WO2014064470A1 - Device for hydrogen generation by cavitation electrolisys - Google Patents

Device for hydrogen generation by cavitation electrolisys Download PDF

Info

Publication number
WO2014064470A1
WO2014064470A1 PCT/GE2013/000009 GE2013000009W WO2014064470A1 WO 2014064470 A1 WO2014064470 A1 WO 2014064470A1 GE 2013000009 W GE2013000009 W GE 2013000009W WO 2014064470 A1 WO2014064470 A1 WO 2014064470A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
cavitation
conected
water
electrolysis
Prior art date
Application number
PCT/GE2013/000009
Other languages
French (fr)
Inventor
Sophia BURJANADZE
Original Assignee
Burjanadze Sophia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burjanadze Sophia filed Critical Burjanadze Sophia
Publication of WO2014064470A1 publication Critical patent/WO2014064470A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • Electrodes are required to be covered by rare substances (for example platinum), which also makes this technology more expensive compared to our method which has no such requirements.
  • Cavitation is defined as disruption of fluid by arising of negative pressure.
  • the pressure decrease may be achieved by different methods: by fluid stream flow round the body, by solid body movement with high velocity through the fluid, by pushing fluid by plunger, by fast tearing away the plunger, by fluid turbulence.
  • acoustic ultrasonic cavitation Therefore, mainly there are two types of cavitation in the fluid: acoustic and hydrodynamical. It is worth to mention separately the ultrasonic cavitation: sonoluminiscence and sonochemistry. The chemical effects of ultrasonic cavitation chemistry, sonochemistry are well investigated. During the treatment by ultrasound in water develops next reactions:
  • Cavitation bubble collapse produces intense local heating (5000K), high pressures (-1000 atm.), and enormous heating and cooling rates (>100k/sec), providing a unique interaction of energy and matter. These extreme conditions affect hydrogen bonding in water and facilitate destruction of water clusters, reducing energy consumption for the electrolysis.
  • One of the objectives of invention is development of turbulent cavitation theoretical model by mathematical modeling. Another objective of project is theoretical investigation of hydrogen bonding in water and experimental investigation of its effects on water macro properties. We think that hydrogen bonding and cluster formation in water affects electrolysis efficiency.
  • Plasma chemical methods of hydrogen production are one of the most energy effective. Plamsa chemical proccesses which are obtained by nonuniforme plasma highfreuquency treatment of water are very energy effective.
  • cavitations electrolysis method Our approach is based on the investigation of fundamental properties of water, investigation of hydrogen bonding in water and its effects on water properties, investigation of cavitations effects on water fundamental properties and its usage for electrolysis.
  • Fig. 1 The device for production of hydrogen by cavitation electrolysis method is shown on Fig. 1. Numbers indicate:
  • 1,2 - electrodes 1,2 - electrodes, cilidrical cathode and anode
  • Electrodes 1, 2 - anode and cathode are made from stainless steel.
  • Cavitator includs water input and autput parts.
  • Water pump 4 is chosen by hydrogen production rates demand.
  • Modulator 5 includes resonance circuit elements.
  • Energy source 8 supplaies pulsed voltage.
  • Cavitation electrolysis device operates on next priciple:
  • water pump (4) water is supplaied to cavitator (3), in which it undergoes turbulent hydravlic cavitation. Water continues cavitating and turbulent ratation, goes up and appear between coaxial, made from stainless steel cylidrical electrods (1, 2)(cathode and anode). Electrodes are supplaied by special impulse high frequency water own frequnecy modulate current. On the first eleqctrode - cathode hydrogen is generated, second electrode (anode) - oxigen is generated. Gas acumulation on electrodes by generation from water by cavitaton and electrolysis is more stimulated also by water rotation centrifugal effect.
  • Electrodes with supplaied water play role of condesator in resonance circute which is regulated accordinging water own frequncies.
  • Device size is defined by production rates.
  • Acodrdingly is made modulator which is switched on in circute between energys source and cathode. Only main ussue which should be taken into acoount is water own frequency. As a result a device has not upper and lower production limits.
  • After passing space throgh electrodes enriched by hydrogen and oxigen water flow by tubes in two diferent tanks and undergoes degassing. After this water by tubes located at the bottom of tanks throgh the pump returns to cyclic system. Obtained hydrogen and oxigen lead out by tubes which are located on hydrogen and oxigen tanks.
  • Device does not need purificated water and can work on tap water. Device also can work on sea water, with adjusment for sea water frequency. Also it should be taken into account on this case utilization of aditional products obtained during sea water lelctrolysis.

Abstract

The present invention relates to cavitation-electrolysis hydrogen generator. The cavitation- electrolysis hydrogen generator of the present invention comprises a filled with water cylidrical cavitator, locateded in it cathode and anode, conected by tube to cavitators bottom circulation water pump, conected to cathode and anode pulsed energy source, voltage modulator, hydrogen and oxigen tanks conected to pump and cavitators upper part, were enriched by hydrogen and oxigen water undergoes degassing and by conected to tank tube hydrogen uotput is obtained. According to the cavitation-electrolysis hydrogen generator of the present invention, there are advantages in that the efficiency of hydrogen generation can be improved by energy effective combination of cavitation and electrolysis and hydrogen production costs also is remarkably reduced due to device cheap materials construction.

Description

DESCREPTION
Today hydrogen is obtained mainly from natural gas and despite the fact that this technology is energetically very competitive, development of this technology is not considered as a perspective direction. Firstly, natural gas is not renewable source of energy; secondly, this technology is characterized with greenhouse gases emission during the production of hydrogen. Therefore, production of hydrogen from natural gas cannot solve the problem of global warming. Same problems are presented during hydrogen production from coal.
Only completely clean technology of hydrogen production is electrolysis, but today its high energy consumption rate is a barrier for its commercialization. We propose solving exactly this problem in this invention with absolutely new cavitation-electrolysis method, which not only significantly decreases the energy consumption but also reduces cost of device.
The several types of electrolysis are currently known with their strong and weak points. Especial we would like to underline the two types of technologies: high temperature and high pressure electrolysis. Our completely new type cavitation-electrolysis method unites the strong sides of these technologies and doesn't include their weak points. For example, in the cavitation bubble very high temperatures and high pressures are located. Therefore we need not high pressure proof containers because high pressure is located in the cavitation bubble. As a result the cost of technology significantly decreases; the high pressure proof containers are costly technology. In the given technology for reaching high temperatures providing of additional heat is not required. As a result we have also significant increase in energy efficiency.
In widely-spread electrolyzers chemically very active catalysts are used, therefore electrodes are required to be covered by rare substances (for example platinum), which also makes this technology more expensive compared to our method which has no such requirements.
Really we have a new method of hydrogen production and a device, which by its main characteristics is cavitation physical-chemical reactor - electrolysis cell.
Most close to this invention is a cavitation hydrogen generator, which is represented by US patent (1), which used only hydraulic cavitation. In presented invention also effectively is used nonlinear electrolysis method, as a result efficiency of device increased compare to prototype. What about Meyer's nonlinear etecrolysis device, improved method of which is used in this invention, it without modification has production rate restriction. This problem is overcome in given invention.
Given method differs from existed electrolysis technologies mainly with using of cavitaion. Cavitation phenomenon is interesting by itself with diversity, contradictive and amazing discoveries.
Cavitation is defined as disruption of fluid by arising of negative pressure. The pressure decrease may be achieved by different methods: by fluid stream flow round the body, by solid body movement with high velocity through the fluid, by pushing fluid by plunger, by fast tearing away the plunger, by fluid turbulence. Also it is known acoustic ultrasonic cavitation. Therefore, mainly there are two types of cavitation in the fluid: acoustic and hydrodynamical. It is worth to mention separately the ultrasonic cavitation: sonoluminiscence and sonochemistry. The chemical effects of ultrasonic cavitation chemistry, sonochemistry are well investigated. During the treatment by ultrasound in water develops next reactions:
H20 - ))) H, OH, H2, H202
Next thermal spliting reactions may develope in cavitaion bubble as a result of high temperatures:
H202 T OH+OH; H+H02; H2 +02;
As we saw, during the ultrasonic cavitation hydrogen is made and this fact is well known for science, but this proccess is charactered with high recombination rate. Thus, ultrsonic cavitaion is not used for production of industrial hydrogen. In our technology hydrodynamical turbulent cavitator is used, which differe from sonochemistry and allows to treat huge mass of water and can obtain significant amount of hydorgen.
Cavitation bubble collapse produces intense local heating (5000K), high pressures (-1000 atm.), and enormous heating and cooling rates (>100k/sec), providing a unique interaction of energy and matter. These extreme conditions affect hydrogen bonding in water and facilitate destruction of water clusters, reducing energy consumption for the electrolysis.
One of the objectives of invention is development of turbulent cavitation theoretical model by mathematical modeling. Another objective of project is theoretical investigation of hydrogen bonding in water and experimental investigation of its effects on water macro properties. We think that hydrogen bonding and cluster formation in water affects electrolysis efficiency.
Developed during cavitaion phenomenon can be considered as plasma. It is also known that plasma chemical methods of hydrogen production are one of the most energy effective. Plamsa chemical proccesses which are obtained by nonuniforme plasma highfreuquency treatment of water are very energy effective.
In our device cavitation and electrolysis in other words plasma-chemical and electrochemical effective combination is used and achived maximal energy efficiency.
Expected result of invention is development of completely new cheap hydrogen technology by cavitation electrolysis method. It is expected that obtained by this technology electrolyzer will be 10 times cheaper of existed prototypes. The energy efficiency also will increase.
Really we have a new hydrogen production method and device, which by its main characteristics is cavitations physical-chemical reactor - electrolysis cell. We developed absolutely new approach for electrolysis: cavitations electrolysis method. Our approach is based on the investigation of fundamental properties of water, investigation of hydrogen bonding in water and its effects on water properties, investigation of cavitations effects on water fundamental properties and its usage for electrolysis.
The device for production of hydrogen by cavitation electrolysis method is shown on Fig. 1. Numbers indicate:
1,2 - electrodes, cilidrical cathode and anode;
3 - cavitator;
4- water pump;
5 - modulator;
6, 7 - oxigen and hydrogen tanks;
8 - energy source.
Electrodes 1, 2 - anode and cathode are made from stainless steel.
Cavitator includs water input and autput parts.
Water pump 4 is chosen by hydrogen production rates demand.
Modulator 5 includes resonance circuit elements.
Energy source 8 supplaies pulsed voltage.
Cavitation electrolysis device operates on next priciple:
By means of water pump (4) water is supplaied to cavitator (3), in which it undergoes turbulent hydravlic cavitation. Water continues cavitating and turbulent ratation, goes up and appear between coaxial, made from stainless steel cylidrical electrods (1, 2)(cathode and anode). Electrodes are supplaied by special impulse high frequency water own frequnecy modulate current. On the first eleqctrode - cathode hydrogen is generated, second electrode (anode) - oxigen is generated. Gas acumulation on electrodes by generation from water by cavitaton and electrolysis is more stimulated also by water rotation centrifugal effect. The distance between electrodes should be suficient that water enriched by oxigena and hydrogen should not mixed up. Electrodes with supplaied water play role of condesator in resonance circute which is regulated acording water own frequncies. Device size is defined by production rates. Acodrdingly is made modulator which is switched on in circute between energys source and cathode. Only main ussue which should be taken into acoount is water own frequency. As a result a device has not upper and lower production limits. After passing space throgh electrodes enriched by hydrogen and oxigen water flow by tubes in two diferent tanks and undergoes degassing. After this water by tubes located at the bottom of tanks throgh the pump returns to cyclic system. Obtained hydrogen and oxigen lead out by tubes which are located on hydrogen and oxigen tanks.
Device does not need purificated water and can work on tap water. Device also can work on sea water, with adjusment for sea water frequency. Also it should be taken into account on this case utilization of aditional products obtained during sea water lelctrolysis.
1. US, 6719817B 1, 13.04.2004

Claims

1. Hydrogen generation cavitation eleqtrolysis device comprises filled with water cylidrical cavitator, locateded in it cathode and anode, which are made from stainless steel and have coaxial cylindrical form, conected by tube to cavitator circulation water pump, conected to cathode and anode pulsed energy source, switched on in the circute between energy source and cathode modulator, conected to cavitators upper part by tube hydrogen tank, connected to cavitator upper part by tube oxigen tank, connected to these tanks bottom parts by tubes mention above water pump, conected to hydrogen and oxigen tanks gas ouput tubes.
PCT/GE2013/000009 2012-10-26 2013-10-25 Device for hydrogen generation by cavitation electrolisys WO2014064470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GEAP201212880A GEP20146048B (en) 2012-10-26 2012-10-26 Cavitation-electrolysis device for hydrogen generation
GEAP201212880 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014064470A1 true WO2014064470A1 (en) 2014-05-01

Family

ID=49841691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GE2013/000009 WO2014064470A1 (en) 2012-10-26 2013-10-25 Device for hydrogen generation by cavitation electrolisys

Country Status (2)

Country Link
GE (1) GEP20146048B (en)
WO (1) WO2014064470A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340885B1 (en) 2014-12-15 2016-05-17 JOI Scientific, Inc. Negative reactive circuit for a hydrogen generation system
US9340886B1 (en) 2014-12-15 2016-05-17 JOI Scientific, Inc. Positive reactive circuit for a hydrogen generation system
US9347142B1 (en) 2014-12-15 2016-05-24 JOI Scientific, Inc. Feedback circuit for a hydrogen generation system
WO2016100362A1 (en) * 2014-12-15 2016-06-23 JOI Scientific, Inc. Energy extraction system and methods
WO2017157745A1 (en) 2016-03-14 2017-09-21 Michael Frimann Portable electrolyzer and its use
US10047445B2 (en) 2014-12-15 2018-08-14 JOI Scientific, Inc. Hydrogen generation system
US10214820B2 (en) 2014-12-15 2019-02-26 JOI Scientific, Inc. Hydrogen generation system with a controllable reactive circuit and associated methods
CN110367426A (en) * 2019-07-03 2019-10-25 浙江大学 A kind of ultrasound-electrode-nano-porous films coupled hydrogen making disinfection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184931A (en) * 1977-03-10 1980-01-22 Inoue-Japax Research Incorporated Method of electrolytically generating hydrogen and oxygen for use in a torch or the like
US6719817B1 (en) * 2003-06-17 2004-04-13 Daniel J Marin Cavitation hydrogen generator
US20060060464A1 (en) * 2002-05-08 2006-03-23 Chang Chak M T Plasma formed in a fluid
US20090159461A1 (en) * 2007-12-20 2009-06-25 Mccutchen Co. Electrohydraulic and shear cavitation radial counterflow liquid processor
US20120058405A1 (en) * 2008-07-02 2012-03-08 Kirchoff James A Cavitation assisted sonochemical hydrogen production system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184931A (en) * 1977-03-10 1980-01-22 Inoue-Japax Research Incorporated Method of electrolytically generating hydrogen and oxygen for use in a torch or the like
US20060060464A1 (en) * 2002-05-08 2006-03-23 Chang Chak M T Plasma formed in a fluid
US6719817B1 (en) * 2003-06-17 2004-04-13 Daniel J Marin Cavitation hydrogen generator
US20090159461A1 (en) * 2007-12-20 2009-06-25 Mccutchen Co. Electrohydraulic and shear cavitation radial counterflow liquid processor
US20120058405A1 (en) * 2008-07-02 2012-03-08 Kirchoff James A Cavitation assisted sonochemical hydrogen production system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340885B1 (en) 2014-12-15 2016-05-17 JOI Scientific, Inc. Negative reactive circuit for a hydrogen generation system
US9340886B1 (en) 2014-12-15 2016-05-17 JOI Scientific, Inc. Positive reactive circuit for a hydrogen generation system
US9347142B1 (en) 2014-12-15 2016-05-24 JOI Scientific, Inc. Feedback circuit for a hydrogen generation system
WO2016100362A1 (en) * 2014-12-15 2016-06-23 JOI Scientific, Inc. Energy extraction system and methods
US9816190B2 (en) 2014-12-15 2017-11-14 JOI Scientific, Inc. Energy extraction system and methods
US10047445B2 (en) 2014-12-15 2018-08-14 JOI Scientific, Inc. Hydrogen generation system
US10214820B2 (en) 2014-12-15 2019-02-26 JOI Scientific, Inc. Hydrogen generation system with a controllable reactive circuit and associated methods
WO2017157745A1 (en) 2016-03-14 2017-09-21 Michael Frimann Portable electrolyzer and its use
US11008661B2 (en) 2016-03-14 2021-05-18 Frimann Innoswiss Portable electrolyzer and its use
CN110367426A (en) * 2019-07-03 2019-10-25 浙江大学 A kind of ultrasound-electrode-nano-porous films coupled hydrogen making disinfection system
CN110367426B (en) * 2019-07-03 2022-03-18 浙江大学 Ultrasonic-electrode-nano porous membrane coupling hydrogen production sterilization system

Also Published As

Publication number Publication date
GEP20146048B (en) 2014-02-25

Similar Documents

Publication Publication Date Title
WO2014064470A1 (en) Device for hydrogen generation by cavitation electrolisys
Angulo et al. Influence of bubbles on the energy conversion efficiency of electrochemical reactors
Islam et al. Sonochemical and sonoelectrochemical production of hydrogen
KR20150145770A (en) Heat generating apparatus based on hydro dynamic resonance by vibrating electric pulses
US9816190B2 (en) Energy extraction system and methods
CN104129833A (en) Plasma synergistic ultrasonic cavitation effect waste water treatment reactor
ES2951508T3 (en) A process and apparatus for the production of hydrogen
WO2015005921A1 (en) Multifactorial hydrogen reactor
WO2012054842A2 (en) Enhanced water electrolysis apparatus and methods for hydrogen generation and other applications
JP2009532322A5 (en)
SG192458A1 (en) Cavitation assisted sonochemical hydrogen production system
US9353447B2 (en) Multifactorial hydrogen reactor
WO2015125981A1 (en) High energy efficiency apparatus for generating the gas mixture of hydrogen and oxygen by water electrolysis
US20100101942A1 (en) Electrolytic cell with cavitating jet
Merabet et al. Sonolytic and ultrasound-assisted techniques for hydrogen production: A review based on the role of ultrasound
JP2011506767A5 (en)
CN105502772A (en) Synergistic treatment device for degradation-resistant organic waste water and method thereof
JP2019183286A (en) Organic matter production method and organic matter production system
CN201545915U (en) Gas-liquid gravity-flow circulating type hydrogen electrolyzer
CN103975653B (en) Method and apparatus for producing plasma
CN102242377B (en) Method for producing metal sodium through electrolysis in bipolar electrolytic cell
JP2016132800A (en) Organic matter production method and organic matter production system
CN107673461A (en) Sewage-treatment plant and method and system
Duan et al. Experimental and numerical investigation of the impact of operating conditions on water electrolysis with ultrasonic
WO2013179684A1 (en) Apparatus for producing hydrogen gas and method for producing hydrogen gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13811257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13811257

Country of ref document: EP

Kind code of ref document: A1