 G2  プラズマ状態のガス
 G3  ラジカル成分のガス
 G4  成膜用原料ガス
 G6  クリーニング用ガス
 A   成膜(堆積物)
 H   開口部
 K   基板(成膜対象物)
 W   ワイヤー
DESCRIPTION OF SYMBOLS 1 Plasma CVD apparatus 2 Plasma generation chamber 3 Film-forming process chamber 4 Shield member 4a Striped shield member 4b Mesh-shaped shield member 4c Shield member of opening plate 4d Shield member 4e made of one wire in stripes 4e One Shield member in which wires are formed in a lattice shape 20 Box body 21 Raw material gas introduction section for plasma generation 22 High frequency generation section 24 Pressurized gas introduction section 30 Box body 31 Raw material gas introduction section for film formation 32 Substrate holder 33 Load lock gate 34 Arrow 35 Vacuum pump 41 Shield member supply part 42 Unwinding roller 43 Separator plate 44 Box 44h Opening part 45 Shield member collecting part 46 Winding roller 48a Conveying roller 48b Conveying roller 51 Box 51h Opening part 52 Cleaning gas introducing part 53 Discharge electrode 54 Exhaust gas G 56 Box 56h Opening 57 Cleaning gas introduction part 58 Discharge electrode 59 Exhaust port 61 Unwinding reel 62 Folding roller 63 Winding side reel 65 Unwinding reel 66 Folding roller 67 Cross folding roller 68 Folding roller 69 Winding Take-up reel G1 Source gas for plasma generation G2 Gas in plasma G3 Gas of radical component G4 Source gas for film formation G6 Cleaning gas A Film formation (deposit)
H opening K substrate (film formation target)
W wire

Claims (11)

  1. プラズマ発生室と、
    前記プラズマ発生室と連通する成膜処理室と、
    前記プラズマ発生室と前記成膜処理室の間にプラズマ分離用のシールド部材と、
    プラズマ発生室にプラズマ発生用原料ガスを供給するプラズマ発生用原料ガス導入部と、
    成膜処理室に成膜用原料ガスを供給する成膜用原料ガス導入部とを備え、
    未使用のシールド部材を予め収容し必要に応じて供給するシールド部材供給部と、
    使用済みのシールド部材を回収して収容するシールド部材回収部とを備えた、
    プラズマCVD装置。
    A plasma generation chamber;
    A film forming chamber communicating with the plasma generating chamber;
    A shield member for plasma separation between the plasma generation chamber and the film formation chamber;
    A plasma generation source gas introduction section for supplying a plasma generation source gas to the plasma generation chamber;
    A film forming source gas introduction section for supplying a film forming source gas to the film forming chamber;
    A shield member supply unit that stores unused shield members in advance and supplies them as needed;
    A shield member collecting section for collecting and storing used shield members;
    Plasma CVD equipment.
  2. 前記シールド部材供給部は前記成膜処理室内若しくはプラズマ生成室内に配置されており、
    前記シールド部材供給部を覆う隔離板が配置されている
    請求項1に記載のプラズマCVD装置。
    The shield member supply unit is disposed in the film formation chamber or the plasma generation chamber,
    The plasma CVD apparatus according to claim 1, wherein a separator for covering the shield member supply unit is disposed.
  3. 前記シールド部材供給部は前記成膜処理室内若しくはプラズマ生成室内に配置されており、
    前記シールド部材供給部を覆う箱体を備え、
    当該箱体には未使用のシールド部材を通過させる開口部が設けられている、
    請求項1に記載のプラズマCVD装置。
    The shield member supply unit is disposed in the film formation chamber or the plasma generation chamber,
    A box that covers the shield member supply section;
    The box is provided with an opening through which an unused shield member passes,
    The plasma CVD apparatus according to claim 1.
  4. 前記シールド部材供給部を覆う箱体には与圧ガス導入部が備えられ、
    当該箱体内の圧力が当該箱体の外側の圧力よりも高く設定されている、
    請求項3に記載のプラズマCVD装置。
    The box covering the shield member supply unit is provided with a pressurized gas introduction unit,
    The pressure inside the box is set higher than the pressure outside the box,
    The plasma CVD apparatus according to claim 3.
  5. 前記シールド部材回収部を覆う箱体を備え、
    当該箱体には使用済みのシールド部材を通過させる開口部が設けられ、
    当該箱体内にクリーニング用ガスを供給するクリーニング用ガス導入部を備え、
    当該箱体内に前記使用済みのシールド部材と所定の間隔を隔てた位置に放電用電極を備え
    前記放電用電極には高周波が印加されており、
    当該箱体には、排気用ポートが備えられ、
    当該箱体内の圧力が、当該箱体の外側の圧力と同じ又は当該箱体の外側の圧力よりも低く設定されている、
    請求項3又は請求項4に記載のプラズマCVD装置。
    A box that covers the shield member recovery part;
    The box is provided with an opening through which the used shield member passes,
    A cleaning gas introduction section for supplying a cleaning gas into the box;
    A high frequency is applied to the discharge electrode with a discharge electrode at a position spaced apart from the used shield member in the box,
    The box is provided with an exhaust port,
    The pressure inside the box is set to be the same as the pressure outside the box or lower than the pressure outside the box,
    The plasma CVD apparatus according to claim 3 or 4.
  6. 前記シールド部材供給部を覆う箱体にクリーニング用ガスを供給するクリーニング用ガス導入部を備え、
    当該箱体内には、前記未使用のシールド部材と所定の間隔を隔てた位置に放電用電極を備え、
    当該放電用電極が高周波印加部に接続されており、
    当該箱体内部には、排気用ポートが備えられ、
    当該箱体内の圧力が、当該箱体の外側の圧力と同じ又は当該箱体の外側の圧力よりも低く設定されている、
    請求項5に記載のプラズマCVD装置。
    A cleaning gas introduction part for supplying a cleaning gas to a box covering the shield member supply part;
    In the box, a discharge electrode is provided at a predetermined distance from the unused shield member,
    The discharge electrode is connected to the high-frequency application unit,
    Inside the box, an exhaust port is provided,
    The pressure inside the box is set to be the same as the pressure outside the box or lower than the pressure outside the box,
    The plasma CVD apparatus according to claim 5.
  7. 前記プラズマ発生室と前記成膜処理室との間には、開口部を有する隔壁が備えられ、
    前記開口部の外側には、前記開口部を跨ぐ位置に一対で配置された搬送ローラを備え、
    前記シールド部材は、前記一対の搬送ローラに押し当てられることでアース接地される、
    請求項1~6のいずれかに記載のプラズマCVD装置。
    A partition having an opening is provided between the plasma generation chamber and the film forming chamber.
    Outside the opening, provided with a pair of transport rollers arranged at a position across the opening,
    The shield member is grounded by being pressed against the pair of transport rollers.
    The plasma CVD apparatus according to any one of claims 1 to 6.
  8.  前記シールド部材が、導電性材料を複数列に並べて配置されており、
    前記複数列に並べられたシールド部材の未使用部分を前記シールド部材供給部から繰り出しながら、
    前記複数列に並べられたシールド部材の使用済み部分を前記シールド部材回収部で回収する、
    請求項1~7のいずれかに記載のプラズマCVD装置。
    The shield member is arranged in a plurality of rows of conductive materials,
    While paying out unused portions of the shield members arranged in the plurality of rows from the shield member supply unit,
    The used part of the shield members arranged in the plurality of rows is collected by the shield member collection unit,
    The plasma CVD apparatus according to any one of claims 1 to 7.
  9.  前記シールド部材が、導電性材料を網状の平板で構成されている、
    請求項8に記載のプラズマCVD装置。
    The shield member is made of a mesh-like flat plate made of a conductive material,
    The plasma CVD apparatus according to claim 8.
  10.  前記シールド部材が、1本のワイヤーを複数回、折り返し配置して構成されており、
    前記シールド部材供給部からは前記1本のワイヤーの未使用部分が繰り出され、前記シールド部材回収部では前記1本のワイヤーの使用済み部分が回収される、
    請求項1~7のいずれかに記載のプラズマCVD装置。
    The shield member is configured by arranging a single wire several times,
    The unused portion of the one wire is drawn out from the shield member supply unit, and the used portion of the one wire is recovered in the shield member recovery unit,
    The plasma CVD apparatus according to any one of claims 1 to 7.
  11.  前記シールド部材が、ワイヤーを交差させて格子状にしたもので構成されている、
    請求項10に記載のプラズマCVD装置。
    The shield member is made of a lattice-like crossing wires,
    The plasma CVD apparatus according to claim 10.
PCT/JP2013/075073 2012-10-25 2013-09-18 Plasma cvd apparatus WO2014065044A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-236051 2012-10-25
JP2012236051A JP5965289B2 (en) 2012-10-25 2012-10-25 Remote plasma CVD equipment

Publications (1)

Publication Number Publication Date
WO2014065044A1 true WO2014065044A1 (en) 2014-05-01

Family

ID=50544424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075073 WO2014065044A1 (en) 2012-10-25 2013-09-18 Plasma cvd apparatus

Country Status (2)

Country Link
JP (1) JP5965289B2 (en)
WO (1) WO2014065044A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7297683B2 (en) 2018-01-25 2023-06-26 株式会社半導体エネルギー研究所 semiconductor equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030123A (en) * 1983-07-28 1985-02-15 Fuji Electric Corp Res & Dev Ltd Forming device for thin-film semiconductor
JPH07254566A (en) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd Thin film forming apparatus
JPH11293469A (en) * 1998-04-13 1999-10-26 Komatsu Ltd Surface treating device and surface treating method
JP2008140945A (en) * 2006-11-30 2008-06-19 Sanyo Electric Co Ltd cat-CVD DEVICE AND FILAMENT REPLACEMENT METHOD

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353514B2 (en) * 1994-12-09 2002-12-03 ソニー株式会社 Plasma processing apparatus, plasma processing method, and method for manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030123A (en) * 1983-07-28 1985-02-15 Fuji Electric Corp Res & Dev Ltd Forming device for thin-film semiconductor
JPH07254566A (en) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd Thin film forming apparatus
JPH11293469A (en) * 1998-04-13 1999-10-26 Komatsu Ltd Surface treating device and surface treating method
JP2008140945A (en) * 2006-11-30 2008-06-19 Sanyo Electric Co Ltd cat-CVD DEVICE AND FILAMENT REPLACEMENT METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7297683B2 (en) 2018-01-25 2023-06-26 株式会社半導体エネルギー研究所 semiconductor equipment

Also Published As

Publication number Publication date
JP5965289B2 (en) 2016-08-03
JP2014084516A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
KR101819781B1 (en) Ald coating system
JP5665290B2 (en) Deposition equipment
JP5486249B2 (en) Deposition method
JP2006521462A (en) Plasma enhanced film deposition
US20090220803A1 (en) Film depositing apparatus, gas barrier film, and process for producing gas barrier films
JP2011080104A (en) Plasma cvd apparatus
US20100297361A1 (en) Plasma deposition source and method for depositing thin films
JP5965289B2 (en) Remote plasma CVD equipment
CN105393333A (en) Cleaning method for thin-film processing applications and apparatus for use therein
US20100269753A1 (en) Method and apparatus for treating a gas stream
JP5144393B2 (en) Plasma CVD film forming method and plasma CVD apparatus
EP2994553B1 (en) Plasma generation for thin film deposition on flexible substrates
KR102078584B1 (en) Exhaust fluid treatment apparatus and substrate treatment system
KR20190080501A (en) Exhaust fluid treatment apparatus and substrate treatment system
JP2013044015A (en) Film deposition apparatus
KR101323214B1 (en) Apparatus for removing particle and apparatus for processing substrate using the same
US9133546B1 (en) Electrically- and chemically-active adlayers for plasma electrodes
WO2012121040A1 (en) Method for manufacturing functional film
US20050016568A1 (en) Apparatus and method for cleaning of semiconductor device manufacturing equipment
JP2014122419A (en) Plasma CVD apparatus
KR101513511B1 (en) Gas supply unit
TWI550134B (en) Method for plasma process and photomask plate
JP2011127188A (en) Cvd film deposition apparatus
JP2005213551A (en) Film deposition system and cleaning method therefor
JP4894667B2 (en) Thin film manufacturing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848683

Country of ref document: EP

Kind code of ref document: A1