WO2014063406A1 - 一种同时序多脉冲防雷箱 - Google Patents

一种同时序多脉冲防雷箱 Download PDF

Info

Publication number
WO2014063406A1
WO2014063406A1 PCT/CN2012/085508 CN2012085508W WO2014063406A1 WO 2014063406 A1 WO2014063406 A1 WO 2014063406A1 CN 2012085508 W CN2012085508 W CN 2012085508W WO 2014063406 A1 WO2014063406 A1 WO 2014063406A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
lightning protection
pulse
lightning
resistor
Prior art date
Application number
PCT/CN2012/085508
Other languages
English (en)
French (fr)
Inventor
周建林
Original Assignee
广东明家科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东明家科技股份有限公司 filed Critical 广东明家科技股份有限公司
Publication of WO2014063406A1 publication Critical patent/WO2014063406A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/043Protection of over-voltage protection device by short-circuiting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/22Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage of short duration, e.g. lightning

Definitions

  • the invention relates to the technical field of lightning protection, in particular to a simultaneous multi-pulse lightning protection box.
  • surge protectors produced in countries around the world (referred to as SPD, English Surge Protective)
  • SPD English Surge Protective
  • the abbreviations of Device are developed and produced in accordance with the technical standards of IEC/TC61643-11 and are tested by a single-pulse shock wave of 10/350 ⁇ s or 8/20 ⁇ s by the lightning high voltage laboratory.
  • a single-pulse shock wave 10/350 ⁇ s or 8/20 ⁇ s by the lightning high voltage laboratory.
  • Japan Zhaodian Corporation The company and the Beijing, Shanghai lightning protection device testing center introduced the Swiss HAEFELY SSGA surge current generator, the output current waveform is 10/350 ⁇ s; the maximum output current is 200KA.
  • the maximum current flowing through the SPD is 1.64 KA, causing damage to the SPD with a nominal current of 20 kA.
  • Both scientific experiments and lightning protection practices have shown that the lightning pulse high-voltage laboratory uses a single pulse test SPD method that does not match the fact that a real lightning strikes multiple pulses at a time.
  • the SPD with a single pulse test in a lightning high voltage laboratory is resistant to real lightning strikes.
  • the force is far from its nominal value, which often causes the SPD to overheat and explode, causing a fire accident. It is an urgent need to develop multi-pulse high-voltage lightning test equipment and multi-pulse SPD products that are realistic to true lightning.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a simultaneous multi-pulse lightning protection box. With large through-flow, low residual voltage, electromagnetic compatibility, fire protection, explosion-proof and the ability to withstand long-term multi-pulse lightning current impact, it realizes the span of SPD products from single pulse to multi-pulse.
  • a synchronous multi-pulse lightning protection box wherein the input end of the lightning protection box is connected to the low voltage power supply line, and the low voltage power supply line is a three-phase four-wire circuit, including the fire lines L1, L2, L3 and the neutral line N, the lightning protection
  • the box sequentially includes interconnected SPD lightning protection modules, sampling circuits, detection circuits and display panels, and the sampling circuit includes EMC (English abbreviation for Electro Magnetic Compatibility) Strong electromagnetic suppression circuit, signal acquisition circuit, strong electromagnetic isolation suppression circuit, and the sampling circuit is powered by anti-interference power supply connected with low-voltage power supply line; when the low-voltage power supply line is struck by lightning electromagnetic pulse, lightning overvoltage is generated on the low-voltage power supply line
  • the signal is applied to the SPD lightning protection module, and the SPD lightning protection module transmits the generated lightning overvoltage signal to the EMC strong electromagnetic suppression circuit, and the other is connected to the PE end to introduce the lightning into the earth; EMC The strong electromagnetic suppression circuit, and the other is connected to the PE end to
  • the SPD lightning protection module is composed of four sets of lightning protection modules, and is divided into three sets of fire line lightning protection modules and one set of zero line lightning protection modules, and the fire line lightning protection modules respectively correspond to the fire lines L1, L2, and L3. Output.
  • the firewire lightning protection module is composed of multiple lightning protection circuits connected in parallel with each other, and the lightning protection circuit is connected in parallel to one end of the sampling circuit, and the other is connected to the PE end; the lightning protection circuit is sequentially connected by a safety breaker, A fuse resistor and a resistor are connected in series, and the fuse resistor is composed of a fuse and a variable resistor in series.
  • the neutral lightning protection module is composed of parallel lightning protection circuits, and the output end of the lightning protection circuit is connected to the input end of the sampling circuit, and the other circuit is connected to the PE end.
  • the lightning protection circuit is sequentially connected by a safety breaker.
  • the fuse resistor is composed of a resistor connected in series, and the fuse resistor is composed of a fuse and a variable resistor in series.
  • the fuse resistor is provided with five interfaces of the interface 1-5, the interface 1 is located at the input end of the fuse, the interface 2 is located between the output end of the fuse and the input of the variable resistor, and the interface 3 is located at the variable resistor At the output of the device, the interfaces 4, 5 are located in the middle of the variable resistor.
  • the output end of the interface 2 of the fuse resistor of the fire line lightning protection module is connected in parallel with the output end of the multi-channel lightning protection circuit interface 2, and then connected to the PE end.
  • the output end of the interface 3 is connected in series with a resistor and connected to the input end of the sampling circuit.
  • the output end of the interface 3 of the fuse resistor of the neutral lightning protection module is connected in parallel with the output end of the interface 3 of the adjacent lightning protection circuit, and then connected to the PE end.
  • the interface 4 between the lightning protection circuits is connected to each other. 5 are connected to each other, and the last interface 4 is connected to the input of the sampling circuit.
  • the sampling circuit is divided into a fire line sampling circuit and a zero line sampling circuit
  • the fire line sampling circuit is composed of an EMC strong electromagnetic suppression circuit, a signal acquisition circuit and a strong electromagnetic isolation suppression circuit which are connected in series with each other, and the zero line sampling circuit is connected in series with each other.
  • the signal acquisition circuit and the strong electromagnetic isolation suppression circuit are composed.
  • the EMC strong electromagnetic suppression circuit of the fire line sampling circuit comprises a transient voltage suppression diode, an optical coupler and a peripheral circuit, the peripheral circuit is composed of a resistor and a Zener diode, and the EMC strong electromagnetic suppression circuit is connected to the signal sampling circuit. The input end and the other end are connected to the input of the detection circuit.
  • the signal acquisition circuit of the fire line sampling circuit is composed of multiple parallel sampling resistors, each sampling resistor corresponds to one lightning protection circuit, and the output end of the signal acquisition circuit is connected to the input end of the strong electromagnetic isolation suppression circuit.
  • the strong electromagnetic isolation suppression circuit of the fire line sampling circuit is composed of an optical coupler, and the output ends of the optical coupler are connected in series and then connected to an optical coupler and connected to the detection circuit.
  • the signal acquisition circuit of the neutral line sampling circuit is composed of a sampling resistor, and the output end of the sampling resistor is connected to the input end of the strong electromagnetic isolation suppression circuit.
  • the strong electromagnetic isolation suppression circuit of the neutral line sampling circuit is composed of an optical coupler, and the output end of the optical coupler is connected to the detection circuit.
  • the detecting circuit is composed of a single chip U1, and an output end of the single chip U1 is connected to the display circuit, and the display circuit is composed of a digital display tube. .
  • the anti-interference power supply is composed of a varistor, a transformer, a transient voltage suppression diode and a rectifier bridge in parallel.
  • the lightning protection box further includes a counting circuit connected between the lightning protection module and the detecting circuit for counting pulses, wherein the counting circuit is composed of a sensitivity sensor and an optical coupler in series, and the output terminal is connected to the detecting circuit.
  • the pulse is 10-200 KA (8/20 ⁇ s) or 10-25 KA (10/350 ⁇ s).
  • the beneficial effects of the present invention are: At the same time, the multi-flash 10 pulse lightning test system has reached the international advanced level, realizing the historical leap of SPD high voltage test from single pulse to multi pulse, filling the international gap; the technical difficulty different from the development of single pulse SPD product is that the multi-pulse SPD is to withstand 10 pulses 880.5ms time impact, the test uses 8/20 ⁇ s waveform; nominal current 100KA; can withstand the combined continuous impact of 10 pulses of the same timing; the first to the ninth pulse each pulse interval 60ms; the 9th to the 10 pulse intervals of 400ms, the impact time length is 440 times of single pulse 10/350 ⁇ s, is 17610 times of single pulse 8/20 ⁇ s; can be solved by single pulse 10/350 ⁇ s class and 8/20 ⁇ s class 2 test It has the international problem of large flow, low residual voltage, electromagnetic compatibility, fireproof, explosion-proof and meet the current international and domestic single-pulse SPD testing standards under the impact of long-time multi-pulse lightning
  • the sequence is multi-flash 10 pulse lightning test system test
  • the indicators are not only in line with the current national standard GB18802.1-2002 "Power surge protector (SPD) of the low voltage distribution system.
  • SPD Power surge protector
  • Performance requirements and test methods, and in line with the latest IEC61643-11 standard issued by the International Electrotechnical Commission in March this year. have Large flow, low residual voltage, electromagnetic compatibility, fire prevention, explosion-proof and the ability to withstand long-term multi-pulse lightning current impact, realize the historical leap of SPD products from single pulse to multi-pulse, and fill the gap between international and domestic. It will promote the technological revolution of global lightning protection product design to production; it will also promote the revision of domestic and international SPD product technical standards.
  • the promotion and application of multi-pulse SPD products will greatly improve the SPD's ability to resist lightning strikes, effectively prevent lightning explosions and explosions, ensure modernization and people's lives and property, and have huge market and social benefits.
  • FIG. 1 is a schematic diagram of the structure of the lightning protection module of the fire line L1 of the present invention
  • FIG. 3 is a circuit diagram of the lightning protection module of the fire line L2 of the present invention
  • FIG. 4 is a schematic diagram of the fire line L3 of the present invention
  • FIG. 5 is a circuit schematic diagram of a lightning protection module of the neutral line N of the present invention
  • FIG. 6 is a circuit schematic diagram of a sampling circuit of the live line L1 of the present invention
  • FIG. 7 is a schematic diagram of the fire line L2 of the present invention
  • FIG. 8 is a circuit schematic diagram of a sampling circuit of a live line L3 of the present invention
  • FIG. 9 is a circuit schematic diagram of a sampling circuit of a neutral line N of the present invention
  • FIG. 10 is a circuit diagram of an amplifying circuit of the present invention
  • Figure 11 is a circuit schematic diagram of the anti-interference power supply of the present invention
  • Figure 12 is a circuit schematic diagram of the detection circuit of the present invention
  • Figure 13 is a circuit schematic diagram of the display circuit of the present invention
  • FIG. 15 is a schematic diagram of a waveform of a continuous pulse of 10 pulses
  • FIG. 16 is a schematic diagram of a second pulse shock test of the present invention
  • FIG. 17 is a schematic diagram of a test waveform of 10/350 ⁇ s of the present invention.
  • the main purpose of the present invention is to overcome the deficiencies of the prior art and to provide a simultaneous multi-pulse lightning protection box, which generally includes a plurality of pulses during a natural lightning discharge.
  • the results of the SPD test using the single-pulse analog waveform of the lightning high-voltage laboratory can not truly reflect the tolerance of the SPD under real lightning conditions.
  • the single-pulse SPD is often prone to fire and explosion accidents in actual operation.
  • the technical problem of multi-pulse SPD solution is that the multi-pulse SPD is subject to the 'simultaneous sequential multi-flash 10 pulse lightning test system'.
  • the 10 pulse combinations of the simulated lightning are up to 880.5 ms, and the impact time is 10/350 ⁇ s.
  • a synchronous multi-pulse lightning protection box wherein the input end of the lightning protection box is connected to the low voltage power supply line, and the low voltage power supply line is a three-phase four-wire circuit, including the fire lines L1, L2, L3 and the neutral line N, the lightning protection
  • the box comprises an SPD lightning protection module, a sampling circuit, a detection circuit and a display panel which are connected to each other in sequence, and the sampling circuit comprises an EMC strong electromagnetic suppression circuit, a signal acquisition circuit, a strong electromagnetic isolation suppression circuit, and the sampling circuit is provided by an anti-interference power supply. powered by;
  • the strong electromagnetic suppression circuit limits the rising steepness and amplitude of the generated lightning overvoltage signal, and supplies the processed signal to the signal acquisition circuit;
  • the signal acquisition circuit collects the signal and transmits the collected signal to the strong electromagnetic isolation suppression circuit
  • the strong electromagnetic isolation suppression circuit isolates the signal, and sends the processed signal to the detection circuit for waveform detection, and displays the waveform on the display panel.
  • the SPD lightning protection module is composed of four sets of lightning protection modules, and is divided into three sets of firewire lightning protection modules and one set of neutral lightning protection modules, and the firewire lightning protection modules respectively correspond;
  • the lightning protection module of the invention is Fireproof and explosion proof module,
  • the circuit varistor pulse overcurrent exceeds the nominal value, the fuse A ⁇ T value (microsecond level) is disconnected in advance, so that the varistor can not reach the limit of fire explosion; while the varistor works, the power frequency short-circuit current flows through the varistor, and the short-circuit current exceeds the varistor
  • the pulse safety breaker is opened one ⁇ T value in advance, so that the varistor is protected before reaching the fire explosion limit.
  • FIG. 2 is a circuit diagram of the lightning protection module of the live line L1 of the present invention; the input end of FIG. 2 is connected to the L1 end of the live line, and 8 parallel circuits are connected by the L1 end to connect the sampling circuit of the live line L1, wherein 7 circuits are protected Thunder circuit,
  • a safety breaker F1 - F7, a fuse resistor TM1 - TM7, a resistor R1 - R7 are connected in series, and the fuse resistors TM1 - TM7 are composed of a fuse and a variable resistor in series
  • the 8-way is a resistor R8, which is connected in series between the live line L1 and the sampling circuit, and is connected in parallel with the other 7-way lightning protection circuits.
  • the fuse resistors TM1 to TM7 are provided with five interfaces, the interface 1 is located at the input end of the fuse, the interface 2 is located between the output end of the fuse and the input of the variable resistor, and the interface 3 is located at the output of the resistor, the interface 4 5 is located in the middle of the resistor; the output end of the interface 2 of the live lightning protection module is connected in parallel with the output end of the other 7 interfaces 2, and then connected to the PE end. The output end of the interface 3 is connected in series with a resistor and then connected to the sampling circuit of the J1 interface. Input.
  • FIG. 3 is a circuit diagram of the lightning protection module of the fire line L2 of the present invention; the input end of FIG. 3 is connected to the L2 end of the live line, and 8 parallel circuits are connected by the L2 end to connect the sampling circuit of the live line L2, wherein 7 circuits are protected Thunder circuit,
  • a safety breaker F25-F31, a fuse resistor TM25-TM31, and a resistor (R26-R30, R32-R33) are connected in series, and the fuse resistors TM25-TM31 are composed of a fuse and a variable resistor.
  • the device is composed of a series package; the eighth circuit is a resistor R31, which is connected in series between the live line L2 and the sampling circuit, and is connected in parallel with the other 7 lightning protection circuits.
  • the fuse resistors TM25 ⁇ TM31 are provided with five interfaces, the interface 1 is located at the input end of the fuse, the interface 2 is located between the output end of the fuse and the input of the variable resistor, and the interface 3 is located at the output of the resistor, the interface 4 5 is located in the middle of the resistor; the output end of the interface 2 of the live lightning protection module is connected in parallel with the output end of the other 7 interfaces 2, and then connected to the PE end.
  • the output end of the interface 3 is connected in series with a resistor and then connected to the sampling circuit of the J2 interface. Input.
  • FIG. 4 is a schematic diagram of the lightning protection module circuit of the live line L3 of the present invention; the input end of FIG. 4 is connected to the L3 end of the live line, and 8 parallel circuits are connected by the L3 end to connect the sampling circuit of the live line L3, wherein 7 circuits are protected Thunder circuit,
  • a safety breaker F32-F38, a fuse resistor TM32-TM38, and a resistor (R34-R38, R40-R41) are connected in series, and the fuse resistors TM32-TM38 are composed of a fuse and a variable resistor.
  • the device is composed of a series package; the eighth circuit is a resistor R39, which is connected in series between the live line L3 and the sampling circuit, and is connected in parallel with the other 7 lightning protection circuits.
  • the fuse resistors TM32 ⁇ TM38 are provided with five interfaces, the interface 1 is located at the input end of the fuse, the interface 2 is located between the output end of the fuse and the input of the variable resistor, and the interface 3 is located at the output of the resistor, the interface 4 5 is located in the middle of the resistor; the output end of the interface 2 of the live lightning protection module is connected in parallel with the output end of the other 7 interfaces 2, and then connected to the PE end.
  • the output end of the interface 3 is connected in series with a resistor and then connected to the sampling circuit of the J3 interface. Input.
  • the neutral lightning protection module is composed of three lightning protection circuits, and the output end of the lightning protection circuit is connected to the input end of the sampling circuit through the RJ45 interface, and the other end is connected to the PE end, and the lightning protection circuit is sequentially separated by a safety.
  • the fuses F22-F24, a fuse resistors TM22-TM24, and a resistor R25 are connected in series, and the fuse resistor is composed of a fuse and a variable resistor in series.
  • the output end of the interface 3 of the neutral lightning protection module is connected in parallel with the output end of the other two interfaces 3, and then connected to the PE end.
  • the interface 5 of the three-way lightning protection circuit is connected to a resistor and then sent to the RJ45 interface.
  • the input terminal, the interface 4 is connected to the interface 4 of the second lightning protection circuit, the interface 5 of the second lightning protection circuit is connected with the interface 5 of the third lightning protection circuit, and the interface 4 of the third lightning protection circuit is connected to the J4 interface.
  • One end of the safety breaker F22 is connected to the output end of the neutral line N, the other end is connected to the interface 1 of the fuse resistor TM22, the interface 2 of the fuse resistor TM22 is vacant, and the interface 3 of the fuse resistor TM22 is connected with the fuse resistor.
  • the interface of the TM23 and the fuse resistor TM24 is connected in parallel to the PE terminal, and the interface 4 of the fuse resistor TM22 is connected to the interface 4 of the fuse resistor TM23.
  • the interface 5 of the fuse resistor TM22 is connected in series with a resistor R25 and connected to the sampling circuit.
  • the interface 5 of the fuse resistor TM23 is connected to the interface 5 of the fuse resistor TM24, and the interface 4 of the fuse resistor TM24 is connected to the sampling circuit.
  • the sampling circuit is divided into a fire line sampling circuit and a zero line sampling circuit, and the fire line sampling circuit is composed of an EMC strong electromagnetic suppression circuit, a signal acquisition circuit, and a strong electromagnetic isolation suppression circuit, and the zero line sampling circuit is composed of a signal acquisition circuit and is strong.
  • the electromagnetic isolation suppression circuit is composed of.
  • the sampling circuit of the present invention uses an optical coupler to perform an isolation suppression signal.
  • the optical coupler is generally composed of three parts: optical emission, light reception, and signal amplification.
  • the input electrical signal drives a light emitting diode (LED), The light is emitted at a certain wavelength, and is received by the photodetector to generate a photocurrent, which is further amplified and output.
  • the input electrical signal drives a light-emitting diode (LED) to emit a certain wavelength of light, which is received by the photodetector to generate a photocurrent, which is further amplified and output. This completes the electro-optical-electrical conversion, thereby functioning as input, output, and isolation.
  • the electrical signal transmission has the characteristics of unidirectionality, and thus has good electrical insulation capability and anti-interference ability.
  • the input end of the optocoupler belongs to a current-operating low-resistance element, it has a strong common mode suppression capability. Therefore, it can greatly improve the signal-to-noise ratio as a terminal isolation component in long-line transmission information.
  • FIG. 6 is a circuit schematic diagram of a sampling circuit of the live line L1 of the present invention; the interface J1 of FIG. 6 is connected to the interface J1 of FIG. 2, and the EMC strong electromagnetic suppression circuit is connected to an inductor D8 from the output end of J1 and then connected to the optical coupler.
  • the input of U8. Connect a transient voltage suppression diode D47 in series with the input of optocoupler U8 to drive a light-emitting diode that emits light of a certain wavelength, is received by a photodetector to generate a photocurrent, and is further amplified and output.
  • the output of the optocoupler is connected to the resistor R61', and the other is connected in series with a resistor R60'.
  • the input of the connection detection circuit displays the array interface DISP/L1.
  • the other 7 channels of the output of J1 are connected to the signal acquisition circuit after diode filtering, and the signal acquisition circuit is composed of sampling resistors.
  • the strong electromagnetic suppression isolation circuit is composed of optical couplers U1-U7, respectively, at the two ends of the light-emitting diodes of the optical coupler. Connect a sample resistor in series.
  • the optocouplers U1-U7 are connected in series with each other, and the emitter of U7 is connected in series with a resistor R82' and then connected to an optocoupler U29 for secondary isolation and then connected to the SURGE1 interface of the detection circuit.
  • FIG. 7 is a circuit schematic diagram of a sampling circuit of the live line L2 of the present invention; the interface J2 of FIG. 7 is connected to the interface J2 of FIG. 3, and the EMC strong electromagnetic suppression circuit is connected to an inductor D9 from the output end of J2, and then connected to the optical coupler.
  • the input of U9. Connect a transient voltage suppression diode D33 in series with the input of optocoupler U9 to drive a light-emitting diode that emits light of a certain wavelength, is received by a photodetector to generate a photocurrent, and is further amplified and output.
  • the output of the optocoupler is connected to the resistor R18', and the other terminal is connected in series with a resistor R20'.
  • the input of the connection detection circuit displays the array interface DISP/L2.
  • the other 7 channels of the output of J2 are connected to the signal acquisition circuit after diode filtering.
  • the signal acquisition circuit is composed of sampling resistors.
  • the strong electromagnetic suppression isolation circuit is composed of optical couplers U10-U16, which are respectively at the two ends of the light-emitting diodes of the optical coupler. Connect a sample resistor in series.
  • the optocouplers U10-U16 are connected in series with each other, and the emitter of U16 is connected in series with a resistor R37' and then connected to an optocoupler U17 for secondary isolation and then connected to the SURGE2 interface of the detection circuit.
  • FIG. 8 is a circuit schematic diagram of a sampling circuit of the live line L3 of the present invention; the interface J3 of FIG. 8 is connected to the interface J3 of FIG. 4, EMC
  • the strong electromagnetic suppression circuit is connected to the input end of the optical coupler U18 from the output of J3 after connecting an inductor D34.
  • a transient voltage suppression diode D52 is connected in series with the input terminal of the optocoupler U18 to drive
  • the light-emitting diode emits light of a certain wavelength, is received by the photodetector to generate photocurrent, and is further amplified and output, the output of the optocoupler is connected to the resistor R39', and the other circuit is connected in series with a resistor R41', and then connected to the detecting circuit.
  • the input shows the array interface DISP/L3.
  • the other 7 channels of the output of J3 are connected to the signal acquisition circuit after diode filtering.
  • the signal acquisition circuit is composed of sampling resistors.
  • the strong electromagnetic suppression isolation circuit is composed of optical couplers U19-U26, which are respectively at the two ends of the light-emitting diodes of the optical coupler. Connect a sample resistor in series.
  • the optocouplers U19-U26 are connected in series with each other, and the emitter of U26 is connected in series with a resistor R63' and then connected to an optocoupler U27 for secondary isolation and then connected to the SURGE3 interface of the detection circuit.
  • FIG. 9 is a circuit schematic diagram of a sampling circuit of a neutral N of the present invention
  • the interface J4 of FIG. 9 is connected to the interface J4 of FIG. 5, and includes a signal acquisition circuit and a strong electromagnetic suppression isolation circuit, and the signal acquisition circuit is composed of a sampling resistor R1' Composition, and the output end of R1' is connected to the optical coupler U25, and a resistor R50' is connected in series between the light-emitting diodes of U25, and the optical coupler is connected to the detection circuit
  • the SURGE4 interface is connected to the J4 interface after connecting the resistor R51' and the diode D25.
  • FIG. 10 is a circuit schematic diagram of an amplifying circuit of the present invention
  • interfaces DISP/L1, DISP/L2, and DISP/L3 are further amplified by an amplifying circuit and connected to a display array, and the display array is composed of LED light emitting diodes.
  • Figure 11 is a circuit schematic diagram of an anti-interference power supply;
  • the anti-interference power source comprises a varistor, a transformer, a transient voltage suppression diode and a rectifier bridge in parallel.
  • the varistor MOV3 and MOV4 are connected in series with the varistor MOV2 in parallel and connected in parallel at the input end of the transformer T1.
  • the output terminal of the transformer is connected to the transient voltage suppression diode and the rectifier bridge for isolation and rectification, and then supplies power to the sampling circuit.
  • 12 is a circuit schematic diagram of a detection circuit of the present invention; the detection circuit includes a peripheral circuit of a single-chip microcomputer U1, and is configured to detect and display signals and waveforms.
  • 13 is a circuit schematic diagram of a display circuit of the present invention; consisting of three sets of digital display tubes and having a triode in series between the display circuit and the detection circuit for signal amplification.
  • Figure 14 is a circuit schematic diagram of the counting circuit of the present invention;
  • the lightning protection box further includes a counting circuit connected between the lightning protection module and the detecting circuit for counting pulses.
  • the counting circuit is composed of a sensitivity sensor and an optical coupler connected in series, and the output end is connected to the detecting circuit.
  • the sensitivity sensor is a varistor. When the electromagnetic pulse current is greater than or equal to 500A, the sensitivity sensor counts, and the lightning current is less than 500A, which is automatically ignored, and the counting waveform is 8/20us.
  • the counting frequency is less than or equal to 1000 times per second.
  • Step 1 continuously applying a combined continuous impact of 10 pulses of the same timing to the low-voltage power supply circuit, the first to the ninth pulses each pulse interval time is 60 ms; the ninth to tenth pulse interval time is 400 ms; Step 2: When the low-voltage power supply line is subjected to the lightning electromagnetic pulse, a strong lightning current is generated on the low-voltage power supply line. When the lightning current is applied to the fire-proof and explosion-proof module, the lightning protection module has a low resistance at a nanosecond speed.
  • Step 3 The lightning protection module sends the generated lightning overvoltage signal to the EMC strong electromagnetic suppression circuit, the main current loop is connected to the PE end, and the lightning is introduced into the earth protection back end equipment;
  • Step 4 the electromagnetic strong suppression circuit generates the lightning
  • the electromagnetic compatibility of the overvoltage signal is processed to balance the signal and interference, and the processed signal is sent to the signal acquisition circuit;
  • Step 5 The signal acquisition circuit collects the signal, and sends the collected signal to the strong electromagnetic isolation suppression circuit;
  • step 6 the strong electromagnetic isolation suppression circuit isolates the interference signal in the signal, and delivers the processed signal to the display
  • the panel is displayed.
  • the pulse is 10-200 KA (8/20 ⁇ s) or 10-25 KA (10/350 ⁇ s).
  • the main features of the present invention are: 8/20 ⁇ s waveform; nominal current 100 KA; combined continuous impact of 10 pulses of the same timing.
  • the first to ninth pulses are separated by 60 ms per pulse; the ninth to tenth pulses are separated by 400 ms.
  • the impact time length is approximately 880.5 ms.
  • the length of the impact time is 440 times that of a single pulse of 10/350 ⁇ s, which is 17610 times that of a single pulse of 8/20 ⁇ s.
  • the present invention performs three different types of high-voltage lightning impulse tests: (1) a single pulse 10/350 ⁇ s type of impact test, the impact peak Iimp is 25 kA; (2) a single pulse 8/20 ⁇ s class II test, the impact peak Imax is 200KA; (3) Simultaneous sequential multi-flash 10 pulse direct lightning simulation test.
  • the present invention avoids the shortcomings of SPD explosion fire caused by overcurrent caused by insufficient energy in single-pulse SPD design, and can withstand multi-pulse (10 pulse combination), long-time (80.5 ms) lightning current impact, and It has large throughflow (Imax: 40KA-200KA), low residual pressure (Up ⁇ 2.5KV), electromagnetic compatibility, fireproof, explosion-proof technical features, and meets the international difficulties of current international and domestic single-pulse SPD testing standards.
  • the invention adopts the seamless connection technology, the circuit board adopts the thick plate double-sided plus drilling technology and adopts the magnetic field reversal technology.
  • the multi-pulse maximum inrush current Imax200KA is realized, the residual voltage is Up ⁇ 2.5KV, the lightning strike counting sensitivity is ⁇ 500A, and the short-circuit current protection is 300A ⁇ 5S.
  • the invention realizes the leap of SPD products from single pulse to multi-pulse in the field of lightning protection in the world; promotes the technological revolution of global lightning protection product design to production; and also promotes the revision of domestic and international SPD product technical standards.
  • the promotion and application of multi-pulse SPD products have improved the ability of SPD to resist lightning strikes, effectively prevent lightning explosions and explosions, ensure modernization and people's lives and property safety, and have greater market and social benefits.
  • Figure 15 is a schematic view showing the waveform of 10 pulse continuous impacts according to the present invention.
  • This figure shows the current wave applied to the circuit of the product under test.
  • the number of lightning currents received by the product in one second can be fully reflected.
  • the measured current value reached 80KA, and each current lasted for 500us (typical 8/20us lightning strike current wave).
  • Figure 16 is a schematic view of the second pulse shock test of the present invention, wherein the voltage generated by the current applied to the circuit of the product under test is 10 (UP value), and the second voltage peak is 1.6 KV. The total voltage value is 1 second.
  • 17 is a schematic diagram of a 10/350 ⁇ s test waveform of the present invention.
  • the current applied to the two ends of the product to be tested is a current wave of 10/350 s, the amplitude reaches 25.29 KA, and the charge amount reaches 8.27 As.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

一种同时序多脉冲防雷箱,包括依次连接的防雷模组、采样电路、检测电路及显示面板。采样电路包括EMC强电磁抑制电路、信号采集电路和强电磁隔离抑制电路。当低压供电线路遭受雷电电磁脉冲冲击时,在低压供电线路上产生雷电过电压信号,并施加到防雷模组上。防雷模组将产生的雷电过电压信号一路输送给EMC强电磁抑制电路,另一路接PE端,将雷电导入大地。EMC强电磁抑制电路对产生的雷电过电压信号的上升陡度及幅度限制,并将处理后的信号输送给信号采集电路。信号采集电路对信号进行采集,并将采集的信号输送给强电磁隔离抑制电路。强电磁隔离抑制电路对信号进行隔离,并将处理后的信号输送给检测电路和显示电路面板,完成人机信息交换。

Description

一种同时序多脉冲防雷箱
技术领域
本发明涉及雷电防护技术领域,具体涉及一种同时序多脉冲防雷箱。
背景技术
到目前为止,全球各国生产的电涌保护器(简称SPD,英文Surge Protective Device的缩写)都是按照IEC/TC61643-11的技术标准进行研发和生产并经雷电高压实验室采用10/350µs或8/20µs的 单脉冲冲击波进行检验。 如日本昭电株式会 社和我国北京、上海避雷装置检测中心引进瑞士HAEFELY的SSGA冲击电流发生器,输出电流波形为10/350µs;最大输出电流为200KA。
然而,真实雷电放电时一次闪击过程通常包含了多个脉冲。 2008 年6月在瑞典第29届国际雷电防护大会上F.Heidler(University Of The Federal Armed Force Munich,Germany)发表的《 Parameters of lightning current given in IEC62305- background, experiments and outlook 》,观测到了一次闪击过程包含了11个脉冲; 2010 年3月1日 ,杨少杰,陈绍东(中国广州野外雷电试验基地)等在 <JOURNAL OF TROPICAL METEOROLOGY> Vol.16 发表了 <CHARACTERISTICS ANALYSIS OF THE INDUCED OVERCURRENT GENERATED BY CLOSE TRIGGERED LIGHTNING ON THE OVERHEAD TRANSMISSION >,以及 在2011年8月12日杨少杰,陈绍东等在巴西第14届国际大气电学大会发表的论文:<Triggered Lightning Analysis Gives New Insight into Over Current Effects on Surge Protective Devices〉观测到了一次闪击过程包含了8个脉冲.并介绍了 广州野外雷电试验基地 2008 年8月12日 SPD 自然雷击耐受力试验:负极性非单一LEMP共有8次回击,最大电流26.4kA。流经SPD的电流最大值为1.64KA造成标称电流20kA的 SPD损坏。 科学试验和雷电防护实践都说明,雷电高压实验室用单一脉冲检验SPD的方法与真实雷电一次闪击多个脉冲的事实不符,经雷电高压实验室用单一脉冲检验的SPD在真实雷击时的耐受力与其标称值相去甚远,往往导致SPD过热爆炸起火,引发火灾事故。 研制逼真于真实雷电的多脉冲高压雷电测试设备和多脉冲SPD产品已是燃眉之急。
2011 年,北京雷电防护装置测试中心提出研制多脉冲SPD高压试验设备立项并被批准,上海交通大学冠图公司承担研制任务。2011年12月多脉冲SPD高压试验设备研制成功。同月26--29日 杨少杰,赵军组织进行了利用同时序多闪击10脉冲雷电测试系统对SPD的损坏性试验,用单脉冲检验合格的SPD均起火爆炸。 如何能使防雷箱经 具有大通流,低残压,电磁兼容,防火,防爆和经受长时间多脉冲雷电流冲击的能力成为 现行国际国内单脉冲SPD检测标准的国际难题。
发明内容
本发明的目的在于克服现有技术的不足,提供 一种同时序多脉冲防雷箱, 具有大通流,低残压,电磁兼容,防火,防爆和经受长时间多脉冲雷电流冲击的能力, 实现了SPD产品从单脉冲到多脉冲的跨越。
为了达到上述目的,本发明采用的技术方案是: 一种同时序多脉冲防雷箱,防雷箱的输入端连接低压供电线路,所述的低压供电线路为三相四线电路,包括火线L1、L2、L3及零线N,所述防雷箱依次包括相互连接的SPD防雷模组、采样电路、检测电路及显示面板,所述的采样电路包括EMC (英文Electro Magnetic Compatibility的缩写) 强电磁抑制电路、信号采集电路、强电磁隔离抑制电路,且采样电路由与低压供电线路连接的抗干扰电源供电;当低压供电线路遭受雷电电磁脉冲冲击时,在低压供电线路上产生雷电过电压信号,并施加到SPD防雷模组上,SPD防雷模组将产生的雷电过电压信号一路输送给EMC强电磁抑制电路,另一路接PE端,将雷电导入大地; EMC 强电磁抑制电路通过光耦合器对产生的雷电过电压信号的上升陡度及幅度限制,并将信号输送给信号采集电路;信号采集电路通过采样电阻对信号进行采集,并将采集的信号输送给强电磁隔离抑制电路;强电磁隔离抑制电路通过光耦合器对信号进行隔离,并将处理后的信号输送给检测电路并将处理后的信号准确输送给显示电路面板,完成人机信息交换。
进一步的,所述的SPD防雷模组由4组防雷模块组成,分为3组火线防雷模块与1组零线防雷模块,火线防雷模块分别对应连接火线L1、L2、L3的输出端。所述火线防雷模块由互相并联的多路防雷电路组成,且防雷电路并联后一路连接采样电路的输入端,另一路连接PE端;所述的防雷电路依次由一安全分断器、一熔断电阻器、一电阻串联组成,所述的熔断电阻器由一熔断丝与一可变电阻器串联封装组成。 所述零线防雷模块由互相并联防雷电路组成,且防雷电路的输出端一路连接采样电路的输入端,另一路连接PE端,所述的防雷电路依次由一安全分断器、一熔断电阻器、一电阻串联组成,所述的熔断电阻器由一熔断丝与一可变电阻器串联封装组成。所述的熔断电阻器设有接口1-5五个接口,接口1位于熔断丝的输入端,接口2位于熔断丝的输出端与可变电阻器的输入端之间,接口3位于可变电阻器的输出端,接口4、5位于可变电阻器的中部。所述的火线防雷模块的熔断电阻器的接口2的输出端与多路防雷电路接口2的输出端并联后连接PE端,接口3的输出端串联一电阻后连接采样电路输入端。所述的零线防雷模块的熔断电阻器的接口3的输出端与相邻防雷电路的接口3的输出端并联后连接PE端,所述防雷电路之间的接口4相互连接,接口5相互连接,最后一路的接口4连接采样电路输入端。
进一步的,所述的采样电路分为火线采样电路及零线采样电路,火线采样电路由相互串联的EMC强电磁抑制电路、信号采集电路、强电磁隔离抑制电路组成,零线采样电路由相互串联的信号采集电路、强电磁隔离抑制电路组成。所述的火线采样电路的EMC强电磁抑制电路包括瞬变电压抑制二极管、光耦合器及外围电路,外围电路由电阻及稳压二极管组成,所述的EMC强电磁抑制电路一路连接信号采样电路的输入端,另一端连接检测电路的输入端。所述的火线采样电路的信号采集电路由多路并联采样电阻组成,每路采样电阻与一路防雷电路对应,信号采集电路的输出端连接强电磁隔离抑制电路的输入端。所述的火线采样电路的强电磁隔离抑制电路由光耦合器组成,且光耦合器输出端串联后连接一光耦合器后连接检测电路。所述的零线采样电路的信号采集电路由一采样电阻组成,且采样电阻的输出端连接强电磁隔离抑制电路的输入端。所述的零线采样电路的强电磁隔离抑制电路由一光耦合器组成,且光耦合器的输出端连接检测电路。
进一步的,所述的检测电路由单片机U1组成,且单片机U1的输出端连接显示电路,所述的显示电路由数码显示管组成。。
进一步的,所述的抗干扰电源由压敏电阻、变压器、瞬变电压抑制二极管及整流桥并联组成。
进一步的,所述的防雷箱进一步包括连接在防雷模块与检测电路之间的用于对脉冲进行计数的计数电路,计数电路由一灵敏度传感器与光耦合器串联组成,输出端连接检测电路。所述的脉冲为10-200KA(8/20µs)或10-25KA(10/350µs)。
与现有技术相比,本发明的有益效果是: 同时序多闪击10脉冲雷电测试系统达到国际先进水平,实现了SPD高压测试从单脉冲到多脉冲的历史跨越,填补了国际空白;不同于单脉冲SPD产品研制的技术难度在于多脉冲SPD要经受10个脉冲880.5ms时间的冲击,测试采用8/20µs波形;标称电流100KA;能承受同一时序10个脉冲的组合连续冲击;第1至第9个脉冲每个脉冲间隔60ms;第9至第10个脉冲间隔400ms,其冲击时间长度是单脉冲10/350µs的440倍,是单脉冲8/20µs的17610倍;能通过单脉冲10/350µs的一类和8/20µs的二类试验,解决了经受长时间多脉冲雷电流冲击下具有大通流,低残压,电磁兼容,防火,防爆且符合现行国际国内单脉冲SPD检测标准的国际难题; 本发明的多脉冲SPD产品STMP-100T1通过了北京雷电防护装置测试中心单脉冲10/350 µ s 的 一类试验和8/20 µ s 的 二类试验后,进行 同时序多闪击10脉冲雷电测试系统测试,各项指标不仅符合现行国家标准GB18802.1-2002《低压配电系统的电涌保护器(SPD)第一部分 性能要求和试验方法》,而且符合国际电工委员会今年3月颁布的IEC61643-11最新标准。具有 大通流,低残压,电磁兼容,防火,防爆和经受长时间多脉冲雷电流冲击的能力, 实现了SPD产品从单脉冲到多脉冲的历史跨越,填补了国际国内空白。 将促进全球防雷产品设计到生产的技术革命;也将促进国内国际SPD产品技术标准的修订。多脉冲SPD产品的推广和应用,必将大大提高SPD抗雷击的能力,有效预防雷击火灾爆炸事故,保障现代化建设和人民生命财产安全,市场和社会效益巨大。
附图说明
图1为本发明的结构原理示意图;图2为本发明的火线L1的防雷模块电路原理图;图3为本发明的火线L2的防雷模块电路原理图;图4为本发明的火线L3的防雷模块电路原理图;图5为本发明的零线N的防雷模块电路原理图;图6为本发明的火线L1的采样电路的电路原理图;图7为本发明的火线L2的采样电路的电路原理图;图8为本发明的火线L3的采样电路的电路原理图;图9为本发明的零线N的采样电路的电路原理图;图10为本发明的放大电路的电路原理图;图11为本发明的抗干扰电源的电路原理图;图12为本发明的检测电路的电路原理图;图13为本发明的显示电路的电路原理图;图14为本发明的计数电路的电路原理图;图15为10个脉冲连续冲击的波形示意图;图16为本发明的第2个脉冲冲击测试示意图;图17为本发明的10/350µs的测试波形示意图。
具体实施方式
本发明的主旨在于克服现有技术的不足,提供一种同时序多脉冲防雷箱,在自然界雷电放电时一次闪击过程通常包含了多个脉冲。而雷电高压实验室采用单脉冲模拟波形对SPD进行检验的结果不能真实反映SPD在真实雷电条件下的耐受力,单脉冲SPD在实际运行中往往容易引起火灾爆炸事故。 多脉冲SPD解决的技术问题在于:多脉冲SPD要经受'同时序多闪击10脉冲雷电测试系统'模拟雷电的10个脉冲组合长达880.5ms时间的冲击,其冲击时间长度是单脉冲10/350µs(2ms)的440倍,是单脉冲8/20µs (50µs)的17610倍;因此,多脉冲SPD的研制要解决在经受长时间多脉冲雷电流冲击下具有大通流,低残压,电磁兼容,防火,防爆且符合现行国际国内单脉冲SPD检测标准的国际难题。 多脉冲SPD的研发成功将有效解决单脉冲SPD在真实雷电条件下运行时的火灾爆炸问题,大大提高防雷工程质量。 下面结合实施例参照附图进行详细说明,以便对本发明的技术特 征及优点进行更深入的诠释。
本发明的结构原理示意图 如图1所示, 一种同时序多脉冲防雷箱,防雷箱的输入端连接低压供电线路,所述的低压供电线路为三相四线电路,包括火线L1、L2、L3及零线N,所述防雷箱依次包括相互连接的SPD防雷模组、采样电路、检测电路及显示面板,所述的采样电路包括EMC强电磁抑制电路、信号采集电路、强电磁隔离抑制电路,且采样电路由抗干扰电源供电;
当低压供电线路遭受雷电电磁脉冲冲击时,在低压供电线路上产生雷电过电压信号,并施加到SPD防雷模组上,SPD防雷模组将产生的雷电过电压信号一路输送给EMC强电磁抑制电路,另一路接PE端,将雷电导入大地;
EMC 强电磁抑制电路对产生的雷电过电压信号的上升陡度及幅度限制,并将处理后的信号输送给信号采集电路;
信号采集电路对信号进行采集,并将采集的信号输送给强电磁隔离抑制电路;
强电磁隔离抑制电路对信号进行隔离,并将处理后的信号输送给检测电路进行波形检测,并在显示面板进行显示波形。
进一步的,所述的SPD防雷模组由4组防雷模块组成,分为3组火线防雷模块与1组零线防雷模块,火线防雷模块分别对应;本发明的防雷模块为防火防爆模块, 在电路压敏电阻脉冲过电流超过标称值时, 熔断器 提前一个ΔT值(微秒级)断开,使压敏电阻不能达到着火爆炸的极限值;而当压敏电阻工作期间,工频短路电流流过压敏电阻,其短路电流超过了压敏电阻的标称值时,脉冲安全分断器提前一个ΔT值断开,使压敏电阻在达到起火爆炸极限值前受到保护。
图2为本发明的火线L1的防雷模块电路原理图;图2的输入端连接火线L1端,并由L1端分出8条并联的电路连接火线L1的采样电路,其中7条电路为防雷电路, 依次由一安全分断器F1~F7、一熔断电阻器TM1~TM7、一电阻R1~R7串联组成,所述的熔断电阻器TM1~TM7由一熔断丝与一可变电阻器串联封装组成;第8路为一电阻R8,串联在火线L1与采样电路之间,并与其他7路防雷电路并联。 熔断电阻器TM1~TM7设有5个接口,接口1位于熔断丝的输入端,接口2位于熔断丝的输出端与可变电阻的输入端之间,接口3位于电阻器的输出端,接口4、5位于电阻器的中部;所述火线防雷模块中接口2的输出端与其他7路接口2的输出端并联后连接PE端,接口3的输出端串联一电阻后连接J1接口的采样电路输入端。
图3为本发明的火线L2的防雷模块电路原理图;图3的输入端连接火线L2端,并由L2端分出8条并联的电路连接火线L2的采样电路,其中7条电路为防雷电路, 依次由一安全分断器F25~F31、一熔断电阻器TM25~TM31、一电阻(R26~R30、R32~R33)串联组成,所述的熔断电阻器TM25~TM31由一熔断丝与一可变电阻器串联封装组成;第8路为一电阻R31,串联在火线L2与采样电路之间,并与其他7路防雷电路并联。 熔断电阻器TM25~TM31设有5个接口,接口1位于熔断丝的输入端,接口2位于熔断丝的输出端与可变电阻的输入端之间,接口3位于电阻器的输出端,接口4、5位于电阻器的中部;所述火线防雷模块中接口2的输出端与其他7路接口2的输出端并联后连接PE端,接口3的输出端串联一电阻后连接J2接口的采样电路输入端。
图4为本发明的火线L3的防雷模块电路原理图;图4的输入端连接火线L3端,并由L3端分出8条并联的电路连接火线L3的采样电路,其中7条电路为防雷电路, 依次由一安全分断器F32~F38、一熔断电阻器TM32~TM38、一电阻(R34~R38、R40~R41)串联组成,所述的熔断电阻器TM32~TM38由一熔断丝与一可变电阻器串联封装组成;第8路为一电阻R39,串联在火线L3与采样电路之间,并与其他7路防雷电路并联。 熔断电阻器TM32~TM38设有5个接口,接口1位于熔断丝的输入端,接口2位于熔断丝的输出端与可变电阻的输入端之间,接口3位于电阻器的输出端,接口4、5位于电阻器的中部;所述火线防雷模块中接口2的输出端与其他7路接口2的输出端并联后连接PE端,接口3的输出端串联一电阻后连接J3接口的采样电路输入端。
图5为本发明的零线N的防雷模块电路原理图; 所述零线防雷模块由3路防雷电路组成,且防雷电路的输出端一路通过RJ45接口连接采样电路的输入端,另一路连接PE端,所述的防雷电路依次由一安全分断器F22~F24、一熔断电阻器TM22~TM24、一电阻R25串联组成,所述的熔断电阻器由一熔断丝与一可变电阻器串联封装组成。 所述零线防雷模块中接口3的输出端与其它2路接口3的输出端并联后连接PE端,所述3路防雷电路一路熔断电阻器的接口5连接一电阻后输送到RJ45接口的输入端,接口4连接第二路防雷电路的接口4,第二路防雷电路的接口5与第三路防雷电路的接口5连接,第三路防雷电路的接口4连接J4接口的采样电路输入端。 所述的安全分断器F22的一端接零线N的输出端,另一端接熔断电阻器TM22的接口1,接熔断电阻器TM22的接口2空置,接熔断电阻器TM22的接口3与接熔断电阻器TM23、接熔断电阻器TM24的接口3并联后输送到PE端,熔断电阻器TM22的接口4链接熔断电阻器TM23的接口4,熔断电阻器TM22的接口5串联一电阻R25后连接采样电路,熔断电阻器TM23的接口5连接熔断电阻器TM24的接口5,熔断电阻器TM24的接口4连接采样电路。
进一步的,所述的采样电路分为火线采样电路及零线采样电路,火线采样电路由EMC强电磁抑制电路、信号采集电路、强电磁隔离抑制电路组成,零线采样电路由信号采集电路、强电磁隔离抑制电路组成。
本发明的采样电路中采用光耦合器进行隔离抑制信号,光耦合器由光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED), 使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电-光-电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。
图6为本发明的火线L1的采样电路的电路原理图;图6的接口J1与图2的接口J1相连接,EMC强电磁抑制电路从J1的输出端连接一电感D8后一路连接光耦合器U8的输入端。在光耦合器U8的输入端串联一瞬变电压抑制二极管D47,驱动 发光二极管,使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出, 光耦合器输出端一路连接电阻R61',另一路串联一电阻R60'后连接检测电路的输入端显示数组接口DISP/L1。J1的输出端的另外7路经过二极管滤波后连接信号采集电路,信号采集电路组成由采样电阻组成,强电磁抑制隔离电路由光耦合器U1-U7组成,在光耦合器的发光二极管的两端分别串联一采样电阻。光耦合器U1-U7之间相互串联,且U7的发射极串联一电阻R82'后连接一光耦合器U29进行二次隔离后连接检测电路的SURGE1接口。
图7为本发明的火线L2的采样电路的电路原理图;图7的接口J2与图3的接口J2相连接,EMC强电磁抑制电路从J2的输出端连接一电感D9后一路连接光耦合器U9的输入端。在光耦合器U9的输入端串联一瞬变电压抑制二极管D33,驱动 发光二极管,使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出, 光耦合器输出端一路连接电阻R18',另一路串联一电阻R20'后连接检测电路的输入端显示数组接口DISP/L2。J2的输出端的另外7路经过二极管滤波后连接信号采集电路,信号采集电路组成由采样电阻组成,强电磁抑制隔离电路由光耦合器U10-U16组成,在光耦合器的发光二极管的两端分别串联一采样电阻。光耦合器U10-U16之间相互串联,且U16的发射极串联一电阻R37'后连接一光耦合器U17进行二次隔离后连接检测电路的SURGE2接口。
图8为本发明的火线L3的采样电路的电路原理图;图8的接口J3与图4的接口J3相连接, EMC 强电磁抑制电路从J3的输出端连接一电感D34后一路连接光耦合器U18的输入端。在光耦合器U18的输入端串联一瞬变电压抑制二极管D52,驱动 发光二极管,使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出,光耦合器输出端一路连接电阻R39',另一路串联一电阻R41'后连接检测电路的输入端显示数组接口DISP/L3。J3的输出端的另外7路经过二极管滤波后连接信号采集电路,信号采集电路组成由采样电阻组成,强电磁抑制隔离电路由光耦合器U19-U26组成,在光耦合器的发光二极管的两端分别串联一采样电阻。光耦合器U19-U26之间相互串联,且U26的发射极串联一电阻R63'后连接一光耦合器U27进行二次隔离后连接检测电路的SURGE3接口。
图9为本发明的零线N的采样电路的电路原理图;图9的接口J4与图5的接口J4相连接,包括信号采集电路与强电磁抑制隔离电路,信号采集电路由采样电阻R1'组成,且R1'的输出端连接光耦合器U25,在U25的发光二极管之间串联一电阻R50',光耦合器一路连接检测电路 的SURGE4接口,另一路连接电阻R51'、二极管D25后接入J4接口。
图10为本发明的放大电路的电路原理图;接口DISP/L1、DISP/L2、DISP/L3经过放大电路进一步放大后连接显示数组,显示数组由LED发光二极管组成。图11为抗干扰电源的电路原理图; 所述的抗干扰电源包括压敏电阻、变压器、瞬变电压抑制二极管及整流桥并联组成。压敏电阻MOV3、MOV4串联后与压敏电阻MOV2并联后并联在变压器T1的输入端,变压器的输出端并联瞬变电压抑制二极管及整流桥进行隔离整流后给采样电路供电。 图12为本发明的检测电路的电路原理图;所说的检测电路包括单片机U1机器外围电路,组成,对信号和波形进行检测并显示。 图13为本发明的显示电路的电路原理图;由三组数码显示管组成并且在显示电路与检测电路之间串联一三极管进行信号放大。 图14为本发明的计数电路的电路原理图; 所述的防雷箱进一步包括连接在防雷模块与检测电路之间的用于对脉冲进行计数的计数电路,计数电路由一灵敏度传感器与光耦合器串联组成,输出端连接检测电路。所说的灵敏度传感器为一压敏电阻,所述的电磁脉冲电流大于等于500A时,灵敏度传感器进行计数,雷电流小于500A则自动忽略不计,计数波形为8/20us ,计数频率小于等于每秒1000次。
本发明的工作原理如下,其在测试时,能承受10个连续脉冲冲击,步骤如下: 步骤1、对低压供电电路连续施加同一时序10个脉冲的组合连续冲击,第1至第9个脉冲每个脉冲间隔时间为60ms;第9至第10个脉冲间隔时间为400ms; 步骤2、当低压供电线路遭受雷电电磁脉冲冲击时,在低压供电线路上产生强雷电流,当雷电流施加在防火防爆模组上时,防雷模组以纳秒级速度在低阻无缝隙回路上对地泄放电流; 步骤3、防雷模组将产生的雷电过电压信号输送给EMC强电磁抑制电路,主电流回路接PE端,将雷电导入大地保护后端设备;步骤4、EMC强电磁抑制电路对产生的雷电过电压信号的电磁兼容性进行处理,使信号与干扰达到平衡,并将处理后的信号输送给信号采集电路; 步骤5、信号采集电路对信号进行采集,并将采集的信号输送给强电磁隔离抑制电路;步骤6、强电磁隔离抑制电路对信号中的干扰信号进行隔离,并将处理后的信号输送给显示面板进行显示。所述的脉冲为10-200KA(8/20µs)或10-25KA(10/350µs)。
当低压供电线路遭受雷电电磁脉冲(LEMP)侵入时,将在各线路上产生雷电过电压,并施加到SPD1-4之上,SPD立即以微秒级的速度快速导通,把雷电流导入大地,从而保护了后端设备免受雷电损坏,该技术方案设计采用了先进的TMOV技术,EMC电磁抑制技术,单片机(微处理器)数字监测技术等。
本发明的主要特点有:采用8/20µs波形;标称电流100KA;同一时序10个脉冲的组合连续冲击。第1至第9个脉冲每个脉冲间隔60ms;第9至第10个脉冲间隔400ms。冲击时间长度约为880.5ms。其冲击时间长度是单脉冲10/350µs的440倍,是单脉冲8/20µs的17610倍。本发明分别进行了三种不同类别的高压雷电冲击试验:(1)单脉冲10/350µs的一类冲击试验,冲击峰值Iimp为25kA;(2)单脉冲8/20µs的二类试验,冲击峰值Imax为200KA;(3)同时序多闪击10脉冲的直击雷模拟试验。因此,本发明避免了单脉冲SPD设计时的能量不足而容易因过流引起的SPD爆炸火灾的缺点,能承受多脉冲(10个脉冲组合),长时间(80.5ms)的雷电流冲击,并且具有大通流(Imax:40KA-200KA),低残压(Up≤2.5KV),电磁兼容、防火、防爆的技术特点,且符合现行国际国内单脉冲SPD检测标准的国际难题。 本发明采用了无缝隙连接技术、电路板采用厚板双面加钻孔技术和采用了磁场反向技术。实现了多脉冲最大冲击电流Imax200KA,残压Up<2.5KV,雷击计数灵敏度<500A,短路电流保护300A<5S。
本发明在全球雷电防护领域实现了SPD产品从单一脉冲到多脉冲的跨越;促进全球防雷产品设计到生产的技术革命;也将促进国内国际SPD产品技术标准的修订。多脉冲SPD产品的推广和应用,提高了SPD抗雷击的能力,有效预防雷击火灾爆炸事故,保障现代化建设和人民生命财产安全,市场和社会效益较大。
图15为本发明的10个脉冲连续冲击的波形示意图,此图为施加在被测产品回路中的电流波,在图的上半部分能充分体现出产品在一秒内所承受的雷电电流次数为10个,实测电流值达到了80KA,每个电流持续波长为500us(典型的8/20us雷击电流波)。 图16为本发明的第2个脉冲冲击测试示意图,施加在被测产品回路中的电流所产生的电压值为10个(UP值),第二个电压波峰值为1.6KV,所产生的十个电压值总长时间为1秒。 图17为本发明的10/350µs的测试波形示意图,施加在被测产品两端的电流为10/350us电流波,幅值达到25.29KA,电荷量达到8.27As。
以上内容是结合具体的优选方式对本发明所作的进一步详细说明,不应认定本发明的具体实施只局限于以上说明。对于本技术领域的技术人员而言,在不脱离本发明构思的前提下,还可以作出若干简单推演或替换,均应视为由本发明所提交的权利要求确定的保护范围之内。

Claims (17)

  1. 一种同时序多脉冲防雷箱,防雷箱的输入端连接低压供电线路,所述的低压供电线路为三相四线电路,包括火线L1、L2、L3及零线N,其特征在于:
    所述防雷箱依次包括相互连接的SPD防雷模组、采样电路、检测电路及显示面板,所述的采样电路包括EMC强电磁抑制电路、信号采集电路、强电磁隔离抑制电路,且采样电路由与低压供电线路连接的抗干扰电源供电;
    当低压供电线路遭受雷电电磁脉冲冲击时,在低压供电线路上产生雷电过电压信号,并施加到SPD防雷模组上,SPD防雷模组将产生的雷电过电压信号一路输送给EMC强电磁抑制电路,另一路接PE端,将雷电导入大地;
    EMC 强电磁抑制电路通过光耦合器对产生的雷电过电压信号的上升陡度及幅度限制,并将信号输送给信号采集电路;
    信号采集电路通过采样电阻对信号进行采集,并将采集的信号输送给强电磁隔离抑制电路;
    强电磁隔离抑制电路通过光耦合器对信号进行隔离,并将处理后的信号输送给检测电路并将处理后的信号输送给显示电路面板,完成人机信息交换。
  2. 根据权利要求1所述的同时序多脉冲防雷箱,其特征在于:所述的SPD防雷模组由4组防雷模块组成,分为3组火线防雷模块与1组零线防雷模块,火线防雷模块分别对应连接火线L1、L2、L3的输出端。
  3. 根据权利要求2所述的同时序多脉冲防雷箱,其特征在于:所述火线防雷模块由互相并联的多路防雷电路组成,且防雷电路并联后一路连接采样电路的输入端,另一路连接PE端;所述的防雷电路依次由一安全分断器、一熔断电阻器、一电阻串联组成,所述的熔断电阻器由一熔断丝与一可变电阻器串联封装组成。
  4. 根据权利要求2所述的同时序多脉冲防雷箱,其特征在于:所述零线防雷模块由互相并联防雷电路组成,且防雷电路的输出端一路连接采样电路的输入端,另一路连接PE端,所述的防雷电路依次由一安全分断器、一熔断电阻器、一电阻串联组成,所述的熔断电阻器由一熔断丝与一可变电阻器串联封装组成。
  5. 根据权利要求3或4所述的同时序多脉冲防雷箱,其特征在于:所述的熔断电阻器设有接口1-5五个接口,接口1位于熔断丝的输入端,接口2位于熔断丝的输出端与可变电阻器的输入端之间,接口3位于可变电阻器的输出端,接口4、5位于可变电阻器的中部。
  6. 根据权利要求5所述的同时序多脉冲防雷箱,其特征在于:所述的火线防雷模块的熔断电阻器的接口2的输出端与多路防雷电路接口2的输出端并联后连接PE端,接口3的输出端串联一电阻后连接采样电路输入端。
  7. 根据权利要求5所述的同时序多脉冲防雷箱,其特征在于:所述的零线防雷模块的熔断电阻器的接口3的输出端与相邻防雷电路的接口3的输出端并联后连接PE端,所述防雷电路之间的接口4相互连接,接口5相互连接,最后一路的接口4连接采样电路输入端。
  8. 根据权利要求1所述的同时序多脉冲防雷箱,其特征在于:所述的采样电路分为火线采样电路及零线采样电路,火线采样电路由相互串联的EMC强电磁抑制电路、信号采集电路、强电磁隔离抑制电路组成,零线采样电路由相互串联的信号采集电路、强电磁隔离抑制电路组成。
  9. 根据权利要求8所述的同时序多脉冲防雷箱,其特征在于:所述的火线采样电路的EMC强电磁抑制电路包括瞬变电压抑制二极管、光耦合器及外围电路,外围电路由电阻及稳压二极管组成,所述的EMC强电磁抑制电路一路连接信号采样电路的输入端,另一端连接检测电路的输入端。
  10. 根据权利要求9所述的同时序多脉冲防雷箱,其特征在于:所述的火线采样电路的信号采集电路由多路并联采样电阻组成,每路采样电阻与一路防雷电路对应,信号采集电路的输出端连接强电磁隔离抑制电路的输入端。
  11. 根据权利要求10所述的同时序多脉冲防雷箱,其特征在于:所述的火线采样电路的强电磁隔离抑制电路由光耦合器组成,且光耦合器输出端串联后连接一光耦合器后连接检测电路。
  12. 根据权利要求8所述的同时序多脉冲防雷箱,其特征在于:所述的零线采样电路的信号采集电路由一采样电阻组成,且采样电阻的输出端连接强电磁隔离抑制电路的输入端。
  13. 根据权利要求12所述的同时序多脉冲防雷箱,其特征在于:所述的零线采样电路的强电磁隔离抑制电路由一光耦合器组成,且光耦合器的输出端连接检测电路。
  14. 根据权利要求1所述的同时序多脉冲防雷箱,其特征在于:所述的检测电路由单片机U1组成,且单片机U1的输出端连接显示电路,所述的显示电路由数码显示管组成。
  15. 根据权利要求1所述的同时序多脉冲防雷箱,其特征在于:所述的抗干扰电源由压敏电阻、变压器、瞬变电压抑制二极管及整流桥并联组成。
  16. 根据权利要求1所述的同时序多脉冲防雷箱,其特征在于:所述的防雷箱进一步包括连接在防雷模块与检测电路之间的用于对脉冲进行计数的计数电路,计数电路由一灵敏度传感器与光耦合器串联组成,输出端连接检测电路。
  17. 根据权利要求1所述的同时序多脉冲防雷箱,其特征在于:所述的脉冲为10-200KA(8/20µs)或10-25KA(10/350µs)。
PCT/CN2012/085508 2012-10-25 2012-11-29 一种同时序多脉冲防雷箱 WO2014063406A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210437062.X 2012-10-25
CN201210437062.XA CN103050953B (zh) 2012-10-25 2012-10-25 一种同时序多脉冲防雷箱

Publications (1)

Publication Number Publication Date
WO2014063406A1 true WO2014063406A1 (zh) 2014-05-01

Family

ID=48063504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085508 WO2014063406A1 (zh) 2012-10-25 2012-11-29 一种同时序多脉冲防雷箱

Country Status (2)

Country Link
CN (1) CN103050953B (zh)
WO (1) WO2014063406A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291201A (zh) * 2016-09-09 2017-01-04 深圳市雷博斯科技有限公司 一种防雷箱的雷电监测及劣化状态监测系统及方法
CN107887899A (zh) * 2017-12-23 2018-04-06 珠海德利和电气有限公司 一种避雷保护电路
CN111463663A (zh) * 2020-05-15 2020-07-28 深圳市思博克科技有限公司 一种能够发射强脉冲电磁波的引雷器
CN112886560A (zh) * 2021-04-09 2021-06-01 广东安迅防雷科技股份有限公司 一种带rs485监控数据输出的双路防雷箱
CN113848523A (zh) * 2021-10-21 2021-12-28 山东省计量科学研究院 一种脉冲型防雷元件测试仪的校准方法及校准装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973098A (zh) * 2014-05-15 2014-08-06 国核自仪系统工程有限公司 一种核电站开关量信号隔离分配装置
CN105071367B (zh) * 2015-08-31 2018-04-20 北京四达瑞康科技有限公司 信息系统入口端电磁脉冲综合防护设备
CN107565538B (zh) * 2017-10-11 2020-06-16 成都信息工程大学 一种雷电多脉冲防护装置
CN108072784B (zh) * 2017-11-30 2020-03-17 南京四方亿能电力自动化有限公司 一种基于单次脉冲检测与控制的配电线路残压检测电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2473791Y (zh) * 2001-03-23 2002-01-23 烟台玛斯特电气有限公司 一种过电压保护装置
CN101102042A (zh) * 2007-08-03 2008-01-09 中兴通讯股份有限公司 一种雷击浪涌防护电路保护装置
CN201130855Y (zh) * 2007-12-19 2008-10-08 余博贺 带通信接口的浪涌保护器
KR20120087584A (ko) * 2011-01-28 2012-08-07 주식회사 티지오 서지 보호 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201126963Y (zh) * 2007-12-11 2008-10-01 上海臻和防雷电气技术有限责任公司 一种可通信防雷箱
CN201345543Y (zh) * 2009-02-05 2009-11-11 武汉华瑞防雷科技股份有限公司 计数交流电源防雷箱
CN102082428B (zh) * 2010-12-23 2014-04-30 上海雷迅防雷技术有限公司 一种带信号安全采集功能的电涌保护器及系统
CN202178570U (zh) * 2011-08-22 2012-03-28 上海雷迅防雷技术有限公司 一种新型智能网络监控型电源防雷保护器系统
CN203056566U (zh) * 2012-10-25 2013-07-10 广东明家科技股份有限公司 一种同时序多脉冲防雷箱

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2473791Y (zh) * 2001-03-23 2002-01-23 烟台玛斯特电气有限公司 一种过电压保护装置
CN101102042A (zh) * 2007-08-03 2008-01-09 中兴通讯股份有限公司 一种雷击浪涌防护电路保护装置
CN201130855Y (zh) * 2007-12-19 2008-10-08 余博贺 带通信接口的浪涌保护器
KR20120087584A (ko) * 2011-01-28 2012-08-07 주식회사 티지오 서지 보호 장치

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291201A (zh) * 2016-09-09 2017-01-04 深圳市雷博斯科技有限公司 一种防雷箱的雷电监测及劣化状态监测系统及方法
CN106291201B (zh) * 2016-09-09 2023-08-22 深圳市雷博斯科技有限公司 一种防雷箱的雷电监测及劣化状态监测系统及方法
CN107887899A (zh) * 2017-12-23 2018-04-06 珠海德利和电气有限公司 一种避雷保护电路
CN107887899B (zh) * 2017-12-23 2024-02-23 珠海德利和电气有限公司 一种避雷保护电路
CN111463663A (zh) * 2020-05-15 2020-07-28 深圳市思博克科技有限公司 一种能够发射强脉冲电磁波的引雷器
CN112886560A (zh) * 2021-04-09 2021-06-01 广东安迅防雷科技股份有限公司 一种带rs485监控数据输出的双路防雷箱
CN112886560B (zh) * 2021-04-09 2022-12-27 广东安迅防雷科技股份有限公司 一种带rs485监控数据输出的双路防雷箱
CN113848523A (zh) * 2021-10-21 2021-12-28 山东省计量科学研究院 一种脉冲型防雷元件测试仪的校准方法及校准装置
CN113848523B (zh) * 2021-10-21 2023-07-07 山东省计量科学研究院 一种脉冲型防雷元件测试仪的校准方法及校准装置

Also Published As

Publication number Publication date
CN103050953B (zh) 2014-04-09
CN103050953A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2014063406A1 (zh) 一种同时序多脉冲防雷箱
CN102621514B (zh) 一种电子式互感器校验装置
CN207780137U (zh) 一种开关柜氧化锌避雷器监测装置
Schoene et al. Direct lightning strikes to test power distribution lines—Part I: Experiment and overall results
CN107271866A (zh) 光纤复合架空地线四重连续时序雷击直接效应的试验装置及方法
CN201255760Y (zh) 一种剩余电流互感器的检测电路
CN107290625A (zh) 双指数电流波引发下光纤复合架空地线雷击效应的测试装置和方法
CN202676797U (zh) 一种消弧消谐及过电压保护器在线监测系统
CN208156148U (zh) 一种光控晶闸管阀触发回路板卡测试模块与装置
Chen et al. Influence on low-voltage surge protective devices of overhead distribution lines due to nearby return strokes
CN203056566U (zh) 一种同时序多脉冲防雷箱
CN102096037B (zh) 一种晶闸管高压处理板的测试系统与方法
Ioannidis et al. Stochastic modeling of shielding failures to substations: Implications for the energy absorption requirements of surge arresters
CN107271865B (zh) 光纤复合架空地线三重连续时序雷击效应试验装置和方法
CN206114884U (zh) 避雷器计数器校验装置
CN105277854B (zh) 一种避雷器接地指示器
CN205123248U (zh) 抗雷击浪涌电路
CN105896512A (zh) 抗雷击浪涌电路
CN206832933U (zh) 并联避雷器均流特性测试系统
CN202583340U (zh) 一种测试串补控制保护装置的测试仪
CN209342874U (zh) 一种低压断路器栅片电压测试装置
CN109061348A (zh) 特高压工程用无残压大通流避雷器监测器检测装置
CN107769175B (zh) 一种电网中过电压的判断方法和装置
CN103487627A (zh) 一种无源的杆塔接地雷电流强度检测器
Kumar et al. Surge immunity protection in AC LED Street Lights

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887261

Country of ref document: EP

Kind code of ref document: A1