WO2014063569A1 - 用于直流输电下离子流场分布特性测量的测量系统 - Google Patents

用于直流输电下离子流场分布特性测量的测量系统 Download PDF

Info

Publication number
WO2014063569A1
WO2014063569A1 PCT/CN2013/084906 CN2013084906W WO2014063569A1 WO 2014063569 A1 WO2014063569 A1 WO 2014063569A1 CN 2013084906 W CN2013084906 W CN 2013084906W WO 2014063569 A1 WO2014063569 A1 WO 2014063569A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
measuring
direct current
electric field
ion
Prior art date
Application number
PCT/CN2013/084906
Other languages
English (en)
French (fr)
Inventor
江建华
苏磊
辛亮
齐振生
Original Assignee
上海市电力公司
华东电力试验研究院有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市电力公司, 华东电力试验研究院有限公司, 国家电网公司 filed Critical 上海市电力公司
Publication of WO2014063569A1 publication Critical patent/WO2014063569A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0046Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
    • G01R19/0061Measuring currents of particle-beams, currents from electron multipliers, photocurrents, ion currents; Measuring in plasmas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • G01R29/14Measuring field distribution

Definitions

  • the present invention relates to a power measuring system, and more particularly to a measuring system for measuring the distribution characteristics of an ion flow field under direct current transmission. Background technique
  • the measurement method of the ion flow field of UHV DC transmission and the calibration method of the instrument are the important basis and direct basis for the evaluation of the electromagnetic environment of UHV transmission engineering.
  • the DC electromagnetic environment is directly related to the corona characteristics of the transmission line and the electric field effect caused by it.
  • Line corona is a kind of luminescence discharge phenomenon caused by air ionization around the wire after the surface potential gradient of the wire exceeds a certain critical value.
  • the development process of the DC corona is quite different from that of the AC corona.
  • the AC line is corona
  • the ions generated by the corona discharge air ionization in the first half cycle are almost all pulled back to the wire due to the change in voltage polarity in the second half cycle.
  • the ions that are ionized are substantially trapped near the wires, and there is no charged ions in the vast space between the pole wires and the earth.
  • the DC line is different, the wire voltage is fixed in polarity, a relatively steady-state free layer is formed around the wire, and a large number of ions having the same polarity as the wire are present outside the free layer.
  • the appearance of these space charges is distorted by the electric field without space charge.
  • the space charge also migrates to the surrounding and the ground due to the action of the electric field force.
  • the space charge itself generates an electric field, which will greatly enhance the electrostatic field (also known as the nominal electric field) generated by the surface charge of the wire.
  • the space charge moves under the action of an electric field to form an ion current. This electric field, which is caused by the interaction of the space charge and the original wire charge, is called a combined electric field.
  • the effect of space charge is particularly prominent.
  • the ground synthetic electric field can even reach 2 to 3 times the nominal field. Therefore, the increase of ground field strength and the occurrence of ion current are one of the important characteristics of the electromagnetic environment of the direct current transmission line which is different from the AC line.
  • HVDC high-voltage direct current
  • the object of the present invention is to overcome the above-mentioned drawbacks of the prior art and to provide a multi-parameter multi-channel real-time measurement with high measurement accuracy for measuring the ion flow field distribution characteristics under direct current transmission.
  • a measurement system for measuring ion flow field distribution characteristics under direct current transmission comprising a DC electric field intensity sensor, an ion current collection sensor, a meteorological parameter sensor, and a multi-channel real-time synchronous control device, the DC electric field intensity sensor, the ion
  • the flow collecting sensor and the meteorological parameter sensor are evenly distributed at the measuring site, and the multi-channel real-time synchronous control device is respectively connected with a DC electric field intensity sensor, an ion current collecting sensor and a meteorological parameter sensor, and receives a DC electric field intensity sensor, an ion current collecting sensor and a real-time.
  • the data collected by the meteorological parameter sensor, and the characteristics of the data are analyzed and stored.
  • the multi-channel real-time synchronous control device comprises a portable industrial computer and three data acquisition cards installed in the portable industrial computer, and the three data acquisition cards are respectively connected with a DC electric field intensity sensor, an ion current collection sensor and a meteorological device. Parameter sensor.
  • the portable industrial computer is a computer with LabView programmable data processing function.
  • the meteorological parameters include wind speed, wind direction, temperature, relative humidity, and atmospheric pressure.
  • the ion current collecting sensor includes a connected Wilson ion current collecting plate and a digital display micro current meter.
  • the DC electric field intensity sensor and the ion current collecting sensor are respectively provided with an analog output interface, and the analog output interface is connected with the data acquisition card.
  • the DC electric field intensity sensor is provided with 10 to 30, and the ion current collection sensor is provided with 10 to 30.
  • the present invention has the following advantages:
  • the multi-channel real-time synchronous control device of the present invention adopts a "pseudo-synchronization" scheme design and a “pseudo-synchronization” scheme;
  • the present invention simultaneously sets a DC electric field intensity sensor and an ion current collection sensor, which can realize measurement of distribution characteristics of various ion flow fields under direct current transmission, and has high measurement accuracy.
  • FIG. 1 is a schematic view of the structure of the present invention. detailed description
  • a measurement system for measuring the distribution characteristics of ion flow field under direct current transmission includes a DC electric field intensity sensor 1, an ion current collection sensor 2, a meteorological parameter sensor 3, and a multi-channel real-time synchronous control device 4
  • the DC electric field intensity sensor 1, the ion current collecting sensor 2 and the meteorological parameter sensor 3 are evenly distributed at the measurement site, and the multi-channel real-time synchronous control device 4 is respectively connected to the DC electric field intensity sensor 1, the ion current collecting sensor 2, and Meteorological parameter sensor 3.
  • the DC electric field intensity sensor 1 and the ion current collecting sensor 2 are distributed laterally (or orthogonal to the transmission line) at a certain interval under the power transmission line, and the number of sensors can be set according to the size of the area of the measurement site. In the present embodiment, 30 DC electric field intensity sensors 1 and ion current collection sensors 2 are provided.
  • the ion current collecting sensor 2 includes a connected Wilson ion current collecting plate and a number Show micro galvanometer.
  • the Wilson ion current collecting plate is made of copper clad plate, and the conductive metal on the upper surface is divided into two areas insulated from each other.
  • the central area is an effective collecting area
  • the surrounding edge area is a shielding area, and is directly grounded, Wilson ion current collecting plate
  • the effective collection area has an area of 0.1 m 2 .
  • the DC electric field intensity sensor 1 and the ion current collecting sensor 2 are respectively provided with an analog output interface, and the analog output interface is connected with the data acquisition card to realize real-time synchronous data acquisition.
  • the multi-channel real-time synchronization control device 4 comprises a portable industrial computer and three data acquisition cards installed in the portable industrial computer, and the three data acquisition cards are respectively connected with a DC electric field intensity sensor, an ion current collection sensor and Meteorological parameter sensor.
  • the portable industrial computer is a computer with Lab View programmable data processing function.
  • the multi-channel real-time synchronization control device 4 of this embodiment is designed in a parallel "pseudo-synchronization" scheme (proposed by NI Corporation of the United States).
  • the three data acquisition cards use NI data acquisition cards: one NI 6250 (16 channels) and two NI 6254 (32 channels).
  • the configuration of the portable industrial computer is: CPU Core 2 E6300; Intel Q965 motherboard; 2G DDRII memory; 80G SATA hard drive; built-in graphics card. Windows XP operating system.
  • the NI 625X series of data acquisition cards have a multi-channel scan rate of 1 MHz, which is a delay of tens of microseconds from the first channel to the 32nd channel. Therefore, the simultaneous sampling requirements for the measurement of the electric field distribution of the ion current under the direct current transmission line are completely satisfactory.
  • the NI 6250 has 16 analog input channels, defined as Devi, for collecting meteorological parameters.
  • the wind speed, wind direction, temperature, air pressure, and relative humidity correspond to channels AI0 to AI4, respectively.
  • the card is directly connected to the signal box of a small mobile weather station with a 68-pin cable.
  • the NI 6254 has 32 analog input channels, and the two NI 6254 systems default to Dev2 and Dev3, respectively.
  • Dev2 is used to measure the combined field strength and is connected to a DC field strength meter;
  • Dev3 is used to measure the ion current density and is connected to an ion current meter.
  • the first 30 channels of each card, AI0 ⁇ AI29, correspond to 30 external sensors in turn.
  • the meteorological parameters 3 include wind speed, wind direction, temperature, relative humidity, and atmospheric pressure.
  • the weather parameter sensor 3 is a small weather station HD2003 produced by the Italian company delta ohm. Its main feature is the measurement of wind speed, which uses ultrasonic wind speed and direction measurement technology. This technology can have better wind speed and direction measurement sensitivity at low wind speeds.
  • the wind speed and direction measuring mechanism does not have any mechanical devices, which avoids various problems caused by mechanical wear, and is completely maintenance-free wind speed sensor.
  • its intelligent control can simultaneously output wind speed, wind direction, temperature, and digital and analog forms. Meteorological parameters such as pressure and humidity. In this way, we can monitor the meteorological parameters at the time on the industrial computer, and input the analog quantity into the real-time synchronous data acquisition system and synthesize the field strength and ion current density simultaneously into the database of the industrial computer.
  • the multi-channel real-time synchronous control device 4 receives the ground combined field strength data and the ion current collected by the DC electric field intensity sensor 1 in real time through the data acquisition card. Collecting the ground ion current density data collected by the sensor 2 and the meteorological parameter data such as wind speed, wind direction, temperature, relative humidity, and atmospheric pressure collected by the weather parameter sensor 3, and analyzing and storing the characteristics of the data, and setting each data sampling interval ls
  • the sampling time is very dispersive due to the measured data. It needs to be analyzed by statistical methods.
  • the following methods are usually used:
  • the m values are arranged from large to small, in which a given queue starts from the maximum value of the queue.
  • the statistical significance of this function is the ratio of the amount of data greater than a given value A to the total amount of data in a set of data.
  • the modified function pcqueue'(A) is defined as:
  • INVpcq ei is the inverse of pcqueueQ
  • the measurement system for measuring the distribution characteristics of ion flow field under direct current transmission of the present embodiment includes a DC electric field intensity sensor 1, an ion current collection sensor 2, a weather parameter sensor 3, and a multi-channel real-time synchronization control device 4, Among them, 10 DC electric field intensity sensors 1 and ion current collection sensors 2 are provided. The rest are the same as in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种用于直流输电下离子流场分布特性测量的测量系统,该系统包括直流电场强度传感器、离子流收集传感器、气象参数传感器和多通道实时同步控制装置,所述的直流电场强度传感器、离子流收集传感器和气象参数传感器均匀分布在测量现场,所述的多通道实时同步控制装置分别连接直流电场强度传感器、离子流收集传感器和气象参数传感器,实时接收直流电场强度传感器、离子流收集传感器和气象参数传感器采集的数据,并对数据进行特性分析和存储。具有可实现多参数多通道实时测量、测量精度高等优点。

Description

用于直流输电下离子流场分布特性测量的测量系统
技术领域
本发明涉及一种电力测量系统, 尤其是涉及一种用于直流输电下离子流场 分布特性测量的测量系统。 背景技术
随着我国特高压电网建设的大力推近, 特高压输电技术的相关标准的制定 也日益迫切。 其中, 特高压直流输电的离子流场的测量方法和仪器的校准方法 是开展特高压输电工程电磁环境评价的重要基础和直接依据。 与交流输电线路 的电磁环境不同, 直流电磁环境直接和输电线路电暈特性及其引起的电场效应 有关。 线路电暈是指导线表面电位梯度超过一定临界值后, 引起导线周围的空 气电离所产生的一种发光的放电现象。 由于直流线路和交流线路的电压性质不 同, 直流电暈的发展过程和交流电暈有很大差别。 交流线路发生电暈时, 由于 导线电压的极性周期性变化, 上半个周期因电暈放电空气电离产生的离子, 在 下半个周期因电压极性改变, 又几乎全部被拉回导线, 这样使得电离出的离子 基本被束缚在导线附近, 极导线与大地间的广大空间不存在带电离子。
而直流线路则不同, 导线电压极性固定, 在导线周围会形成相对稳态的游 离层, 游离层外则存在大量与导线极性相同的离子。 这些空间电荷的出现畸变 了无空间电荷情况下的电场。 而空间电荷由于电场力的作用也不断向四周和地 面迁移, 空间电荷本身产生电场, 它将大大加强由导线表面电荷产生的静电场 (又称标称电场)。空间电荷在电场作用下运动, 形成离子电流。这种由空间电 荷和原导线电荷共同作用下的电场称为合成电场。 在导线电暈发展程度较为严 重的情况下, 空间电荷的影响显得尤为突出。 在某些情况下, 地面合成电场甚 至可以达到标称场的 2〜3倍。因此地面场强的增加和离子电流的出现是直流输 电线路电磁环境问题区别于交流线路的重要特征之一。
人对交直流电流的感受也不同, 美国电力研究院 (EPRI)研究表明, 要得到 同样的感受程度, 流过的直流电流要比交流大 5 倍以上。 美国达拉斯 (Dallas) 试验中心曾做过高压直流母线下人的感受试验, 直流输电线下的可感觉场强比 交流也要高很多。
高压直流 (HVDC)输电线下电场效应与交流有很大不同,因此也就不能用同 一标准来衡量二者的电磁环境影响。 各国对于直流输电线下地面合成电场和离 子电流密度的限值并没有统一的规定。 我国也开展了相关研究, 出版了电力的 行业标准 DL436-2005《高压直流架空送电线路技术导则》, 并于 2006年 6月 1 日开始实施。 其中规定, 直流线路下地面最大合成场强不应超过 30kV/m, 最 大离子电流密度不应超过 100nA/m2。 而根据最近发布的 DL/T1088-2008 《士 800kV特高压直流线路电磁环境参数限值》 规定, 线路临近民房时, 民房处地 面的合成场强限值为 25kV/m,且 80%的测量值不得超过 15kV/m,线路跨越农田, 公路等人员容易到达的区域的合成场强限值为 30kV/m,线路下方的离子流密度 限值为 100nA/m2.由此可见,开展有关直流输电线下各种电暈参数测量的研究, 从而为特高压直流输电线路廊的电磁环境评价提供有力的科学依据, 是十分迫 切和必要的。 发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可实现多 参数多通道实时测量、 测量精度高的用于直流输电下离子流场分布特性测量的 本发明的目的可以通过以下技术方案来实现:
一种用于直流输电下离子流场分布特性测量的测量系统, 该系统包括直流 电场强度传感器、 离子流收集传感器、 气象参数传感器和多通道实时同步控制 装置, 所述的直流电场强度传感器、 离子流收集传感器和气象参数传感器均匀 分布在测量现场, 所述的多通道实时同步控制装置分别连接直流电场强度传感 器、 离子流收集传感器和气象参数传感器, 实时接收直流电场强度传感器、 离 子流收集传感器和气象参数传感器采集的数据,并对数据进行特性分析和存储。
所述的多通道实时同步控制装置包括一台便携式工控机和安装在便携式工 控机内的三块数据采集卡, 所述的三块数据采集卡分别连接直流电场强度传感 器、 离子流收集传感器和气象参数传感器。 所述的便携式工控机为带有 LabView可编程数据处理功能的计算机。
所述的气象参数包括风速、 风向、 温度、 相对湿度和大气压力。
所述的离子流收集传感器包括相连接的威尔逊离子流收集板和数字显示微 电流计。
所述的直流电场强度传感器和离子流收集传感器上均设有模拟量输出接 口, 所述的模拟量输出接口与数据采集卡连接。
所述的直流电场强度传感器设置有 10~30个, 所述的离子流收集传感器设 置有 10~30个。
与现有技术相比, 本发明具有以下优点:
1 ) 本发明中的多通道实时同步控制装置采用 "伪同步"方案设计, "伪同 步"方案;
2)本发明同时设置了直流电场强度传感器和离子流收集传感器,可实现直 流输电下多种离子流场分布特性的测量, 且测量精度较高。 附图说明
图 1为本发明的结构示意图。 具体实施方式
下面结合附图和具体实施例对本实用新型进行详细说明。
实施例 1
如图 1所示, 一种用于直流输电下离子流场分布特性测量的测量系统, 该 系统包括直流电场强度传感器 1、离子流收集传感器 2、气象参数传感器 3和多 通道实时同步控制装置 4, 所述的直流电场强度传感器 1、 离子流收集传感器 2 和气象参数传感器 3均匀分布在测量现场, 所述的多通道实时同步控制装置 4 分别连接直流电场强度传感器 1、 离子流收集传感器 2和气象参数传感器 3。
所述的直流电场强度传感器 1和离子流收集传感器 2在输电线下以一定的 间距横向 (或与输电线路正交方向) 分布, 可根据测量现场的区域大小设置传 感器的个数。 本实施例中直流电场强度传感器 1和离子流收集传感器 2均设置 有 30个。所述的离子流收集传感器 2包括相连接的威尔逊离子流收集板和数字 显示微电流计。 威尔逊离子流收集板是用覆铜板制成, 其上表面的导电金属分 为两个彼此绝缘的区域, 中心区域为有效收集区, 周围边缘区为屏蔽区, 并直 接接地, 威尔逊离子流收集板有效收集区的面积为 0.1 m2。 所述的直流电场强 度传感器 1和离子流收集传感器 2上均设有模拟量输出接口, 所述的模拟量输 出接口与数据采集卡连接, 以实现实时同步数据采集。
所述的多通道实时同步控制装置 4包括一台便携式工控机和安装在便携式 工控机内的三块数据采集卡, 所述的三块数据采集卡分别连接直流电场强度传 感器、 离子流收集传感器和气象参数传感器。 所述的便携式工控机为带有 Lab View可编程数据处理功能的计算机。
本实施例的多通道实时同步控制装置 4采用并行方式的"伪同步 "方案(由 美国 NI公司提出) 设计。 所述的三块数据采集卡采用 NI公司生产的数据采集 卡: 一块 NI 6250 ( 16通道) 和两块 NI 6254 (32通道)。 便携式工控机的配置 为: CPU酷睿 2 E6300; intel Q965主板; 2G DDRII内存; 80G SATA硬盘; 内 置显卡。 Windows XP操作系统。
NI 625X系列的数据采集卡多通道采集的扫描 (Scan Rate)频率为 1MHz, 即从第一个通道到第三十二通道的延迟时间在几十微秒。 所以对直流输电线下 离子流电场分布测量的同步采样要求是完全可以满足。
NI 6250有 16个模拟输入通道, 系统定义为 Devi , 用于采集气象参数, 风 速、 风向、 温度、 气压和相对湿度分别对应通道 AI0〜AI4。 该卡用一根 68芯 电缆直接与小型移动气象站的信号盒联结。
NI 6254有 32个模拟输入通道,两块 NI 6254系统分别默认为 Dev2和 Dev3。 Dev2用于测量合成场强, 连接直流场强仪; Dev3用于测量离子流密度, 连接 离子流测量仪。每块卡的前 30个通道即 AI0〜AI29依次对应外部 30个传感器。
所述的气象参数 3包括风速、 风向、 温度、 相对湿度和大气压力。 本实施 例中气象参数传感器 3选用意大利 delta ohm公司生产的小型气象站 HD2003。 它最主要一个特点是在风速的测量上, 它使用的是超声波风速风向测量技术。 该技术可以有比较好的低风速下的风速风向测量灵敏度。 同时风速风向测量机 构没有任何机械装置, 避免了机械磨损带来的种种问题, 完全是免维护的风速 传感器。 同时它的智能控制可以同时以数字和模拟形式输出风速、风向、气温、 气压和湿度等气象参数。这样我们一方面可以在工控机上监视当时的气象参数, 同时将模拟量输入到实时同步数据采集系统与合成场强、 离子流密度同时进行 数据转换进入工控机的数据库中。
本实施例用于直流输电下离子流场分布特性测量的测量系统的工作原理 为: 多通道实时同步控制装置 4通过数据采集卡实时接收直流电场强度传感器 1采集的地面合成场强数据、 离子流收集传感器 2采集的地面离子流密度数据 和气象参数传感器 3采集的风速、 风向、 温度、 相对湿度、 大气压力等气象参 数数据, 并对数据进行特性分析和存储, 设定每组数据采样间隔 ls, 采样时间 由于被测量的数据分散性较大,需用统计方法进行分析,通常用下述方法: 将 m个数值从大到小排列, 在该数列中, 给定一个从队列最大值开始到数 值 A的区域 [max,A],相应有一个该区域 n个数值同全部 m个数值的百分比 K, 及 K=pcqueue(A)=n/m。该函数的统计意义在于, 在一组数据中大于给定数值 A 的数据量占总数据量的比值。
在地面合成场强的数据测量中, 会有正负数值出现。 地面合成场强对周围 环境的影响程度取决于这些数值的绝对值的大小, 所以, 在应用中, 需要对函 数 pcqueue(A)做出一定修改, 修改后的函数 pcqueue'(A)定义为:
(INVpcqueue(0.5)≥ 0)
Figure imgf000007_0001
(INVpcqueue(Q )<G)
式中, INVpcq ei)为 pcqueueQ的反函数
参考图 1所示, 本实施例的用于直流输电下离子流场分布特性测量的测量 系统包括直流电场强度传感器 1、离子流收集传感器 2、气象参数传感器 3和多 通道实时同步控制装置 4,其中,直流电场强度传感器 1和离子流收集传感器 2 均设置有 10个。 其余同实施例 1。

Claims

权 利 要 求
1. 一种用于直流输电下离子流场分布特性测量的测量系统, 其特征在于, 该系统包括直流电场强度传感器、 离子流收集传感器、 气象参数传感器和多通 道实时同步控制装置, 所述的直流电场强度传感器、 离子流收集传感器和气象 参数传感器均匀分布在测量现场, 所述的多通道实时同步控制装置分别连接直 流电场强度传感器、 离子流收集传感器和气象参数传感器, 实时接收直流电场 强度传感器、 离子流收集传感器和气象参数传感器采集的数据, 并对数据进行 特性分析和存储。
2.根据权利要求 1所述的一种用于直流输电下离子流场分布特性测量的测 量系统, 其特征在于, 所述的多通道实时同步控制装置包括一台便携式工控机 和安装在便携式工控机内的三块数据采集卡, 所述的三块数据采集卡分别连接 直流电场强度传感器、 离子流收集传感器和气象参数传感器。
3.根据权利要求 2所述的一种用于直流输电下离子流场分布特性测量的测 量系统, 其特征在于, 所述的便携式工控机为带有 LabView可编程数据处理功 能的计算机。
4.根据权利要求 1所述的一种用于直流输电下离子流场分布特性测量的测 量系统, 其特征在于, 所述的气象参数包括风速、 风向、 温度、 相对湿度和大 气压力。
5.根据权利要求 1所述的一种用于直流输电下离子流场分布特性测量的测 量系统, 其特征在于, 所述的离子流收集传感器包括相连接的威尔逊离子流收 集板和数字显示微电流计。
6.根据权利要求 2所述的一种用于直流输电下离子流场分布特性测量的测 量系统, 其特征在于, 所述的直流电场强度传感器和离子流收集传感器上均设 有模拟量输出接口, 所述的模拟量输出接口与数据采集卡连接。
7.根据权利要求 1所述的一种用于直流输电下离子流场分布特性测量的测 量系统, 其特征在于, 所述的直流电场强度传感器设置有 10~30个, 所述的离 子流收集传感器设置有 10~30个。
PCT/CN2013/084906 2012-10-24 2013-10-09 用于直流输电下离子流场分布特性测量的测量系统 WO2014063569A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210410843XA CN102928701A (zh) 2012-10-24 2012-10-24 用于直流输电下离子流场分布特性测量的测量系统
CN201210410843.X 2012-10-24

Publications (1)

Publication Number Publication Date
WO2014063569A1 true WO2014063569A1 (zh) 2014-05-01

Family

ID=47643545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084906 WO2014063569A1 (zh) 2012-10-24 2013-10-09 用于直流输电下离子流场分布特性测量的测量系统

Country Status (2)

Country Link
CN (1) CN102928701A (zh)
WO (1) WO2014063569A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872763A (zh) * 2015-12-14 2017-06-20 中国电力科学研究院 一种采用无线通讯的多通道直流离子流密度测试装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928701A (zh) * 2012-10-24 2013-02-13 上海市电力公司 用于直流输电下离子流场分布特性测量的测量系统
CN106249061B (zh) * 2016-07-27 2023-07-04 清华大学 复合式独立电位传感器的直流合成场强测量装置及其方法
CN107490728A (zh) * 2017-09-15 2017-12-19 中国电力科学研究院 一种基于无线通讯的直流合成场强测量系统及方法
CN113533878A (zh) * 2021-06-07 2021-10-22 中国电力科学研究院有限公司 一种测量高压直流模拟线路离子流场的系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936413A (en) * 1995-09-19 1999-08-10 Centre National De La Recherche Scientifique Method and device for measuring an ion flow in a plasma
CN101188059A (zh) * 2007-12-19 2008-05-28 中国电力科学研究院 直流合成电场和离子流密度测量系统
CN102175930A (zh) * 2011-02-01 2011-09-07 重庆大学 特高压直流输电线路合成场强测量中的风速影响处理方法
CN202041588U (zh) * 2011-02-01 2011-11-16 重庆大学 一种考虑风速温湿度影响的特高压直流输电线合成场强在线测量仪
CN102928701A (zh) * 2012-10-24 2013-02-13 上海市电力公司 用于直流输电下离子流场分布特性测量的测量系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936413A (en) * 1995-09-19 1999-08-10 Centre National De La Recherche Scientifique Method and device for measuring an ion flow in a plasma
CN101188059A (zh) * 2007-12-19 2008-05-28 中国电力科学研究院 直流合成电场和离子流密度测量系统
CN102175930A (zh) * 2011-02-01 2011-09-07 重庆大学 特高压直流输电线路合成场强测量中的风速影响处理方法
CN202041588U (zh) * 2011-02-01 2011-11-16 重庆大学 一种考虑风速温湿度影响的特高压直流输电线合成场强在线测量仪
CN102928701A (zh) * 2012-10-24 2013-02-13 上海市电力公司 用于直流输电下离子流场分布特性测量的测量系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU, LEI ET AL.: "Study on Influencing Factors in Measurement Results of DC Total Electric Field Strength and Ion Current Density", EAST CHINA ELECTRIC POWER, vol. 39, no. 1, January 2011 (2011-01-01), pages 0117 - 0120 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872763A (zh) * 2015-12-14 2017-06-20 中国电力科学研究院 一种采用无线通讯的多通道直流离子流密度测试装置

Also Published As

Publication number Publication date
CN102928701A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
Judd et al. Applying UHF partial discharge detection to power transformers
WO2014063569A1 (zh) 用于直流输电下离子流场分布特性测量的测量系统
Bian et al. Corona-generated space charge effects on electric field distribution for an indoor corona cage and a monopolar test line
Bo et al. A field observational study of electrification within a dust storm in Minqin, China
Chen et al. Comparison of methods for determining corona inception voltages of transmission line conductors
Fang et al. Impact factors in measurements of ion-current density produced by high-voltage DC wire's corona
Phillips Evaluation of instrumentation and dynamic thermal ratings for overhead lines
Yang et al. Identifying lightning channel-base current function parameters by powell particle swarm optimization method
Zhang et al. Impact factors in calibration and application of field mill for measurement of DC electric field with space charges
Zhao et al. Altitude correction of radio interference of HVDC transmission lines part II: measured data analysis and altitude correction
Liu et al. Corona onset characteristics of the 750-kV bundle conductor in sand and dust weather in high-altitude area
Zhou et al. Shielding effect of HVAC transmission lines on the ion-flow field of HVDC transmission lines
Bian et al. The effect of surface roughness on corona-generated electromagnetic interference for long-term operating conductors
CN102590686A (zh) 一种双极直流输电线路无线电干扰确定方法
Wang et al. Simulations and experiments of the generation apparatus of the DC electric field with the space charge
CN109752614A (zh) 一种避雷器参数测量方法及系统
Kontargyri et al. Measurement and simulation of the voltage distribution and the electric field on a glass insulator string
Bian et al. Comparative study on corona-generated audible noise and radio noise of ac long-term operating conductors with two bundle types
CN202840243U (zh) 一种离子风气流加速装置及其电流密度测试装置
Dayong et al. The detailed characteristics of positive corona current pulses in the line-to-plane electrodes
McKnight et al. Measurement ion current density at ground level in the vicinity of high voltage DC transmission lines
Zhang et al. Theoretical study on radio interference of HVDC transmission line based on cage tests
Xiao et al. Improved three-dimension mathematical model for voltage inversion of ac overhead transmission lines
Moronis et al. A model for determining the unipolar ionic saturation current in parallel wire-cylinder electrodes during corona discharge
Donglai et al. Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848211

Country of ref document: EP

Kind code of ref document: A1