WO2014063499A1 - 一种柔性直流输电系统的换流器充电方法 - Google Patents

一种柔性直流输电系统的换流器充电方法 Download PDF

Info

Publication number
WO2014063499A1
WO2014063499A1 PCT/CN2013/078556 CN2013078556W WO2014063499A1 WO 2014063499 A1 WO2014063499 A1 WO 2014063499A1 CN 2013078556 W CN2013078556 W CN 2013078556W WO 2014063499 A1 WO2014063499 A1 WO 2014063499A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
converter
transmission system
active
flexible
Prior art date
Application number
PCT/CN2013/078556
Other languages
English (en)
French (fr)
Inventor
田杰
董云龙
潘磊
李钢
汪楠楠
胡兆庆
丁久东
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2014063499A1 publication Critical patent/WO2014063499A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to a converter charging method for a flexible direct current transmission system, in particular to a two-terminal and multi-terminal flexible direct current power transmission system using a modular multi-level converter to convert the active end converter to other ends
  • the method of charging is a simple multi-level converter to convert the active end converter to other ends
  • Flexible DC transmission uses voltage source converters, which can independently adjust the active and reactive transmission, improve the transmission capacity of the AC system, and easily form a multi-terminal DC transmission system.
  • voltage source converters which can independently adjust the active and reactive transmission, improve the transmission capacity of the AC system, and easily form a multi-terminal DC transmission system.
  • island city power supply and AC system interconnection Such application areas have obvious competitiveness.
  • the existing solution for charging the passive end of the modular multi-level flexible direct current transmission system is to connect the current limiting resistor R1 and the bypass switch K1 connected in parallel with the active end AC line, the current limiting The resistor R1 and the parallel bypass switch K1 are connected to the valve side of the converter transformer, as shown in Fig. 1, the pre-charging of the modular multi-level flexible DC transmission converter in the 2011 issue of "Grid Technology"
  • the control strategy is described in Section 2.2.
  • the method can instantaneously suppress the overcurrent problem on the AC side of the active end by unlocking the converter at the passive end, but the disadvantage is that the overcurrent of the DC line cannot be suppressed.
  • the object of the present invention is to provide a converter charging method for a flexible direct current power transmission system, which can effectively suppress the active end converter to the present invention.
  • the other end converters When the other end converters are charged, the other end converters unlock the overcurrent of the DC line generated due to the DC voltage difference between the two ends.
  • An inverter charging method for a flexible direct current transmission system comprising an active end converter and other end converters connected by a direct current line; and at least one set of parallel charging resistors and bypass
  • the switch, the parallel charging resistor and the bypass switch are connected in series in the DC line, and the charging method comprises the following steps: (1) disconnecting the bypass switch, and the charging resistor is connected to the DC line; (2) The active-end inverter is charged by the AC system;
  • the AC side of the other end converters described above is an active system or a weak AC system.
  • the AC side of the other end converters described above is a passive system or a power outage system.
  • the parallel charging resistor and the bypass switch are used in a group, and are connected in series to the positive pole or the negative pole of the DC line.
  • the above parallel charging resistors and bypass switches are used in two groups, which are respectively connected in series to the positive and negative terminals of the DC line.
  • the resistance values of the above two sets of charging resistors are equal or unequal.
  • the above-mentioned active-end converters are two-level or three-level topologies, and the other end converters are modular multi-level topologies.
  • the above-described active-end converters and other end-converters are modular multi-level topologies.
  • the present invention is directed to a flexible direct current transmission system adopting a modular multi-level topology, and a method for charging an active-end converter of a flexible direct-current transmission system to other end-converters, which can effectively suppress active When the terminal converter charges the other end converters, the DC line overcurrent generated due to the DC voltage difference between the two ends.
  • This method is also suitable for suppressing overcurrent generated when the active-end converter charges the power-down system side converter in the case of black start.
  • FIG. 1 is a schematic diagram of charging of a passive converter to a passive converter in a conventional charging method
  • FIG. 2 is a schematic diagram of charging the active end to the other end converter in the method provided by the present invention (the parallel charging resistor and the bypass switch are connected in series to the positive pole of the DC line);
  • FIG. 3 is a schematic diagram of charging the active end to the other end converter in the method provided by the present invention (the parallel charging resistor and the bypass switch are connected in series to the negative terminal of the DC line);
  • FIG. 4 is a schematic diagram of charging the active end to the other end converter in the method provided by the present invention (the positive and negative poles of the DC line are connected in series to the parallel charging resistor and the bypass switch). detailed description
  • the invention provides a converter charging method for a flexible direct current transmission system, which comprises a parallel charging resistor R2 and a bypass
  • the switch K2 is connected in series in the DC line and includes the following implementation steps:
  • the implementation of the charging process is described by taking a flexible DC transmission system at both ends (one end is an active system and the other end is a passive system) as an example:
  • the wiring method of the system is shown in Figure 2. Before connecting, connect the DC line to ensure that the bypass switch ⁇ 2 of the DC charging resistor R2 is turned on. First, the active-end inverter is uncontrolled, and the passive-end converter is also Charging. After the DC voltage is stabilized, the charging process is not finished. The capacitor voltage of the passive converter sub-module is half of the capacitance of the active-side converter sub-module.
  • the charging current direction is shown in Figure 2.
  • the active-end converter is unlocked by a constant DC voltage control method, the DC line voltage is gradually raised to the rated voltage, the capacitor voltage of the active-end converter sub-module reaches the rated value, and the voltage of the passive-end converter sub-module is rated. half.
  • the passive-end inverter is unlocked in a passive control mode, and the DC voltage of the passive-end converter is suddenly changed to a half of the rated voltage. At this time, because the DC line is connected in series with the charging resistor R2, the two ends can be effectively suppressed. Overcurrent of a DC line generated by a DC voltage difference.
  • the bypass switch K2 of the charging resistor R2 is closed, and the charging resistor R2 is bypassed to complete the charging process.
  • the parallel charging resistor R2 and the bypass switch ⁇ 2 can be connected in series to the positive or negative pole of the DC line.
  • FIG. 4 it is another implementation circuit of the present invention, in which the positive and negative poles of the DC line are respectively connected in series to the parallel charging resistors R2 and R3 and the bypass switches K2 and ⁇ 3, and connected in series to the positive and negative poles of the DC line.
  • the resistance values of the charging resistors R2 and R3 may be equal or not equal.
  • the method provided by the invention is also applicable to the charging of the active end converter to the weak AC system end or other active end converters, the implementation and the steps thereof and the above-mentioned active end converter to the passive end converter
  • the charging method is the same.
  • the method provided by the present invention is also applicable to a multi-terminal flexible direct current transmission system adopting a modular multi-level topology.
  • the implementation manner is that the active-end converter is first unlocked, and the other end-converters can be followed by the above steps sequentially or simultaneously. Charge it.
  • the black start to the passive system or the power outage system the same embodiment as above can also be used.
  • the inverter of the passive system or the power outage system is charged to implement the black start function. as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种柔性直流输电系统的换流器充电方法,所述柔性直流输电系统包括借助直流线路连接的有源端换流器和其它端换流器;还包括至少一组并联的充电电阻(R2)和旁通开关(K2),所述并联的充电电阻(R2)和旁通开关(Κ2)串联在直流线路中,所述充电方法包括如下步骤:断开旁通开关(Κ2),充电电阻(R2)接入直流线路;有源端换流器通过交流系统完成充电;有源端换流器解锁,建立直流电压;直流电压稳定后,其它端换流器解锁;其它端换流器子模块电压稳定后合上旁通开关(Κ2),将充电电阻(R2)旁路,完成充电过程。此种充电方法可以有效抑制有源端换流器向其它端换流器充电时,其它端换流器解锁瞬间由于两端直流电压差而产生的直流线路的过电流。

Description

一种柔性直流输电系统的换流器充电方法 技术领域
本发明涉及一种柔性直流输电系统的换流器充电方法, 具体涉及一种两端及多端的 采用模块化多电平换流器的柔性直流输电系统有源端换流器向其它端换流器充电的方 法。 背景技术
柔性直流输电采用电压源换流器, 可以独立调节有功和无功的传输、 提高交流系统 的输电能力, 易于构成多端直流输电系统, 在可再生能源的发电并网、 孤岛城市供电以 及交流系统互联等应用领域, 具有明显的竞争力。
不同的电压源换流器由于其结构不同, 有不同的充电方法, 模块化多电平换流器的 电容分散于各子模块, 其电容充电的动态过程比较复杂。
现有的基于模块化多电平柔性直流输电系统有源端向无源端充电的解决方法是在有 源端交流线路中接入限流电阻 R1和与其并联的旁通开关 Kl, 该限流电阻 R1和并联的旁 通开关 K1接在换流变压器阀侧, 如图 1所示, 2011年 11期 《电网技术》 中的文献 《模 块化多电平式柔性直流输电换流器的预充电控制策略》 第 2. 2节对该方法进行了描述。 该方法可以在无源端解锁换流器瞬间抑制有源端交流侧的过流问题, 但其不足之处是不 能抑制直流线路的过流。 发明内容
本发明的目的在于针对现有技术存在的不能抑制直流线路过流的缺陷, 提供一种柔 性直流输电系统的换流器充电方法, 其可以通过简单地控制, 有效抑制有源端换流器向 其它端换流器充电时, 其它端换流器解锁瞬间由于两端直流电压差而产生的直流线路的 过电流。
为了达成上述目的, 本发明采用的技术方案是:
一种柔性直流输电系统的换流器充电方法, 所述柔性直流输电系统包括借助直流线 路连接的有源端换流器和其它端换流器; 还包括至少一组并联的充电电阻和旁通开关, 所述并联的充电电阻和旁通开关串联在直流线路中, 所述充电方法包括如下步骤: ( 1 ) 断开旁通开关, 充电电阻接入直流线路; ( 2) 有源端换流器通过交流系统完成充电;
( 3) 有源端换流器解锁, 建立直流电压;
(4) 直流电压稳定后, 其它端换流器解锁;
( 5)其它端换流器子模块电压稳定后合上旁通开关, 将充电电阻旁路, 完成充电过 程。
上述其它端换流器交流侧为有源系统或弱交流系统。
上述其它端换流器交流侧为无源系统或停电系统。
上述并联的充电电阻和旁通开关采用一组, 串联在直流线路的正极或者负极。
上述并联的充电电阻和旁通开关采用两组, 分别串联在直流线路的正极和负极。 上述两组充电电阻的阻值为相等或不相等。
上述有源端换流器是两电平或三电平拓扑结构, 其它端换流器是模块化多电平拓扑 结构。
上述有源端换流器和其它端换流器均是模块化多电平拓扑结构。
采用上述方案后, 本发明针对采用模块化多电平拓扑结构的柔性直流输电系统, 提 供一种柔性直流输电系统有源端换流器向其它端换流器充电的方法, 可以有效抑制有源 端换流器向其它端换流器充电时因为两端直流电压差而产生的直流线路过电流。 该方法 同样适用于黑启动情况下,抑制有源端换流器向停电系统侧换流器充电时产生的过电流。 附图说明
图 1是现有充电方法中有源端换流器向无源端换流器充电示意图;
图 2是本发明提供的方法中, 有源端向其它端换流器充电示意图 (并联的充电电阻 和旁通开关串联接入直流线路正极);
图 3是本发明提供的方法中, 有源端向其它端换流器充电示意图 (并联的充电电阻 和旁通开关串联接入直流线路负极);
图 4是本发明提供的方法中, 有源端向其它端换流器充电示意图 (直流线路正极和 负极均串联接入并联的充电电阻和旁通开关)。 具体实施方式
以下将结合附图及具体实施例, 对本发明的技术方案进行详细说明。
本发明提供一种柔性直流输电系统的换流器充电方法,将并联的充电电阻 R2和旁通 开关 K2串联在直流线路中, 并包括如下实施步骤:
( 1 ) 断开旁通开关 Κ2, 充电电阻 R2接入直流线路;
( 2 ) 有源端换流器通过交流系统完成不控充电;
( 3 ) 有源端换流器解锁, 建立直流电压;
( 4 )直流电压稳定后, 其它端换流器解锁, 通过充电电阻 R2抑制解锁时的过电流;
( 5 ) 其它端换流器子模块电压稳定后合上旁通开关 Κ2, 将充电电阻 R2旁路, 完成 充电过程。
按照本发明中的充电方法, 以两端柔性直流输电系统 (一端为有源系统, 另一端为 无源系统) 为例, 对充电过程实现方式进行说明:
系统接线方式以图 2为例, 充电前先连接直流线路, 保证直流充电电阻 R2的旁通开 关 Κ2打开, 首先对有源端换流器进行不控充电, 同时无源端换流器也会充电。 直流电压 稳定后不控充电过程结束, 无源端换流器子模块电容电压为有源端换流器子模块电容的 一半, 充电电流方向如图 2所示。
有源端换流器采用定直流电压控制方式解锁, 直流线路电压逐渐升至额定电压, 有 源端换流器子模块电容电压达到额定值, 无源端换流器子模块电压为额定值的一半。 无 源端换流器按无源控制方式解锁, 解锁瞬间无源端换流器直流电压突变, 减小为额定电 压的一半, 此时因为直流线路串联有充电电阻 R2, 可以有效抑制因为两端直流电压差而 产生的直流线路的过电流。
无源端换流器子模块电压稳定后, 合上充电电阻 R2的旁通开关 K2, 将充电电阻 R2 旁路, 完成整个充电过程。
如图 2和图 3所示, 本发明实施例中, 并联的充电电阻 R2和旁通开关 Κ2可以串联 在直流线路的正极或者负极。
如图 4所示, 是本发明的另一种实施电路, 其是在直流线路正极和负极分别串联接 入并联的充电电阻 R2、 R3和旁通开关 K2、 Κ3, 串联在直流线路正极和负极的充电电阻 R2、 R3的阻值可以相等, 也可以不相等。
本发明提供的方法同样适用于有源端换流器向弱交流系统端或者其它有源端换流器 进行充电, 其实施方式和步骤与上述有源端换流器向无源端换流器充电方式相同。
本发明提供的方法对采用模块化多电平拓扑结构的多端柔性直流输电系统同样适 用, 其实施方式为有源端换流器首先解锁, 其它各端换流器可以随后依次或者同时按上 述步骤进行充电。 对于向无源系统或者停电系统的黑启动, 也可采用上述相同实施方式, 有源端换流 器解锁后, 对无源系统或者停电系统的换流器进行充电, 实现黑启动功能, 其步骤如下:
(1) 断开旁通开关, 充电电阻接入直流线路;
(2) 有源端换流器通过交流系统完成充电;
(3) 有源端换流器解锁, 建立直流电压;
(4) 无源系统或者停电系统的换流器解锁, 完成换流器充电, 建立交流侧电压;
(5) 合上旁通开关, 将充电电阻旁路, 实现黑启动。
以上实施例仅为说明本发明的技术思想, 不能以此限定本发明的保护范围, 凡是按 照本发明提出的技术思想, 在技术方案基础上所做的任何改动, 均落入本发明保护范围 之内。

Claims

权利要求书
1、 一种柔性直流输电系统的换流器充电方法, 所述柔性直流输电系统包括借助直流 线路连接的有源端换流器和其它端换流器; 其特征在于: 还包括至少一组并联的充电电 阻和旁通开关, 所述并联的充电电阻和旁通开关串联在直流线路中, 所述充电方法包括 如下步骤:
( 1 ) 断开旁通开关, 充电电阻接入直流线路;
( 2) 有源端换流器通过交流系统完成充电;
( 3) 有源端换流器解锁, 建立直流电压;
(4) 直流电压稳定后, 其它端换流器解锁;
( 5 ) 其它端换流器子模块电压稳定后合上旁通开关, 将充电电阻旁路, 完成充电过 程。
2、 如权利要求 1 所述的一种柔性直流输电系统的换流器充电方法, 其特征在于: 所 述其它端换流器交流侧为有源系统或弱交流系统。
3、 如权利要求 1 所述的一种柔性直流输电系统的换流器充电方法, 其特征在于: 所 述其它端换流器交流侧为无源系统或停电系统。
4、 如权利要求 1 所述的一种柔性直流输电系统的换流器充电方法, 其特征在于: 所 述并联的充电电阻和旁通开关采用一组, 串联在直流线路的正极或者负极。
5、 如权利要求 1 所述的一种柔性直流输电系统的换流器充电方法, 其特征在于: 所 述并联的充电电阻和旁通开关采用两组, 分别串联在直流线路的正极和负极。
6、 如权利要求 5 所述的一种柔性直流输电系统的换流器充电方法, 其特征在于: 所 述两组充电电阻的阻值为相等或不相等。
7、 如权利要求 1 所述的一种柔性直流输电系统的换流器充电方法, 其特征在于: 所 述有源端换流器是两电平或三电平拓扑结构, 其它端换流器是模块化多电平拓扑结构。
8、 如权利要求 1 所述的一种柔性直流输电系统的换流器充电方法, 其特征在于: 所 述有源端换流器和其它端换流器均是模块化多电平拓扑结构。
PCT/CN2013/078556 2012-10-23 2013-07-01 一种柔性直流输电系统的换流器充电方法 WO2014063499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210407183.XA CN102946114B (zh) 2012-10-23 2012-10-23 一种柔性直流输电系统的换流器充电方法
CN201210407183.X 2012-10-23

Publications (1)

Publication Number Publication Date
WO2014063499A1 true WO2014063499A1 (zh) 2014-05-01

Family

ID=47729033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078556 WO2014063499A1 (zh) 2012-10-23 2013-07-01 一种柔性直流输电系统的换流器充电方法

Country Status (2)

Country Link
CN (1) CN102946114B (zh)
WO (1) WO2014063499A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946114B (zh) * 2012-10-23 2015-06-03 南京南瑞继保电气有限公司 一种柔性直流输电系统的换流器充电方法
CN103887821B (zh) * 2014-04-01 2016-02-17 南方电网科学研究院有限责任公司 一种换流器无扰并入柔性直流配电系统的电路
CN105119305B (zh) * 2015-09-23 2017-06-16 国家电网公司 一种mmc型统一潮流控制器充电控制方法
CN105322540B (zh) * 2015-11-12 2019-02-22 中国电力科学研究院 一种交直流大电网电磁暂态模型的稳态运行方式建立方法
CN105445621A (zh) * 2015-12-22 2016-03-30 南京南瑞继保电气有限公司 一种柔性直流线路的故障检测装置及其充电方法、检测方法
CN105743114B (zh) * 2016-02-29 2023-11-07 全球能源互联网研究院 直流输电系统抵御受端故障的直流能量吸收装置及方法
CN107086605B (zh) * 2017-06-12 2020-01-31 南方电网科学研究院有限责任公司 一种电网零起升压的黑启动方法
CN107453385B (zh) * 2017-08-16 2020-04-21 国网浙江省电力公司电力科学研究院 一种无源启动下的直流主动充电方法及系统
CN109412187B (zh) * 2018-09-26 2023-01-03 国家电网有限公司 一种柔性直流输电系统孤岛换流站启动充电装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795057A (zh) * 2010-04-07 2010-08-04 浙江大学 无需辅助直流电源的三相模块化多电平换流器启动方法
CN102170140A (zh) * 2011-04-21 2011-08-31 中国电力科学研究院 一种模块化多电平换流器柔性直流输电系统的起动方法
CN102545200A (zh) * 2011-12-13 2012-07-04 河海大学 基于电压源换流器的多端直流配电网系统
JP2012157166A (ja) * 2011-01-26 2012-08-16 Denso Corp 分散型電源設備
CN102946114A (zh) * 2012-10-23 2013-02-27 南京南瑞继保电气有限公司 一种柔性直流输电系统的换流器充电方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120353A (en) * 1976-03-31 1977-10-08 Central Res Inst Of Electric Power Ind Protective device for dc power transmission system
CN102013685A (zh) * 2010-07-22 2011-04-13 荣信电力电子股份有限公司 一种基于mmc的无变压器statcom拓扑结构
CN102175942B (zh) * 2011-02-11 2014-07-02 中国电力科学研究院 一种柔性直流输电mmc高压子模块的稳态运行试验方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795057A (zh) * 2010-04-07 2010-08-04 浙江大学 无需辅助直流电源的三相模块化多电平换流器启动方法
JP2012157166A (ja) * 2011-01-26 2012-08-16 Denso Corp 分散型電源設備
CN102170140A (zh) * 2011-04-21 2011-08-31 中国电力科学研究院 一种模块化多电平换流器柔性直流输电系统的起动方法
CN102545200A (zh) * 2011-12-13 2012-07-04 河海大学 基于电压源换流器的多端直流配电网系统
CN102946114A (zh) * 2012-10-23 2013-02-27 南京南瑞继保电气有限公司 一种柔性直流输电系统的换流器充电方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, YUEBIN ET AL.: "Start/stop control of modular multilevel converter based HVDC transmission system.", POWER, vol. 36, no. 3, 2012, pages 204 - 206 *

Also Published As

Publication number Publication date
CN102946114A (zh) 2013-02-27
CN102946114B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2014063499A1 (zh) 一种柔性直流输电系统的换流器充电方法
CN110771000B (zh) 用双逆变器驱动经dc电网对电动车辆的恒定电流快速充电
US9800167B2 (en) Multi-phase AC/AC step-down converter for distribution systems
JP6716793B2 (ja) サブモジュールベースのハイブリッドコンバータの充電方法
CN104702140B (zh) T型三电平光伏并网逆变器并联环流抑制和中点平衡方法
JP2020516212A (ja) サブモジュールベースのハイブリッドコンバータの充電方法
CN110048588B (zh) 逆变器交流合闸共模冲击电流抑制方法及其应用装置
Metidji et al. Design and implementation of a unity power factor fuzzy battery charger using an ultrasparse matrix rectifier
CN107223304B (zh) 具有能量存储器的多电平变换器
WO2012010053A1 (zh) 基于模块化多电平逆变器(mmc)的无变压器静止同步补偿器(statc0m)拓扑结构
Guying et al. Modular multilevel converter for unified power flow controller application
Liu et al. Modular multilevel converter with high-frequency transformers for interfacing hybrid DC and AC microgrid systems
WO2016019853A1 (zh) 一种静止同步串联补偿器的起动方法及停运方法
CN106981980A (zh) 一种全桥mmc启动控制方法及系统
CN104242333A (zh) 模块化多电平换流器柔性直流输电系统的自励起动方法
Afshari et al. Reactive power generation for single-phase transformerless Vehicle-to-Grid inverters: A review and new solutions
CN204046460U (zh) 一种新型的模块化多电平换流器子模块拓扑
CN115664245A (zh) 开绕组变压器式双模块化多电平换流器拓扑及其控制方法
CN110048593B (zh) 一种混合型mmc启动充电方法
CN108494229B (zh) 一种交直流通用型电力路由器拓扑及其控制方法
CN105978375A (zh) 适用于远距离大容量架空线输电的交叉型子模块及其mmc控制方法
WO2017028890A1 (en) Method of controlling operation of an interface arrangement in a power transmission system
CN205105115U (zh) 一种模块化多电平换流器及换流器模块
CN110601249A (zh) 电压源换流器单元及在线投入方法以及电压源换流阀
CN105375776B (zh) 一种模块化隔离型电池储能变换器的正弦波调制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848434

Country of ref document: EP

Kind code of ref document: A1