WO2014061604A1 - Maintenance-plan-drafting support system, maintenance-plan-drafting support method, and maintenance-plan-drafting support program - Google Patents

Maintenance-plan-drafting support system, maintenance-plan-drafting support method, and maintenance-plan-drafting support program Download PDF

Info

Publication number
WO2014061604A1
WO2014061604A1 PCT/JP2013/077813 JP2013077813W WO2014061604A1 WO 2014061604 A1 WO2014061604 A1 WO 2014061604A1 JP 2013077813 W JP2013077813 W JP 2013077813W WO 2014061604 A1 WO2014061604 A1 WO 2014061604A1
Authority
WO
WIPO (PCT)
Prior art keywords
maintenance
information
database
parts
work
Prior art date
Application number
PCT/JP2013/077813
Other languages
French (fr)
Japanese (ja)
Inventor
峻行 羽渕
裕 吉川
延之 太田
荒井 正人
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2014542114A priority Critical patent/JP5938481B6/en
Priority to AU2013332924A priority patent/AU2013332924B2/en
Priority to CA2888334A priority patent/CA2888334C/en
Publication of WO2014061604A1 publication Critical patent/WO2014061604A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance

Definitions

  • the present invention relates to a maintenance planning support system, a maintenance planning support method, and a maintenance planning support program.
  • an object of the present invention is to provide a technique that enables an effective maintenance plan to be efficiently formulated without depending on the skills of maintenance personnel.
  • the maintenance planning support system of the present invention that solves the above problems includes information on a phenomenon that has occurred in the work machine, information on a failure that has occurred in the work machine after the occurrence of the phenomenon, and maintenance work that has been performed for the failure.
  • a first database that holds information in association with each other
  • a second database that holds information on standard maintenance work defined for each work machine, and information on the availability of each person and equipment for maintenance work
  • the third database to be held, each stock and price of parts used for maintenance work or its old version parts or remanufactured parts, and delivery date and transportation cost information for each transportation destination and transportation means are retained for each warehouse.
  • the first database is used to collate the information on the phenomenon, the failure that may occur after the occurrence of the corresponding phenomenon is estimated, and the information on the maintenance work performed on the work machine at the time of the failure is identified in the first database.
  • the maintenance work information is collated with the second database, the standard maintenance work information expected to be carried out on the work machine is specified, and the maintenance work personnel and equipment availability specified by the maintenance work information Is identified in the third database as the maintenance implementation candidate date, and the parts specified by the maintenance work information or its old version parts or remanufactured parts are in stock, and the parts or their old version parts or regenerated parts are transported to the location of the work machine
  • the delivery date for delivery by means is within the grace period from the current time to the maintenance candidate date
  • the transportation means corresponding to the delivery date and its transportation cost Generate and output information on delivery dates, warehouses, transportation means, transportation costs and maintenance candidate dates as maintenance plan information for the parts to be used for maintenance work or the old version parts or recycled parts specified in the database.
  • a processing device that executes processing to be output to the device.
  • FIG. 1 is a diagram showing a network configuration example including a maintenance plan planning system 100 according to the present embodiment.
  • a maintenance plan planning system 100 shown in FIG. 1 is a computer system that enables an effective maintenance plan to be efficiently planned without depending on the skills of maintenance personnel.
  • a large mining machine will be described as an example of a work machine.
  • the market for this mining machine has expanded rapidly due to the increase in global demand for resources, while the parts supply capacity on the machine manufacturer side has not caught up with the market demand.
  • new parts that are the latest version, old version parts that have not been retroactively implemented, and refurbished parts that have repaired and refurbished faulty parts can be used in common.
  • Skilled maintenance staff used various parts with the same functions but different states and origins. However, parts with such various attributes are stored in warehouses scattered around the world, and unskilled maintenance personnel accurately recognize attributes, locations, inventory, etc., and appropriately incorporate them into the mining equipment maintenance plan. Has been difficult in the past.
  • the maintenance plan planning support system 100 according to the present embodiment enables even an inexperienced maintenance staff to appropriately adopt the above-described components having various attributes and appropriately plan a complicated maintenance plan.
  • the maintenance planning support system 100 is connected to the network 180 and can communicate data with the monitoring system 170 and the client terminal 190.
  • the monitoring system 170 monitors the measurement value of the sensor 11 installed in the mining machine 10, that is, sensor data, or monitors the parameter calculated by applying the sensor data to an appropriate algorithm, and 10 is a computer system for detecting an abnormality in 10.
  • the monitoring system 170 detects an abnormality when the sensor data or the calculated parameter exceeds a predetermined threshold, and transmits a notification of the abnormality detection to the maintenance planning support system 100.
  • the sensor 11 described above can be assumed to be a sensor that measures, for example, the motor rotation speed of the mining machine 10, the pump internal pressure, and the temperature and vibration of each place.
  • the sensor 11 installed in the mining machine 10 transmits sensor data to the monitoring system 170 by using a communication device provided in the mining machine 10 or a communication device provided in the sensor 11 itself.
  • the client terminal 190 accesses the maintenance plan planning support system 100, receives data input from maintenance personnel using a keyboard, a mouse, and the like, or displays data obtained from the maintenance plan planning support system 100 on a display or the like. It is responsible for each processing.
  • the hardware configuration of the maintenance planning system 100 is as follows.
  • the maintenance planning system 100 reads out to the memory 113 a storage device 115 composed of a suitable non-volatile storage device such as a hard disk drive, a memory 113 composed of a volatile storage device such as RAM, and a program held in the storage device 115.
  • the CPU 114 (arithmetic unit) for performing overall control of the system itself and performing various determinations, computations and control processes, and the communication device 112 connected to the network 180 and responsible for communication processing with other devices.
  • Functions implemented by executing the above-described programs include a phenomenon diagnosis function 121, a failure diagnosis function 122, a countermeasure extraction function 131, a plan creation function 141, a periodic maintenance plan adjustment function 142, a life calculation function 151, and a downtime calculation function 152.
  • a functional unit in which each of these function groups and a database group storing data used by each function is illustrated.
  • the functional units include an abnormality diagnosis unit 120, a countermeasure extraction unit 130, a plan creation unit 140, a performance prediction unit 150, and an output management unit 160. Data transmission between the functional units is managed by the I / O 111 via the BUS.
  • the database of each functional unit will be described later.
  • the maintenance planning support system 100 may have an input / output function and a device (display, keyboard, etc.). .
  • the maintenance planning support system 100 receives information on a phenomenon that has occurred in the mining machine 10 at a certain location from the monitoring system 170 via the network 180, and uses the phenomenon history database 123 and the failure history database as information on the received phenomenon. 124 (both are the first database), a failure that may occur after the occurrence of the corresponding phenomenon is estimated, and information on the maintenance work performed on the mining machine 10 at the time of the corresponding failure is stored in the work history database 132 (first database). Specific functions.
  • the maintenance planning support system 100 collates the maintenance work information specified above with the maintenance work database 133 (second database), and standard maintenance work expected to be performed on the mining machine 10 described above. And the maintenance work candidate specified by the maintenance work information and the time when the equipment can be operated are specified in the schedule database 143 (third database) as the maintenance execution candidate date.
  • the maintenance planning support system 100 stocks the parts specified by the above-described maintenance work information or the old version parts or the recycled parts thereof, and transports the corresponding parts or the old version parts or the recycled parts to the location of the corresponding mining machine 10.
  • the maintenance planning support system 100 uses the customer knowledge database 145 (No. 1) as the load factor information of the mining machine 10 or the part where the phenomenon occurs, which is included in the information on the phenomenon related to the mining machine 10 (from the monitoring system 170). 5 database), estimated the remaining life of the mining machine 10 or the part where the phenomenon occurred, and reduced the load factor according to the extent that the remaining life is less than the grace period from the current time to the maintenance candidate date. Is the load factor in the corresponding mining machine 10, the economic loss at the load factor is specified in the customer knowledge database 145 (fifth database), and the reduced load factor and the information on the economic loss at the load factor are described above. It is included in the maintenance plan information included in the maintenance plan database 161 or output to the client terminal 190.
  • the maintenance planning support system 100 relates to a part used for maintenance work or an old version part or a reproduced part indicated by the above-described maintenance plan information, in the part history database 153 (sixth database), the same type of part or an old version thereof.
  • the history of the attachment and removal of the part or the remanufactured part is specified, the time between the specified attachment and removal is calculated as the life, and the life information is included in the maintenance plan information and stored in the maintenance plan database 161 Or a function of outputting to the client terminal 190.
  • the maintenance planning support system 100 relates to a part used for maintenance work or an old version part or a reproduction part thereof indicated by the above-described maintenance plan information, and the same type of part or an old version thereof in the failure history database 124 (first database).
  • the presence or absence of failure information on the part or the remanufactured part is specified, and when the failure information exists, the maintenance work information performed for the failure is specified in the work history database 132 (first database).
  • the time from the start of work to the end of work indicated by the information of the corresponding maintenance work is calculated as downtime, and the downtime information is included in the maintenance plan information described above and stored in the maintenance plan database 161, Alternatively, it has a function of outputting to the client terminal 190.
  • the maintenance planning support system 100 relates to a part used for maintenance work or an old version part or a recycled part indicated by the maintenance plan information described above, in the operation result table 1010 (seventh database) of the part operation database 154.
  • Information on the measured value of the part or its old version part or recycled part is specified, and the information on the specified measured value is collated with the operation determination table 1000 (eighth database) of the part operation database 154, It has the function of calculating the downtime of the old version parts or the recycled parts as downtime and storing the downtime information in the maintenance plan database 161 included in the above-mentioned maintenance plan information or outputting it to the client terminal 190 .
  • the maintenance plan formulation support system 100 determines whether the regular maintenance schedule is included in the regular maintenance database 146 (the ninth database) within the period from the present time to the maintenance execution candidate date indicated by the above-described maintenance plan information. If the scheduled maintenance schedule is included in the period until the maintenance execution candidate date indicated by the maintenance plan information, replace the maintenance execution candidate date with the corresponding scheduled maintenance date, and generate maintenance plan information again. It has the function to do.
  • the abnormality diagnosis unit 120 included in the maintenance planning support system 100 includes a phenomenon history database 122 that stores phenomenon histories that have occurred in the mining machine 10 and the like, and sensor data or parameters received from the monitoring system 170 by the phenomenon diagnosis function 121. By referring to and comparing, it is diagnosed what kind of phenomenon the abnormality detected by the monitoring system 170 for the mining machine 10 is.
  • the abnormality diagnosis unit 120 included in the maintenance planning support system 100 includes a failure history database 124 that stores failure histories that have occurred in the mining machine 10 and the like using the failure diagnosis function 122, and the phenomenon that the phenomenon diagnosis function 121 identifies. By referring to and comparing the above, it is diagnosed what kind of failure the phenomenon specified by the phenomenon diagnosis function 121 is.
  • the abnormality diagnosis unit 120 of the maintenance planning support system 100 identifies what kind of failure the abnormality detected by the monitoring system 170 is associated with using the above-described function group.
  • the phenomenon diagnosis function 121 and the failure diagnosis function 122 of the abnormality diagnosis unit 120 transmit the specified phenomenon and failure to the output management unit 160.
  • the output management unit 160 stores and manages this in the maintenance plan database 161.
  • the countermeasure extraction unit 130 included in the maintenance planning support system 100 uses the countermeasure extraction function 131 to identify the work history database 132 in which maintenance work histories for past failures of the mining machine 10 and the like and the failure diagnosis function 122 have identified. By comparing the failure with the reference, a countermeasure to be taken is extracted for the abnormality detected by the monitoring system 170. Further, the countermeasure extracting function 131 refers to the maintenance work database 133 and extracts maintenance staff skills, equipment, work costs, and work time necessary for performing the maintenance work extracted from the work history database 132. In addition, the measure extraction function 131 transmits information on measures to be taken, extracted as described above, to the output management unit 160. The output management unit 160 stores and manages this in the maintenance plan database 161.
  • the plan creation unit 140 included in the maintenance plan planning support system 100 extracts a schedule of maintenance personnel and equipment corresponding to the measures extracted by the above-described measure extraction unit 130 from the schedule database 143 by the plan creation function 141. Extract maintenance candidate dates.
  • the plan creation function 141 refers to the parts procurement database 144 and drafts a procurement plan for procurement. Details of this planning procedure will be described later. Further, the plan creation function 141 drafts an operation plan from the operation loss information and the remaining life information in the customer knowledge database 145. Details of this planning procedure will be described later.
  • the regular maintenance plan adjustment function 142 in the plan creation unit 140 adjusts the maintenance schedule by adjusting the regular maintenance schedule in the regular maintenance database 146 and the schedule of the above-described procurement plan and operation plan. Details of this adjustment procedure will be described later.
  • the information related to the maintenance plan composed of the operation plan and the procurement plan prepared by the plan creation function 141 and the regular maintenance plan adjustment function 142 is transmitted to the output management unit 160 by the plan creation unit 140.
  • the output management unit 160 stores and manages this in the maintenance plan database 161.
  • the life calculation function 151 in the performance prediction unit 150 is Referring to the work history for each component recorded in the component history database 153, the life history of the used component is calculated. In addition, the life calculation function 151 transmits information on the calculated life record to the output management unit 160. The output management unit 160 stores and manages this in the prediction result database 162. At this time, the downtime calculation function 152 of the performance prediction unit 150 identifies a part whose status has been exchanged in the part history database 153, that is, a part that has already reached the end of its life.
  • the downtime calculation function 152 is recorded from the load factor of each mining machine 10 (sensor data obtained from various sensors 11 attached to the mining machine 10) held in the part operation database 154. Calculate the downtime of the parts used. Details of this calculation method will be described later.
  • the downtime calculation function 152 determines whether there is a difference between the downtime based on the failure history thus obtained and the downtime based on the sensor data, and transmits the determination result to the client terminal 190 to present to the user.
  • the user may be allowed to select any downtime.
  • the downtime calculation function 152 may accept any downtime correction from the user via the client terminal 190.
  • the performance prediction unit 150 transmits the downtime uniquely determined in this way to the output management unit 160.
  • the output management unit 160 stores and manages this in the prediction result database 162.
  • the down time calculation function 152 may be executed in response to an instruction from the user not only when an abnormality occurs in the mining machine 10 but also during normal times.
  • the output management unit 160 included in the maintenance plan planning support system 100 also outputs the results output from the above-described abnormality diagnosis unit 120, countermeasure extraction unit 130, and plan creation unit 140 to the maintenance plan database 161 and the performance prediction unit 150.
  • the output results are held and managed in the prediction result database 162, respectively.
  • the data of the maintenance plan database 161 and the prediction result database 162 is output to the client terminal 190 accessed via the network 180. In this output, the content output to the client terminal 190 may be changed in response to a user request from the client terminal 190.
  • FIG. 2A shows an example of the phenomenon history database 123 in the present embodiment.
  • the phenomenon history database 123 is a database in which the history of phenomena observed for the mining machine 10 in the past is accumulated.
  • the data structure includes an occurrence date and time 202, a site ID 203, a machine ID 204, a model name 205, a phenomenon code 206, a phenomenon content 207, a part code 208, a part name 209, n, using the phenomenon ID 201 as a key.
  • This is a set of records composed of sensor data 210.
  • the phenomenon ID 201 an ID for uniquely identifying a phenomenon observed in the past for the mining machine 10 is stored.
  • the occurrence date 202 stores the date when the corresponding phenomenon occurred.
  • the site ID 203 stores the ID of the site where the mining machine 10 where the corresponding phenomenon is observed, that is, the mine.
  • the machine ID 204 stores the ID of the mining machine 10 in which the corresponding phenomenon is observed.
  • the model name 205 stores the model name of the mining machine 10.
  • the phenomenon code 206 stores a code indicating the corresponding phenomenon, and the phenomenon content corresponding to the code is stored in the phenomenon content 207.
  • the part code 208 stores a code indicating the part of the mining machine 10 where the phenomenon is observed, and the part name 209 stores the name of the part.
  • n sensor data 210 stores information observed by each sensor 11.
  • the information stored in the sensor data 210 may indicate the presence or absence of an abnormality, or may be a value itself observed by the sensor 11.
  • an abnormality detection parameter calculated by the monitoring system 170 from one or a plurality of sensor data may be stored.
  • FIG. 2B shows an example of the failure history database 124.
  • the failure history database 124 is a database in which a history of failures that have occurred in the past in the mining machine 10 is accumulated.
  • This failure history database 124 uses a failure ID 211 as a key, a phenomenon ID 212, an occurrence date and time 213, a machine ID 214, a model name 215, a part serial number 216, a part code 217, a part name 218, and a cause part number. 219, a cause component recycled product determination 220, an hour meter 221, a failure code 222, and a failure content 223.
  • the phenomenon ID 212 stores an ID for identifying a phenomenon observed in the mining machine 10 prior to the failure. This phenomenon ID 212 is common to the phenomenon ID 201 in the phenomenon history database 123 described above.
  • the occurrence date and time 213 stores the date and time when the corresponding failure occurred.
  • the machine ID 214 stores an ID for identifying the mining machine 10 in which the corresponding failure has occurred, and the model name 215 stores the model name of the corresponding mining machine 10.
  • the part serial number 216 stores a number for uniquely identifying a failed part in the mining machine 10.
  • the part code 217 and the part name 218 store a code indicating the part of the failed mining machine 10 and its name.
  • the cause part number 219 stores the product number of the failed part.
  • the cause component recycled product determination 220 stores a flag for determining whether the failed component is a recycled component or a new one.
  • the hour meter 221 stores an instruction value of an hour meter for operating time measurement provided in the mining machine 10. The indication value of this hour meter becomes the indication value at the time when the corresponding part fails.
  • the failure code 222 stores a code indicating the content of the failure that has occurred, and the failure content 223 stores the content of the failure that has occurred. Note that the relationship between each code and content in the failure history database 124 described above can also be managed by creating a separate master table in the same manner as the phenomenon and location in the phenomenon history database 123 described above.
  • FIG. 3 shows an example of the work history database 132 of the present embodiment.
  • the work history database 132 is a database that accumulates a history of maintenance work performed for failures that have occurred in the past in the mining machine 10.
  • the work history database 132 uses the work ID 301 as a key, a failure ID 302, a corresponding start date / time 303, a corresponding end date / time 304, a machine ID 305, a fault code 306, a fault content 307, a part code 308, and a part name. 309, cause part serial number 310, cause part number 311, work code 312, work content 313, replacement part serial number 314, replacement part number 315, and replacement part recycled product determination 316. It is an aggregate of. Of these, the failure ID 302 is common to the failure history database 124.
  • an ID for identifying the work performed for the failure corresponding to the failure ID 302 is stored.
  • the corresponding start date and time 303 and the corresponding end date and time 304 store the time when the corresponding work was started and the time when the corresponding work was completed.
  • the machine ID 305 stores an ID for identifying the mining machine 10 in which a failure has occurred and the maintenance work has been performed.
  • the failure code 306 and the failure content 307 store a code indicating the failure that has occurred and its content.
  • a code indicating the part where the failure has occurred and its name are stored.
  • the cause part serial number 310 stores a number that uniquely identifies the failed part, and the cause part number 311 stores the product number.
  • the work code 312 stores a code corresponding to the content of the maintenance work performed, and the work content 313 stores the content of the maintenance work. If the corresponding maintenance work involves parts replacement, the ID of the part to be newly attached to the mining machine 10 instead of the failed part is stored in the replacement part serial number 314.
  • the replacement part number 315 stores the product number of the replaced part, and the replacement part recycled product determination 316 stores a flag indicating whether or not the part is a recycled part.
  • each history database shown in FIG. 2A and FIG. 3 is the first database in the present invention, and is created and managed by a maintenance business operator, and is continued by performing the maintenance business. Expanded.
  • FIG. 4 shows an example of the maintenance work database 133 in this embodiment.
  • the maintenance work database 133 corresponds to the second database in the present invention that holds information on standard maintenance work defined for each work machine.
  • This maintenance work database 133 is a database that stores information on necessary resources and costs of standard maintenance work to be performed for each type of mining machine 10.
  • the maintenance work database 133 uses the model name 401 as a key, the work code 402, the work content 403, the part code 404, the part name 405, the part number 406, the replacement part number 407, the work cost 408, and the standard. This is a set of records composed of a work time 409, necessary equipment 410, and necessary maintenance staff skills 411.
  • the model name 401 described above stores the model name of the mining machine 10 to be subjected to maintenance work.
  • the work code 402 and the work content 403 respectively store a code for specifying the work content and the content thereof.
  • the part code 404, the part name 405, and the part number 406 respectively store a code indicating a target part where maintenance work is performed in the mining machine 10, a name thereof, and a product number of the target part. Even if the work code 402 has the same work content, the work code 402 is a different code when the cost, work time, and required resources differ depending on the type, part, and part of the mining machine 10.
  • the replacement part number 407 stores the product number of a part to be newly attached when the part is replaced in the corresponding maintenance work.
  • the replacement part number 407 is blank or a predetermined determination symbol is stored.
  • the work cost 408, the standard work time 409, the necessary equipment 410, and the necessary maintenance staff skill 411 include the cost required for the maintenance work, the time required for the maintenance work, the name of the equipment required for the maintenance work, and the maintenance. Stores the skill names of maintenance personnel required for the work.
  • FIG. 5 shows an example of the schedule database 143 in the present embodiment.
  • the schedule database 143 corresponds to a third database in the present invention that holds information on the availability of each person for maintenance work and each equipment.
  • the schedule database 143 is a collection of records including a date 500, a maintenance staff schedule 501, and an equipment schedule 502.
  • the schedule database 143 can be said to be a database that stores equipment owned by a maintenance company and a schedule of maintenance personnel employed.
  • the period in which the equipment and the maintenance staff can handle the maintenance work is represented by “1”, and the period in which the equipment and maintenance staff cannot handle is represented by “0”.
  • the date 500 is expressed in units of one day.
  • the maintenance manager or the like arbitrarily sets such as every hour, every eight hours, or every week. It's okay.
  • FIG. 6A shows an example of a parts inventory table 600 included in the parts procurement database 144 of this embodiment.
  • the parts procurement database 144 is composed of a parts inventory table 600, a transport means table 610, and a compatible parts table 620, and each stock and price of parts used for maintenance work or old version parts or recycled parts, and transportation.
  • the parts inventory table 600 is an aggregate of records including a part code 601, a part name 602, a part number 603, a recycled product determination 604, a warehouse 605, a stock 606, and a price 607. Each record shows how many parts are stocked in which warehouse and how much the price is.
  • the part code 601, the part name 602, the part number 603, and the recycled product determination 604 are information on the corresponding attribute of the inventory part.
  • the replacement parts used for the maintenance of the mining machine 10 are repaired and refurbished as new parts that are the latest version, old version parts that have not been retroactively implemented, and failed parts. There are recycled parts. Among these, the recycled parts are ranked according to the degree of wear.
  • N indicates a new article
  • Re-A”, “Re-B”, and “Re-C” indicate that a recycled part has a low level of wear, that is, a high-ranked one. Since the old version part is an old new article with only an old model number, it is “N” in the example of FIG. 6A. Of course, a notation for identifying the old version part may be used.
  • the warehouse 605 stores the name of the warehouse where the stock parts are stored, the stock 606 stores the number of stock parts, and the price 607 stores the unit price of the stock parts.
  • the stock 606 and the price 607 are variables that change with time, but here, it is assumed that the latest values are always stored.
  • FIG. 6B shows an example of the transportation means table 610 included in the parts procurement database 144 of this embodiment.
  • the transportation means table 610 included in the parts procurement database 144 is a collection of records including a warehouse 611, a transportation destination 612, a transportation means 613, a delivery date 614, and a transportation cost 615.
  • This record shows what kind of transportation is available from the warehouse as the transportation source to the site as the transportation destination, and how much time and cost it takes.
  • the warehouse 611 stores the name of the warehouse that is the transportation source of the parts.
  • a site name that is a transportation destination of the parts is stored in the transportation destination 612.
  • the transportation means 613 stores names of means used for parts transportation.
  • the delivery date and the cost in each case are stored in the delivery date 614 and the transportation cost 615, respectively.
  • FIG. 6C shows an example of the compatible component table 620 included in the component procurement database 144 of this embodiment.
  • the compatible parts table 620 included in the parts procurement database 144 is a collection of records including a model name 621, a part code 622, a part name 623, a part number 624, and a regular replacement interval 625.
  • This record shows a list of compatible parts that can be used in a certain part of a certain mining machine 10 and its regular replacement interval.
  • the model name 621 includes information indicating the model name of the target mining machine 10
  • the part code 622 includes information specifying the target part of the mining machine 10
  • the part name 623 includes the part code.
  • the names of the parts indicated by 622 are respectively stored.
  • the target mining machine 10 and its part can be specified by each information of the model name 621, the part code 622, and the part name 623.
  • the part number 624 stores a product number of a part that can be used by being attached to the target mining machine 10.
  • the parts that are specified by the information of the type name 621, the part code 622, and the part name 623 and that can be applied to a predetermined part of a certain mining machine 10 have the same specifications and functions, and are new parts with the latest model numbers. 3 parts of the old version parts and the recycled parts are included.
  • the periodic replacement interval 625 stores a component replacement interval recommended by a component manufacturer.
  • FIG. 7A shows an example of the operation loss table 700 included in the customer knowledge database 145 of this embodiment.
  • the customer knowledge database 145 stores the remaining life of each mining machine 10 according to the load factor at the time of failure and information on the economic loss in the user of the mining machine 10 due to the load factor reduction in association with each other. Corresponds to 5 databases.
  • the customer knowledge database 145 includes an operation loss table 700, a remaining life table 710, and a customer table 730.
  • the customer is a user of the mining machine 10 and a customer of the maintenance service of the mining machine 10.
  • the operation loss table 700 is a collection of records including a customer ID 701, a site ID 702, a model name 703, a part code 704, a part name 705, a load factor 706, and an operation loss 707.
  • the operation loss table 700 shows the customer's economic loss that occurs when the load factor of a certain part of the mining machine 10 is limited at a certain customer's site.
  • the customer ID 701 stores an ID for identifying a customer
  • the site ID 702 stores an ID for identifying a site where the corresponding mining machine 10 is operated.
  • the type name 703, the part code 704, and the part name 705, the type name of the mining machine 10, the code indicating the part, and the name of the part are stored.
  • the load factor 706 stores a load limiting rate when the load at the normal rated operation in the mining machine 10 is 100.
  • the “load” corresponds to the number of rotations and torque when the “part” is a motor, for example.
  • the operation loss 707 stores information on economic loss per unit time of a customer who operates the mining machine 10 that occurs when a load is limited. This operation loss 707 is characterized by the customer's operation policy, the type of resource mined at the site, and the part that limits the load.
  • FIG. 7B shows an example of the remaining life table 710 included in the customer knowledge database 145 of this embodiment.
  • the remaining life table 710 includes customer ID 711, site ID 712, model name 713, part code 714, part name 715, phenomenon code 716, phenomenon content 717, failure code 718, failure content 719, load This is a set of records composed of a rate 720 and a remaining life 721.
  • the customer ID 711 stores an ID for specifying a customer
  • the site ID stores an ID for specifying a site.
  • the model name 713, the part code 714, and the part name 715 store the model name of the target mining machine 10, the code indicating the part, and the name of the corresponding part.
  • the phenomenon code 716 and the phenomenon content 717 store a code indicating a phenomenon that has occurred in the corresponding part and the content of the corresponding phenomenon.
  • the failure code 718 and the failure content 719 store a code indicating the failure corresponding to the phenomenon and the content of the failure.
  • the load factor 720 stores the load factor at the corresponding part of the mining machine 10 that can be specified by the model name 713, the part code 714, and the part name 715.
  • the remaining life 721 stores a time from when an abnormality is detected at a corresponding part until a failure occurs.
  • the remaining life 721 is the phenomenon code at the site specified by the site code 714 and the site name 715 of the mining machine 10 of the model name 713 operated by the customer specified by the customer ID 711 at the site specified by the site ID 712. 716 and the phenomenon content 717, when the corresponding part is operated at the load factor of 720, it means how long the failure is stored in the failure code 718 and the failure content 719. .
  • FIG. 7C shows an example of the customer table 730 included in the customer knowledge database 145 of this embodiment.
  • the customer table 730 is an aggregate of records including a customer ID 731, a customer name 732, a site ID 733, a site name 734, a site type 735, and a country name code 736.
  • the customer ID 731 has an ID for identifying the customer
  • the customer name 732 has the name of the customer
  • the site ID 733 has an ID for identifying the site operated by the customer
  • the site name 734 has the ID of the site.
  • the name of the site type 735 stores the type of resource mined at the site
  • the country name code 736 stores a country name code representing the country in which the site exists.
  • the operation loss table 700, the remaining life table 710, and the customer table 730 described above are associated with each other using the customer ID and the site ID as keys.
  • FIG. 8 shows an example of the regular maintenance database 146 of this embodiment.
  • the regular maintenance database 146 corresponds to the ninth database of the present invention that stores a schedule of regular maintenance planned by the maintenance company for the mining machine 10.
  • the date on which the scheduled maintenance is planned is represented by “1”
  • the date on which the scheduled maintenance is not scheduled to be performed is represented by “0”.
  • the schedule unit may be arbitrarily set by the user.
  • FIG. 9 shows an example of the component history database 153 of this embodiment.
  • the parts history database 153 corresponds to a sixth database of the present invention that stores information on the attachment and removal of individual parts or their old version parts or recycled parts from the mining machine 10.
  • the component history database 153 includes a component serial number 901, a part code 902, a part name 903, a part number 904, a remanufactured product determination 905, a customer ID 906, a site ID 907, an attachment machine ID 908, and a status flag 909. And a collection of records composed of an attachment date 910 and a removal date 911.
  • the part serial number 901 stores a number that uniquely identifies the part that the maintenance company performs maintenance on.
  • the part code 902 and the part name 903 store a code indicating the part to which the corresponding part is attached and its name.
  • the part number 904 and the recycled product determination 905 store the product number of the component specified by the component serial number 901 and the recycled product determination flag, respectively.
  • Parts are put on the market as recycled parts through a cycle of mounting ⁇ removal ⁇ recycling ⁇ mounting. In this process, the recycled parts are ranked according to the degree of wear as described above. Recycled parts tend to lower the rank of the recycled product determination 905 as the reproduction is repeated.
  • the life from the attachment to the removal of the parts is called the life.
  • the lifespan is managed by assigning different parts serial numbers 901 in order to distinguish the parts of the same individual for each reproduction opportunity.
  • the mounting machine ID 909 stores the ID of the mining machine 10 to which the corresponding part is attached.
  • the customer ID 907 and the site ID 908 respectively store the ID of the customer who operates the mining machine 10 and the ID of the site where the mining machine 10 operates.
  • the status flag 910 stores the current status of the part.
  • the installation date / time 911 and the removal date / time 912 store the date / time when the corresponding part was attached to the mining machine 10 and the date / time when the part was removed from the mining machine 10.
  • FIG. 10A shows an example of an operation determination table 1000 included in the component operation database 154 of this embodiment.
  • the part operation database 154 stores information for determining whether to operate / stop a part using a value acquired from the sensor 11 attached to the part.
  • a part attached to a certain part of the mining machine 10 is stored in the part operation database 154.
  • An operation determination table 1000 that stores a determination formula for determining whether or not it is operating, and an operation result table 1010 that stores sensor data related to the mining machine 10 during a period specified by the user.
  • the operation determination table 1000 shown in FIG. 10A includes information of a model name 1001, a part code 1002, a part name 1003, a determination item 1004, a determination value 1005, and a determination condition 1006.
  • the determination item 1004 is a value such as the rotation speed or torque.
  • a condition in which “period” of the determination item 1004 is “2000” or more as the determination value 1005 is a condition for determining “operation”.
  • FIG. 10B shows an example of an operation result table 1010 included in the component operation database 154 of the present embodiment.
  • the operation result table 1010 is a collection of records including a component serial number 1011, an item 1012, a period 1013, and an average value 1014.
  • the part serial number 1011 stores a part number that uniquely identifies the part that the sensor 11 is measuring.
  • the item 1012 stores the type of sensor data stored for the corresponding part.
  • a period 1013 information on a period during which the sensor 11 has measured the corresponding part indicated by the part serial number 1011 is stored.
  • the average value 1014 stores an average value of the sensor data measured by the sensor 11 for the corresponding component indicated by the component serial number 1011 in the period 1013.
  • the period 1013 is set to one hour as a unit time, but may be appropriately changed by a user operation.
  • FIG. 11A shows an example of the abnormality diagnosis result table 1100 included in the maintenance plan database 161 of this embodiment.
  • the maintenance plan database 161 includes an abnormality diagnosis result table 1100, a countermeasure extraction result table 1120, an execution candidate table 1130, and a procurement / operation plan table 1140. These tables 1100 to 1140 are created as outputs of the abnormality diagnosis unit 120, the countermeasure extraction unit 130, the plan creation unit 140, and the performance prediction unit 150.
  • the abnormality diagnosis result table 1100 is a table output by the abnormality diagnosis unit 120, and includes an abnormality ID 1101, an occurrence date and time 1102, an hour meter 1103, a customer ID 1104, a site ID 1105, a machine ID 1106, a part serial number 1107, and a phenomenon.
  • This is a set of records including a code 1108, a phenomenon content 1109, a failure code 1110, and a failure content 1111.
  • the anomaly ID 1101 is an anomaly identified by the anomaly diagnosis unit 120 described above, and stores an ID that uniquely identifies an anomaly that is considered to be a sign of failure.
  • the occurrence date and time 1102 and the hour meter 1103 store the date and time and hour value when the corresponding abnormality is detected.
  • the customer ID 1104, the site ID 1105, the machine ID 1106, and the part serial number 1107 are respectively an ID that identifies a customer who owns the mining machine 10 that has detected an abnormality, and an ID that identifies a site where the mining machine 10 is operating.
  • the ID for identifying the mining machine 10 and the ID for identifying the component in which the abnormality is detected are stored.
  • the result of diagnosis by the phenomenon diagnosis function 121 described above is stored in the phenomenon code 1108 and the phenomenon content 1109
  • the result of diagnosis by the failure diagnosis function 122 is stored in the failure code 1110 and the failure content 1111.
  • FIG. 11B shows an example of the measure extraction result table 1120 included in the maintenance plan database 161 of this embodiment.
  • the countermeasure extraction result table 1120 includes a countermeasure ID 1121, an abnormality ID 1122, a work code 1123, a work content 1124, a standard work time 1125, a work cost 1126, and necessary equipment 1127 output from the above-described countermeasure extraction unit 130. , A set of records composed of necessary maintenance personnel skills 1128.
  • the countermeasure ID 1121 stores an ID that uniquely identifies a countermeasure, that is, maintenance work planned for the abnormality corresponding to the abnormality ID 1101 in the abnormality diagnosis result table 1100 described above.
  • the abnormality ID 1122 stores an abnormality ID 1122 that is common to the abnormality ID 1101 in the abnormality diagnosis result table 1100 described above.
  • the work code 1123 and the work content 1124 store the maintenance work code extracted from the work history database 132 and its content.
  • the standard work time 1125, work cost 1126, necessary equipment 1127, and necessary maintenance staff skill 1128 include the time, cost, and equipment required for the maintenance work extracted from the maintenance work database 133 for the relevant maintenance work. And maintenance staff skill information are stored.
  • FIG. 11C shows an example of the implementation candidate table 1130 included in the maintenance plan database 161 of this embodiment.
  • the implementation candidate table 1130 is a table that the plan function 141 of the plan creation unit 140 extracts and outputs from the measure extraction result table 1120 and the schedule database 143 that are the outputs of the measure extraction unit 130.
  • This execution candidate table 1130 is an aggregate of records including schedule ID 1131, countermeasure ID 1132, execution candidate 1133, possible date 1134, corresponding maintenance staff 1135, corresponding equipment 1136, and tx1137.
  • the schedule ID 1131 stores an ID for identifying a candidate period for performing maintenance work.
  • the countermeasure ID 1132 stores an ID that identifies the countermeasure to be implemented, in common with the countermeasure ID 1121 in the countermeasure extraction result table 1120 described above.
  • the execution candidate 1133 stores a value that matches the schedule ID 1131.
  • the execution date 1134 stores a schedule that allows the maintenance work to be extracted, which is extracted by the plan creation function 141 described above.
  • the maintenance staff 1135 and the equipment 1136 store the maintenance staff name and the equipment name corresponding to the correspondence, respectively.
  • a grace time from the current time to the execution candidate date of maintenance work is stored.
  • FIG. 11D shows an example of the procurement / operation table 1140 included in the maintenance plan database 161 of this embodiment.
  • the procurement / operation table 1140 stores the results output by the plan creation function 141 of the plan creation unit 140 described above with reference to the inventory parts database 145 and the customer knowledge database 145.
  • a procurement / operation table 1140 shown in FIG. 11D is a table configuration example showing the contents planned for maintenance work including parts replacement work.
  • the procurement / operation table 1140 includes a plan ID 1141, a schedule ID 1142, a part number 1143, a recycled product determination 1144, a warehouse 1145, a transportation means 1146, a delivery date 1147, a part price 1148, a transportation cost 1149, a load
  • plan ID 1141 stores an ID for uniquely identifying the procurement / operation plan. Note that if the maintenance work does not include parts replacement and therefore does not require parts procurement, the plan ID 1141 is an ID for specifying the operation plan.
  • the schedule ID 1142 stores an ID corresponding to the schedule ID 1131 of the execution candidate table 1130 described above.
  • the part number 1143 and the recycled product determination 1144 store the component number of the component to be newly installed in the replacement operation of the component and the recycled product determination flag of the corresponding component.
  • these part number 1143 and remanufactured product judgment 1144 are blank or some judgment symbols are stored.
  • the warehouse 1145, the transportation means 1146, the delivery date 1147, the part price 1148, and the transportation cost 1149 respectively include the name of the warehouse for procuring replacement parts, the transportation means, the delivery date, the price of the corresponding part, and the transportation cost. Stored.
  • the warehouse 1145, the transportation means 1146, the delivery date 1147, the part price 1148, and the transportation cost 1149 are blank or Some kind of judgment symbol is stored.
  • the load factor 1150 stores the upper limit of the load factor of the corresponding part (part replacement target part) in the mining machine 10 when the maintenance plan is executed.
  • the operation loss 1151 stores the customer's economic loss caused by limiting the load on the mining machine 10 to the value indicated by the load factor 1150.
  • the work loss 1152 stores the economic loss of the customer due to the stoppage of the operation of the mining machine 10 when the maintenance work is performed.
  • the procurement / operation table 1140 may be managed separately as a procurement table for parts procurement and an operation table for operations such as load factor and operation loss.
  • FIG. 12 shows an example of the prediction result database 162 in this embodiment.
  • the prediction result database 162 includes an object 1201, a part code 1202, a part name 1203, a part number 1204, a recycled product determination 1205, a regular replacement interval 1206, an average life 1207, and a history-based average DT (downtime). 1208, an operation base average DT 1209, and a set of records composed of 1210 samples.
  • This record is the output of the life calculation function 151 and the downtime calculation function 152 of the performance prediction unit 150.
  • the target 1201 specifies the range of the mining machine 10 for which the lifetime calculation function 151 and the downtime calculation function 152 described above are targets of performance prediction, and the country code and customer ID indicating the corresponding mining machine 10 and the like. Specified by the site ID.
  • the value of the site ID is set as the target 1201.
  • the part code 1202 and the part name 1203 store a code indicating the part targeted for performance prediction and its name.
  • the part number 1204 and the recycled product determination 1205 store the product number of the component subjected to performance prediction and the recycled product determination flag.
  • the periodic replacement interval 1206 stores the periodic replacement interval of the part whose performance is to be predicted, that is, the part indicated by the part number 1204.
  • the value of the regular replacement interval 1206 is, for example, a design replacement interval value defined by a component manufacturer.
  • the average life 1207 stores a value of the average life calculated by the above-described life calculation function 151 based on the component history database 153. The value of the average life 1207 is to be compared with the value of the regular replacement interval 1206 described above.
  • the history-based average DT 1208 stores the average downtime value calculated by the above-described downtime calculation function 152 based on the component history database 153 and the failure history database 124.
  • the operation base average DT 1209 stores the average downtime value calculated by the downtime calculation function 152 described above based on the component history database 153 and the component operation database 154.
  • the number of samples 1210 stores the number of parts processed by the life calculation function 151 and the downtime calculation function 152.
  • FIG. 13 is a flowchart showing a processing procedure example 1 of the maintenance plan planning method in the present embodiment. This flow is executed when the maintenance planning support system 100 receives a notification from the monitoring system 170 that the value of the sensor data of the sensor 11 exceeds a predetermined threshold.
  • the process S1301 is executed by the phenomenon diagnosis function 121 of the abnormality diagnosis unit 120.
  • the phenomenon diagnosis function 121 identifies and responds to a phenomenon detected by the monitoring system 170 by comparing the sensor data abnormality detected by the monitoring system 170 with the sensor data 210 of the phenomenon history database 123. Information on the corresponding phenomenon such as the phenomenon ID 201, the phenomenon code 206, and the phenomenon content 207 is extracted from the phenomenon history database 123.
  • the phenomenon diagnosis function 121 includes information related to the phenomenon identified by itself, information related to a part for which the monitoring system 170 detects an abnormality in sensor data (eg, customer ID, site ID, machine ID, part serial number, etc.) Is output to the abnormality diagnosis result table 1100 in the maintenance plan database 161.
  • information related to a part for which the monitoring system 170 detects an abnormality in sensor data eg, customer ID, site ID, machine ID, part serial number, etc.
  • the failure diagnosis function 122 refers to the failure history database 124 using the value of the phenomenon ID 201 extracted in the above-described process S1301 as a key, identifies a failure corresponding to the phenomenon detected by the monitoring system 170, and sets the failure ID 211 and the failure code. 222 is extracted.
  • the failure diagnosis function 122 outputs information on the failure thus extracted to the abnormality diagnosis result table 1100 in the maintenance plan database 161.
  • step S1303 is executed by the measure extracting function 131 of the measure extracting unit 130.
  • the countermeasure extracting function 131 refers to the work history database 132 by using the value of the failure ID 211 extracted by the failure diagnosis function 122 in the process S1302 described above as a key, and performs maintenance work that has been performed for the same failure in the past. Then, the work code 312 is extracted. The measure extraction function 131 outputs the extracted result to the measure extraction result table 1120.
  • step S1304 is executed by the measure extraction function 131 of the measure extraction unit 130.
  • the countermeasure extracting function 131 refers to the maintenance work database 133 using the work code 312 extracted in the processing S1303 as a key, and the work cost 408, the standard work time 409, the necessary equipment 410, the maintenance staff skill required for the corresponding maintenance work. The value of 411 is extracted.
  • the measure extraction function 131 outputs the result extracted here to the measure extraction result table 1120.
  • step S1305 is executed by the plan creation function 141 of the plan creation unit 140.
  • the plan creation function 141 reads, from the schedule database 143, the schedule of the maintenance staff who possesses the equipment corresponding to the necessary equipment 410 extracted in the above-described processing S1304 and the skills indicated by the maintenance staff skills 411. From the schedule read here, the plan creation function 141 identifies a “vacant day” that can be handled by the relevant equipment and maintenance personnel, that is, no other work schedules, as the implementation candidate date, and implements from the present time. The period tx until the candidate date is calculated. The plan creation function 141 outputs information on the identified implementation candidate date (corresponding to “execution date” in the implementation candidate table 1130) and the period tx to the implementation candidate table 1130.
  • step S1306 is executed by the plan creation function 141.
  • the plan creation function 141 determines whether the maintenance work specified by the measure extraction function 131 in the above-described process S1303 includes a parts replacement work. When the maintenance work does not include the part replacement work (S1306: No), the plan creation function 141 executes the process S1307. On the other hand, when the maintenance work includes parts replacement work (S1306: Yes), the plan creation function 141 executes the process S1308.
  • plan creation function 141 creates an operation plan with reference to the implementation candidate table 1130 and the customer knowledge database 145, and outputs the operation plan to the procurement / operation table 1140.
  • the detailed procedure for creating the operation plan will be described later with reference to FIG.
  • the process S1308 is executed by the plan creation function 141 of the plan creation unit 140.
  • the plan creation function 141 creates a procurement / operation plan by referring to the execution candidate table 1130, the parts procurement database 144, and the customer knowledge database 145, and outputs the procurement / operation plan to the procurement / operation plan table 1140. Details of the procurement / operation plan creation will be described later with reference to FIG.
  • step S1309 is executed by the performance prediction unit 150.
  • the life calculation function 151 of the performance prediction unit 150 calculates the average life of the corresponding part based on the part history database 153 for the replacement part indicated in the procurement / operation plan created in the above-described process S1308.
  • the downtime calculation function 152 of the performance prediction unit 150 calculates the downtime of the corresponding part based on the part history database 153, the failure history database 124, and the part operation database 154.
  • the average lifetime value calculated by the lifetime calculation function 151 and the downtime value calculated by the downtime calculation function 152 are output to the prediction result database 162 by each function.
  • Each process in the life calculation function 151 and the downtime calculation function 152 will be described later with reference to FIGS.
  • step S1310 is executed by the regular maintenance plan adjustment function 142 of the plan creation unit 140.
  • the regular maintenance plan adjustment function 142 refers to the operation / procurement plan table 1140 created by the above-described plan creation function 141 and the regular maintenance database 146, and performs the implementation candidate date and the scheduled maintenance execution schedule indicated by the operation / procurement plan. It is determined whether or not the date matches. If the execution candidate date matches the scheduled scheduled maintenance date (S1310: Yes), the scheduled maintenance plan adjustment function 142 executes step S1311. On the other hand, when the execution candidate date does not match the scheduled scheduled maintenance date (S1310: No), the scheduled maintenance plan adjustment function 142 executes step S1312.
  • the process S1311 is executed by the plan creation function 141 of the plan creation unit 140.
  • the plan creation function 141 sets the scheduled maintenance execution date as the only execution candidate date, and executes the processing S1307 to create an operation plan when the above-described operation / procurement plan does not include parts replacement work.
  • the plan creation function 141 creates a procurement / operation plan by executing step S1308 when the above-described operation / procurement plan includes parts replacement work.
  • the plan creation function 141 outputs the operation / procurement plan and operation plan thus created to the procurement / operation plan table 1140.
  • the output management unit 160 outputs the maintenance plan and the prediction result stored in the maintenance plan database 161 and the prediction result database 162 of the output management unit 160 in the procedure so far to the client terminal 190.
  • the client terminal 190 outputs the maintenance plan and the prediction result on the display, and is used for evaluation and examination of the maintenance plan by the corresponding user.
  • FIG. 14 is an example of an operation plan creation procedure (processing S1307) in the present embodiment.
  • the process S1307 is executed by the plan creation function 141 of the plan creation unit 140.
  • the plan creation function 141 can refer to the abnormality diagnosis result table 1100, the countermeasure extraction result table 1120, and the implementation candidate table 1130 of the maintenance plan database 161 output in the processing S1301 to S1305 described above. To do.
  • the plan creation function 141 extracts, for example, the one related to the implementation candidate with the earliest implementation date 1134 among the records in the implementation candidate table 1130 (execution candidate x). From time to date 1134 is acquired and stored in the memory 113.
  • the plan creation function 141 specifies the abnormality ID 1122 in the countermeasure extraction result table 1120 using the value of the countermeasure ID 1132 indicated by the record extracted above as a key, and uses the abnormality ID 1122 as a key to diagnose the abnormality diagnosis result table 1100. Then, information such as a customer ID, a site ID, a phenomenon code, a phenomenon content, a failure code, and a failure content relating to a part to be maintained is specified. Further, the plan creation function 141 collates the information specified here with the remaining life table 710 of the customer knowledge database 145, and acquires the value of the remaining life 721 of the corresponding part. The plan creation function 141 compares the remaining life value acquired in this way with the time tx from the current time to the execution date 1134, and determines whether or not a failure occurs before the maintenance work is performed.
  • the plan creation function 141 estimates that the corresponding part will fail by the execution date 1134 of the execution candidate x, and the next process S1403 is executed.
  • FIG. 19A shows the relationship between the remaining life and the time tx from the present time to the implementation date 1134.
  • the execution candidate 1 has a relationship of t1 ⁇ remaining life, and it is predicted that no component failure will occur by the execution date 1134 of the maintenance work.
  • the execution candidate 2 has a relationship of t2> remaining life, and it is expected that a component will fail by the execution date 1134 of the maintenance work.
  • the plan creation function 141 refers to the remaining life table 710 of the customer knowledge database 145, and determines the load factor at which the corresponding part does not fail by the date of the maintenance work, that is, the maximum load factor that satisfies the remaining life> tx. Identify. For example, when the remaining life is 2 days shorter than tx, the remaining life table 710 may specify the load factor “90” that is 3 days longer than the case where the load factor is “100”.
  • step S1405 the plan creation function 141 calculates an operation loss and a work loss.
  • the mining machine 10 is not fully operated during that period, and the customer's profit is reduced, resulting in economic loss. Will result.
  • this economic loss be an operational loss.
  • the plan creation function 141 collates the load factor acquired in step S1402 or step S1403 and step S1404 with the operation loss table 700 of the customer knowledge database 145, and specifies the value of the corresponding operation loss 707.
  • the plan creation function 141 calculates the operation loss by multiplying the value of the specified operation loss 707 by the above-described value of tx (the grace time from the current time to the maintenance work implementation date 1134).
  • the plan creation function 141 multiplies the standard work time 1125 extracted from the measure extraction result table 1120 by the value of the operation loss 707 in the case of the load factor “0” in the operation loss table 700 of the customer knowledge database 145 to calculate the work loss. calculate.
  • the plan creation function 141 outputs the load factor, operation loss, and work loss corresponding to the execution candidate x to the procurement / operation plan table 1140 of the maintenance plan database 161.
  • step S1307 maintenance work that does not include parts replacement work is targeted.
  • the plan creation function 141 uses the part number 1143, the recycled product determination 1144, the warehouse 1145, and the like in the procurement / operation plan table 1140.
  • the values of the transportation means 1146, the delivery date 1147, the part price 1148, and the transportation cost 1149 are blank, or some judgment symbol is output.
  • the plan creation function 141 refers to the execution candidate table 1130 of the maintenance plan database 161, and determines whether there are other execution candidates that have not yet been processed in the above-described processes S1401 to S1406. . If there are other execution candidates (S1407: Yes), the plan creation function 141 executes the process S1401 again. On the other hand, when there is no other implementation candidate (S1407: No), the plan creation function 141 ends the flow, that is, the process S1307.
  • FIG. 15 is an example of a procurement / operation plan creation procedure (processing S1308) in the present embodiment.
  • the process S1308 is executed by the plan creation function 141 of the plan creation unit 140.
  • the plan creation function 141 can refer to the abnormality diagnosis result table 1100, the countermeasure extraction result table 1120, and the execution candidate table 1130 of the maintenance plan database 161 output in the processing S1301 to S1305 described above.
  • the plan creation function 141 extracts, for example, the implementation candidate whose implementation date 1134 is the latest from the implementation candidate table 1130 (execution candidate x), and the time tx from the current time to the implementation date 1134. Are extracted from the corresponding record and stored in the memory 113.
  • the plan creation function 141 extracts the value of the part serial number 1107, which is the ID of the part in which the abnormality is detected, from the phenomenon diagnosis result table 1100 of the maintenance plan database 161.
  • the plan creation function 141 uses the value of the part serial number 1107 extracted here as a key to refer to the part history database 153 and extracts the part number and each value of the recycled product determination. Further, the plan creation function 141 reads the parts inventory table 600 of the parts procurement database 144 using the extracted part number and each value of the remanufactured product as a key, acquires the value of the inventory 606 of the corresponding part, and stores it in the memory 113. Store.
  • the plan creation function 141 selects a warehouse 605 having one or more stocks from the value of the stock 606 in the parts procurement database 144 read in S1502.
  • the plan creation function 141 specifies the corresponding record in the abnormality diagnosis result table 1100 using the abnormality ID of the execution candidate x described above as a key, and the mining machine 10 in which the abnormality is detected from this record.
  • the value of the site ID 1105 of the site where is operating is extracted.
  • the plan creation function 141 collates the value of the site ID 1105 with the customer table 730 in the customer knowledge database 145 and specifies the value of the site name 734 such as “siteA”.
  • site name the transportation means 613 in which the value of the warehouse 611 in the transportation means table 610 is the value of the warehouse 605 described above is selected.
  • the plan creation function 141 maintains the values of the parts extracted in process S1502, the transport means selected in process S1504, the transport costs corresponding to the transport means, and the delivery date values. Stored in the corresponding column of the procurement / operation plan table 1140 of the plan database 161.
  • step S1506 the plan creation function 141 determines whether or not replacement parts used for the maintenance work are delivered from the warehouse by the maintenance work execution date 1134.
  • the plan creation function 141 compares the value of the delivery date 1147 stored in the procurement / operation plan table 1140 with the above-described time tx from the current time to the implementation date 1134, and if delivery date> tx (S1506: Yes), it is estimated that the corresponding part is scheduled to be delivered by the maintenance work implementation date 1134, and the process S1507 is executed.
  • the plan creation function 141 estimates that the relevant part will not be delivered by the maintenance work implementation date 1134, and executes the process S1515.
  • the plan creation function 141 compares the remaining life with tx in the same manner as in process S1402 described above, and determines whether or not a failure occurs in the part to be replaced by the maintenance work implementation date 1134. judge.
  • the plan creation function 141 determines that there is no problem until the date of maintenance work even if the corresponding part is fully operated as usual, and the procurement / operation plan table 1140
  • the load factor of the corresponding part is set to “100”.
  • the plan creation function 141 refers to the remaining life table 710 of the customer knowledge database 145 in the same manner as in the above-described process S1403.
  • the maximum load factor that satisfies> tx is specified. For example, when the remaining life is 2 days shorter than tx, the remaining life table 710 may specify the load factor “90” that is 3 days longer than the case where the load factor is “100”.
  • step S1510 the plan creation function 141 calculates operation loss and work loss in the same manner as in step S1405 described above.
  • the plan creation function 141 collates the load factor acquired in step S1507, step S1508, or step S1509 with the operation loss table 700 of the customer knowledge database 145, and specifies the value of the corresponding operation loss 707.
  • the plan creation function 141 calculates the operation loss by multiplying the value of the specified operation loss 707 by the above-described value of tx (the grace time from the current time to the maintenance work implementation date 1134). Moreover, since the mining machine 10 is stopped during the maintenance work, the load factor of the corresponding part during the maintenance work becomes “0”. In that case, during that period, the mining machine 10 is stopped, and the profit of the customer is reduced, resulting in an economic loss. This economic loss is defined as work loss.
  • the plan creation function 141 multiplies the standard work time 1125 extracted from the measure extraction result table 1120 by the value of the operation loss 707 in the case of the load factor “0” in the operation loss table 700 of the customer knowledge database 145 to calculate the work loss. calculate.
  • the plan creation function 141 outputs the procurement / operation plan to the procurement / operation table 1140 of the maintenance plan database 161 in the same manner as the above-described process S1406.
  • the plan creation function 141 includes a part number 1143 in the procurement / operation plan table 1140 and a remanufactured product determination 1144.
  • the value of the part serial number 1107 of the corresponding part extracted in the above-described processing S1502 and a remanufactured product determination flag. Is stored respectively.
  • the plan creation function 141 stores the value of the warehouse 605 selected in the above-described processing S1503 in the warehouse 1145 in the procurement / operation plan table 1140.
  • plan creation function 141 stores the transportation means selected in the above-described processing S1504 in the transportation means 1146 in the procurement / operation plan table 1140, and similarly, the delivery date 1147, the part price 1148, and the transportation cost 1149 are stored. Stores the delivery date, price, and transportation cost stored in step S1505.
  • the plan creation function 141 refers to the part inventory table 600 of the part procurement database 144 by the same method as in the above-described process S1503, and determines whether the inventory of the target part is in another warehouse.
  • the plan creation function 141 executes the process S1503.
  • the plan creation function 141 executes the process S1514.
  • the plan creation function 141 refers to the compatible part table 620 of the part procurement database 144 and determines whether there is a compatible part of the part whose inventory has been confirmed in the above-described process S1502.
  • the plan creation function 141 uses values such as the site ID 1105, machine ID 1106, and fault code 1110 (extracted from the abnormality diagnosis result table 1100) related to the parts whose inventory has been confirmed in step S1502 as keys.
  • the record is searched in the failure history database 124, and the model name 215, the part code 217, and the part name 218 of the mining machine 10 are specified from the corresponding record.
  • the plan creation function 141 executes a search in the compatible part table 620 using the values of the type name 215, the part code 217, and the part name 218 specified here as keys, and the type name 621, the part code 622, and the part name 623 are searched. Although each value is common, it is determined whether there is a part that is different from the part number of the part whose inventory has been confirmed in the above-described processing S1502, that is, a compatible part. In the process S1514, when it is determined that there is a compatible part (S1514: Yes), the plan creation function 141 executes the process S1502 again. On the other hand, when it is determined that there is no compatible part (S1514: No), the plan creation function 141 executes the process S1515.
  • step S1515 the plan creation function 141 refers to the execution candidate table 1130 of the maintenance plan database 161 as in the above-described step S1406, and determines whether there are other unprocessed execution candidates. If there is another unprocessed execution candidate in this determination (S1515: Yes), the plan creation function 141 executes the process S1501 again. On the other hand, when there is no other unprocessed execution candidate (S1515: No), the plan creation function 141 ends this flow, that is, the process S1308.
  • FIG. 16 to FIG. 18 show an example of a life / downtime simulation execution procedure (processing S1309) in the present embodiment.
  • the life / downtime simulation process includes a life simulation S1309 (a) shown in FIG. 16, a downtime simulation S1309 (b) shown in FIG. 17, and a downtime simulation S1309 (c) shown in FIG. These are independent of each other and may be executed from any processing.
  • the life prediction simulation shown in FIG. 16 is executed by the life calculation function 151 of the performance prediction unit 150, and the downtime simulation shown in FIGS. 17 and 18 is executed by the downtime calculation function 152.
  • the life calculation function 151 and the downtime calculation function 152 can refer to the maintenance plan database 161 output from the above-described processing S1301 to processing S1308.
  • FIG. 16 is an example of a procedure for performing a life simulation in the present embodiment.
  • the life calculation function 151 refers to the part history database 153 and calculates the life of parts used and replaced in the past.
  • the life calculation function 151 reads the component history database 153.
  • the life calculation function 151 extracts the part number 1143 of the replacement part used for the maintenance work and each value of the recycled product determination 1144 from the procurement / operation plan table 1140 of the maintenance plan database 161, Using these values as keys, the parts history database 153 is searched, and records relating to the corresponding parts in which the values of the part number 1143 and the recycled product determination 1144 and the values of the part number 9043 and the recycled product determination 905 match are specified. Further, the life calculation function 151 reads the value of the status flag 910 from each record extracted here, specifies the record of the component whose value is “replaced”, and stores the data in the memory 113, for example. To do.
  • the life calculation function 151 calculates the difference between the values of the attachment date / time 911 and the removal date / time 912 in the data of each part obtained in the above-described process S1602, as the service life of the corresponding part.
  • the lifetime calculation function 151 executes the determination in step S1604 to determine whether the lifetime calculation process, that is, the process S1603 has been executed for all the data extracted in the process S1602, and thereby to all the data extracted in the process S1602. The above-described life calculation is executed.
  • the life calculation function 151 calculates an average value of the life values calculated for each data in process S1603, and outputs this as the value of the average life 1208 in the prediction result database 162. Further, the life calculation function 151 outputs the number of data specified in the process S1603 to the prediction result database 162 as the number of samples 1211.
  • the life calculation function 151 uses the part number 1143 of the replacement part used for maintenance work extracted in the above-described process S1602 and the part specified by the set of each value of the recycled product determination 1144. It is determined whether or not a plan using other different parts is stored in the procurement / operation table 1140 of the maintenance plan database 161. When there is a plan using another part (S1606: Yes), the life calculation function 151 executes the process from step S1602 again with the part as a processing target. On the other hand, when there is no plan using other parts (S1606: No), the life calculation function 151 ends this flow, that is, the process S1309 (a).
  • FIG. 17 is an example of a procedure for performing a downtime simulation based on the failure history database 124 and the component history database 153 in the present embodiment.
  • the downtime calculation function 152 refers to the failure history database 124 and the component history database 153 to calculate the downtime of the parts that have been used and replaced in the past.
  • the downtime calculation function 152 reads the parts history database 153 and performs maintenance work from the procurement / operation plan table 1140 of the maintenance plan database 161 in the same manner as the above-described processes S1601 and S1602.
  • the part number 1143 of the replacement part to be used and each value of the recycled product judgment 1144 are extracted, and the parts history database 153 is searched using these values as keys, and the part number 1143 and each value of the recycled product judgment 1144, A record relating to the corresponding part in which the values of the part number 9043 and the recycled product determination 905 match is specified.
  • the downtime calculation function 152 reads the value of the status flag 910 from each record extracted here, identifies the record of the part whose value is “replaced”, and stores the data in the memory 113, for example. Store.
  • step S1703 the downtime calculation function 152 acquires a part serial number from the data obtained in step S1702.
  • step S1704 the downtime calculation function 152 refers to the failure history database 124 using the acquired component serial number as a key.
  • the downtime calculation function 152 referring to the failure history database 124 determines whether or not the component indicated by the above-described component serial number has a failure history in the process S1705. When there is a failure history in the corresponding part (s1705: Yes), the downtime calculation function 152 executes the process S1706. On the other hand, when there is no failure history in the corresponding part (s1705: No), the downtime calculation function 152 executes step S1708.
  • step S1706 the downtime calculation function 152 refers to the work history database 132 using the failure ID 211 in the failure history database 124 as a key, and sets the difference between the corresponding start date 303 and the corresponding end date 304 of the corresponding task as the failure ID 211. Calculate as the corresponding downtime.
  • step S1707 the downtime calculation function 152 determines whether or not the downtime has been calculated for all the parts determined to have a failure in the above-described step S1705. When there is a failure whose downtime is not determined (S1707: No), the downtime calculation function 152 repeatedly executes the process S1706, and when the downtime is calculated for all failures (S1707: Yes), the process S1707 is performed. Execute.
  • step S1708 the downtime calculation function 152 determines whether the last line of the data extracted from the part history database 153 in step S1702 has been reached. If the last line has been reached (S1708: Yes), the downtime calculation function 152 executes step S1709. On the other hand, when there is still data (S1708: No), the downtime calculation function 152 executes the processing after the processing S1703 again to calculate the downtime of the corresponding part.
  • the downtime calculation function 152 calculates the average value of the downtime calculated in the above-described process S1706, and stores this as the value of the history base average DT1209 of the performance prediction database 162.
  • step S1710 the downtime calculation function 152 determines whether there is a plan using other parts in the procurement / operation table 1140 of the maintenance plan database 161 in the same manner as in step S1606.
  • the downtime calculation function 152 executes the process after the above-described process S1702 again with the part as a processing target part.
  • the downtime calculation function 152 ends this flow, that is, the process S1309 (b).
  • FIG. 18 is an example of a downtime simulation execution procedure in the present embodiment.
  • the downtime calculation function 152 refers to the failure history database 124, the component history database 153, and the component operation database 154, and calculates the downtime of the parts that have been used and replaced in the past.
  • the basic procedure of the implementation procedure (S1309 (c)) shown here is the same as the above-described processing S1309 (b). Therefore, here, the procedure from the processing S1804 to the processing S1807 for calculating the downtime and the processing S1809 for the output, which are different procedures from the processing S1309 (b), will be described.
  • step S1804 the downtime calculation function 152 narrows down the data in the component operation database 154 using the component serial numbers acquired in the same manner as in steps S1701 to S1703.
  • the downtime calculation function 152 refers to the value of the period 1013 in the operation result table 1010 of the component operation database 154 captured as described above, and calculates a determination unit time (example in FIG. 10B). (The unit time is 1 hour).
  • the downtime calculation function 152 refers to the determination value 1005 and the determination condition 1006 in the operation determination table 1000 of the component operation database 154, and the average value 1014 of the operation result table 1010 is smaller than the determination value 1005.
  • the record is identified as having the corresponding part “stopped”. Further, the downtime calculation function 152 adds the above unit time values for the number of records specified as “stopped”, and adds up the time determined to be “stopped”.
  • the downtime calculation function 152 displays the removal date and time 912 of the part history database 153 and the period 1013 of the corresponding record (record of the operation result table 1010) that is the target of the integration process in the process S1805 described above.
  • the date indicated by this period 1013 reaches the date indicated by the removal date and time 912 (S1806: Yes)
  • the integration process of the above-described process S1805 is terminated, and the process S1807 is executed.
  • the downtime calculation function 152 returns the process to the above-described process S1805.
  • step S1807 the downtime calculation function 152 stores the time accumulated so far, that is, the downtime, in the memory 113 as the operation base downtime of the corresponding part. Further, the downtime calculation function 152 repeats the process up to the process S1807 until it is executed for all the data obtained in the process S1802 (s1808).
  • the downtime calculation function 152 calculates the average of the downtime obtained for each data extracted in process S1802, and stores this in the prediction result database 162 as the operation base average DT1209.
  • the output management unit 160 extracts necessary data for each screen type from the data stored in the maintenance plan database 161 and the prediction result database 162 in response to a request from the client terminal 190, for example. This data is generated by setting the corresponding screen format (held by the output management unit 160) and outputting it to the client terminal 190.
  • the output management unit 160 may output screen format data to the client terminal 190 to accept a screen configuration customization operation from the user.
  • FIG. 20 shows a screen 2000 displaying a maintenance plan candidate list.
  • each record is listed in ascending or descending order of total cost, average life, history base average DT, and operation base average DT.
  • a radio button 2001 for designating any one of the total cost, the average life, the history base average DT, and the operation base average DT as the sort criterion so that the user can sort the records based on the enumeration criteria.
  • the screen 2000 is included.
  • the user can press the radio button 2001 to perform evaluation between maintenance plan candidates.
  • FIG. 21 shows an example of the procurement / operation plan details and operation display screen 2100 regarding the maintenance plan candidates displayed on the screen 2000 shown in FIG.
  • This screen 2100 is obtained from the data stored in the maintenance plan database 161 and the prediction result database 162 when the output management unit 160 receives a request for detailed display from the client terminal 190 for a certain candidate in the screen 2000 described above.
  • the data necessary for the corresponding screen is extracted, the data is set in the format of the corresponding screen, generated, and output to the client terminal 190.
  • This screen 2100 shows a replacement part used for maintenance work in addition to the plan ID, execution date, machine ID, part number, warehouse, transportation means, delivery date, part price, and transportation cost regarding the target procurement / operation plan.
  • FIG. 22 shows a screen 2200 showing the allocation of expenses related to the maintenance work.
  • This screen 2200 may be used, for example, when a maintenance cost share is determined between a maintenance company and a customer who operates the mining machine 10 in a maintenance contract.
  • the part price can be compared with the other total costs excluding the part price. Good. Therefore, the total cost, the part price, the transportation cost, the operation loss, the operation cost, the work loss, the total cost, the part price, the transportation cost
  • the screen 2200 includes a radio button 2201 for designating any one of the operation loss, work cost, work loss, and user definition as a sorting criterion.
  • the user can press the radio button 2201 to compare the maintenance plan candidates with each other in terms of cost.
  • FIG. 23 is a diagram illustrating a configuration example of the output management unit 2300 that proposes a maintenance plan candidate that is estimated to be optimal for the customer in the present embodiment.
  • the output management unit 2300 includes a maintenance plan evaluation function 2301, a customer policy estimation function 2302, a maintenance plan database 2303, a prediction result database 2304, and a plan evaluation database 2305 (tenth database).
  • the maintenance plan evaluation function 2301 ranks a plurality of maintenance plans from a plurality of evaluation indexes and customer policies.
  • the customer policy estimation function 2302 estimates what maintenance plan the customer tends to select from the maintenance plan selection history of the customer.
  • the maintenance plan database 2303 and the prediction result database 2304 have the same structure as the maintenance plan database 161 and the prediction result database 162, respectively.
  • the plan evaluation database 2305 includes a maintenance plan evaluation table 2400 that stores the result of the maintenance plan evaluation by the maintenance plan evaluation function 2301 and a maintenance selection history table 2410 that is referred to by the customer policy estimation function 2302.
  • the maintenance plan evaluation table 2400 in FIG. 24 stores a plan ID 2401, a maintenance cost 2402 as an evaluation index, an operation base average DT 2403, and a score 2412, a score A 2405, and a score B 2406 calculated by the maintenance plan evaluation function 2301.
  • the score A 2405 is a score obtained by evaluating the maintenance plan candidate by trade-off analysis using the Pareto optimal solution set
  • the score B 2406 is a score obtained by evaluating the maintenance plan candidate based on the degree of coincidence with the customer policy
  • the score 2404 is a score A 2405 and a score B 2406. This is the overall score of the maintenance plan calculated from The calculation formulas for score A, score B, and total score will be described later.
  • the maintenance selection history table 2410 of FIG. 25 includes an abnormality ID 2411 that has occurred in the past, a countermeasure ID 2412 that has been taken for the abnormality, a maintenance plan candidate plan ID 2413 that is displayed to the customer when the abnormality occurs, and a maintenance plan candidate evaluation.
  • the maintenance cost 2402 which is an index, the operation base average DT 2415, and the implementation history 2416 selected by the customer are stored.
  • the maintenance selection history table 2410 links the past abnormality-measures-maintenance plan candidate-maintenance plan selected by the customer.
  • the maintenance plan evaluation function 2301 extracts the maintenance cost, the average life 1207, and the operation base average DT1209 as evaluation indexes from the procurement / operation table 1140 and the prediction result database 2304 of the maintenance plan database 2303, and the maintenance cost, The smaller the operating base average DT 1209 is, the better.
  • normalization is performed so that the maximum value of each evaluation index is 1. By these operations, the best value of each index becomes 1.
  • the maintenance plan evaluation function 2301 obtains a Pareto optimal solution set from a plurality of maintenance plan candidates using three standardized evaluation indexes.
  • An example of obtaining a Pareto optimal solution set using two evaluation axes of maintenance cost and operation base average DT1209 is shown in 2601 of FIG.
  • step S2503 the customer policy estimation function 2302 selects from the maintenance selection history table 2410 what maintenance plan candidates are listed for the abnormality / failure / work combinations that occurred in the past, and the customer selects which maintenance plan from among them. And read out the standardized value of each evaluation index.
  • the customer policy estimation function 2302 estimates the customer policy from the values of the evaluation indexes of the maintenance plan selected by the customer in the past.
  • FIGS. 28 and 2602 show the results of estimating customer policies on two evaluation axes of maintenance cost and operation base average DT using the least square method.
  • step S2505 the maintenance plan evaluation function 2301 obtains a score A from the Pareto optimal solution set and a score B from the estimated customer policy for each maintenance plan candidate, and assigns each score to each maintenance plan candidate using the score A and the score B. A score is assigned and the result is stored in the maintenance plan evaluation table 2400.
  • step S2506 the output management unit 2300 outputs the maintenance plan, prediction result, and maintenance plan evaluation result stored in the maintenance plan database 2303, the prediction result database 2304, and the plan evaluation database 2305 to the user in the order of the score 2404. Wait for the selection.
  • the customer policy estimation function 2302 stores the user's selection in the maintenance selection history table 2410.
  • the estimated customer policy was calculated by standardizing the maintenance cost and operation base average DT values used as evaluation indices (FIG. 28, 2602). This is because it is assumed that the maintenance cost and the operation base average DT vary greatly depending on the parts used for the maintenance work and the work to be performed. However, the maintenance cost and the operation base average DT are about the same as orders for similar parts and operations. Become. In such a case, it is conceivable to estimate the customer policy by using the value of each evaluation index as it is without using normalization. Further, in this embodiment, the procedure for estimating a policy based on the history information of a single customer has been described. For example, if similarity is recognized for each country or region, the history information for each country or region is displayed. Evaluation may be performed collectively, or even if the customer is the same, if the tendency is different for each part such as an engine or a pump, the evaluation may be performed by subdividing each part.
  • replacement parts are not handled unambiguously, and even parts having similar functions are considered for multiple types of parts such as old edition parts and recycled parts, and these various parts are prepared as maintenance plans for work machines. Can be reflected.
  • abnormalities and failures can be estimated from phenomena occurring in work machines, and maintenance operations can be identified accordingly. Therefore, it is possible to estimate failures that may occur in accordance with various situations and identify appropriate maintenance measures. It is possible.
  • parts procurement which is an important consideration in terms of cost and time required for maintenance work in large machines such as mining equipment, taking into account old version parts and remanufactured parts, delivery date, transportation cost, load factor, It is possible to support the planning of multiple patterns of maintenance plans based on the total economic loss according to the load factor.
  • the maintenance planning support technology of this embodiment when an abnormality or failure is detected in the work machine, the old version parts, the refurbished parts, and the procurement plan thereof are also taken into consideration, and what is to be evaluated. Along with this, it can be provided to users to support maintenance planning work.
  • the storage device corresponds to the remaining life of each work machine according to the load factor at the time of failure and the information on the economic loss of the work machine user accompanying the load factor decrease.
  • the arithmetic device collates information on a load factor of a work machine or a part where the phenomenon occurs, included in the information on the phenomenon related to the work machine, with the fifth database.
  • the remaining life of the work machine or the part where the phenomenon occurs is estimated, and the load factor which is reduced according to the extent that the remaining life is less than the grace period from the current time to the maintenance execution candidate date ,
  • the economic loss at the load factor is specified in the fifth database, and the reduced load factor and the economic loss information at the load factor are specified.
  • the maintenance plan in which information further executes a process of outputting to the output device, including a may be. According to this, the load factor that should be reduced to the extent that the failed part can continue to operate until the date of maintenance is identified, and the economic loss on the customer side when the component is operated at this load factor is reported to the user. This makes it possible for the user side to easily consider the customer side in terms of business continuity and economy, which is important when determining a maintenance plan.
  • the storage device stores a sixth database that stores information related to attachment to and removal from the work machine of individual parts or old version parts or regenerated parts thereof.
  • the computing device relates to a part used for the maintenance work or an old version part or a reproduction part thereof indicated by the maintenance plan information, and the same type of part or the old version part or the reproduction thereof in the sixth database.
  • a process of identifying the history of component attachment and removal, calculating the time between the identified attachment and removal as a lifetime, and including the information on the lifetime in the maintenance plan information and outputting to the output device It may be executed. According to this, by presenting to the user how long the replacement parts used in the maintenance plan will have, the user can create a maintenance plan that takes into account, for example, the balance between parts cost and life. It has the effect of making it easier to do
  • the arithmetic unit is related to a part used for the maintenance work indicated by the maintenance plan information or an old version part or a recycled part thereof, and the same type of parts in the first database. Also, the presence or absence of failure information of the old version parts or remanufactured parts is specified, and when the failure information exists, the information on the maintenance work performed for the corresponding failure is specified in the first database, and the corresponding The time between the work start and work end indicated by the maintenance work information is calculated as downtime, and the process of including the downtime information in the maintenance plan information and outputting it to the output device is further executed. There may be.
  • the storage device includes a seventh database storing measured values related to the behavior of the corresponding part by a sensor installed on the part of the work machine, and whether or not the work machine part is in operation. And an eighth database storing conditions of measurement values by the sensor for determining the sensor, and the arithmetic unit relates to a part used for the maintenance work indicated by the maintenance plan information or an old version part or a recycled part thereof
  • the seventh database information on measured values for the same type of part or its old version parts or remanufactured parts is specified, and the information on the specified measured values is collated with the eighth database, and the corresponding part or its old version
  • the downtime of parts or remanufactured parts is calculated as downtime, and the downtime information is stored in the maintenance In which further executes a process of outputting to the output device included in the image information may be.
  • the replacement part adopted in the maintenance plan is shown to the user how much downtime is expected, so on the user side, For example, there is an effect that a maintenance plan considering the balance between parts cost and downtime can be easily made.
  • the storage device further includes a ninth database that stores a schedule of scheduled maintenance scheduled to be performed on the work machine.
  • a ninth database that stores a schedule of scheduled maintenance scheduled to be performed on the work machine.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

[Problem] To make it possible to efficiently draft an effective maintenance plan without depending on the skills or the like of a maintenance technician. [Solution] A computer system (100) uses a monitoring system (170) for a work machine (10) to execute the following: a process for receiving information about a phenomenon which occurred in the work machine (10) in a given location, collating the same with a first database, predicting a failure which could occur, and identifying information in the first database and pertaining to maintenance work performed upon occurrence of said failure; a process for collating the identified maintenance-work information with the second database, identifying anticipated standard maintenance-work information, and identifying, in a third database, a period of time during which it is possible to dispatch a technician and equipment for the maintenance work as a maintenance-performance candidate date; and a process for stocking a component, an earlier version thereof or a reusable component specified by the maintenance-work information, identifying, in a fourth database, a warehouse for storage during the delay period until the maintenance-performance candidate date, and the transportation means and transportation cost, when delivering to the given location of the work machine, generating, as maintenance-plan information, information about the maintenance-performance candidate date and information about the deadline, warehouse, transportation means and transportation cost pertaining to the component, the earlier version thereof or the reusable component to be used in the maintenance work, and outputting the same to an output device (111).

Description

保守計画立案支援システム、保守計画立案支援方法、保守計画立案支援プログラムMaintenance planning support system, maintenance planning support method, maintenance planning support program
 本発明は、保守計画立案支援システム、保守計画立案支援方法、保守計画立案支援プログラムに関する。 The present invention relates to a maintenance planning support system, a maintenance planning support method, and a maintenance planning support program.
 プラントや各種作業機械、各種輸送機器などの保守業務に於いては、対象物が故障、停止する以前にその予兆を観測して保守する予知保守(状態監視保全)が重要である。近年では、センシング機器の性能向上やネットワークの改善、処理装置の高性能化によって、保守対象の状態をリアルタイムにモニタリングすることが可能となった。また、そうして得られるモニタリング結果を保守業務に活用することも可能となってきている。そうした技術として、以下の技術が提案されている。 In the maintenance work of plants, various work machines, various transport equipment, etc., predictive maintenance (condition monitoring maintenance) in which the object is observed and maintained before the object breaks down or stops is important. In recent years, it has become possible to monitor the status of maintenance objects in real time by improving the performance of sensing devices, improving the network, and improving the performance of processing devices. It is also possible to utilize the monitoring results obtained in this way for maintenance work. The following technologies have been proposed as such technologies.
 すなわち、類似性の高い保守事例情報が十分に存在しない場合においても、データの曖昧性や一部の欠如部分を含む保守事例情報を有効に活用した故障診断システムを提供するための、故障診断システム(特許文献1参照)などが提案されている。 That is, a failure diagnosis system for providing a failure diagnosis system that effectively uses maintenance case information including data ambiguity and some missing parts even when there is not enough similar maintenance case information. (Refer patent document 1) etc. are proposed.
 加えて、保守業務を迅速かつ安価に実施するためには部品や保守員の調達を含む、効率的な保守計画の立案も重要である。これに関して、作業機械の寿命をより正確に予測し、適切なオーバホール実施計画を早期に立案可能とするための、作業機械のメンテナンス作業管理システム(特許文献2参照)なども提案されている。 In addition, in order to carry out maintenance work quickly and inexpensively, it is also important to create an efficient maintenance plan, including the procurement of parts and maintenance personnel. In this regard, a work machine maintenance work management system (see Patent Document 2) and the like for predicting the life of a work machine more accurately and making an appropriate overhaul implementation plan early can be proposed.
特開2011-170724号公報JP 2011-170724 A 特開2007-100305号公報JP 2007-100305 A
 近年、資源需要の高まりによって鉱山機械の市場は急速に拡大している。そうした鉱山機械の保守事業に於いて、機械稼働率の最大化を実現するためには、世界各地に点在する鉱山(消費地)と鉱山機械や部品等の倉庫(供給地)とを結ぶグローバルサプライチェーンの最適化が必要となってきている。鉱山機械の部品は一般的に高価かつ大型であり、保守を実施するに当たって、どの倉庫から、どのような輸送手段を用いて部品を調達するかが問題となる。 In recent years, the market for mining equipment has been expanding rapidly due to rising demand for resources. In such a mining equipment maintenance business, in order to maximize the machine operation rate, a global connection between mines (consumption areas) scattered around the world and warehouses (supply areas) for mining equipment and parts, etc. Supply chain optimization is becoming necessary. Mining machine parts are generally expensive and large, and in carrying out maintenance, it becomes a problem which warehouse should be used to procure parts from which warehouse.
 また、鉱山機械のライフサイクルコスト最適化には、一度故障した部品を修理、再生した再生品の有効利用が求められている。 Also, to optimize the life cycle cost of mining equipment, it is required to effectively use recycled products that have been repaired and refurbished once a failed part.
 このように、今日において鉱山機械の保守計画の立案は、広範な知識と経験が必要で、高度なスキルを要する業務といえる。現在、こうした高度な計画立案業務は、優秀な保守計画立案者に依存する、属人的業務である。一方、市場の急拡大によって、保守員の人員不足、経験不足が問題となっており、上述した計画立案業務を効率的に進めることが困難になっている。これらの課題を特許文献1および特許文献2記載の技術で解決することは出来ない。 Thus, it can be said that planning a maintenance plan for a mining machine today requires a wide range of knowledge and experience and requires advanced skills. Currently, these advanced planning tasks are personal tasks that depend on excellent maintenance planners. On the other hand, due to the rapid expansion of the market, the lack of maintenance staff and lack of experience has become a problem, making it difficult to efficiently carry out the above-mentioned planning work. These problems cannot be solved by the techniques described in Patent Document 1 and Patent Document 2.
 そこで本発明の目的は、保守員のスキル等に依存せずに効果的な保守計画を効率的に立案可能とする技術を提供することにある。 Therefore, an object of the present invention is to provide a technique that enables an effective maintenance plan to be efficiently formulated without depending on the skills of maintenance personnel.
 上記課題を解決する本発明の保守計画立案支援システムは、作業機械に発生した現象の情報と、該当現象の発生後に作業機械に生じた故障の情報と、故障に対して実施された保守作業の情報と、を対応づけて保持する第1データベースと、作業機械別に規定された標準の保守作業の情報を保持する第2データベースと、保守作業用の各人員および各機材の稼働可能時期の情報を保持する第3データベースと、保守作業に用いられる部品ないしその旧版部品または再生部品の各在庫と価格、および、輸送先別および輸送手段別の納期および輸送コストの情報とを、倉庫別に保持する第4データベースと、を格納する記憶装置と、作業機械の監視システムより、ある所在地の作業機械に発生した現象の情報をネットワークを介して受信し、受信した現象の情報を第1データベースに照合して、該当現象の発生後に起こり得る故障を推定し、故障に際して作業機械に実施された保守作業の情報を第1データベースにて特定する処理と、特定した保守作業の情報を第2データベースに照合し、作業機械に対して実施が予想される標準の保守作業の情報を特定し、保守作業の情報が指定する保守作業用の人員および機材の稼働可能時期を保守実施候補日として第3データベースで特定する処理と、保守作業の情報が指定する部品ないしその旧版部品または再生部品を在庫し、部品ないしその旧版部品または再生部品を、作業機械の所在地に輸送手段により納品する場合の納期が、現時点から保守実施候補日までの猶予期間に収まる倉庫と、納期に対応した輸送手段及びその輸送コストを、第4データベースで特定し、特定した、保守作業に用いる部品ないしその旧版部品または再生部品に関する、納期、倉庫、輸送手段、及び輸送コストの情報と保守実施候補日の情報とを保守計画情報として生成し出力装置に出力する処理と、を実行する演算装置と、を備えることを特徴とする。 The maintenance planning support system of the present invention that solves the above problems includes information on a phenomenon that has occurred in the work machine, information on a failure that has occurred in the work machine after the occurrence of the phenomenon, and maintenance work that has been performed for the failure. A first database that holds information in association with each other, a second database that holds information on standard maintenance work defined for each work machine, and information on the availability of each person and equipment for maintenance work The third database to be held, each stock and price of parts used for maintenance work or its old version parts or remanufactured parts, and delivery date and transportation cost information for each transportation destination and transportation means are retained for each warehouse. Receives information on phenomena that occurred in a work machine in a certain location from a storage device that stores 4 databases and a work machine monitoring system, and receives them The first database is used to collate the information on the phenomenon, the failure that may occur after the occurrence of the corresponding phenomenon is estimated, and the information on the maintenance work performed on the work machine at the time of the failure is identified in the first database. The maintenance work information is collated with the second database, the standard maintenance work information expected to be carried out on the work machine is specified, and the maintenance work personnel and equipment availability specified by the maintenance work information Is identified in the third database as the maintenance implementation candidate date, and the parts specified by the maintenance work information or its old version parts or remanufactured parts are in stock, and the parts or their old version parts or regenerated parts are transported to the location of the work machine If the delivery date for delivery by means is within the grace period from the current time to the maintenance candidate date, the transportation means corresponding to the delivery date and its transportation cost Generate and output information on delivery dates, warehouses, transportation means, transportation costs and maintenance candidate dates as maintenance plan information for the parts to be used for maintenance work or the old version parts or recycled parts specified in the database. And a processing device that executes processing to be output to the device.
 本発明によれば、保守員のスキル等に依存せずに効果的な保守計画を効率的に立案可能となる。 According to the present invention, it is possible to efficiently formulate an effective maintenance plan without depending on the skills of maintenance personnel.
本実施形態における保守計画立案支援システムを含むネットワーク構成図である。It is a network block diagram including the maintenance plan planning support system in this embodiment. 本実施形態における現象履歴データベース例を示す図である。It is a figure which shows the example of a phenomenon log | history database in this embodiment. 本実施形態における及び故障履歴データベース例を示す図である。It is a figure which shows the example of a failure log | history database in this embodiment. 本実施形態における作業履歴データベース例を示す図である。It is a figure which shows the work log | history database example in this embodiment. 本実施形態における保守作業データベース例を示す図である。It is a figure which shows the example of a maintenance work database in this embodiment. 本実施形態における日程データベース例を示す図である。It is a figure which shows the example of a schedule database in this embodiment. 本実施形態の部品調達データベースにおける部品在庫テーブル例を示す図である。It is a figure which shows the example of a components inventory table in the components procurement database of this embodiment. 本実施形態の部品調達データベースにおける輸送手段テーブル例を示す図である。It is a figure which shows the example of a transportation means table in the components procurement database of this embodiment. 本実施形態の部品調達データベースにおける互換部品テーブル例を示す図である。It is a figure which shows the example of a compatible components table in the components procurement database of this embodiment. 本実施形態の顧客知識データベースにおける運用ロステーブル例を示す図である。It is a figure which shows the example of the operation | movement loss table in the customer knowledge database of this embodiment. 本実施形態の顧客知識データベースにおける残寿命テーブル例を示す図である。It is a figure which shows the example of a remaining life table in the customer knowledge database of this embodiment. 本実施形態の顧客知識データベースにおける顧客テーブル例を示す図である。It is a figure which shows the example of a customer table in the customer knowledge database of this embodiment. 本実施形態における定期保守データベース例を示す図である。It is a figure which shows the example of a regular maintenance database in this embodiment. 本実施形態における部品履歴データベース例を示す図である。It is a figure which shows the example of a components log | history database in this embodiment. 本実施形態の部品稼動データベースにおける稼働判定テーブル例を示す図である。It is a figure which shows the operation determination table example in the components operation database of this embodiment. 本実施形態の部品稼動データベースにおける稼働実績テーブル例を示す図である。It is a figure which shows the example of an operation performance table in the component operation database of this embodiment. 本実施形態の保守計画データベースにおける異常診断結果テーブル例を示す図である。It is a figure which shows the example of an abnormality diagnosis result table in the maintenance plan database of this embodiment. 本実施形態の保守計画データベースにおける対策抽出結果テーブル例を示す図である。It is a figure which shows the example of a countermeasure extraction result table in the maintenance plan database of this embodiment. 本実施形態の保守計画データベースにおける実施候補テーブル例を示す図である。It is a figure which shows the example of an implementation candidate table in the maintenance plan database of this embodiment. 本実施形態の保守計画データベースにおける調達/運用計画テーブル例を示す図である。It is a figure which shows the example of a procurement / operation plan table in the maintenance plan database of this embodiment. 本実施形態の予測結果データベース例を示す図である。It is a figure which shows the example of a prediction result database of this embodiment. 本実施形態における保守計画立案支援方法の手順例1を示すフロー図である。It is a flowchart which shows the procedure example 1 of the maintenance plan planning assistance method in this embodiment. 本実施形態における保守計画立案支援方法の手順例2を示すフロー図である。It is a flowchart which shows the procedure example 2 of the maintenance plan planning assistance method in this embodiment. 本実施形態における保守計画立案支援方法の手順例3を示すフロー図である。It is a flowchart which shows the example 3 of a procedure of the maintenance plan planning assistance method in this embodiment. 本実施形態における保守計画立案支援方法の手順例4を示すフロー図である。It is a flowchart which shows the procedure example 4 of the maintenance plan planning assistance method in this embodiment. 本実施形態における保守計画立案支援方法の手順例5を示すフロー図である。It is a flowchart which shows the example 5 of a procedure of the maintenance plan planning assistance method in this embodiment. 本実施形態における保守計画立案支援方法の手順例6を示すフロー図である。It is a flowchart which shows the example 6 of a procedure of the maintenance plan planning assistance method in this embodiment. 本実施形態における残寿命と保守計画実施候補との関係を示す図である。It is a figure which shows the relationship between the remaining life in this embodiment, and a maintenance plan execution candidate. 本実施形態における残寿命と負荷率と運用ロスの関係を示す図である。It is a figure which shows the relationship between the remaining life in this embodiment, a load factor, and an operation loss. 本実施形態における出力画面例1を示す図である。It is a figure which shows the example 1 of an output screen in this embodiment. 本実施形態における出力画面例2を示す図である。It is a figure which shows the example 2 of an output screen in this embodiment. 本実施形態における出力画面例3を示す図である。It is a figure which shows the example 3 of an output screen in this embodiment. 本実施形態における保守計画評価を実行する出力管理部を示す図である。It is a figure which shows the output management part which performs the maintenance plan evaluation in this embodiment. 本実施形態の計画評価データベースにおける保守計画評価テーブル例を示す図である。It is a figure which shows the example of a maintenance plan evaluation table in the plan evaluation database of this embodiment. 本実施形態の計画評価データベースにおける保守選択履歴テーブル例を示す図である。It is a figure which shows the example of a maintenance selection log | history table in the plan evaluation database of this embodiment. 本実施形態における保守計画評価方法の手順例を示すフロー図である。It is a flowchart which shows the example of a procedure of the maintenance plan evaluation method in this embodiment. 本実施形態における保守計画候補とパレート最適解集合の関係を示す図である。It is a figure which shows the relationship between the maintenance plan candidate and Pareto optimal solution set in this embodiment. 本実施形態における顧客選択履歴と推定顧客ポリシーの関係を示す図である。It is a figure which shows the relationship between the customer selection log | history and estimated customer policy in this embodiment. 本実施形態における保守計画評価用変数L1とL2の関係を示す図である。It is a figure which shows the relationship between the variables L1 and L2 for maintenance plan evaluation in this embodiment.
 以下に本発明の実施形態について図面を用いて詳細に説明する。図1は本実施形態の 保守計画立案システム100を含むネットワーク構成例を示す図である。図1に示す保守計画立案システム100は、保守員のスキル等に依存せずに効果的な保守計画を効率的に立案可能とするためのコンピュータシステムである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a network configuration example including a maintenance plan planning system 100 according to the present embodiment. A maintenance plan planning system 100 shown in FIG. 1 is a computer system that enables an effective maintenance plan to be efficiently planned without depending on the skills of maintenance personnel.
 本実施形態では、作業機械の例として、大型の鉱山機械をとりあげて説明を行うものとする。この鉱山機械は、すでに上述したように、世界的な資源需要の高まりによって市場が急拡大する一方、機械メーカー側での部品供給能力が市場需要に追い付いていない現状がある。他方、鉱山機械の保守に際しては、最新版である新品の部品、遡及対策が未実施である古いバージョンの旧版部品、および、故障した部品を修理、再生した再生部品といった、共通に使用できる程度に機能は同一ながら、状態や由来の異なる様々な部品らを、熟練した保守員らが使い分けることがなされていた。しかしながら、そうした様々な属性の部品らは、世界規模で点在する倉庫に保管されており、未熟な保守員が属性や所在、在庫等を的確に認識し、鉱山機械保守計画へ適切に取り入れることは従来困難であった。本実施形態の保守計画立案支援システム100は、未熟な保守員でも、上述した様々な属性の部品を的確に採用し、複雑な保守計画を適切に立案可能とするものとなる。 In this embodiment, a large mining machine will be described as an example of a work machine. As described above, the market for this mining machine has expanded rapidly due to the increase in global demand for resources, while the parts supply capacity on the machine manufacturer side has not caught up with the market demand. On the other hand, when maintaining mining equipment, new parts that are the latest version, old version parts that have not been retroactively implemented, and refurbished parts that have repaired and refurbished faulty parts can be used in common. Skilled maintenance staff used various parts with the same functions but different states and origins. However, parts with such various attributes are stored in warehouses scattered around the world, and unskilled maintenance personnel accurately recognize attributes, locations, inventory, etc., and appropriately incorporate them into the mining equipment maintenance plan. Has been difficult in the past. The maintenance plan planning support system 100 according to the present embodiment enables even an inexperienced maintenance staff to appropriately adopt the above-described components having various attributes and appropriately plan a complicated maintenance plan.
 こうした保守計画立案支援システム100はネットワーク180に接続され、監視システム170、およびクライアント端末190とデータ通信可能となっている。なお、監視システム170は、鉱山機械10に設置されたセンサ11での計測値すなわちセンサデータを監視するか、あるいは、センサデータを適宜なアルゴリズムに適用して算出したパラメータを監視して、鉱山機械10における異常を検出するコンピュータシステムである。監視システム170は、センサデータあるいは算出したパラメータが、所定の閾値を超えることをトリガとして異常を検出し、その異常検出の旨を保守計画立案支援システム100に送信する。上述のセンサ11は、例えば、鉱山機械10のモータ回転数、ポンプ内圧、各所の温度や振動等を計測するセンサを想定できる。また、鉱山機械10に設置されたセンサ11は、鉱山機械10の備える通信装置、あるいはセンサ11自身が備える通信装置を利用して、センサデータを監視システム170に送信している。 The maintenance planning support system 100 is connected to the network 180 and can communicate data with the monitoring system 170 and the client terminal 190. The monitoring system 170 monitors the measurement value of the sensor 11 installed in the mining machine 10, that is, sensor data, or monitors the parameter calculated by applying the sensor data to an appropriate algorithm, and 10 is a computer system for detecting an abnormality in 10. The monitoring system 170 detects an abnormality when the sensor data or the calculated parameter exceeds a predetermined threshold, and transmits a notification of the abnormality detection to the maintenance planning support system 100. The sensor 11 described above can be assumed to be a sensor that measures, for example, the motor rotation speed of the mining machine 10, the pump internal pressure, and the temperature and vibration of each place. The sensor 11 installed in the mining machine 10 transmits sensor data to the monitoring system 170 by using a communication device provided in the mining machine 10 or a communication device provided in the sensor 11 itself.
 一方、クライアント端末190は、保守計画立案支援システム100にアクセスし、キーボードやマウス等における、保守員からのデータ入力の受付処理や、保守計画立案支援システム100から得たデータのディスプレイ等における表示処理、の各処理を担っている。 On the other hand, the client terminal 190 accesses the maintenance plan planning support system 100, receives data input from maintenance personnel using a keyboard, a mouse, and the like, or displays data obtained from the maintenance plan planning support system 100 on a display or the like. It is responsible for each processing.
 また、保守計画立案システム100のハードウェア構成は以下の如くとなる。保守計画立案システム100は、ハードディスクドライブなど適宜な不揮発性記憶装置で構成される記憶装置115、RAMなど揮発性記憶装置で構成されるメモリ113、記憶装置115に保持されるプログラムをメモリ113に読み出すなどして実行しシステム自体の統括制御を行なうとともに各種判定、演算及び制御処理を行なうCPU114(演算装置)、ネットワーク180と接続し他装置との通信処理を担う通信装置112を備える。 Also, the hardware configuration of the maintenance planning system 100 is as follows. The maintenance planning system 100 reads out to the memory 113 a storage device 115 composed of a suitable non-volatile storage device such as a hard disk drive, a memory 113 composed of a volatile storage device such as RAM, and a program held in the storage device 115. The CPU 114 (arithmetic unit) for performing overall control of the system itself and performing various determinations, computations and control processes, and the communication device 112 connected to the network 180 and responsible for communication processing with other devices.
 上述したプログラムの実行により実装される機能としては、現象診断機能121、故障診断機能122、対策抽出機能131、計画作成機能141、定期保守計画調整機能142、寿命算出機能151、ダウンタイム算出機能152、がある。図1で示す保守計画立案支援システム100の例では、こうした各機能群と、各機能が利用するデータを記憶するデータベース群とをセットにした機能部を例示している。この機能部としては、異常診断部120、対策抽出部130、計画作成部140、性能予測部150、および出力管理部160がある。各機能部間のデータの伝送はBUSを介してI/O111によって管理される。各機能部のデータベースについては後述する。 Functions implemented by executing the above-described programs include a phenomenon diagnosis function 121, a failure diagnosis function 122, a countermeasure extraction function 131, a plan creation function 141, a periodic maintenance plan adjustment function 142, a life calculation function 151, and a downtime calculation function 152. There is. In the example of the maintenance planning support system 100 shown in FIG. 1, a functional unit in which each of these function groups and a database group storing data used by each function is illustrated. The functional units include an abnormality diagnosis unit 120, a countermeasure extraction unit 130, a plan creation unit 140, a performance prediction unit 150, and an output management unit 160. Data transmission between the functional units is managed by the I / O 111 via the BUS. The database of each functional unit will be described later.
 なお、本実施形態では、クライアント端末190によってデータ入出力を行うことを想定しているが、保守計画立案支援システム100が入出力機能及びデバイス(ディスプレイやキーボード等)を有しているとしてもよい。 In the present embodiment, it is assumed that data input / output is performed by the client terminal 190, but the maintenance planning support system 100 may have an input / output function and a device (display, keyboard, etc.). .
 続いて、本実施形態の保守計画立案システム100が備える機能について説明する。上述したように、以下に説明する機能は、例えば保守計画立案支援システム100が備えるプログラムを実行することで実装される機能と言える。なお、ここでの説明におけるデータベースの詳細については後述する。 Subsequently, functions provided in the maintenance plan planning system 100 of the present embodiment will be described. As described above, the functions described below can be said to be functions implemented by executing a program provided in the maintenance plan planning support system 100, for example. Details of the database in this description will be described later.
 保守計画立案支援システム100は、監視システム170より、ある所在地の鉱山機械10に発生した現象の情報をネットワーク180を介して受信し、当該受信した現象の情報を、現象履歴データベース123や故障履歴データベース124(いずれも第1データベース)に照合して、該当現象の発生後に起こり得る故障を推定し、該当故障に際して鉱山機械10に実施された保守作業の情報を作業履歴データベース132(第1データベース)にて特定する機能を有する。 The maintenance planning support system 100 receives information on a phenomenon that has occurred in the mining machine 10 at a certain location from the monitoring system 170 via the network 180, and uses the phenomenon history database 123 and the failure history database as information on the received phenomenon. 124 (both are the first database), a failure that may occur after the occurrence of the corresponding phenomenon is estimated, and information on the maintenance work performed on the mining machine 10 at the time of the corresponding failure is stored in the work history database 132 (first database). Specific functions.
 また、保守計画立案支援システム100は、上述にて特定した保守作業の情報を保守作業データベース133(第2データベース)に照合し、上述した鉱山機械10に対して実施が予想される標準の保守作業の情報を特定し、該当保守作業の情報が指定する保守作業用の人員および機材の稼働可能時期を保守実施候補日として日程データベース143(第3データベース)で特定する機能を有する。 Further, the maintenance planning support system 100 collates the maintenance work information specified above with the maintenance work database 133 (second database), and standard maintenance work expected to be performed on the mining machine 10 described above. And the maintenance work candidate specified by the maintenance work information and the time when the equipment can be operated are specified in the schedule database 143 (third database) as the maintenance execution candidate date.
 また、保守計画立案支援システム100は、上述した保守作業の情報が指定する部品ないしその旧版部品または再生部品を在庫し、該当部品ないしその旧版部品または再生部品を、該当鉱山機械10の所在地に輸送手段により納品する場合の納期が、現時点から保守実施候補日までの猶予期間に収まる倉庫と、納期に対応した輸送手段及びその輸送コストを、部品調達データベース144(第4データベース)で特定し、当該特定した、保守作業に用いる部品ないしその旧版部品または再生部品に関する、納期、倉庫、輸送手段、及び輸送コストの情報と、保守実施候補日の情報とを保守計画情報として生成し、保守計画データベース161に格納するか、あるいはクライアント端末190に出力する機能を有する。 In addition, the maintenance planning support system 100 stocks the parts specified by the above-described maintenance work information or the old version parts or the recycled parts thereof, and transports the corresponding parts or the old version parts or the recycled parts to the location of the corresponding mining machine 10. Specify the warehouse in which the delivery date for delivery by means falls within the grace period from the current time to the candidate date of maintenance, the transportation means corresponding to the delivery date and the transportation cost in the parts procurement database 144 (fourth database), and Information on delivery date, warehouse, transportation means and transportation cost and information on the maintenance execution candidate date related to the specified parts used for maintenance work or its old version parts or recycled parts, and maintenance execution candidate date information are generated as maintenance plan information 161. Or has a function of outputting to the client terminal 190.
 また、保守計画立案支援システム100は、鉱山機械10に関する現象の情報(監視システム170由来のもの)が含む、鉱山機械10ないし現象発生箇所の部品の負荷率の情報を、顧客知識データベース145(第5データベース)に照合して、鉱山機械10ないし現象発生箇所の部品の残寿命を推定し、当該残寿命が、現時点から保守実施候補日までの猶予期間を下回る程度に応じて低下させた負荷率を該当鉱山機械10における負荷率とし、当該負荷率での経済損失を顧客知識データベース145(第5データベース)にて特定し、低下させた負荷率および当該負荷率での経済損失の情報を、上述した保守計画情報に含めて保守計画データベース161に格納するか、クライアント端末190に出力する機能を有する。 Further, the maintenance planning support system 100 uses the customer knowledge database 145 (No. 1) as the load factor information of the mining machine 10 or the part where the phenomenon occurs, which is included in the information on the phenomenon related to the mining machine 10 (from the monitoring system 170). 5 database), estimated the remaining life of the mining machine 10 or the part where the phenomenon occurred, and reduced the load factor according to the extent that the remaining life is less than the grace period from the current time to the maintenance candidate date. Is the load factor in the corresponding mining machine 10, the economic loss at the load factor is specified in the customer knowledge database 145 (fifth database), and the reduced load factor and the information on the economic loss at the load factor are described above. It is included in the maintenance plan information included in the maintenance plan database 161 or output to the client terminal 190.
 また、保守計画立案支援システム100は、上述した保守計画情報が示す、保守作業に用いる部品ないしその旧版部品または再生部品に関し、部品履歴データベース153(第6データベース)における、同一種類の部品ないしその旧版部品または再生部品の取付と取外の履歴を特定し、当該特定した取付と取外との間の時間を寿命として算出し、当該寿命の情報を保守計画情報に含めて保守計画データベース161に格納するか、あるいはクライアント端末190に出力する機能を有する。 Further, the maintenance planning support system 100 relates to a part used for maintenance work or an old version part or a reproduced part indicated by the above-described maintenance plan information, in the part history database 153 (sixth database), the same type of part or an old version thereof. The history of the attachment and removal of the part or the remanufactured part is specified, the time between the specified attachment and removal is calculated as the life, and the life information is included in the maintenance plan information and stored in the maintenance plan database 161 Or a function of outputting to the client terminal 190.
 また、保守計画立案支援システム100は、上述した保守計画情報が示す、保守作業に用いる部品ないしその旧版部品または再生部品に関し、故障履歴データベース124(第1データベース)における、同一種類の部品ないしその旧版部品または再生部品の、故障の情報の有無を特定し、故障の情報が存在する場合に、該当故障に対して実施された保守作業の情報を作業履歴データベース132(第1データベース)にて特定し、該当保守作業の情報が示す、作業開始から作業終了までの間の時間をダウンタイムとして算定し、当該ダウンタイムの情報を、上述した保守計画情報に含めて保守計画データベース161に格納するか、あるいはクライアント端末190に出力する機能を有する。 In addition, the maintenance planning support system 100 relates to a part used for maintenance work or an old version part or a reproduction part thereof indicated by the above-described maintenance plan information, and the same type of part or an old version thereof in the failure history database 124 (first database). The presence or absence of failure information on the part or the remanufactured part is specified, and when the failure information exists, the maintenance work information performed for the failure is specified in the work history database 132 (first database). The time from the start of work to the end of work indicated by the information of the corresponding maintenance work is calculated as downtime, and the downtime information is included in the maintenance plan information described above and stored in the maintenance plan database 161, Alternatively, it has a function of outputting to the client terminal 190.
 また、保守計画立案支援システム100は、上述した保守計画情報が示す、保守作業に用いる部品ないしその旧版部品または再生部品に関し、部品稼働データベース154の稼働実績テーブル1010(第7データベース)における、同一種類の部品ないしその旧版部品または再生部品についての測定値の情報を特定し、当該特定した測定値の情報を部品稼働データベース154の稼働判定テーブル1000(第8データベース)に照合して、該当部品ないしその旧版部品または再生部品の稼働停止期間をダウンタイムとして算定し、当該ダウンタイムの情報を、上述した保守計画情報に含めて保守計画データベース161に格納するか、あるいはクライアント端末190に出力する機能を有する。 In addition, the maintenance planning support system 100 relates to a part used for maintenance work or an old version part or a recycled part indicated by the maintenance plan information described above, in the operation result table 1010 (seventh database) of the part operation database 154. Information on the measured value of the part or its old version part or recycled part is specified, and the information on the specified measured value is collated with the operation determination table 1000 (eighth database) of the part operation database 154, It has the function of calculating the downtime of the old version parts or the recycled parts as downtime and storing the downtime information in the maintenance plan database 161 included in the above-mentioned maintenance plan information or outputting it to the client terminal 190 .
 また、保守計画立案支援システム100は、現時点から、上述した保守計画情報が示す保守実施候補日までの期間内に、定期保守の日程が含まれているか、定期保守データベース146(第9データベース)にて判定し、保守計画情報が示す保守実施候補日までの期間内に定期保守の日程が含まれている場合、該当定期保守日で保守実施候補日を置換し、保守計画情報の生成を再度実行する機能を有する。 In addition, the maintenance plan formulation support system 100 determines whether the regular maintenance schedule is included in the regular maintenance database 146 (the ninth database) within the period from the present time to the maintenance execution candidate date indicated by the above-described maintenance plan information. If the scheduled maintenance schedule is included in the period until the maintenance execution candidate date indicated by the maintenance plan information, replace the maintenance execution candidate date with the corresponding scheduled maintenance date, and generate maintenance plan information again. It has the function to do.
 こうした機能を、図1の機能部に対応づけて、より具体的に説明すると以下の通りとなる。保守計画立案支援システム100が備える異常診断部120は、現象診断機能121によって、鉱山機械10らに過去生じた現象履歴を蓄積した現象履歴データベース122と、監視システム170から受信したセンサデータ若しくはパラメータとを参照比較することで、監視システム170が鉱山機械10について検出した異常がどのような現象であるかを診断する。 These functions will be described in more detail in association with the functional units shown in FIG. 1 as follows. The abnormality diagnosis unit 120 included in the maintenance planning support system 100 includes a phenomenon history database 122 that stores phenomenon histories that have occurred in the mining machine 10 and the like, and sensor data or parameters received from the monitoring system 170 by the phenomenon diagnosis function 121. By referring to and comparing, it is diagnosed what kind of phenomenon the abnormality detected by the monitoring system 170 for the mining machine 10 is.
 また、保守計画立案支援システム100が備える異常診断部120は、故障診断機能122によって、鉱山機械10らに過去生じた故障履歴を蓄積した故障履歴データベース124と、現象診断機能121が特定した現象とを参照比較することで、現象診断機能121が特定した現象がどのような故障の前兆であるかを診断する。 In addition, the abnormality diagnosis unit 120 included in the maintenance planning support system 100 includes a failure history database 124 that stores failure histories that have occurred in the mining machine 10 and the like using the failure diagnosis function 122, and the phenomenon that the phenomenon diagnosis function 121 identifies. By referring to and comparing the above, it is diagnosed what kind of failure the phenomenon specified by the phenomenon diagnosis function 121 is.
 こうして保守計画立案支援システム100の異常診断部120は、上述した機能群によって、監視システム170が検出した異常がどのような故障に結びつくかを特定する。また、異常診断部120の現象診断機能121及び故障診断機能122は、特定した現象及び故障を出力管理部160に送信する。出力管理部160は、これを保守計画データベース161に格納し管理する。 In this way, the abnormality diagnosis unit 120 of the maintenance planning support system 100 identifies what kind of failure the abnormality detected by the monitoring system 170 is associated with using the above-described function group. In addition, the phenomenon diagnosis function 121 and the failure diagnosis function 122 of the abnormality diagnosis unit 120 transmit the specified phenomenon and failure to the output management unit 160. The output management unit 160 stores and manages this in the maintenance plan database 161.
 また、保守計画立案支援システム100が備える対策抽出部130は、対策抽出機能131によって、鉱山機械10らの過去の故障に対する保守作業履歴を蓄積した作業履歴データベース132と、故障診断機能122が特定した故障とを参照比較することで、監視システム170が検出した異常に対して、取るべき対策を抽出する。また、対策抽出機能131は、保守作業データベース133を参照して、作業履歴データベース132から抽出した保守作業の実施に必要な保守員技能や機材、作業費用や作業時間を抽出する。また、対策抽出機能131は、上述で抽出した、取るべき対策の情報を出力管理部160に送信する。出力管理部160は、これを保守計画データベース161に格納し管理する。 In addition, the countermeasure extraction unit 130 included in the maintenance planning support system 100 uses the countermeasure extraction function 131 to identify the work history database 132 in which maintenance work histories for past failures of the mining machine 10 and the like and the failure diagnosis function 122 have identified. By comparing the failure with the reference, a countermeasure to be taken is extracted for the abnormality detected by the monitoring system 170. Further, the countermeasure extracting function 131 refers to the maintenance work database 133 and extracts maintenance staff skills, equipment, work costs, and work time necessary for performing the maintenance work extracted from the work history database 132. In addition, the measure extraction function 131 transmits information on measures to be taken, extracted as described above, to the output management unit 160. The output management unit 160 stores and manages this in the maintenance plan database 161.
 また、保守計画立案支援システム100が備える計画作成部140は、計画作成機能141によって、上述した対策抽出部130が抽出した対策に関して、日程データベース143から該当する保守員、機材のスケジュールを抽出して保守実施候補日を抽出する。なお、対策抽出部130が抽出した対策が、部品交換を含む保守作業であった場合、計画作成機能141は、部品調達データベース144を参照し、調達に係る調達計画を立案する。この立案手順の詳細については後述する。また、計画作成機能141は、顧客知識データベース145における、運用ロス情報および残寿命情報から運用計画を立案する。この立案手順の詳細については後述する。また、計画作成部140における定期保守計画調整機能142は、定期保守データベース146の定期保守日程と、前述の調達計画及び運用計画の日程を調整し、保守日程の調整を行う。この調整手順の詳細については後述する。 In addition, the plan creation unit 140 included in the maintenance plan planning support system 100 extracts a schedule of maintenance personnel and equipment corresponding to the measures extracted by the above-described measure extraction unit 130 from the schedule database 143 by the plan creation function 141. Extract maintenance candidate dates. When the countermeasure extracted by the countermeasure extracting unit 130 is a maintenance operation including parts replacement, the plan creation function 141 refers to the parts procurement database 144 and drafts a procurement plan for procurement. Details of this planning procedure will be described later. Further, the plan creation function 141 drafts an operation plan from the operation loss information and the remaining life information in the customer knowledge database 145. Details of this planning procedure will be described later. In addition, the regular maintenance plan adjustment function 142 in the plan creation unit 140 adjusts the maintenance schedule by adjusting the regular maintenance schedule in the regular maintenance database 146 and the schedule of the above-described procurement plan and operation plan. Details of this adjustment procedure will be described later.
 これら、計画作成機能141、定期保守計画調整機能142らによって立案された運用計画及び調達計画から成る保守計画に関する情報は、計画作成部140によって出力管理部160に送信される。出力管理部160は、これを保守計画データベース161に格納し管理する。 The information related to the maintenance plan composed of the operation plan and the procurement plan prepared by the plan creation function 141 and the regular maintenance plan adjustment function 142 is transmitted to the output management unit 160 by the plan creation unit 140. The output management unit 160 stores and manages this in the maintenance plan database 161.
 また、対策抽出部130によって、取るべき対策として部品交換の必要が認められ、また、その部品交換に関して、計画作成部140において使用部品が特定されたとき、性能予測部150における寿命算出機能151は、部品履歴データベース153に記録されている各部品に対する作業の履歴を参照して、使用部品の寿命実績を算出する。また、寿命算出機能151は、算出した寿命実績の情報を出力管理部160に送信する。出力管理部160は、これを予測結果データベース162に格納し管理する。また、このとき、性能予測部150のダウンタイム算出機能152は、部品履歴データベース153において、ステータスが交換済みとなっている、すなわち寿命をすでに迎えている部品を特定し、その部品の故障履歴を故障履歴データベース124から読み込み、その故障履歴にもとづいたダウンタイムを算出する。この算出手法の詳細は後述する。また、ダウンタイム算出機能152は、これと同時に、部品稼働データベース154が保持する、各鉱山機械10の負荷率(鉱山機械10に取り付けられた各種センサ11から得ているセンサデータ)の記録から、使用部品のダウンタイムを算出する。この算出手法の詳細は後述する。 In addition, when the countermeasure extraction unit 130 recognizes the necessity of component replacement as a countermeasure to be taken, and when the used component is specified in the plan creation unit 140 regarding the component replacement, the life calculation function 151 in the performance prediction unit 150 is Referring to the work history for each component recorded in the component history database 153, the life history of the used component is calculated. In addition, the life calculation function 151 transmits information on the calculated life record to the output management unit 160. The output management unit 160 stores and manages this in the prediction result database 162. At this time, the downtime calculation function 152 of the performance prediction unit 150 identifies a part whose status has been exchanged in the part history database 153, that is, a part that has already reached the end of its life. Read from the failure history database 124 and calculate the downtime based on the failure history. Details of this calculation method will be described later. At the same time, the downtime calculation function 152 is recorded from the load factor of each mining machine 10 (sensor data obtained from various sensors 11 attached to the mining machine 10) held in the part operation database 154. Calculate the downtime of the parts used. Details of this calculation method will be described later.
 ダウンタイム算出機能152は、こうして得られた、故障履歴に基づくダウンタイムと、センサデータに基づくダウンタイムとに差異があるか判定し、その判定結果をクライアント端末190に送信してユーザに提示し、ユーザにいずれかのダウンタイムを選択させても良い。あるいは、ダウンタイム算出機能152は、クライアント端末190を介して、いずれかのダウンタイムの修正をユーザから受け付けても良い。性能予測部150は、こうして一意に定めたダウンタイムについて、出力管理部160に送信する。出力管理部160は、これを予測結果データベース162に格納し管理する。なお、ダウンタイムの修正に関しては、鉱山機械10における異常発生時のみならず、平時であっても、ダウンタイム算出機能152がユーザからの指示を受けて実行するとしても良い。 The downtime calculation function 152 determines whether there is a difference between the downtime based on the failure history thus obtained and the downtime based on the sensor data, and transmits the determination result to the client terminal 190 to present to the user. The user may be allowed to select any downtime. Alternatively, the downtime calculation function 152 may accept any downtime correction from the user via the client terminal 190. The performance prediction unit 150 transmits the downtime uniquely determined in this way to the output management unit 160. The output management unit 160 stores and manages this in the prediction result database 162. In addition, regarding the correction of the down time, the down time calculation function 152 may be executed in response to an instruction from the user not only when an abnormality occurs in the mining machine 10 but also during normal times.
 また、保守計画立案支援システム100が備える出力管理部160は、上述した異常診断部120、対策抽出部130、および計画作成部140が出力した結果を、保守計画データベース161に、性能予測部150が出力した結果を予測結果データベース162に、それぞれ保持し、管理する。また、ネットワーク180を介してアクセスしてきたクライアント端末190に対し、保守計画データベース161や予測結果データベース162のデータを出力する。この出力に当たっては、クライアント端末190からのユーザ要求に応じて、クライアント端末190に出力する内容を変更しても良い。 The output management unit 160 included in the maintenance plan planning support system 100 also outputs the results output from the above-described abnormality diagnosis unit 120, countermeasure extraction unit 130, and plan creation unit 140 to the maintenance plan database 161 and the performance prediction unit 150. The output results are held and managed in the prediction result database 162, respectively. Further, the data of the maintenance plan database 161 and the prediction result database 162 is output to the client terminal 190 accessed via the network 180. In this output, the content output to the client terminal 190 may be changed in response to a user request from the client terminal 190.
 続いて、本実施形態の保守計画立案支援システム100が用いるデータベース類について説明する。図2Aに、本実施形態における現象履歴データベース123の一例を示す。現象履歴データベース123は、過去に、鉱山機械10について観測された現象の履歴を蓄積したデータベースである。そのデータ構造は、現象ID201をキーとして、発生日時202と、サイトID203と、機械ID204と、型名205と、現象コード206と、現象内容207と、部位コード208と、部位名209と、n個のセンサデータ210から成るレコードの集合体である。 Subsequently, databases used by the maintenance plan planning support system 100 of this embodiment will be described. FIG. 2A shows an example of the phenomenon history database 123 in the present embodiment. The phenomenon history database 123 is a database in which the history of phenomena observed for the mining machine 10 in the past is accumulated. The data structure includes an occurrence date and time 202, a site ID 203, a machine ID 204, a model name 205, a phenomenon code 206, a phenomenon content 207, a part code 208, a part name 209, n, using the phenomenon ID 201 as a key. This is a set of records composed of sensor data 210.
 上述の現象ID201には、鉱山機械10について過去に観測された現象を一意に特定するためのIDが格納されている。また、発生日時202には、該当現象が生じた日時が格納されている。また、サイトID203には、該当現象が観測された鉱山機械10が運用されていたサイトすなわち鉱山のIDが格納されている。また、機械ID204には、該当現象が観測された鉱山機械10のIDが格納されている。また、型名205には、鉱山機械10の型名が格納されている。また、現象コード206には、該当現象を示すコードが格納されており、そのコードに対応する現象の内容が現象内容207に格納されている。また、部位コード208には、該当現象が観測された鉱山機械10の部位を示すコードが格納されており、部位名209にはその部位の名称が格納されている。なお、上述した各コードとコードの示す内容や名称については、別途マスタテーブルを作成し、管理しても良い。また、n個のセンサデータ210には、各センサ11の観測した情報が格納されている。センサデータ210に格納される情報は、異常の有無を示すものであっても良いし、センサ11が観測した値そのものであっても良い。なお、この現象履歴データベース123において、上述のセンサデータ210に加えて、1または複数のセンサデータから監視システム170が算出した、異常検出用のパラメータを格納するとしても良い。 In the phenomenon ID 201 described above, an ID for uniquely identifying a phenomenon observed in the past for the mining machine 10 is stored. The occurrence date 202 stores the date when the corresponding phenomenon occurred. Further, the site ID 203 stores the ID of the site where the mining machine 10 where the corresponding phenomenon is observed, that is, the mine. The machine ID 204 stores the ID of the mining machine 10 in which the corresponding phenomenon is observed. The model name 205 stores the model name of the mining machine 10. The phenomenon code 206 stores a code indicating the corresponding phenomenon, and the phenomenon content corresponding to the code is stored in the phenomenon content 207. Further, the part code 208 stores a code indicating the part of the mining machine 10 where the phenomenon is observed, and the part name 209 stores the name of the part. In addition, about each code | cord | chord mentioned above, and the content and name which a code | cord | chord shows, you may create and manage a master table separately. Further, n sensor data 210 stores information observed by each sensor 11. The information stored in the sensor data 210 may indicate the presence or absence of an abnormality, or may be a value itself observed by the sensor 11. In this phenomenon history database 123, in addition to the sensor data 210 described above, an abnormality detection parameter calculated by the monitoring system 170 from one or a plurality of sensor data may be stored.
 図2Bに故障履歴データベース124の一例を示す。故障履歴データベース124は、鉱山機械10において過去に生じた故障の履歴を蓄積したデータベースである。この故障履歴データベース124は、故障ID211をキーとして、現象ID212と、発生日時213と、機械ID214と、型名215と、部品シリアル番号216と、部位コード217と、部位名218と、原因部品番号219と、原因部品再生品判定220と、アワメータ221と、故障コード222と、故障内容223から成るレコードの集合体である。 FIG. 2B shows an example of the failure history database 124. The failure history database 124 is a database in which a history of failures that have occurred in the past in the mining machine 10 is accumulated. This failure history database 124 uses a failure ID 211 as a key, a phenomenon ID 212, an occurrence date and time 213, a machine ID 214, a model name 215, a part serial number 216, a part code 217, a part name 218, and a cause part number. 219, a cause component recycled product determination 220, an hour meter 221, a failure code 222, and a failure content 223.
 上述の故障ID211には、鉱山機械10において過去に生じた故障を一意に特定するためのIDが格納されている。また、現象ID212には、該当故障に先立って鉱山機械10にて観測された現象を特定するIDが格納されている。この現象ID212は、上述した現象履歴データベース123における現象ID201と共通する。また、発生日時213には、該当故障が発生した日時が格納されている。また、機械ID214には、該当故障が発生した鉱山機械10を特定するIDが格納されており、型名215には該当鉱山機械10の型名が格納されている。また、部品シリアル番号216のは、該当鉱山機械10において故障した部品を一意に特定するための番号が格納されている。また、部位コード217及び部位名218には、故障した鉱山機械10の部位を示すコードと、その名称が格納されている。また、原因部品番号219には、故障した部品の製品番号が格納されている。また、原因部品再生品判定220には、故障した部品が再生部品であるか新品であるかを判定するフラグが格納されている。また、アワメータ221には、鉱山機械10に備わる稼働時間計測用のアワメータの指示値が格納されている。このアワメータの指示値は、該当部品が故障した時点での指示値となる。また、故障コード222には、発生した故障の内容を示すコードが格納されており、故障内容223には、発生した故障の内容が格納されている。なお、上述した故障履歴データベース124における、各コードと内容の関係も、上述した現象履歴データベース123における現象や部位と同様に、別途マスタテーブルを作成して管理することもできる。 In the above-described failure ID 211, an ID for uniquely identifying a failure that has occurred in the past in the mining machine 10 is stored. The phenomenon ID 212 stores an ID for identifying a phenomenon observed in the mining machine 10 prior to the failure. This phenomenon ID 212 is common to the phenomenon ID 201 in the phenomenon history database 123 described above. The occurrence date and time 213 stores the date and time when the corresponding failure occurred. The machine ID 214 stores an ID for identifying the mining machine 10 in which the corresponding failure has occurred, and the model name 215 stores the model name of the corresponding mining machine 10. In addition, the part serial number 216 stores a number for uniquely identifying a failed part in the mining machine 10. The part code 217 and the part name 218 store a code indicating the part of the failed mining machine 10 and its name. The cause part number 219 stores the product number of the failed part. The cause component recycled product determination 220 stores a flag for determining whether the failed component is a recycled component or a new one. Further, the hour meter 221 stores an instruction value of an hour meter for operating time measurement provided in the mining machine 10. The indication value of this hour meter becomes the indication value at the time when the corresponding part fails. The failure code 222 stores a code indicating the content of the failure that has occurred, and the failure content 223 stores the content of the failure that has occurred. Note that the relationship between each code and content in the failure history database 124 described above can also be managed by creating a separate master table in the same manner as the phenomenon and location in the phenomenon history database 123 described above.
 図3に、本実施形態の作業履歴データベース132の一例を示す。作業履歴データベース132は、鉱山機械10において過去に発生した故障に対し行われた保守作業の履歴を蓄積したデータベースである。この作業履歴データベース132は、作業ID301をキーとして、故障ID302と、対応開始日時303と、対応終了日時304と、機械ID305と、故障コード306と、故障内容307と、部位コード308と、部位名309と、原因部品シリアル番号310と、原因部品番号311と、作業コード312と、作業内容313と、交換部品シリアル番号314と、交換部品番号315と、交換部品再生品判定316から構成されるレコードの集合体となっている。そのうち故障ID302は、故障履歴データベース124と共通する。 FIG. 3 shows an example of the work history database 132 of the present embodiment. The work history database 132 is a database that accumulates a history of maintenance work performed for failures that have occurred in the past in the mining machine 10. The work history database 132 uses the work ID 301 as a key, a failure ID 302, a corresponding start date / time 303, a corresponding end date / time 304, a machine ID 305, a fault code 306, a fault content 307, a part code 308, and a part name. 309, cause part serial number 310, cause part number 311, work code 312, work content 313, replacement part serial number 314, replacement part number 315, and replacement part recycled product determination 316. It is an aggregate of. Of these, the failure ID 302 is common to the failure history database 124.
 上述の作業ID301には、故障ID302に対応した故障に対して実施された作業を特定するIDが格納されている。また、対応開始日時303及び対応終了日時304には、該当作業が開始された時間と該当作業が終了した時間が格納されている。また、機械ID305には、故障が発生し保守作業を実施した鉱山機械10を特定するIDが格納されている。また、故障コード306及び故障内容307には、発生した故障を示すコードとその内容が格納されている。また、部位コード308及び部位名309には、故障が発生した部位を示すコードとその名称が格納されている。また、原因部品シリアル番号310には、故障した部品を一意に特定する番号が格納され、原因部品番号311にはその製品番号が格納されている。また、作業コード312には、実施した保守作業の内容に対応したコードが格納されており、作業内容313にはその保守作業の内容が格納されている。該当保守作業が部品交換を伴うものであった場合、故障した部品に代えて新たに鉱山機械10に取り付けることになった部品のIDが、交換部品シリアル番号314に格納されている。また、交換部品番号315に、その交換した部品の製品番号が格納され、交換部品再生品判定316に、その部品が再生部品であるか否かを示すフラグが格納されている。 In the above-described work ID 301, an ID for identifying the work performed for the failure corresponding to the failure ID 302 is stored. Also, the corresponding start date and time 303 and the corresponding end date and time 304 store the time when the corresponding work was started and the time when the corresponding work was completed. Further, the machine ID 305 stores an ID for identifying the mining machine 10 in which a failure has occurred and the maintenance work has been performed. The failure code 306 and the failure content 307 store a code indicating the failure that has occurred and its content. In the part code 308 and the part name 309, a code indicating the part where the failure has occurred and its name are stored. The cause part serial number 310 stores a number that uniquely identifies the failed part, and the cause part number 311 stores the product number. The work code 312 stores a code corresponding to the content of the maintenance work performed, and the work content 313 stores the content of the maintenance work. If the corresponding maintenance work involves parts replacement, the ID of the part to be newly attached to the mining machine 10 instead of the failed part is stored in the replacement part serial number 314. The replacement part number 315 stores the product number of the replaced part, and the replacement part recycled product determination 316 stores a flag indicating whether or not the part is a recycled part.
 以上、図2A及び図3に一例を示した各履歴データベースは、本発明における第1データベースにあたり、保守業務実施者によって作成、管理される性質のものであり、保守業務を実施することで継続して拡充される。 As described above, each history database shown in FIG. 2A and FIG. 3 is the first database in the present invention, and is created and managed by a maintenance business operator, and is continued by performing the maintenance business. Expanded.
 図4に本実施形態における、保守作業データベース133の一例を示す。保守作業データベース133は、作業機械別に規定された標準の保守作業の情報を保持する本発明における第2データベースに該当する。この保守作業データベース133は、鉱山機械10の型ごとに、実施される標準的な保守作業の必要資源やコストの情報を格納したデータベースである。保守作業データベース133は、型名401をキーとして、作業コード402と、作業内容403と、部位コード404と、部位名405と、部品番号406と、交換部品番号407と、作業費用408と、標準作業時間409と、必要機材410と、必要保守員技能411から構成されるレコードの集合体となっている。 FIG. 4 shows an example of the maintenance work database 133 in this embodiment. The maintenance work database 133 corresponds to the second database in the present invention that holds information on standard maintenance work defined for each work machine. This maintenance work database 133 is a database that stores information on necessary resources and costs of standard maintenance work to be performed for each type of mining machine 10. The maintenance work database 133 uses the model name 401 as a key, the work code 402, the work content 403, the part code 404, the part name 405, the part number 406, the replacement part number 407, the work cost 408, and the standard. This is a set of records composed of a work time 409, necessary equipment 410, and necessary maintenance staff skills 411.
 上述の型名401は、保守作業を実施する対象の鉱山機械10の型名が格納されている。また、作業コード402と、作業内容403には、それぞれ作業内容を特定するコードと、その内容が格納されている。また、部位コード404と、部位名405と、部品番号406には、鉱山機械10において保守作業を実施する対象部位を示すコードと、その名称と、対象部品の製品番号がそれぞれ格納されている。なお、作業コード402は、同じ作業内容であっても、鉱山機械10の種別や部位、部品の差異によって、費用や作業時間、必要となる資源が異なる場合は、異なるコードとなっている。また、交換部品番号407には、該当保守作業において部品交換を伴う場合の、新たに取付ける部品の製品番号が格納されている。他方、該当保守作業において部品交換を伴わない場合、交換部品番号407は空白となっているか、或いは所定の判定記号が格納されている。また、作業費用408と、標準作業時間409と、必要機材410と、必要保守員技能411には、該当保守作業に要する費用と、保守作業に要する時間と、保守作業に要する機材名と、保守作業に要する保守員の技能名がそれぞれ格納されている。 The model name 401 described above stores the model name of the mining machine 10 to be subjected to maintenance work. Further, the work code 402 and the work content 403 respectively store a code for specifying the work content and the content thereof. Further, the part code 404, the part name 405, and the part number 406 respectively store a code indicating a target part where maintenance work is performed in the mining machine 10, a name thereof, and a product number of the target part. Even if the work code 402 has the same work content, the work code 402 is a different code when the cost, work time, and required resources differ depending on the type, part, and part of the mining machine 10. In addition, the replacement part number 407 stores the product number of a part to be newly attached when the part is replaced in the corresponding maintenance work. On the other hand, if no part replacement is involved in the maintenance work, the replacement part number 407 is blank or a predetermined determination symbol is stored. In addition, the work cost 408, the standard work time 409, the necessary equipment 410, and the necessary maintenance staff skill 411 include the cost required for the maintenance work, the time required for the maintenance work, the name of the equipment required for the maintenance work, and the maintenance. Stores the skill names of maintenance personnel required for the work.
 図5に本実施形態における日程データベース143の一例を示す。日程データベース143は、保守作業用の各人員および各機材の稼働可能時期の情報を保持する本発明における第3データベースに該当する。日程データベース143は、日付500と、保守員日程501と、機材日程502から構成されたレコードの集合体となっている。日程データベース143は、保守事業者が保有する機材及び雇用する保守員のスケジュールを格納するデータベースと言える。図5に示す日程データベース143の例では、機材及び保守員が保守作業に対応可能な期間を"1"で、対応不可能な期間を"0"で表している。なお、図5に示す日程データベース143の例では、日付500を一日単位で表記しているが、1時間毎や8時間毎、1週間単位など、保守作業の管理者等が任意に設定してよい。 FIG. 5 shows an example of the schedule database 143 in the present embodiment. The schedule database 143 corresponds to a third database in the present invention that holds information on the availability of each person for maintenance work and each equipment. The schedule database 143 is a collection of records including a date 500, a maintenance staff schedule 501, and an equipment schedule 502. The schedule database 143 can be said to be a database that stores equipment owned by a maintenance company and a schedule of maintenance personnel employed. In the example of the schedule database 143 shown in FIG. 5, the period in which the equipment and the maintenance staff can handle the maintenance work is represented by “1”, and the period in which the equipment and maintenance staff cannot handle is represented by “0”. In the example of the schedule database 143 shown in FIG. 5, the date 500 is expressed in units of one day. However, the maintenance manager or the like arbitrarily sets such as every hour, every eight hours, or every week. It's okay.
 図6Aに本実施形態の部品調達データベース144が含む部品在庫テーブル600の一例を示す。なお、部品調達データベース144は、部品在庫テーブル600と、輸送手段テーブル610と、互換部品テーブル620から構成され、保守作業に用いられる部品ないしその旧版部品または再生部品の各在庫と価格、および、輸送先別および輸送手段別の納期および輸送コストの情報とを、倉庫別に保持する、本発明における第4データベースに該当する。 FIG. 6A shows an example of a parts inventory table 600 included in the parts procurement database 144 of this embodiment. The parts procurement database 144 is composed of a parts inventory table 600, a transport means table 610, and a compatible parts table 620, and each stock and price of parts used for maintenance work or old version parts or recycled parts, and transportation. This corresponds to the fourth database according to the present invention in which the delivery date and transportation cost information for each destination and transportation means are stored for each warehouse.
 部品在庫テーブル600は、部位コード601と、部位名602と、部品番号603と、再生品判定604と、倉庫605と、在庫606と、価格607から成るレコードの集合体となっている。各レコードは、どの部品がどの倉庫にどれだけ在庫されており、価格はいくらであるかを示している。部位コード601と、部位名602と、部品番号603と、再生品判定604は、在庫部品の該当属性の情報である。鉱山機械10の保守に用いる交換用の部品には、既に上述したように、最新版である新品の部品、遡及対策が未実施である古いバージョンの旧版部品、および、故障した部品を修理、再生した再生部品がある。このうち再生部品は、その消耗度によってランク分けされている。ここでは、新品を"N"、再生部品を、消耗度が低いもの、すなわちランクの高い物から"Re-A"、"Re-B"、"Re-C"、と表記している。旧版部品は型番が古いだけで未使用の新品であるから、図6Aの例では"N"とされているが、勿論、旧版部品を特定する表記を行ってもよい。また、倉庫605には、在庫部品が保管されている倉庫の名称が、在庫606には、在庫部品の員数が、価格607には、在庫部品の単価がそれぞれ格納されている。在庫606及び価格607は、時間によって変わる変数であるが、ここでは常に最新の値を格納しているものとする。 The parts inventory table 600 is an aggregate of records including a part code 601, a part name 602, a part number 603, a recycled product determination 604, a warehouse 605, a stock 606, and a price 607. Each record shows how many parts are stocked in which warehouse and how much the price is. The part code 601, the part name 602, the part number 603, and the recycled product determination 604 are information on the corresponding attribute of the inventory part. As described above, the replacement parts used for the maintenance of the mining machine 10 are repaired and refurbished as new parts that are the latest version, old version parts that have not been retroactively implemented, and failed parts. There are recycled parts. Among these, the recycled parts are ranked according to the degree of wear. Here, “N” indicates a new article, and “Re-A”, “Re-B”, and “Re-C” indicate that a recycled part has a low level of wear, that is, a high-ranked one. Since the old version part is an old new article with only an old model number, it is “N” in the example of FIG. 6A. Of course, a notation for identifying the old version part may be used. The warehouse 605 stores the name of the warehouse where the stock parts are stored, the stock 606 stores the number of stock parts, and the price 607 stores the unit price of the stock parts. The stock 606 and the price 607 are variables that change with time, but here, it is assumed that the latest values are always stored.
 図6Bに、本実施形態の部品調達データベース144が含む輸送手段テーブル610の一例を示す。部品調達データベース144が含む輸送手段テーブル610は、倉庫611と、輸送先612と、輸送手段613と、納期614と、輸送費615から構成されるレコードの集合体となっている。このレコードは、輸送元たる倉庫から輸送先たるサイトまで、どのような輸送手段があり、その所要時間と費用はいくらになるかを示したものとなる。そのうち、倉庫611には、部品の輸送元となる倉庫の名称が格納されている。また、輸送先612には、部品の輸送先となるサイト名が格納されている。また、輸送手段613には、部品輸送に用いる手段の名称が格納されている。また、納期614と、輸送費615には、各ケースにおける納期と、その費用がそれぞれ格納されている。 FIG. 6B shows an example of the transportation means table 610 included in the parts procurement database 144 of this embodiment. The transportation means table 610 included in the parts procurement database 144 is a collection of records including a warehouse 611, a transportation destination 612, a transportation means 613, a delivery date 614, and a transportation cost 615. This record shows what kind of transportation is available from the warehouse as the transportation source to the site as the transportation destination, and how much time and cost it takes. Of these, the warehouse 611 stores the name of the warehouse that is the transportation source of the parts. In addition, in the transportation destination 612, a site name that is a transportation destination of the parts is stored. The transportation means 613 stores names of means used for parts transportation. In addition, the delivery date and the cost in each case are stored in the delivery date 614 and the transportation cost 615, respectively.
 図6Cに、本実施形態の部品調達データベース144が含む互換部品テーブル620の一例を示す。部品調達データベース144が含む互換部品テーブル620は、型名621と、部位コード622と、部位名623と、部品番号624と、定期交換間隔625から成るレコードの集合体となっている。このレコードは、ある鉱山機械10の、ある部位に使用可能な互換部品の一覧とその定期交換間隔を示している。このうち、型名621には、対象とする鉱山機械10の型名を示す情報が、部位コード622には、該当鉱山機械10における対象部位を特定する情報が、部位名623には、部位コード622が示す部位の名称が、それぞれ格納されている。これらの、型名621、部位コード622、部位名623の各情報によって、対象とする鉱山機械10とその部位を特定できる。また、部品番号624には、対象とする鉱山機械10の部位に取付けて使用可能な部品の製品番号が格納されている。型名621、部位コード622、部位名623の各情報によって特定される、或る鉱山機械10の所定部位に適用できる部品らとしては、仕様や機能がほぼ同一である、型番が最新の新品部品、その旧版部品、再生部品、の3種類の部品が含まれている。また、定期交換間隔625には、部品メーカーが推奨する部品交換間隔が格納されている。 FIG. 6C shows an example of the compatible component table 620 included in the component procurement database 144 of this embodiment. The compatible parts table 620 included in the parts procurement database 144 is a collection of records including a model name 621, a part code 622, a part name 623, a part number 624, and a regular replacement interval 625. This record shows a list of compatible parts that can be used in a certain part of a certain mining machine 10 and its regular replacement interval. Among these, the model name 621 includes information indicating the model name of the target mining machine 10, the part code 622 includes information specifying the target part of the mining machine 10, and the part name 623 includes the part code. The names of the parts indicated by 622 are respectively stored. The target mining machine 10 and its part can be specified by each information of the model name 621, the part code 622, and the part name 623. The part number 624 stores a product number of a part that can be used by being attached to the target mining machine 10. The parts that are specified by the information of the type name 621, the part code 622, and the part name 623 and that can be applied to a predetermined part of a certain mining machine 10 have the same specifications and functions, and are new parts with the latest model numbers. 3 parts of the old version parts and the recycled parts are included. The periodic replacement interval 625 stores a component replacement interval recommended by a component manufacturer.
 図7Aに本実施形態の顧客知識データベース145が含む、運用ロステーブル700の一例を示す。顧客知識データベース145は、各鉱山機械10の、故障時における負荷率別の残寿命および負荷率低下に伴う鉱山機械10の使用者における経済損失の情報とを対応づけて保持する、本発明における第5データベースに該当する。なお、顧客知識データベース145は、運用ロステーブル700と、残寿命テーブル710と、顧客テーブル730で構成される。顧客とは、鉱山機械10の使用者であり、鉱山機械10の保守サービスの顧客である。 FIG. 7A shows an example of the operation loss table 700 included in the customer knowledge database 145 of this embodiment. The customer knowledge database 145 stores the remaining life of each mining machine 10 according to the load factor at the time of failure and information on the economic loss in the user of the mining machine 10 due to the load factor reduction in association with each other. Corresponds to 5 databases. The customer knowledge database 145 includes an operation loss table 700, a remaining life table 710, and a customer table 730. The customer is a user of the mining machine 10 and a customer of the maintenance service of the mining machine 10.
 運用ロステーブル700は、顧客ID701と、サイトID702と、型名703と、部位コード704と、部位名705と、負荷率706と、運用ロス707から成るレコードの集合体となっている。運用ロステーブル700は、ある顧客の、あるサイトにおいて、鉱山機械10における或る部位の負荷率を制限した場合に生じる、顧客の経済損失を示している。 The operation loss table 700 is a collection of records including a customer ID 701, a site ID 702, a model name 703, a part code 704, a part name 705, a load factor 706, and an operation loss 707. The operation loss table 700 shows the customer's economic loss that occurs when the load factor of a certain part of the mining machine 10 is limited at a certain customer's site.
 顧客ID701には、顧客を特定するIDを、サイトID702には、該当鉱山機械10が運用されているサイトを特定するIDが格納されている。型名703と、部位コード704と、部位名705には、鉱山機械10の型名と、その部位を示すコードと、部位の名称が格納されている。また、負荷率706には、鉱山機械10における通常の定格稼働における負荷を100とした場合の負荷制限率が格納されている。ここで「負荷」とは、例えば「部位」がモータであれば、その回転数やトルクに該当する。また、運用ロス707には、負荷に制限を課した場合に生じる、鉱山機械10を運用する顧客の単位時間あたりの経済損失の情報が格納されている。この運用ロス707は、顧客の運用方針や、サイトで採掘する資源の種別、負荷を制限する部位によって特徴づけられるものとなる。 The customer ID 701 stores an ID for identifying a customer, and the site ID 702 stores an ID for identifying a site where the corresponding mining machine 10 is operated. In the type name 703, the part code 704, and the part name 705, the type name of the mining machine 10, the code indicating the part, and the name of the part are stored. Further, the load factor 706 stores a load limiting rate when the load at the normal rated operation in the mining machine 10 is 100. Here, the “load” corresponds to the number of rotations and torque when the “part” is a motor, for example. The operation loss 707 stores information on economic loss per unit time of a customer who operates the mining machine 10 that occurs when a load is limited. This operation loss 707 is characterized by the customer's operation policy, the type of resource mined at the site, and the part that limits the load.
 図7Bに、本実施形態の顧客知識データベース145が含む、残寿命テーブル710の一例を示す。残寿命テーブル710は、顧客ID711と、サイトID712と、型名713と、部位コード714と、部位名715と、現象コード716と、現象内容717と、故障コード718と、故障内容719と、負荷率720と、残寿命721から構成されるレコードの集合体となっている。 FIG. 7B shows an example of the remaining life table 710 included in the customer knowledge database 145 of this embodiment. The remaining life table 710 includes customer ID 711, site ID 712, model name 713, part code 714, part name 715, phenomenon code 716, phenomenon content 717, failure code 718, failure content 719, load This is a set of records composed of a rate 720 and a remaining life 721.
 このうち、顧客ID711には、顧客を特定するIDが格納され、サイトIDには、サイトを特定するIDが格納されている。また、型名713と、部位コード714と、部位名715には、対象とする鉱山機械10の型名と、部位を示すコードと、該当部位の名称が格納されている。また、現象コード716と、現象内容717には、該当部位に生じた現象を示すコードと、それに対応する現象の内容が格納されている。また、故障コード718と、故障内容719には、現象と対応する故障を示すコードと、その故障の内容が格納されている。また、負荷率720には、型名713、部位コード714、部位名715で特定できる鉱山機械10の該当部位における負荷率が格納されている。また、残寿命721には、該当部位にて異常を検知してから故障が発生するまでの時間が格納されている。 残寿命721は、サイトID712で指定されるサイトにおいて、顧客ID711で指定される顧客が運用する、型名713の鉱山機械10の、部位コード714、部位名715で指定する部位にて、現象コード716及び現象内容717の現象が生じたとき、負荷率720の負荷率で該当部位を稼働させると、どのくらいの時間で、故障コード718及び故障内容719に格納した故障に至るかを意味している。 Among these, the customer ID 711 stores an ID for specifying a customer, and the site ID stores an ID for specifying a site. The model name 713, the part code 714, and the part name 715 store the model name of the target mining machine 10, the code indicating the part, and the name of the corresponding part. The phenomenon code 716 and the phenomenon content 717 store a code indicating a phenomenon that has occurred in the corresponding part and the content of the corresponding phenomenon. The failure code 718 and the failure content 719 store a code indicating the failure corresponding to the phenomenon and the content of the failure. Also, the load factor 720 stores the load factor at the corresponding part of the mining machine 10 that can be specified by the model name 713, the part code 714, and the part name 715. Further, the remaining life 721 stores a time from when an abnormality is detected at a corresponding part until a failure occurs. The remaining life 721 is the phenomenon code at the site specified by the site code 714 and the site name 715 of the mining machine 10 of the model name 713 operated by the customer specified by the customer ID 711 at the site specified by the site ID 712. 716 and the phenomenon content 717, when the corresponding part is operated at the load factor of 720, it means how long the failure is stored in the failure code 718 and the failure content 719. .
 図7Cに、本実施形態の顧客知識データベース145が含む、顧客テーブル730の一例を示す。顧客テーブル730は、顧客ID731と、顧客名732と、サイトID733と、サイト名734と、サイト種別735と、国名コード736から構成されるレコードの集合体となっている。そのうち顧客ID731には、顧客を特定するIDが、顧客名732にはその顧客の名称が、サイトID733には、該当顧客が運営するサイトを特定するIDが、サイト名734には、そのサイトの名称が、サイト種別735には、そのサイトで採掘される資源の種別が、国名コード736は、サイトが存在する国を表す国名コードがそれぞれ格納されている。上述した運用ロステーブル700と、残寿命テーブル710と、顧客テーブル730は、顧客IDと、サイトIDをキーとして互いのレコードが関連付けられる。 FIG. 7C shows an example of the customer table 730 included in the customer knowledge database 145 of this embodiment. The customer table 730 is an aggregate of records including a customer ID 731, a customer name 732, a site ID 733, a site name 734, a site type 735, and a country name code 736. Among them, the customer ID 731 has an ID for identifying the customer, the customer name 732 has the name of the customer, the site ID 733 has an ID for identifying the site operated by the customer, and the site name 734 has the ID of the site. The name of the site type 735 stores the type of resource mined at the site, and the country name code 736 stores a country name code representing the country in which the site exists. The operation loss table 700, the remaining life table 710, and the customer table 730 described above are associated with each other using the customer ID and the site ID as keys.
 図8に本実施例の定期保守データベース146の一例を示す。定期保守データベース146は、保守事業者が鉱山機械10に関して計画する定期保守のスケジュールを格納する本発明の第9データベースに該当する。図8に例示する定期保守データベース146では、定期保守が計画されている日を'1'で表し、定期保守実施の予定がない日を'0'で表している。また、図5に例示した日程データベース143と同様に、日程の単位はユーザが任意に設定してもよい。 FIG. 8 shows an example of the regular maintenance database 146 of this embodiment. The regular maintenance database 146 corresponds to the ninth database of the present invention that stores a schedule of regular maintenance planned by the maintenance company for the mining machine 10. In the periodic maintenance database 146 illustrated in FIG. 8, the date on which the scheduled maintenance is planned is represented by “1”, and the date on which the scheduled maintenance is not scheduled to be performed is represented by “0”. Further, similarly to the schedule database 143 illustrated in FIG. 5, the schedule unit may be arbitrarily set by the user.
 図9に本実施例の部品履歴データベース153の一例を示す。部品履歴データベース153は、個々の部品ないしその旧版部品または再生部品の、鉱山機械10への取付及び鉱山機械10からの取外に関する情報を格納した本発明の第6データベースに該当する。この部品履歴データベース153は、部品シリアル番号901と、部位コード902と、部位名903と、部品番号904と、再生品判定905と、顧客ID906と、サイトID907と、取付機械ID908と、状況フラグ909と、取付日時910と、取外日時911から構成されるレコードの集合体となっている。 FIG. 9 shows an example of the component history database 153 of this embodiment. The parts history database 153 corresponds to a sixth database of the present invention that stores information on the attachment and removal of individual parts or their old version parts or recycled parts from the mining machine 10. The component history database 153 includes a component serial number 901, a part code 902, a part name 903, a part number 904, a remanufactured product determination 905, a customer ID 906, a site ID 907, an attachment machine ID 908, and a status flag 909. And a collection of records composed of an attachment date 910 and a removal date 911.
 そのうち、部品シリアル番号901には、保守事業者が保守を実施する部品を一意に特定する番号が格納されている。また、部位コード902と部位名903は、該当部品が取付けられる部位を示すコードと、その名称が格納されている。また、部品番号904と、再生品判定905は、上述した部品シリアル番号901で指定される部品の製品番号と、再生品判定フラグがそれぞれ格納されている。部品は、取付→取外→再生→取付のサイクルを経て、再生部品として市場に出回る。こうした過程で、再生部品は、前述のように消耗の度合いによってランク付けされている。再生部品は、再生を繰り返すにつれ、再生品判定905のランクが下がっていく傾向にある。 Of these, the part serial number 901 stores a number that uniquely identifies the part that the maintenance company performs maintenance on. The part code 902 and the part name 903 store a code indicating the part to which the corresponding part is attached and its name. The part number 904 and the recycled product determination 905 store the product number of the component specified by the component serial number 901 and the recycled product determination flag, respectively. Parts are put on the market as recycled parts through a cycle of mounting → removal → recycling → mounting. In this process, the recycled parts are ranked according to the degree of wear as described above. Recycled parts tend to lower the rank of the recycled product determination 905 as the reproduction is repeated.
 ある部品の取付→取外→再生→取付→…のサイクルを例として示したものが、図9の部品シリアル番号"100100-103"、"100100-151"、"100100-182"、"100100-213"の各レコードである。これらレコードの関係は、同一個体の部品が再生され繰り返し使用されている様子を示している。 An example of a cycle of mounting a certain part → removing → reproducing → mounting →... Is a part serial number “100100-103”, “100100-151”, “100100-182”, “100100-” in FIG. Each record of 213 ". The relationship between these records shows that parts of the same individual are regenerated and used repeatedly.
 本実施形態においては、部品の取付から取外までを寿命と呼ぶ。この寿命は、同一個体の部品であっても、再生機会ごとに区別するために、それぞれ異なる部品シリアル番号901を付与して管理している。また、取付機械ID909には、該当部品が取付けられた鉱山機械10のIDが格納されている。また、顧客ID907と、サイトID908には、その鉱山機械10を運用する顧客のIDと、その鉱山機械10が稼働するサイトのIDがそれぞれ格納されている。また、状況フラグ910には、その部品の現在のステータスが格納されている。また、取付日時911と取外日時912には、該当部品が鉱山機械10に取付けられた日時と、鉱山機械10から取り外された日時が格納されている。 In the present embodiment, the life from the attachment to the removal of the parts is called the life. The lifespan is managed by assigning different parts serial numbers 901 in order to distinguish the parts of the same individual for each reproduction opportunity. The mounting machine ID 909 stores the ID of the mining machine 10 to which the corresponding part is attached. Further, the customer ID 907 and the site ID 908 respectively store the ID of the customer who operates the mining machine 10 and the ID of the site where the mining machine 10 operates. The status flag 910 stores the current status of the part. In addition, the installation date / time 911 and the removal date / time 912 store the date / time when the corresponding part was attached to the mining machine 10 and the date / time when the part was removed from the mining machine 10.
 図10Aに本実施形態の部品稼働データベース154が含む、稼働判定テーブル1000の一例を示す。なお、部品稼働データベース154は部品に取り付けたセンサ11から取得できる値を用いて部品の稼働/停止の判定を行う情報を格納したものであり、鉱山機械10の或る部位に取り付けられた部品が稼働しているか否か判定するための判定式を格納した稼働判定テーブル1000と、ユーザが指定した期間の鉱山機械10に関するセンサデータを格納した稼働実績テーブル1010から構成される。また、本実施形態の部品稼働データベース154は、部品履歴データベース153(図9)の部品シリアル番号901="100100-103"で指定されるモータに関するものとなっている。 FIG. 10A shows an example of an operation determination table 1000 included in the component operation database 154 of this embodiment. The part operation database 154 stores information for determining whether to operate / stop a part using a value acquired from the sensor 11 attached to the part. A part attached to a certain part of the mining machine 10 is stored in the part operation database 154. An operation determination table 1000 that stores a determination formula for determining whether or not it is operating, and an operation result table 1010 that stores sensor data related to the mining machine 10 during a period specified by the user. The component operation database 154 of this embodiment relates to the motor specified by the component serial number 901 = “100100-103” in the component history database 153 (FIG. 9).
 図10Aに示す稼働判定テーブル1000は、型名1001と、部位コード1002と、部位名1003と、判定項目1004と、判定値1005と、判定条件1006の各情報から構成されている。稼働有無の判定対象の部位名1003が「モータ」である場合を例にとると、判定項目1004は回転数やトルクといった値になる。図10Aの稼働判定テーブル1000では、例として判定項目1004の「回転数」が、判定値1005として「2000」以上となる期間を「稼働」と判定する条件になっている。 The operation determination table 1000 shown in FIG. 10A includes information of a model name 1001, a part code 1002, a part name 1003, a determination item 1004, a determination value 1005, and a determination condition 1006. Taking as an example the case where the part name 1003 subject to determination of the presence or absence of operation is “motor”, the determination item 1004 is a value such as the rotation speed or torque. In the operation determination table 1000 of FIG. 10A, as an example, a condition in which “period” of the determination item 1004 is “2000” or more as the determination value 1005 is a condition for determining “operation”.
 図10Bに本実施形態の部品稼働データベース154が含む、稼働実績テーブル1010の一例を示す。稼働実績テーブル1010は、部品シリアル番号1011と、項目1012と、期間1013と、平均値1014から構成されるレコードの集合体となっている。 そのうち、部品シリアル番号1011には、センサ11が計測を行っている部品を一意に識別する部品番号が格納されている。また、項目1012には、該当部品に関して格納しているセンサデータの種別が格納されている。また、期間1013には、部品シリアル番号1011が示す該当部品に関してセンサ11が計測を行った期間の情報が格納されている。また、平均値1014には、部品シリアル番号1011が示す該当部品に関してセンサ11が計測したセンサデータの、期間1013における平均値が格納されている。本実施形態において、期間1013は1時間を単位時間としているが、ユーザ操作によって適宜に変更可能としてもよい。 FIG. 10B shows an example of an operation result table 1010 included in the component operation database 154 of the present embodiment. The operation result table 1010 is a collection of records including a component serial number 1011, an item 1012, a period 1013, and an average value 1014. Of these, the part serial number 1011 stores a part number that uniquely identifies the part that the sensor 11 is measuring. The item 1012 stores the type of sensor data stored for the corresponding part. In a period 1013, information on a period during which the sensor 11 has measured the corresponding part indicated by the part serial number 1011 is stored. In addition, the average value 1014 stores an average value of the sensor data measured by the sensor 11 for the corresponding component indicated by the component serial number 1011 in the period 1013. In the present embodiment, the period 1013 is set to one hour as a unit time, but may be appropriately changed by a user operation.
 図11Aに本実施形態の保守計画データベース161が含む異常診断結果テーブル1100の一例を示す。なお、保守計画データベース161は、異常診断結果テーブル1100と、対策抽出結果テーブル1120と、実施候補テーブル1130、調達/運用計画テーブル1140から構成される。また、これらテーブル1100~1140らは、異常診断部120と、対策抽出部130と、計画作成部140と、性能予測部150の出力として作成される。 FIG. 11A shows an example of the abnormality diagnosis result table 1100 included in the maintenance plan database 161 of this embodiment. The maintenance plan database 161 includes an abnormality diagnosis result table 1100, a countermeasure extraction result table 1120, an execution candidate table 1130, and a procurement / operation plan table 1140. These tables 1100 to 1140 are created as outputs of the abnormality diagnosis unit 120, the countermeasure extraction unit 130, the plan creation unit 140, and the performance prediction unit 150.
 異常診断結果テーブル1100は、異常診断部120が出力するテーブルであり、異常ID1101と、発生日時1102と、アワメータ1103と、顧客ID1104と、サイトID1105と、機械ID1106と、部品シリアル番号1107と、現象コード1108と、現象内容1109と、故障コード1110と、故障内容1111から成るレコードの集合体となっている。 The abnormality diagnosis result table 1100 is a table output by the abnormality diagnosis unit 120, and includes an abnormality ID 1101, an occurrence date and time 1102, an hour meter 1103, a customer ID 1104, a site ID 1105, a machine ID 1106, a part serial number 1107, and a phenomenon. This is a set of records including a code 1108, a phenomenon content 1109, a failure code 1110, and a failure content 1111.
 異常ID1101は、上述した異常診断部120が特定した異常であり、故障の予兆であると見做した異常を一意に識別するIDが格納されている。また、発生日時1102及びアワメータ1103は、該当異常の検出時の日時及びアワメータの値が格納されている。また、顧客ID1104、サイトID1105、機械ID1106、部品シリアル番号1107は、それぞれ異常を検出した鉱山機械10を保有する顧客を特定するIDと、その鉱山機械10が稼働しているサイトを特定するIDと、その鉱山機械10を特定するIDと、異常が検出された部品を特定するIDが格納されている。また、現象コード1108と現象内容1109には、上述した現象診断機能121が診断した結果が、故障コード1110と故障内容1111には、故障診断機能122が診断した結果が格納されている。 The anomaly ID 1101 is an anomaly identified by the anomaly diagnosis unit 120 described above, and stores an ID that uniquely identifies an anomaly that is considered to be a sign of failure. The occurrence date and time 1102 and the hour meter 1103 store the date and time and hour value when the corresponding abnormality is detected. The customer ID 1104, the site ID 1105, the machine ID 1106, and the part serial number 1107 are respectively an ID that identifies a customer who owns the mining machine 10 that has detected an abnormality, and an ID that identifies a site where the mining machine 10 is operating. The ID for identifying the mining machine 10 and the ID for identifying the component in which the abnormality is detected are stored. In addition, the result of diagnosis by the phenomenon diagnosis function 121 described above is stored in the phenomenon code 1108 and the phenomenon content 1109, and the result of diagnosis by the failure diagnosis function 122 is stored in the failure code 1110 and the failure content 1111.
 図11Bに本実施形態の保守計画データベース161が含む対策抽出結果テーブル1120の一例を示す。対策抽出結果テーブル1120は、上述した対策抽出部130が出力した、対策ID1121と、異常ID1122と、作業コード1123と、作業内容1124と、標準作業時間1125と、作業費用1126と、必要機材1127と、必要保守員技能1128から構成されるレコードの集合体となっている。 FIG. 11B shows an example of the measure extraction result table 1120 included in the maintenance plan database 161 of this embodiment. The countermeasure extraction result table 1120 includes a countermeasure ID 1121, an abnormality ID 1122, a work code 1123, a work content 1124, a standard work time 1125, a work cost 1126, and necessary equipment 1127 output from the above-described countermeasure extraction unit 130. , A set of records composed of necessary maintenance personnel skills 1128.
 そのうち対策ID1121には、上述の異常診断結果テーブル1100における異常ID1101に対応した異常に対して計画した対策すなわち保守作業を一意に特定するIDが格納されている。また、異常ID1122には、上述の異常診断結果テーブル1100における異常ID1101と共通する異常ID1122が格納されている。また、作業コード1123と作業内容1124には、作業履歴データベース132から抽出された保守作業のコードとその内容が格納されている。また、標準作業時間1125と、作業費用1126と、必要機材1127と、必要保守員技能1128には、該当保守作業に関して保守作業データベース133から抽出された、保守作業に要する時間と、費用と、機材と、保守員技能の各情報が格納されている。 Among them, the countermeasure ID 1121 stores an ID that uniquely identifies a countermeasure, that is, maintenance work planned for the abnormality corresponding to the abnormality ID 1101 in the abnormality diagnosis result table 1100 described above. The abnormality ID 1122 stores an abnormality ID 1122 that is common to the abnormality ID 1101 in the abnormality diagnosis result table 1100 described above. The work code 1123 and the work content 1124 store the maintenance work code extracted from the work history database 132 and its content. The standard work time 1125, work cost 1126, necessary equipment 1127, and necessary maintenance staff skill 1128 include the time, cost, and equipment required for the maintenance work extracted from the maintenance work database 133 for the relevant maintenance work. And maintenance staff skill information are stored.
 図11Cに本実施形態の保守計画データベース161が含む実施候補テーブル1130の一例を示す。実施候補テーブル1130は、計画作成部140の計画機能141が、対策抽出部130の出力である対策抽出結果テーブル1120と日程データベース143から抽出し出力したテーブルとなる。この実施候補テーブル1130は、日程ID1131、対策ID1132、実施候補1133、実施可能日1134、対応保守員1135、対応機材1136、tx1137から構成されるレコードの集合体となっている。 FIG. 11C shows an example of the implementation candidate table 1130 included in the maintenance plan database 161 of this embodiment. The implementation candidate table 1130 is a table that the plan function 141 of the plan creation unit 140 extracts and outputs from the measure extraction result table 1120 and the schedule database 143 that are the outputs of the measure extraction unit 130. This execution candidate table 1130 is an aggregate of records including schedule ID 1131, countermeasure ID 1132, execution candidate 1133, possible date 1134, corresponding maintenance staff 1135, corresponding equipment 1136, and tx1137.
 そのうち日程ID1131には、保守作業を実施する候補期間を特定するIDが格納されている。また、対策ID1132には、上述した対策抽出結果テーブル1120における対策ID1121と共通し、実施される対策を特定するIDが格納されている。また、実施候補1133には、日程ID1131に合致した値が格納されている。また、実施日1134には、上述した計画作成機能141が抽出した、保守作業を実施可能な日程が格納されている。また、保守員1135及び機材1136には、それぞれ対応に当たる保守員名と機材名が格納されている。また、tx1137には、現時点から保守作業の実施候補日までの猶予時間が格納されている。 Of these, the schedule ID 1131 stores an ID for identifying a candidate period for performing maintenance work. The countermeasure ID 1132 stores an ID that identifies the countermeasure to be implemented, in common with the countermeasure ID 1121 in the countermeasure extraction result table 1120 described above. The execution candidate 1133 stores a value that matches the schedule ID 1131. Further, the execution date 1134 stores a schedule that allows the maintenance work to be extracted, which is extracted by the plan creation function 141 described above. The maintenance staff 1135 and the equipment 1136 store the maintenance staff name and the equipment name corresponding to the correspondence, respectively. In addition, in tx1137, a grace time from the current time to the execution candidate date of maintenance work is stored.
 図11Dに本実施形態の保守計画データベース161が含む調達/運用テーブル1140の一例を示す。調達/運用テーブル1140は、上述した計画作成部140の計画作成機能141が、在庫部品データベース145及び顧客知識データベース145を参照して出力した結果が格納されている。図11Dに示す調達/運用テーブル1140は、部品交換作業を含む保守作業に関して計画した内容を示すテーブル構成例である。 FIG. 11D shows an example of the procurement / operation table 1140 included in the maintenance plan database 161 of this embodiment. The procurement / operation table 1140 stores the results output by the plan creation function 141 of the plan creation unit 140 described above with reference to the inventory parts database 145 and the customer knowledge database 145. A procurement / operation table 1140 shown in FIG. 11D is a table configuration example showing the contents planned for maintenance work including parts replacement work.
 調達/運用テーブル1140は、計画ID1141と、日程ID1142と、部品番号1143と、再生品判定1144と、倉庫1145と、輸送手段1146と、納期1147と、部品価格1148と、輸送費1149と、負荷率1150と、運用ロス1151と、作業ロス1152から構成されるレコードの集合体となっている。 The procurement / operation table 1140 includes a plan ID 1141, a schedule ID 1142, a part number 1143, a recycled product determination 1144, a warehouse 1145, a transportation means 1146, a delivery date 1147, a part price 1148, a transportation cost 1149, a load This is a set of records composed of a rate 1150, an operation loss 1151, and a work loss 1152.
 そのうち計画ID1141には、調達/運用計画を一意に特定するためのIDが格納されている。なお、保守作業として部品交換を含まず、従って部品調達を要しない計画である場合、この計画ID1141は、運用計画を特定するためのIDとなる。 Of these, the plan ID 1141 stores an ID for uniquely identifying the procurement / operation plan. Note that if the maintenance work does not include parts replacement and therefore does not require parts procurement, the plan ID 1141 is an ID for specifying the operation plan.
 また、日程ID1142には、上述した実施候補テーブル1130の日程ID1131に対応するIDが格納されている。また、部品番号1143と再生品判定1144には、部品の交換作業で新たに取り付ける部品の部品番号と、該当部品の再生品判定フラグが格納されている。なお、保守作業が部品交換作業を含まない場合、これら部品番号1143と再生品判定1144は、空白とするか或いは何らかの判定記号が格納されている。 Further, the schedule ID 1142 stores an ID corresponding to the schedule ID 1131 of the execution candidate table 1130 described above. Further, the part number 1143 and the recycled product determination 1144 store the component number of the component to be newly installed in the replacement operation of the component and the recycled product determination flag of the corresponding component. When the maintenance work does not include a parts replacement work, these part number 1143 and remanufactured product judgment 1144 are blank or some judgment symbols are stored.
 また、倉庫1145、輸送手段1146、納期1147、部品価格1148、輸送費1149には、それぞれ、交換用の部品を調達する倉庫名、輸送手段、納期、該当部品の価格、輸送に要する費用がそれぞれ格納されている。なお、上述した部品番号1143、再生品判定1144と同様に、保守作業が部品交換作業を含まない場合、これら倉庫1145、輸送手段1146、納期1147、部品価格1148、輸送費1149には、空白あるいは何らかの判定記号が格納されている。 In addition, the warehouse 1145, the transportation means 1146, the delivery date 1147, the part price 1148, and the transportation cost 1149 respectively include the name of the warehouse for procuring replacement parts, the transportation means, the delivery date, the price of the corresponding part, and the transportation cost. Stored. As in the case of the part number 1143 and the recycled product determination 1144 described above, when the maintenance work does not include the part replacement work, the warehouse 1145, the transportation means 1146, the delivery date 1147, the part price 1148, and the transportation cost 1149 are blank or Some kind of judgment symbol is stored.
 また、負荷率1150には、保守計画実施の際の鉱山機械10における該当部位(部品交換の対象部位)の負荷率の上限が格納されている。また、運用ロス1151には、前記の負荷率1150が示す値に鉱山機械10における負荷を制限することで生じる、顧客の経済損失が格納されている。また、作業ロス1152には、保守作業を実施する際の鉱山機械10の稼働停止に伴う顧客の経済損失が格納されている。なお、調達/運用テーブル1140に関しては、部品の調達に係る調達テーブルと、負荷率や運用ロスなど運用に係る運用テーブルに分けて管理しても良い。 Also, the load factor 1150 stores the upper limit of the load factor of the corresponding part (part replacement target part) in the mining machine 10 when the maintenance plan is executed. Further, the operation loss 1151 stores the customer's economic loss caused by limiting the load on the mining machine 10 to the value indicated by the load factor 1150. The work loss 1152 stores the economic loss of the customer due to the stoppage of the operation of the mining machine 10 when the maintenance work is performed. The procurement / operation table 1140 may be managed separately as a procurement table for parts procurement and an operation table for operations such as load factor and operation loss.
 図12に本実施形態における、予測結果データベース162の一例を示す。予測結果データベース162は、対象1201と、部位コード1202と、部位名1203と、部品番号1204と、再生品判定1205と、定期交換間隔1206と、平均寿命1207と、履歴ベース平均DT(ダウンタイム)1208と、稼働ベース平均DT1209と、サンプル数1210から構成されるレコードの集合体となっている。このレコードは性能予測部150の寿命算出機能151と、ダウンタイム算出機能152の出力である。 FIG. 12 shows an example of the prediction result database 162 in this embodiment. The prediction result database 162 includes an object 1201, a part code 1202, a part name 1203, a part number 1204, a recycled product determination 1205, a regular replacement interval 1206, an average life 1207, and a history-based average DT (downtime). 1208, an operation base average DT 1209, and a set of records composed of 1210 samples. This record is the output of the life calculation function 151 and the downtime calculation function 152 of the performance prediction unit 150.
 このうち対象1201は、上述した寿命算出機能151とダウンタイム算出機能152が性能予測の対象とした鉱山機械10の範囲を特定するもので、該当鉱山機械10らを示す、国別コード、顧客ID、サイトIDによって指定されている。図12の例では、この対象1201としてサイトIDの値が設定されている。また、部位コード1202と部位名1203には、性能予測の対象とした部位を示すコードと、その名称が格納されている。また、部品番号1204と再生品判定1205には、性能予測の対象とした部品の製品番号と、再生品判定フラグが格納されている。 Among these, the target 1201 specifies the range of the mining machine 10 for which the lifetime calculation function 151 and the downtime calculation function 152 described above are targets of performance prediction, and the country code and customer ID indicating the corresponding mining machine 10 and the like. Specified by the site ID. In the example of FIG. 12, the value of the site ID is set as the target 1201. Further, the part code 1202 and the part name 1203 store a code indicating the part targeted for performance prediction and its name. Further, the part number 1204 and the recycled product determination 1205 store the product number of the component subjected to performance prediction and the recycled product determination flag.
 また、定期交換間隔1206には、性能予測の対象の部品、すなわち部品番号1204が示す部品の定期交換間隔が格納されている。この定期交換間隔1206の値は、例えば、部品メーカーが規定した設計上の交換間隔の値となる。また、平均寿命1207には、上述した寿命算出機能151が部品履歴データベース153に基づいて算出した平均寿命の値が格納されている。この平均寿命1207の値は、上述した定期交換間隔1206の値との比較対象となる。 Also, the periodic replacement interval 1206 stores the periodic replacement interval of the part whose performance is to be predicted, that is, the part indicated by the part number 1204. The value of the regular replacement interval 1206 is, for example, a design replacement interval value defined by a component manufacturer. The average life 1207 stores a value of the average life calculated by the above-described life calculation function 151 based on the component history database 153. The value of the average life 1207 is to be compared with the value of the regular replacement interval 1206 described above.
 また、履歴ベース平均DT1208には、上述したダウンタイム算出機能152が、部品履歴データベース153と故障履歴データベース124に基づいて算出した平均ダウンタイムの値が格納されている。また、稼働ベース平均DT1209には、上述したダウンタイム算出機能152が、部品履歴データベース153と部品稼働データベース154に基づいて算出した平均ダウンタイムの値が格納されている。また、サンプル数1210には、寿命算出機能151とダウンタイム算出機能152が処理対象とした部品の点数が格納されている。 The history-based average DT 1208 stores the average downtime value calculated by the above-described downtime calculation function 152 based on the component history database 153 and the failure history database 124. The operation base average DT 1209 stores the average downtime value calculated by the downtime calculation function 152 described above based on the component history database 153 and the component operation database 154. The number of samples 1210 stores the number of parts processed by the life calculation function 151 and the downtime calculation function 152.
 以下、本実施形態における保守計画立案方法の実際手順について図に基づき説明する。以下で説明する保守計画立案方法に対応する各種動作は、保守計画立案システム100がメモリ113に読み出して実行するプログラムによって実現される。そして、これらのプログラムは、以下に説明される各種の動作を行うためのコードから構成されている。 Hereinafter, the actual procedure of the maintenance planning method according to the present embodiment will be described with reference to the drawings. Various operations corresponding to the maintenance planning method described below are realized by a program that the maintenance planning system 100 reads into the memory 113 and executes. These programs are composed of codes for performing various operations described below.
 図13は、本実施形態における保守計画立案方法の処理手順例1を示すフロー図である。このフローは、保守計画立案支援システム100が、監視システム170より、センサ11のセンサデータの値が所定の閾値を超えたとの通知を受けたことをトリガとして、実行されるものとなる。 FIG. 13 is a flowchart showing a processing procedure example 1 of the maintenance plan planning method in the present embodiment. This flow is executed when the maintenance planning support system 100 receives a notification from the monitoring system 170 that the value of the sensor data of the sensor 11 exceeds a predetermined threshold.
 まず、処理S1301は、異常診断部120の現象診断機能121によって実行される。現象診断機能121は、監視システム170が検出した或る部品に関するセンサデータの異常と、現象履歴データベース123のセンサデータ210とを比較することで、監視システム170が検知した現象を特定し、対応する現象ID201、現象コード206、現象内容207といった該当現象に関する情報を現象履歴データベース123から抽出する。 First, the process S1301 is executed by the phenomenon diagnosis function 121 of the abnormality diagnosis unit 120. The phenomenon diagnosis function 121 identifies and responds to a phenomenon detected by the monitoring system 170 by comparing the sensor data abnormality detected by the monitoring system 170 with the sensor data 210 of the phenomenon history database 123. Information on the corresponding phenomenon such as the phenomenon ID 201, the phenomenon code 206, and the phenomenon content 207 is extracted from the phenomenon history database 123.
 現象診断機能121は、こうして自身が特定した現象に関する情報と、上述した監視システム170がセンサデータの異常を検出した部品に関する情報(例:顧客ID、サイトID、機械ID、部品シリアル番号等)とを、保守計画データベース161における異常診断結果テーブル1100に出力する。 The phenomenon diagnosis function 121 includes information related to the phenomenon identified by itself, information related to a part for which the monitoring system 170 detects an abnormality in sensor data (eg, customer ID, site ID, machine ID, part serial number, etc.) Is output to the abnormality diagnosis result table 1100 in the maintenance plan database 161.
 次に、処理S1302は、異常診断部120の故障診断機能122によって実行される。故障診断機能122は、上述した処理S1301において抽出した現象ID201の値をキーとして、故障履歴データベース124を参照し、監視システム170が検知した現象に対応する故障を特定し、その故障ID211及び故障コード222を抽出する。故障診断機能122は、こうして抽出した故障に関する情報を、保守計画データベース161における異常診断結果テーブル1100に出力する。 Next, the process S1302 is executed by the failure diagnosis function 122 of the abnormality diagnosis unit 120. The failure diagnosis function 122 refers to the failure history database 124 using the value of the phenomenon ID 201 extracted in the above-described process S1301 as a key, identifies a failure corresponding to the phenomenon detected by the monitoring system 170, and sets the failure ID 211 and the failure code. 222 is extracted. The failure diagnosis function 122 outputs information on the failure thus extracted to the abnormality diagnosis result table 1100 in the maintenance plan database 161.
 次に、処理S1303は、対策抽出部130の対策抽出機能131によって実行される。対策抽出機能131は、上述した処理S1302において、故障診断機能122によって抽出された故障ID211の値をキーとして、作業履歴データベース132を参照し、過去の同様の故障に対して実施された保守作業を特定し、その作業コード312を抽出する。対策抽出機能131は、抽出した結果を対策抽出結果テーブル1120に出力する。 Next, step S1303 is executed by the measure extracting function 131 of the measure extracting unit 130. The countermeasure extracting function 131 refers to the work history database 132 by using the value of the failure ID 211 extracted by the failure diagnosis function 122 in the process S1302 described above as a key, and performs maintenance work that has been performed for the same failure in the past. Then, the work code 312 is extracted. The measure extraction function 131 outputs the extracted result to the measure extraction result table 1120.
 次に、処理S1304は、対策抽出部130の対策抽出機能131によって実行される。対策抽出機能131は、処理S1303において抽出した作業コード312をキーとして、保守作業データベース133を参照し、該当保守作業に要する作業費用408と、標準作業時間409と、必要機材410と、保守員技能411の値を抽出する。対策抽出機能131は、ここで抽出した結果を対策抽出結果テーブル1120に出力する。 Next, step S1304 is executed by the measure extraction function 131 of the measure extraction unit 130. The countermeasure extracting function 131 refers to the maintenance work database 133 using the work code 312 extracted in the processing S1303 as a key, and the work cost 408, the standard work time 409, the necessary equipment 410, the maintenance staff skill required for the corresponding maintenance work. The value of 411 is extracted. The measure extraction function 131 outputs the result extracted here to the measure extraction result table 1120.
 次に、処理S1305は、計画作成部140の計画作成機能141によって実行される。計画作成機能141は、上述した処理S1304において抽出された必要機材410に対応する機材と、保守員技能411が示す技能を保有する保守員のスケジュールを、日程データベース143から読み込む。計画作成機能141は、ここで読み込んだスケジュールから、該当機材及び該当保守員が保守作業に対応出来る、すなわち他に作業予定が入っていない「空き日」を実施候補日として特定し、現時点から実施候補日までの期間txを算定する。計画作成機能141は、特定した実施候補日(実施候補テーブル1130では、'実施日'に該当)と期間txの情報を実施候補テーブル1130に出力する。 Next, step S1305 is executed by the plan creation function 141 of the plan creation unit 140. The plan creation function 141 reads, from the schedule database 143, the schedule of the maintenance staff who possesses the equipment corresponding to the necessary equipment 410 extracted in the above-described processing S1304 and the skills indicated by the maintenance staff skills 411. From the schedule read here, the plan creation function 141 identifies a “vacant day” that can be handled by the relevant equipment and maintenance personnel, that is, no other work schedules, as the implementation candidate date, and implements from the present time. The period tx until the candidate date is calculated. The plan creation function 141 outputs information on the identified implementation candidate date (corresponding to “execution date” in the implementation candidate table 1130) and the period tx to the implementation candidate table 1130.
 続いて処理S1306は、計画作成機能141によって実行される。計画作成機能141は、上述した処理S1303において対策抽出機能131によって特定された保守作業が、部品交換作業を含むものであるか否かを判定する。保守作業が部品交換作業を含まない場合(S1306:No)、計画作成機能141は、処理S1307を実行する。一方、保守作業が部品交換作業を含む場合(S1306:Yes)、計画作成機能141は処理S1308を実行する。 Subsequently, step S1306 is executed by the plan creation function 141. The plan creation function 141 determines whether the maintenance work specified by the measure extraction function 131 in the above-described process S1303 includes a parts replacement work. When the maintenance work does not include the part replacement work (S1306: No), the plan creation function 141 executes the process S1307. On the other hand, when the maintenance work includes parts replacement work (S1306: Yes), the plan creation function 141 executes the process S1308.
 次に、処理S1307は、計画作成部140の計画作成機能141によって実行される。計画作成機能141は、実施候補テーブル1130と、顧客知識データベース145とを参照して運用計画を作成し、調達/運用テーブル1140に出力する。この運用計画作成の詳細手順については、図14を用いて後述する。 Next, the process S1307 is executed by the plan creation function 141 of the plan creation unit 140. The plan creation function 141 creates an operation plan with reference to the implementation candidate table 1130 and the customer knowledge database 145, and outputs the operation plan to the procurement / operation table 1140. The detailed procedure for creating the operation plan will be described later with reference to FIG.
 一方、処理S1308は、計画作成部140の計画作成機能141によって実行される。計画作成機能141は、実施候補テーブル1130と、部品調達データベース144と、顧客知識データベース145とを参照し、調達/運用計画を作成し、調達/運用計画テーブル1140に出力する。この調達/運用計画作成の詳細手順については、図15を用いて後述する。 On the other hand, the process S1308 is executed by the plan creation function 141 of the plan creation unit 140. The plan creation function 141 creates a procurement / operation plan by referring to the execution candidate table 1130, the parts procurement database 144, and the customer knowledge database 145, and outputs the procurement / operation plan to the procurement / operation plan table 1140. Details of the procurement / operation plan creation will be described later with reference to FIG.
 次に、処理S1309は、性能予測部150によって実行される。性能予測部150の寿命算出機能151は、上述した処理S1308で作成した調達/運用計画に示されている交換用の部品について、部品履歴データベース153に基づいて該当部品の平均寿命を算定する。また、性能予測部150のダウンタイム算出機能152は、部品履歴データベース153と、故障履歴データベース124と、部品稼働データベース154とに基づいて、該当部品のダウンタイムを算出する。寿命算出機能151が算定した平均寿命の値と、ダウンタイム算出機能152が算定したダウンタイムの値は、それぞれの機能が予測結果データベース162に出力する。寿命算出機能151とダウンタイム算出機能152での各処理については図16から図18を用いて後述する。 Next, step S1309 is executed by the performance prediction unit 150. The life calculation function 151 of the performance prediction unit 150 calculates the average life of the corresponding part based on the part history database 153 for the replacement part indicated in the procurement / operation plan created in the above-described process S1308. Further, the downtime calculation function 152 of the performance prediction unit 150 calculates the downtime of the corresponding part based on the part history database 153, the failure history database 124, and the part operation database 154. The average lifetime value calculated by the lifetime calculation function 151 and the downtime value calculated by the downtime calculation function 152 are output to the prediction result database 162 by each function. Each process in the life calculation function 151 and the downtime calculation function 152 will be described later with reference to FIGS.
 次に、処理S1310は、計画作成部140の定期保守計画調整機能142によって実行される。定期保守計画調整機能142は、上述した計画作成機能141によって作成された運用/調達計画テーブル1140と、定期保守データベース146とを参照し、運用/調達計画が示す実施候補日と定期保守の実施予定日とが合致するか否か判定する。実施候補日と定期保守の実施予定日とが合致する場合(S1310:Yes)、定期保守計画調整機能142は、処理S1311を実行する。他方、実施候補日と定期保守の実施予定日とが合致しない場合(S1310:No)、定期保守計画調整機能142は処理S1312を実行する。 Next, step S1310 is executed by the regular maintenance plan adjustment function 142 of the plan creation unit 140. The regular maintenance plan adjustment function 142 refers to the operation / procurement plan table 1140 created by the above-described plan creation function 141 and the regular maintenance database 146, and performs the implementation candidate date and the scheduled maintenance execution schedule indicated by the operation / procurement plan. It is determined whether or not the date matches. If the execution candidate date matches the scheduled scheduled maintenance date (S1310: Yes), the scheduled maintenance plan adjustment function 142 executes step S1311. On the other hand, when the execution candidate date does not match the scheduled scheduled maintenance date (S1310: No), the scheduled maintenance plan adjustment function 142 executes step S1312.
 また、処理S1311は、計画作成部140の計画作成機能141によって実行される。計画作成機能141は、定期保守の実施予定日を唯一の実施候補日とし、上述した運用/調達計画が部品交換作業を含まない場合は処理S1307を実行して運用計画を作成する。また、計画作成機能141は、上述した運用/調達計画が部品交換作業を含む場合は処理S1308を実行して調達/運用計画を作成する。計画作成機能141は、こうして作成した運用/調達計画や運用計画を、調達/運用計画テーブル1140に出力する。 Further, the process S1311 is executed by the plan creation function 141 of the plan creation unit 140. The plan creation function 141 sets the scheduled maintenance execution date as the only execution candidate date, and executes the processing S1307 to create an operation plan when the above-described operation / procurement plan does not include parts replacement work. The plan creation function 141 creates a procurement / operation plan by executing step S1308 when the above-described operation / procurement plan includes parts replacement work. The plan creation function 141 outputs the operation / procurement plan and operation plan thus created to the procurement / operation plan table 1140.
 次に、処理S1312は、出力管理部160によって実行される。出力管理部160は、これまでの手順において出力管理部160の保守計画データベース161および予測結果データベース162に保存された保守計画及び予測結果を、クライアント端末190に出力する。クライアント端末190は、保守計画及び予測結果をディスプレイ上に出力し、該当ユーザによる保守計画の評価、検討に供する。 Next, the process S1312 is executed by the output management unit 160. The output management unit 160 outputs the maintenance plan and the prediction result stored in the maintenance plan database 161 and the prediction result database 162 of the output management unit 160 in the procedure so far to the client terminal 190. The client terminal 190 outputs the maintenance plan and the prediction result on the display, and is used for evaluation and examination of the maintenance plan by the corresponding user.
 図14は本実施形態における、運用計画作成手順(処理S1307)の一例である。処理S1307は、計画作成部140の計画作成機能141によって実行される。また、計画作成機能141は、上述した処理S1301から処理S1305において出力された、保守計画データベース161の異常診断結果テーブル1100と、対策抽出結果テーブル1120と、実施候補テーブル1130を参照可能であるものとする。 FIG. 14 is an example of an operation plan creation procedure (processing S1307) in the present embodiment. The process S1307 is executed by the plan creation function 141 of the plan creation unit 140. Further, the plan creation function 141 can refer to the abnormality diagnosis result table 1100, the countermeasure extraction result table 1120, and the implementation candidate table 1130 of the maintenance plan database 161 output in the processing S1301 to S1305 described above. To do.
 この場合、処理S1401において、計画作成機能141は、実施候補テーブル1130における各レコードのうち、例えば最も実施日1134が早い実施候補に関するものを抽出し(実施候補x)、抽出したレコード中より、現時点から実施日1134までの時間txの値を取得し、メモリ113に格納する。 In this case, in the process S1401, the plan creation function 141 extracts, for example, the one related to the implementation candidate with the earliest implementation date 1134 among the records in the implementation candidate table 1130 (execution candidate x). From time to date 1134 is acquired and stored in the memory 113.
 次に処理S1402において、計画作成機能141は、上述で抽出したレコードが示す対策ID1132の値をキーに、対策抽出結果テーブル1120で異常ID1122を特定し、この異常ID1122をキーに異常診断結果テーブル1100にて、保守対象である部品に関する、顧客ID、サイトID、現象コード、現象内容、故障コード、故障内容といった情報を特定する。また、計画作成機能141は、ここで特定した情報を、顧客知識データベース145の残寿命テーブル710に照合して、該当部品の残寿命721の値を取得する。計画作成機能141は、こうして取得した残寿命の値と、現時点から実施日1134までの時間txとを比較し、保守作業実施までに故障が発生するか否かを判定する。 Next, in process S1402, the plan creation function 141 specifies the abnormality ID 1122 in the countermeasure extraction result table 1120 using the value of the countermeasure ID 1132 indicated by the record extracted above as a key, and uses the abnormality ID 1122 as a key to diagnose the abnormality diagnosis result table 1100. Then, information such as a customer ID, a site ID, a phenomenon code, a phenomenon content, a failure code, and a failure content relating to a part to be maintained is specified. Further, the plan creation function 141 collates the information specified here with the remaining life table 710 of the customer knowledge database 145, and acquires the value of the remaining life 721 of the corresponding part. The plan creation function 141 compares the remaining life value acquired in this way with the time tx from the current time to the execution date 1134, and determines whether or not a failure occurs before the maintenance work is performed.
 上述の判定の結果が、残寿命>txであった場合(S1402:残寿命>tx)、計画作成機能141は、実施日1134までに該当部品は故障しないと推定し、該当部品の負荷率='100'とし、次なる処理S1405を実行する。 When the result of the above determination is the remaining life> tx (S1402: remaining life> tx), the plan creation function 141 estimates that the corresponding part does not fail by the implementation date 1134, and the load factor of the corresponding part = Set to “100”, and the next process S1405 is executed.
 一方、上述の判定の結果が、残寿命<txの場合(S1402:残寿命<tx)、計画作成機能141は、実施候補xの実施日1134までに該当部品が故障すると推定し、次なる処理S1403を実行する。なお、上述の処理S1402で取得した残寿命が'0'である場合とは、突発故障によって既に該当部品の機能が停止していることを意味する。この場合(S1402:残寿命=0)、計画作成機能141は、処理S1404において該当部品の負荷率='0'をセットし、以降の処理S1405を実行する。 On the other hand, when the result of the above determination is the remaining life <tx (S1402: remaining life <tx), the plan creation function 141 estimates that the corresponding part will fail by the execution date 1134 of the execution candidate x, and the next process S1403 is executed. The case where the remaining life acquired in the above-described process S1402 is “0” means that the function of the corresponding part has already stopped due to a sudden failure. In this case (S1402: remaining life = 0), the plan creation function 141 sets the load factor = '0' of the corresponding part in process S1404, and executes the subsequent process S1405.
 ここで、残寿命と実施日1134との関係を図19Aを用いて説明する。図19Aは残寿命と現時点から実施日1134までの時間txとの関係を示している。例えば、実施候補1は、t1<残寿命、の関係にあり、保守作業の実施日1134までに部品の故障が起きないと予想される。また、実施候補2は、t2>残寿命、の関係にあり、保守作業の実施日1134までに部品が故障することが予想される。この実施候補2に基づいて保守作業を実施するためには、該当部品に関して異常検知後に該当部品の負荷率を制限した運用を行い、残寿命を延長させる必要がある。 Here, the relationship between the remaining life and the implementation date 1134 will be described with reference to FIG. 19A. FIG. 19A shows the relationship between the remaining life and the time tx from the present time to the implementation date 1134. For example, the execution candidate 1 has a relationship of t1 <remaining life, and it is predicted that no component failure will occur by the execution date 1134 of the maintenance work. Further, the execution candidate 2 has a relationship of t2> remaining life, and it is expected that a component will fail by the execution date 1134 of the maintenance work. In order to carry out maintenance work based on this execution candidate 2, it is necessary to extend the remaining life by performing an operation in which the load factor of the relevant part is limited after the abnormality is detected with respect to the relevant part.
 処理S1403において、計画作成機能141は、顧客知識データベース145の残寿命テーブル710を参照し、保守作業の実施日までに該当部品が故障しない負荷率、つまり残寿命>txとなる最大の負荷率を特定する。例えば、残寿命がtxより2日短い場合、残寿命テーブル710において、負荷率が'100'の場合より、残寿命が3日長くなる、負荷率'90'を特定すればよい。 In process S1403, the plan creation function 141 refers to the remaining life table 710 of the customer knowledge database 145, and determines the load factor at which the corresponding part does not fail by the date of the maintenance work, that is, the maximum load factor that satisfies the remaining life> tx. Identify. For example, when the remaining life is 2 days shorter than tx, the remaining life table 710 may specify the load factor “90” that is 3 days longer than the case where the load factor is “100”.
 また、処理S1405において、計画作成機能141は、運用ロスと作業ロスを算出する。上述したように、保守作業の実施日まで部品の負荷率を制限して運用する必要がある場合、その間は鉱山機械10がフル稼働していない期間となって顧客の利益は減少し、経済損失を生じることになる。図19Bに示すように、この経済損失を運用ロスとする。計画作成機能141は、処理S1402あるいは処理S1403、処理S1404で取得した負荷率を、顧客知識データベース145の運用ロステーブル700に照合し、該当運用ロス707の値を特定する。また、計画作成機能141は、特定した運用ロス707の値を、上述したtx(現時点から保守作業の実施日1134までの猶予時間)の値に乗算し、運用ロスを算定する。 In step S1405, the plan creation function 141 calculates an operation loss and a work loss. As described above, when it is necessary to operate with the load factor of parts limited until the date of the maintenance work, the mining machine 10 is not fully operated during that period, and the customer's profit is reduced, resulting in economic loss. Will result. As shown in FIG. 19B, let this economic loss be an operational loss. The plan creation function 141 collates the load factor acquired in step S1402 or step S1403 and step S1404 with the operation loss table 700 of the customer knowledge database 145, and specifies the value of the corresponding operation loss 707. In addition, the plan creation function 141 calculates the operation loss by multiplying the value of the specified operation loss 707 by the above-described value of tx (the grace time from the current time to the maintenance work implementation date 1134).
 また、保守作業中は鉱山機械10を停止するので、保守作業中における該当部品の負荷率は'0'となる。その場合、その間は鉱山機械10が停止した期間となって顧客の利益は減少し、経済損失を生じる。この経済損失を作業ロスとする。計画作成機能141は、対策抽出結果テーブル1120から抽出した標準作業時間1125と、顧客知識データベース145の運用ロステーブル700における負荷率'0'の場合の運用ロス707の値とを乗算し作業ロスを算出する。 Moreover, since the mining machine 10 is stopped during the maintenance work, the load factor of the corresponding part during the maintenance work becomes “0”. In that case, during that period, the mining machine 10 is stopped, and the profit of the customer is reduced, resulting in an economic loss. This economic loss is defined as work loss. The plan creation function 141 multiplies the standard work time 1125 extracted from the measure extraction result table 1120 by the value of the operation loss 707 in the case of the load factor “0” in the operation loss table 700 of the customer knowledge database 145 to calculate the work loss. calculate.
 処理S1406において、計画作成機能141は、実施候補xに対応する、負荷率と、運用ロスと、作業ロスを、保守計画データベース161の調達/運用計画テーブル1140に出力する。なお、処理S1307では、部品交換作業を含まない保守作業を対象としており、この場合、計画作成機能141は、調達/運用計画テーブル1140における、部品番号1143と、再生品判定1144と、倉庫1145と、輸送手段1146と、納期1147と、部品価格1148と、輸送費1149の値は空白とするか、あるいは何らかの判定記号を出力する。 In process S1406, the plan creation function 141 outputs the load factor, operation loss, and work loss corresponding to the execution candidate x to the procurement / operation plan table 1140 of the maintenance plan database 161. In step S1307, maintenance work that does not include parts replacement work is targeted. In this case, the plan creation function 141 uses the part number 1143, the recycled product determination 1144, the warehouse 1145, and the like in the procurement / operation plan table 1140. The values of the transportation means 1146, the delivery date 1147, the part price 1148, and the transportation cost 1149 are blank, or some judgment symbol is output.
 次に処理S1407では、計画作成機能141は、保守計画データベース161の実施候補テーブル1130を参照し、まだ上述した処理S1401~S1406の処理を未実施である他の実施候補があるか否か判定する。実施候補が他に存在する場合(S1407:Yes)、計画作成機能141は、再び処理S1401を実行する。他方、実施候補が他に存在しない場合(S1407:No)、計画作成機能141は、当該フローすなわち処理S1307を終了する。 Next, in process S1407, the plan creation function 141 refers to the execution candidate table 1130 of the maintenance plan database 161, and determines whether there are other execution candidates that have not yet been processed in the above-described processes S1401 to S1406. . If there are other execution candidates (S1407: Yes), the plan creation function 141 executes the process S1401 again. On the other hand, when there is no other implementation candidate (S1407: No), the plan creation function 141 ends the flow, that is, the process S1307.
 図15は本実施形態における、調達/運用計画の作成手順(処理S1308)の一例である。処理S1308は、計画作成部140の計画作成機能141によって実行される。また、計画作成機能141は、上述した処理S1301から処理S1305において出力された、保守計画データベース161の異常診断結果テーブル1100と、対策抽出結果テーブル1120と、実施候補テーブル1130を参照可能である。 FIG. 15 is an example of a procurement / operation plan creation procedure (processing S1308) in the present embodiment. The process S1308 is executed by the plan creation function 141 of the plan creation unit 140. Further, the plan creation function 141 can refer to the abnormality diagnosis result table 1100, the countermeasure extraction result table 1120, and the execution candidate table 1130 of the maintenance plan database 161 output in the processing S1301 to S1305 described above.
 まず、処理S1501において、計画作成機能141は、実施候補テーブル1130より、例えば、実施日1134が最も直近となっている実施候補を抽出し(実施候補x)、現時点から実施日1134までの時間txを該当レコード中より抽出し、メモリ113に格納する。 First, in process S1501, the plan creation function 141 extracts, for example, the implementation candidate whose implementation date 1134 is the latest from the implementation candidate table 1130 (execution candidate x), and the time tx from the current time to the implementation date 1134. Are extracted from the corresponding record and stored in the memory 113.
 次に処理S1502において、計画作成機能141は、保守計画データベース161の現象診断結果テーブル1100から、異常が検出された部品のIDである、部品シリアル番号1107の値を抽出する。計画作成機能141は、ここで抽出した部品シリアル番号1107の値をキーにして、部品履歴データベース153を参照し、部品番号と、再生品判定の各値を抽出する。また、計画作成機能141は、抽出した部品番号と再生品判定の各値をキーにして、部品調達データベース144の部品在庫テーブル600を読み込み、対応する部品の在庫606の値を取得しメモリ113に格納する。 Next, in process S1502, the plan creation function 141 extracts the value of the part serial number 1107, which is the ID of the part in which the abnormality is detected, from the phenomenon diagnosis result table 1100 of the maintenance plan database 161. The plan creation function 141 uses the value of the part serial number 1107 extracted here as a key to refer to the part history database 153 and extracts the part number and each value of the recycled product determination. Further, the plan creation function 141 reads the parts inventory table 600 of the parts procurement database 144 using the extracted part number and each value of the remanufactured product as a key, acquires the value of the inventory 606 of the corresponding part, and stores it in the memory 113. Store.
 処理S1503において、計画作成機能141は、上述したS1502で読み込んだ部品調達データベース144の在庫606の値から、在庫が一つ以上ある倉庫605を選択する。 In process S1503, the plan creation function 141 selects a warehouse 605 having one or more stocks from the value of the stock 606 in the parts procurement database 144 read in S1502.
 次に処理S1504において、計画作成機能141は、上述した実施候補xの異常IDをキーに、異常診断結果テーブル1100にて該当レコードを特定し、このレコード中より、異常が検出された鉱山機械10が稼働しているサイトのサイトID1105の値を抽出する。また、計画作成機能141は、このサイトID1105の値を、顧客知識データベース145における顧客テーブル730に照合して、'siteA'といったサイト名734の値を特定する。計画作成機能141は、このサイト名(="siteA")と、上述の処理S1503で選択した倉庫605の値をキーにし、部品調達データベース144の輸送手段テーブル610における輸送先612の値が上述のサイト名で、輸送手段テーブル610における倉庫611の値が上述の倉庫605の値である、輸送手段613を選択する。 Next, in process S1504, the plan creation function 141 specifies the corresponding record in the abnormality diagnosis result table 1100 using the abnormality ID of the execution candidate x described above as a key, and the mining machine 10 in which the abnormality is detected from this record. The value of the site ID 1105 of the site where is operating is extracted. Further, the plan creation function 141 collates the value of the site ID 1105 with the customer table 730 in the customer knowledge database 145 and specifies the value of the site name 734 such as “siteA”. The plan creation function 141 uses the site name (= “siteA”) and the value of the warehouse 605 selected in the above-described processing S1503 as a key, and the value of the transportation destination 612 in the transportation means table 610 of the parts procurement database 144 is the above-described value. With the site name, the transportation means 613 in which the value of the warehouse 611 in the transportation means table 610 is the value of the warehouse 605 described above is selected.
 処理S1505において、計画作成機能141は、上述した処理S1502で抽出した部品の価格と、上述した処理S1504で選択した輸送手段と、この輸送手段に対応する輸送費、及び納期の各値を、保守計画データベース161の調達/運用計画テーブル1140の該当欄に格納する。 In process S1505, the plan creation function 141 maintains the values of the parts extracted in process S1502, the transport means selected in process S1504, the transport costs corresponding to the transport means, and the delivery date values. Stored in the corresponding column of the procurement / operation plan table 1140 of the plan database 161.
 また、処理S1506において、計画作成機能141は、保守作業の実施日1134までに、保守作業に用いる交換用の部品が倉庫から納品されるか否かを判定する。この場合、計画作成機能141は、調達/運用計画テーブル1140に格納した納期1147の値と、上述した現時点から実施日1134までの時間txとを比較し、納期>txであった場合(S1506:Yes)、保守作業の実施日1134までに該当部品は納品される予定であると推定し、処理S1507を実行する。他方、納期<txであった場合(S1506:Yes)、計画作成機能141は、保守作業の実施日1134までに該当部品の納品がされないと推定し、処理S1515を実行する。 In step S1506, the plan creation function 141 determines whether or not replacement parts used for the maintenance work are delivered from the warehouse by the maintenance work execution date 1134. In this case, the plan creation function 141 compares the value of the delivery date 1147 stored in the procurement / operation plan table 1140 with the above-described time tx from the current time to the implementation date 1134, and if delivery date> tx (S1506: Yes), it is estimated that the corresponding part is scheduled to be delivered by the maintenance work implementation date 1134, and the process S1507 is executed. On the other hand, if the delivery date <tx (S1506: Yes), the plan creation function 141 estimates that the relevant part will not be delivered by the maintenance work implementation date 1134, and executes the process S1515.
 続いて処理S1507において、計画作成機能141は、上述した処理S1402と同様に、残寿命とtxとを比較し、保守作業の実施日1134までに交換対象の部品に故障が発生するか否かを判定する。残寿命>txの場合(S1507:残寿命>tx)、計画作成機能141は、該当部品を通常通りにフル稼働させても保守作業の実施日まで問題ないと判定し、調達/運用計画テーブル1140における、該当部品の負荷率="100"と設定し、処理S1510を実行する。 Subsequently, in process S1507, the plan creation function 141 compares the remaining life with tx in the same manner as in process S1402 described above, and determines whether or not a failure occurs in the part to be replaced by the maintenance work implementation date 1134. judge. When the remaining life> tx (S1507: remaining life> tx), the plan creation function 141 determines that there is no problem until the date of maintenance work even if the corresponding part is fully operated as usual, and the procurement / operation plan table 1140 In step S1510, the load factor of the corresponding part is set to “100”.
 他方、残寿命<txの場合(S1507:残寿命<tx)、計画作成機能141は、処理S1508を実行する。また、残寿命="0"の場合(S1507:残寿命=0)、計画作成機能141は、S1509において、調達/運用計画テーブル1140における該当部品の負荷率="0"と設定し、処理S1510を実行する。 On the other hand, if the remaining life <tx (S1507: remaining life <tx), the plan creation function 141 executes processing S1508. If the remaining life = “0” (S1507: remaining life = 0), the plan creation function 141 sets the load factor = “0” of the corresponding part in the procurement / operation plan table 1140 in S1509, and processing S1510. Execute.
 処理S1508において、計画作成機能141は、上述した処理S1403と同様に、顧客知識データベース145の残寿命テーブル710を参照し、保守作業の実施日1134までに該当部品が故障しない負荷率、つまり残寿命>txとなる最大の負荷率を特定する。例えば、残寿命がtxより2日短い場合、残寿命テーブル710において、負荷率が'100'の場合より、残寿命が3日長くなる、負荷率'90'を特定すればよい。 In process S1508, the plan creation function 141 refers to the remaining life table 710 of the customer knowledge database 145 in the same manner as in the above-described process S1403. The maximum load factor that satisfies> tx is specified. For example, when the remaining life is 2 days shorter than tx, the remaining life table 710 may specify the load factor “90” that is 3 days longer than the case where the load factor is “100”.
 また、処理S1510において、計画作成機能141は、上述した処理S1405と同様に運用ロスと作業ロスを算出する。上述したように、保守作業の実施日まで部品の負荷率を制限して運用する必要がある場合、その間は鉱山機械10がフル稼働していない期間となって顧客の利益は減少し、経済損失を生じることになる。計画作成機能141は、処理S1507あるいは処理S1508、処理S1509で取得した負荷率を、顧客知識データベース145の運用ロステーブル700に照合し、該当運用ロス707の値を特定する。また、計画作成機能141は、特定した運用ロス707の値を、上述したtx(現時点から保守作業の実施日1134までの猶予時間)の値に乗算し、運用ロスを算定する。 また、保守作業中は鉱山機械10を停止するので、保守作業中における該当部品の負荷率は'0'となる。その場合、その間は鉱山機械10が停止した期間となって顧客の利益は減少し、経済損失を生じる。この経済損失を作業ロスとする。計画作成機能141は、対策抽出結果テーブル1120から抽出した標準作業時間1125と、顧客知識データベース145の運用ロステーブル700における負荷率'0'の場合の運用ロス707の値とを乗算し作業ロスを算出する。 In step S1510, the plan creation function 141 calculates operation loss and work loss in the same manner as in step S1405 described above. As described above, when it is necessary to operate with the load factor of parts limited until the date of the maintenance work, the mining machine 10 is not fully operated during that period, and the customer's profit is reduced, resulting in economic loss. Will result. The plan creation function 141 collates the load factor acquired in step S1507, step S1508, or step S1509 with the operation loss table 700 of the customer knowledge database 145, and specifies the value of the corresponding operation loss 707. In addition, the plan creation function 141 calculates the operation loss by multiplying the value of the specified operation loss 707 by the above-described value of tx (the grace time from the current time to the maintenance work implementation date 1134). Moreover, since the mining machine 10 is stopped during the maintenance work, the load factor of the corresponding part during the maintenance work becomes “0”. In that case, during that period, the mining machine 10 is stopped, and the profit of the customer is reduced, resulting in an economic loss. This economic loss is defined as work loss. The plan creation function 141 multiplies the standard work time 1125 extracted from the measure extraction result table 1120 by the value of the operation loss 707 in the case of the load factor “0” in the operation loss table 700 of the customer knowledge database 145 to calculate the work loss. calculate.
 また、処理S1511において、計画作成機能141は、上述した処理S1406と同様に調達/運用計画を保守計画データベース161の調達/運用テーブル1140に出力する。なお、計画作成機能141は、調達/運用計画テーブル1140における、部品番号1143と、再生品判定1144には、上述した処理S1502で抽出した対応部品の部品シリアル番号1107の値と、再生品判定フラグをそれぞれ格納する。また、計画作成機能141は、調達/運用計画テーブル1140における倉庫1145には、上述の処理S1503で選択した倉庫605の値を格納する。また、計画作成機能141は、調達/運用計画テーブル1140における輸送手段1146には、上述の処理S1504で選択した輸送手段を格納し、同様に、納期1147と、部品価格1148と、輸送費1149には、処理S1505で格納した納期と、価格と、輸送費をそれぞれ格納する。 In process S1511, the plan creation function 141 outputs the procurement / operation plan to the procurement / operation table 1140 of the maintenance plan database 161 in the same manner as the above-described process S1406. The plan creation function 141 includes a part number 1143 in the procurement / operation plan table 1140 and a remanufactured product determination 1144. The value of the part serial number 1107 of the corresponding part extracted in the above-described processing S1502 and a remanufactured product determination flag. Is stored respectively. Further, the plan creation function 141 stores the value of the warehouse 605 selected in the above-described processing S1503 in the warehouse 1145 in the procurement / operation plan table 1140. Further, the plan creation function 141 stores the transportation means selected in the above-described processing S1504 in the transportation means 1146 in the procurement / operation plan table 1140, and similarly, the delivery date 1147, the part price 1148, and the transportation cost 1149 are stored. Stores the delivery date, price, and transportation cost stored in step S1505.
 次に、処理S1512において、計画作成機能141は、部品調達データベース144の輸送手段テーブル610を参照し、処理S1504にて示したサイト名(="siteA")と倉庫605の各値が、輸送手段テーブル610における輸送先612と倉庫611の各値と一致する、他の輸送手段613(上述の処理S1504で選択されていないもの)があるか否かを判定する。他の輸送手段613がある場合(S1512:Yes)、計画作成機能141は、再び処理S1504を実行する。他方、他の輸送手段613がない場合(S1512:No)、計画作成機能141は、処理S1513を実行する。 Next, in process S1512, the plan creation function 141 refers to the transport means table 610 of the parts procurement database 144, and the site name (= “siteA”) and the values in the warehouse 605 shown in process S1504 are the transport means. It is determined whether there is another transport means 613 (not selected in the above-described processing S1504) that matches the values of the transport destination 612 and the warehouse 611 in the table 610. When there is another transportation means 613 (S1512: Yes), the plan creation function 141 executes the process S1504 again. On the other hand, when there is no other transportation means 613 (S1512: No), the plan creation function 141 executes the process S1513.
 処理S1513において、計画作成機能141は、上述した処理S1503と同様の手法で部品調達データベース144の部品在庫テーブル600を参照し、対象部品の在庫が他の倉庫にあるか否かを判定する。対象部品が他の倉庫にある場合(S1513:Yes)、計画作成機能141は、処理S1503を実行する。他方、対象部品が他の倉庫にない場合(S1513:No)、計画作成機能141は、処理S1514を実行する。 In process S1513, the plan creation function 141 refers to the part inventory table 600 of the part procurement database 144 by the same method as in the above-described process S1503, and determines whether the inventory of the target part is in another warehouse. When the target part is in another warehouse (S1513: Yes), the plan creation function 141 executes the process S1503. On the other hand, when the target part is not in another warehouse (S1513: No), the plan creation function 141 executes the process S1514.
 処理S1514において、計画作成機能141は、部品調達データベース144の互換部品テーブル620を参照し、上述の処理S1502で在庫確認した部品の互換部品があるか否かを判定する。互換部品の有無を判定する場合、計画作成機能141は、処理S1502で在庫確認した部品に関する、サイトID1105、機械ID1106、故障コード1110などの値(異常診断結果テーブル1100にて抽出)をキーに、例えば、故障履歴データベース124にてレコードを検索し、該当レコードより、鉱山機械10の型名215、部位コード217、部位名218を特定する。計画作成機能141は、ここで特定した型名215、部位コード217、部位名218の各値をキーに、互換部品テーブル620で検索を実行し、型名621、部位コード622、部位名623の各値は共通するが、上述の処理S1502で在庫確認した部品の部品番号とは異なる部品、すなわち互換部品があるか判定する。この処理S1514において、互換部品があると判定した場合(S1514:Yes)、計画作成機能141は、再び処理S1502を実行する。他方、互換部品がないと判定した場合(S1514:No)、計画作成機能141は、処理S1515を実行する。 In process S1514, the plan creation function 141 refers to the compatible part table 620 of the part procurement database 144 and determines whether there is a compatible part of the part whose inventory has been confirmed in the above-described process S1502. When determining the presence or absence of compatible parts, the plan creation function 141 uses values such as the site ID 1105, machine ID 1106, and fault code 1110 (extracted from the abnormality diagnosis result table 1100) related to the parts whose inventory has been confirmed in step S1502 as keys. For example, the record is searched in the failure history database 124, and the model name 215, the part code 217, and the part name 218 of the mining machine 10 are specified from the corresponding record. The plan creation function 141 executes a search in the compatible part table 620 using the values of the type name 215, the part code 217, and the part name 218 specified here as keys, and the type name 621, the part code 622, and the part name 623 are searched. Although each value is common, it is determined whether there is a part that is different from the part number of the part whose inventory has been confirmed in the above-described processing S1502, that is, a compatible part. In the process S1514, when it is determined that there is a compatible part (S1514: Yes), the plan creation function 141 executes the process S1502 again. On the other hand, when it is determined that there is no compatible part (S1514: No), the plan creation function 141 executes the process S1515.
 また、処理S1515において、計画作成機能141は、上述した処理S1406と同様に保守計画データベース161の実施候補テーブル1130を参照し、未処理の他の実施候補があるか否かを判定する。この判定にて未処理の実施候補が他に存在する場合(S1515:Yes)、計画作成機能141は、再び処理S1501を実行する。他方、未処理の実施候補が他に存在しない場合(S1515:No)、計画作成機能141は、このフローすなわち処理S1308を終了する。 In step S1515, the plan creation function 141 refers to the execution candidate table 1130 of the maintenance plan database 161 as in the above-described step S1406, and determines whether there are other unprocessed execution candidates. If there is another unprocessed execution candidate in this determination (S1515: Yes), the plan creation function 141 executes the process S1501 again. On the other hand, when there is no other unprocessed execution candidate (S1515: No), the plan creation function 141 ends this flow, that is, the process S1308.
 続いて、図16から図18に、本実施形態における寿命・ダウンタイムシミュレーション実施手順(処理S1309)の一例を示す。寿命・ダウンタイムシミュレーションの処理は、図16に示す寿命シミュレーションS1309(a)と、図17に示すダウンタイムシミュレーションS1309(b)と、図18に示すダウンタイムシミュレーションS1309(c)から構成されるが、これらは互いに独立で、どの処理から実行しても構わない。なお、図16に示す寿命予測シミュレーションは性能予測部150の寿命算出機能151が実行し、図17、18に示すダウンタイムシミュレーションはダウンタイム算出機能152が実行する。また、寿命算出機能151およびダウンタイム算出機能152は、上述した処理S1301から処理S1308によって出力された保守計画データベース161を参照可能である。 Subsequently, FIG. 16 to FIG. 18 show an example of a life / downtime simulation execution procedure (processing S1309) in the present embodiment. The life / downtime simulation process includes a life simulation S1309 (a) shown in FIG. 16, a downtime simulation S1309 (b) shown in FIG. 17, and a downtime simulation S1309 (c) shown in FIG. These are independent of each other and may be executed from any processing. The life prediction simulation shown in FIG. 16 is executed by the life calculation function 151 of the performance prediction unit 150, and the downtime simulation shown in FIGS. 17 and 18 is executed by the downtime calculation function 152. Further, the life calculation function 151 and the downtime calculation function 152 can refer to the maintenance plan database 161 output from the above-described processing S1301 to processing S1308.
 図16は、本実施形態における寿命シミュレーションの実施手順の一例である。この寿命シミュレーションのフローにおいて、寿命算出機能151は、部品履歴データベース153を参照し、過去に使用、交換された部品の寿命を算出する。この場合、処理S1601において、寿命算出機能151は部品履歴データベース153を読み込む。 FIG. 16 is an example of a procedure for performing a life simulation in the present embodiment. In this life simulation flow, the life calculation function 151 refers to the part history database 153 and calculates the life of parts used and replaced in the past. In this case, in the process S1601, the life calculation function 151 reads the component history database 153.
 また、処理S1602において、寿命算出機能151は、保守計画データベース161の調達/運用計画テーブル1140から、保守作業に用いる交換用の部品の部品番号1143と、再生品判定1144の各値を抽出し、これらの値をキーとして、部品履歴データベース153を検索し、部品番号1143と再生品判定1144の各値と、部品番号9043と再生品判定905の各値が一致する該当部品に関するレコードを特定する。また、寿命算出機能151は、ここで抽出した各レコードより状況フラグ910の値を読み取り、この値が「交換済」となっている部品のレコードを特定し、そのデータを例えばメモリ113にて格納する。 In process S1602, the life calculation function 151 extracts the part number 1143 of the replacement part used for the maintenance work and each value of the recycled product determination 1144 from the procurement / operation plan table 1140 of the maintenance plan database 161, Using these values as keys, the parts history database 153 is searched, and records relating to the corresponding parts in which the values of the part number 1143 and the recycled product determination 1144 and the values of the part number 9043 and the recycled product determination 905 match are specified. Further, the life calculation function 151 reads the value of the status flag 910 from each record extracted here, specifies the record of the component whose value is “replaced”, and stores the data in the memory 113, for example. To do.
 続いて処理S1603において、寿命算出機能151は、上述の処理S1602で得た各部品のデータにおける取付日時911と取外日時912の値の差を、該当部品の寿命として算出する。また、寿命算出機能151は、処理S1602で抽出した全データについて、寿命算出の処理すなわち処理S1603を実行したか判定する、処理S1604の判定を実行することで、処理S1602で抽出したデータ全てに対して上述の寿命算出を実行する。 Subsequently, in process S1603, the life calculation function 151 calculates the difference between the values of the attachment date / time 911 and the removal date / time 912 in the data of each part obtained in the above-described process S1602, as the service life of the corresponding part. In addition, the lifetime calculation function 151 executes the determination in step S1604 to determine whether the lifetime calculation process, that is, the process S1603 has been executed for all the data extracted in the process S1602, and thereby to all the data extracted in the process S1602. The above-described life calculation is executed.
 また処理S1605において、寿命算出機能151は、処理S1603で各データに関して算出した寿命の値の平均値を算定し、これを、予測結果データベース162における平均寿命1208の値として出力する。また、寿命算出機能151は、処理S1603で特定したデータの個数をサンプル数1211として予測結果データベース162に出力する。 In process S1605, the life calculation function 151 calculates an average value of the life values calculated for each data in process S1603, and outputs this as the value of the average life 1208 in the prediction result database 162. Further, the life calculation function 151 outputs the number of data specified in the process S1603 to the prediction result database 162 as the number of samples 1211.
 また、処理S1606において、寿命算出機能151は、上述の処理S1602にて抽出した、保守作業に用いる交換用の部品の部品番号1143と再生品判定1144の各値のセットで特定される部品とは異なる他の部品を用いた計画が、保守計画データベース161の調達/運用テーブル1140に格納されているか否か判定する。他の部品を用いた計画が存在した場合(S1606:Yes)、寿命算出機能151は、その部品を処理対象として、再び処理S1602以降の処理を実行する。他方、他の部品を用いた計画が存在しなかった場合(S1606:No)、寿命算出機能151は、このフローすなわち処理S1309(a)を終了する。 In process S1606, the life calculation function 151 uses the part number 1143 of the replacement part used for maintenance work extracted in the above-described process S1602 and the part specified by the set of each value of the recycled product determination 1144. It is determined whether or not a plan using other different parts is stored in the procurement / operation table 1140 of the maintenance plan database 161. When there is a plan using another part (S1606: Yes), the life calculation function 151 executes the process from step S1602 again with the part as a processing target. On the other hand, when there is no plan using other parts (S1606: No), the life calculation function 151 ends this flow, that is, the process S1309 (a).
 図17は、本実施形態における、故障履歴データベース124と部品履歴データベース153をベースにダウンタイムシミュレーションを実施する手順の一例である。この場合のダウンタイムシミュレーションにおいて、ダウンタイム算出機能152は、故障履歴データベース124と、部品履歴データベース153を参照し、過去に使用、交換された部品のダウンタイムを算出する。 FIG. 17 is an example of a procedure for performing a downtime simulation based on the failure history database 124 and the component history database 153 in the present embodiment. In the downtime simulation in this case, the downtime calculation function 152 refers to the failure history database 124 and the component history database 153 to calculate the downtime of the parts that have been used and replaced in the past.
 まず、処理S1701及び処理S1702において、ダウンタイム算出機能152は、上述した処理S1601及び処理S1602と同様に、部品履歴データベース153を読み込み、保守計画データベース161の調達/運用計画テーブル1140から、保守作業に用いる交換用の部品の部品番号1143と、再生品判定1144の各値を抽出し、これらの値をキーとして、部品履歴データベース153を検索し、部品番号1143と再生品判定1144の各値と、部品番号9043と再生品判定905の各値が一致する該当部品に関するレコードを特定する。また、ダウンタイム算出機能152は、ここで抽出した各レコードより状況フラグ910の値を読み取り、この値が「交換済」となっている部品のレコードを特定し、そのデータを例えばメモリ113にて格納する。 First, in the processes S1701 and S1702, the downtime calculation function 152 reads the parts history database 153 and performs maintenance work from the procurement / operation plan table 1140 of the maintenance plan database 161 in the same manner as the above-described processes S1601 and S1602. The part number 1143 of the replacement part to be used and each value of the recycled product judgment 1144 are extracted, and the parts history database 153 is searched using these values as keys, and the part number 1143 and each value of the recycled product judgment 1144, A record relating to the corresponding part in which the values of the part number 9043 and the recycled product determination 905 match is specified. Further, the downtime calculation function 152 reads the value of the status flag 910 from each record extracted here, identifies the record of the part whose value is “replaced”, and stores the data in the memory 113, for example. Store.
 また、処理S1703において、ダウンタイム算出機能152は、上述の処理S1702で得たデータから部品シリアル番号を取得する。また、処理S1704において、ダウンタイム算出機能152は、取得した部品シリアル番号をキーとして故障履歴データベース124を参照する。 In step S1703, the downtime calculation function 152 acquires a part serial number from the data obtained in step S1702. In step S1704, the downtime calculation function 152 refers to the failure history database 124 using the acquired component serial number as a key.
 また、故障履歴データベース124を参照したダウンタイム算出機能152は、処理S1705において、上述の部品シリアル番号が示す部品に故障履歴があるか否かを判定する。該当部品に故障履歴がある場合(s1705:Yes)、ダウンタイム算出機能152は、処理S1706を実行する。一方、該当部品に故障履歴がない場合(s1705:No)、ダウンタイム算出機能152は、処理S1708を実行する。 Also, the downtime calculation function 152 referring to the failure history database 124 determines whether or not the component indicated by the above-described component serial number has a failure history in the process S1705. When there is a failure history in the corresponding part (s1705: Yes), the downtime calculation function 152 executes the process S1706. On the other hand, when there is no failure history in the corresponding part (s1705: No), the downtime calculation function 152 executes step S1708.
 次に処理S1706において、ダウンタイム算出機能152は、故障履歴データベース124の故障ID211をキーとして作業履歴データベース132を参照し、該当作業の対応開始日時303と対応終了日時304の差を、故障ID211に対応するダウンタイムとして算定する。また、処理S1707において、ダウンタイム算出機能152は、上述の処理S1705で故障があると判定されたすべての部品についてダウンタイムを算出したか否かを判定する。ダウンタイムを判定していない故障がある場合(S1707:No)、ダウンタイム算出機能152は、処理S1706を繰り返し実行し、全ての故障についてダウンタイムを算出した場合(S1707:Yes)、処理S1707を実行する。 In step S1706, the downtime calculation function 152 refers to the work history database 132 using the failure ID 211 in the failure history database 124 as a key, and sets the difference between the corresponding start date 303 and the corresponding end date 304 of the corresponding task as the failure ID 211. Calculate as the corresponding downtime. In step S1707, the downtime calculation function 152 determines whether or not the downtime has been calculated for all the parts determined to have a failure in the above-described step S1705. When there is a failure whose downtime is not determined (S1707: No), the downtime calculation function 152 repeatedly executes the process S1706, and when the downtime is calculated for all failures (S1707: Yes), the process S1707 is performed. Execute.
 また、処理S1708において、ダウンタイム算出機能152は、上述の処理S1702で部品履歴データベース153から抽出したデータの最終行に達したかを判定する。最終行に達している場合(S1708:Yes)、ダウンタイム算出機能152は、処理S1709を実行する。他方、まだデータがある場合(S1708:No)、ダウンタイム算出機能152は、再び処理S1703以降の処理を実行して、該当部品のダウンタイムを算出する。 In step S1708, the downtime calculation function 152 determines whether the last line of the data extracted from the part history database 153 in step S1702 has been reached. If the last line has been reached (S1708: Yes), the downtime calculation function 152 executes step S1709. On the other hand, when there is still data (S1708: No), the downtime calculation function 152 executes the processing after the processing S1703 again to calculate the downtime of the corresponding part.
 また、処理S1709において、ダウンタイム算出機能152は、上述の処理S1706で算出したダウンタイムの平均値を算出し、これを性能予測データベース162の履歴ベース平均DT1209の値として格納する。 Also, in the process S1709, the downtime calculation function 152 calculates the average value of the downtime calculated in the above-described process S1706, and stores this as the value of the history base average DT1209 of the performance prediction database 162.
 また、処理S1710において、ダウンタイム算出機能152は、処理S1606と同様にして保守計画データベース161の調達/運用テーブル1140に、他の部品を用いた計画があるか否かを判定する。他の部品を用いた計画がある場合(S1710:Yes)、ダウンタイム算出機能152は、その部品を処理対象の部品として、上述の処理S1702以降の処理を再び実行する。他方、他の部品を用いた計画がない場合(S1710:No)、ダウンタイム算出機能152は、このフローすなわち処理S1309(b)を終了する。 In step S1710, the downtime calculation function 152 determines whether there is a plan using other parts in the procurement / operation table 1140 of the maintenance plan database 161 in the same manner as in step S1606. When there is a plan using other parts (S1710: Yes), the downtime calculation function 152 executes the process after the above-described process S1702 again with the part as a processing target part. On the other hand, when there is no plan using other parts (S1710: No), the downtime calculation function 152 ends this flow, that is, the process S1309 (b).
 図18は、本実施形態におけるダウンタイムシミュレーション実施手順の一例である。この場合のダウンタイムシミュレーションにおいて、ダウンタイム算出機能152は、故障履歴データベース124と、部品履歴データベース153と、部品稼働データベース154を参照し、過去に使用、交換された部品のダウンタイムを算出する。ここで示す実施手順(S1309(c))の基本的な手順は、上述した処理S1309(b)と同様である。従って、ここでは、処理S1309(b)とは異なる手順となる、ダウンタイムの算出を行う処理S1804から処理S1807の手順と、出力を行う処理S1809について説明する。 FIG. 18 is an example of a downtime simulation execution procedure in the present embodiment. In the downtime simulation in this case, the downtime calculation function 152 refers to the failure history database 124, the component history database 153, and the component operation database 154, and calculates the downtime of the parts that have been used and replaced in the past. The basic procedure of the implementation procedure (S1309 (c)) shown here is the same as the above-described processing S1309 (b). Therefore, here, the procedure from the processing S1804 to the processing S1807 for calculating the downtime and the processing S1809 for the output, which are different procedures from the processing S1309 (b), will be described.
 この場合、処理S1804において、ダウンタイム算出機能152は、処理S1701から処理S1703と同様にして取得した部品シリアル番号を用いて、部品稼働データベース154のデータを絞り込む。 In this case, in step S1804, the downtime calculation function 152 narrows down the data in the component operation database 154 using the component serial numbers acquired in the same manner as in steps S1701 to S1703.
 また、処理S1805において、ダウンタイム算出機能152は、上述のように取り込んだ部品稼働データベース154の稼働実績テーブル1010における、期間1013の値を参照し、判定の単位時間を算出する(図10Bの例では単位時間は1時間)。また、ダウンタイム算出機能152は、部品稼働データベース154の稼働判定テーブル1000における、判定値1005、判定条件1006を参照し、稼働実績テーブル1010の平均値1014が判定値1005の値より小さくなっているレコードを、該当部品が「停止中」のものと特定する。また、ダウンタイム算出機能152は、「停止中」として特定したレコード数だけ、前述の単位時間の値を積算して、「停止中」の判定となっている時間を積算する。 In step S1805, the downtime calculation function 152 refers to the value of the period 1013 in the operation result table 1010 of the component operation database 154 captured as described above, and calculates a determination unit time (example in FIG. 10B). (The unit time is 1 hour). The downtime calculation function 152 refers to the determination value 1005 and the determination condition 1006 in the operation determination table 1000 of the component operation database 154, and the average value 1014 of the operation result table 1010 is smaller than the determination value 1005. The record is identified as having the corresponding part “stopped”. Further, the downtime calculation function 152 adds the above unit time values for the number of records specified as “stopped”, and adds up the time determined to be “stopped”.
 また、処理S1806において、ダウンタイム算出機能152は、部品履歴データベース153の取外日時912と、上述した処理S1805での積算処理の対象となった該当レコード(稼働実績テーブル1010のレコード)の期間1013の値とを比較し、この期間1013の示す日付が、取外日時912の示す日付に達した場合(S1806:Yes)、上述した処理S1805の積算処理を終了し、処理S1807を実行する。他方、期間1013の示す日付が、取外日時912の示す日付に達していない場合(S1806:No)、ダウンタイム算出機能152は、処理を上述の処理S1805に戻す。 In the process S1806, the downtime calculation function 152 displays the removal date and time 912 of the part history database 153 and the period 1013 of the corresponding record (record of the operation result table 1010) that is the target of the integration process in the process S1805 described above. When the date indicated by this period 1013 reaches the date indicated by the removal date and time 912 (S1806: Yes), the integration process of the above-described process S1805 is terminated, and the process S1807 is executed. On the other hand, when the date indicated by the period 1013 has not reached the date indicated by the removal date 912 (S1806: No), the downtime calculation function 152 returns the process to the above-described process S1805.
 また、処理S1807において、ダウンタイム算出機能152は、ここまでで積算した時間すなわちダウンタイムを、該当部品の稼働ベースダウンタイムとしてメモリ113に格納する。また、ダウンタイム算出機能152は、処理S1807までの処理を、処理S1802で得たデータ全てについて実行するまで繰り返す(s1808)。 In step S1807, the downtime calculation function 152 stores the time accumulated so far, that is, the downtime, in the memory 113 as the operation base downtime of the corresponding part. Further, the downtime calculation function 152 repeats the process up to the process S1807 until it is executed for all the data obtained in the process S1802 (s1808).
 処理S1809において、ダウンタイム算出機能152は、処理S1802で抽出した各データについて得られたダウンタイムの平均を算出し、これを、稼働ベース平均DT1209として予測結果データベース162に格納する。 In process S1809, the downtime calculation function 152 calculates the average of the downtime obtained for each data extracted in process S1802, and stores this in the prediction result database 162 as the operation base average DT1209.
 図20から図22に本実施形態における出力画面例を示す。これらの出力画面は、出力管理部160が、例えばクライアント端末190からの要求に応じて、保守計画データベース161と予測結果データベース162に格納されているデータから、画面種類ごとに必要なデータを抽出し、このデータを該当画面のフォーマット(出力管理部160が保持)に設定して生成し、クライアント端末190に出力したものとなる。もちろん、必要に応じて、出力管理部160が画面フォーマットのデータをクライアント端末190に出力し、ユーザからの画面構成のカスタマイズ操作を受け付けるとしても良い。 20 to 22 show examples of output screens in this embodiment. For these output screens, the output management unit 160 extracts necessary data for each screen type from the data stored in the maintenance plan database 161 and the prediction result database 162 in response to a request from the client terminal 190, for example. This data is generated by setting the corresponding screen format (held by the output management unit 160) and outputting it to the client terminal 190. Of course, if necessary, the output management unit 160 may output screen format data to the client terminal 190 to accept a screen configuration customization operation from the user.
 図20は保守計画の候補一覧を表示する画面2000である。この画面2000において、総費用や平均寿命、履歴ベース平均DT、稼働ベース平均DTの昇順あるいは降順で各レコードを列挙している。また、こうした列挙基準に基づいて、ユーザがレコードの並び替えをできるよう、総費用や平均寿命、履歴ベース平均DT、稼働ベース平均DTのいずれかを並べ替え基準として指定するためのラジオボタン2001が画面2000には含まれている。ユーザはこのラジオボタン2001を押下して、保守計画の候補間の評価を行うなどできる。また、各カラムの値を数式を用いて計算するユーザ定義の項目があってもよい。 FIG. 20 shows a screen 2000 displaying a maintenance plan candidate list. In this screen 2000, each record is listed in ascending or descending order of total cost, average life, history base average DT, and operation base average DT. In addition, a radio button 2001 for designating any one of the total cost, the average life, the history base average DT, and the operation base average DT as the sort criterion so that the user can sort the records based on the enumeration criteria. The screen 2000 is included. The user can press the radio button 2001 to perform evaluation between maintenance plan candidates. There may also be a user-defined item that calculates the value of each column using a mathematical expression.
 図21は、図20で示した画面2000に表示された保守計画の候補に関する、調達/運用計画の詳細及び運用の表示画面2100の例を示す。この画面2100は、出力管理部160が、上述した画面2000において、ある候補に関してクライアント端末190から詳細表示の要求を受けた際に、保守計画データベース161と予測結果データベース162に格納されているデータから、該当画面に必要なデータを抽出し、このデータを該当画面のフォーマットに設定して生成し、クライアント端末190に出力したものとなる。この画面2100は、対象となる調達/運用計画に関する、計画ID、実施日、機械ID、部品番号、倉庫、輸送手段、納期、部品価格、輸送費の他に、保守作業に用いる交換用の部品が再生品か否かを示す再生品判定、保守作業実施までの該当部品の負荷率、保守作業の実施日までの時間t、保守作業時間、残寿命、運用ロス、作業ロスといった値を視覚的に表示することで、保守作業に対するユーザの理解を支援する。 FIG. 21 shows an example of the procurement / operation plan details and operation display screen 2100 regarding the maintenance plan candidates displayed on the screen 2000 shown in FIG. This screen 2100 is obtained from the data stored in the maintenance plan database 161 and the prediction result database 162 when the output management unit 160 receives a request for detailed display from the client terminal 190 for a certain candidate in the screen 2000 described above. The data necessary for the corresponding screen is extracted, the data is set in the format of the corresponding screen, generated, and output to the client terminal 190. This screen 2100 shows a replacement part used for maintenance work in addition to the plan ID, execution date, machine ID, part number, warehouse, transportation means, delivery date, part price, and transportation cost regarding the target procurement / operation plan. Visually show values such as whether the product is a remanufactured product, the judgment of the remanufactured product, the load factor of the relevant part until the maintenance work is performed, the time t until the date of the maintenance work, the maintenance work time, the remaining life, the operation loss, and the work loss By displaying on the screen, the user's understanding of the maintenance work is supported.
 図22は、保守作業に係る費用の配分を表す画面2200を示している。この画面2200は、例えば、保守契約において、保守を実施する事業者と、鉱山機械10を運用する顧客との間で、保守費用の分担が定まっている場合などに利用するとよい。例えば、顧客が負担する費用は交換用の部品代のみで、その他の保守費用は保守事業者が負担するような契約の場合、部品価格と、部品価格を除くその他の総費用とで比較検討できるとよい。従って、画面2200には、総費用、部品価格、輸送費、運用ロス、作業費用、作業ロス、ユーザ定義の昇順あるいは降順で各レコードの並び替えをできるよう、総費用、部品価格、輸送費、運用ロス、作業費用、作業ロス、ユーザ定義のいずれかを並べ替え基準として指定するためのラジオボタン2201が画面2200には含まれている。ユーザはこのラジオボタン2201を押下して、保守計画の候補間の評価を費用面で比較して行うことなどができる。また、各カラムの値を数式を用いて計算するユーザ定義の項目があってもよい。 FIG. 22 shows a screen 2200 showing the allocation of expenses related to the maintenance work. This screen 2200 may be used, for example, when a maintenance cost share is determined between a maintenance company and a customer who operates the mining machine 10 in a maintenance contract. For example, in the case of a contract in which the customer bears only the replacement parts cost and other maintenance costs are borne by the maintenance company, the part price can be compared with the other total costs excluding the part price. Good. Therefore, the total cost, the part price, the transportation cost, the operation loss, the operation cost, the work loss, the total cost, the part price, the transportation cost, The screen 2200 includes a radio button 2201 for designating any one of the operation loss, work cost, work loss, and user definition as a sorting criterion. The user can press the radio button 2201 to compare the maintenance plan candidates with each other in terms of cost. There may also be a user-defined item that calculates the value of each column using a mathematical expression.
 以下、図23から図29を用いて、顧客にとって最適と推定される保守計画候補を出力する実施例について簡単に説明する。図23は、本実施例において、顧客にとって最適と推定される保守計画候補を提案する出力管理部2300の構成例を示す図である。出力管理部2300は、保守計画評価機能2301と、顧客ポリシー推定機能2302と、保守計画データベース2303と、予測結果データベース2304と、計画評価データベース2305(第10データベース)から構成される。保守計画評価機能2301は、複数の保守計画を、複数の評価指標及び顧客ポリシーから順位付けする。顧客ポリシー推定機能2302は、顧客の保守計画選択履歴から、顧客がどのような保守計画を選択する傾向にあるかを推定する。ここでは、顧客の傾向を顧客ポリシーと呼ぶ。保守計画データベース2303及び予測結果データベース2304は、それぞれ保守計画データベース161及び予測結果データベース162と同じ構造である。計画評価データベース2305は、保守計画評価機能2301による保守計画評価の結果を格納する保守計画評価テーブル2400と、顧客ポリシー推定機能2302が参照する保守選択履歴テーブル2410から構成される。 Hereinafter, an example of outputting a maintenance plan candidate estimated to be optimal for a customer will be briefly described with reference to FIGS. FIG. 23 is a diagram illustrating a configuration example of the output management unit 2300 that proposes a maintenance plan candidate that is estimated to be optimal for the customer in the present embodiment. The output management unit 2300 includes a maintenance plan evaluation function 2301, a customer policy estimation function 2302, a maintenance plan database 2303, a prediction result database 2304, and a plan evaluation database 2305 (tenth database). The maintenance plan evaluation function 2301 ranks a plurality of maintenance plans from a plurality of evaluation indexes and customer policies. The customer policy estimation function 2302 estimates what maintenance plan the customer tends to select from the maintenance plan selection history of the customer. Here, customer trends are called customer policies. The maintenance plan database 2303 and the prediction result database 2304 have the same structure as the maintenance plan database 161 and the prediction result database 162, respectively. The plan evaluation database 2305 includes a maintenance plan evaluation table 2400 that stores the result of the maintenance plan evaluation by the maintenance plan evaluation function 2301 and a maintenance selection history table 2410 that is referred to by the customer policy estimation function 2302.
 以下では例として、部品価格1148、輸送費1149、運用ロス1151、作業ロス1152の総和を保守費用とし、保守費用、稼働ベース平均DT1209を評価指標として保守計画を評価する処理を説明する。 Hereinafter, as an example, a description will be given of a process for evaluating a maintenance plan using the sum of a part price 1148, a transportation cost 1149, an operation loss 1151, and a work loss 1152 as a maintenance cost and using the maintenance cost and the operation base average DT1209 as an evaluation index.
 図24の保守計画評価テーブル2400は、計画ID2401と、評価指標である保守費用2402と、稼働ベース平均DT2403と、保守計画評価機能2301によって算出されるスコア2412、スコアA2405、スコアB2406を格納する。スコアA2405は保守計画候補をパレート最適解集合を用いたトレードオフ分析によって評価したスコア、スコアB2406は保守計画候補を顧客ポリシーとの一致度で評価したスコアであり、スコア2404はスコアA2405及びスコアB2406から算出する保守計画の総合スコアである。スコアA、スコアB、総合スコアの算出式は後述する。 The maintenance plan evaluation table 2400 in FIG. 24 stores a plan ID 2401, a maintenance cost 2402 as an evaluation index, an operation base average DT 2403, and a score 2412, a score A 2405, and a score B 2406 calculated by the maintenance plan evaluation function 2301. The score A 2405 is a score obtained by evaluating the maintenance plan candidate by trade-off analysis using the Pareto optimal solution set, the score B 2406 is a score obtained by evaluating the maintenance plan candidate based on the degree of coincidence with the customer policy, and the score 2404 is a score A 2405 and a score B 2406. This is the overall score of the maintenance plan calculated from The calculation formulas for score A, score B, and total score will be described later.
 また、図25の保守選択履歴テーブル2410は、過去に起きた異常ID2411と、異常に対して行った対策ID2412と、異常発生時に顧客に表示した保守計画候補の計画ID2413と、保守計画候補の評価指標である保守費用2402、稼働ベース平均DT2415と、顧客が選択した実施履歴2416を格納する。保守選択履歴テーブル2410によって、過去の異常-対策-保守計画候補-顧客が選択した保守計画が紐付けられる。 The maintenance selection history table 2410 of FIG. 25 includes an abnormality ID 2411 that has occurred in the past, a countermeasure ID 2412 that has been taken for the abnormality, a maintenance plan candidate plan ID 2413 that is displayed to the customer when the abnormality occurs, and a maintenance plan candidate evaluation. The maintenance cost 2402, which is an index, the operation base average DT 2415, and the implementation history 2416 selected by the customer are stored. The maintenance selection history table 2410 links the past abnormality-measures-maintenance plan candidate-maintenance plan selected by the customer.
 図26を用いて、保守計画候補の中から顧客にとって最適な保守計画を推定し、提案する処理S2500を説明する。S2501で保守計画評価機能2301は、保守計画データベース2303の調達/運用テーブル1140及び予測結果データベース2304から、保守費用と、平均寿命1207と、稼働ベース平均DT1209を評価指標として抽出し、保守費用と、稼働ベース平均DT1209は小さいほど良いので、逆数を取る。次に各評価指標の最大値が1となるように規格化を行う。これらの操作により、各指標の最良の値は1となる。 Referring to FIG. 26, a process S2500 for estimating and proposing the optimum maintenance plan for the customer from the maintenance plan candidates will be described. In S2501, the maintenance plan evaluation function 2301 extracts the maintenance cost, the average life 1207, and the operation base average DT1209 as evaluation indexes from the procurement / operation table 1140 and the prediction result database 2304 of the maintenance plan database 2303, and the maintenance cost, The smaller the operating base average DT 1209 is, the better. Next, normalization is performed so that the maximum value of each evaluation index is 1. By these operations, the best value of each index becomes 1.
 S2502で保守計画評価機能2301は、規格化した3つの評価指標を用いて、複数の保守計画候補からパレート最適解集合を求める。保守費用、稼働ベース平均DT1209の二つの評価軸を用いて、パレート最適解集合を求めた一例を図27の2601に示す。 In S2502, the maintenance plan evaluation function 2301 obtains a Pareto optimal solution set from a plurality of maintenance plan candidates using three standardized evaluation indexes. An example of obtaining a Pareto optimal solution set using two evaluation axes of maintenance cost and operation base average DT1209 is shown in 2601 of FIG.
 S2503で顧客ポリシー推定機能2302は、保守選択履歴テーブル2410から、過去に起きた異常・故障・作業の組に対してどのような保守計画候補が挙げられ、その中から顧客がどの保守計画を選択したかを読み込み、規格化した各評価指標の値を抽出する。  
 S2504で顧客ポリシー推定機能2302は、過去に顧客が選択した保守計画の各評価指標の値から、顧客ポリシーを推定する。一例として、保守費用、稼働ベース平均DTの二つの評価軸における顧客ポリシーを、最小二乗法を用いて推定した結果を図28、2602に示す。
In step S2503, the customer policy estimation function 2302 selects from the maintenance selection history table 2410 what maintenance plan candidates are listed for the abnormality / failure / work combinations that occurred in the past, and the customer selects which maintenance plan from among them. And read out the standardized value of each evaluation index.
In S2504, the customer policy estimation function 2302 estimates the customer policy from the values of the evaluation indexes of the maintenance plan selected by the customer in the past. As an example, FIGS. 28 and 2602 show the results of estimating customer policies on two evaluation axes of maintenance cost and operation base average DT using the least square method.
 処理S2505で保守計画評価機能2301は、各保守計画候補に対して、パレート最適解集合からスコアAを、推定顧客ポリシーからスコアBをそれぞれ求め、スコアA及びスコアBを用いて各保守計画候補にスコアを付与し、結果を保守計画評価テーブル2400に格納する。 In step S2505, the maintenance plan evaluation function 2301 obtains a score A from the Pareto optimal solution set and a score B from the estimated customer policy for each maintenance plan candidate, and assigns each score to each maintenance plan candidate using the score A and the score B. A score is assigned and the result is stored in the maintenance plan evaluation table 2400.
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000001

 パレート最適解集合から評価したスコアAでは、計画ID=“MP-001”と“MP-008”は同スコアであり、順位付けができないが、顧客ポリシーによるスコアBを評価に加えることで、当該顧客にとっては計画ID=“MP-001”が優先されると推定される。さらに、スコアAのみの評価では、“MP-001”、“MP-008”に劣っていた“MP-002”が当該顧客にとって最も優先される保守計画であると推定される。 In the score A evaluated from the Pareto optimal solution set, the plan ID = “MP-001” and “MP-008” are the same score and cannot be ranked, but by adding the score B according to the customer policy to the evaluation, It is estimated that plan ID = “MP-001” is given priority to the customer. Furthermore, in the evaluation of only the score A, it is estimated that “MP-002”, which is inferior to “MP-001” and “MP-008”, is the maintenance plan most prioritized for the customer.
 処理S2506で出力管理部2300は、ユーザに対して保守計画データベース2303、予測結果データベース2304、計画評価データベース2305に格納された保守計画、予測結果、保守計画評価結果をスコア2404の順に出力し、ユーザの選択を待つ。 In step S2506, the output management unit 2300 outputs the maintenance plan, prediction result, and maintenance plan evaluation result stored in the maintenance plan database 2303, the prediction result database 2304, and the plan evaluation database 2305 to the user in the order of the score 2404. Wait for the selection.
 処理S2507で顧客ポリシー推定機能2302は、ユーザの選択を保守選択履歴テーブル2410に格納する。 In process S2507, the customer policy estimation function 2302 stores the user's selection in the maintenance selection history table 2410.
 本実施例においては、評価指標として用いた保守費用、稼働ベース平均DTの値を規格化して推定顧客ポリシーを算出した(図28、2602)。これは、保守作業に用いる部品や実施する作業によって保守費用や稼働ベース平均DTが大きく異なることを想定したためであるが、類似する部品、作業では保守費用、稼働ベース平均DTはオーダーとして同程度となる。このような場合は、規格化を用いることなく、各評価指標の値をそのまま用いて、顧客ポリシーを推定することも考えられる。また、本実施例では単一顧客の履歴情報を元にポリシーを推定する手順を説明したが、例えば国毎、地域毎にポリシーに類似性が認められる場合は国毎、地域毎の履歴情報を纏めて評価してもよいし、同一顧客であっても、エンジンやポンプなどの部位毎に傾向が異なる場合は部位毎に細分化して評価を行ってもよい。 In this example, the estimated customer policy was calculated by standardizing the maintenance cost and operation base average DT values used as evaluation indices (FIG. 28, 2602). This is because it is assumed that the maintenance cost and the operation base average DT vary greatly depending on the parts used for the maintenance work and the work to be performed. However, the maintenance cost and the operation base average DT are about the same as orders for similar parts and operations. Become. In such a case, it is conceivable to estimate the customer policy by using the value of each evaluation index as it is without using normalization. Further, in this embodiment, the procedure for estimating a policy based on the history information of a single customer has been described. For example, if similarity is recognized for each country or region, the history information for each country or region is displayed. Evaluation may be performed collectively, or even if the customer is the same, if the tendency is different for each part such as an engine or a pump, the evaluation may be performed by subdividing each part.
 以上、本発明を実施するための最良の形態などについて具体的に説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The best mode for carrying out the present invention has been specifically described above. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.
 こうした本実施形態によれば、交換部品を一義的に取り扱うことなく、同様の機能を持つ部品でも旧版部品や再生部品など複数種類の部品を考慮し、これら各種の部品を作業機械の保守計画立案に反映することができる。また、作業機械に生じた現象から異常および故障を推定し、それに応じた保守作業の特定を行うことが出来るため、様々な状況に合わせて生じうる故障を推定し、的確な保守対応を特定することが可能である。また、鉱山機械などの大型機械に於いて保守作業に要する費用や時間の点で重要な検討要素となる部品調達について、旧版部品や再生品についても考慮しつつ、納期や輸送コスト、負荷率、負荷率に応じた経済損失をトータルで踏まえた、複数パターンの保守計画の立案支援が可能となる。こうした本実施形態の保守計画立案支援技術によれば、作業機械に異常や故障を検知した際に旧版部品や再生部品及びそれらの調達計画なども考慮して、いつ、何をすべきかをその評価と共にユーザに提供し、保守計画立案業務を支援することが出来る。 According to the present embodiment, replacement parts are not handled unambiguously, and even parts having similar functions are considered for multiple types of parts such as old edition parts and recycled parts, and these various parts are prepared as maintenance plans for work machines. Can be reflected. In addition, abnormalities and failures can be estimated from phenomena occurring in work machines, and maintenance operations can be identified accordingly. Therefore, it is possible to estimate failures that may occur in accordance with various situations and identify appropriate maintenance measures. It is possible. In addition, regarding parts procurement, which is an important consideration in terms of cost and time required for maintenance work in large machines such as mining equipment, taking into account old version parts and remanufactured parts, delivery date, transportation cost, load factor, It is possible to support the planning of multiple patterns of maintenance plans based on the total economic loss according to the load factor. According to the maintenance planning support technology of this embodiment, when an abnormality or failure is detected in the work machine, the old version parts, the refurbished parts, and the procurement plan thereof are also taken into consideration, and what is to be evaluated. Along with this, it can be provided to users to support maintenance planning work.
 したがって本実施形態によれば、保守員のスキル等に依存せずに効果的な保守計画を効率的に立案可能となる。 Therefore, according to this embodiment, it is possible to efficiently formulate an effective maintenance plan without depending on the skills of maintenance personnel.
 本明細書の記載により、少なくとも次のことが明らかにされる。すなわち、本実施形態の保守計画立案支援システムにおいて、前記記憶装置は、各作業機械の、故障時における負荷率別の残寿命および負荷率低下に伴う作業機械使用者における経済損失の情報とを対応づけて保持する第5データベースをさらに備えるものであり、前記演算装置は、前記作業機械に関する前記現象の情報が含む、作業機械ないし現象発生箇所の部品の負荷率の情報を前記第5データベースに照合して、前記作業機械ないし現象発生箇所の部品の残寿命を推定し、当該残寿命が、現時点から前記保守実施候補日までの猶予期間を下回る程度に応じて低下させた負荷率を該当作業機械における負荷率とし、当該負荷率での経済損失を前記第5データベースにて特定し、前記低下させた負荷率および当該負荷率での経済損失の情報を、前記保守計画情報に含めて出力装置に出力する処理を更に実行するものである、としてもよい。これによれば、故障が生じている部品が保守実施日まで稼働し続けられる程度に低下させるべき負荷率を特定し、この負荷率で部品を稼働させた際の顧客側の経済損失をユーザに提示することが可能となり、ユーザ側では、保守計画を決定する際に重要な、事業継続性や経済性といった面で顧客側への配慮を行いやすくなる。 記載 At least the following will be made clear by the description in this specification. That is, in the maintenance planning support system of the present embodiment, the storage device corresponds to the remaining life of each work machine according to the load factor at the time of failure and the information on the economic loss of the work machine user accompanying the load factor decrease. And further comprising a fifth database to be held, wherein the arithmetic device collates information on a load factor of a work machine or a part where the phenomenon occurs, included in the information on the phenomenon related to the work machine, with the fifth database. Then, the remaining life of the work machine or the part where the phenomenon occurs is estimated, and the load factor which is reduced according to the extent that the remaining life is less than the grace period from the current time to the maintenance execution candidate date , The economic loss at the load factor is specified in the fifth database, and the reduced load factor and the economic loss information at the load factor are specified. The maintenance plan in which information further executes a process of outputting to the output device, including a may be. According to this, the load factor that should be reduced to the extent that the failed part can continue to operate until the date of maintenance is identified, and the economic loss on the customer side when the component is operated at this load factor is reported to the user. This makes it possible for the user side to easily consider the customer side in terms of business continuity and economy, which is important when determining a maintenance plan.
 また、本実施形態の保守計画立案支援システムにおいて、前記記憶装置は、個々の部品ないしその旧版部品または再生部品の、作業機械への取付及び作業機械からの取外に関する情報を格納した第6データベースを更に備えるものであり、前記演算装置は、前記保守計画情報が示す、前記保守作業に用いる部品ないしその旧版部品または再生部品に関し、前記第6データベースにおける、同一種類の部品ないしその旧版部品または再生部品の取付と取外の履歴を特定し、当該特定した取付と取外との間の時間を寿命として算出し、当該寿命の情報を前記保守計画情報に含めて出力装置に出力する処理を更に実行するものである、としてもよい。これによれば、保守計画にて採用する交換用の部品が、どれほどの寿命を備えるものかユーザに提示することで、ユーザ側では、例えば、部品コストと寿命のバランスを考えた保守計画立案が行いやすくなるといった効果がある。 Further, in the maintenance planning support system of the present embodiment, the storage device stores a sixth database that stores information related to attachment to and removal from the work machine of individual parts or old version parts or regenerated parts thereof. The computing device relates to a part used for the maintenance work or an old version part or a reproduction part thereof indicated by the maintenance plan information, and the same type of part or the old version part or the reproduction thereof in the sixth database. A process of identifying the history of component attachment and removal, calculating the time between the identified attachment and removal as a lifetime, and including the information on the lifetime in the maintenance plan information and outputting to the output device It may be executed. According to this, by presenting to the user how long the replacement parts used in the maintenance plan will have, the user can create a maintenance plan that takes into account, for example, the balance between parts cost and life. It has the effect of making it easier to do
 また、本実施形態の保守計画立案支援システムにおいて、前記演算装置は、前記保守計画情報が示す、前記保守作業に用いる部品ないしその旧版部品または再生部品に関し、前記第1データベースにおける、同一種類の部品ないしその旧版部品または再生部品の、故障の情報の有無を特定し、故障の情報が存在する場合に、該当故障に対して実施された保守作業の情報を前記第1データベースにて特定し、該当保守作業の情報が示す、作業開始から作業終了までの間の時間をダウンタイムとして算定し、当該ダウンタイムの情報を、前記保守計画情報に含めて出力装置に出力する処理を更に実行するものである、としてもよい。これによれば、保守計画にて採用する交換用の部品が、過去の保守作業によれば、どれほどのダウンタイムの発生が見込まれるのかユーザに提示することで、ユーザ側では、例えば、部品コストとダウンタイムのバランスを考えた保守計画立案が行いやすくなるといった効果がある。 Further, in the maintenance plan planning support system of the present embodiment, the arithmetic unit is related to a part used for the maintenance work indicated by the maintenance plan information or an old version part or a recycled part thereof, and the same type of parts in the first database. Also, the presence or absence of failure information of the old version parts or remanufactured parts is specified, and when the failure information exists, the information on the maintenance work performed for the corresponding failure is specified in the first database, and the corresponding The time between the work start and work end indicated by the maintenance work information is calculated as downtime, and the process of including the downtime information in the maintenance plan information and outputting it to the output device is further executed. There may be. According to this, by presenting to the user the amount of downtime expected for replacement parts used in the maintenance plan according to past maintenance work, on the user side, for example, the part cost This also has the effect of making it easier to create a maintenance plan that takes into account the balance between the system and downtime.
 また、本実施形態の保守計画立案支援システムにおいて、前記記憶装置は、作業機械の部品に設置したセンサによる、該当部品の挙動に関する測定値を格納した第7データベースと、作業機械の部品の稼働有無を判定する前記センサによる測定値の条件を格納した第8データベースとを更に備えるものであり、前記演算装置は、前記保守計画情報が示す、前記保守作業に用いる部品ないしその旧版部品または再生部品に関し、前記第7データベースにおける、同一種類の部品ないしその旧版部品または再生部品についての測定値の情報を特定し、当該特定した測定値の情報を前記第8データベースに照合して、該当部品ないしその旧版部品または再生部品の稼働停止期間をダウンタイムとして算定し、当該ダウンタイムの情報を、前記保守計画情報に含めて出力装置に出力する処理を更に実行するものである、としてもよい。これによれば、保守計画にて採用する交換用の部品が、センサデータ由来の過去の稼働実績によれば、どれほどのダウンタイムの発生が見込まれるのかユーザに提示することで、ユーザ側では、例えば、部品コストとダウンタイムのバランスを考えた保守計画立案が行いやすくなるといった効果がある。 Further, in the maintenance planning support system of the present embodiment, the storage device includes a seventh database storing measured values related to the behavior of the corresponding part by a sensor installed on the part of the work machine, and whether or not the work machine part is in operation. And an eighth database storing conditions of measurement values by the sensor for determining the sensor, and the arithmetic unit relates to a part used for the maintenance work indicated by the maintenance plan information or an old version part or a recycled part thereof In the seventh database, information on measured values for the same type of part or its old version parts or remanufactured parts is specified, and the information on the specified measured values is collated with the eighth database, and the corresponding part or its old version The downtime of parts or remanufactured parts is calculated as downtime, and the downtime information is stored in the maintenance In which further executes a process of outputting to the output device included in the image information may be. According to this, according to the past operation results derived from sensor data, the replacement part adopted in the maintenance plan is shown to the user how much downtime is expected, so on the user side, For example, there is an effect that a maintenance plan considering the balance between parts cost and downtime can be easily made.
 また、本実施形態の保守計画立案支援システムにおいて、前記記憶装置は、作業機械に関して実施予定の定期保守の日程を格納する第9データベースを更に備えるものであり、前記演算装置は、現時点から、前記保守計画情報が示す前記保守実施候補日までの期間内に、前記定期保守の日程が含まれているか前記第9データベースにて判定し、前記期間内に前記定期保守の日程が含まれている場合、該当定期保守日で前記保守実施候補日を置換し、前記保守計画情報の生成を再度実行するものである、としてもよい。これによれば、あらかじめ組まれている定期保守の機会を無駄にせず、定期保守の機会を、イレギュラーな故障発生事象に有効活用し、効率的に保守計画を立案することが可能となる。 In the maintenance plan planning support system according to the present embodiment, the storage device further includes a ninth database that stores a schedule of scheduled maintenance scheduled to be performed on the work machine. When it is determined in the ninth database whether the schedule for the regular maintenance is included in the period until the maintenance execution candidate date indicated by the maintenance plan information, and the schedule for the regular maintenance is included in the period The maintenance execution candidate date may be replaced with the corresponding regular maintenance date, and generation of the maintenance plan information may be executed again. According to this, it is possible to efficiently devise a maintenance plan by effectively utilizing the periodic maintenance opportunity for an irregular failure occurrence event without wasting the opportunity for the periodic maintenance that is set in advance.
10 鉱山機械(作業機械)
11 センサ
100 保守計画立案支援システム
111 I/O(出力装置)
112 通信装置
113 メモリ
114 CPU(演算装置)
115 記憶装置
120 異常診断部
123 現象履歴データベース(第1データベース)
124 故障履歴データベース(第1データベース)
130 対策抽出部
132 作業履歴データベース(第1データベース)
133 保守作業データベース(第2データベース)
140 計画作成部
143 日程データベース(第3データベース)
144 部品調達データベース(第4データベース)
145 顧客知識データベース(第5データベース)
146 定期保守データベース(第9データベース)
150 性能予測部
153 部品履歴データベース(第6データベース)
154 部品稼働データベース
1000 稼働判定テーブル(第8データベース)
1010 稼働実績テーブル(第7データベース)
160 出力管理部
161 保守計画データベース
162 予測結果データベース
170 監視システム
180 ネットワーク
190 クライアント端末
10 Mining machine (work machine)
11 Sensor 100 Maintenance planning support system 111 I / O (output device)
112 Communication device 113 Memory 114 CPU (arithmetic unit)
115 Storage Device 120 Abnormality Diagnosis Unit 123 Phenomenon History Database (First Database)
124 Failure history database (first database)
130 Countermeasure extraction unit 132 Work history database (first database)
133 Maintenance work database (second database)
140 Plan creation unit 143 Schedule database (third database)
144 Parts procurement database (4th database)
145 Customer Knowledge Database (Fifth Database)
146 Regular maintenance database (9th database)
150 Performance Prediction Unit 153 Parts History Database (Sixth Database)
154 Parts Operation Database 1000 Operation Determination Table (Eighth Database)
1010 Operation result table (seventh database)
160 Output Management Unit 161 Maintenance Plan Database 162 Prediction Result Database 170 Monitoring System 180 Network 190 Client Terminal

Claims (9)

  1.  作業機械に発生した現象の情報と、該当現象の発生後に該当作業機械に生じた故障の情報と、前記故障に対して実施された保守作業の情報と、を対応づけて保持する第1データベースと、
     作業機械別に規定された標準の保守作業の情報を保持する第2データベースと、
     保守作業用の各人員および各機材の稼働可能時期の情報を保持する第3データベースと、
     保守作業に用いられる部品ないしその旧版部品または再生部品の各在庫と価格、および、輸送先別および輸送手段別の納期および輸送コストの情報とを、倉庫別に保持する第4データベースと、を格納する記憶装置と、
     作業機械の監視システムより、ある所在地の作業機械に発生した現象の情報をネットワークを介して受信し、当該受信した現象の情報を前記第1データベースに照合して、該当現象の発生後に起こり得る故障を推定し、該当故障に際して前記作業機械に実施された保守作業の情報を第1データベースにて特定する処理と、
     前記特定した保守作業の情報を前記第2データベースに照合し、前記作業機械に対して実施が予想される標準の保守作業の情報を特定し、該当保守作業の情報が指定する保守作業用の人員および機材の稼働可能時期を保守実施候補日として前記第3データベースで特定する処理と、
     前記保守作業の情報が指定する部品ないしその旧版部品または再生部品を在庫し、該当部品ないしその旧版部品または再生部品を、該当作業機械の所在地に輸送手段により納品する場合の納期が、現時点から前記保守実施候補日までの猶予期間に収まる倉庫と、前記納期に対応した輸送手段及びその輸送コストを、前記第4データベースで特定し、当該特定した、前記保守作業に用いる部品ないしその旧版部品または再生部品に関する、納期、倉庫、輸送手段、及び輸送コストの情報と前記保守実施候補日の情報とを保守計画情報として生成し出力装置に出力する処理と、を実行する演算装置と、
     を備えることを特徴とする保守計画立案支援システム。
    A first database that holds information on a phenomenon that has occurred in the work machine, information on a failure that has occurred in the work machine after the occurrence of the phenomenon, and information on maintenance work that has been performed on the failure in association with each other; ,
    A second database for holding information on standard maintenance work defined for each work machine;
    A third database that holds information on the availability of each person and equipment for maintenance work;
    A fourth database that holds each stock and price of parts used for maintenance work or its old version parts or remanufactured parts, and delivery date and transportation cost information for each destination and means of transportation for each warehouse is stored. A storage device;
    A failure that may occur after the occurrence of the corresponding phenomenon by receiving information on the phenomenon that has occurred in the work machine at a certain location from the monitoring system of the work machine via the network, collating the received information on the phenomenon with the first database. A process of identifying information on maintenance work performed on the work machine at the time of the failure in the first database;
    Personnel for maintenance work specified by the corresponding maintenance work information by collating the identified maintenance work information with the second database, identifying standard maintenance work information expected to be performed on the work machine And the process of specifying the operation availability time of the equipment as the maintenance execution candidate date in the third database,
    The parts specified by the maintenance work information or its old version parts or remanufactured parts are stocked, and the delivery date when the relevant parts or their old version parts or remanufactured parts are delivered to the location of the work machine by means of transportation is The warehouse that fits in the grace period until the maintenance candidate date, the transportation means corresponding to the delivery date and the transportation cost thereof are specified in the fourth database, and the specified parts used for the maintenance work or the old version parts or the reproduction thereof are identified. A processing device that executes a process for generating information on delivery date, warehouse, transportation means, and transportation cost and information on the maintenance execution candidate date as maintenance plan information and outputting it to an output device.
    A maintenance planning support system characterized by comprising:
  2.  前記記憶装置は、
     各作業機械の、故障時における負荷率別の残寿命および負荷率低下に伴う作業機械使用者における経済損失の情報とを対応づけて保持する第5データベースをさらに備えるものであり、
     前記演算装置は、
     前記作業機械に関する前記現象の情報が含む、作業機械ないし現象発生箇所の部品の負荷率の情報を前記第5データベースに照合して、前記作業機械ないし現象発生箇所の部品の残寿命を推定し、当該残寿命が、現時点から前記保守実施候補日までの猶予期間を下回る程度に応じて低下させた負荷率を該当作業機械における負荷率とし、当該負荷率での経済損失を前記第5データベースにて特定し、前記低下させた負荷率および当該負荷率での経済損失の情報を、前記保守計画情報に含めて出力装置に出力する処理を更に実行するものである、
     ことを特徴とする請求項1に記載の保守計画立案支援システム。
    The storage device
    A fifth database that holds the remaining life of each work machine according to the load factor at the time of failure and the information on the economic loss of the work machine user associated with the load factor drop in association with each other;
    The arithmetic unit is:
    The information of the phenomenon related to the work machine includes information on the load factor of the work machine or the part where the phenomenon occurred, and the fifth database is used to estimate the remaining life of the work machine or the part where the phenomenon occurs, The load factor that is reduced according to the extent that the remaining life falls below the grace period from the present time to the maintenance execution candidate date is set as the load factor in the corresponding work machine, and the economic loss at the load factor is stored in the fifth database. Identifying and reducing the load factor and the economic loss information at the load factor are included in the maintenance plan information and further output to the output device,
    The maintenance plan planning support system according to claim 1.
  3.  前記記憶装置は、
     個々の部品ないしその旧版部品または再生部品の、作業機械への取付及び作業機械からの取外に関する情報を格納した第6データベースを更に備えるものであり、
     前記演算装置は、
     前記保守計画情報が示す、前記保守作業に用いる部品ないしその旧版部品または再生部品に関し、前記第6データベースにおける、同一種類の部品ないしその旧版部品または再生部品の取付と取外の履歴を特定し、当該特定した取付と取外との間の時間を寿命として算出し、当該寿命の情報を前記保守計画情報に含めて出力装置に出力する処理を更に実行するものである、
     ことを特徴とする請求項2に記載の保守計画立案支援システム。
    The storage device
    And further comprising a sixth database storing information on attachment to and removal from the work machine of individual parts or their old version parts or recycled parts,
    The arithmetic unit is:
    Regarding the parts used in the maintenance work indicated by the maintenance plan information or the old version parts or regenerated parts thereof, the history of the attachment and removal of the same type of parts or the old version parts or the regenerated parts in the sixth database, Calculate the time between the specified attachment and removal as a lifetime, and further execute a process of including the lifetime information in the maintenance plan information and outputting to the output device.
    The maintenance planning support system according to claim 2, wherein:
  4.  前記演算装置は、
     前記保守計画情報が示す、前記保守作業に用いる部品ないしその旧版部品または再生部品に関し、前記第1データベースにおける、同一種類の部品ないしその旧版部品または再生部品の、故障の情報の有無を特定し、故障の情報が存在する場合に、該当故障に対して実施された保守作業の情報を前記第1データベースにて特定し、該当保守作業の情報が示す、作業開始から作業終了までの間の時間をダウンタイムとして算定し、当該ダウンタイムの情報を、前記保守計画情報に含めて出力装置に出力する処理を更に実行するものである、
     ことを特徴とする請求項2に記載の保守計画立案支援システム。
    The arithmetic unit is:
    Regarding the parts used in the maintenance work indicated by the maintenance plan information or the old version parts or regenerated parts thereof, the presence or absence of failure information of the same type of parts or the old version parts or regenerated parts in the first database is specified, When failure information exists, information on the maintenance work performed for the failure is identified in the first database, and the time from the work start to the work end indicated by the maintenance service information is shown. It is calculated as downtime, and further includes a process of including the downtime information in the maintenance plan information and outputting it to an output device.
    The maintenance planning support system according to claim 2, wherein:
  5.  前記記憶装置は、
     作業機械の部品に設置したセンサによる、該当部品の挙動に関する測定値を格納した第7データベースと、作業機械の部品の稼働有無を判定する前記センサによる測定値の条件を格納した第8データベースとを更に備えるものであり、
     前記演算装置は、
     前記保守計画情報が示す、前記保守作業に用いる部品ないしその旧版部品または再生部品に関し、前記第7データベースにおける、同一種類の部品ないしその旧版部品または再生部品についての測定値の情報を特定し、当該特定した測定値の情報を前記第8データベースに照合して、該当部品ないしその旧版部品または再生部品の稼働停止期間をダウンタイムとして算定し、当該ダウンタイムの情報を、前記保守計画情報に含めて出力装置に出力する処理を更に実行するものである、
     ことを特徴とする請求項2に記載の保守計画立案支援システム。
    The storage device
    A seventh database storing measured values related to the behavior of the corresponding parts by sensors installed on the parts of the work machine; and an eighth database storing conditions of measured values by the sensors for determining whether the parts of the work machine are operating. In addition,
    The arithmetic unit is:
    Regarding the parts used in the maintenance work indicated by the maintenance plan information or the old version parts or regenerated parts thereof, the measurement data on the same type of parts or the old version parts or the regenerated parts is specified in the seventh database, The identified measurement value information is collated with the eighth database to calculate the downtime as the downtime of the corresponding part or its old version part or remanufactured part, and the downtime information is included in the maintenance plan information. The process of outputting to the output device is further executed.
    The maintenance planning support system according to claim 2, wherein:
  6.  前記記憶装置は、
     作業機械に関して実施予定の定期保守の日程を格納する第9データベースを更に備えるものであり、
     前記演算装置は、
     現時点から、前記保守計画情報が示す前記保守実施候補日までの期間内に、前記定期保守の日程が含まれているか前記第9データベースにて判定し、前記期間内に前記定期保守の日程が含まれている場合、該当定期保守日で前記保守実施候補日を置換し、前記保守計画情報の生成を再度実行するものである、
     ことを特徴とする請求項3~5のいずれかに記載の保守計画立案支援システム。
    The storage device
    A ninth database for storing a schedule of scheduled maintenance scheduled for the work machine;
    The arithmetic unit is:
    It is determined in the ninth database whether the regular maintenance schedule is included in the period from the current time to the maintenance execution candidate date indicated by the maintenance plan information, and the regular maintenance schedule is included in the period. The maintenance execution candidate date is replaced with a corresponding regular maintenance date, and generation of the maintenance plan information is executed again.
    The maintenance planning support system according to any one of claims 3 to 5, wherein:
  7.  前記記憶装置は、
     保守計画の評価結果と、過去に顧客が選択した保守計画の履歴を格納する第10データベースを更に備えるものであり、
     前記演算装置は、
     前記保守計画情報が含む保守計画に係る費用と、前記保守作業に用いる部品ないしその旧版部品または再生部品の寿命、あるいはダウンタイムを指標として用いて保守計画にスコアを付与、順位付けて出力する処理を更に実行するものである、
     ことを特徴とする請求項3~6のいずれかに記載の保守計画立案支援システム。
    The storage device
    A tenth database for storing the evaluation result of the maintenance plan and the history of the maintenance plan selected by the customer in the past;
    The arithmetic unit is:
    A process for assigning a score to a maintenance plan using the cost associated with the maintenance plan included in the maintenance plan information, the life of a part used in the maintenance work or its old version parts or remanufactured parts, or downtime as an index, and ranking and outputting the index Is to execute further,
    The maintenance planning support system according to any one of claims 3 to 6, wherein
  8.  作業機械に発生した現象の情報と、該当現象の発生後に該当作業機械に生じた故障の情報と、前記故障に対して実施された保守作業の情報と、を対応づけて保持する第1データベースと、作業機械別に規定された標準の保守作業の情報を保持する第2データベースと、保守作業用の各人員および各機材の稼働可能時期の情報を保持する第3データベースと、保守作業に用いられる部品ないしその旧版部品または再生部品の各在庫と価格、および、輸送先別および輸送手段別の納期および輸送コストの情報とを、倉庫別に保持する第4データベースと、を格納する記憶装置を備えたコンピュータが、
     作業機械の監視システムより、ある所在地の作業機械に発生した現象の情報をネットワークを介して受信し、当該受信した現象の情報を前記第1データベースに照合して、該当現象の発生後に起こり得る故障を推定し、該当故障に際して前記作業機械に実施された保守作業の情報を第1データベースにて特定する処理と、
     前記特定した保守作業の情報を前記第2データベースに照合し、前記作業機械に対して実施が予想される標準の保守作業の情報を特定し、該当保守作業の情報が指定する保守作業用の人員および機材の稼働可能時期を保守実施候補日として前記第3データベースで特定する処理と、
     前記保守作業の情報が指定する部品ないしその旧版部品または再生部品を在庫し、該当部品ないしその旧版部品または再生部品を、該当作業機械の所在地に輸送手段により納品する場合の納期が、現時点から前記保守実施候補日までの猶予期間に収まる倉庫と、前記納期に対応した輸送手段及びその輸送コストを、前記第4データベースで特定し、当該特定した、前記保守作業に用いる部品ないしその旧版部品または再生部品に関する、納期、倉庫、輸送手段、及び輸送コストの情報と前記保守実施候補日の情報とを保守計画情報として生成し出力装置に出力する処理と、
     を実行することを特徴とする保守計画立案支援方法。
    A first database that holds information on a phenomenon that has occurred in the work machine, information on a failure that has occurred in the work machine after the occurrence of the phenomenon, and information on maintenance work that has been performed on the failure in association with each other; A second database that holds information on standard maintenance work defined for each work machine, a third database that holds information on the availability of each person and equipment for maintenance work, and parts used for maintenance work A computer having a storage device for storing each stock and price of old version parts or recycled parts, and a fourth database that holds information on delivery date and transportation cost by transport destination and transport means by warehouse. But,
    A failure that may occur after the occurrence of the corresponding phenomenon by receiving information on the phenomenon that has occurred in the work machine at a certain location from the monitoring system of the work machine via the network, collating the received information on the phenomenon with the first database. A process of identifying information on maintenance work performed on the work machine at the time of the failure in the first database;
    Personnel for maintenance work specified by the corresponding maintenance work information by collating the identified maintenance work information with the second database, identifying standard maintenance work information expected to be performed on the work machine And the process of specifying the operation availability time of the equipment as the maintenance execution candidate date in the third database,
    The parts specified by the maintenance work information or its old version parts or remanufactured parts are stocked, and the delivery date when the relevant parts or their old version parts or remanufactured parts are delivered to the location of the work machine by means of transportation is The warehouse that fits in the grace period until the maintenance candidate date, the transportation means corresponding to the delivery date and the transportation cost thereof are specified in the fourth database, and the specified parts used for the maintenance work or the old version parts or the reproduction thereof are identified. A process for generating information on delivery date, warehouse, transportation means, transportation cost and information on the maintenance execution candidate date as parts of maintenance plan information and outputting it to an output device.
    A maintenance planning support method characterized by executing
  9.  作業機械に発生した現象の情報と、該当現象の発生後に該当作業機械に生じた故障の情報と、前記故障に対して実施された保守作業の情報と、を対応づけて保持する第1データベースと、作業機械別に規定された標準の保守作業の情報を保持する第2データベースと、保守作業用の各人員および各機材の稼働可能時期の情報を保持する第3データベースと、保守作業に用いられる部品ないしその旧版部品または再生部品の各在庫と価格、および、輸送先別および輸送手段別の納期および輸送コストの情報とを、倉庫別に保持する第4データベースと、を格納する記憶装置を備えたコンピュータに、
     作業機械の監視システムより、ある所在地の作業機械に発生した現象の情報をネットワークを介して受信し、当該受信した現象の情報を前記第1データベースに照合して、該当現象の発生後に起こり得る故障を推定し、該当故障に際して前記作業機械に実施された保守作業の情報を第1データベースにて特定する処理と、
     前記特定した保守作業の情報を前記第2データベースに照合し、前記作業機械に対して実施が予想される標準の保守作業の情報を特定し、該当保守作業の情報が指定する保守作業用の人員および機材の稼働可能時期を保守実施候補日として前記第3データベースで特定する処理と、
     前記保守作業の情報が指定する部品ないしその旧版部品または再生部品を在庫し、該当部品ないしその旧版部品または再生部品を、該当作業機械の所在地に輸送手段により納品する場合の納期が、現時点から前記保守実施候補日までの猶予期間に収まる倉庫と、前記納期に対応した輸送手段及びその輸送コストを、前記第4データベースで特定し、当該特定した、前記保守作業に用いる部品ないしその旧版部品または再生部品に関する、納期、倉庫、輸送手段、及び輸送コストの情報と前記保守実施候補日の情報とを保守計画情報として生成し出力装置に出力する処理と、
     を実行させることを特徴とする保守計画立案支援プログラム。
    A first database that holds information on a phenomenon that has occurred in the work machine, information on a failure that has occurred in the work machine after the occurrence of the phenomenon, and information on maintenance work that has been performed on the failure in association with each other; A second database that holds information on standard maintenance work defined for each work machine, a third database that holds information on the availability of each person and equipment for maintenance work, and parts used for maintenance work A computer having a storage device for storing each stock and price of old version parts or recycled parts, and a fourth database that holds information on delivery date and transportation cost by transport destination and transport means by warehouse. In addition,
    A failure that may occur after the occurrence of the corresponding phenomenon by receiving information on the phenomenon that has occurred in the work machine at a certain location from the monitoring system of the work machine via the network, collating the received information on the phenomenon with the first database. A process of identifying information on maintenance work performed on the work machine at the time of the failure in the first database;
    Personnel for maintenance work specified by the corresponding maintenance work information by collating the identified maintenance work information with the second database, identifying standard maintenance work information expected to be performed on the work machine And the process of specifying the operation availability time of the equipment as the maintenance execution candidate date in the third database,
    The parts specified by the maintenance work information or its old version parts or remanufactured parts are stocked, and the delivery date when the relevant parts or their old version parts or remanufactured parts are delivered to the location of the work machine by means of transportation is The warehouse that fits in the grace period until the maintenance candidate date, the transportation means corresponding to the delivery date and the transportation cost thereof are specified in the fourth database, and the specified parts used for the maintenance work or the old version parts or the reproduction thereof are identified. A process for generating information on delivery date, warehouse, transportation means, transportation cost and information on the maintenance execution candidate date as parts of maintenance plan information and outputting it to an output device.
    A maintenance planning support program characterized by causing
PCT/JP2013/077813 2012-10-15 2013-10-11 Maintenance-plan-drafting support system, maintenance-plan-drafting support method, and maintenance-plan-drafting support program WO2014061604A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014542114A JP5938481B6 (en) 2012-10-15 2013-10-11 Maintenance planning support system, maintenance planning support method, maintenance planning support program
AU2013332924A AU2013332924B2 (en) 2012-10-15 2013-10-11 Maintenance-plan-drafting support system, maintenance-plan-drafting support method, and maintenance-plan-drafting support program
CA2888334A CA2888334C (en) 2012-10-15 2013-10-11 Maintenance-plan-developing support system, maintenance-plan-developing support method, and maintenance-plan-developing support program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/076610 WO2014061080A1 (en) 2012-10-15 2012-10-15 Maintenance-plan-drafting support system, maintenance-plan-drafting support method, and maintenance-plan-drafting support program
JPPCT/JP2012/076610 2012-10-15

Publications (1)

Publication Number Publication Date
WO2014061604A1 true WO2014061604A1 (en) 2014-04-24

Family

ID=50487670

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/076610 WO2014061080A1 (en) 2012-10-15 2012-10-15 Maintenance-plan-drafting support system, maintenance-plan-drafting support method, and maintenance-plan-drafting support program
PCT/JP2013/077813 WO2014061604A1 (en) 2012-10-15 2013-10-11 Maintenance-plan-drafting support system, maintenance-plan-drafting support method, and maintenance-plan-drafting support program

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076610 WO2014061080A1 (en) 2012-10-15 2012-10-15 Maintenance-plan-drafting support system, maintenance-plan-drafting support method, and maintenance-plan-drafting support program

Country Status (4)

Country Link
JP (1) JP5938481B6 (en)
AU (1) AU2013332924B2 (en)
CA (1) CA2888334C (en)
WO (2) WO2014061080A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118853A (en) * 2014-12-19 2016-06-30 カシオ計算機株式会社 Work management system and program
KR101899259B1 (en) * 2017-09-21 2018-09-14 주식회사 현대미포조선 Apparatus for providing guide corresponding to an alarm in the ship and method thereof
KR20190066714A (en) * 2017-12-06 2019-06-14 주식회사 블루비즈 Method and apparatus for efficiently managing part
JP2019133550A (en) * 2018-02-02 2019-08-08 ファナック株式会社 Failure classification device, method for classifying failures, and failure classification program
US11099550B2 (en) 2018-02-08 2021-08-24 Fanuc Corporation Failure location specifying device, failure location specifying method, and failure location specifying program
JP2021526250A (en) * 2018-05-07 2021-09-30 ストロング フォース アイオーティ ポートフォリオ 2016,エルエルシー Methods and systems for data collection, learning and streaming of machine signals for analysis and maintenance of industrial Internet of Things
WO2023002553A1 (en) * 2021-07-20 2023-01-26 株式会社日立製作所 Maintenance task assistance device and method
WO2023218561A1 (en) * 2022-05-11 2023-11-16 日揮グローバル株式会社 Storage work assistance device, storage work assistance method, and program
JP7461899B2 (en) 2021-01-08 2024-04-04 日立建機株式会社 Maintenance Support System

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6926008B2 (en) * 2018-01-31 2021-08-25 株式会社日立製作所 Maintenance planning equipment and maintenance planning method
JP6955231B2 (en) * 2019-12-10 2021-10-27 ダイキン工業株式会社 Maintenance support system
JP2024146401A (en) * 2023-03-31 2024-10-15 横河電機株式会社 Recommendation method, recommendation program, and recommendation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063418A (en) * 2000-08-22 2002-02-28 Komatsu Ltd Maintenance cost estimation system for work vehicle
JP2004127084A (en) * 2002-10-04 2004-04-22 Nec Fielding Ltd System, method and program for arranging failure restoration component
WO2005106139A1 (en) * 2004-04-28 2005-11-10 Komatsu Ltd. Maintenance support system for construction machine
JP2007219573A (en) * 2006-02-14 2007-08-30 Toshiba Corp Business risk prediction method and its device
JP2011197894A (en) * 2010-03-18 2011-10-06 Hitachi Ltd Server device and maintenance method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063418A (en) * 2000-08-22 2002-02-28 Komatsu Ltd Maintenance cost estimation system for work vehicle
JP2004127084A (en) * 2002-10-04 2004-04-22 Nec Fielding Ltd System, method and program for arranging failure restoration component
WO2005106139A1 (en) * 2004-04-28 2005-11-10 Komatsu Ltd. Maintenance support system for construction machine
JP2007219573A (en) * 2006-02-14 2007-08-30 Toshiba Corp Business risk prediction method and its device
JP2011197894A (en) * 2010-03-18 2011-10-06 Hitachi Ltd Server device and maintenance method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118853A (en) * 2014-12-19 2016-06-30 カシオ計算機株式会社 Work management system and program
KR101899259B1 (en) * 2017-09-21 2018-09-14 주식회사 현대미포조선 Apparatus for providing guide corresponding to an alarm in the ship and method thereof
KR20190066714A (en) * 2017-12-06 2019-06-14 주식회사 블루비즈 Method and apparatus for efficiently managing part
KR101996070B1 (en) * 2017-12-06 2019-07-04 주식회사 블루비즈 Method and apparatus for efficiently managing part
JP2019133550A (en) * 2018-02-02 2019-08-08 ファナック株式会社 Failure classification device, method for classifying failures, and failure classification program
US10838394B2 (en) 2018-02-02 2020-11-17 Fanuc Corporation Failure classifying device, failure classifying method, and failure classifying program for specifying locations of failures in a machine
US11099550B2 (en) 2018-02-08 2021-08-24 Fanuc Corporation Failure location specifying device, failure location specifying method, and failure location specifying program
JP2021526250A (en) * 2018-05-07 2021-09-30 ストロング フォース アイオーティ ポートフォリオ 2016,エルエルシー Methods and systems for data collection, learning and streaming of machine signals for analysis and maintenance of industrial Internet of Things
JP7445928B2 (en) 2018-05-07 2024-03-08 ストロング フォース アイオーティ ポートフォリオ 2016,エルエルシー Methods and systems for data collection, learning, and streaming of machine signals for analysis and maintenance using the industrial Internet of Things
JP7461899B2 (en) 2021-01-08 2024-04-04 日立建機株式会社 Maintenance Support System
WO2023002553A1 (en) * 2021-07-20 2023-01-26 株式会社日立製作所 Maintenance task assistance device and method
JP7549747B2 (en) 2021-07-20 2024-09-11 株式会社日立製作所 Maintenance work support device and method
WO2023218561A1 (en) * 2022-05-11 2023-11-16 日揮グローバル株式会社 Storage work assistance device, storage work assistance method, and program

Also Published As

Publication number Publication date
JP5938481B6 (en) 2018-06-27
JPWO2014061604A1 (en) 2016-09-05
AU2013332924A1 (en) 2015-05-07
JP5938481B2 (en) 2016-06-22
AU2013332924B2 (en) 2016-12-22
WO2014061080A1 (en) 2014-04-24
CA2888334A1 (en) 2014-04-24
CA2888334C (en) 2017-08-08

Similar Documents

Publication Publication Date Title
JP5938481B6 (en) Maintenance planning support system, maintenance planning support method, maintenance planning support program
JPWO2014061604A6 (en) Maintenance planning support system, maintenance planning support method, maintenance planning support program
CN111259515B (en) Aircraft health management method and system
US11501388B2 (en) Production management apparatus, method, and non-transitory medium
JP6302210B2 (en) Maintenance system for aircraft fleet and method for planning maintenance
JP6461779B2 (en) Plan adjustment system and plan adjustment method
TWI731146B (en) Aircraft malfunction handling system, method for handling aircraft malfunction, and computer equipment using thereof
JP6859833B2 (en) Equipment management equipment, equipment management system, programs and equipment management methods
US20120116827A1 (en) Plant analyzing system
JP5752621B2 (en) Demand forecasting device, demand forecasting program, and demand forecasting method
CN103425093A (en) Method and system for automatic recovery from fault situation in production plant
US11250377B2 (en) Device and method for supplying spare parts of an aircraft
TWI380226B (en) System and method of prognostic analysis and resource planning for apparatu
Goncalves et al. Modeling the relationship between aviation original equipment manufacturers and maintenance, repair and overhaul enterprises from a product-service system perspective
CN113469507A (en) Human resource management system based on network platform
JP2017027449A (en) Platform and method for optimizing manufacturing efficiency by monitoring and predicting tool state
CA2976355A1 (en) Method of determining availability and reliability of facility equipment
CN117993819A (en) Order production data chain system
CN108205300B (en) Maintenance component management device, maintenance component management method, and computer-readable medium
US20140165058A1 (en) System resource management method for virtual system
JP2005071136A (en) Delivery time management support system, its program, recording medium recording its program and delivery time management method for product
CN118400396B (en) Industrial Internet security monitoring method and system based on big data
Werbinska-Wojciechowska 1 Preventive Maintenance
US20240241749A1 (en) Operation cost visualization system and operation cost visualization method
Rühl et al. Life cycle performance for manufactures of production facilities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2888334

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014542114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013332924

Country of ref document: AU

Date of ref document: 20131011

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13846539

Country of ref document: EP

Kind code of ref document: A1